
Instrumented
Skeleton Sled
Bachelor thesis
A.W.G. Hunter
T. Moree

Focussing on the data processing
and the user interface

Instrumented
Skeleton Sled

Bachelor thesis

by

A.W.G. Hunter
T. Moree

focussing on data processing and user interface,

in partial fulfilment of the requirements for the degree of

Bachelor of Science

at the Delft University of Technology.

Project duration: April 22 – July 5, 2019
Supervisor: prof. dr. P. J. French

Thesis committee: dr. ir. Z. Al-Ars (chair)
prof. dr. P. J. French
dr. ir. B. Gholizad

To be defended on Wednesday 3 July 2019 at 13.30.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

This report details the design of an instrumentation system to be used on a skeleton sled. The system will
measure several quantities on a skeleton track for the athlete to learn from. This data is stored during the run
using several sensors on the sled and processed and visualised immediately afterwards on a mobile device.
The project is tailor-made for skeleton athlete Akwasi Frimpong: he requested a way to get some insight in
his steering using his knees and shoulders and its results on his achievements.

This thesis focuses on the data processing, communication and visualisation of the data and the software
integration of all sensors. The communication is done using Wi-Fi and the visualisation is realised with a web
page. The whole system is implemented with an ESP32 microprocessor which functions as a Wi-Fi access
point and web server for the user interface.

iii

Preface

This thesis is written in context of the Bachelor Graduation Project of Electrical Engineering. The project was
commissioned by Akwasi Frimpong, a professional skeleton athlete, with the goal to come up with a way to
provide him with information on his performance when practising his sport. His goal is to use the developed
system to eventually compete for a medal on the Winter Olympics of 2022 in Beijing.

We would like to express our gratitude to our supervisors, prof. dr. Paddy French, dr. ir. Andre Bossche, and
ing. Jeroen Bastemeijer for their guidance and advice during the project. Furthermore, we would like to thank
Akwasi Frimpong for the topic and wish him good luck. Finally we would like to thank our colleagues: Werner
van Dijk, Martijn Heller, Jan de Jong and Karen van der Werff for a productive, but most of all enjoyable
collaboration!

William Hunter & Tijs Moree
Delft, June 2019

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem definition . 1

1.3 State-of-the-art analysis. 3

1.4 Subdivision of the system . 4

1.5 Thesis outline . 4

2 Program of requirements 7

2.1 General requirements (GR) . 7

2.2 Specific requirements (SR) . 8

3 Software system integration 9

3.1 Overview . 9

3.2 Communication . 11

3.3 System integration and program algorithm . 11

3.3.1 Initialisation . 12

3.3.2 Sensor data logging . 12

4 Data communication 13

4.1 Requirements . 13

4.2 Implementation . 14

4.2.1 Wi-Fi . 14

4.2.2 Web server . 14

4.2.3 HTTP . 14

4.2.4 Requests . 15

4.2.5 Data processing . 16

vii

viii Contents

4.2.6 Error handling . 16

5 Visualisation 17

5.1 Requirements . 17

5.2 Layout . 17

5.3 Functionality . 19

5.4 System size reduction . 19

6 Discussion 21

6.1 Visualisation . 21

6.2 Communication . 21

6.3 System integration . 21

7 Conclusion 23

7.1 Recommendations . 24

References 25

A Code 27

A.1 Software integration system. 27

A.1.1 Main code . 27

A.1.2 Header code . 28

A.1.3 IMU code . 29

A.1.4 ADC code . 30

A.1.5 File read code . 30

A.1.6 File write code . 32

A.1.7 Web server code . 33

A.1.8 Undervoltage code . 34

A.2 Visualisation . 35

A.2.1 HTML code . 35

A.2.2 JavaScript code. 39

1
Introduction

1.1. Background

Skeleton is a winter sport in which an athlete lies in a prone position (face down and head first) on a small sled
with two metal runners underneath, and goes down a winding track which is approximately 1800 meters long
and covered in ice. An example of such a track can be seen in Fig. 1.1, which depicts a computer mock-up
of the track that will be used at the 2022 Winter Olympics in Beijing. The sport has a high intensity: during
a run, the athlete is subject to high g-forces and speeds which can exceed 130 km/h [1]. The steering of the
sled is done by pushing the shoulders or knees into the sled: “the sled contorts as a response to the athlete’s
steering control movements. When this happens, the left or right runner knife is forced into the ice, creating
an asymmetry in ice friction resulting in a steering moment. That is, when the left runner is forced into the
ice, the sled will turn left. Athletes thus use their shoulders and knees to contort the sled; for a more dramatic
steering movement, they ‘tap a toe’ onto the ice, creating a larger steering moment” [2].

A run starts with the athlete sprinting from the starting point with the sled, the so-called push start, a critical
part of the run (this feature also appears in bobsled racing, but is absent from the similar sport of luge). This
can be seen schematically in Fig. 1.2: after about fifteen to thirty metres, the athlete mounts the sled at full
running speed and manoeuvres it around a series of (often) high-banking corners in the desired path, to
maximise his speed [2].

1.2. Problem definition

Akwasi Frimpong is an Olympic skeleton athlete, who aims to be the first African athlete to win a medal at
the Winter Olympics. He is relatively new to the sport, with his background being track-and-field. In order to
accomplish his goal, he therefore wants to shorten his learning curve in the skeleton sport. At the moment,
only video imagery and visual feedback from the coach are used as feedback on his performance. Because
of the high speeds at which he is travelling during the largest part of a run, the important details from the
run can be very hard to spot. This is evident from Fig. 1.3: grainy images like this are the best the average
athlete has to evaluate his performance on the sled. Besides the previously mentioned means of feedback,
there are no quantitative elements that are readily measured except for the elapsed time, measured by timing
eyes mounted in set intervals on the track.

The important thing for an athlete to know is how he influences the sled during the run. This is especially
relevant in curves, since the way these are traversed is the most impacting factor on the run time besides the
push start [4]. As mentioned in §1.1, the steering of the sled is done by exerting forces on it using the shoulders
and the knees. These movements of the shoulders and knees are practically impossible to see on video, or on

1

2 1. Introduction

Fig. 1.1: Computer mock-up of the skeleton track to be used at the 2022 Beijing Winter Olympics [3]

Fig. 1.2: Overview of the height profile at the beginning of a skeleton practice track, illustrating the push start [1]

images like Fig. 1.3. The solution to this problem could be offered by integrating a measurement system onto
the sled (forming a so-called “instrumented sled”), which can measure the forces applied by the athlete, along
with other relevant performance parameters and which can couple the measured forces to the location of the
sled on the track—all these measurements would then need to be presented to the athlete in a way that he can
quickly access. The use of an instrumented sled would result in a significant increase in useful feedback that
the athlete can use to improve his run time, thus increasing the chances of the athlete shortening his learning
curve. The primary goal of the product would thus be providing detailed, useful feedback on an athlete’s run,
in a way that is easy for both the athlete and the coach to understand and work with.

1.3. State-of-the-art analysis 1. Introduction

Fig. 1.3: An example of the visual feedback that is currently available to a skeleton athlete. This image was used by a coach to illustrate a
momentary lifting of the shoulders off the sled, which is considered to be a bad habit (image courtesy of Akwasi Frimpong).

1.3. State-of-the-art analysis

Despite the fact that the sport of skeleton is not very widely practised, a number of studies have been done on
the measurement of the forces, speeds and acceleration involved in the sport. These studies were primarily
performed in order to create a better understanding of the dynamics at play in the sport, instead of having a
goal of being used to actively improve athlete performance. Roberts [1] showed in his work that from mea-
surements of the acceleration of the sled in three axes, velocity and traversed distance can be derived, which
can provide useful information about the push start of the run. This is valuable, as it has been shown that the
(effectiveness of the) push start has a large impact on the eventual time taken to complete a run [5]. After the
push start and later in the run, however, the noise on these measurements becomes too large due to vibra-
tions and other factors [1], making it impossible to integrate this to obtain a meaningful speed and distance
reading during the whole descent. Sawade et al. [2] studied the factors influencing skeleton steering, showing
a correlation between the applied steering force by the athlete and measured accelerometer and gyroscope
data.

The aforementioned studies examined a number of relevant parameters involved in a skeleton run by attach-
ing sensors to the sled and logging their output data. Although this is useful data, these studies provide only
a limited tangent to the solution to the problem put forth in §1.2, as further processing of the data and visu-
alisation (to produce the graphs from which conclusions could be drawn) was done after the fact. No special
consideration was given to making the data easily and quickly available to the athlete (and his coach) from
which the measurements were sourced, relegating their results to the status of reference work for an athlete
instead of a product they can use themselves. The general idea of combining computing, sensing and com-
munication as is required for this project, however, isn’t new. This way of integrating information processing
into user objects without the user being actively aware of the hardware behind it is known as “ubiquitous”
or “pervasive” computing and has seen a rapid increase in the past decade [6]. In sports in general, “these
ubiquitous computing technologies are utilised to acquire, analyse and present performance data without
affecting the athletes during training and competitions” [6].

Nevertheless, these technologies aren’t yet prevalent in the skeleton world; the closest similar system was
studied by Lee et al. for use on a bobsled. This involved fitting an elaborate system of sensors and cameras on
the sled, that together produced video imagery overlaid with sensor data, which was then wirelessly transmit-
ted to a monitor on a remote site in real time [7]. This is useful functionality, but it isn’t practically usable in
the skeleton case: the system is bulky, as can be seen in Fig. 1.4, requiring (amongst other things) a relatively
large and heavy control unit, which wouldn’t fit on a skeleton sled.

It can thus be concluded that although modern research into the topic of skeleton dynamics is available, none
exists that cover the scope of the system required to provide skeleton run data accurately and quickly in an
(from the athlete’s point of view) easy-to-understand format.

4 1. Introduction

Fig. 1.4: Example of an instrumented bobsled, as developed by Lee et al. [7].

1.4. Subdivision of the system

In order to realise the instrumented sled system, the product is divided into three subgroups, each with its
own responsibilities: a schematic overview is given by Fig. 1.5. The work of each of the three groups is doc-
umented in separate theses: “sensor group A” refers to the work done by Heller and De Jong [8] and “sensor
group B” refers to the work done by Van Dijk and Van der Werff [9]. Group A is responsible for the measure-
ment of the (steering) force that is applied by the athlete and the measuring of the g-forces and orientation
of the sled. Group B is responsible for the localisation of the sled, measurement of the ice temperature and
power management of the system. The data group (and thus this thesis) focusses on integration of the total
system at software level, data storage, processing and visualisation at the end of a run, to produce the desired
user interface.

The work of all three subgroups is eventually combined to form the instrumented sled system: the eventual
prototype of the system will consist of a printed circuit board (PCB) containing all necessary parts (devel-
oped by the different subgroups) integrated into one system, along with the software required to run it and
produce the visualised data. The responsibility of designing this PCB prototype and corresponding hardware-
level considerations of the integrated system lie with sensor group B; the software integration falls under the
responsibility of the data group.

1.5. Thesis outline

As was touched on in §1.4 and illustrated by Fig. 1.5, this thesis covers the design process and choices made
with regards to the software side of integrating the instrumented sled system, with special consideration of
the aspects of data storage, data processing/visualisation and user interface. Chapter 2 lays out and defines
a programme of requirements to which the designed system will be tested. Chapters 3 to 5 describe the de-
sign process and the justification of choices made: Chapter 3 covers the data storage and system integration
aspects, with Chapter 4 dealing with reading out stored data and communication with mobile devices, and
Chapter 5 addressing visualisation of the transmitted data and the resulting user interface. Testing and corre-
sponding results are presented in Chapter 6, as well as a discussion of these results. Finally, Chapter 7 rounds
the thesis off with general conclusions, recommendations and ideas for future work.

1.5. Thesis outline 1. Introduction

Instrumented Sled System

Sensor Group B
(power management,

temperature and
localisation)

Data GroupSensor Group A
(Steering forces)

Software system
integration

sensor data logging

User interface

communication

data visualisation

data processing

user control

Fig. 1.5: Subdivision of the project into groups, and their responsibilities

2
Program of requirements

As has been described in Chapter 1, this project consists of creating an instrumented skeleton sled, to enable
the athlete to train faster and smarter. In order to achieve this, a couple of aspects must be monitored, such
as the location, the velocity and the pressure. These values must be stored and visualised for the athlete and
his coach. This system is subject to various requirements, which will be listed below. It is split in general
requirements for the system as a whole and specific ones for this subsystem. Each design choice will be made
with these requirements in mind and the final product will be tested against them.

2.1. General requirements (GR)

General requirements are those requirements that are relevant for the entire system and that should be met
by every subgroup. They can be listed as follows:

GR.1 The product must be able to measure g-forces, rotation, force applied by the athlete, ice temperature
of the track and must be able to determine the location of the skeleton sled.

GR.2 The product must be able to work in a temperature range from -20 ◦C to 40 ◦C, since it will be used
in an area with temperatures in this range.

GR.3 The product must be able to withstand momentary accelerations of up to 5 g [4, p. 198].

GR.4 The complete system should not weigh more than 1.5 kg, to prevent the characteristics of the skele-
ton sled being different from match conditions during training.

GR.5 The dimensions of the product cannot exceed a box of dimensions 31.5 cm × 14.7 cm × 2 cm, since
this is the size of the available box inside the skeleton sled.

GR.6 The update rate of the force sensors and localisation system should be such that data points are at
most 1 metre apart. Working with a maximum speed of 147 km/h [1], this gives a minimum fre-
quency of 41 Hz.

GR.7 It should not be necessary to open the space inside the skeleton sled, where the circuitry will be
located, in between runs. Therefore, the user must be able to start and stop the measurement from
the outside.

GR.8 The product must be easily installed or removed from the sled, without leaving any (permanent)
traces on the sled.

7

8 2. Program of requirements

GR.9 The product should influence neither the aerodynamic properties nor the mechanical properties,
apart from the weight, of the sled.

GR.10 The product cannot have any wired connections outside the sled and must be able to operate con-
tinuously for the time it takes to do 3 runs and the time in between runs.

GR.11 The system must be robust, being able to handle the vibrations of the sled during a run.

GR.12 The acquired data must be available within 5 minutes after each run for the athlete and the coach to
use.

GR.13 The product should be easy to use.

GR.14 The total cost of making the prototype must fit in a budget ofe250,-.

