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Abstract
With the rapid increase in popularity of graph neu-
ral networks (GNNs) for the task of traffic fore-
casting, understanding the inner workings of these
complex models becomes more important. This ex-
periment aims to deepen our understanding of the
importance that the training data has in regards to
the ability of GNNs to accurately predict traffic. By
repeatedly training the same GNN model with dif-
ferent training datasets spanning over various time
frames and comparing standard performance met-
rics computed based on the predictions performed
by the model, this paper concludes that while us-
ing less training data leads to a slight decrease in
performance, this is heavily dependent on the qual-
ity of the dataset. If the data gathering process is
short and the sensors are not properly maintained,
GNNs are not able to accurately predict traffic. On
the other hand, if the data gathering process goes
well and there are few missing values, GNNs per-
form well even when trained with smaller amounts
of historical data.
Key words: GNN, traffic forecasting, training data

1 Introduction
In the evolving landscape of urban mobility, accurate traf-
fic prediction stands as a critical component for managing
congestion, planning routes, and enhancing safety. With the
advent of Graph Neural Networks (GNNs), researchers have
unearthed powerful tools capable of capturing the complex
dependencies inherent in traffic systems, which are naturally
structured as graphs [1].

GNNs, which extend the principles of deep learning to
graph-structured data, have shown promising results in var-
ious domains, including traffic management, where they are
considered to be state-of-the-art [2]. However, choosing a
specific model is heavily contingent upon the quality and
quantity of the training data. As no singular model can be
best performing on all tasks, considering other criteria such
as data availability becomes crucial [3].

This project aims to systematically investigate the effect
of data availability and quality by evaluating a GNN model
across varying scenarios. Through this analysis, this research
aims to identify the base data characteristics that are required
by a model to accurately and reliably predict traffic, thereby
contributing to more effective traffic management solutions.

This research project explores a fundamental aspect of ma-
chine learning: the impact of training data characteristics on
model performance. Specifically, it examines how the amount
of data available for training and its distance in time to the test
data influence the predictive accuracy of GNNs in the context
of traffic forecasting.

By bridging the gap between data science and urban plan-
ning, this study not only advances our understanding of GNN
architectures but also facilitates the development of smarter,
data-driven approaches to traffic prediction. In doing so, it
addresses a key question:

What is the minimum amount of data required for
a GNN to effectively predict traffic patterns?

The main question this paper aims to answer is:

What is the effect of reducing the volume of train-
ing data on GNNs ability to accurately forecast traf-
fic?

. To answer this questions, multiple sub-questions are asked:

What is the effect of reducing the number of data-
points available by filtering data out?

How does the distance in time from data in the
training set to data in the test set impact the learning
process and prediction accuracy of GNNs?

As stated by Jiang et al., “high-quality datasets are expen-
sive to build” [4, p.20] due to the potentially long and expen-
sive process of data gathering. This process entails setting
up sensors and maintaining them. Obtaining insights into the
effect of reducing the amount of training data has on GNNs
predictive performance can potentially lead to a shorter and
more cost-efficient data gathering process. This in turn en-
ables more widespread use of GNNs for traffic forecasting
tasks in underprivileged areas. Furthermore, changes to the
traffic infrastructure need to be recorded and updated within
GNNs. This leads to increased expenses during the data gath-
ering process. By shortening this process, the future costs re-
quired to update GNNs with new information also diminish.

The approach used to conclude this experiment, the setup
and the results are mentioned, followed by ethical considera-
tions of this project. At the end, there is a short discussion of
the results, follow by conclusions that can be drawn from this
experiment.

2 Related Work
A challenge posed by the data in regard to using GNNs for
traffic prediction tasks is called the ‘cold-start problem’ [4].
As stated by Jiang et al., GNNs usually require a large amount
of training data in order to achieve satisfactory predictions.
However, the minimum amount of historical data required for
GNNs to accurately forecast traffic is rarely discussed, most
probably due to the availability of large enough benchmark
datasets such as METR-LA, PEMS-BAY and many more [2].
While finding the precise number of data points required per
sensor is almost impossible because each model processes
data differently, being able to make an educated guess is ben-
eficial when constructing new datasets and when planing to
integrate GNNs in real-life scenarios for urban development.

Other studies looked into techniques for reducing the
amount of data by removing redundant data from the dataset
[5]. Some also delve into the impact of using differently sized
time sequences as input and observe the difference in perfor-
mance metrics [6]. In both studies, it was observed that using
more data leads to more accurate results.

