

Delft University of Technology

What is an app store? The software engineering perspective

Zhu, Wenhan; Proksch, Sebastian; German, Daniel M.; Godfrey, Michael W.; Li, Li; McIntosh, Shane

DOI
10.1007/s10664-023-10362-3
Publication date
2024
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Zhu, W., Proksch, S., German, D. M., Godfrey, M. W., Li, L., & McIntosh, S. (2024). What is an app store?
The software engineering perspective. Empirical Software Engineering, 29(1), Article 35.
https://doi.org/10.1007/s10664-023-10362-3

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-023-10362-3
https://doi.org/10.1007/s10664-023-10362-3

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Vol.:(0123456789)

Empirical Software Engineering (2024) 29:35
https://doi.org/10.1007/s10664-023-10362-3

1 3

What is an app store? The software engineering perspective

Wenhan Zhu1 · Sebastian Proksch2 · Daniel M. German3 · Michael W. Godfrey1 ·
Li Li4 · Shane McIntosh1

Accepted: 22 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
“App stores” are online software stores where end users may browse, purchase, download,
and install software applications. By far, the best known app stores are associated with
mobile platforms, such as Google Play for Android and Apple’s App Store for iOS. The
ubiquity of smartphones has led to mobile app stores becoming a touchstone experience of
modern living. App stores have been the subject of many empirical studies. However, most
of this research has concentrated on properties of the apps rather than the stores them-
selves. Today, there is a rich diversity of app stores and these stores have largely been over-
looked by researchers: app stores exist on many distinctive platforms, are aimed at different
classes of users, and have different end-goals beyond simply selling a standalone app to a
smartphone user.
The goal of this paper is to survey and characterize the broader dimensionality of app
stores, and to explore how and why they influence software development practices, such as
system design and release management. We begin by collecting a set of app store examples
from web search queries. By analyzing and curating the results, we derive a set of features
common to app stores. We then build a dimensional model of app stores based on these
features, and we fit each app store from our web search result set into this model. Next, we
performed unsupervised clustering to the app stores to find their natural groupings. Our
results suggest that app stores have become an essential stakeholder in modern software
development. They control the distribution channel to end users and ensure that the appli-
cations are of suitable quality; in turn, this leads to developers adhering to various store
guidelines when creating their applications. However, we found the app stores operational
model could vary widely between stores, and this variability could in turn affect the gener-
alizability of existing understanding of app stores.

Keywords App store · Software release · Software distribution · Empirical software
engineering

Responsible Editor: Tayana Conte

* Wenhan Zhu
 w65zhu@uwaterloo.ca

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6439-0720
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10362-3&domain=pdf

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 2 of 39

1 Introduction

The widespread proliferation of smartphones and other mobile devices in recent years
has in turn produced an immense demand for applications that run on these platforms. In
response, online “app stores” such as Google Play and Apple’s App Store have emerged to
facilitate the discovery, purchasing, installation, and management of apps by users on their
mobile devices. The success of mobile app stores has enabled a new and more direct rela-
tionship between app creators and users. The app store serves as a conduit between soft-
ware creators (often, developers) and their users, with some mediation provided by the app
store. The app store provides a “one-stop shopping” experience for users, who can compare
competing products and read reviews of other users. The app store might also acts as a
quality gatekeeper for the platform, providing varying levels of guarantees about the apps,
such as easy installation and removal, expected functionality, and malware protection. To
the software creator, the app store provides a centralized marketplace for their app, where
potential users can find, purchase, and acquire the app easily; the app store also relieves the
developer from basic support problems related to distribution and installation, since apps
must be shown to install easily during the required approval process. Indeed, one of the key
side effects of mobile app stores is that it has forced software developers to streamline their
release management practices and ensure hassle-free deployment at the user’s end.

The success of mobile app stores has also led to the establishment of a plethora of other
kinds of app store, often for non-mobile platforms, serving diverse kinds of user commu-
nities, offering different kinds of services, and using a variety of monetization strategies.
Many technical platforms now operate in a store-centric way: essential services and func-
tionality are provided by the platform while access to extensions/add-ons is offered only
through interaction with the app store. For instance, Google Play, the app store, operates
on top of the technical platform Android, which provides the runtime environment for the
applications. When new technical platforms are introduced, an app store is often expected
to serve as a means to host and deliver products to its users (Dixon et al. 2010). Exam-
ple technical platforms that use app store-like approaches include Steam (Valve 2022),
GitHub Marketplace (GitHub 2022), the Chrome Web Store (Google 2022a), WordPress
(WordPress 2022), AutoDesk (Autodesk 2022), DockerHub (Docker 2022), Amazon Web
Services (AWS) (Amazon 2022), Homebrew (Prévost et al. 2022), or Ubuntu Packages
(Canonical 2009).

For platforms that operate in this way, the app store is an essential part of the platform’s
design. For example, consider source code editors, such as VSCode and IntelliJ. The tool
itself — which we consider to be a technical platform in this context — offers the essential
functionality of a modern source code editor; however, many additional services are avail-
able through the associated app store that are not included by default. Thus, extensions
that allow for language-specific syntax highlighting or version control integration must be
added manually by the user through interaction with the tool’s app store. We conjecture
that the app store has fundamentally changed how some classes of software systems are
designed, from the overall ecosystem architecture of the technical platform to the way in
which add-ons are engineered to fit within its instances.

In this work, we will explore the general space of app stores, and also consider how app
store-centric design can affect software development practices. Previous research involving
app stores has focused mainly on mobile app stores, often concentrating on properties of
the apps rather than properties of the stores. For example, Harman et al. performed one of
the first major studies of app stores in 2012, focusing on the BlackBerry App World (Har-
man et al. 2012). However, concentrating the investigative scope so narrowly may lead to

Empirical Software Engineering (2024) 29:35

1 3

Page 3 of 39 35

claims that do not generalize well across the space of all app stores. For example, Lin et al.
found that reviews of games that appeared in mobile app stores differed significantly from
the reviews of the same game that appeared within the Steam platform’s own app store
(Lin et al. 2019). In our work, we aim to take a more holistic approach to studying app
stores by considering both mobile and non-mobile variants. In so doing, we hope to create
a more general model of app stores that fits this broader space.

To achieve a holistic view, we start from the definition of an app store. A precise defini-
tion of the term “app store” has been omitted in much of the previous research in this area.
Currently, Google Play and Apple’s App Store dominate the market and are the main tar-
gets of research on app stores; in the past, the BlackBerry App World and Microsoft’s Win-
dows Phone Store were also important players, but these stores are now defunct.1 Wikipe-
dia recognizes Electronic AppWrapper (Wikipedia 2022) as the first true platform-specific
electronic marketplace for software applications, but the term became popular when Apple
introduced its App Store along with the iPhone 3G in 2008. Since then, the term has largely
come to refer to any centralized store for mobile applications. We present our own working
definition of the term “app store” in Section 2.4.

The goal of this work is to survey and characterize the broader dimensionality of app
stores, and also to explore how and why they may feed back into software development
practices, such as release management. As a step towards this goal, we focus on two
research questions (RQs) that aim to explore the space of app stores:

RQ1: What fundamental features describe the space of app stores?

To understand app stores, we first need a way to describe them. It would be especially
useful if this description framework would highlight the similarities and differences of app
stores. We start by collecting a set of app store examples, and then extract from them a
set of features that illustrate important differences between them. We then expand this list
of app stores with search queries to derive a larger set of example stores. We explicitly
seek generalized web queries to broaden our search space beyond the common two major
mobile app stores of Apple and Google. By combining the web queries and the initial set of
app stores, we selected a representative set of app stores and extracted their features. In the
end, we first surveyed app stores and derived a feature-based model to describe them; we
then expanded the set of app stores through web queries; and finally, we extracted features
based on the model for a representative set of app stores.

RQ2: Are there groups of stores that share similar features?

Despite the ability to describe individual stores, it is also important to understand the
relationships between different stores. Having a understanding of the natural groupings can
help us gain insights into the understanding of the generalizability of results gathered for
different app stores. We perform a K-means (MacQueen et al. 1967) clustering based on
the extracted features of the expanded set of app stores collected previously. The optimal
k value is determined by the Silhouette method (Rousseeuw 1987). The clustering results
suggest that there are 8 groups in the expanded set of app stores. The differences can be
observed in the type of application offered, standalone or extension, and/or type of opera-
tion, business or community-oriented.

1 The Windows Phone Store was absorbed into the broader Windows Store in 2015.

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 4 of 39

In this study, we make several contributions towards a better understanding of the app
store ecosystem.

– We identified a set of descriptive features that can be used to characterize app stores.
– We identified a set of 291 app stores and mapped 53 of them into the feature space.
– We identified 8 coherent groups of app stores based on the similarity of features.
– We discuss our insights on how the features and the diversity of app stores can impact

software engineering practices.

Overall, our study contributes towards a holistic view of app stores within software
engineering, which can form the basis for subsequent study of app stores in general.

2 Background and Related Work

2.1 Early App Store Research

To date, research in this area has concentrated on a narrow set of app stores that primarily
involves mobile platforms. Harman et al. (Harman et al. 2012) proposed app stores as a
valid kind of software repository worthy of formal study within the broader research area
of mining software repositories; while their work was not specific to mobile app stores,
they used BlackBerry App World as their canonical example. Ruiz et al. (Ruiz et al. 2012)
studied the topic of reuse within app stores, focusing their work on Android Marketplace.2
In both cases, these early works did not provide a formal definition of “app store”, and tac-
itly used only app stores for mobile platforms in their studies.

In their 2016 survey on app store research, Martin et al. (Martin et al. 2016a) observed
that studies have often focused on only a few specific app stores, and have ignored com-
parisons between app stores. In a recent literature survey, Dabrowski et al. (Dabrowski et al.
2022) found the median number of app stores studied to be 1, with the maximum being 3.
We also note that results from one app store study may not generalize to another store since
the two stores may differ in significant ways; for example, if a store does not allow users
to provide their own reviews of the apps within the store, app creators will have to rely on
other means to gain popularity and trust from users, such as promotion outside of the app
store. The same trend can be observed in more specific app store topics such as app reviews;
for example, Lin et al. (Lin et al. 2019) found that reviews of games within the Steam app
store can be dramatically different from reviews of the same game in mobile app stores.

Existing work has yet to explore the full diversity of app stores, concentrating on
Google Play and Apple’s App Store, and largely ignoring those such as Steam, AWS, and
GitHub Marketplace that are not specific to mobile platforms. With the heterogeneity of
app stores and their typical uses, we believe that the research in this area can be strength-
ened by expanding the breadth to encompass a more diverse perspective on app stores; in
turn, this breadth can help to validate the generalizability of the study findings.

2.2 App Stores in Recent Software Engineering Research

To better understand the involvement of app stores in recent research, we reviewed rel-
evant recent papers from the two flagship software engineering research conferences: the

2 Android Marketplace has since been re-branded as Google Play.

Empirical Software Engineering (2024) 29:35

1 3

Page 5 of 39 35

ACM/IEEE International Conference on Software Engineering (“ICSE”) and the ACM
SIGSOFT International Symposium on the Foundations of Software Engineering (“FSE”)
We used Google Scholar to find papers containing the keyword “app store” between Jan-
uary 2020 and April 2022 for the two conferences. We found a total of 34 such papers
(listed in Table 1). After reading through all of them, we found that each paper fit into one
of two broad categories: mining software applications (20/34) and mining app store arti-
facts (14/34). We note that our efforts do not constitute a comprehensive literature survey;
instead, our goal was to gain an overview of how app stores are involved in recent research,
and why app stores matter in their context.

Mining Software Applications App stores have been extensively used as a mining source
of software applications. In these papers, the major focus is often on another subject and
app stores provide a source where they can collect applications for either a data source or
verification dataset. For example, Zhan et al. (Zhan et al. 2021) proposed an approach to
detect software vulnerabilities in third-party libraries of Android applications. They lever-
aged the app store to collect a dataset to verify the effectiveness of their approach. In these
studies, the app store is both a convenient and practical source of data collection. However,
the involvement of app stores may not be necessary since the purpose is to gather a dataset
of application. In Yang et al.’s work (Yang et al. 2021), they leveraged Android applica-
tions from an existing dataset without the need to collect from an app store. We argue that
the importance of app stores in these types of studies is the selection criteria used by the
researchers to collect applications from app stores. These features can include star ratings,
total downloads, and app category.

Mining App Store Artifacts In these studies, researchers focused on unique software
artifacts that come from the operation of the app stores. App stores have a much heavier
involvement in these studies compared to the previous group. App reviews is the major
software artifact the researchers focused on, where they leverage the data to identify fea-
tures of applications (Wu et al. 2021), locating bug reports (Haering et al. 2021), and detect
undesired app behaviors (Hu et al. 2021). One interesting research practice we observed is
where van der Linden et al. (Van Der Linden et al. 2020) leveraged the developer contact
information shared on app stores to send out surveys related to security practices.

2.3 Store‑Focused Research

As stated above, we found that most recent research involving app stores focuses on the
applications they offer rather than on studying the app stores themselves; in particular,
most research in the domain focuses on the development of mobile applications. Mean-
while, a few papers have specifically considered app stores and their effects on software
engineering, but again these works focus heavily on mobile app stores.

In a recent paper, Al-Subaihin et al. (Al-Subaihin et al. 2021) interviewed developers
about how app stores affect their software engineering tasks. They found that developers
often leverage the review section from similar applications to help with understanding the
expected user experience and anticipated features. App stores also provides a kind of play-
ground for releasing beta version of apps to receive feedback from users. The built-in com-
munication channels also play a large role in informing development. The interviews sug-
gest that developers pay attention to viewing user requests in app store via channels such

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 6 of 39

Ta
bl

e
1

 R
ec

en
t p

ap
er

s o
n

ap
p

sto
re

s

Lo
c

Pa
pe

r
St

or
e

M
in

in
g

so
ftw

ar
e

ap
pl

ic
at

io
ns

IC
SE

 ‘2
1

A
tv

hu
nt

er
: R

el
ia

bl
e

ve
rs

io
n

de
te

ct
io

n
of

 th
ird

-p
ar

ty
 li

br
ar

ie
s f

or
 v

ul
ne

ra
bi

lit
y

id
en

tifi
ca

tio
n

in
 a

nd
ro

id
 a

pp
li-

ca
tio

ns
 (Z

ha
n

et
 a

l.
20

21
)

G
oo

gl
e

Pl
ay

IC
SE

 ‘2
0

H
ow

 d
oe

s m
is

co
nfi

gu
ra

tio
n

of
 a

na
ly

tic
 se

rv
ic

es
 c

om
pr

om
is

e
m

ob
ile

 p
riv

ac
y?

 (Z
ha

ng
 e

t a
l.

20
20

)
G

oo
gl

e
Pl

ay
FS

E
‘2

1
A

lg
eb

ra
ic

-d
at

at
yp

e
ta

in
t t

ra
ck

in
g,

 w
ith

 a
pp

lic
at

io
ns

 to
 u

nd
er

st
an

di
ng

 A
nd

ro
id

 id
en

tifi
er

 le
ak

s (
R

ah
am

an

et
 a

l.
20

21
)

G
oo

gl
e

Pl
ay

FS
E

‘2
0

C
od

e
re

co
m

m
en

da
tio

n
fo

r e
xc

ep
tio

n
ha

nd
lin

g
(N

gu
ye

n
et

 a
l.

