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ABSTRACT In this paper, a physics of failure-based predictionmethod is combinedwith statistical models to
consider the impact of current crowding and current droop effects on the reliability of LED arrays. Electronic-
thermal models of LEDs are utilized to obtain the operation conditions under the influences of current
crowding and current droop. AMarkov chain-based model is used to calculate the probability distribution of
each failure mode, including the lumen decay and catastrophic failure. Two types of LEDs were selected for
a numerical study. The proposed prediction method provides the realistic reliability prediction results. It is
found that the properties of LEDs have a great impact on their hazard rates of LED arrays. The equivalent
resistance, third-order non-radiative coefficient, and radiative coefficient of LEDs are critical to the reliability
of an LED array.

INDEX TERMS Catastrophic failure, electronic-thermal model, LED array, Markov chain, reliability
prediction.

NOTATIONS
X (t) Probability distribution of a system;
xi Probability of State i;
P Transition matrix of an LED array;
n Number of LED strings in parallel;
m Number of LEDs in series;
hi→j Probability of State i transfers to State j in 1t;
hs Hazard rate of an LED string;
λ0 LED’s basic hazard rate;
TA Ambient temperature;
Ea LED’s activation energy;
Tj LED’s junction temperature;
Pth LED’s thermal power;
Rth LED’s thermal resistance;
PLED LED’s input power;
PRa LED’s radiative power;
η(I ) Efficiency of LED with Current I;
Vf (I ) Forward voltage of LED with Current I;
I (i) Current of LED in State i;
Rs Equivalent resistance;
V0 Zero-current voltage;
η0 Basic efficiency;
Ae 1st order non-radiative coefficient;
Be Radiative coefficient;

Ce 3rd order non-radiative coefficient;
Ia Total input current of the array;
ϕ(i) Relative radiative power of the array in State i;

I. INTRODUCTION
Degradations including lumen depreciation and color shift,
are usually considered as major failure modes of LEDs.
The LED’s lifetime refers to the time at which an LED’s
lumenmaintenance degrades to 70% [1]–[3].Many reliability
prediction methods for solid state lighting [4]–[8] focus
on LEDs’ degradations. In recent years, many novel tech-
nologies have been applied to produce more reliable LEDs.
For example, the ultraviolet LEDs have attracted more and
more research concern [9], [10]. The under-etching pro-
cess and glass substrate technology has been developed for
GaN-based LEDs [11], [12]. ZnO nano-particles has been
used to enhance performance and lifetime of white-light
LEDs [13]. Meanwhile, many advanced packaging meth-
ods have developed to extend LED’s lifetime. For instance,
reliable phosphor materials for white-light LEDs have been
studied [14]–[17]. Thin film structure and silicon substrate
have been used to reduce LEDs’ thermal resistance [18], [19].
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Graphene have been implemented by LED packa-
ging [20], [21]. Remote phosphor technologies have been
utilized for LED lamps [22]. Optimization approaches of
LED packages have been developed [23], [24]. Via these new
technologies, the effect of lumen depreciation has been highly
reduced. In 2013, it has reported that the lumen depreciation
of an LED lamp is less than 3% after 25000 hours’ oper-
ation [25]. Currently, LED often has a lifetime as long as
25,000 hours [2], [26]. If such trend continues, it is reasonable
to believe that the lumen depreciation could be reduced to an
insignificant level in future solid state lighting products.

Beside the lumen depreciation with aging time, LED’s
catastrophic failure, which will result in zero light output
and open circuit [27], [28], is seen as one of major failures.
In many area lighting applications, the light source is an LED
array with many strings. Although the current balancing tech-
niques have been developed [29], mainstream applications
still connect paralleled LED strings directly. When one of
LEDs is failed, the entire string is disconnect from the array.
The current in the remaining strings will redistribute, leading
current crowding and current droop. The current crowding
effect will bring a higher forward voltage and thus more
input power [30]. The current droop will cause a decrease of
power efficiency [31]. Under inferences of these two effects,
the LED array will produce more heat and have an elevated
junction temperature and thus higher failure rate [32], [33].
Due to the large number of LEDs, the reliability test for an
LED array is expensive and time-consuming. Conventional
system reliability models [33] usually suppose that the failure
rate of each LED stay at a constant value. Such an assump-
tion may result significant errors in reliability assessment of
LED arrays. It is necessary to develop a reliability prediction
approach with consideration of failure rate changing caused
by current crowding and current droop for LED arrays.