2.2. Specific requirements (SR)

There are several requirements specific for the subsystems described in this thesis. For the user interface, the
following specifications must be met:

SR.1 The acquired data must be accessible from a mobile device, such as a smartphone or a tablet.

SR.2 The data must not be accessible by other athletes.

SR.3 The data should be visualised in a manner that can be interpreted well by the athlete and his coach.

SR.4 The athlete should be able to select previous runs to visualise as well for comparison.

SR.5 The acquired data should be visible for each time point with a selector to scroll through time.

SR.6 The velocity, g-force and pressure data should be visible graphically over the course of all time points.

Not all general requirements will be addressed in this thesis specifically, but they will be kept in mind when
taking certain decisions. All requirements are listed again in Chapter 7, to check whether they were met.

3
Software system integration

In Chapter 2, the global specifications of the instrumented sled system are given. From requirement GR.1 it
follows that a number of sensors are needed, so that the mentioned quantities can be accurately observed.
Furthermore, GR.12 stipulates that the measured values need to be accessed after a run, so a form of storage
is needed. This gives an outline of the (input/output) peripherals of the system that is required to perform
the desired functionality. In between the sensors and the storage lies a microprocessor, to which the sensors
initially supply their data during a test run. The microprocessor needs to perform a number of operations
on this data as it comes in, before saving those values to an external storage unit, from where they can be
accessed for further processing and visualisation after completion of a run, as is described by Chapters 4
and 5. The microprocessor further serves as the “brain” and control centre of the whole system: it must
therefore also ensure correct working of the system while taking into account requirements GR.7 and GR.13,
concerning user-friendliness and interaction with the user. The system as a whole should have a low power
consumption, so as to ease satisfying requirement GR.10, be able to withstand the temperatures dictated by
GR.2 and finally, requirement GR.5 should be kept in mind, so the system should be compact.

This chapter describes the design choices arising from the mentioned requirements, leading to a system that
integrates sensor readout, consisting of the microprocessor, the sensors and the external storage unit, and
describes its working and the software controlling these different components.

3.1. Overview

As mentioned previously, the sensor readout system broadly consists of three parts: sensors, supplying data
to the rest of the system; a microprocessor, controlling and processing all data streams; and a storage unit,
to save the measurement data for later use. Fig. 3.1 gives a schematic overview of this system. In this figure,
“GNSS”, “IR”, “IMU” and “FSR” (connected to the microprocessor via an analog-to-digital converter “ADC”)
indicate the type of sensors that are used; the terms above these boxes indicate the type of quantity that the
sensors measure. A detailed look into the working of these sensors is outside the scope of this thesis: this,
along with elaboration on the design choices that led to the specific sensors that were used, can be found
in concurrent work by Van Dijk and Van der Werff [9] and Heller and De Jong [8]. The italic terms in Fig.
3.1 signify the communication protocols with which the sensors, microprocessor and storage unit exchange
data; this is illustrated in §3.2.

The GNSS sensor periodically receives signals from a number of global navigation satellite systems (GNSSs)
and supplies the system with information on position and (absolute value of the) velocity. An infrared (IR)
sensor is used to measure temperature, and an inertial measurement unit (IMU) measures the g-force and
orientation. Within the IMU, an accelerometer derives the g-force from its acceleration readings and a gy-

9

10 3. Software system integration

roscope keeps track of the orientation/rotation, specifically the pitch and roll quantities. Finally, five force-
sensing resistors (FSR) measure perhaps the most important quantity: the pressure applied to the sled by the
athlete to effect steering movements. With this collection of sensors, requirement GR.1 is thus satisfied, as all
mentioned quantities are sensed.

microprocessor

(ESP32)

GNSS

IMU

IR

storage

(SD)

FSR

SPI

SPI

I2C

position, velocity

temperature

g-force, orientation

pressure

ADC

Fig. 3.1: Overview of the sensor readout system, with used communication protocols indicated in italic

As GR.12 stipulates that the data must be available post-measurement, a reliable form of data storage is re-
quired, which is indicated in the top-right corner of Fig. 3.1. Though this could be achieved by using the
memory on the microprocessor, an external storage unit in the form of a Secure Digital (SD) card was chosen
instead. This provides a number of advantages: first of all, the data-logging capabilities of the system are not
limited by the (relatively small) storage capacity of the microprocessor. Modern SD cards can have capacities
of up to 128 terabytes [10], ensuring that there will practically always be storage space available for a new
measurement. Second, the storage provided by an SD card is non-volatile [11], so data is conserved after
power-down of the system and can thus be accessed long after a measurement is performed. As far as exter-
nal storage formats go, an SD card is furthermore relatively easy to work with, cheap, readily available, and,
importantly, can be very small—the used micro-SD format has dimensions of 15 mm × 11 mm. The choice
of a micro-SD card as external storage thus satisfies the availability requirement GR.12, with a size satisfying
the dimensional requirements of GR.5 and the user-friendliness required by GR.13.

At the heart of the system, as is indicated in Fig. 3.1, lies the microprocessor. A lot of options are available to
fulfil this role: for this system, the ESP32 by Espressif Systems was chosen. For its low price, it has a good per-
formance properties and offers a number of advantages over contemporary counterparts [12]. With twelve
(12-bit) ADC channels, two Inter-Intergrated Circuit (I2C) interfaces, four Serial Peripheral Interfaces (SPI)
and 32 general purpose input/output (GPIO) pins [13], it offers much more input/output capabilities than
most comparable counterparts [12]. It has extensive software support and offers its own integrated develop-
ment environment (IDE), but can also be programmed easily with the Arduino IDE—Arduino library support
for the ESP32 is extensive. Furthermore, the ESP32 has built-in Wi-Fi and Bluetooth capabilities, which en-
able transfer of data to a mobile device, needed to satisfy requirement SR.1. The temperatures it will face
according to GR.2 don’t pose a problem: the ESP32 has an operating temperature range of -40 ◦C to 125 ◦C
[13]. It has a low power consumption, similar to comparable microprocessors [12], which helps in satisfying
requirement GR.10. Summing up, this all makes the ESP32 a powerful, easy-to-work-with choice to control
the sensor readout system.

3.2. Communication 3. Software system integration

3.2. Communication

The different parts of the sensor readout system need to be able to effectively, quickly and accurately trans-
fer data. From Fig. 3.1, it can be seen that this communication between devices is effected by the I2C and
SPI protocols. Although other recognised serial protocols do exist that have their own handy features [14],
the main attractive features of I2C and SPI for this system are their widespread implementation and ease of
use. The GNSS sensor, IR sensor and IMU mentioned in §3.1 all provide digital outputs and have built-in
communication capability via I2C. As mentioned in §3.1, the ESP32 microprocessor has good support for
this protocol and the fact that the protocol needs just two buses (a serial data and a serial clock line [15]) to
communicate with any number of devices reduces the circuit complexity. A handy addition is the fact that
Arduino library support for I2C is extensive, easing high-level programming. With I2C, data rates of 100 kbit/s
(in the so-called “standard mode”) or 400 kbit/s (in the “fast mode”) can be achieved [15]: as will be elabo-
rated in §3.3, this is more than fast enough to cope with the data streams that the sensors transmit. This all
makes I2C the obvious go-to option for sensor communication in the sensor readout system.

Although data transfer with an SD card is possible using its own SD Bus interface, the SD card also supports
SPI [16], which is much more widely used. Just as with I2C, this poses no problem for the ESP32, with elegant
Arduino libraries making for an uncomplicated way to control communication. Communication with the
FSR goes via SPI as well: the FSR’s initially analog output goes to the ADC, which outputs its data via the
serial protocol. Although the ESP32 has on-board ADCs, the choice was made to use an external ADC: this is
explained in Chapter 6. Further elaboration on this topic and an in-depth analysis of the FSR can be found in
work by Heller and De Jong [8].

3.3. System integration and program algorithm

With all components of the system depicted in Fig. 3.1 (globally) known, they can be put together to imple-
ment the desired functionality. The different parts (sensors, ESP32 and the SD card) are integrated on and
connected via a printed circuit board, along with a number of additional elements required to correctly run
the system. This includes a battery to act as a power source, a power management system, readout circuitry
to obtain correct sensor output and a number of auxiliary electrical components, e.g. pull-up resistors re-
quired for I2C operation. A detailed description of these items falls outside the scope of this thesis; the reader
is referred to Van Dijk and Van der Werff [9] for a comprehensive look at the complete electronic system (i.e.,
all hardware that is required), as well as the battery and the power management system. Readout circuitry for
the FSRs is detailed by Heller and De Jong [8]. This section focusses on the integration of the sensor readout
system on a software level.

As mentioned in §3.1, some design choices of the sensor readout system were made with ease of programma-
bility in mind: numerous libraries and extensive Arduino IDE support exist for both the ESP32 as well as the
used sensors. These libraries, as well as the Arduino framework that is used to program the ESP32, are written
in C++; therefore, this language was used to write the software controlling the functionality of the system—the
source code can be found in its entirety in Appendix A. As was the case for the system hardware in §3.1, the
software is subject to the requirements put forth in Chapter 2. Most points mentioned in Chapter 2 are cov-
ered by the processing and visualisation algorithm mentioned in Chapters 4 and 5; the relevant points that
remain for the sensor readout system are GR.6, GR.7 and GR.13. To satisfy GR.6, a sensor sample rate of 45
Hz is set, resulting in a corresponding “sensor readout period” of approximately 22 ms. The sample rate is
deliberately kept below 50 Hz to avoid electromagnetic interference from mains-connected equipment. To
make the system user-controllable, a push button is included, readily accessible by the athlete, with which
the measurement of a run can be initiated (the status of a measurement is correspondingly indicated by an
LED).

The rest of the software can best be described in a number of steps, which are detailed below.

12 3. Software system integration

3.3.1. Initialisation

At power-up, a function is called that initialises the system. An adaptation of Arduino’s “Wire” library for the
ESP321 is used to control I2C communication and is initialised by passing along the pin numbers of the ESP32
that are used as serial data and serial clock lines. Similarly, an ESP32 version of Arduino’s “SD” library2 con-
trols communication with the micro-SD card and is initialised by passing on the chip select (CS) pin of the
ESP32 used for SPI communication. Dedicated libraries control manipulation of and communication with
the GNSS3 and IR sensors4, as well as the IMU5; each of these is initialised with relevant circuit parameters.
The ESP32’s WiFi functionality is turned off for the time being, to limit the microprocessor’s power consump-
tion.

3.3.2. Sensor data logging

Pressing the aforementioned push button starts the run measurement routine of the program. First, a new
text file is created on the SD card: all files follow a naming convention, so each new file gets a name consist-
ing of the date and the run number of that day. If the file can be opened successfully, execution proceeds.
To prevent unnecessary measurements while the athlete hasn’t started his run yet, the system enters a wait
state, continually sensing the velocity data, until the measured velocity exceeds a given threshold. The sensor
readout now begins: each time after the given sensor readout period has elapsed, new sensor values are read.
For each such time point, a string is constructed in which all relevant quantities are concatenated (separated
by tabs). First, using the library of the IMU, a number of instructions are carried out to prepare the IMU data.
Next, the sensor values are successively read out and added to the string, in the following order: a timestamp,
pressure, speed, g-forces, pitch and roll, temperature and finally latitude and longitude. These last two quan-
tities are read out only if the GNSS sensor has four or more satellites in its view, so that “obviously” erroneous
readings are excluded. By writing to the text file once per time point (instead of after reading each sensor
value), the execution time is drastically reduced, ensuring a quicker-running program. The end result of a
measurement is thus a text file on the SD card consisting of a number of lines, corresponding to the number
of time data points, with in each line all sensor values.

Data logging stops when the measured velocity drops below a given threshold, ensuring that a measurement
automatically stops at the end of a run. The file on the SD card is closed and the run measurement LED is
turned off. At this point, the sensor values that were read out during a run have successfully been logged
and are ready to be processed and visualised, which is described in Chapters 4 and 5. If the push button is
pressed, the program loops and a new measurement routine is started to capture the next run.

1https://github.com/espressif/arduino-esp32/tree/master/libraries/Wire
2https://github.com/espressif/arduino-esp32/tree/master/libraries/SD
3https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library
4https://github.com/sparkfun/SparkFun_MPU-9250_Breakout_Arduino_Library
5https://github.com/adafruit/Adafruit-MLX90614-Library

https:\/\/github.com/espressif/arduino-esp32/tree/master/libraries/Wire
https:\/\/github.com/espressif/arduino-esp32/tree/master/libraries/SD
https:\/\/github.com/sparkfun/SparkFun_Ublox_Arduino_Library
https:\/\/github.com/sparkfun/SparkFun_MPU-9250_Breakout_Arduino_Library
https:\/\/github.com/adafruit/Adafruit-MLX90614-Library

4
Data communication

After acquiring the data from all sensors and saving it to the SD card, it has to be made available to the athlete
in some way. Most useful to the end user would be to have a system that graphically gives information on
the whole run. This could be achieved using an on-board screen, but there are weight limits and maximum
dimensions to the whole system according to GR.5, and there is a better solution using external devices. Since
the athlete or his coach do not want to carry around a laptop during the test runs according to SR.1, the data
must be read out in a mobile manner, i.e. using a mobile phone or a tablet. This already rules out the more
conventional ways of plotting data, e.g. using MATLAB. Thus, a different solution to plot graphs and perform
other visualisation tasks needs to be found.

4.1. Requirements

Since the sensors cannot be connected to the mobile device directly, they have to be implemented in a system
of some sorts with the microprocessor before transferring their data to the mobile device. This implies there
must be some kind of communication system. To keep the system as universally usable as possible, it has to
use a USB cable or either wireless option of Bluetooth or Wi-Fi to communicate the data to the mobile device,
because these are the communication protocols available on most mobile devices nowadays. The wireless
options are by their very nature the most user-friendly ones. The data has to be read out between each run
according to GR.12; using a USB cable would require plugging this cable into the sled each time and that
is not easy, because the circuit cannot be accessed in between test runs according to GR.7. This means the
communication will be done either through Wi-Fi or Bluetooth.

Working with mobile devices is a little harder software-wise, since there are two prevailing and rather different
operating systems among them: Android and iOS. Designing an application that works on both systems is a
lot of work and requires a lot of knowledge that is outside the scope of the Electrical Engineering bachelor’s
degree. There probably are a lot of available applications that can display data in some way, but the most
universal and most customisable method would be to implement the visualisation as a web page. This way,
it can be accessed from any operating system, since web browsers exist for all of them.