20
20

)
G

oo
gl

e
Pl

ay
FS

E
‘2

0
St

at
ic

 a
sy

nc
hr

on
ou

s c
om

po
ne

nt
 m

is
us

e
de

te
ct

io
n

fo
r A

nd
ro

id
 a

pp
lic

at
io

ns
 (P

an
 e

t a
l.

20
20

)
F-

D
ro

id
, G

oo
gl

e
Pl

ay
, W

an
do

uj
ia

 A
pp

 S
to

re
IC

SE
 ‘2

1
Su

st
ai

na
bl

e
So

lv
in

g:
 R

ed
uc

in
g

Th
e

M
em

or
y

Fo
ot

pr
in

t o
f I

FD
S-

B
as

ed
 D

at
a

Fl
ow

 A
na

ly
se

s U
si

ng
 In

te
lli

ge
nt

G

ar
ba

ge
 C

ol
le

ct
io

n
(A

rz
t 2

02
1)

G
oo

gl
e

Pl
ay

IC
SE

 ‘2
2

D
es

cr
ib

eC
tx

: C
on

te
xt

-A
w

ar
e

D
es

cr
ip

tio
n

Sy
nt

he
si

s f
or

 S
en

si
tiv

e
B

eh
av

io
rs

 in
 M

ob
ile

 A
pp

s (
Ya

o
an

d
X

ia
o

20
22

)
G

oo
gl

e
Pl

ay

IC
SE

 ‘2
0

Ti
m

e-
tra

ve
l t

es
tin

g
of

 a
nd

ro
id

 a
pp

s (
D

on
g

et
 a

l.
20

20
)

G
oo

gl
e

Pl
ay

IC
SE

 ‘2
0

A
n

em
pi

ric
al

 a
ss

es
sm

en
t o

f s
ec

ur
ity

 ri
sk

s o
f g

lo
ba

l a
nd

ro
id

 b
an

ki
ng

 a
pp

s (
C

he
n

et
 a

l.
20

20
a)

G
oo

gl
e

Pl
ay

, A
PK

M
on

k,
 a

nd
 o

th
er

s
IC

SE
 ‘2

1
To

o
Q

ui
et

 in
 th

e
Li

br
ar

y:
 A

n
Em

pi
ric

al
 S

tu
dy

 o
f S

ec
ur

ity
 U

pd
at

es
 in

 A
nd

ro
id

 A
pp

s N
at

iv
e

C
od

e
(A

lm
an

ee

et
 a

l.
20

21
)

G
oo

gl
e

Pl
ay

IC
SE

 ‘2
0

A
cc

es
si

bi
lit

y
is

su
es

 in
 a

nd
ro

id
 a

pp
s:

 st
at

e
of

 a
ffa

irs
, s

en
tim

en
ts

, a
nd

 w
ay

s f
or

w
ar

d
(A

ls
ha

yb
an

 e
t a

l.
20

20
)

G
oo

gl
e

Pl
ay

IC
SE

 ‘2
1

D
on

t d
o

th
at

! h
un

tin
g

do
w

n
vi

su
al

 d
es

ig
n

sm
el

ls
 in

 c
om

pl
ex

 u
is

 a
ga

in
st

de
si

gn
 g

ui
de

lin
es

 (Y
an

g
et

 a
l.

20
21

)
A

nd
ro

id
IC

SE
 ‘2

1
Id

en
tif

yi
ng

 a
nd

 c
ha

ra
ct

er
iz

in
g

si
le

nt
ly

-e
vo

lv
ed

 m
et

ho
ds

 in
 th

e
an

dr
oi

d
A

PI
 (L

iu
 e

t a
l.

20
21

)
G

oo
gl

e
Pl

ay
IC

SE
 ‘2

1
La

yo
ut

 a
nd

 im
ag

e
re

co
gn

iti
on

 d
riv

in
g

cr
os

s-
pl

at
fo

rm
 a

ut
om

at
ed

 m
ob

ile
 te

sti
ng

 (Y
u

et
 a

l.
20

21
a)

A
pp

le
’s

 A
pp

 S
to

re
, G

oo
gl

e
Pl

ay
FS

E
‘2

1
A

n
em

pi
ric

al
 st

ud
y

of
 G

U
I w

id
ge

t d
et

ec
tio

n
fo

r i
nd

us
tri

al
 m

ob
ile

 g
am

es
 (Y

e
et

 a
l.

20
21

)
A

nd
ro

id
 G

am
es

IC
SE

 ‘2
1

Fi
ne

 w
ith

 1
23

4?
 A

n
A

na
ly

si
s o

f S
M

S
O

ne
-T

im
e

Pa
ss

w
or

d
R

an
do

m
ne

ss
 in

 A
nd

ro
id

 A
pp

s (
M

a
et

 a
l.

20
21

)
G

oo
gl

e
Pl

ay
, T

en
ce

nt
 M

ya
pp

IC
SE

 ‘2
1

IM
G

D
ro

id
: D

et
ec

tin
g

Im
ag

e
Lo

ad
in

g
D

ef
ec

ts
 in

 A
nd

ro
id

 A
pp

lic
at

io
ns

 (S
on

g
et

 a
l.

20
21

)
A

nd
ro

id
IC

SE
 ‘2

1
G

U
IG

A
N

: L
ea

rn
in

g
to

 G
en

er
at

e
G

U
I D

es
ig

ns
 U

si
ng

 G
en

er
at

iv
e

A
dv

er
sa

ria
l N

et
w

or
ks

 (Z
ha

o
et

 a
l.

20
21

)
A

nd
ro

id
IC

SE
 ‘2

0
U

nb
lin

d
yo

ur
 a

pp
s:

 P
re

di
ct

in
g

na
tu

ra
l-l

an
gu

ag
e

la
be

ls
 fo

r m
ob

ile
 g

ui
 c

om
po

ne
nt

s b
y

de
ep

 le
ar

ni
ng

 (C
he

n
et

 a
l.

20
20

b)
G

oo
gl

e
Pl

ay

FS
E

‘2
1

Fr
on

tm
at

te
r:

m
in

in
g

A
nd

ro
id

 u
se

r i
nt

er
fa

ce
s a

t s
ca

le
 (K

uz
ne

ts
ov

 e
t a

l.
20

21
)

G
oo

gl
e

Pl
ay

Empirical Software Engineering (2024) 29:35

1 3

Page 7 of 39 35

Ta
bl

e
1

 (c
on

tin
ue

d)

Lo
c

Pa
pe

r
St

or
e

M
in

in
g

ap
p

sto
re

 n
on

-te
ch

ni
ca

l a
ttr

ib
ut

es
IC

SE
 ‘2

0
Sc

hr
öd

in
ge

r’s
 se

cu
rit

y:
 O

pe
ni

ng
 th

e
bo

x
on

 a
pp

 d
ev

el
op

er
s’

 se
cu

rit
y

ra
tio

na
le

 (V
an

 D
er

 L
in

de
n

et
 a

l.
20

20
)

A
pp

le
’s

 A
pp

 S
to

re
, G

oo
gl

e
Pl

ay
IC

SE
 ‘2

0
Sc

al
ab

le
 st

at
ist

ic
al

 ro
ot

 c
au

se
 a

na
ly

si
s o

n
ap

p
te

le
m

et
ry

 (M
ur

al
i e

t a
l.

20
21

)
Fa

ce
bo

ok
 A

pp
IC

SE
 ‘2

1
A

n
em

pi
ric

al
 a

ss
es

sm
en

t o
f g

lo
ba

l C
O

V
ID

-1
9

co
nt

ac
t t

ra
ci

ng
 a

pp
lic

at
io

ns
 (S

un
 e

t a
l.

20
21

)
A

nd
ro

id
IC

SE
 ‘2

1
W

el
l F

ix
 It

 in
 P

os
t:

W
ha

t D
o

B
ug

 F
ix

es
 in

 V
id

eo
 G

am
e

U
pd

at
e

N
ot

es
 T

el
l U

s?
 (T

ru
el

ov
e

et
 a

l.
20

21
)

St
ea

m
IC

SE
 ‘2

1
A

ut
om

at
ic

al
ly

 m
at

ch
in

g
bu

g
re

po
rts

 w
ith

 re
la

te
d

ap
p

re
vi

ew
s (

H
ae

rin
g

et
 a

l.
20

21
)

G
oo

gl
e

Pl
ay

IC
SE

 ‘2
1

Pr
io

rit
iz

e
cr

ow
ds

ou
rc

ed
 te

st
re

po
rts

 v
ia

 d
ee

p
sc

re
en

sh
ot

 u
nd

er
st

an
di

ng
 (Y

u
et

 a
l.

20
21

b)
A

nd
ro

id
IC

SE
 ‘2

1
A

 fi
rs

t l
oo

k
at

 h
um

an
 v

al
ue

s-
vi

ol
at

io
n

in
 a

pp
 re

vi
ew

s (
O

bi
e

et
 a

l.
20

21
)

G
oo

gl
e

Pl
ay

IC
SE

 ‘2
1

D
oe

s c
ul

tu
re

 m
at

te
r?

 im
pa

ct
 o

f i
nd

iv
id

ua
lis

m
 a

nd
 u

nc
er

ta
in

ty
 av

oi
da

nc
e

on
 a

pp
 re

vi
ew

s (
Fi

sc
he

r e
t a

l.
20

21
)

A
pp

le
’s

 A
pp

 S
to

re
IC

SE
 ‘2

1
CO

V
ID

-1
9

vs
 so

ci
al

 m
ed

ia
 a

pp
s:

 d
oe

s p
riv

ac
y

re
al

ly
 m

at
te

r?
 (H

ag
ga

g
et

 a
l.

20
21

)
G

oo
gl

e
Pl

ay
, A

pp
le

’s
 A

pp
 S

to
re

IC
SE

 ‘2
0

So
ci

et
y-

or
ie

nt
ed

 a
pp

lic
at

io
ns

 d
ev

el
op

m
en

t:
In

ve
sti

ga
tin

g
us

er
s v

al
ue

s f
ro

m
 b

an
gl

ad
es

hi
 a

gr
ic

ul
tu

re
 m

ob
ile

ap

pl
ic

at
io

ns
 (S

ha
m

s e
t a

l.
20

20
)

G
oo

gl
e

Pl
ay

FS
E

‘2
1

C
he

ck
in

g
co

nf
or

m
an

ce
 o

f a
pp

lic
at

io
ns

 a
ga

in
st

G
U

I p
ol

ic
ie

s (
Zh

an
g

et
 a

l.
20

21
)

A
nd

ro
id

IC
SE

 ‘2
1

Id
en

tif
yi

ng
 k

ey
 fe

at
ur

es
 fr

om
 a

pp
 u

se
r r

ev
ie

w
s (

W
u

et
 a

l.
20

21
)

A
pp

le
’s

 A
pp

 S
to

re
IC

SE
 ‘2

1
C

ha
m

p:
 C

ha
ra

ct
er

iz
in

g
un

de
si

re
d

ap
p

be
ha

vi
or

s f
ro

m
 u

se
r c

om
m

en
ts

 b
as

ed
 o

n
m

ar
ke

t p
ol

ic
ie

s (
H

u
et

 a
l.

20
21

)
G

oo
gl

e
Pl

ay
, C

hi
ne

se
 a

nd
ro

id
 a

pp
 st

or
es

IC
SE

 ‘2
0

C
as

pa
r:

ex
tra

ct
in

g
an

d
sy

nt
he

si
zi

ng
 u

se
r s

to
rie

s o
f p

ro
bl

em
s f

ro
m

 a
pp

 re
vi

ew
s (

G
uo

 a
nd

 S
in

gh
 2

02
0)

A
pp

le
’s

 A
pp

 S
to

re

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 8 of 39

as reviews and forums. The approval period of app stores affects how developers plan their
release. App stores introduce non-technical challenges in the development process. Given
the app store model of release, app store-specific metrics, such as total number of down-
loads, are considered highly important to developers.

Running an app store presents both technical and non-technical challenges to the store
owner. Technical challenges include verifying that each app will install correctly, while
non-technical challenges include ensuring that the promotional information in the app’s
product page adheres to store guidelines. Wang et al. (Wang et al. 2018) investigated sev-
eral Android app stores in China and compared them to Google Play. Their study showed
that these stores were much less diligent in screening the apps they offered, with a signifi-
cantly higher presence of fake, cloned, and malicious apps than Google Play.

Jansen and Bloemendal surveyed the landscape of app stores from the perspective
of the business domain (Jansen and Bloemendal 2013). They selected 6 app stores — 5
mobile stores and 1 Windows store — at the time of publication (Jansen and Bloemendal
2013), and investigated each store manually to find features (i.e., those actors can interact
with) and policies (i.e., rules, regulations and governing processes that limit the functional
reach of the features) from each app store. The actors they define are the same as the three
major stakeholders of the app store model (i.e., the store owner, users, and developers).
Our study further contributes to the understanding of app stores. First, we studied a sig-
nificantly larger set of app stores: our methodology was focused towards the identification
of as many different types of stores as possible. In total, we studied 53 stores in various
domains including mobile, embedded systems, computer games, application add-ons, and
open source distributions and packaging systems. Second, Jansen and Bloemendal studied
app stores from the perspective of a software business; for example, in their work they
would consider features and policies on whether users are able to generate affiliate links to
earn revenue through sharing applications. In contrast, our work focuses on app stores in
the perspective of their role in the software engineering process.

In our study, we approach app stores from a broad landscape not limiting to mobile app
stores. We focus on the similarity of features offered between stores to understand their
natural groupings and discuss the challenges in the diversity of app stores.

2.4 Working Definition of an App Store

Previous researchers have often taken a casual approach to defining the term “app
store”, when a definition has been provided at all. For example, in their survey paper,
Martin et al. define an app store as “A collection of apps that provides, for each app,
at least one non-technical attribute”, with an app defined as “An item of software that
anyone with a suitable platform can install without the need for technical expertise”
(Martin et al. 2016a). However, we feel that this definition is too generous. For exam-
ple, consider a static website called Pat’s Apps that lists of a few of someone’s (Pat’s)
favorite applications together with their personalized ratings and reviews; superficially,
this would satisfy Martin et al.’s requirements as it is a collection of apps together with
Pat’s own reviews (which are non-technical attributes). We feel that this kind of “store”
is outside our scope of study for several reasons: Pat’s software collection is not com-
prehensive, it is unlikely that Pat provides any technical guarantees about quality of the
apps, and a passive list of apps on a web page does not constitute an automated “store”.

Jansen and Bloemendal (Jansen and Bloemendal 2013) define app store as “An online
curated marketplace that allows developers to sell and distribute their products to actors

Empirical Software Engineering (2024) 29:35

1 3

Page 9 of 39 35

within one or more multi-sided software platform ecosystems.” We note that this defini-
tion ignores that app stores are expected to provide infrastructure for the deployment,
installation, and maintenance of the apps, which impacts the software development
process. Their model also ignores marketplaces that do not have payment mechanisms,
such as the Google Chrome Extensions store and the various open source apps stores,
where all of the software products may be free to download and install.

In our work, we seek to define an idea of app store beyond the well-known mobile
ones and with an emphasis on how their existence may affect the software development
cycle. Because we are focused on exploring the notion of what app stores are, we for-
mulate a working definition of the term; we did so to provide clear inclusion/exclusion
criteria for the candidate app stores that we discover in Section 3.