More similar studies that looked into the effect of using dif-
ferently sized datasets found that Long Short Term Memory
Networks (LSTMs) experience a dramatic increase in perfor-
mance when the dataset contains traffic information of at least
two weeks, as opposed to using one week [7].



3 Methodology

This section contains a detailed explanation of the experimen-
tal approach as well as the setup used to perform the exper-
iments. The first subsection explains the approach chosen
to answer the sub-questions posed by this paper. The second
subsection delves into the experimental setup used to perform
the experiments.

3.1 Approach

This section contains information about how to answer the
research questions presented in the section above.

The experiments involve training a GNN model repeatedly
with various amounts of training and validation data. To ac-
curately study the effect of the amount of training data, it is
important to test how the volume of training data affects the
model’s accuracy. Also, the distance in time from when the
measurements are taken to when the data from the test set is
placed, could potentially affect accuracy. Measuring the dif-
ference in performance between scenarios that have similar
data availability, and with a different time gap between the
training set and the test set is also important. This is useful
for deploying such models in real world scenarios where re-
sources are sparse, and deployment speed is crucial. Collect-
ing data until a certain expected accuracy is obtained, also im-
plies that the selected model does not need to be retrained or
updated to ensure the quality of predictions, avoiding unnec-
essary data collection and storage until this becomes manda-
tory due to changes in the local landscape.

Formal Definition
GNNs perform predictions over time series. More precisely,
they take a sequence of data arrays that contain traffic infor-
mation for each sensor at a given point in time and predict
what the next sequence of traffic conditions will be using the
same format. We will take the whole dataset and create new
training sets. These training sets will be used to train the
model and compute performance metrics based on the pre-
dictions it produces. Formally:

Let D = {xi}Ni=1 be the entire dataset. Define the training
set Dtrain ⊆ D with size n = b − a such that Dtrain =
{xi}bi=a and b ≤ 0.8·N , where N represents the total number
of sensor readings. xi represents an array of data that contains
the traffic information at index i.

Then, train the GNN model f(X; θ) on Dtrain, where θ
represents the model parameters and X is a sequence of con-
secutive sensor readings.

Using the trained model, the predictions Ŷ = f(Xtest; θ)
are obtained on the test set Dtest = {xi}Ni=N−m, where m =
0.2 ·N represents the number of samples in the test set. For a
sequence of test inputs Xtest, the true values Ytest represent
the next sequence of sensor readings from D.

The metrics used to measure performance are: mean ab-
solute error (MAE), root mean square deviation (RMSE) and
mean absolute percentage error (MAPE).

The performance metrics are calculated based on the pre-
dicted values Ŷ and the true values Ytest.
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Where ŷi is the predicted value, and yi is the true value.

Model Selection
The first step in measuring the impact of training data on a
GNN model is to select a model. For this purpose, the De-
coupled Dynamic Spatial-Temporal Graph Neural Network
(D2STGNN) model [8] was selected. This choice was made
for multiple reasons. First of all, this model is among the best
performing models on multiple publicly available datasets
for speed prediction, such as METR-LA and PEMS-BAY [9;
10]. Moreover, it is easy to use and set up.

GNNs use graph structures to model the complex spatial
dependencies of traffic forecasting [2]. D2STGNN uses an
adjacency matrix to model the graph like structure of the road
network, then performs further processing by separating traf-
fic signals into multiple signals. The proposed architecture
of the model uses three components. First, there is a decou-
ple block that decomposes the time series of traffic signals
into two time series which represent the diffusion and inher-
ent signals. The diffusion block handles the diffusion signals,
which represent traffic data spread across the entire network,
while the inherent block handles the inherent signals that rep-
resent inherent traffic patterns at specific locations. Finally, a
fusion model is used to integrate the results from the diffusion
and inherent blocks and make final traffic predictions.

Dataset Selection
The second step is selecting the dataset. That dataset is
METR-LA because it is among the most popular datasets
for training [2; 4]. The dataset contains traffic information
measured at 5 minutes intervals from 207 loop detectors on
the highways of LA County, spanning over 4 months from
the 1st of March until the 30th of June in the year 2012 [8;
11].

3.2 Experimental Setup
This subsection presents the data processing employed by this
experiment, as well as the specifics of executing the code.
The first part details how the dataset was chosen, how it was
processed and how new datasets were created. The second
part details how to train the selected model and how this pro-
cess was performed in the scope of the experiment.