Since the user now will interact with the data via a web page and since Bluetooth is not conventionally ac-
cepted by browsers, the obvious communication system becomes Wi-Fi. Browsers always function as a so-
called web client. Such a client needs a web server, that serves the data, and a way of data visualisation. This
system would mean that the microprocessor extracting data from the SD card will act as a web server. The
communication protocol between a web client and server is the Hypertext Transfer Protocol (HTTP). This
protocol describes the way the web page itself and the data to be visualised are transferred to the mobile de-
vice from the microprocessor. Using this system, it is possible for the athlete to read out the data immediately

13

14 4. Data communication

after going down the bobsled track, which is required by GR.12.

The programming languages that can be interpreted by browsers are Hypertext Markup Language (HTML),
Cascading Style Sheets (CSS) and JavaScript. The first is used to describe the layout of the page, the second
determines the style and the last is used to make the page interactive. This should end up in a nice user
interface which is necessary to comply with SR.3.

4.2. Implementation

As described earlier, the microprocessor will function as a web server, meaning it will serve data when asked
to over HTTP. To make this work, the microprocessor and the mobile device have to be connected in some
way over Wi-Fi. An option would be to connect them both to a network available at the bobsled track, but
this would mean the Wi-Fi credentials of the network had to be inserted into the microprocessor in some way.
Since the system should be easy to use according to GR.13, this option was rejected. The other option is to
run a local network on the microprocessor with a password to keep the other competitors outside, complying
with SR.2.

4.2.1. Wi-Fi

As described in Chapter 3, the microprocessor used is an ESP32. This chip has Wi-Fi integrated [13] and the
breakout circuit used in the prototype has a small PCB trail functioning as an antenna, so this makes half of
the communication rather simple. Espressif Systems, the manufacturer of the ESP32, has a library1 that is
able to create a local Wi-Fi network using the chip. Now, any device can log in to the network if using the right
credentials. An Internet Protocol (IP) address is set as well, which is the location the eventual user interface
will run from. This IP address is a private address that is restricted to fall in the ranges of either 192.168.0.0 to
192.168.255.255, 172.16.0.0 to 172.31.255.255 or 10.0.0.0 to 10.255.255.255 [17]. In this project the IP address
was chosen to be 10.0.0.0 for simplicity reasons.

One thing to note here is that connecting to this network does not mean there is a connection with the inter-
net, since neither the server nor the client then is connected to it. This means they can only talk to each other
and not to any external devices or servers. This comes with a minor problem as will become clear later, but a
solution is available.

4.2.2. Web server

The other half of the communication system consists of the data transferred over Wi-Fi. This data transfer
is done using the set of rules that is called HTTP. As said earlier, the microprocessor will not only serve as a
Wi-Fi access point, but as a web server as well. Since the communication protocol is HTTP, it is common to
run this server on the default port for HTTP, 80 [18]. This is done using a library2 created by Espressif. Setting
up the server results in a web server that can be accessed if connected to the designated Wi-Fi network on
http://10.0.0.0:80/, which can be abbreviated in most browsers to 10.0.0.0.

4.2.3. HTTP

HTTP always consists of a response to a request. This request has a Uniform Resource Locator (URL) and
a certain method, which in this product will always be GET. There are also other methods, like POST and
DELETE, meant for changing data on the server side, but this product will only need data from the server for
display. A request has headers and optionally parameters as well. The parameters are used to request more
specifically; in this product it is used to select a certain run, for example. The headers can be used to pass

1https://github.com/espressif/arduino-esp32/tree/master/libraries/WiFi
2https://github.com/espressif/arduino-esp32/tree/master/libraries/WebServer

https:\/\/github.com/espressif/arduino-esp32/tree/master/libraries/WiFi
https:\/\/github.com/espressif/arduino-esp32/tree/master/libraries/WebServer

4.2. Implementation 4. Data communication

Table 4.1: This table shows all possible requests and their responses. The URL is shortened to everything after the base of 10.0.0.0.

Request Response Description
URL Method Param Status Content-type Data

/ GET - 200 text/html The web page
This loads the whole
HTML and CSS

/script.js GET - 200 text/javascript The scripts
The scripts are loaded
from the HTML

/list GET - 200 application/json The list of runs
This is loaded from
the Javascript

/date GET date 200 application/json -
This sets the date
of the ESP32

/file GET run 200 application/json The selected run
This is requested when
selecting a certain run

otherwise any - 404 text/plain “Not found!”
When requesting
anything else it
responds with a 404

additional information as well, but are left untouched, meaning they are set to default.

The response consists of a status code, data and headers again. The status code describes whether the request
was received and processed well. When everything is fine, this code will be 200. When the server cannot find
what is requested it will return with the infamous code of 404. The headers are mostly left untouched, except
for the content-length and content-type headers (these headers speak for themselves). The length signals to
the client what the size of the response is and the type will be HTML or JavaScript, for example.

4.2.4. Requests

All possible requests and their corresponding responses are listed in Table 4.1. The first two rows of the table
will both simply return a string: the first containing all HTML and CSS and the second one all the JavaScript.
The JavaScript could have been embedded in the first one, but this way the browser will remember the script
file in cache, meaning it does not always have to request it, saving time. These two strings will be covered
extensively in Chapter 5.

The /list request returns a list of all saved runs on the SD card for the user to select from. This simply goes
over all files on the SD card and responds with this list in the JavaScript Object Notation (JSON). Since the data
has to be interpreted using JavaScript, JSON is the best choice to do so. The list could also be sent without
formatting it this way, but that would mean that the client-side scripts have to format it themselves, which
probably costs more time.

For the athlete, it would be best to have the runs be named with the date and increasing numbers for the run
number on the day itself. However, as mentioned before, it is not possible for the ESP32 to know date or time,
since it is not connected to the internet in any way. Therefore, all runs will be saved to a default date first and
renamed when a mobile device connects to the local Wi-Fi access point and sends the current date over. This
is done using the /date request. The JavaScript can extract the date from the mobile device and sends it over
as a parameter.

The /file request will be a file selected from the list. The selected run is communicated as a parameter, which
will look like 10.0.0.0/file?run=2019-06-14-2, for example. This chooses the second run of June the 14th of
2019. If the web server cannot find the run, it will return with an empty response with status code 404. If
it does find the file, it will eventually give status code 200, but it has to process the file before being able to
transfer all the data.

16 4. Data communication

4.2.5. Data processing

Since the files on the SD card can be very large depending on the length of the run, it is possible that the
file does not fit in the cache of the microprocessor. The data will therefore be transferred in chunks using
the chunked transfer encoding of HTTP. This is enabled in the response headers, so the mobile device knows
what to expect. Then, each line of the file is read and formatted using JSON. The response data will contain
the date of the run, the number of the run on that day and the actual data consisting of a list of all timestamps
of the run with the sensor data.

Some of the sensor data will first be processed using a running average. This is implemented with a library by
Matt Fryer3. Every time a line is read from the SD card, its value will be saved to a so-called Smoothed object
and read from it again to be inserted in a long string that is in the JSON format. 100 lines of processed SD
lines will be one chunk that is sent to the mobile device. When the algorithm reaches the end of the file, all
data should be sent, after which the JavaScript can use the data in the interface. Using this chunk encoding it
is possible to have a run last very long, with the limit only being the capacity of the SD card.

4.2.6. Error handling

One thing to keep in mind is that the precision of the GNSS data depends on the amount of satellites in sight.
According to one of the other subgroups, the data is only reliable if more than three satellites are in sight [9].
If this condition is not met, the data is rejected and the last valid location measurement is used. If there has
not even been valid localisation data, it will send null, which will be interpreted by the JavaScript as invalid
and therefore rejected as well.

Since the SD card can be removed and its data can be altered, it can happen that some data corrupts. When a
line differs from the expected value, the system should not immediately crash. This can happen during a run
as well: when the battery drains for example, it can show unexpected behaviour. Therefore, an extra safety
mechanism is built in which checks whether the data in the file is valid. If not, it will stop reading the file and
respond to the mobile device with the data up to the last valid time point.

3https://github.com/MattFryer/Smoothed

https:\/\/github.com/MattFryer/Smoothed

5
Visualisation

As described in Chapter 4, it is possible to connect to a Wi-Fi access point, visit a certain IP address and
receive an HTML web page which in turn can receive a list of runs and the data of each run. The last step is
to design this web page and give it some functionality so the received data is of any use to the athlete and his
coach to comply with SR.3. The resulting source code can be found in appendix A.

5.1. Requirements

The interface should have a method to select any recorded run according to SR.4. There should be a page
with a time point selector to comply with SR.5 and there should be a page that graphically shows the whole
run, as stated in SR.6. The last requirement is that the interface should be easy to use according to GR.13.
This resulted in the two web pages that can be seen in Fig. 5.1 and 5.2.

5.2. Layout

Both pages (Fig. 5.1 and Fig. 5.2) have all controls on the top of the page to keep it simple, complying with
GR.13. Both pages have a selector on the right to choose the run that will be investigated. The default run is
the last-recorded one. The first page has a time slider, a play button and two buttons to go back or forward
one time point. The second page has one big slider that can be used to select a range of time. The upper left
corner shows the time of the run; the run number can be seen in the run selector and switching between both
pages is done by clicking on “Akwasi Frimpong Sensors”.

Both pages have the data shown in three panels at the bottom of the page. The left panel is the same for both
pages: it shows the GNSS data and the current location on this map. The data that is shown here is a car drive
around the southern part of the Delft University campus. The second page shows the selected time range on
the map as well. The first page has a rotation and g-force panel in the middle. The picture of the athlete is
drawn from his feet, showing his rotation relative to earth. The arrow is the size and direction of the g-force
acting on him. The right panel shows the sled from above with the size of the red circles representing the
amount of force applied to the knees and shoulders, the actual interesting data for the athlete according to
GR.1.

The first page shows some variables as text as well. There is a current time and temperature of the ice on
the left; the middle shows the absolute g-force acting on the sled and the slope downwards; the right has the
velocity of the athlete and the average pressure applied to the sled as a number. The second page shows the
time range and the current ice temperature on the left as well.

17

18 5. Visualisation

Fig. 5.1: First page of the user interface. The visible data is placeholder data and therefore not representative of a skeleton run.

Fig. 5.2: Second page of the user interface. The visible data is placeholder data and therefore not representative of a skeleton run.

5.3. Functionality 5. Visualisation

The middle and right panel of the second page are different from the first page. There are six graphs showing
the fluctuations of the velocity, g-force and all pressure points over the selected time range. The pressure
data that is visible consists of placeholder data now, because the whole system was not integrated yet at the
moment this thesis was written.

5.3. Functionality

When the web page loads, it request the HTML string of the microprocessor. This string contains all HTML
and CSS. The HTML defines all components present on the web page: text elements, such as the date; input
ranges, such as the time sliders and so-called canvasses for the interaction buttons and the graphical render-
ings of the data. All components get an id for the JavaScript to be able to interact. The CSS decides on the
colouring and sizes of everything, this makes sure all is visible on small and bigger screens. The CSS is used
to make the time sliders work as well. The slider on the second page consists of three stacked sliders and the
CSS makes sure it looks like one.

When the HTML page loads, it requests /script.js as mentioned in §4.2.4 as well. The JavaScript first defines
some variables and useful functions. When the whole HTML is loaded, a certain function is triggered, which
contains the rest of the functionalities. The page switching mechanic using the title on top is fixed, the play
button and forward and backward button are drawn and the actual functionality behind the play button is
implemented.

The current date is sent to the web server using the date request/date mentioned in §4.2.4, so all runs without
the correct date can be fixed. Then, a list of runs is loaded from /list to fill the run selector in the upper right
corner of the pages. The server side of this request is covered in §4.2.4. The last run of this list is loaded using
/file, mentioned in §4.2.4 as well. When all data is loaded, all time sliders reset and the images are drawn
in the canvasses using the requested data; all text fields are updated as well. These steps also occur when
selecting another time point in the time slider: when keeping the mouse pressed and sliding through time,
this can happen multiple times a second. The redrawing also happens in real-time when pressing the play
button. The graphical data will update as fast as it actually happened during the run down the track. This
should be roughly 40 Hz, since this is the frequency all sensors are read, as can be read in §3.3. Depending
on the mobile device, this can be a bit slower, but it still gives a good representation. Selecting another run
will request the corresponding data from the server after which the sliders reset again and everything will be
redrawn.

Clicking the title only hides one page and shows the other, clicking again does the opposite. The second page
works roughly the same as the first. Every time the time slider changes, the canvasses are redrawn, which
can happen multiple times a second. The second page also has to do some calculations to fit the data in the
window as well; a red line is drawn to show the average of the data as well.

5.4. System size reduction

The whole JavaScript has been designed in such a way that it reuses the code as much as possible by creating
functions and global variables. UglifyJS1 is used to compress the script as much as possible by renaming
variables to shorter ones and by removing all unnecessary characters. This reduced the size of the script from
23 kilobytes to 6.7 kilobytes. This makes the whole system a tad faster, since it lowers the time it takes to load
the web page. The HTML and CSS are stripped from any unnecessary white spaces for the same reason.

1https://github.com/mishoo/UglifyJS2

https:\/\/github.com/mishoo/UglifyJS2

6
Discussion

Since the subsystem covered by this thesis is at the end of the chain of this project so to say, it requires a
lot from the other subsystems to work. The system integration literally combines the other two subsystems
on the software side, and the visualisation needs data to execute. Therefore, it is a little harder to test this
subsystem on its own. This chapter describes the test plan of the system and the integration of this subsystem
in the rest of the instrumented sled project.

6.1. Visualisation

The visualisation has been developed locally by running the local HTML file in the browser. An external web
server has been used to request the list and files from. Eventually, this web server has been used to serve the
HTML and such from as well. This way, the interface can also be tested on mobile devices. Former versions of
the interface were not apt for smaller devices, because half the page would be filled with the controls instead
of the actual data, for example. This problem has been solved by moving some components around on the
page.

6.2. Communication

Later on, it was possible to integrate the visualisation with some data files uploaded to the SD card. This
way, the Wi-Fi and web server were being tested as well. It turned out that the microprocessor could not
handle more than one request at the time, which led to some problems that have since been solved. It can
still cause problems when accessing the server with multiple devices at the same time, but since that has not
been required, it is not considered a major issue.