Our working definition was influenced by considering the three major stakeholders of
the app store model: the app creators who create and submit applications to the store; the
app stores themselves, and the organizations behind their operation who curate the app col-
lection and coordinate both the store and installation mechanisms; and the end users who
browse, download, review, and update their applications through the app store (see Fig. 1).

We thus arrived at the following working definition for app store as an online distri-
bution mechanism that:

1. offers access to a comprehensive collection of software or software-based services
(henceforth, “apps”) that augment an existing technical infrastructure (i.e., the runtime
environment),

2. is curated, i.e., provides some level of guarantees about the apps, such as ensuring basic
functionality and freedom from malware, and

3. provides an end-to-end automated “store” experience for end users, where

 (a). the user can acquire the app directly through the store,
 (b). users trigger store events, such as browsing, ordering, selecting options, arranging

payment, etc., and
 (c). the installation process is coordinated automatically between the store and the user’s

own instance of the technical platform.

We can see that using this working definition, our Pat’s Apps example fails to meet all
three of our main criteria.

Fig. 1 Three major stakeholders of most app stores

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 10 of 39

We note that our working definition above evolved during our investigations; it repre-
sents our final group consensus on what is or is not an app store for the purposes of doing
the subsequent exploratory study. The steps by which the representation is finalized are dis-
cussed in Section 3.1.2. For example, our working definition implicitly includes package
managers such as the Debian-Linux apt tool and Javascript’s NPM tool. It is true that pack-
age managers are typically non-commercial, and so are “stores” only in a loose sense of the
term; furthermore, they usually lack a mechanism for easy user browsing of apps and do
not provide a facility for user reviews. However, at the same time, they are a good fit con-
ceptually: they tend to be comprehensive, curated, and offer an automated user experience
for selection and installation. Furthermore, some package managers serve as the backend
to a more traditional store-like experience; for example, the Ubuntu Software Center builds
on a tool aptitude, which interacts with software repositories to provide a user experience
similar to that of Google Play.

3 Research Methodology

To investigate the research questions, we designed a three-stage methodology that is illus-
trated in Fig. 2. The goal of the first two stages is to answer RQ1, while the third stage
addresses RQ2.

In the first stage (Step 1 and 2) we identified our initial list of features using a small set
of well-known app stores (Apple’s App Store, Google Play, Steam etc.) In the second stage
(Steps 3, 4, and 5) we methodically expanded our list to a conceptually wider ranging set
of 53 app stores. We then described these stores using the features identified in the first
stage. A major goal of this stage was to evaluate whether the set of available features was
sufficient to describe the characteristics of all these stores. This set of features forms the
answer to RQ1.

In the third stage (Step 6), we took advantage of the labeling of the 53 stores. We used
K-means clustering analysis to identify groups of stores that shared similar features. These
groupings form the answer to RQ2.

We now describe our methodology in more detail.

3.1 Extracting Features Describing App Stores

Our basic assumption is that an app store can be categorized based on a finite set of fea-
tures. The features would correspond to traits of the app store where they describe the dis-
tinguishing qualities or functional characteristics of the app store. We encode these features
as binary values, i.e., each store has or does not have a given feature.

In order to identify such features, we first created a seeding set of representative app
stores. We started by enumerating well-known app stores that we were aware of (Step 1).
Once this set of representative app stores was created, we used an iterative process to iden-
tify the features that we felt best characterized these stores (Step 2). We then used these
features to describe each store.

3.1.1 Stage 1: Identifying Features

First, each of the six authors was tasked with identifying representative characteristics
of five stores and the possible features for each. Each author worked alone in this step;

Empirical Software Engineering (2024) 29:35

1 3

Page 11 of 39 35

Initial seeding of
app stores

Refining attributes

K-means clustering

Manually labeling of
attributes of stores

Extracting attributes
for app stores

Expanding list of
app stores

Original list of
stores

Original list of
stores

Set of stores labeled
by attributes

Selection of
representative

stores

Attributes
describing app

stores

Groupings of stores

6

5

4

23

1Stage 1

Stage 2

Stage 3

Fig. 2 Methodology overview: There are three main stages, further broken down into six steps

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 12 of 39

however, to seek better reliability as well as encourage diverse opinions, each store was
assigned to two authors. We list the 15 stores that were assigned in this step with a short
description in Table 2. After that, all of the authors met as a group to discuss their findings
and further refine the proposed feature set.

In the subsequent iterations, the authors worked in pairs, and the pairings were reas-
signed after each iteration (Step 2). In these iterations, each author-pair was assigned a
set of 2–3 app stores and was asked to describe them using the current set of features; a
key concern was to evaluate whether the existing features were sufficient or needed refine-
ment. For each store, each author-pair analyzed both its store-front and its documentation;
in some cases, we could navigate the store as users but not as developers, in these cases, we
relied on the store’s supporting documentation.

After this step, the six authors discussed their findings as a group and updated the set of
features. The features were discussed in detail to ensure that they were conceptually inde-
pendent from each other. We also made sure that each feature applied to at least one store
to ensure that it was relevant.

Our process leveraged ideas from the coding process of Grounded theory (Walker and
Myrick 2006) to extract the features of app stores, and followed the practice of open card
sorting (Coxon et al. 1999) to create the categorized feature set. Similar to prior work
(Adolph et al. 2011; Hoda et al. 2012; Masood et al. 2020), we followed practices of
Grounded theory’s coding process to extract the features — where we consider codes as
a specific feature of app store operation — and stopped when we reached saturation with
no new features added after a new round of describing app stores. Similar to prior work
(Vassallo et al. 2020; Chen et al. 2021; Wang et al. 2022), we applied card sorting to the
collected features so inter-related features are grouped together. The authors formed a
group in this process and discussed how different features belong to the same conceptual
group and stopped when consensus was reached.

Table 2 Investigated stores for feature extraction

Store Description

Google Play Store Google’s app store for Android
Apple App Store Store for Apple devices
Samsung GalaxyApps Store specifically for Samsung devices
GitHub Marketplace Providing applications and services to integrate with GitHub platform
Atlassian Marketplace Providing applications and services to integrate with various Atlassian products
Homebrew Package manager for MacOS
MacPorts A package manager for MacOS
Ubuntu Packages Software repository for the Ubuntu Linux distribution, with a official front end

Ubuntu Software Center
Steam Gaming focused app store running on multiple operating systems (e.g., Windows,

Linux)
Nintendo EShop Provides applications for Nintendo devices (e.g., Nintendo Switch, Nintendo 3DS)
GoG Gaming focused store focusing on providing DRM free games
JetBrains Plugin Store Provides plugins to enhance the behavior of JetBrains IDEs
VSCode Marketplace Provides plugins to enhance the editor
Chrome Web Store Provides extensions to enhance Chromium based web browsers
AWS Marketplace Provides servers and cloud services

Empirical Software Engineering (2024) 29:35

1 3

Page 13 of 39 35

3.1.2 Stage 2: Expanding our Set of App Stores and Further Evaluation
and Refinement the Features

Once we had agreed on the features, our next goal was to verify that these features were
capable of describing other app stores that were not part of the initial seed, or if features
were missing or needed refinement. We used a common search engine, Google, to expand
our set of app stores in a methodical manner (Step 3). To achieve the goal of including a
broad range of yet undiscovered app stores, we first derived general search terms by com-
bining synonyms for “app” and “store”. More specifically, we have built all possible com-
binations of the following terms to construct our search queries:

First half software, (extension -hair -lash), (addon OR add-on), solution, plugin OR
plug-in, install, app, package
Second half repository, shop, (“app store” OR store), (“market place” OR marketplace),
manager

For example, a concrete query was created by combining app and (“app store” OR
store). For some queries, it was necessary to refine the term to avoid noise in the results;
for example, searching for the term extension would mainly return results related to hair
product or eye lashes. In total, with 8 synonyms for app and 5 synonyms for store we were
able to create 40 unique Google search queries. We felt confident that these search terms
were representative when we found that the initial seed list had been exhaustively covered.

Our Google search was performed in November 2020. We queried and stored the search
results for each search query. Two authors classified each result as to whether or not it cor-
responded to an app store. We devised two inclusion criteria for this decision: 1) the store
in question should offer software or software-based services, and 2) the store in question
should offer an end-to-end experience for users (ordering, delivery, installation). We con-
sidered only direct hits to the store (e.g., product page), and we explicitly excluded results
that contain only indirect references to a store, such as blog posts, videos, or news. Any dis-
agreements were resolved through discussion. However, despite our initial effort of main-
taining a clear set of inclusion criteria for app stores, several corner cases became apparent
during the labeling process. The first two authors discussed these cases as they arose, and
continually updated the inclusion criteria throughout the labeling process. In a few special
cases no agreement could be reached, so another author acted as a moderator and resolved
the disagreement by a majority vote. Over time, the inclusion criteria and features evolved
and eventually reached a stable state (in Step 3). Our final state of the inclusion/exclusion
criteria is presented as the working definition for app stores defined in Section 2.4.

The classification of search results was stopped when a new results page did not
contain any new links to app stores, or once all 10 retrieved pages were analyzed. Ini-
tially, 586 URLs were examined by the first two authors until a saturation of agreement
was reached (90.7% agreement rate). The first author continued to label the rest. In the
end, a total of 1600 URLs were labeled. Multiple search results can refer to the same
store; these duplicates were detected and eliminated by using the root domain of the
URL. The most common duplicate references were found for the domains google.com
(61), apple.com (22), and microsoft.com (18). In the end, we found 291 stores. We note
that the exact number of unique stores may differ since two root domains can point to
the same store, kodi.tv and kodi.wiki, or the same root domain may contain multiple
stores, chrome.google.com and play.google.com.

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 14 of 39

In the next step (Step 5), we constructed and labeled a set of app stores based on our
identified features from Step 2. We began from the URLs labeled in the last step and
selected the first three occurring stores for each search term; this resulted in 104 URLs
pointing to 48 unique stores. Two of the stores were could not be accessed by the
authors: ASRock App Shop requires physical hardware to use it, and PLCnext Store’s
website was unresponsive at the time of labeling. These stores were removed from the
list. In addition, we discussed several more stores that we felt deserved explicit inves-
tigation: AWS, Flatpak, GoG, MacPorts, Nintendo eShop, Steam, and Samsung’s Gal-
axy Store. These are the stores that the authors investigated in Step 2 but did not show
up in the first three occurring results from the search terms. Meanwhile, the added
stores all show up in the list of 291 stores identified by all labeled URLs.

We thus selected and labeled a total of 53 app stores. This sample is non-exhaustive,
but we believe that our wide range of search queries has created a representative sam-
ple of the population of app stores that enables our experiments.

The first two authors proceeded to describe 12 app stores, selected as the first from
each search query, using the set of features. This was done to make sure there was con-
sistency in the interpretation and use of each feature. After that, the first author labeled
the remaining stores.

To check the applicability of our dimensions and the labeling guidelines, we have
measured the inter-rater agreement between two authors on the 12 stores. We used
the Cohen’s Kappa (Cohen 1960) as a measurement for our inter-rater agreement. The
Cohen’s Kappa is widely used in software engineering research (Pérez et al. 2020).
We have reached an agreement of 86.3% with Cohen’s Kappa (Cohen 1960) of 0.711).
Our agreement based on the Cohen’s Kappa is considered as a substantial (Lantz and
Nebenzahl 1996) inter-rater agreement suggesting a high confidence of agreement
between the two raters.

The outcomes of RQ1 were a list of features that describe the main characteristics of
app stores grouped by dimensions, and a set of 53 App Stores, each labeled using these
features.

3.2 Finding Natural Groupings of App Stores

With the outcomes of RQ1, we next performed a K-means clustering analysis to iden-
tify groups of similar stores. K-means is a well known clustering algorithm widely
used in software engineering research (Pickerill et al. 2020; Khatibi Bardsiri et al.
2014; Al-Subaihin et al. 2019; Kuchta et al. 2018). It groups vectorized data points
iteratively until k centroids are formed. We used the K-means++ implementation
(Arthur and Vassilvitskii 2006) to conduct the clustering process.

3.2.1 Stage 3: Cluster analysis

To identify related app stores, we decided to cluster them using the K-means algorithm
(Step 6).

To prepare our labels for the K-means clustering process, we converted each label of the
feature to a binary value: 1 if the store has the feature, and 0 if it does not. Having binary-
encoded data ensured that we do not suffer from having categorical values that do not make
sense in the scope of K-means. However, performing K-means on binary data can also be

Empirical Software Engineering (2024) 29:35

1 3

Page 15 of 39 35

problematic, since the initial centroids selected will be binary. To mitigate this issue, we
applied Principal Component Analysis (PCA) (Wold et al. 1987) to both reduce the dimen-
sional space and to produce a mapping in the continuous range. We kept all principal com-
ponents that explained a variance of at least 0.05. Finally, we used the Silhouette method
(Rousseeuw 1987) to determine the best number of clusters within a range of 1 to 20. To
identify the features that best characterize each cluster, we have calculated the deviation of
each cluster centroid (i.e, the center of the cluster) from the centroid-of-centroids (C) over
all clusters.

As an unsupervised method, the result of K-means provides only the clustering result
with the stores in each cluster. We then further discussed the results of the K-means pro-
cess and categorized the clusters by the properties of the contained stores. Following our
discussion and categorization, we assigned groupings and names to each of the clusters.

4 Results

In this section, we present the results of our investigations into each of the research ques-
tions. The results are organized based on the three stages discussed in Section 3.

RQ1: What fundamental features describe the space of app stores?

Stage 1 Features characterizing app stores.
As discussed in Section 3.1, we derived a set of features and organizational categories

that describe the set of studied app stores; the results of these efforts are summarized in
Table 3. We have modeled the features as a binary representation; thus, each store either
has or does not have this feature. We note that for some categories, the features are mutually
exclusive; for example, in the category Rights Management, a store can have either Creator
managed DRM or Store-enforced DRM, but not both. In other categories, an app store may
have several of the features within a given category; for example, there may be several kinds
of communication channels between users, app creators, and the store owner for a given app
store. We now describe each high-level category in detail (Table 3).

• Monetization-describes what, if any, payment options are provided to the user directly
by the store. If a product is offered free within the store, but requires an activation key
obtained elsewhere, we consider that the product is free. While most of the options are
self-explanatory, some may be less obvious. For example, GitHub Marketplace offers
seat-based subscriptions where app pricing is calculated by the number of installations
made to individual machines; usually, this occurs within the context of enterprise pur-
chase. Also, AWS offers resource-based subscription where the price charged is deter-
mined by the amount of resources — such as cloud storage and CPU time — that are
used during the execution of the service.

• Rights Management-describes the Digital Rights Management (DRM) policy of the
store; the values describe whether the store uses a store-wide DRM feature. For exam-
ple, for Steam, all games have DRM encryption, whereas the F-Droid store contains
only open source apps, so there is no need for DRM.

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 16 of 39

Table 3 Features for describing app stores

Feature Description

Monetization The type of payment options directly offered by the app
store.