Data Processing
This part explains how the initial the dataset has been pro-
cessed so that new sets are created.

First of all, the last 20% of the data from METR-LA is
always used as the test set. This is the percentage of test data



used to measure the performance when training the model
over METR-LA used by its authors [8] so that the accurate
reproduction of the model can be checked.

From the rest of the data, new sets were created so that they
cover measurements spanning over two months, one month,
half a month and finally one week intervals from March and
April of the year 2012. These time frames are rough estima-
tions of the lengths used. Because four weeks contain a total
of 28 days, some of the datasets that represent a week contain
8 days instead of 7. This has been done so that the datasets
of roughly the same size cover March and April. For the ex-
act time intervals used for each dataset, including the MAE,
RMSE and MAPE, see Appendix A.

The filtering process is performed by reading the initial
dataset and indexing the data on date and time. Then, a copy
of the dataset is filtered based on a date range and saved as
a new dataset. Both the initial dataset and the generated fil-
tered datasets are saved using the Hierarchical Data Formats
(HDF) used to store large amount of data, more specifically
using H5 file format.

The model is then trained with access to the filtered
datasets, in the form of training and validation sets, and fi-
nally tested against the test set. From each of the filtered
datasets, 90% of the data is used for generating the training
set, while the remaining 10% is used to generate the valida-
tion set. Both the training and validation sets are generated by
inputting the filtered datasets into the ’generate training data’
script provided inside the D2STGNN Python project pub-
licly available1. The script reads the dataset and generates
sequences of input and output data of fixed lengths. These
generated sequences are then split into training, validation
and test sets. The script used in this experiment to gener-
ate the training and validation sets is a copy of the original
script, where the number of test samples is set to 0 and the
number of training samples is set to 0.9 of the total number
of samples. The number of validation samples is computed
as the number of total samples, from which we subtract the
number of training and test samples.

Code Execution
It is also important to note the specifics of training a GNN
model. In this case, all the models trained used the same
computer for training and the hyper parameters are identical
for all the models. D2STGNN uses Adam as the optimiser,
with the initial learning rate set to 0.001 over input and output
sequences of length 12 [8]. For a more detailed overview
of parametrisation, refer to either the paper or to the open
repository of the author. The exact configuration files used
for the experiments can be found on the publicly available
GitHub repository2.

The execution of the code was performed on the Delft-
Blue Supercomputer of Delft High Performance Computing
Center (DHPC) [12]. The code execution is performed on
GPU nodes with four NVIDIA A100 GPUs with 80 GB video
RAM each. For the specific scripts used to execute the code
on the DelftBlue Supercomputer refer to the last mentioned
repository.

1https://github.com/zezhishao/D2STGNN
2https://github.com/AlexPacurar01/Research-Project-Code

4 Results
First, it is important to compare performance metrics from
datasets that use similar time frames. As seen in both Figure
1 and Figure 2, the models trained on datasets spanning over
similar time frames have close performance metrics. The ex-
ceptions are the dataset from the fourth week of March and
the dataset over the first half of April. In Figure 1 the MAE
of the predictions are mostly similar, while there are bigger
differences in RMSE and MAPE being recorded. The best
results are recorded by the model that used the third week
of April (from the 16th until the 23rd), while most models
trained over one week time frames from April outperform
those trained using data from March, both models trained
using the first and second week from March outperform the
model trained with data from the last week of April on all
metrics. In Figure 2 the model that is that trained with data
from the last half of April outperforms those trained with data
from March by a very small, while both models that used data
from the month of March perform noticeably better than the
model trained with data from the first half of April.

Figure 1: Performance metrics of training the model with data from
different one week time frames.

Figure 2: Performance metrics of training the model with data from
different half month time frames.

When excluding the two scenarios that perform worse than
expected by a larger margin, the differences in accuracy are
not significant and most probably occur due to factors such



as data sparsity and how close does the data from the training
set resemble the data from the test set.

On the other hand, these two exceptions are most likely due
to errors in sensor readings. In the initial dataset, there are
large blocks of zero values that most likely affect the model’s
ability to correctly predict future traffic. While in general,
values of zero occur seemingly at random, in some cases the
sensors do not perform any measurements for long periods
of time. Models that are trained with data that contains such
cases tend to perform noticeably worse than models trained
on datasets that do not contain continuous blocks of zero val-
ues.