Another problem that occurred with the communication is that the Wi-Fi sometimes causes the whole system
to crash, and then restart. This issue sometimes comes up when reprogramming the microprocessor and it
has not become clear where it comes from. This is something that would require more time to fix.

6.3. System integration

The tests for the system integration could start when some of the sensors started to work. The GNSS and IMU
were available at some point to test: after attaching all components together and implementing the code,
it was possible to drive around and test the location, rotation and g-force sensing. The location was pretty

21

22 6. Discussion

Fig. 6.1: Location data gathered while driving around Delft, laid over Google Maps. The spots with less frequent dots is where the GNSS
sensor fails.

accurate, but the GNSS sensor sometimes loses connection and it occurs that it takes way too much time for
the GNSS sensor to acquire the location, which is evident from Fig. 6.1. The spots where the frequency of the
dots is significantly lower is where the GNSS sensor loses connection. The straight line of dots is merely the
running average trying to compensate for the failing sensor.

The implementation of the rotation and g-forces was wrong at first, as became clear from the acquired data
while driving around Delft. This was eventually easily fixed by adjusting some factors. Afterwards, the results
were very good and the system, without pressure and ice temperature sensors, worked. At the moment of
writing this thesis, it was not yet possible to implement the pressure sensors in the system.

To increase the accuracy of the location, a Kalman filter is being implemented, combining readings from the
GNSS sensor and the IMU; this is detailed in the thesis of Van Dijk and Van der Werff [9]. This filter needs test
data to work, so the system integration was tested in some roller coasters to achieve correct functioning.

7
Conclusion

After exploring different ways of visualising the acquired data, a web page appeared to be the best way to
implement this product. This way the athlete can simply visit the web page to inspect his achievements
during his practice runs. This meant using an ESP32 as a Wi-Fi access point and as a web server. The sensor
data is saved to an SD card during the run, and afterwards it is immediately available on a web page hosted
on the local Wi-Fi network. Most requirements that were postulated in Chapter 2 have been met using this
system:

GR.1 The product measures location, g-forces, rotation, applied pressure by the athlete and ice tempera-
ture; this is captured in the other two subsystems [8] [9], so all necessary quantities are measured.

GR.6 Apart from an issue in the GNSS sensor, the sensor readout rate is 45 Hz, which satisfies the min-
imum of 41 Hz—this is covered in §3.3. The problem with the GNSS sensor is explained in more
detail in the thesis of subgroup B [9].

GR.7 To make sure the sled does not have to be opened in between runs, there is a control button outside
the sled. Furthermore, the data inspection occurs wirelessly, so that does not involve accessing the
circuit inside the sled either.

GR.12 The data should be available within five minutes after finishing the run. With the Wi-Fi solution it
is actually available practically immediately, so this requirement is complied with. It will take half a
minute at most for the data to be downloaded by the mobile device.

GR.13 The product is easy to use, since starting the measurement only requires pressing a button and in-
spection of the data simply works on a tablet or mobile phone with easy controls.

GR.14 The total costs of making the prototype should be within the budget ofe250. This requirement was
not met: the overall costs of the prototype are approximatelye400.

SR.1 The Wi-Fi and web page solution make it possible that the data can be accessed from a mobile de-
vice.

SR.2 Other athletes cannot access the data, since the Wi-Fi network is secured with a password.

SR.3 All acquired data is visible in a pleasant and interactive manner on any device that can connect to
Wi-Fi.

SR.4 Previous runs are inspectable using the selector in the upper right corner.

SR.5 The first page of the interface uses a time slider to scroll through the data in the time dimension.

23

24 7. Conclusion

SR.6 The second page makes it possible to see the fluctuations of certain quantities over a period of time.

The other requirements were mostly covered by one of the other subgroups. The system has been tested at
g-forces of up to approximately 5 g, which is covered in more detail by Heller and De Jong [8]. The system was
able to acquire data in these conditions, but due to an error in the code the measured data could not easily
be interpreted. This means that it cannot be verified whether requirement GR.3 is met. It can be said that the
final product will be more robust than the prototype used for testing: this prototype was not mounted on the
dedicated PCB designed by subgroup B [9], while this will be the case with the final product. The prototype
“survived” tests that were performed in a number of roller coasters: therefore, the even more robust final
product will partially satisfy requirement GR.11.

The prototype has not yet been developed to such a state that it can withstand the forces exerted on a skele-
ton sled, so GR.8 has not yet been complied with either. Since the means to measure the influence of the
temperature of the environment in which the product will be used and the vibrations on the track due to
irregularities in the surface of the ice are not available, it cannot be checked whether requirements GR.2 and
GR.11 are fully met.

The dimensional requirements listed in GR.5 and GR.4 have been met: the dimensions of the part of the
product that should fit inside the sled are 11.5 cm × 12.5 cm × 1.8 cm and the weight of the total system
is 261 grams. The product, however, does have a minimal, but present, influence on the aerodynamics of
the sled due to parts of the system being mounted on the outside of the sled, such as the GNSS sensor [9]
and the switch for starting the run. Also, the weight of the sled is thus impacted slightly; this is practically
unavoidable. This means the product fails to meet requirement GR.9 entirely.

7.1. Recommendations

It has not been possible to combine all subsystems mentioned in §1.4, due to the long time spent waiting for
some needed components to arrive and the resulting time problems. The pressure sensors and the ice tem-
perature sensors have not been implemented with the rest of the system. It was not possible to test the feature
automatically starting measurement based on the velocity either, because the GNSS sensor (supplying the ve-
locity data) had some issues to overcome first. It was not possible to test the system in the environment it is
eventually meant for either. Using the system on a bobsled track might result in some unexpected behaviour,
which would then have to be solved as well.

Future recommendations are therefore testing to make sure the GNSS sensor works without the quirk of tak-
ing several seconds to determine its location every once in a while. The location improvement algorithm
through the use of a Kalman filter has not been implemented either. This probably makes a big difference on
the precision of the location as well, but requires some more tweaking beforehand. The system also needs a
more robust casing to make sure it withstands the use on an actual sled. It is now merely a prototype, which
cannot be used by the athlete immediately.

The visualisation could use some extra features as well. This will of course become clear once the athlete ac-
tually starts using the system and can pinpoint the useful and useless parts. One addition to the visualisation
could be to be able to compare two runs directly. A more three-dimensional display of the sled could improve
the user experience as well, but has not yet been implemented, for simplicity reasons.

References

[1] I. Roberts, “Skeleton Bobsleigh Mechanics: Athlete-Sled Interaction”, PhD dissertation, Univ. Edin-
burgh, Edinburgh, United Kingdom, 2013.

[2] C. Sawade, S. Turnock, A. Forrester, and M. Toward, “Assessment of an Empirical Bob-Skeleton Steering
Model”, Procedia Engineering, vol. 72, pp. 447–452, 2014, The Engineering of Sport 10, ISSN: 1877-7058.
DOI: https://doi.org/10.1016/j.proeng.2014.06.078. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877705814005943.

[3] S. Xiaochen. (Jun. 1, 2018). Plans Unveiled for Building All 2022 Olympic Venues, [Online]. Available:
http://www.chinadaily.com.cn/a/201806/01/WS5b1081d9a31001b82571d8c3.html (visited
on 06/21/2019).

[4] F. Braghin, F. Cheli, S. Maldifassi, S. Melzi, and E. Sabbioni, The Engineering Approach to Winter Sports.
Springer, 2016, ISBN: 978-1-4939-3019-7. DOI: 10.1007/978-1-4939-3020-3.

[5] F. M. Impellizzeri, A. La Torre, G. Merati, E. Rampinini, and C. Zanoletti, “Relationship Between Push
Phase and Final Race Time in Skeleton Performance”, J. Strength Cond. Res., vol. 20, no. 3, pp. 579–583,
2006.

[6] A. Baca, P. Dabnichki, M. Heller, and P. Kornfeind, “Ubiquitous Computing in Sports: A Review and
Analysis”, J. Sports Sciences, vol. 27, no. 12, pp. 1335–1346, Oct. 2009. DOI:10.1080/02640410903277427.

[7] S. Lee, T. Kim, S. Lee, S. Kil, and S. Hong, “Development of Force Measurement System of Bobsled for
Practice of Push-off Phase”, Proc. IMechE Part P: J. Sports Engineering and Technology, vol. 229, no. 3,
pp. 192–198, 2015. DOI: 10.1177/1754337114565383.

[8] M. J. Heller and A. J. de Jong, “Instrumented Skeleton Sled: Focusing on Force and Orientation Sensing”,
BSc thesis, Delft Univ. Technol., Delft, Netherlands, 2019.

[9] W. M. van Dijk and K. N. van der Werff, “Instrumented Skeleton Sled: Focusing on Power Management
and the Sensors for Localisation, Velocity and Temperature”, BSc thesis, Delft Univ. Technol., Delft,
Netherlands, 2019.

[10] SD Association. (Jun. 27, 2018). SD Express – A Revolutionary Innovation for SD Memory Cards, SD As-
sociation, [Online]. Available: https://www.sdcard.org/press/SD_EXPRESS_A_REVOLUTIONARY_
INNOVATION_FOR_SD_MEMORY_CARDS.pdf (visited on 06/19/2019).

[11] (2019). SD Standards Family, [Online]. Available:https://www.sdcard.org/developers/overview/
family/index.html (visited on 06/19/2019).

[12] A. Maier, A. Sharp, and Y. Vagapov, “Comparative Analysis and Practical Implementation of the ESP32
Microcontroller Module for the Internet of Things”, in 2017 Internet Technol. and Appl. (ITA), Sep. 2017,
pp. 143–148. DOI: 10.1109/ITECHA.2017.8101926.

[13] ESP32 series, ESP32, Version 3, Espressif Systems, 2019.

[14] J. Mankar, C. Darode, K. Trivedi, M. Kanoje, and P. Shahare, “Review of I2C Protocol”, Int. J. Res. Advent
Technol., vol. 2, no. 1, pp. 474–479, Jan. 2014, ISSN: 2321-9637.

[15] I2C-Bus, UM10204, Rev. 6, NXP Semiconductors, Apr. 2014.

[16] SD Specifications, Part 1: Physical Layer, Simplified Specification, Version 6.00, SD Card Association,
Aug. 2018.

[17] R. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and G. J. de Groot, Address Allocation for Private Inter-
nets, RFC 1918, Feb. 1996. DOI: 10.17487/RFC1918. [Online]. Available: https://rfc-editor.org/
rfc/rfc1918.txt.

[18] J. Reynolds and J. Postel, Assigned Numbers, RFC 1340, Jul. 1992. DOI: 10.17487/RFC1340. [Online].
Available: https://rfc-editor.org/rfc/rfc1340.txt.

25

https://doi.org/https://doi.org/10.1016/j.proeng.2014.06.078
http://www.sciencedirect.com/science/article/pii/S1877705814005943
http://www.sciencedirect.com/science/article/pii/S1877705814005943
http://www.chinadaily.com.cn/a/201806/01/WS5b1081d9a31001b82571d8c3.html
https://doi.org/10.1007/978-1-4939-3020-3
https://doi.org/10.1080/02640410903277427
https://doi.org/10.1177/1754337114565383
https://www.sdcard.org/press/SD_EXPRESS_A_REVOLUTIONARY_INNOVATION_FOR_SD_MEMORY_CARDS.pdf
https://www.sdcard.org/press/SD_EXPRESS_A_REVOLUTIONARY_INNOVATION_FOR_SD_MEMORY_CARDS.pdf
https://www.sdcard.org/developers/overview/family/index.html
https://www.sdcard.org/developers/overview/family/index.html
https://doi.org/10.1109/ITECHA.2017.8101926
https://doi.org/10.17487/RFC1918
https://rfc-editor.org/rfc/rfc1918.txt
https://rfc-editor.org/rfc/rfc1918.txt
https://doi.org/10.17487/RFC1340
https://rfc-editor.org/rfc/rfc1340.txt

A
Code

This appendix contains all code written for the software integration system and the visualisation system.

A.1. Software integration system

A.1.1. Main code

1 #include "Akwasi . h"
2

3 void setup () {
4 // I n i t i a l i s e the I2C connection
5 Wire . begin (I2C_SDA_PIN , I2C_SCL_PIN) ;
6

7 // S t a l l i f e i ther SD, GPS or IMU i s not connected
8 while (! SD . begin (SD_SELECT_PIN) | | !myGPS. begin () | | myIMU. readByte (MPU9250_ADDRESS, WHO_AM_I_MPU9250)

!= 0x71) UVP() ;
9

10 // Setup the GPS
11 myGPS. setNavigationFrequency (GPS_HZ, 0) ;
12 myGPS. setI2COutput (COM_TYPE_UBX) ;
13 myGPS. saveConfiguration () ;
14

15 // Setup the IMU
16 pinMode(IMU_INT_PIN , INPUT) ;
17 d i g i t a l W r i t e (IMU_INT_PIN , LOW) ;
18 myIMU. MPU9250SelfTest (myIMU. S e l f T e s t) ;
19 myIMU. calibrateMPU9250 (myIMU. gyroBias , myIMU. accelBias) ;
20 myIMU. initMPU9250 () ;
21 myIMU. initAK8963 (myIMU. magCalibration) ;
22

23 // Setup the thermometer
24 myTherm. begin () ;
25

26 // Setup the external ADC for the pressure data
27 pinMode(ADC_SELECT_PIN, OUTPUT) ;
28 d i g i t a l W r i t e (ADC_SELECT_PIN, HIGH) ;
29

30 // I n i t i a l i s e buttons , LEDs and buzzers
31 pinMode(RUN_BTN_PIN, INPUT) ;
32 pinMode(RUN_LED_PIN, OUTPUT) ;
33 pinMode(BAT_BUZZ_PIN, OUTPUT) ;
34 pinMode(BAT_READ_PIN, INPUT) ;
35

36 // i n i t i a l s t a t e of the run s t a r t button pin

27

28 A. Code

37 buttonState = digitalRead (RUN_BTN_PIN) ;
38 d i g i t a l W r i t e (RUN_LED_PIN, LOW) ;
39

40 // Setup the web server and i t s request points
41 server . on(" / " , HTTP_GET, homePage) ;
42 server . on(" / s c r i p t . j s " , HTTP_GET, s c r i p t F i l e) ;
43 server . on(" / l i s t " , HTTP_GET, l i s t F i l e s) ;
44 server . on(" / f i l e " , HTTP_GET, showFile) ;
45 server . on(" / date " , HTTP_GET, setDate) ;
46 server . onNotFound(pageNotExplicit) ;
47 server . begin () ;
48 }
49