 Free Free as in in the product can be directly acquired
 One-time payment A single payment needed for the product
 Seat-based subscription The subscription is based on the number of products

provided
 Time-based subscription A payment is needed by a set time interval (e.g.,, monthy,

yearly)
 Resourced-based subscription A payment is needed by the amount of resource used

(e.g., API calls, CPU time)
 Micro-transaction Additional payment can be collected based on additional

feature offered in a product
 Custom pricing (i.e., “Contact us for price”) The actual price is based on a per case situation; this hap-

pens mostly in business-focused app stores
 Rights Management* How does the store take care of DRM on the product

provided.
 Creator-managed DRM No DRM is offered by the store and is taken care of by

the creator
 Store-enforced DRM Store wide DRM for every product offered in the store

Do I need an account?* Whether it is possible to use the app store without regis-
tration.

 Account required An account is required to use the store
 No registration possible The store does not have an account system
 Some features requires registration Some content of the store is locked behind an account,

but the store can be used without one.
Product type The type of product the store offers.

 Standalone apps The product operates by itself
 Extension/add-ons to apps/hardware The product acts as a feature extension to another applica-

tion/hardware
 Service/resources The software product is a service
 Package/library The product is not an end-user product, but offers func-

tionality to other products
Target audience* The intended users of the app store.

 General purpose The app store is intended to be used by everyone.
 Domain-specific The app store have a specific focus and is very unlikely to

be used by a normal person
Type of product creators The type of creators who submits products to the app

store.
 Business The creators mostly have a commercial or business focus
 Community The creators are from the community (e.g., open source

developers)
Intent of app store The reason why the app store exists from the app stores’

perspective.
 Community building/support The app store aims to serve a technical community
 Profit The app store aims to earn money
 Centralization of product delivery The app store aims to provide a way for customer to

gather apps in a centralized way

Empirical Software Engineering (2024) 29:35

1 3

Page 17 of 39 35

*: Categorical values are mutually exclusive; one and only one categorical value in the dimension can apply
to a given store

Table 3 (continued)

Feature Description

 Expanding a platform popularity/usefulness The app store aims to extend functionality from the plat-
form it is based on

Role of intermediary The role app store play between the creator of products
and the customer of the app store.

 Embedded advertisement API Provides an advertisement method for creators to take
advantage of

 CI/CD Offers continuous integration/continuous deployment for
creators

 Checks at run time Provide checks when apps installed from the app store
is ran

 Checks before making available to the
customer

Provide checks when an app is submitted to the app store
for quality reasons

Composability* The relationship between products provided in the app
store.

 Independent The products in the app store are unrelated to each other
 Vendor internal add-on/extension/unlock Some products can be based on other products from the

same creator (e.g., game DLC, app feature packs)
 Package manager type of app relationship A dependency relationship exists between products in the

app store
Analytics The type of analytical data provided by the app store.

 Sentiment and popularity ratings Information related to the popularity of a product (e.g.,
downloads, score ratings)

 Marketing feedback Information related to marketing for the creator (e.g.,
sales, conversion, retention)

 Product usage data Information related to the usage of the product. (e.g., log-
ging, user profiling)

Communication channels The methods where different parties of the app store can
communicate with each other.

 Documentation Information related to the operation of the store (e.g.,
instructions to install applications)

 Product homepage A homepage for a specific product in the app store
 Ratings Any form of rating customers can give to a product (e.g.,

star, score, up/down vote)
 Written reviews (in text) A written viewer where customers can write their experi-

ence to the product.
 Community forum A forum like feature offered by the store where people

can discuss things related to the store/product.
 Support ticket A system where customers can inquiry for support ques-

tions related to the product offered by the store.
 Promotion/marketing The store offers a way to provide promotional/marketing

feature to the products in the app store (e.g., featured
apps, top downloads of the month).

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 18 of 39

• Do I need an account?-describes whether a user can access and use the store without
being registered with the app store. We find that most stores are either account required
(e.g., Apple’s App Store) or no registration possible (e.g., Snapcraft). However, we also
found that some stores can be used without an account for some purposes, with other
features requiring explicit registration; for example, the Microsoft Store allows users
to download free applications without an account, but to purchase an app or leave a
review, an account is required.

• Product type-describes the kinds of applications that are offered by the store. For exam-
ple, Google Play and Steam focus on standalone apps, the VSCode Marketplace store
offers add-ons to an existing tool, and AWS allows users to “rent” web-based resources
and services.

• Target audience-describes the intended user base of the store. General-purpose stores
offer products aimed at the broad general public of everyday technology users; this
includes stores such as Google Play, Steam, and the Chrome Web Store. Domain-spe-
cific stores, on the other hand, have a dedicated focus on a specialized field; for exam-
ple, Adobe Magento focuses on building e-commerce platforms.

• Type of product creators-describes the typical focus of creators submitting applications
to the store. We distinguish between two groups of creators: those with a commercial or
business focus, and those with community focus such as open source developers.

• Intent of app store-describes the perceived high-level goals of the app store. The values
are derived from the app stores’ own descriptions of their goals, often found in “About
us” web pages. For example, both F-Droid and ApkPure are Android app stores; how-
ever, F-Droid’s focus is to provide a location to download and support FOSS software,
while ApkPure’s goal is to provide a location for users to be able to download Android
apps when Google Play may be unavailable.

• Role of intermediary-describes the roles that the app store plays in mediating between
the users and creators; these are software engineering-related services that are mostly
independent of each other. For example, checks at run time tracks if the app store
ensures that its products function correctly (e.g., Steam tracking game stats). Also, CI/
CD indicates that the app store provides explicit support for continuous integration and
deployment of the apps, which may be linked to specific development tools used by the
creator.

• Composability-describes the relationship between products offered by the store. App
stores of independent composability offer products that have no relationship with each
other, such as Firefox Add-ons. Vendor internal add-on/extension/unlock means that
the products within the app store can be based on each other, but only when they are
from the same vendor, such as game DLC and micro-transaction unlocks. Package
managers contain apps that can have complicated dependency relationships regardless
of the creator of the products, such as the Ubuntu package management tool apt.

• Analytics-describes what kind of diagnostic information is provided by the store. We
distinguish between three kinds: Sentiment and popularity ratings offer user-based
information related to store products, such as number of installs in Home Assistant.
Marketing feedback tracks telemetry information for creators on the performance
of their product, such as GitHub Marketplace tracking retention rate for their prod-
ucts for creators. Product usage data details the observed usage of the products; for
example, Steam tracks the average number of hours users spend on each product.

Empirical Software Engineering (2024) 29:35

1 3

Page 19 of 39 35

• Communication channels-tracks the types of methods the store directly offers for
communications between both users and creators. Since most stores offer a product
homepage for each of their products, the app creators are largely free to put any
information here. This means that if a creator wishes, they can put links to other
communication methods external to the store. We do not track such information here
since it is product dependent instead of store dependent. While ratings and reviews/
comments are often paired together, during our exploration, we found cases where
user ratings were permitted but user reviews were not; thus, we have separate values
for ratings and reviews. Communication channels can take various forms with differ-
ent variability, for example, some stores allow responses for reviews. For this aspect,
we stay at a high level based on the functionality of the communication channels and
consider the variations as detailed implementation for each functionality.

Stage 2 Expanded collection of app stores and labeled set of representative stores.
In stage 1, we identified 53 store candidates. To provide the required data for our experi-

ments, two authors explored these stores to identify which of the fundamental features of
the previous stage are true for each store. The query results are summarized in Table 4,
where we list the search term construction keywords and the first 3 occurrence of stores
by the search term. For example, in search term constructed from (addon OR add-on) and
(“market place”) OR marketplace, the first 3 occurrences are Google Play, PrestaShop, and
CS-Cart.

There are many app stores beyond Google Play and Apple’s App Store. These app stores exhibit a diverse
set of features.

RQ2: Are there groups of stores that share similar features?

Using the labeled data of the 53 stores, we were able to perform the K-means cluster
analysis that we have introduced in Section 3.2. With the number of clusters guided by
the Silhouette method to choose the best K value for K-means, our clustering resulted in
eight clusters.

Due to the nature of unsupervised methods, K-means is able to identify only the clus-
ters and their members; no real-world meanings are extracted for why the cluster mem-
bers belong together. It is also important to note that the K-means algorithm performs hard
clustering; that is, it creates a partitioning of the stores into mutually exclusive groups that
together span the whole space. Thus each store will be assigned to the unique cluster that
the algorithm considers to best represent it. For this reason, the raw results from K-means
should not be seen as authoritative, but rather as a vehicle for identifying groups of stores
with similar characteristics. Therefore, we leverage the K-means clustering and further
examine the clusters in detail to try to derive a human understandable categorization of the
stores.

We start by analyzing the differences between clusters by analyzing the definitive char-
acteristics of each cluster. In Table 5, we show the details of the top 10 features that deviate
the most from the C. Column C contains the centroid-of-centroids with values for each

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 20 of 39

Ta
bl

e
4

 F
irs

t t
hr

ee
 id

en
tifi

ed
 st

or
es

 fo
r e

ac
h

G
oo

gl
e

qu
er

y

(“
ap

p
sto

re
”

O
R

 st
or

e)
(“

m
ar

ke
t p

la
ce

”
O

R
 m

ar
-

ke
tp

la
ce

)
sh

op
re

po
si

to
ry

m
an

ag
er

ap
p

A
pp

le
 A

pp
 S

to
re

, G
oo

gl
e

Pl
ay

B
ig

C
om

m
er

ce
, G

oo
gl

e
Pl

ay
, H

ub
Sp

ot
A

pp
le

 A
pp

 S
to

re
F-

D
ro

id
, G

ua
rd

ia
n

Pr
oj

ec
t,

Iz
zy

O
nD

ro
id

G
oo

gl
e

Pl
ay

so
ftw

ar
e

M
ac

 A
pp

 S
to

re
M

ar
ke

tP
la

ce
K

it,
 S

el
la

ci
ou

s,
C

S-
C

ar
t

ϕ
ϕ

ϕ

(a
dd

on
 O

R
 a

dd
-o

n)
M

ac
 A

pp
 S

to
re

, H
om

e
A

ss
ist

an
t,

Fi
re

fo
x

A
dd

-
on

s

G
oo

gl
e

Pl
ay

, P
re

st
aS

ho
p,

C

S-
C

ar
t

Pr
es

ta
Sh

op
, C

hr
om

e
W

eb

St
or

e
K

od
i

C
ur

se
Fo

rg
e,

 A
jo

ur
, M

in
io

n

(p
lu

gi
n

O
R

 p
lu

g-
in

)
G

oo
gl

e
Pl

ay
, S

ke
tc

hU
ca

-
tio

n,
 R

IC
O

H
 T

H
ET

A
W

or
dP

re
ss

, J
et

B
ra

in
s

B
uk

ki
t,

Pl
ug

in
 B

ou
tiq

ue
W

or
dP

re
ss

, J
et

B
ra

in
s

Je
nk

in
s,

JM
et

er
, A

ut
od

es
k

(e
xt

en
si

on
 -h

ai
r -

la
sh

)
C

hr
om

e
W

eb
 S

to
re

, M
ic

ro
-

so
ft

Ed
ge

V
SC

od
e

M
ar

ke
tp

la
ce

,
A

do
be

 M
ag

en
to

, C
hr

om
e

W
eb

 S
to

re

C
hr

om
e

W
eb

 S
to

re
TY

PO
3,

 G
N

O
M

E
SH

EL
L

C
hr

om
e

W
eb

 S
to

re

in
st

al
l

G
oo

gl
e

Pl
ay

, A
pp

le
 A

pp

St
or

e
G

oo
gl

e
Pl

ay
, E

cl
ip

se
A

pp
le

 A
pp

 S
to

re
, G

oo
gl

e
Pl

ay
, M

ic
ro

so
ft

St
or

e
K

od
i,

H
om

e
A

ss
ist

an
t,

D
oc

ke
rH

ub
G

oo
gl

e
Pl

ay
, A

PK
Pu

re
,

D
az

3D
so

lu
tio

n
M

ac
 A

pp
 S

to
re

, M
ic

ro
so

ft
St

or
e

C
S-

C
ar

t
ϕ

ϕ
ϕ

(s
of

tw
ar

e
lib

ra
ry

 -b
oo

k)
M

ic
ro

so
ft

St
or

e
V

SC
od

e
M

ar
ke

tp
la

ce
,

Q
T

Ex
te

ns
io

ns
, G

itH
ub

M

ar
ke

tp
la

ce

ϕ
ϕ

ϕ

pa
ck

ag
e

A
pp

le
 A

pp
 S

to
re

, G
oo

gl
e

Pl
ay

, S
na

pc
ra

ft
C

S-
C

ar
t,

co
nc

re
te

5
G

oo
gl

e
Pl

ay
Pa

ck
ag

ist
, P

yP
I,

U
bu

nt
u

Pa
ck

ag
es

C
ho

co
la

te
y,

 N
PM

, N
uG

et

Empirical Software Engineering (2024) 29:35

1 3

Page 21 of 39 35

feature. The remaining columns represent each cluster by an index from 1 to 8. The values
in these columns represent the proportion of app stores in the cluster with a specific fea-
ture, the mean, and the background color of each cell represent the deviation of the particu-
lar cluster centroid (i.e., difference between the centroid of this cluster and the centroid-of-
centroids for the feature). Each row corresponds to a feature of the stores, which makes it
easy to understand which features are descriptive of a cluster (Table 5).

Table 5 The 8 clusters found by the K-means algorithm, with top deviated features from the centroid of
centroids (C). Each cell with a value represents one of the influential features of the corresponding cluster.
The number indicates the percentage of stores with the specific feature. The color encodes whether stores in
that cluster less (magenta) or more (green) likely to have the feature, compared to the centroid

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 22 of 39

The table only shows the top 10 deviations per cluster (i.e., column) to focus on the most
important contributors to each cluster. Since all features are binary — each store has or
does not have the feature — all values of the centroid-of-centroids are between [0, 1]; thus,
a positive deviation (shown with a green background) implies that the stores in the cluster
are more likely to have the attribute, and a negative deviation (shown with a magenta back-
ground) implies that the stores are less likely to have the attribute.

For example, for cluster 8 the most important contributor is [Composability] Vendor
internal add-on/extension/unlock where the centroid of the cluster is 1. When comparing
against the centroid-of-centroids (at 0.15), the deviation is at 0.85; this implies that all
stores in this cluster have this feature. On the other hand, an example of negative deviation
for cluster 1 is the feature [Composability] Independent with a centroid of 0 indicating that
no stores in this cluster have this feature. Since the centroid-of-centroids for this features is
at 0.56, this implies the deviation for stores in this cluster is −0.56.

After the top characteristics that make each cluster distinctive had been identified,
we leveraged this information to name and describe each cluster accordingly. Using the
information from Table 5 which shows the defining features of each cluster, we derived
an organization of the clusters based on several dimensions. The results are described in
Table 6.

One important dimension focuses on the type of application served by stores in the
cluster. We identified three major types of applications that differentiate the clusters: Gen-
eral, where the store offers stand-alone programs that run without the need of specific
software (aside from a specific operating system, e.g., Google Play, AWS, Steam); Exten-
sions, where the store offers extensions to a specific program or platform e.g., VSCode
Marketplace for VSCode, Chrome Web Store for Google Chrome; and Package manager,
where the store offers stand-alone programs, but also manages dependency-relationships
and requirements between different applications in the store e.g., NPM, MacPorts, Ubuntu
Packages. Another dimension in which these clusters can be organized is whether they are
Commercial (business-oriented) or Community-managed (no money is involved).