In this work, a physics of failure-based prediction method-
ology is combined with statistical models to consider the
impact of LED’s catastrophic failure, current crowding and
current droop effects on of reliability LED arrays. Electronic-
thermal models of LEDs are utilized to obtain conditions of
each operation status under influences of current crowding
and current droop. LED’s catastrophic failure, current crowd-
ing and current droop depend on current operation status, but
are independent of the history of operation conditions. The
probability degradation of an LED array can consider as a
Markov process. Thus, a Markov chain-base model is used to
calculate the probability distribution of each operation status
based on operation conditions.

This paper is organized as follows. Section II describes
the proposed reliability model of LED arrays based on the
Markov Chain. In Section III, physics-based models of LED
are described. Experiments and model parameter extractions
are introduced in Section IV. In Section V, two types of
LED are analyzed to predict reliability of an LED array via
the proposed methodology. Section VI concludes this work
finally.

FIGURE 1. A typical LED array structure.

II. RELIABILITY MODEL OF LED ARRAY
Figure 1 shows a typical LED array. Supposes that the
array consists of n LED strings in parallel, each string has
m identical LEDs. The driving current distributes evenly in
all working LED strings. Each string has the same operation
conditions and thus the hazard rate. The catastrophic failure
of each LED will be considered, which will lead an open
circuit [34].

For a system has n+1 operation states, probability distribu-
tion at time t can be denoted as a set X (t) [35]:

X (t) = [x0(t), x1(t)...xn(t)] (1)

As discussed in previous works [36], [37], an electronic
system with catastrophic failures can be described by the
Markov Chain. Probability variations of the system at time
t +1t can be obtained by the following equation [35]:

dX (t)/dt = X (t) · P (2)

where P is system’s transition matrix:

P =


h0→0 h0→1 · · · h0→n
h1→0 h1→1 · · · h1→n
...

...
. . .

...

hn→0 hn→1 · · · hn→n

 (3)

where hi→jmeans the probability of State i transfers to State j.
In this work, the overall catastrophic failure of an LED is con-
sidered. State x represents that the array has x failed strings.
Since the overall probability of the array stays unchanged,
thus for any certain i:

n∑
j=0

hi→j = 0 (4)

The catastrophic failure of the selected LED is unrecover-
able, hence for any i ≥ j:

hi→j = 0 (5)

Therefore, the transition matrix P degrades to:

P =


h0→0 h0→1 · · · h0→n
0 h1→1 · · · h1→n
...

...
. . .

...

0 0 · · · hn→n

 (6)
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In the case of i = j, hi→j can be obtained by Eq. (4). For
any i ≤ j, hi→j in the transition matrix can be obtained by the
following equation [38]:

hi→j = C j−i
n−i · h

i−j
s (i) =

(n− i)!
(n− j)! · (i− j)!

hi−js (i) (7)

where the hazard rate of each LED string hs depends on
LEDs’ physics-based models which will be discussed in the
following section.

III. PHYSICS-BASED MODELS OF LED
For an LED stringwithmLEDs, hs(i) can be obtained by [33]:

hs(i) = m · λ0 · e
Ea
κ
[ 1
Tj(i)
−

1
TA

]
(8)

where, λ0 is the basic hazard rate at the ambient temperature
TA, Ea is the activation energy of the selected LED, Tj is
the LED’s junction temperature. In this work, λ0 and Ea
are obtained from the empirical models [33], and Tj can be
calculated by LEDs’ thermal model.