50 void loop () {
51 // Turn on the Wi−Fi
52 WiFi .mode(WIFI_AP) ;
53 WiFi . softAPConfig (ip , ip , IPAddress (255 , 255 , 255 , 0)) ;
54 WiFi . softAP ("Akwasi Frimpong" , " secretpassword ") ;
55

56 // Wait for the s t a r t run button to be pressed
57 // Keep the battery buzzer running and the web server responsive
58 while (digitalRead (RUN_BTN_PIN) == buttonState) {
59 UVP() ;
60 server . handleClient () ;
61 }
62 delay (BOUNCE_DELAY_MS) ;
63 buttonState = ! buttonState ;
64 d i g i t a l W r i t e (RUN_LED_PIN, HIGH) ;
65

66 // Turn o f f the Wi−Fi
67 WiFi . disconnect () ;
68 WiFi .mode(WIFI_OFF) ;
69

70 // Write sensor data to the SD u n t i l the button i s pressed again
71 writeSD () ;
72 }

A.1.2. Header code

1 # i fndef AKWASI_H
2 #define AKWASI_H
3

4 // include the relevant l i b r a r i e s
5 #include <WebServer . h>
6 #include <SD . h>
7 #include <Smoothed . h>
8 #include <Wire . h>
9 #include <Adafruit_MLX90614 . h>

10 #include <MPU9250 . h>
11 #include <SparkFun_Ublox_Arduino_Library . h>
12 #include " quaternionFilters . h"
13

14 // button s e t t l i n g time in milliseconds
15 #define BOUNCE_DELAY_MS 25
16

17 // Amount of sensor data output
18 #define SENSORS 14
19

20 // Chunk s i z e of the HTTP responses
21 #define CHUNK 100
22

23 // speed threshold at which the run measurement stops , in km/h
24 #define SPEED_THRESHOLD 1
25

26 // minimum sensor data rates in Hz
27 #define GPS_HZ 18
28 #define IMU_GYRO_HZ 4000 // 4k for the gyro , 8k for the accelerometer
29 #define IMU_ACC_HZ 8000
30 #define THERM_HZ 10000 // between 10k and 100k
31

A.1. Software integration system A. Code

32 // actual (used) sensor readout rate in Hz
33 #define READOUT_RATE_HZ 45
34

35 // ADC sample rate in Hz
36 #define ADC_RATE 6000
37

38 // ESP32 pin d e f i n i t i o n s
39 #define SD_SELECT_PIN 26
40 #define ADC_SELECT_PIN 5
41 #define RUN_BTN_PIN 39
42 #define RUN_LED_PIN 32
43 #define BAT_BUZZ_PIN 21
44 #define BAT_READ_PIN 34
45 #define I2C_SDA_PIN 23
46 #define I2C_SCL_PIN 22
47 #define IMU_INT_PIN 12
48

49 // server declarations
50 IPAddress ip (10 , 0 , 0 , 0) ;
51 WebServer server (80) ;
52

53 // default date
54 String date = "2019−06−14" ;
55

56 // infrared sensor var iables
57 const uint8_t temperatureAddress = 0x5A ;
58

59 // variable indicating led button pin s t a t e
60 bool buttonState ;
61

62 // variable to save
63

64 // global var iables for undervoltage protection
65 bool UVP_buzz = LOW;
66 bool UVP_flag = true ;
67 unsigned long previousUVPtime = 0 ;
68 f l o a t UVP_interval = 2000;
69

70 // global sensor objects
71 MPU9250 myIMU;
72 SFE_UBLOX_GPS myGPS;
73 Adafruit_MLX90614 myTherm(temperatureAddress) ;
74

75 #endif

A.1.3. IMU code

1 // Prepare the data of the IMU using a l l kinds of calculat ions
2 void prepareIMU () {
3 myIMU. readAccelData (myIMU. accelCount) ;
4 myIMU. getAres () ;
5

6 myIMU. ax = (f l o a t)myIMU. accelCount [0] * myIMU. aRes ;
7 myIMU. ay = (f l o a t)myIMU. accelCount [1] * myIMU. aRes ;
8 myIMU. az = (f l o a t)myIMU. accelCount [2] * myIMU. aRes ;
9

10 myIMU. readGyroData (myIMU. gyroCount) ;
11 myIMU. getGres () ;
12

13 myIMU. gx = (f l o a t)myIMU. gyroCount [0] * myIMU. gRes ;
14 myIMU. gy = (f l o a t)myIMU. gyroCount [1] * myIMU. gRes ;
15 myIMU. gz = (f l o a t)myIMU. gyroCount [2] * myIMU. gRes ;
16

17 myIMU. readMagData (myIMU. magCount) ;
18 myIMU. getMres () ;
19

20 myIMU. magbias [0] = +470. ;
21 myIMU. magbias [1] = +120. ;
22 myIMU. magbias [2] = +125. ;
23

30 A. Code

24 myIMU.mx = (f l o a t)myIMU. magCount[0] * myIMU.mRes * myIMU. magCalibration [0] −
25 myIMU. magbias [0] ;
26 myIMU.my = (f l o a t)myIMU. magCount[1] * myIMU.mRes * myIMU. magCalibration [1] −
27 myIMU. magbias [1] ;
28 myIMU.mz = (f l o a t)myIMU. magCount[2] * myIMU.mRes * myIMU. magCalibration [2] −
29 myIMU. magbias [2] ;
30

31 myIMU. updateTime () ;
32

33 MahonyQuaternionUpdate (myIMU. ax , myIMU. ay , myIMU. az , myIMU. gx * DEG_TO_RAD,
34 myIMU. gy * DEG_TO_RAD, myIMU. gz * DEG_TO_RAD,
35 myIMU.my, myIMU.mx, myIMU.mz, myIMU. d e l t a t) ;
36

37 const f l o a t * q = getQ () ;
38

39 myIMU. yaw = atan2 (2 . 0 f * (q [1] * q [2] + q [0] * q [3]) ,
40 q [0] * q [0] + q [1] * q [1] − q [2] * q [2] − q [3] * q [3]) ;
41 myIMU. pitch = −asin (2 . 0 f * (q [1] * q [3] − q [0] * q [2])) ;
42 myIMU. r o l l = atan2 (2 . 0 f * (q [0] * q [1] + q [2] * q [3]) ,
43 q [0] * q [0] − q [1] * q [1] − q [2] * q [2] + q [3] * q [3]) ;
44

45 myIMU. pitch *= RAD_TO_DEG;
46 myIMU. yaw *= RAD_TO_DEG;
47 myIMU. yaw −= 8 . 5 ;
48 myIMU. r o l l *= RAD_TO_DEG;
49

50 myIMU. sumCount = 0 ;
51 myIMU.sum = 0 ;
52 }

A.1.4. ADC code

1 double adcRead (i n t channel) {
2 // Enable ADC reading from SPI
3 d i g i t a l W r i t e (ADC_SELECT_PIN, LOW) ;
4

5 // Request data
6 SPI . t r a n s f e r (0 x06 | (channel >> 2)) ;
7 i n t f i r s t r e q u e s t = SPI . t r a n s f e r (channel << 6) ;
8 i n t secondrequest = SPI . t r a n s f e r (0) ;
9

10 // Disable ADC reading from SPI
11 d i g i t a l W r i t e (ADC_SELECT_PIN, HIGH) ;
12

13 // Turn raw data into kilograms
14 return 17.6066 − 0.00482858262 * ((((f i r s t r e q u e s t | 0xE0) & 0x0F) << 8) + secondrequest) ;
15 }

A.1.5. File read code

1 // The JSON format
2 String jsonGlue [] = { " { \ " t \ " : " , " ,\"p \ " : [" , " , " , " , " , " , " ,
3 " , " , "] , \ " v \ " : " , " ,\" g \ " : [" , " , " , "] , \ " r \ " : [" ,
4 " , " , "] , \ " c \ " : " , " ,\" l \ " : [" , " , " , "] } " } ;
5

6 // The amount of decimals to be sent to the web c l i e n t
7 i n t json7 [] = { 1 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 5 , 7 , 7 } ;
8

9 // Whether a running average should be applied to the sensor data
10 bool jsonToSmooth [] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 } ;
11

12 // A function that imports data from the SD, applies a running average where
13 // necessary and sends the data to the web c l i e n t in chunks
14 bool sendFile (Str ing fileName) {
15 // I f the f i l e does not e x i s t i t returns f a l s e which w i l l respond with 404
16 i f (! SD . e x i s t s (fileName)) return f a l s e ;
17

18 F i l e f i l e = SD . open(fileName , FILE_READ) ;
19

A.1. Software integration system A. Code

20 // S t a r t the HTTP chunk encoding
21 server . setContentLength (CONTENT_LENGTH_UNKNOWN) ;
22 server . send (200 , " application / json " , " ") ;
23

24 // Create enough Smooth objects for the running averages
25 i n t arrayIndex [SENSORS] ;
26 i n t nSmooth = 0 ;
27 i n t nRegular = 0 ;
28 for (uint8_t i = 0 ; i < SENSORS; i ++) {
29 i f (jsonToSmooth [i]) {
30 arrayIndex [i] = nSmooth++;
31 } e lse {
32 arrayIndex [i] = nRegular ++;
33 }
34 }
35 nSmooth++;
36 nRegular ++;
37

38 double regularValues [nRegular] ;
39 for (uint8_t i = 0 ; i < nRegular ; i ++) {
40 regularValues [i] = 0 . 0 ;
41 }
42

43 Smoothed<double> smoothValues [nSmooth] ;
44 for (uint8_t i = 0 ; i < nSmooth ; i ++) {
45 smoothValues [i] . begin (SMOOTHED_AVERAGE, 10) ;
46 }
47

48 // Format the date and run number
49 String chunk = " { \ " date \ " : \ " " ;
50 chunk += fileName . substring (1 , 11) ;
51 chunk += " \" ,\" run \ " : " ;
52 chunk += fileName . substring (12 , 13) ;
53 chunk += " ,\" data \ " : [" ;
54

55 String value = " " ;
56

57 uint8_t iCol = 0 ;
58 unsigned i n t iRow = 0 ;
59

60 // While not at the end of the f i l e , keep reading
61 while (f i l e . a v a i l a bl e ()) {
62 char c = f i l e . read () ;
63

64 i f (c == ’ \ t ’ | | c == ’ \n ’) {
65 // Prevent corrupted f i l e s breaking the system
66 i f (iCol >= SENSORS) break ;
67

68 // Parse s t r i n g from the SD to a r e a l number
69 i f (! value . equals (" ")) {
70 i f (jsonToSmooth [iCol]) {
71 smoothValues [arrayIndex [iCol]] . add (value . toDouble ()) ;
72 } e lse {
73 regularValues [arrayIndex [iCol]] = value . toDouble () ;
74 }
75 }
76

77 value = " " ;
78 iCol ++;
79

80 // I f at the end of the f i l e , add whole parsed s t r i n g to the chunk
81 i f (c == ’ \n ’) {
82 // Prevent corrupted f i l e s breaking the system
83 i f (iCol < SENSORS) break ;
84

85 iCol = 0 ;
86

87 // Add comma i f not f i r s t datapoint
88 i f (iRow > 0) chunk += " , " ;
89

90 // Parse a l l data to JSON

32 A. Code

91 chunk += jsonGlue [0] ;
92 for (uint8_t i = 0 ; i < SENSORS; i ++) {
93 double val ;
94 i f (jsonToSmooth [i]) {
95 val = smoothValues [arrayIndex [i]] . get () ;
96 } e lse {
97 val = regularValues [arrayIndex [i]] ;
98 }
99

100 // Check i f value i s val i d
101 i f (isnan (val) | | i s i n f (val)) {
102 chunk += " null " ;
103 } e lse {
104 chunk += String (val , json7 [i]) ;
105 }
106 chunk += jsonGlue [i + 1] ;
107 }
108

109 // Send data per 100 rows
110 i f (! (+ + iRow % CHUNK)) {
111 server . sendContent (chunk) ;
112 chunk = " " ;
113 }
114 }
115 } e lse i f (c != ’ \ r ’) {
116 value += c ;
117 }
118 }
119

120 f i l e . close () ;
121

122 chunk += "] } " ;
123

124 server . sendContent (chunk) ;
125 server . sendContent (" ") ; // end transmission
126

127 return true ;
128 }
129

130 // Determines the new f i l e name
131 String getFileName () {
132 uint8_t runNo = 0 ;
133 String f i l e = " " ;
134

135 do {
136 runNo++;
137 f i l e = Str ing (" / " + date + "−" + runNo + " . t x t ") ;
138 } while (SD . e x i s t s (f i l e)) ;
139

140 return f i l e ;
141 }

A.1.6. File write code

1 void writeSD () {
2 // Open the f i l e to be written
3 F i l e f i l e = SD . open(getFileName () , FILE_WRITE) ;
4

5 // I n i t i a l i s e some time variables
6 // And the s t r i n g that w i l l be written to the SD
7 unsigned long startTime = m i l l i s () ;
8 i n t lastWrittenTime = 0 ;
9 String l i n e = " " ;

10

11 // Wait for the v e l o c i t y to pass the threshold
12 while (myGPS. getGroundSpeed (0) / 1000.0 * 3.6 < SPEED_THRESHOLD) ;
13

14 // Keep writing the data to the SD u n t i l the button i s pressed
15 while (digitalRead (RUN_BTN_PIN) == buttonState && myGPS. getGroundSpeed (0) / 1000.0 * 3.6 >

SPEED_THRESHOLD) {

A.1. Software integration system A. Code

16 i f (m i l l i s () − startTime − lastWrittenTime > 1000 / READOUT_RATE_HZ) {
17 // I n i t i a l i s e the current data of the IMU
18 prepareIMU () ;
19

20 // Write the time to the SD
21 lastWrittenTime = m i l l i s () − startTime ;
22 l i n e = Str ing (lastWrittenTime) + ’ \ t ’ ;
23

24 // Write the pressure data to the SD
25 l i n e += String (adcRead (0)) + ’ \ t ’ ;
26 l i n e += String (adcRead (1)) + ’ \ t ’ ;
27 l i n e += String (adcRead (2)) + ’ \ t ’ ;
28 l i n e += String (adcRead (3)) + ’ \ t ’ ;
29 l i n e += String (adcRead (4)) + ’ \ t ’ ;
30

31 // Write the v e l o c i t y to the SD
32 l i n e += String (myGPS. getGroundSpeed (0) / 1000.0 * 3 . 6 , 7) + ’ \ t ’ ;
33

34 // Write both acceleration measurements to the SD
35 l i n e += String (myIMU. ay , 7) + ’ \ t ’ ;
36 l i n e += String (myIMU. az , 7) + ’ \ t ’ ;
37

38 // Write both rotation measurements to the SD
39 l i n e += String (myIMU. pitch , 7) + ’ \ t ’ ;
40 l i n e += String (myIMU. r o l l , 7) + ’ \ t ’ ;
41

42 // Write the placeholder temperature data to the SD
43 l i n e += "146\ t " ;
44

45 // Write both location coordinates to the SD
46 // I f the data i s of high enough qual i ty
47 i f (myGPS. getSIV (0) > 3) {
48 l i n e += String (myGPS. getLatitude (0) / 10000000.0 , 7) ;
49 l i n e += ’ \ t ’ ;
50 l i n e += String (myGPS. getLongitude (0) / 10000000.0 , 7) ;
51 } e lse {
52 l i n e += ’ \ t ’ ;
53 }
54

55 f i l e . pr int ln (l i n e) ;
56 }
57 }
58 delay (BOUNCE_DELAY_MS) ;
59 buttonState = ! buttonState ;
60 d i g i t a l W r i t e (RUN_LED_PIN, LOW) ;
61

62 // Close f i l e
63 f i l e . close () ;
64 }

A.1.7. Web server code

The html and js variables in the second and fifth line are simplified strings of the code shown in §A.2, re-
spectively the HTML code and JavaScript code.