App stores are not all alike. Intuitive groupings emerge naturally from the data. Their
differences can be due to the type of application they offer — standalone or extensions —
and their operational model, either business- or community-oriented. We found that app
stores in different groups of our clustering have different properties, and these properties
may have bearing on empirical studies involving app stores.

5 Discussion

In this section, we discuss our findings regarding what we consider app stores to be based
on our clustering results, and we describe various research opportunities involving the
influence of app stores on software engineering practices.

5.1 What is an App Store?

The term app store became popular largely through Apple’s App Store, which launched
in 2008 along with the iPhone 3G (Apple 2008). Other online software stores have also
appeared and have had the term applied to them. Originally, the term usually referred
to stores of applications for mobile devices, but we have found that today there is ample

Empirical Software Engineering (2024) 29:35

1 3

Page 23 of 39 35

Ta
bl

e
6

 L
ist

 o
f s

to
re

s a
nd

 d
es

cr
ip

tio
ns

 b
y

cl
us

te
r,

w
ith

 th
e

ex
am

pl
e

sto
re

 th
at

 is
 c

lo
se

st
to

 c
lu

ste
r c

en
tro

id

Ty
pe

St
or

es
 in

 C
lu

ste
r

Ex
am

pl
e

St
or

e
C

lu
ste

r D
es

cr
ip

tio
n

In
de

x

Ex
te

ns
io

ns
 C

om
m

er
ci

al
 sp

ec
ia

liz
ed

A
do

be
 M

ag
en

to
, A

ut
oD

es
k,

B

ig
C

om
m

er
ce

, G
oG

, H
ub

Sp
ot

, P
lu

gi
n

B
ou

tiq
ue

, P
re

st
a

Sh
op

, S
ke

tc
hU

ca
tio

n,

C
S-

C
ar

t

Pr
es

ta
 S

ho
p

off
er

s a
dd

on
s

to
 th

e
ec

om
m

er
ce

 so
lu

tio
n

pl
at

fo
rm

.

Pr
od

uc
ts

 in
 th

e
sto

re
s a

re
 v

er
y

do
m

ai
n

sp
ec

ifi
c.

 C
re

at
or

s
ar

e
m

os
tly

 b
us

in
es

s a
nd

 th
ei

r s
to

re
 fr

on
t o

ffe
rs

 ra
tin

g
sy

ste
m

s a
nd

 w
rit

te
n

re
vi

ew
s.

6

 C
om

m
un

ity
 sp

ec
ia

liz
ed

B
uk

ki
t,

C
ur

se
Fo

rg
e,

 D
oc

ke
rH

ub
, H

om
e

A
ss

ist
an

t,
Jm

et
er

, K
od

i,
M

in
io

n,

V
SC

od
e

M
ar

ke
tp

la
ce

Ko
di

 a
dd

-o
n

co
m

po
ne

nt
s

off
er

s e
xt

en
si

on
s t

o
th

e
Ko

di
 e

nt
er

ta
in

m
en

t c
en

te
r.

Th
es

e
ar

e
co

m
m

un
ity

 fo
cu

se
d

sto
re

s t
ha

t o
ffe

rs
 fr

ee
 p

ro
d-

uc
ts

 to
 u

se
rs

. S
to

re
s a

ls
o

ta
ilo

r t
o

a
sp

ec
ifi

c
do

m
ai

n.
3

 C
om

m
un

ity
 n

on
-s

pe
ci

al
iz

ed
A

pk
pu

re
, C

hr
om

e
W

eb
 S

to
re

, E
cl

ip
se

M

ar
ke

tp
la

ce
, F

ire
fo

x
A

dd
-o

ns
,

G
no

m
e,

 W
or

dp
re

ss

W
or

dp
re

ss
 o

ffe
rs

 fr
ee

 e
xt

en
-

si
on

s f
or

 u
se

rs
 u

si
ng

 th
e

w
or

dp
re

ss
 p

la
tfo

rm
.

Pr
od

uc
ts

 in
 th

es
e

sto
re

s o
ffe

rs
 e

xt
en

si
on

s t
o

th
e

pl
at

fo
rm

.
Es

se
nt

ia
l o

pe
ra

tio
ns

 d
o

no
t n

ee
d

re
gi

str
at

io
n

(e
.g

.,
in

st
al

lin
g

ap
ps

).
Pr

od
uc

ts
 o

ffe
re

d
in

 th
e

sto
re

s f
ac

e
a

ge
ne

ric
 a

ud
ie

nc
e

an
d

ar
e

in
de

pe
nd

en
t f

ro
m

 e
ac

h
ot

he
r.

4

G
en

er
al

 C
om

m
er

ci
al

AW
S,

 G
oo

gl
e

Pl
ay

 S
to

re
, M

ic
ro

so
ft

St
or

e,
 N

in
te

nd
o

eS
ho

p,
 S

te
am

, S
am

-
su

ng
 G

al
ax

y
St

or
e,

 A
pp

le
 A

pp
 S

to
re

M
ic

ro
So

ft
St

or
e

off
er

s a
pp

li-
ca

tio
ns

 fo
r t

he
 w

in
do

w
s

pl
at

fo
rm

.

Ty
pi

ca
l s

to
re

s m
an

y
pe

op
le

 e
nc

ou
nt

er
 e

ve
ry

da
y.

 T
he

y
ru

n
fo

r p
ro

fit
 a

nd
 o

ffe
r v

en
do

r i
nt

er
na

l p
ro

du
ct

s s
up

po
rti

ng

m
os

t m
on

et
iz

at
io

n
op

tio
ns

.

8

 C
om

m
un

ity
C

ho
co

la
te

y,
 F

-D
ro

id
, F

la
tp

ak
, G

ua
rd

ia
n

Pr
oj

ec
t R

ep
os

ito
ry

, I
zz

yO
nD

ro
id

,
Sn

ap
cr

af
t

F-
D

ro
id

 is
 a

 fr
ee

 a
nd

 o
pe

n
so

ur
ce

 so
ftw

ar
e

on
ly

An

dr
oi

d
ap

pl
ic

at
io

n
sto

re
.

Th
es

e
sto

re
s c

on
ta

in
 st

an
da

lo
ne

 fr
ee

 p
ro

du
ct

s o
nl

y.
 C

re
a-

to
rs

 fo
r t

he
 st

or
es

 a
re

 m
os

tly
 fr

om
 th

e
co

m
m

un
ity

 a
nd

th

e
pr

od
uc

ts
 a

re
 m

aj
or

ity
 o

pe
n

so
ur

ce
.

7

 P
ac

ka
ge

 M
an

ag
er

A
jo

ur
, J

en
ki

ns
, M

ac
Po

rts
, N

PM
, N

uG
et

,
Pa

ck
ag

ist
, P

yP
I,

Ty
po

3,
 U

bu
nt

u
pa

ck
-

ag
es

Pa
ck

ag
is

t i
s t

he
 m

ai
n

re
po

si
-

to
ry

 fo
r P

H
P

pa
ck

ag
es

.
N

o
ac

co
un

t s
ys

te
m

 is
 in

vo
lv

ed
 fo

r t
he

se
 st

or
es

. P
ro

du
ct

s
ar

e
fr

ee
 a

nd
 m

os
t i

n
pa

ck
ag

e
sty

le
 w

ith
 in

te
r-d

ep
en

d-
en

cy
 re

la
tio

ns
hi

ps
. C

om
m

un
ic

at
io

n
ch

an
ne

ls
 a

re
 a

ls
o

lim
ite

d
w

ith
 ra

tin
gs

 a
nd

 re
vi

ew
s m

is
si

ng
 fo

r m
os

t s
to

re
s.

1

 S
ub

sc
rip

tio
n

or
ie

nt
ed

G
ith

ub
 M

ar
ke

tp
la

ce
, J

et
B

ra
in

s,
Q

t M
ar

-
ke

tp
la

ce
, c

on
cr

et
e5

 m
ar

ke
tp

la
ce

G
ith

ub
 M

ar
ke

tp
la

ce
 o

ffe
rs

ap

pl
ic

at
io

ns
 a

nd
 a

ct
io

ns

to
 im

pr
ov

e
th

e
w

or
kfl

ow

re
la

te
d

to
 g

it
re

po
si

to
rie

s
ho

ste
d

on
 G

itH
ub

O
fte

n
off

er
s s

ub
sc

rip
tio

n
se

rv
ic

es
 a

nd
 su

pp
or

ts
 D

R
M

m

an
ag

em
en

t b
y

th
e

sto
re

. P
ro

du
ct

s a
re

 n
ot

 st
an

da
lo

ne

ap
pl

ic
at

io
ns

 a
nd

 e
ith

er
 p

ro
vi

de
 se

rv
ic

e
or

 e
xt

en
ds

 a

pl
at

fo
rm

.

2

 O
th

er
M

ar
ke

tP
la

ce
K

it,
 R

IC
O

H
 T

H
ET

A
, S

el
la

-
ci

ou
s,

da
z3

D
Se

lla
ci

ou
s i

s a
 e

co
m

m
er

ce

pl
at

fo
rm

 a
nd

 p
ro

vi
de

s
ex

te
ns

io
ns

 to
 th

e
pl

at
fo

rm
.

Th
ey

 d
o

no
t h

av
e

m
uc

h
co

m
m

un
ic

at
io

n
ch

an
ne

ls
 o

ffe
re

d.

R
at

in
g

an
d

re
vi

ew
s d

o
no

t e
xi

st
in

 th
e

sto
re

s.
Th

e
sto

re
s

m
os

tly
 e

xi
sts

 to
 d

ist
rib

ut
e

ex
te

ns
io

ns
 c

en
tra

lly
 to

 th
e

pl
at

fo
rm

 th
ey

 a
re

 b
as

ed
 o

n.

5

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 24 of 39

diversity of the type of applications that app stores offer and in the features they provide
to app developers and users. App Stores are also dynamic: features are continually being
added, removed, and altered by store owners in response to changes in their goals and feed-
back from their socio-technical environments. For example, the Chrome Web Store initially
introduced a built-in monetization option that provided a mechanism for applications to
receive payments from its users; however, the store later decided to deprecate this moneti-
zation option (Google 2022b) and suggested developers to switch to alternative payment-
handling options.

In our work, we have employed a working definition through our inclusion/exclusion
criteria for app stores to be included in our research. However, due to the complexity,
diversity, and constantly evolving nature of app stores, we have decided not to attempt a
firm, prescriptive definition of the term. Instead, in the following paragraphs, we will dis-
cuss each of several aspects of app stores in detail, and hope that in the future, a more
robust definition and operating model can emerge.

5.1.1 Common Features of App Stores

Although we found significant diversity among the example app stores we studied, we were
able to identify a set of three common features that appear to span the space of app stores.

• Simple installation and updates of apps-An app store facilitates simple installation of
a selected application, and can also enable simple updating. For some stores, apps are
expected to run on the hardware of the client; in others, the app store provides and
manages the hardware where the app runs. In both cases, the app store frees the user
from worrying about the technical details of installation, including compatibility with
their specific hardware and software configuration, as well as the installation of the app
and its dependencies, if any. Typically, app stores will also automate the installation of
updates to the application, again freeing the user from worrying about if they have the
latest version of the app with the latest features and bug fixes.

Runtime Environment

Feature layer provided by App Store X

Product CProduct BProduct A

App Store X App Store Y

Fig. 3 Stores may offer optional extensions to the runtime environment for applications

Empirical Software Engineering (2024) 29:35

1 3

Page 25 of 39 35

• App exploration and discovery-App Stores provide mechanisms that allow users to find
apps they might want to use. In its simple form, this mechanism might be a search
engine that returns a list of apps that match a given set of keywords (such as home-
brew, PyPI). In the labeled app stores, 73% of stores provide some kind of aggregated
recommendations (e.g., advertisement and trends in WordPress), up to personal recom-
mendations that are based on other apps the user has installed before (e.g., Apple’s App
Store). User feedback via reviews (present in 47% of the labeled app stores) and forums
(present in 45% of the labeled app stores) can provide further information to aid other
users in identifying apps of possible interest to them.

• The app store guarantees the runtime environment-In practice, app stores often execute
within a runtime environment (RTE), such as an operating system (e.g., Google Play on
Android) or an extensible software application (e.g., Firefox Add-ons on Firefox). Many
app stores simply sit on top of the RTE, acting primarily as a gatekeeper for adding and
deleting apps. However, some app stores are more tightly integrated with the RTE; in
extreme cases, the app store can extend the RTE with the app store’s own functionality
and together provide an augmented RTE for the applications managed through the app
store. Steam is a good example for extending the RTE with its own features; develop-
ers can integrate with many services offered by Steam, such as an achievement system
that offers players recognition when they fulfill certain requirements in the game. Figure 3
illustrates the situation where a product may integrate with additional store-added features
to the RTE, which in turn enriches the user experience of the store users. When Product B
is offered in App Store Y, it will not have the features provided by App Store X.

The app store ensures that apps are installed only when their runtime requirements are
satisfied. The process is often done through running checks on apps submitted to the app
store, which 74% of the labeled app stores perform specifically. By specifying the runtime
requirements, the assumption for both the developer and the user is that if the application is
installed — implying that the requirements are satisfied — it is expected to run properly. This
is usually achieved by a software layer on top of the RTE, provided by either the app store
or the user. In its simplest form, this software layer is responsible for installing and updating
apps (see “Simple installation and updates of apps” above). In some cases, this software layer
might also include a set of libraries that the apps can use to provide features specific to the
app store thus forming part of the RTE for the applications. These libraries might range in
purpose (domain specific, common GUI, resource management, etc.). In extreme cases, this
layer includes the operating system, as it is the case with Apple’s App Store. However, checks
during runtime is a very rare feature, which only 14% of the labeled app stores provides.

Some hardware platforms have become so tightly integrated to the software layer of the
app store that they can be considered monolithic: the hardware is rendered unusable with-
out the app store. This is exemplified by the Apple’s App Store, where one cannot use the
hardware without first having an account in the app store; even operating system upgrades
are distributed via the store.

This tight level of integration has clear benefits for all three stakeholders: end users
have fewer installation technical details to worry about; app developers can be assured that
users will be able to install their apps without the need for technical support; and app store
owners can strictly manage who has access to the user’s RTE and how. However, such
tight integration is technically unnecessary and may even be undesirable. From a software
engineering perspective, such tight coupling could be seen as a “design smell”, since the
operating system and the app store layers address fundamentally different concerns. Also,
tight integration can create an artificial barrier to competition, effectively establishing a

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 26 of 39

quasi-monopoly for the store owner; the store owner may assume the role of gatekeeper
not only for streamlining technical issues, but also for business reasons, requiring a kind of
toll to be paid by app developers for access to the store. A recent initiative in the European
Union (E. Commission 2022) aims to enable fair competition by enforcing that ecosystems
are opened up, which will likely also allow the installation of alternative software layers
for other app stores, a term called side-loading. In contrast to the Apple’s tight control of
the operating system as part of its app store, Android allows third-party app store software
(e.g., F-Droid (F-Droid 2022)) to be installed in co-existence with the system default (often
Google Play).

As mentioned above, some stores distribute software that runs on hardware owned by
the App Store itself; in these cases, the RTE is fully managed and controlled by the store.
For example GitHub Marketplace and Atlassian Marketplace offer applications that run
on GitHub and Atlassian servers respectively. In most cases, these applications are not
deployed to the user’s computers.