The interactions of the junction temperature of chips within
a package are not significant [39]. Thus, module-level ther-
mal interactions between LEDs may be neglected. Once
the LED reaches thermal equilibrium point, the junction
temperature Tj are functions of the component’s thermal
power Pth [40]:

Tj = Pth · Rth + TA (9)

where, Rth is the thermal resistance of the LED. In this work,
Rth can be from data-sheet or experiments of the selected
LEDs. Without consideration of the lumen depreciation,
the Pth can be obtained by:

Pth = PLED − PRa = PLED · [1− η(i)] (10)

where η(I ) is LED’s efficiency at current I , PRa is the radia-
tive power of each LED which equals to product of PLED
and η(I ), PLED is the input power:

PLED(I ) = Vf (I ) · I (11)

For ideal diodes, forward voltage Vf (I ) can be determined
by the following equation [30]:

I = Is · [eVf (I )/VT − 1] (12)

For LED in high-current status, Vf (I ) is approximately
proportional to driving current I [30]:

Vf (I ) = Rs · I + V0 (13)

whereV0 can be seemed as zero-current forward voltage,Rs is
equivalent resistance of the LED.

Theoretically, η(I ) is determined by both temperature
droop and current droop [31], [41]. In comparison with the
current droop, the temperature droop becomes negligible.
Hence, the η(I ) can be described the following function:

η(I ) = η0
BeI

Ae + BeI + CeI2
(14)

where η0 is basic efficiency, Ae and Ce are the 1st and
3rd order non-radiative power factor, Be is the radiative power
factor. These current droop related parameters are dependent
on material and structure properties of the LED, and will be
extracted experimentally in the Section IV.

As mentioned before, a current redistribution will be
caused by the catastrophic failure. Failure of any of the m
LEDs in the stringwill lead an open circuit of the entire string.
Therefore, current of each working LED string is a function
of number of failed LED strings i:

I (i) = Ia/(n− i) (15)

where Ia is the input current of the entire LED array which
usually keeps at a constant value. Therefore, PLED, Vf (I )
and ηI ) are also function of number of failed strings i. This
work uses the relative radiative power ϕ(i) as failure criteria,
which is approximately proportional to lumenmaintenance of
the entire LED array. According to Eq.(10) to (14), ϕ(i) can
be calculated by:

ϕ(i) =
m · (n− i) · PLED(i) · η(i)

m · n · PLED(i) · η0
=

Vf (i) · η(i)
Vf (0) · η(0)

(16)

As discussion above, the basic hazard rate λ0 and the
activation energy Ea will be obtained from the empirical
models [33]. Other parameters, including LEDs’ thermal
resistance, parameters of LED’s power and efficiency, will
be extracted experimentally in the following section.

FIGURE 2. (a) The selected LED package and (b) test plat-from.

IV. EXPERIMENT AND PARAMETER EXTRACTION
This work selects a common-used type of LED pack-
age [42], as shown in Figure 2 (a). Two types of LED chips,
LED A and B, which have different current and temper-
ature sensitivities, were integrated into the selected LED
package. The rated current and CCT of selected LEDs are
20mA and 6000K. Input power of LED A and B are around
56mW and 51mW.

In order to determine to determine RS , V0, η0, Ae, Be
and Ce, two groups of samples were tested in five cur-
rent levels, from 20mA to 100mA. Simple size of every
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group is 15. Each sample was placed on a thermal plate inside
a 50cm integrating sphere system as shown in Figure 2 (b).
Then, the electronic and optical characteristics of each sam-
ple, including current, forward voltage, radiant power and
efficiency, are measured at different conditions. For each
current level, the temperature of each sample sweeps from
303K to 343K.

FIGURE 3. Voltage curves vs. driving current.

FIGURE 4. Efficiency curves vs. driving current.

Figure 3 displays the forward voltage curves as functions
of driving current. The forward voltage curves increase lin-
early with each driving current. For each certain current,
variations of Vf in different temperatures are less than 0.2V.
Therefore, Vf is primarily determined by the driving current.
Figure 4 shows the efficiency curves as functions of driving
current. The power efficiency curves decrease with each driv-
ing current. For each certain current, variations of Vf in dif-
ferent temperatures are less than 3%. As a result, the T-droop
can be neglected in this work. Then, the measured forward
voltage curves were fitted by Eq.(13), whereas the efficiency
curves were fitted by Eq.(14) by the least square method,
obtaining parameters of the LEDmodels. Table 1 summarizes
the averaged values of the model parameters. Goodness of
fit for Vf (I ) and η(I ) are larger than 0.85. Therefore, fitting
curves have good agreements with tested results.