1 // Serve the web page i t s e l f
2 void homePage () { server . send (200 , " t e x t /html" , html) ; }
3

4 // Serve the s c r i p t f i l e
5 void s c r i p t F i l e () { server . send (200 , " t e x t / j a v a s c r i p t " , j s) ; }
6

7 // Serve the l i s t of a v ai l a b l e f i l e s of individual runs in JSON
8 void l i s t F i l e s () {
9 F i l e root = SD . open(" / ") ;

10 F i l e entry = root . openNextFile () ;
11

12 String page = " [" ;
13

14 while (entry) {

34 A. Code

15 String fileName = entry .name() ;
16 fileName . remove (0 , 1) ;
17 fileName . remove (fileName . length () − 4 , 4) ;
18

19 page += " ,\" " ;
20 page += fileName ;
21 page += " \" " ;
22

23 entry . close () ;
24 entry = root . openNextFile () ;
25 }
26

27 root . close () ;
28

29 page . remove (1 , 1) ;
30 page += "] " ;
31

32 server . send (200 , " application / json " , page) ;
33 }
34

35 // Serve a s p e c i f i c run f i l e in JSON
36 void showFile () {
37 String fileName ;
38 String content ;
39

40 i f (server . hasArg ("run")) {
41 fileName = " / " ;
42 fileName += server . arg ("run") ;
43 fileName += " . t x t " ;
44 }
45

46 i f (! fileName | | !SD . e x i s t s (fileName) | | ! sendFile (fileName)) {
47 server . send (404 , " application / json " , " null ") ;
48 }
49 }
50

51 // Set the date to the date sent over from the web c l i e n t
52 void setDate () {
53 i f (server . hasArg (" date ")) {
54 String getDate = server . arg (" date ") ;
55

56 i f (getDate . length () == 10) {
57 date = getDate ;
58 }
59

60 String fileName ;
61 for (uint8_t i = 0 ; i < 99; i ++) {
62 fileName = "/2019−06−14−" + String (i) + " . t x t " ;
63

64 i f (SD . e x i s t s (fileName)) {
65 SD . rename(fileName , getFileName ()) ;
66 }
67 }
68 }
69

70 server . send (200 , " t e x t / plain " , " true ") ;
71 }
72

73 // Throw an error when another page i s requested
74 void pageNotExplicit () { server . send (404 , " t e x t / plain " , "Not found ! ") ; }

A.1.8. Undervoltage code
1 // This function makes the under voltage buzzer s ignal
2 // the user i f the battery i s low
3 void UVP() {
4 unsigned long c u r r e n tM i l l i s = m i l l i s () ;
5 f l o a t Vbat = 3.6 * 3.2 / 4095 * analogRead (BAT_READ_PIN) ;
6 const f l o a t Valarm = 7 . 2 ;

A.2. Visualisation A. Code

7

8 i f (Vbat <= Valarm && Vbat > Valarm − 0.15) {
9 UVP_flag = f a l s e ;

10 i f (c u r r e nt Mi l l i s − previousUVPtime >= UVP_interval) {
11 previousUVPtime = c u r r e n tM i l l i s ;
12 i f (UVP_buzz == LOW) {
13 UVP_buzz = HIGH;
14 UVP_interval = 200;
15 } e lse {
16 UVP_buzz = LOW;
17 UVP_interval = 4000;
18 }
19 d i g i t a l W r i t e (BAT_BUZZ_PIN, UVP_buzz) ;
20 }
21 } e lse i f (Vbat <= Valarm − 0.15 && Vbat > Valarm − 0 . 3) {
22 UVP_flag = f a l s e ;
23 i f (c u r r e nt Mi l l i s − previousUVPtime >= UVP_interval) {
24 previousUVPtime = c u r r e n tM i l l i s ;
25 i f (UVP_buzz == LOW) {
26 UVP_buzz = HIGH;
27 UVP_interval = 500;
28 } e lse {
29 UVP_buzz = LOW;
30 UVP_interval = 2000;
31 }
32 d i g i t a l W r i t e (BAT_BUZZ_PIN, UVP_buzz) ;
33 }
34 } e lse i f (Vbat <= Valarm − 0 . 3) {
35 i f (! UVP_flag) {
36 UVP_interval = 500;
37 UVP_flag = true ;
38 }
39 i f (c u r r e nt Mi l l i s − previousUVPtime >= UVP_interval) {
40 previousUVPtime = c u r r e n tM i l l i s ;
41 i f (UVP_buzz == LOW) {
42 UVP_buzz = HIGH;
43 i f (UVP_interval > 30) {
44 UVP_interval = UVP_interval − 0 . 7 ;
45 }
46 } e lse {
47 UVP_buzz = LOW;
48 i f (UVP_interval > 30) {
49 UVP_interval = UVP_interval − 0 . 7 ;
50 }
51 }
52 d i g i t a l W r i t e (BAT_BUZZ_PIN, UVP_buzz) ;
53 }
54 } e lse {
55 d i g i t a l W r i t e (BAT_BUZZ_PIN, LOW) ;
56 }
57 }

A.2. Visualisation

A.2.1. HTML code

The base64 data mentioned in line 8 has been omitted, because it is unreadable to a human. It represents
the icon of the page in the browser.

1 < !DOCTYPE html>
2 <html>
3

4 <head>
5 < t i t l e >Akwasi Sensors</ t i t l e >
6 < s c r i p t src=" index . j s "></ s c r i p t >
7 < l i n k r e l =" shortcut icon "
8 href=" data : image/ jpeg ; base64 , . . . (base64 data) . . . " />
9 < s t y l e >

36 A. Code

10 body {
11 font−family : sans−s e r i f ;
12 background−color : #e7e7e7 ;
13 color : #747474;
14 text−al ign : center ;
15 }
16

17 #head {
18 display : f l e x ;
19 }
20

21 # t i t l e {
22 cursor : pointer ;
23 }
24

25 . s e l e c t {
26 margin : 25px 0 ;
27 }
28

29 s e l e c t {
30 width : 30%;
31 height : 30px ;
32 margin−top : 10px ;
33 background−color : #e7e7e7 ;
34 outline : none ;
35 border : 3px s o l i d #747474;
36 border−radius : 5px ;
37 color : #747474;
38 s i z e : 20px ;
39 −webkit−appearance : none ;
40 text−align−l a s t : center ;
41 cursor : pointer ;
42 }
43

44 s e l e c t : : −ms−expand {
45 display : none ;
46 }
47

48 s e l e c t : disabled {
49 background−color : #747474;
50 color : #e7e7e7 ;
51 }
52

53 . canvasses {
54 width : 100%;
55 display : f l e x ;
56 }
57

58 . third ,
59 . twothird {
60 width : 33.33%;
61 padding : 10px 0 ;
62 box−s i z i n g : border−box ;
63 }
64

65 . twothird {
66 width : 66.66%;
67 }
68

69 #n−controls {
70 width : 90%;
71 display : f l e x ;
72 margin : 10px 5%;
73 }
74

75 #n−s l i d e r {
76 −webkit−appearance : none ;
77 width : 100%;
78 margin− l e f t : 10px ;
79 margin−top : 6px ;
80 height : 14px ;

A.2. Visualisation A. Code

81 background : #747474;
82 outline : none ;
83 border−radius : 7px ;
84 }
85

86 #n−s l i d e r : : −webkit−s l i d e r−thumb {
87 −webkit−appearance : none ;
88 appearance : none ;
89 width : 26px ;
90 height : 26px ;
91 background : #e92100 ;
92 border−radius : 13px ;
93 cursor : pointer ;
94 }
95

96 #n−s l i d e r : : −moz−range−thumb {
97 width : 26px ;
98 height : 26px ;
99 background : #e92100 ;

100 border−radius : 13px ;
101 cursor : pointer ;
102 }
103

104 . icon {
105 margin−r i g h t : 15px ;
106 cursor : pointer ;
107 }
108

109 . g−controls {
110 width : 90%;
111 height : 26px ;
112 margin : 10px 5%;
113 position : r e l a t i v e ;
114 }
115

116 . g−controls input {
117 pointer−events : none ;
118 position : absolute ;
119 l e f t : −4px ;
120 outline : none ;
121 −webkit−appearance : none ;
122 width : 100%;
123 margin−top : 6px ;
124 height : 14px ;
125 background : #747474;
126 border−radius : 7px ;
127 }
128

129 . g−controls input : : −webkit−s l i d e r−thumb {
130 pointer−events : a l l ;
131 position : r e l a t i v e ;
132 z−index : 2 ;
133 −webkit−appearance : none ;
134 appearance : none ;
135 width : 26px ;
136 height : 26px ;
137 background : #e92100 ;
138 border−radius : 13px ;
139 cursor : pointer ;
140 }
141

142 . g−controls input : : −moz−range−thumb {
143 pointer−events : a l l ;
144 z−index : 10;
145 width : 26px ;
146 height : 26px ;
147 background : #e92100 ;
148 border−radius : 13px ;
149 cursor : pointer ;
150 }
151

38 A. Code

152 #g−s l i d e r−m:: −moz−range−thumb {
153 z−index : 9 ;
154 width : 20px ;
155 height : 20px ;
156 }
157

158 #g−s l i d e r−m:: −webkit−s l i d e r−thumb {
159 z−index : 1 ;
160 width : 20px ;
161 height : 20px ;
162 }
163

164 #g−l i n e {
165 background−color : #e92100 ;
166 z−index : 0 ;
167 height : 6px ;
168 position : absolute ;
169 margin−top : 10px ;
170 }
171 </ s t y l e >
172 </head>
173

174 <body>
175 <div c l a s s =" a l l ">
176 <div c l a s s =" canvasses ">
177 <div c l a s s =" third ">
178 <p>Date : <b id=" date "></p>
179 </ div>
180 <div c l a s s =" third ">
181 <p id=" t i t l e ">Akwasi Frimpong Sensors</p>
182 </ div>
183 <div c l a s s =" third ">
184 < s e l e c t id=" s e l e c t "></ s e l e c t >
185 </ div>
186 </ div>
187 <div id="normal" s t y l e =" display : block ; ">
188 <div id="n−controls ">
189 <canvas c l a s s =" icon " id="n−back" width="16" height="26"></canvas>
190 <canvas c l a s s =" icon " id="n−play " width="26" height="26"></canvas>
191 <canvas c l a s s =" icon " id="n−forw" width="16" height="26"></canvas>
192 <input type="range" id="n−s l i d e r " autofocus>
193 </ div>
194 <div c l a s s =" canvasses ">
195 <div c l a s s =" third ">
196 <p>Time : <b id="n−time"> s</p>
197 <p>Temperature : <b id="n−temperature"> ° ;C</p>
198 <canvas id="n−location "></canvas>
199 </ div>
200 <div c l a s s =" third ">
201 <p>G−force : <b id="n−force ">G</p>
202 <p>Slope : <b id="n−angle ">° ; </p>
203 <canvas id="n−gforce "></canvas>
204 </ div>
205 <div c l a s s =" third ">
206 <p>Velocity : <b id="n−v e l o c i t y "> km/h</p>
207 <p>Pressure : <b id="n−pressure "></p>
208 <canvas id="n−board"></canvas>
209 </ div>
210 </ div>
211 </ div>
212 <div id="graphs" s t y l e =" display : none ; ">
213 <div c l a s s ="g−controls ">
214 <input id="g−s l i d e r−a" type="range">
215 <input id="g−s l i d e r−b" type="range">
216 <input id="g−s l i d e r−m" type="range">
217 <div id="g−l i n e "></ div>
218 </ div>
219 <div c l a s s =" canvasses ">
220 <div c l a s s =" third ">
221 <p>Time : <b id="g−time− l e f t "> − <b id="g−time−r i g h t "> s</p>
222 <p>Temperature : <b id="g−temperature "> ° ;C</p>

A.2. Visualisation A. Code

223 <canvas id="g−location "></canvas>
224 </ div>
225 <div c l a s s =" twothird ">
226 <canvas id="g−graph"></canvas>
227 </ div>
228 </ div>
229 </ div>
230 </ div>
231 </body>
232

233 </html>

A.2.2. JavaScript code
1 // Define some variables
2 var jsDoc = document ;
3 var jsWindow = window ;
4 var math = Math ;
5 var min = math . min ;
6 var max = math .max;
7 var pow = math .pow;
8 var PI = math . PI ;
9 var abs = math . abs ;

10 var colorGrey = "#747474" ;
11 var colorRed = "#e92100" ;
12 var sRound = "round" ;
13 var normal = true ;
14 var playing = true ;
15 var delay = 10;
16