5.1.2 Different Types of App Stores

While some features are broadly shared by all app stores, in Section 4, we identified dif-
ferent groups of app stores based on their features. For stores within the same group, they
often share common features, whereas across different groups, the stores tend to have less
in common. We now discuss the differences across the groups in detail.

Diversity in Goals As a platform focusing on delivering products to customers, the high-
level goal of one app store can be dramatically different from the other. Even app stores
providing software for the same underlying RTE can have radically different purposes. For
example, consider the app stores that run on Android. Google Play is the de facto store for
Android applications. F-Droid store, on the other hand, offers only free and open source
Android applications, and APKPure offers multiple versions of the same software so the
user can decide which version they would like to install.

Apple’s app store offers applications for all its RTEs: MacOS (laptop and desktops),
iOS (phones and tables), and the Safari browser. In contrast, Google has different stores
for AndroidOS and for its web browser, Chrome. The Microsoft Store sells hardware and
apps for Windows and XBox. Alexa Skills offers skills that enhance the voice agent Alexa’s
capabilities.

In many program language ecosystems, the core language development (focusing on
the language features) and packaging system (focusing on extending the functionality of
the language) are led by separate organizations (e.g., NPM (npm, “npm About.” 2022) and
JavaScript (E. International 2022)).

Diversity in Business Model Another important difference we observed is between busi-
ness-managed and community-managed stores. In business-managed stores (with few
exceptions), a primary goal is to generate a profit. These stores provide a payment mecha-
nism between the app creator and the purchaser, with the store keeping a percentage of any
sales. These stores have to solve three key concerns: first, implementing registration and
authentication of users and developers; second, some type of digital rights management, so
only users who have acquired the software can use it; and third, a payment mechanism e.g.,
subscription, one-time payment, and advertisement.

Empirical Software Engineering (2024) 29:35

1 3

Page 27 of 39 35

Community-managed stores, on the other hand, are often run by volunteers, and their
features focus on facilitating not-for-profit product delivery from developer to user. Many
community stores offer limited community interactions compared to business stores where
customer feedback is important. For example, in the Kodi store, add-ons have a web page
(e.g., The Movie Database Python (Kodi 2022)). This page provides information regard-
ing installation of the add-on, such as known compatibility concerns, download links, and
installation requirements. Meanwhile, most communication channels about the add-on are
hosted elsewhere; for example, installation and usage instructions, extended descriptions,
and screenshots can be found in the community forum instead.

It is important to note that the products contained in community-oriented stores are not
limited to open source software; some community-managed app store policies often permit
the distribution of proprietary software. In the natural groupings we observed, no rights
management is enforced from the store side for Cluster 3; at the same time, most stores in
Cluster 8 have some form of rights management built-in to the store. For example, Home-
brew permits apps that are not open source if the apps are free to use; these apps might
include in-app purchases — such as an upgrade to a full-feature app — that are handled
outside of Homebrew.

5.2 Implications for the Main Participant Stakeholders

The results of our study includes an evidence-based detailed view of the broad landscape
of app stores. This view can help us improve the understanding of the realities and potenti-
alities of app stores in general. Meanwhile, the results of our work can also benefit the dif-
ferent stakeholders involved with app stores, including app creators, app stores themselves,
users, and researchers.

Application Creators Those who create applications — including those who design,
develop, test, and market apps — benefit from a holistic view of other stores that will allow
them identify potential new markets (stores where they can offer their software) and to
understand changing and emerging features that could eventually come to their app store
of choice. For new creators, this research emphasizes that a software store has both tech-
nical requirements — such as the use of a specific software development kit — and non-
technical ones — such as restrictions on what applications can do, approval processes and
timelines — and that these requirements vary significantly from one store to another.

App Stores The overview presented herein provides a framework for comparison between
app stores, particularly those that operate on the same market, such as Android application
stores. It can also help promote wide adoption of features that are not universal, such as
communication channels between users and developers.

Users With the diversity in app stores, especially when multiple app stores are competing
in the same domain, it allows users the choice of where to acquire their applications. This
allows for more diversity for how the apps are distributed and the user’s choice also affect
the competition.

Researchers As discussed in Section 2, most prior research has focused on the applica-
tions offered in app stores, and there is a need for research that focuses on studying the
store themselves. This emphasis could aid researchers in considering different points of

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 28 of 39

view when conducting app store-centric studies, and also suggest avenues of exploration
concerning how the development process is affected by the existence of app stores.

We describe this point in detail in the next sections.

5.3 App Store Features

In this section, we discuss how each of feature groups from Table 3 has been addressed by
current SE research and we suggest some possible future directions.

Monetization App development can be affected by their pricing strategy. For example
different software architecture to support a different system of monetization (e.g., lock-
ing functionality behind microtransactions) (Pham et al. 2017). Studies have shown a cor-
relation between app features and pricing (Harman et al. 2012; Finkelstein et al. 2017;
Sarro et al. 2015). Moreover, in many studies on apps (Alshayban et al. 2020; Aljedaani
et al. 2019), free apps and charged apps are often considered as different types of appli-
cations. Future work could further explore how different monetization options affect app
development.

Rights Management Digital rights management is still an ongoing challenge in software
engineering. Existing studies have explored the options of implementing different DRM
systems to support developers (Lu et al. 2019; Gaber et al. 2020). DRM can also add chal-
lenges in other development activities such as complicating the testing procedure (Sung
et al. 2019) and affect performance (Lemon 2018). Often we can observe the store offer-
ing means for providing and enforcing DRM. Because DRM is still a nascent technology
within software engineering, it remains an open area to explore for future study and how
app stores can play a role.

Account Requirement User identity enables telemetry of user behavior. An account sys-
tem is also the prerequisite of a store-wide DRM system as discussed in the previous para-
graph. Existing research has focused on how to leverage the user identity information to
create targeted recommender systems (He et al. 2015) and also investigated the concerns
of privacy-related issues (Scoccia et al. 2022). The interest of developers (detailed tracing
data) and users (privacy) are in conflict, app stores that require user identification could
prove to be an excellent study subject for future research in that area.

Product Type Existing research has already shown different software engineering prac-
tices based on the software product. For example, gaming development is very different
from traditional software development and open source development (Murphy-Hill et al.
2014; Pascarella et al. 2018). Research have shown that different types of software can
introduce specific challenges unique to them (Lee et al. 2020a; Ibrahim et al. 2020). Future
research should better understand how the product type affects user expectations and devel-
opment practices, for example, with respect to the delivery of software or the way creators
and users can interact.

Target Audience When an app developer decides on a specific app store to sell their app,
they are also effectively selecting for a specific type of user (Subramanian et al. 2006;

Empirical Software Engineering (2024) 29:35

1 3

Page 29 of 39 35

Manotas et al. 2016; Gholami et al. 2021). Users of a general-purpose store such as Google
Play are different and much more diverse than the user population (Guzman et al. 2018) in
very specialized stores, such as the add-on store for a particular game. Research needs to
understand better which features are relevant in each specific context (Sun et al. 2021), so
the experience can be tailored to the concrete situation.

Type of Product Creators Existing research has shown many differences between open
source and industrial software development (Pascarella et al. 2018; Lee et al. 2020b). Some
studies have touched the aspect of release engineering in open source development (Nayebi
et al. 2017a), where developers would strategically select which versions to release on the
app store. However, we believe that there is still room for more understanding in how tar-
geting releases towards app stores affects software development.

Intent of App Store While in most domains, there exists a dominant app store, we can
also observe situations where multiple app stores compete in the same domain (e.g., game
stores on PC, mobile app stores in China (Wang et al. 2018)). In these situations, users
have a choice of which app store to use when the same application is offered. In practice,
some studies have explored how the high level operation of app stores can affect the soft-
ware delivery process especially involving security concerns (Sun et al. 2021; Hu et al.
2021). Competition between app stores within the same domain remains largely unstudied,
as does how their operations can affect both developers and users.

Role of Intermediary App stores provide a platform for users and developers. Researchers
have explored how it affects software development processes such as testing and release
management (Nayebi et al. 2016; Shen et al. 2017). There are many opportunities for secu-
rity (Ferreira et al. 2021) and quality assurance (Al-Subaihin 2012; Tang et al. 2019) to be
ensured on the app store side. Future study can explore how the differences between apps
managed through an app store and apps that are not. For example, studying the difference
between open-source web extensions that are in and not in app stores.

Composability Existing research has explored co-installability in the scope of package
manager systems (Vouillon and Cosmo 2013; Claes et al. 2015). However, we only have
limited understanding of co-installability for standalone applications in an extension sys-
tem. For example, if two standalone extensions were to modify the same component of the
underlying software, a potential incompatibility could occur. Future research can explore
this area by performing empirical studies on existing systems to understand the issue of
conflicts.

Analytics App stores as the central hub between developers and users have access to rich
information useful for analytics. Previous studies have taken advantage of the app store
specific information to help software developers (McMillan et al. 2012; Martin et al.
2016b; Maalej et al. 2019). For example, Ullmann et al. (Ullmann et al. 2022) leveraged
records of rating statistics and downloaded information to study the factors in develop-
ing successful video games. Another study leveraged analytic information collected by the
app store to identify incompatible builds of application and physical devices (Khalid et al.
2014). Future work can explore what are the possible data to collect and form analytics,
and how can the analytic data be leveraged to help developers and users.

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 30 of 39

Communication Channels Communication channels are the most studied area of app
store features. Specifically, there has been a heavy focus on app reviews, where research-
ers have leveraged the information in app reviews to aid software development in areas
such as extracting/locating bug reports (Haering et al. 2021), discover feature requests (Wu
et al. 2021) and collect user feedback (Guo and Singh 2020). However, existing studies
also suggest that the use of communication channels in app stores are often multi-purpose
(Dabrowski et al. 2022). Researchers also find that some interaction requirements between
interested parties are relegated to other platforms such as Twitter (Nayebi et al. 2017b).
Future work can explore different types of communication channels in their functionality
and how they can integrate with app stores. The corpora from communication channels are
also rich information sources where researchers can leverage to extract information about
developer-user interactions.

5.4 Research Opportunities Involving App Stores

App Stores are becoming the primary channel for software delivery and exert considerable
influence in many aspects of the software development process. A previous study by Rosen
and Shihab (Rosen and Shihab 2016) on Stack Overflow questions by mobile developers
has shown that app delivery is one of the biggest challenges developers face. Our results
in Section 4 demonstrate that there is a wide variety of types of stores, each with different
features and goals. Today, app stores encompass many kinds of applications, from games
running on the hardware of the user to add-ons for applications that run on corporate serv-
ers such as GitHub. However, existing research often focuses heavily on the applications
offered inside app stores, especially those of the two major mobile app stores. In the fol-
lowing paragraphs, we discuss several research opportunities to study how app stores can
affect software development.

5.4.1 App Stores as Actors in Software Development

App Stores Affect the Software Product Cycle Researchers need to consider how and
why app stores can affect the software development life cycle. For example, we know
that app stores can constrain and sometimes even dictate software release processes.
Some stores go beyond this and exert a kind of socio-technical environmental pressure
on other software development practices, becoming a de facto stakeholder in app devel-
opment. Sometimes these environmental pressures are technical in nature, where the
app store might dictate the programming language or deployment platform/OS; some
app stores go further and create RTEs, software development kits (SDKs), and user
interface (UI) libraries that must be used by all app developers. Sometimes these envi-
ronmental pressures are non-technical in nature, such as when the app store prescribes
the kinds of application that is allowed in the store. For example, Microsoft recently
announced that it will not permit app developers to profit from open source applica-
tions.3 When an app store operates in a manner such that it has control over what kind
of application to include, it creates a software ecosystem and as such, it faces the same
challenges that any other ecosystem has: how to thrive. In particular, stores need to

3 See Update to 10.8.7 https:// docs. micro soft. com/ en- us/ windo ws/ uwp/ publi sh/ store- polic ies- change- histo ry

https://docs.microsoft.com/en-us/windows/uwp/publish/store-policies-change-history

Empirical Software Engineering (2024) 29:35

1 3

Page 31 of 39 35

understand the needs of their developers and users to retain existing ones and attract
new ones. However, suggested by what we have observed in Section 4, app stores are
diverse with a large number of features that characterize and differentiate between them.
While stores are experimenting and evolving, each action is likely to have an effect on
the ecosystems they formed, both positively and negatively. Thus, the impact of app
stores in the economy and their markets is worthy of further study.

An App may be Offered in Several App Stores Developers want to run their software
on the platform that is provided or supported by the store, and as such they must accept
the requirements and limitations that such a store may impose. This issue is compounded
when the app is being offered in more than one store, as the developers might have to
adapt their processes to different sets of requirements, some of which might be conflict-
ing. For instance, an app can be both available in F-Droid (in Cluster 7) and Google
Play (in Cluster 8). In Google Play, it is common for applications to collect telemetry
data to better understand typical user behavior; however, in F-Droid — an open source
and privacy-oriented store — such data collection is highly discouraged. Furthermore,
developers must also adapt to the features and limitations that a store provides regarding
software deployment, communication with users and — when they exist — the mecha-
nism available to profit from their software and to use digital rights management. This
is particularly interesting if the targeted app stores are in different natural groupings.
This introduces new areas of studies such as how store policies propagate to applications
over time, and how violations of store policies can be detected automatically. Research-
ers have already begun to investigate this topic through qualitative approaches to iden-
tify how applications comply with specific policies that concern accessibility (Alshayban
et al. 2020) and human values (Obie et al. 2021).

App Stores Strongly Affect the Release Engineering Process App Stores are especially
important in release engineering. Specifically, the release process needs to consider how
the application is to be packaged, deployed, and updated. The heterogeneity of the platform
provided by RTEs might also affect the number of versions of the application that need
to be deployed, e.g., variety of target CPUs, different screen sizes and orientations, and
amount of available memory.

When an application is developed for multiple stores, it must effectively be managed as
a product line; this is because multiple deliverables must be created, one for each platform-
store combination (Wang et al. 2019). Multiple deliverables can also help for telemetry
reasons such as tracking the installation source of the application (Ng et al. 2014). The
differences between packaged versions might be as significant as requiring the source code
to be written in different programming languages, using different frameworks; also, each
store is likely to require different deployment processes.

For example, when cross-releasing browser add-ons, developers may have to rewrite
part of the functionality in Swift/Objective-C for better integration with Safari (in the
Apple’s App Store), while at the same time maintaining a fully JavaScript version for
Chrome Web Store. Also, the scheduling of release activities is often dictated by the
release processes of the stores. A previous study has showed that taking into consid-
eration of app review times is an important factor when planning releases (Al-Subaihin
et al. 2021). The app store standardizes, and often simplifies, the release engineering
processes for its store; but it also becomes a potential roadblock that might delay or
even reject a new release.

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 32 of 39

5.4.2 The Challenge of Transferring Understanding Between Stores

As noted above, prior work has examined many aspects of app stores, yet the app store
itself has rarely been the focus of the research. In many studies, the app store serves as a
convenient collection of apps, and the research focuses on mobile development concerns
such as testing and bug localization. Even when research focuses on the app store itself, the
scope rarely extends beyond Google Play and Apple’s App Store. Based on our observa-
tions, the diversity of app stores in their operational goals, business models, delivery chan-
nels, and feature sets can affect the generalizability of research outcomes. For example,
there have recently been many studies (Lin et al. 2019; Dabrowski et al. 2022; Haering
et al. 2021; Obie et al. 2021; Fischer et al. 2021; Wu et al. 2021; Guo and Singh 2020) that
focus on app reviews. However, for an app store that does not have reviews (e.g., Nintendo
eShop) none of the findings and tools can be leveraged (e.g., stores in Cluster 1, 5, and 7).