In order to determine the thermal resistance Rth of the
selected LED packages experimentally, the same group
of samples were tested in room temperature (300K) by
the T3ster system. The junction temperature increments
Tj − TA were measured in different current levels, from
20mA to 100mA. The thermal power can be obtained
from Eq.(10).

FIGURE 5. Temperature increment vs. thermal power.

TABLE 1. Parameters of LED models.

Figure 5 gives the temperature increment as a function
of thermal power. Then, the measured junction temperature
increments were fitted by Eq.(9) by the least square method,
the average value of Rth can be obtained. As shown in
Figure 4, Rth of the selected LED is about 125.9K ·W−1. The
R2 value of Rth fitting is larger than 0.99. Thus, the thermal
model has a good agreement with tested results.

V. CASE STUDIES AND RESULTS
The proposed approach provides a general methodology for
an LED array with considerations of current distribution and
hazard rate changing. A 7 by 10 LED array (7 LED strings,
10 LEDs per string) has been selected. An ideal constant cur-
rent power supply provides driving current to the LED array.
Since junction temperatures and driving current of LEDs will
change with the number of failed LED strings, the actual
hazard rate and radiative power of LEDs will be different
from the pre-selected values. The LED is pre-selected with
the activation energy and pre-factor of Eα,β = 0.45eV and
λ0 = 2.74 × 10−6 (TA=300K), according to the empirical
models [33]. The other parameters that appear in Eq. (8)
to (14) are listed in Table 1. The relative radiative power is
used as the failure criterion. If the relative radiative power
drops below 70% of its initial value, lumen maintenance
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FIGURE 6. The selected LED array.

FIGURE 7. Relative input power.

may degrade below 70%, the entire LED array is consid-
ered failed. The catastrophic failure, which refers to all LED
strings failed, can be seemed as a special case, owing that the
radiative power drops to zero. The details of the results will
be discussed below.

As explained in Eq.(13), the current crowding lead by a
reduction of working LED strings will bring a higher forward
voltage of each LED. Since the total current of the entire array
keeps unchanged, input power of the array will be increased.
Figure 7 displays the relative input power of the entire LED
array as a function of i/n ratio. The input power of the LED
array increases exponentially with the i/n ratio. At i/n = 6/7,
the array relative input power with LED A and B increase
about 43% and 15%. According to Eq. (11) and (13), incre-
ment of input power is approximately proportional to Rs.
Figure 8 displays the relative radiative power of the entire

LED array as a function of i/n ratio. The relative radiative
power of LED A (Solid Line) decreases to about 65% when
the i=6, leading lumen decay of the entire array. Meanwhile,
for the LED B, the relative radiative power (Dash Line)
increases about 3%. The current droop effect has little impact
on LED B. The relative radiative power of the LED array will
be always larger than 70% in the selected current range.

Due to the effects of current crowding and current droop,
input power and thermal power will increase if several LED
strings failed, leading a higher LED’s junction temperature.
Figure 8 displays the LED’s junction temperature as a func-
tion of i/n ratio. The junction temperature of each LED

FIGURE 8. Relative radiative power.

FIGURE 9. Junction temperature curves.

increases exponentially with the number of failed LED
strings. When only one of 7 LED strings works, the junction
temperature of LED A and B rise to about 380K and 336K
respectively.

The elevated junction temperatures will cause a higher
hazard rate of each LED string. Figure 9 displays hazard
rates of LED strings as a function of i/n ratio. When the
junction temperature of LED A and B rise to about 380K
and 336K, their hazard rates increase to about 1.249×10−3

and 2.086×10−4 respectively. Properties of LEDs have great
impact on their hazard rates, the constant hazard rate assump-
tion may bring significant prediction differences.

In Figure 10, cumulated failure rates of both LEDs are
illustrated. The failure probability curves rise exponentially
with time. In about 20000 hours, failure probabilities increase
to about 33.0% and 8.5% for LED A and B respectively.
Moreover, consideration of LED’s properties is critical to
reliability prediction of LED arrays. LEDs with better over-
driving capability can compose a more reliable LED array.
Therefore, the proposed prediction method, which considers
electronic and thermal characteristic of LEDs, may provide a
realistic prediction results of an LED array.