17 // Define some useful functions
18 function spreadArray (fn , arr) {
19 return arr . reduce (function (x , y) {
20 return fn (x , y) ;
21 }) ;
22 }
23 function mapper(arr , a , b , fn) {
24 return arr .map(function (x) {
25 return (fn | | Number) (x [a] [b] !== undefined ? x [a] [b] : x [a]) ;
26 }) ;
27 }
28 function average (arr) {
29 return arr . reduce (function (a , b) {
30 return a + b ;
31 } , 0) / arr . length ;
32 }
33 function pythagoras (arr) {
34 return math . sqrt (pow((arr [0]) , 2) + pow((arr [1]) , 2)) ;
35 }
36

37 function decimalRound (number, decimals) {
38 return math . round (number * pow(10 , decimals | | 0)) / pow(10 , decimals | | 0) ;
39 }
40

41 function getHTML(name) {
42 return jsDoc . getElementById (name) ;
43 }
44 function getCanvas (name) {
45 return getHTML(name) . getContext ("2d") ;
46 }
47 function setHTML(name, data) {
48 getHTML(name) . innerHTML = data ;
49 }
50

51 function xmlRequest (url , fn) {
52 var request = new XMLHttpRequest ;
53 request . open("GET" , ur l) ;
54 request . onreadystatechange = function () {
55 i f (request . readyState !== 4 | | request . status !== 200) return ;

40 A. Code

56

57 fn (JSON . parse (request . responseText)) ;
58 }
59 request . send () ;
60 }
61

62 function clearRect (ctx , x , y , width , height) {
63 ctx . clearRect (x , y , width , height) ;
64 }
65 function beginPath (ctx) {
66 ctx . beginPath () ;
67 }
68 function rotate (ctx , angle) {
69 ctx . rotate (angle) ;
70 }
71 function lineTo (ctx , x , y) {
72 ctx . lineTo (x , y) ;
73 }
74 function moveTo(ctx , x , y) {
75 ctx . moveTo(x , y) ;
76 }
77 function arc (ctx , x , y , radius , startAngle , endAngle , anticlockwise) {
78 i f (radius) ctx . arc (x , y , radius , startAngle , endAngle , anticlockwise) ;
79 }
80 function stroke (ctx) {
81 ctx . stroke () ;
82 }
83 function f i l l (ctx) {
84 ctx . f i l l () ;
85 }
86 function arcTo (ctx , x1 , y1 , x2 , y2 , radius) {
87 ctx . arcTo (x1 , y1 , x2 , y2 , radius) ;
88 }
89 function f i l l T e x t (ctx , text , x , y) {
90 ctx . f i l l T e x t (text , x , y) ;
91 }
92 function setLineWidth (ctx , width) {
93 ctx . lineWidth = width ;
94 }
95 function setStrokeStyle (ctx , color) {
96 ctx . s troke Sty le = color ;
97 }
98 function s e t F i l l S t y l e (ctx , color) {
99 ctx . f i l l S t y l e = color ;

100 }
101 function onclick (obj , fn) {
102 obj . canvas . onclick = fn ;
103 }
104 function oninput (obj , fn) {
105 obj . oninput = fn ;
106 }
107 function getValue (obj) {
108 return obj . value ;
109 }
110 function setValue (obj , val) {
111 obj . value = val ;
112 }
113 var assign = Object . assign ;
114

115 function validLocations (timeslot) {
116 return timeslot . l [0] && timeslot . l [1] ;
117 }
118

119 // When the HTML page loads , t h i s w i l l t r i g g e r
120 jsWindow . onload = function () {
121 // More variables
122 var runSelector = getHTML(" s e l e c t ") ;
123 var timeSlider = getHTML("n−s l i d e r ") ;
124 var iconCanvasses = ["n−back" , "n−play " , "n−forw"] .map(getCanvas) ;
125 var imageCanvasses = ["n−gforce " , "n−location " , "n−board"] .map(getCanvas) ;
126 var timeSliders = ["g−s l i d e r−a" , "g−s l i d e r−b" , "g−s l i d e r−m"] .map(getHTML) ;

A.2. Visualisation A. Code

127 var timeLine = getHTML("g−l i n e ") ;
128 var locationCanvas = getCanvas ("g−location ") ;
129 var graphCanvas = getCanvas ("g−graph") ;
130 var s t y l e s = [" block " , "none"] ;
131 var allData = { } ;
132 var currentData ;
133 var canvasWidth ;
134 var canvasHeight ;
135 var graphHeight ;
136 var canvasSize ;
137 var lineWidth ;
138 var locationWidthOffset ;
139 var locationHeightOffset ;
140 var locationFactor ;
141 var rotationFactor ;
142 var boardFactor ;
143 var length ;
144 var slidersWidth ;
145

146 // Make the switching of pages possible
147 getHTML(" t i t l e ") . onclick = function () {
148 getHTML("normal") . s t y l e . display = s t y l e s [normal | 0] ;
149 normal = ! normal ;
150 getHTML("graphs") . s t y l e . display = s t y l e s [normal | 0] ;
151 }
152

153 // Sett ings for the control button canvasses
154 iconCanvasses . forEach (function (canvas) {
155 assign (canvas , {
156 f i l l S t y l e : colorRed ,
157 str okeSty le : colorRed ,
158 lineWidth : 5 ,
159 lineCap : sRound
160 }) ;
161 }) ;
162

163 // Draw the control button canvasses
164 beginPath (iconCanvasses [0]) ;
165 arc (iconCanvasses [0] , 13 , 13 , 10.5 , .55 * PI , −.55 * PI) ;
166 stroke (iconCanvasses [0]) ;
167 onclick (iconCanvasses [0] , function () {
168 timeSlider . value−−;
169 timeSlider . oninput () ;
170 }) ;
171

172 beginPath (iconCanvasses [2]) ;
173 arc (iconCanvasses [2] , 3 , 13 , 10.5 , −.45 * PI , .45 * PI) ;
174 stroke (iconCanvasses [2]) ;
175 onclick (iconCanvasses [2] , function () {
176 timeSlider . value ++;
177 timeSlider . oninput () ;
178 }) ;
179

180 // The play button f u n c t i o n a l i t y
181 function i t e r a t e () {
182 timeSlider . value ++;
183 i f (playing) {
184 i f (getValue (timeSlider) !== timeSlider .max) {
185 setTimeout (i t e r a t e , delay) ;
186 } e lse {
187 goPlay () ;
188 timeSlider . value = 0 ;
189 }
190 }
191 timeSlider . oninput () ;
192 }
193 function goPlay () {
194 playing = ! playing ;
195 clearRect (iconCanvasses [1] , 0 , 0 , 26 , 26) ;
196 beginPath (iconCanvasses [1]) ;
197

42 A. Code

198 i f (playing) {
199 arc (iconCanvasses [1] , 13 , 13 , 10.5 , 0 , 2 * PI) ;
200 stroke (iconCanvasses [1]) ;
201

202 i f (getValue (timeSlider) === timeSlider .max) {
203 timeSlider . value = 0 ;
204 }
205

206 i t e r a t e () ;
207 } e lse {
208 arc (iconCanvasses [1] , 13 , 13 , 13 , 0 , 2 * PI) ;
209 f i l l (iconCanvasses [1]) ;
210 }
211 }
212 onclick (iconCanvasses [1] , goPlay) ;
213 goPlay () ;
214

215 // Play when pressing ‘ space ‘
216 jsDoc . addEventListener ("keydown" , function (keyEvent) {
217 i f (keyEvent . keyCode == 32 && normal) {
218 goPlay () ;
219 }
220 }) ;
221

222 // Set var iables upon opening and r e s i z i n g the page
223 jsWindow . onresize = function () {
224 canvasWidth = jsWindow . innerWidth * . 3 ;
225 canvasHeight = jsWindow . innerHeight − 250;
226 canvasWidth = canvasWidth ;
227 graphHeight = canvasHeight / 3 + 28;
228 canvasSize = min(canvasWidth , canvasHeight) ;
229 lineWidth = canvasSize * 0 . 0 1 ;
230 slidersWidth = jsWindow . innerWidth * . 9 ;
231

232 var widthRange = mapper(currentData , " l " , 0) ;
233 var heightRange = mapper(currentData , " l " , 1) ;
234 var locationWidthRange = [spreadArray (max, widthRange) , spreadArray (min, widthRange)] ;
235 var locationHeightRange = [spreadArray (max, heightRange) , spreadArray (min, heightRange)] ;
236

237 locationWidthOffset = . 5 * (locationWidthRange [0] + locationWidthRange [1]) ;
238 locationHeightOffset = . 5 * (locationHeightRange [0] + locationHeightRange [1]) ;
239 locationFactor = min(canvasWidth / (locationWidthRange [0] − locationWidthRange [1]) , canvasHeight /

(locationHeightRange [0] − locationHeightRange [1])) / 1 . 1 ;
240 rotationFactor = canvasSize / 3 / max(spreadArray (max, mapper(currentData , "g" , 0 , abs)) ,

spreadArray (max, mapper(currentData , "g" , 1 , abs))) ;
241 boardFactor = canvasSize * .06 / spreadArray (max, currentData .map(function (timeslot) { return

spreadArray (max, timeslot . p) ; })) ;
242

243 imageCanvasses . forEach (function (canvas) {
244 canvas . canvas . width = canvasWidth ;
245 canvas . canvas . height = canvasHeight ;
246 canvas . t r a n s l a t e (canvasWidth / 2 , canvasHeight / 2) ;
247 }) ;
248

249 graphCanvas . canvas . width = canvasWidth * 2 ;
250 graphCanvas . canvas . height = graphHeight * 3 ;
251

252 locationCanvas . canvas . width = canvasWidth ;
253 locationCanvas . canvas . height = canvasHeight ;
254 locationCanvas . t r a n s l a t e (canvasWidth / 2 , canvasHeight / 2) ;
255

256 [imageCanvasses [0] , imageCanvasses [1] , imageCanvasses [2] , graphCanvas , locationCanvas] . forEach (
function (canvas) {

257 assign (canvas , {
258 lineWidth : lineWidth ,
259 lineCap : sRound ,
260 l i n e J o i n : sRound ,
261 str okeStyl e : colorGrey ,
262 f i l l S t y l e : colorRed
263 }) ;
264 }) ;

A.2. Visualisation A. Code

265

266 assign (graphCanvas , {
267 font : canvasSize / 30 + "px sans−s e r i f " ,
268 f i l l S t y l e : colorGrey ,
269 t e x t A l i g n : " r i g h t " ,
270 textBasel ine : "middle"
271 }) ;
272

273 timeSlider . oninput () ;
274 t imeSliders [2] . oninput () ;
275 }
276

277 // Reset time s l i d e r s on loading a new run
278 function newRun(data) {
279 currentData = data . f i l t e r (validLocations) ;
280

281 length = currentData . length − 1
282

283 assign (timeSlider , {
284 min : 0 ,
285 max: length ,
286 value : 0
287 }) ;
288

289 assign (timeSliders [0] , {
290 min : 0 ,
291 max: length ,
292 value : 0
293 }) ;
294

295 assign (timeSliders [1] , {
296 min : 0 ,
297 max: length ,
298 value : length
299 }) ;
300

301 assign (timeSliders [2] , {
302 min : 0 ,
303 max: length ,
304 value : length / 2
305 }) ;
306

307 jsWindow . onresize () ;
308 timeSlider . focus () ;
309 }
310

311 // Load run on s e l e c t i n g a new one from the upper r i g h t s e l e c t o r
312 oninput (runSelector , function () {
313 var currentRun = getValue (runSelector) ;
314

315 i f (currentRun in allData) {
316 newRun(allData [currentRun]) ;
317 } e lse {
318 runSelector . disabled = true ;
319

320 xmlRequest (" https : / / tijsmoree . nl /akwasi/ f i l e /? run=" + currentRun , function (data) {
321 runSelector . disabled = f a l s e ;
322

323 setHTML(" date " , data . date) ;
324

325 newRun(allData [currentRun] = data . data) ;
326 }) ;
327 }
328 }) ;
329

330 // Redraw the f i r s t page on changing the time s l i d e r of the f i r s t page
331 oninput (timeSlider , function () {
332 var currentTime = getValue (timeSlider) ;
333 var currentTimeslot = currentData [currentTime] ;
334 var gForceAngle = math . atan (currentTimeslot . g [0] / currentTimeslot . g [1]) ;
335 var angle = −currentTimeslot . r [0] * PI / 180;

44 A. Code

336 var gForce = pythagoras (currentTimeslot . g) ;
337 delay = currentTime < length − 1 ? currentData [Number(currentTime) + 1] . t − currentTimeslot . t :

10;
338

339 setHTML("n−temperature" , decimalRound (currentTimeslot . c , 1)) ;
340 setHTML("n−time" , decimalRound ((currentTimeslot . t − currentData [0] . t) / 1e3 , 1)) ;
341 setHTML("n−force " , decimalRound (gForce , 1)) ;
342 setHTML("n−v e l o c i t y " , decimalRound (currentTimeslot . v , 1)) ;
343 setHTML("n−angle " , decimalRound(−currentTimeslot . r [1] , 1)) ;
344 setHTML("n−pressure " , decimalRound (average (currentTimeslot . p) , 1)) ;
345