App Stores that have the same Features may Still Differ Significantly Depending on the
problem domain, the details of software development practices can vary dramatically. For
example, game development has been compared to both more traditional industrial software
development (Murphy-Hill et al. 2014) and to open source software development (Pascarella
et al. 2018); in both cases, the development processes can differ greatly. We conjecture that the
same may also occur across app stores, where despite the same feature is being offered in the
different stores, the convention of using them could be different. As mentioned above, one spe-
cific observation has been made between the gaming-focused store Steam and mobile stores
(e.g., Google Play) in Cluster 8, where Lin et al. (Lin et al. 2019) found that reviews across the
platforms for the same app were often quite different in tone. Such uncertainly invites future
research to validate their findings in one store to another to improve the generalizability of the
results, and also encourages replication studies to verify existing results on other stores.

A Feature not in the App Store does not mean the Functionality is Missing While some
app stores aim to provide a complete experience, where all interactions from the develop-
ers and users are expected to be performed within the store, some app stores export part of
the work to other platforms. This can even occur for common features that one might find
essential. For instance, starred reviews are universal in Cluster 2, 4, and 6 where typical
users leverage this information to decide whether an application is good; starred reviews
are uncommon for other stores in Cluster 1, 5, 7. The specialized store may have some
other metric to indicate popularity or quality, such as total number of downloads, but the
focus of the store is often to offer a managed way of installation. Other features, such as
application support, are left to other platforms such as social media. Research can further
explore the integration between app stores and other platforms.

6 Threats to Validity

Internal Validity Our initial seeding of app stores comes from personal experience of app
stores by the authors of the paper. Personal bias could cause us to miss other types of app
stores. However, given the number of authors on this paper and our initial effort to consider
as many stores as possible, we feel that have created a wide, deep, and collaborative “best
effort”. When we labeled app stores by their dimensions, it is a qualitative process. As with
any qualitative process, the results could be biased by the authors performing the task. We
tackled this issue by first labeling a few stores separately by all authors and discussing the

Empirical Software Engineering (2024) 29:35

1 3

Page 33 of 39 35

results until a consensus was achieved; thus, we started with a set of “gold standard” labels.
Then the labeling task was delegated to two authors who continued to label the stores sepa-
rately with a portion of the store overlapping. The overlapping labels are then verified by
the Cohen’s Kappa between the two authors to measure the agreement.

We leveraged the K-means algorithm for the clustering process. We first applied PCA
techniques to reduce the dimensions of the initial labeling and provide an orthogonal basis
to feed the K-means clustering. When using other clustering algorithms (e.g., Mean-shift,
DBSCAN), the clustering result might change; while K-means is widely adopted for cluster-
ing process in SE research, by nature, determining the proper k value is still a challenge.
We followed common best practice to use metrics (i.e., the Silhouette method) to determine
the best value k. Despite our efforts, the output of the K-means clustering is not perfect. We
mainly leveraged the K-means clustering as the first step to illustrate that app stores forms
natural clusters which are different from each other. Based on the K-means output, we further
grouped the clusters into types based on our qualitative understanding of the app store space.

External Validity During the process of expanding app stores, we relied on the Google
Search Engine to find web results based on keywords. The results of this step rely on the
capability of Google and are subject to change over time as Google updates its search algo-
rithms. The order may also be affected by SEO operations. Combining results from other
search engines (e.g., DuckDuckGo, Bing) can help to reduce the bias.

When we applied our inclusion criteria, 1) app stores must contain software products
and 2) should offer an end-to-end experience for users (ordering, delivery, installation),
we excluded stores that focus on digital assets that are not software, such as a pure assets
store that offers cosmetic enhancements to desktop environments; we also excluded stores
that offer software products but in a way such that installation is completely managed by
users. An extreme example, would be the software section of Amazon where software is
sold as an activation key which users would input to activate the software that they need to
install themselves. A more general inspection of all means of distribution software can be
performed to gain a broader understanding of software distribution.

We relied on only publicly available information to label each store. So if some func-
tionality (e.g., analytics information) is not documented publicly, we were unable to con-
firm whether the store has such functionality. We also set a time limit to label each store
so in case we were unable to find information about the store, with each store receives the
same amount of attention.

One of the main challenges for reproducibility and replicability is that the Google
Search results and app stores can change overtime. New app stores are likely to emerge
and existing app stores may introduce and remove features. The focus of our study is not
to establish an exhaustive catalog of app stores, nor to study the historic evolution of a
store. Our goal is to establish a framework that can describe app stores and to understand
whether the operations of app stores follow different patterns. Based on the granularity
which we extracted features from app stores, we expect the majority of the feature groups
will remain stable over time. In the future, if researchers would like to repeat our study, the
labeling results may differ due to updates in the app store. To mitigate this issue, we have
included a snapshot of all Google Search results, and documented how we would perform
the labeling. So while the final labels may differ, by applying the same process, a replica-
tion study would be possible with updated data.4

4 https:// zenodo. org/ record/ 79681 92

https://zenodo.org/record/7968192

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 34 of 39

7 Summary

In this paper, we have explored the idea of what an app store is and what features make app
stores unique from each other. We labeled a set of representative stores, curated from web
search queries, by their features to study the natural groupings of the stores. Our analysis
suggests that app stores can differ in the type of product offered in the store, and whether
the store is business oriented or community oriented. These natural groupings of the stores
challenge the manner in which app store research has largely been mobile focused. Pre-
vious studies have already shown empirical differences in activities in mobile app stores
and game stores (Lin et al. 2019). Our study further suggests that in the future, when we
study app stores, we will need to consider the generalizability of the results across app
stores. Since one type of app store may operate under different constraints than another
kind, results observed in one app store setting may not generalize to others.

Data Availability A dataset consists of the Google query results and the app store labeling results are avail-
able on Zenodo.

We would like to thank the organizers, administrators, and attendees of the Shonan meeting No. 152
(McIntosh et al. 2019) on “Release Engineering for Mobile Applications”, where the paper’s idea was
conceived.

One of the authors has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement number 825328 (FASTEN).

Declarations

Conflict of Interests The authors declared that they have no conflict of interest.

References

Adolph S, Hall W, Kruchten P (2011) “Using grounded theory to study the experience of software devel-
opment,” in Empirical Software Engineering, Springer

Aljedaani W, Nagappan M, Adams B, Godfrey M (2019) “A comparison of bugs across the ios and
android platforms of two open source cross platform browser apps,” in Int. Conf. on Mobile Soft-
ware Engineering and Systems, IEEE

Almanee S, Ünal A, Payer M, Garcia J (2021) “Too Quiet in the Library: An Empirical Study of Secu-
rity Updates in Android Apps Native Code,” in Int Conf on Software Engineering, IEEE

Alshayban A, Ahmed I, Malek S (2020) “Accessibility issues in android apps: state of affairs, senti-
ments, and ways forward,” in Int Conf on Software Engineering, IEEE

Al-Subaihin A, Sarro F, Black S, Capra L (2019) “Empirical comparison of text-based mobile apps simi-
larity measurement techniques,” Empir Softw Eng

Al-Subaihin AA, Sarro F, Black S, Capra L, Harman M (2021) “App store effects on software engineer-
ing practices,” in Transactions on software engineering, IEEE

Amazon (2022) “AWS Marketplace: Homepage.” https:// aws. amazon. com/ marke tplace/. Accessed: Jun.
22, 2022

Apple (2008) “Apple Introduces the New iPhone 3G.” https:// www. apple. com/ ca/ newsr oom/ 2008/ 06/
09App le- Intro duces- the- New- iPhone- 3G/. Accessed: Jul. 17, 2022

Arthur D, Vassilvitskii S (2006) “K-means++: the advantages of careful seeding,” tech rep, Stanford
Arzt S (2021) “Sustainable Solving: Reducing The Memory Footprint of IFDS-Based Data Flow Analy-

ses Using Intelligent Garbage Collection,” in Int Conf on Software Engineering, IEEE
Autodesk (2022) “Autodesk App Store : Plugins, Add-ons for Autodesk software, AutoCAD, Revit,

Inventor, 3ds Max, Maya” https:// apps. autod esk. com/. Accessed: Jun. 22, 2022
Canonical (2009) “Ubuntu Software Center in Launchpad.” https:// launc hpad. net/ softw are- center.

Accessed: Jun. 22, 2022

https://aws.amazon.com/marketplace/
https://www.apple.com/ca/newsroom/2008/06/09Apple-Introduces-the-New-iPhone-3G/
https://www.apple.com/ca/newsroom/2008/06/09Apple-Introduces-the-New-iPhone-3G/
https://apps.autodesk.com/
https://launchpad.net/software-center

Empirical Software Engineering (2024) 29:35

1 3

Page 35 of 39 35

Chen J, Chen C, Xing Z, Xu X, Zhut L, Li G, Wang J (2020b) “Unblind your apps: Predicting natural-
language labels for mobile gui components by deep learning,” in Int Conf on Software Engineer-
ing, IEEE

Chen J, Xia X, Lo D, Grundy J, Yang X (2021) “Maintenance-related concerns for post-deployed
Ethereum smart contract development: issues, techniques, and future challenges,” in Empirical
Software Engineering, Springer

Chen S, Fan L, Meng G, Su T, Xue M, Xue Y, Liu Y, Xu L (2020a) “An empirical assessment of security
risks of global android banking apps,” in Int Conf on Software Engineering, IEEE

Claes M, Mens T, Di Cosmo R, Vouillon J (2015) “A historical analysis of Debian package incompat-
ibilities,” in Int Conf on Mining Software Repositories, IEEE

Cohen J (1960) “A coefficient of agreement for nominal scales,” in Educational and psychological meas-
urement, Sage

Coxon APM et al. (1999) Sorting data: collection and analysis. Sage
Dabrowski J, Letier E, Perini A, Susi A (2022) “Analysing app reviews for software engineering: a sys-

tematic literature review,” in Empirical Software Engineering, Springer
Dixon C, Mahajan R, Agarwal S, Brush A, Lee B, Saroiu S, Bahl V (2010) “The home needs an operat-

ing system (and an app store),” in SIGCOMM Workshop on Hot Topics in Networks, ACM
Docker (2022) “Explore Docker’s Container Image Repository | Docker Hub.” https:// hub. docker. com/

search? q=. Accessed: Jun. 22, 2022
Dong Z, Böhme M, Cojocaru L, Roychoudhury A (2020) “Time-travel testing of android apps,” in Int

Conf on Software Engineering, IEEE
E. Commission (2022) “Digital Markets Act: Commission welcomes political agreement on rules to

ensure fair and open digital markets.” https:// ec. europa. eu/ commi ssion/ press corner/ detail/ en/ IP_
22_ 1978. Accessed: Jul. 13, 2022

E. International (2022) “TC39 - Specifying JavaScript..” https:// tc39. es/. Accessed: Oct. 02, 2022
F-Droid (2022) “F-Droid - Free and Open Source Android App Repository.” https://f- droid. org/.

Accessed: Oct. 02, 2022
Ferreira G, Jia L, Sunshine J, Kästner C (2021) “Containing malicious package updates in npm with a

lightweight permission system,” in Int Conf on Software Engineering (ICSE), IEEE
Finkelstein A, Harman M, Jia Y, Martin W, Sarro F, Zhang Y (2017) “Investigating the relationship

between price, rating, and popularity in the Blackberry world app store,” Inf Softw Technol
Fischer RA-L, Walczuch R, Guzman E (2021) “Does culture matter? impact of individualism and uncer-

tainty avoidance on app reviews,” in Int Conf on Software Engineering: Software Engineering in
Society, IEEE

Gaber T, Ahmed A, Mostafa A (2020) “Privdrm: A privacy-preserving secure digital right management sys-
tem,” in Evaluation and Assessment in Software Engineering, ACM

Gholami S, Khazaei H, Bezemer C-P (2021) “Should you upgrade official docker hub images in produc-
tion environments?,” in Int Conf on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER), IEEE

GitHub (2022) “GitHub Marketplace Â· to improve your workflow Â· GitHub.” https:// github. com/ marke
tplace? type=. Accessed: Jun. 06 2022

Google (2022a) “Chrome Web Store - Extensions.” https:// chrome. google. com/ webst ore/ categ ory/ exten
sions. Accessed: Jun. 22, 2022

Google (2022b) “Chrome Web Store payments deprecation.” https:// devel oper. chrome. com/ docs/ webst ore/
cws- payme nts- depre cation/. Accessed: Mar. 16, 2022

Guo H, Singh MP (2020) “Caspar: extracting and synthesizing user stories of problems from app reviews,”
in Int Conf on Software Engineering, IEEE

Guzman E, Oliveira L, Steiner Y, Wagner LC, Glinz M (2018) “User feedback in the app store: a cross-
cultural study,” in Int Conf on Software Engineering: Software Engineering in Society

Haering M, Stanik C, Maalej W (2021) “Automatically matching bug reports with related app reviews,” in
Int Conf on Software Engineering, IEEE

Haggag O, Haggag S, Grundy J, Abdelrazek M (2021) “COVID-19 vs social media apps: does privacy
really matter?,” in Int Conf on Software Engineering: Software Engineering in Society, IEEE

Harman M, Jia Y, Zhang Y (2012) “App store mining and analysis: MSR for App Stores,” in Int. Conf. on
Mining Software Repositories, IEEE

He X, Dai W, Cao G, Tang R, Yuan M, Yang Q (2015) “Mining target users for online marketing based on
app store data,” in Int Conf on Big Data (Big Data), IEEE

Hoda R, Noble J, Marshall S (2012) “Developing a grounded theory to explain the practices of self-organiz-
ing Agile teams,” in Empirical Software Engineering, Springer

https://hub.docker.com/search?q=
https://hub.docker.com/search?q=
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1978
https://ec.europa.eu/commission/presscorner/detail/en/IP_22_1978
https://tc39.es/
https://f-droid.org/
https://github.com/marketplace?type=
https://github.com/marketplace?type=
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://developer.chrome.com/docs/webstore/cws-payments-deprecation/
https://developer.chrome.com/docs/webstore/cws-payments-deprecation/

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 36 of 39

Hu Y, Wang H, Ji T, Xiao X, Luo X, Gao P, Guo Y (2021) “Champ: Characterizing undesired app behaviors
from user comments based on market policies,” in Int Conf on Software Engineering, IEEE

Ibrahim MH, Sayagh M, Hassan A. E (2020) “Too many images on dockerhub! How different are images
for the same system?,” Empir Softw Eng

Jansen S, Bloemendal E (2013) “Defining app stores: The role of curated marketplaces in software ecosys-
tems,” in ICSOB, Springer

Khalid H, Nagappan M, Shihab E, Hassan AE (2014) “Prioritizing the devices to test your app on: A case
study of android game apps,” in Int Symposium on Foundations of Software Engineering

Khatibi Bardsiri V, Jawawi DNA, Hashim SZM, Khatibi E (2014) “A flexible method to estimate the soft-
ware development effort based on the classification of projects and localization of comparisons,”
Empir Softw Eng