Then, a numerical study has been carried out to investigate
impacts of model parameters on the LED array’s failure
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FIGURE 10. Hazard rates of LED strings.

FIGURE 11. Cumulated failure rates of the LED array.

TABLE 2. Failure probability prediction results.

probability, including Rs, V0, η0, Ae, Be and Ce. Firstly, each
parameter has increased 20% respectively. Table 2 lists failure
probability prediction results.

Parameter Be and η0 have negative effects on the LED
array’s failure probability. Because increments of these two
parameters will reduce thermal power of each LED. Con-
versely, increasing of Parameter Ce will produce more heat.
Hence, it has a positive effect on the array’s failure probabil-
ity. Similarly, higher Parameter Rs and V0 will bring higher
input power, leading a higher junction temperature. As a
result, these two parameters have a positive effect on the
array’s failure probability either.

Secondly, parameters of LED A will be replaced by rele-
vant ones of LED B respectively, to study their contributions
to differences between LED A and B. Table 3 gives the
simulation results.

TABLE 3. Numerical study results.

As shown in Table 3, Parameter Ce significantly affects
the relative radiative power and failure probability of the
LED array. If Parameter Ce drops from 1.642 × 10−3 to
2.075 × 10−4, the radiative power will always increase with
the number of failed LED strings, and array’s failure proba-
bility decreases from 33.0% to 13.6%. It contributes about
78% of the differences between LED A and B. Parameter
Ce and Rs have combined effects on the failure probabil-
ity. Replacement of these two parameters contributes about
97.1% of the differences between LED A and B. How-
ever, owing to less input power, a less Rs value brings less
radiative power. As shown in Table 3, if the Rs value is
decreased from 7.352 to 2.354, the ϕ(6) value will reduce
from 65.5% to 52.4% (Ce = 1.642 × 10−3), or from
121.2% to 97.0% (Ce = 2.075 × 10−4). Because of the
weaken current droop effect, the rise of Parameter Be partly
cancels the influence of Parameter Rs on ϕ(6), and enhances
the impact of Parameter Ce and Rs on the failure probability.
The combination of LED B’s Be, Ce and Rs contributes
more than 99.7% of the differences between LED A and B.
In conclusion, as shown in the numerical study, Parameter
Be,Ce and Rs have significant impact on reliability of an LED
array. Consideration of these parameters may provide a more
realistic reliability prediction result.

VI. CONCLUSION
In this work, a physics-based prediction methodology is
combined with statistical models to consider the impact of
current crowding and current droop effects on of reliability
LED arrays. Electronic-thermal models of LEDs are uti-
lized to obtain conditions of each operation status under the
influences of LED’s catastrophic failure, current crowding
and current droop. Based on operation conditions, a Markov
chain-base model is used to calculate the probability distri-
bution of each operation status, including the lumen decay
and catastrophic failure. A 7×10 LED array and two types of
LEDs have been selected for case studies. Finally, a numerical
study has been carried out to investigate impacts of model
parameters on the LED array’s reliability.

For LED A, when 6 of the 7 strings failed, relative
input power increases about 43%, relative radiative power
decreases to about 65%, junction temperature and hazard rate
rise to 380K and 1.249× 10−3 respectively. In 20000 hours,
failure probability of the array is 33.0%. For LED B, when
6 of the 7 strings failed, relative input power and relative
radiative power increase about 15% and 3% respectively
junction temperature rises to 336K and hazard rate rises
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to 2.086 × 10−4. In 20000 hours, failure probability of the
array is 8.2%. For the numerical study, if Ce drops from
1.642 × 10−3 to 2.075 × 10−4, the radiative power will
always increase with the number of failed LED strings, and
array’s failure probability decreases from 33.0% to 13.6%.
The combination of LED B’s Be, Ce and Rs contributes more
than 99.7% of the differences between LED A and B.

The proposed prediction method provides more realistic
prediction results of an LED arrays. It has been found that
the properties of LEDs have great impact on their hazard
rates. Among LED’s parameters, the 3rd order non-radiative
coefficient Ce, equivalent resistance Rs and radiative coeffi-
cient Be have significant impact on reliability of the selected
LED array.
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