346 setLineWidth (imageCanvasses [0] , lineWidth) ;
347 clearRect (imageCanvasses [0] , −canvasWidth / 2 , −canvasHeight / 2 , canvasWidth , canvasHeight) ;
348 beginPath (imageCanvasses [0]) ;
349 rotate (imageCanvasses [0] , angle) ;
350 arc (imageCanvasses [0] , 0 , −.17 * canvasSize , .22 * canvasSize , 0 , PI * 2) ;
351 stroke (imageCanvasses [0]) ;
352 clearRect (imageCanvasses [0] , −.5 * canvasSize , −.29 * canvasSize , canvasSize , .29 * canvasSize) ;
353 beginPath (imageCanvasses [0]) ;
354 lineTo (imageCanvasses [0] , −.45 * canvasSize , 0) ;
355 lineTo (imageCanvasses [0] , .45 * canvasSize , 0) ;
356 moveTo(imageCanvasses [0] , −.3 * canvasSize , 0) ;
357 lineTo (imageCanvasses [0] , −.3 * canvasSize , .05 * canvasSize) ;
358 moveTo(imageCanvasses [0] , . 3 * canvasSize , 0) ;
359 lineTo (imageCanvasses [0] , . 3 * canvasSize , .05 * canvasSize) ;
360 moveTo(imageCanvasses [0] , −.15 * canvasSize , 0) ;
361 arc (imageCanvasses [0] , −.118 * canvasSize , 0 , . 3 * canvasSize , PI , PI * 1 .63) ;
362 moveTo(imageCanvasses [0] , . 3 * canvasSize , 0) ;
363 arc (imageCanvasses [0] , .118 * canvasSize , 0 , . 3 * canvasSize , 0 , PI * 1.37 , true) ;
364 stroke (imageCanvasses [0]) ;
365 rotate (imageCanvasses [0] , gForceAngle − angle) ;
366 beginPath (imageCanvasses [0]) ;
367 moveTo(imageCanvasses [0] , 0 , 0) ;
368 setLineWidth (imageCanvasses [0] , lineWidth / 2) ;
369 lineTo (imageCanvasses [0] , 0 , gForce * rotationFactor) ;
370 lineTo (imageCanvasses [0] , −.02 * canvasSize , max(0 , gForce * rotationFactor − .03 * canvasSize)) ;
371 moveTo(imageCanvasses [0] , 0 , gForce * rotationFactor) ;
372 lineTo (imageCanvasses [0] , .02 * canvasSize , max(0 , gForce * rotationFactor − .03 * canvasSize)) ;
373 stroke (imageCanvasses [0]) ;
374 beginPath (imageCanvasses [0]) ;
375 rotate (imageCanvasses [0] , −gForceAngle) ;
376 arc (imageCanvasses [0] , 0 , 0 , lineWidth * 2 , 0 , PI * 2 , true) ;
377 f i l l (imageCanvasses [0]) ;
378

379 clearRect (imageCanvasses [1] , −canvasWidth / 2 , −canvasHeight / 2 , canvasWidth , canvasHeight) ;
380 beginPath (imageCanvasses [1]) ;
381 currentData . forEach (function (timeslot) {
382 lineTo (imageCanvasses [1] , (t imeslot . l [0] − locationWidthOffset) * locationFactor , (t imeslot . l

[1] − locationHeightOffset) * locationFactor) ;
383 }) ;
384 stroke (imageCanvasses [1]) ;
385 beginPath (imageCanvasses [1]) ;
386 arc (imageCanvasses [1] , (currentTimeslot . l [0] − locationWidthOffset) * locationFactor , (

currentTimeslot . l [1] − locationHeightOffset) * locationFactor , lineWidth * 2 , 0 , PI * 2 , true) ;
387 f i l l (imageCanvasses [1]) ;
388

389 clearRect (imageCanvasses [2] , −canvasWidth / 2 , −canvasHeight / 2 , canvasWidth , canvasHeight) ;
390 setStrokeStyle (imageCanvasses [2] , colorGrey) ;
391 beginPath (imageCanvasses [2]) ;
392 moveTo(imageCanvasses [2] , −.12 * canvasSize , −.45 * canvasSize) ;
393 imageCanvasses [2] . quadraticCurveTo (0 , −.38 * canvasSize , .12 * canvasSize , −.45 * canvasSize) ;
394 arcTo (imageCanvasses [2] , .25 * canvasSize , −.45 * canvasSize , .25 * canvasSize , 0 , .05 *

canvasSize) ;
395 arcTo (imageCanvasses [2] , . 2 * canvasSize , .45 * canvasSize , 0 , .45 * canvasSize , .05 * canvasSize)

;
396 arcTo (imageCanvasses [2] , −.2 * canvasSize , .45 * canvasSize , −.2 * canvasSize , 0 , .05 * canvasSize

) ;
397 arcTo (imageCanvasses [2] , −.25 * canvasSize , −.45 * canvasSize , 0 , −.45 * canvasSize , .05 *

canvasSize) ;
398 lineTo (imageCanvasses [2] , −.12 * canvasSize , −.45 * canvasSize) ;
399 stroke (imageCanvasses [2]) ;

A.2. Visualisation A. Code

400 setStrokeStyle (imageCanvasses [2] , colorRed) ;
401 beginPath (imageCanvasses [2]) ;
402 arc (imageCanvasses [2] , −.15 * canvasSize , −.35 * canvasSize , currentTimeslot . p [0] * boardFactor ,

0 , 2 * PI) ;
403 stroke (imageCanvasses [2]) ;
404 beginPath (imageCanvasses [2]) ;
405 arc (imageCanvasses [2] , .15 * canvasSize , −.35 * canvasSize , currentTimeslot . p [2] * boardFactor , 0 ,

2 * PI) ;
406 stroke (imageCanvasses [2]) ;
407 beginPath (imageCanvasses [2]) ;
408 arc (imageCanvasses [2] , −.1 * canvasSize , .35 * canvasSize , currentTimeslot . p [1] * boardFactor , 0 ,

2 * PI) ;
409 stroke (imageCanvasses [2]) ;
410 beginPath (imageCanvasses [2]) ;
411 arc (imageCanvasses [2] , . 1 * canvasSize , .35 * canvasSize , currentTimeslot . p [3] * boardFactor , 0 , 2

* PI) ;
412 stroke (imageCanvasses [2]) ;
413 }) ;
414

415 // Redraw the second page on changing the s l i d e r s on the second page
416 function t r i p l e I n p u t () {
417 var range = abs (getValue (timeSliders [1]) − getValue (timeSliders [0])) / 2 ;
418 var mid = min(length − range , max(getValue (timeSliders [2]) , range)) ;
419

420 setValue (timeSliders [0] , mid − range) ;
421 setValue (timeSliders [1] , mid + range) ;
422 setValue (timeSliders [2] , mid) ;
423

424 var l e f t = min(getValue (timeSliders [0]) , getValue (timeSliders [1])) ;
425 var r i g h t = max(getValue (timeSliders [0]) , getValue (timeSliders [1])) + 1 ;
426 var dataRange = currentData . s l i c e (l e f t , r i g h t) ;
427 var end = dataRange . length − 1 ;
428

429 assign (timeLine . s ty l e , {
430 l e f t : l e f t / length * (slidersWidth − 25) + 5 + "px" ,
431 r i g h t : ((length − r i g h t) / length + 0.01) * (slidersWidth − 25) + "px"
432 }) ;
433

434 setHTML("g−temperature" , decimalRound (average (mapper(dataRange , "c")) , 1)) ;
435 setHTML("g−time− l e f t " , decimalRound ((dataRange [0] . t − currentData [0] . t) / 1e3 , 1)) ;
436 setHTML("g−time−r i g h t " , decimalRound ((dataRange [end] . t − currentData [0] . t) / 1e3 , 1)) ;
437

438 clearRect (locationCanvas , −canvasWidth / 2 , −canvasHeight / 2 , canvasWidth , canvasHeight) ;
439 setLineWidth (locationCanvas , lineWidth) ;
440 setStrokeStyle (locationCanvas , colorGrey) ;
441 beginPath (locationCanvas) ;
442 currentData . forEach (function (timeslot) {
443 lineTo (locationCanvas , (t imeslot . l [0] − locationWidthOffset) * locationFactor , (t imeslot . l [1]

− locationHeightOffset) * locationFactor) ;
444 }) ;
445 stroke (locationCanvas) ;
446 beginPath (locationCanvas) ;
447 arc (locationCanvas , (dataRange [0] . l [0] − locationWidthOffset) * locationFactor , (dataRange [0] . l [1]

− locationHeightOffset) * locationFactor , lineWidth * 2 , 0 , PI * 2 , true) ;
448 f i l l (locationCanvas) ;
449 beginPath (locationCanvas) ;
450 arc (locationCanvas , (dataRange [end] . l [0] − locationWidthOffset) * locationFactor , (dataRange [end] .

l [1] − locationHeightOffset) * locationFactor , lineWidth * 2 , 0 , PI * 2 , true) ;
451 f i l l (locationCanvas) ;
452 beginPath (locationCanvas) ;
453 setLineWidth (locationCanvas , lineWidth / 2) ;
454 setStrokeStyle (locationCanvas , colorRed) ;
455 dataRange . forEach (function (timeslot) {
456 lineTo (locationCanvas , (t imeslot . l [0] − locationWidthOffset) * locationFactor , (t imeslot . l [1]

− locationHeightOffset) * locationFactor) ;
457 }) ;
458 stroke (locationCanvas) ;
459

460 clearRect (graphCanvas , 0 , 0 , canvasWidth * 2 , graphHeight * 3) ;
461 [
462 [0 , "v" , "v"] ,

46 A. Code

463 [1 , "p" , "p" , 0] ,
464 [1 , "p" , "p" , 1] ,
465 [1 , "G" , "g" , null , pythagoras] ,
466 [1 , "p" , "p" , 2] ,
467 [1 , "p" , "p" , 3]
468] . forEach (function (args , index) {
469 var thisData = mapper(currentData , args [2] , args [3] , args [4]) ;
470 var maxData = spreadArray (max, thisData) ;
471 var minData = spreadArray (min, thisData) ;
472

473 var mid = average (thisData . s l i c e (l e f t , r i g h t)) ;
474 var midTranslated = graphHeight * (index % 3 + . 5) + ((maxData + minData) / 2 − mid) * (

graphHeight − lineWidth * 6) / (maxData − minData) ;
475

476 beginPath (graphCanvas) ;
477 setLineWidth (graphCanvas , lineWidth / 2) ;
478 thisData . s l i c e (l e f t , r i g h t) . forEach (function (timeslot , i) {
479 lineTo (graphCanvas ,
480 lineWidth * 12 + (canvasWidth − lineWidth * 13) / end * i + (index > 2 ? canvasWidth :

0) ,
481 graphHeight * (index % 3 + . 5) + ((maxData + minData) / 2 − t imeslot) * (graphHeight −

lineWidth * 6) / (maxData − minData)
482) ;
483 }) ;
484 stroke (graphCanvas) ;
485

486 beginPath (graphCanvas) ;
487 setStrokeStyle (graphCanvas , colorRed) ;
488 setLineWidth (graphCanvas , lineWidth / 3) ;
489 moveTo(graphCanvas , lineWidth * 12 + (index > 2 ? canvasWidth : 0) , midTranslated) ;
490 lineTo (graphCanvas , lineWidth * 12 + (canvasWidth − lineWidth * 13) + (index > 2 ? canvasWidth

: 0) , midTranslated) ;
491 stroke (graphCanvas) ;
492

493 beginPath (graphCanvas) ;
494 setStrokeStyle (graphCanvas , colorGrey) ;
495 setLineWidth (graphCanvas , lineWidth) ;
496 moveTo(graphCanvas , lineWidth * 12 + (index > 2 ? canvasWidth : 0) , graphHeight * (index % 3)

+ lineWidth * 2) ;
497 lineTo (graphCanvas , lineWidth * 12 + (index > 2 ? canvasWidth : 0) , graphHeight * (index % 3 +

1) − lineWidth * 2) ;
498 stroke (graphCanvas) ;
499

500 s e t F i l l S t y l e (graphCanvas , colorGrey) ;
501 f i l l T e x t (graphCanvas ,
502 decimalRound (maxData , args [0]) ,
503 lineWidth * 10 + (index > 2 ? canvasWidth : 0) ,
504 graphHeight * (index % 3) + lineWidth * 3
505) ;
506 f i l l T e x t (graphCanvas ,
507 args [1] ,
508 lineWidth * 10 + (index > 2 ? canvasWidth : 0) ,
509 graphHeight * (index % 3 + . 5)
510) ;
511 f i l l T e x t (graphCanvas ,
512 decimalRound (minData , args [0]) ,
513 lineWidth * 10 + (index > 2 ? canvasWidth : 0) ,
514 graphHeight * (index % 3 + 1) − lineWidth * 3
515) ;
516 s e t F i l l S t y l e (graphCanvas , colorRed) ;
517 f i l l T e x t (graphCanvas ,
518 decimalRound (mid , args [0]) ,
519 lineWidth * 10 + (index > 2 ? canvasWidth : 0) ,
520 midTranslated
521) ;
522 }) ;
523 } ;
524 oninput (timeSliders [0] , t r i p l e I n p u t) ;
525 oninput (timeSliders [1] , t r i p l e I n p u t) ;
526 oninput (timeSliders [2] , t r i p l e I n p u t) ;
527

A.2. Visualisation A. Code

528 // Send the current date to the microprocessor and request the l i s t to f i l l the run s e l e c t o r
529 xmlRequest (" https : / / tijsmoree . nl /akwasi/ date /? date=" + (new Date ()) . toJSON () . s l i c e (0 , 10) , function ()

{
530 xmlRequest (" https : / / tijsmoree . nl /akwasi/ l i s t / " , function (l i s t) {
531 var s o r t e d L i s t = l i s t . sort () . reverse () ;
532

533 s o r te dL i s t .map(function (f i l e) {
534 return f i l e . s l i c e (0 , −2) ;
535 }) . f i l t e r (function (date , i , arr) {
536 return arr . indexOf (date) === i ;
537 }) . forEach (function (date) {
538 var optgroup = jsDoc . createElement ("optgroup") ;
539 optgroup . l ab e l = date ;
540 s o r te dL i s t . f i l t e r (function (f i l e) {
541 return f i l e . s l i c e (0 , −2) === date ;
542 }) . forEach (function (f i l e) {
543 var option = optgroup . appendChild (jsDoc . createElement (" option ")) ;
544 option . value = f i l e ;
545 option . innerHTML = "Run : " + f i l e . s l i c e (−1) ;
546 }) ;
547 runSelector . appendChild (optgroup) ;
548 }) ;
549

550 runSelector . oninput () ;
551 }) ;
552 }) ;
553 }

	Introduction
	Background
	Problem definition
	State-of-the-art analysis
	Subdivision of the system
	Thesis outline

	Program of requirements
	General requirements (GR)
	Specific requirements (SR)

	Software system integration
	Overview
	Communication
	System integration and program algorithm
	Initialisation
	Sensor data logging

	Data communication
	Requirements
	Implementation
	Wi-Fi
	Web server
	HTTP
	Requests
	Data processing
	Error handling

	Visualisation
	Requirements
	Layout
	Functionality
	System size reduction

	Discussion
	Visualisation
	Communication
	System integration

	Conclusion
	Recommendations

	References
	Code
	Software integration system
	Main code
	Header code
	IMU code
	ADC code
	File read code
	File write code
	Web server code
	Undervoltage code

	Visualisation
	HTML code
	JavaScript code