Kodi T (2022) “The Movie Database Python | Matrix | Addons | Kodi.” https:// kodi. tv/ addons/ matrix/ metad
ata. themo viedb. org. python. Accessed: Jul. 13, 2022

Kuchta T, Lutellier T, Wong E, Tan L, Cadar C (2018) “On the correctness of electronic documents: study-
ing, finding, and localizing inconsistency bugs in PDF readers and files,” Empir Softw Eng

Kuznetsov K, Fu C, Gao S, Jansen DN, Zhang L, Zeller A (2021) “Frontmatter: mining Android user inter-
faces at scale,” in Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ACM

Lantz CA, Nebenzahl E (1996) “Behavior and interpretation of the κ statistic: Resolution of the two para-
doxes,” in J Clin Epidemiol, Elsevier

Lee D, Lin D, Bezemer C-P, Hassan AE (2020b) “Building the perfect game–an empirical study of game
modifications,” Empir Softw Eng

Lee D, Rajbahadur GK, Lin D, Sayagh M, Bezemer C-P, Hassan AE (2020a) “An empirical study of the
characteristics of popular Minecraft mods,” Empir Softw Eng

Lemon M (2018) “Two Point Hospital no longer uses Denuvo DRM.” https:// www. vg247. com/ two- point-
hospi tal- no- longer- uses- denuvo- drm. Accessed: Mar. 31, 2023

Lin D, Bezemer C-P, Zou Y, Hassan AE (2019) “An empirical study of game reviews on the steam plat-
form,” in Empirical Software Engineering, Springer

Liu P, Li L, Yan Y, Fazzini M, Grundy J (2021) “Identifying and characterizing silently-evolved methods in
the android API,” in Int Conf on Software Engineering: Software Engineering in Practice, IEEE

Lu Z, Shi Y, Tao R, Zhang Z (2019) “Blockchain for digital rights management of design works,” in Int.
Conf on Software Engineering and Service Science (ICSESS), IEEE

Ma S, Li J, Kim H, Bertino E, Nepal S, Ostry D, Sun C (2021) “Fine with 1234? An Analysis of SMS One-
Time Password Randomness in Android Apps,” in Int Conf on Software Engineering, IEEE

Maalej W, Nayebi M, Ruhe G (2019) “Data-driven requirements engineering-an update,” in Int Conf on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), IEEE

MacQueen J et al. (1967) “Some methods for classification and analysis of multivariate observations,” in
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland,
CA, USA

Manotas I, Bird C, Zhang R, Shepherd D, Jaspan C, Sadowski C, Pollock L, Clause J (2016) “An empirical
study of practitioners’ perspectives on green software engineering,” in Int Conf on Software Engineering

Martin W, Sarro F, Harman M (2016b) “Causal impact analysis for app releases in google play,” in Int.
Symposium on Foundations of software engineering

Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2016a) “A survey of app store analysis for software engi-
neering,” in Transactions on software engineering, IEEE

Masood Z, Hoda R, Blincoe K (2020) “How agile teams make self-assignment work: a grounded theory
study,” in Empirical Software Engineering, Springer

McIntosh S, Kamei Y, Nagappan M (2019) Release engineering for Mobile applications — communications
of NII Shonan meetings. Springer

McMillan C, Grechanik M, Poshyvanyk D (2012) “Detecting similar software applications,” in Int Conf on
Software Engineering (ICSE), IEEE

Murali V, Yao E, Mathur U, Chandra S (2021) “Scalable statistical root cause analysis on app telemetry,” in
Int Conf on Software Engineering: Software Engineering in Practice, IEEE

Murphy-Hill E, Zimmermann T, Nagappan N (2014) “Cowboys, ankle sprains, and keepers of quality:
How is video game development different from software development?,” in Int Conf on Software
Engineering

Nayebi M, Adams B, Ruhe G (2016) “Release Practices for Mobile Apps–What do Users and Developers
Think?,” in Int Conf On software analysis, evolution, and reengineering (saner), IEEE

Nayebi M, Cho H, Farrahi H, Ruhe G (2017b) “App store mining is not enough,” in Int Conf on Software
Engineering Companion (ICSE-C), IEEE

https://kodi.tv/addons/matrix/metadata.themoviedb.org.python
https://kodi.tv/addons/matrix/metadata.themoviedb.org.python
https://www.vg247.com/two-point-hospital-no-longer-uses-denuvo-drm
https://www.vg247.com/two-point-hospital-no-longer-uses-denuvo-drm

Empirical Software Engineering (2024) 29:35

1 3

Page 37 of 39 35

Nayebi M, Farahi H, Ruhe G (2017a) “Which version should be released to app store?,” in Int Symposium
on Empirical Software Engineering and Measurement (ESEM), IEEE

Ng YY, Zhou H, Ji Z, Luo H, Dong Y (2014) “Which Android app store can be trusted in China?,” in Com-
puter Software and Applications Conference, IEEE

Nguyen T, Vu P, Nguyen T (2020) “Code recommendation for exception handling,” in Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ACM

npm, “npm About.” (2022) https:// www. npmjs. com/ about. Accessed: Oct. 02, 2022
Obie HO, Hussain W, Xia X, Grundy J, Li L, Turhan B, Whittle J, Shahin M (2021) “A first look at human

values-violation in app reviews,” in Int Conf on Software Engineering: Software Engineering in Soci-
ety, IEEE

Pan L, Cui B, Liu H, Yan J, Wang S, Yan J, Zhang J (2020) “Static asynchronous component misuse detection for
Android applications,” in Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ACM

Pascarella L, Palomba F, Di Penta M, Bacchelli A (2018) “How is video game development different from
software development in open source?,” in Int Conf on Mining Software Repositories, IEEE

Pérez J, Daz J, Garcia-Martin J, Tabuenca B (2020) “Systematic literature reviews in software
engineeringâ€“Enhancement of the study selection process using Cohens kappa statistic,” in J Syst
Softw, Elsevier

Pham VVH, Liu X, Zheng X, Fu M, Deshpande SV, Xia W, Zhou R, Abdelrazek M (2017) “PaaS-black or
white: an investigation into software development model for building retail industry SaaS,” in Int.
Conf. On software engineering companion (ICSE-C), IEEE

Pickerill P, Jungen HJ, Ochodek M, Maćkowiak M, Staron M (2020) “Phantom: curating github for engi-
neered software projects using time-series clustering,” Empir Softw Eng

Prévost R, McQuaid M, Lalonde D (2022) “The Missing Package Manager for macOS (or Linux) â€”
Homebrew.” https:// brew. sh/. Accessed: Jun. 22, 2022

Rahaman S, Neamtiu I, Yin X (2021) “Algebraic-datatype taint tracking, with applications to understanding
Android identifier leaks,” in Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ACM

Rosen C, Shihab E (2016) “What are mobile developers asking about? a large scale study using stack over-
flow,” in Empirical Software Engineering, Springer

Rousseeuw PJ (1987) “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” in
J Comput Appl Math, Elsevier

Ruiz IJM, Nagappan M, Adams B, Hassan AE (2012) “Understanding reuse in the android market,” in Int.
Conf. on Program Comprehension, IEEE

Sarro F, Al-Subaihin AA, Harman M, Jia Y, Martin W, Zhang Y (2015) “Feature lifecycles as they spread,
migrate, remain, and die in app stores,” in Int requirements engineering conference (RE), IEEE

Scoccia GL, Autili M, Stilo G, Inverardi P (2022) “An empirical study of privacy labels on the apple iOS
mobile app store,” in Int Conf on Mobile Software Engineering and Systems

Shams RA, Hussain W, Oliver G, Nurwidyantoro A, Perera H, Whittle J (2020) “Society-oriented applica-
tions development: Investigating users values from bangladeshi agriculture mobile applications,” in
Int. Conf. on Software Engineering: Software Engineering in Society, IEEE

Shen S, Lu X, Hu Z, Liu X (2017) “Towards release strategy optimization for apps in Google play,” in Pro-
ceedings of the 9th Asia-Pacific symposium on Internetware

Song W, Han M, Huang J (2021) “IMGDroid: Detecting Image Loading Defects in Android Applications,”
in Int Conf on Software Engineering, IEEE

Subramanian GH, Pendharkar PC, Wallace M (2006) “An empirical study of the effect of complexity, plat-
form, and program type on software development effort of business applications,” Empir Softw Eng

Sun R, Wang W, Xue M, Tyson G, Camtepe S, Ranasinghe DC (2021) “An empirical assessment of global
COVID-19 contact tracing applications,” in Int Conf on Software Engineering, IEEE

Sung A, Kim S, Kim Y, Jang Y, Kim J (2019) “Test automation and its limitations: a case study,” in Int Conf
On automated software engineering (ASE), IEEE

Tang C, Chen S, Fan L, Xu L, Liu Y, Tang Z, Dou L (2019) “A large-scale empirical study on industrial fake
apps,” in Int Conf on Software Engineering: Software Engineering in Practice (ICSE-SEIP), IEEE

Truelove A, de Almeida ES, Ahmed I (2021) “Well Fix It in Post: What Do Bug Fixes in Video Game
Update Notes Tell Us?,” in Int Conf on Software Engineering, IEEE

Ullmann GC, Politowski C, Guéhéneuc Y-G, Petrillo F (2022) “What makes a game high-rated? towards
factors of video game success,” in Int ICSE Workshop on Games and Software Engineering: Engi-
neering Fun, Inspiration, and Motivation

Valve (2022) “Welcome to Steam.” https:// store. steam power ed. com/, Accessed: Jun. 22 2022

https://www.npmjs.com/about
https://brew.sh/
https://store.steampowered.com/

 Empirical Software Engineering (2024) 29:35

1 3

 35 Page 38 of 39

Van Der Linden D, Anthonysamy P, Nuseibeh B, Tun TT, Petre M, Levine M, Towse J, Rashid A (2020)
“Schrödinger’s security: Opening the box on app developers’ security rationale,” in Int Conf on Soft-
ware Engineering, IEEE

Vassallo C, Panichella S, Palomba F, Proksch S, Gall HC, Zaidman A (2020) “How developers engage with
static analysis tools in different contexts,” in Empirical Software Engineering, Springer

Vouillon J, Cosmo RD (2013) “On software component co-installability,” Trans Softw Eng Methodol
(TOSEM)

Walker D, Myrick F (2006) “Grounded theory: An exploration of process and procedure,” in Qualitative
health research, Sage

Wang H, Liu Z, Liang J, Vallina-Rodriguez N, Guo Y, Li L, Tapiador J, Cao J, Xu G (2018) “Beyond google
play: a large-scale comparative study of chinese android app markets,” in Internet measurement con-
ference 2018

Wang H, Wang X, Guo Y (2019) “Characterizing the global mobile app developers: a large-scale empirical
study,” in Int Conf on Mobile Software Engineering and Systems, IEEE

Wang P, Brown C, Jennings JA, Stolee KT (2022) “Demystifying regular expression bugs,” in Empirical
Software Engineering, Springer

Wikipedia (2022) “Electronic AppWrapper - Wikipedia.” https:// en. wikip edia. org/ wiki/ Elect ronic_ AppWr
apper. Accessed: Jun. 22, 2022

Wold S, Esbensen K, Geladi P (1987) “Principal component analysis,” in Chemometrics and intelligent
laboratory systems, Elsevier

WordPress (2022) “WordPress Plugins | WordPress.org.” https:// wordp ress. org/ plugi ns/. Accessed: Jun. 22,
2022

Wu H, Deng W, Niu X, Nie C (2021) “Identifying key features from app user reviews,” in Int Conf on Soft-
ware Engineering, IEEE

Yang B, Xing Z, Xia X, Chen C, Ye D, Li S (2021) “Don’t do that! hunting down visual design smells in
complex uis against design guidelines,” in Int Conf on Software Engineering, IEEE

Yang S, Wang Y, Yao Y, Wang H, Ye YF, Xiao X (2022) DescribeCtx: context-aware description synthesis
for sensitive behaviors in mobile apps. In: Int Conf on Software Engineering, IEEE

Ye J, Chen K, Xie X, Ma L, Huang R, Chen Y, Xue Y, Zhao J (2021) “An empirical study of GUI widget
detection for industrial mobile games,” in Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ACM

Yu S, Fang C, Cao Z, Wang X, Li T, Chen Z (2021b) “Prioritize crowdsourced test reports via deep screen-
shot understanding,” in Int Conf on Software Engineering, IEEE

Yu S, Fang C, Yun Y, Feng Y (2021a) “Layout and image recognition driving cross-platform automated
mobile testing,” in Int Conf on Software Engineering, IEEE

Zhan X, Fan L, Chen S, Wu F, Liu T, Luo X, Liu Y (2021) “Atvhunter: Reliable version detection of third-
party libraries for vulnerability identification in android applications,” in Int. Conf. on Software Engi-
neering, IEEE

Zhang X, Wang X, Slavin R, Breaux T, Niu J (2020) “How does misconfiguration of analytic services com-
promise mobile privacy?,” in Int Conf on Software Engineering, IEEE

Zhang Z, Feng Y, Ernst MD, Porst S, Dillig I (2021) “Checking conformance of applications against GUI
policies,” in Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ACM

Zhao T, Chen C, Liu Y, Zhu X (2021) “GUIGAN: Learning to Generate GUI Designs Using Generative
Adversarial Networks,” in Int Conf on Software Engineering, IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://en.wikipedia.org/wiki/Electronic_AppWrapper
https://en.wikipedia.org/wiki/Electronic_AppWrapper
https://wordpress.org/plugins/

Empirical Software Engineering (2024) 29:35

1 3

Page 39 of 39 35

Authors and Affiliations

Wenhan Zhu1 · Sebastian Proksch2 · Daniel M. German3 · Michael W. Godfrey1 ·
Li Li4 · Shane McIntosh1

 Sebastian Proksch
 s.proksch@tudelft.nl

 Daniel M. German
 dmg@uvic.ca

 Michael W. Godfrey
 migod@uwaterloo.ca

 Li Li
 lilicoding@ieee.org

 Shane McIntosh
 shane.mcintosh@uwaterloo.ca

1 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
2 Delft University of Technology, Delft, Netherlands
3 Department of Computer Science, University of Victoria, Victoria, Canada
4 School of Software, Beihang University, Beijing, China

http://orcid.org/0000-0001-6439-0720

	What is an app store? The software engineering perspective
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Early App Store Research
	2.2 App Stores in Recent Software Engineering Research
	2.3 Store-Focused Research
	2.4 Working Definition of an App Store

	3 Research Methodology
	3.1 Extracting Features Describing App Stores
	3.1.1 Stage 1: Identifying Features
	3.1.2 Stage 2: Expanding our Set of App Stores and Further Evaluation and Refinement the Features

	3.2 Finding Natural Groupings of App Stores
	3.2.1 Stage 3: Cluster analysis

	4 Results
	5 Discussion
	5.1 What is an App Store?
	5.1.1 Common Features of App Stores
	5.1.2 Different Types of App Stores

	5.2 Implications for the Main Participant Stakeholders
	5.3 App Store Features
	5.4 Research Opportunities Involving App Stores
	5.4.1 App Stores as Actors in Software Development
	5.4.2 The Challenge of Transferring Understanding Between Stores

	6 Threats to Validity
	7 Summary
	References