When comparing the performance metrics of training the
model with data from March and with data from April, it is
clear that the model trained only with data from March out-
performs, as seen in Figure 3. This is also most probably re-
lated to the large blocks of missing values. The measurements
from the first half of April contain more of these problematic
readings, and for longer periods of time, than the measure-
ments from March. However, when the model is trained with
more data, the difference in performance is smaller because
the blocks of missing values represent a smaller percentage
of the training data.

Figure 3: Performance metrics of training the model with data from
March and April respectively.

Considering the results from above, it is safe to conclude
that the distance in time from data used in the training set to
the data used in the test set is not proportional to the perfor-
mance of the model. The amount of data, as well as the qual-
ity of the measurements, are more important in determining
the impact training data has on a GNNs ability to accurately
predict traffic.

The average impact of changing the size of the time frame
used to filter data is more apparent in Figure 4. Using more
data leads to better accuracy and to a lower standard devi-
ation. With an increase in training data, continuos sensor
maintenance becomes less important because erroneous or
missing values represent a smaller percentage of the data used
for training. The model trained with all the data recorded in
March and April outperforms all models trained with less data
over all metrics. Moreover, the model trained using training
data from both months outperforms the models trained with
data from one-week intervals by more than one standard de-

viation for all metrics and has a MAPE value lower than the
average of any group by more than the standard deviation.

Figure 4: Average performance metrics of training the model with
data from similarly sized time frames of one week, half a month

and one month respectively. Standard deviation is indicated by the
error bar.

More in depth data that contains the exact performance
metrics recorded by training the model with data from each
dataset and the time frame used to filter the datasets can be
found in Appendix A.

5 Responsible Research
In conducting this research on GNNs for Traffic Forecasting,
several considerations are made to ensure the study is con-
ducted responsibly and ethically.

5.1 Ethical Considerations
There are two main considerations for this research: train-
ing GNN models requires resources and ensuring data privacy
and its correct usage.

Training GNN models, especially using a supercomputer,
requires significant computational power. This raises con-
cerns about energy consumption and environmental impact.
To address this, I strived to efficiently use available resources
to minimize unnecessary computational waste.

The dataset used in this research is METR-LA, which is a
publicly available traffic information dataset. It does not con-
tain personal information or directly involve human subjects,
thus mitigating privacy concerns. However, responsible us-
age involves acknowledging the sources of this dataset and
ensuring it is used strictly for the purposes of this research.

5.2 Research Integrity
This research adheres to the guidelines and standards set by
TU Delft, ensuring that all practices align with the accepted
norms for ethical and responsible AI research. This includes
transparency in reporting methodologies, results, and poten-
tial biases. All research activities are conducted in accor-
dance with the TU Delft Code of Ethics3 and the Netherlands

3https://www.tudelft.nl/en/student/legal-position/education-
regulations/code-of-ethics



Code of Conduct for Research Integrity4.
To ensure the integrity and reproducibility of the research

findings, I strived to make the experiment easy to reproduce
by recording decisions taken and making the code publicly
available. This includes the selection of datasets, the config-
uration of the GNN models, the training processes, and the
evaluation metrics. By providing detailed explanations of the
methods and rationales behind each decision, I aim to main-
tain transparency and allow others to replicate the study if
desired.

The accuracy and validity of the research findings are criti-
cal. This involves conducting thorough testing and validation
of the GNN models on multiple datasets with varying sizes.
Results are compared and analysed to determine the mini-
mum data requirements and the impact of data measurement
on prediction accuracy. Any anomalies or unexpected find-
ings are investigated and reported.

6 Discussion
Considering the results from the previous sections, it is inter-
esting to observe how while on average using a larger time
frame of data leads to better results, this is not true for every
particular case. Most notably, training the model over the first
half of April leads to worse results than training on only one
week in most cases. This is clearly visible when comparing
Figure 1 and Figure 2.

When looking at all the data from METR-LA, some of the
sensor values are missing. This is apparent when looking at
the 26th of March or at the 8th of April for example. All
the sensors recorded an average speed of 0 miles per hour for
long periods of time, which is very unlikely to happen for
all sensors at once. This indicates that most probably there
were issues with the data measurement process. As an effect,
some datasets have an increased percentage of zero values
(sparsity) compared to others. It is known that GNNs per-
form better when trained with less sparse data and can profit
from using missing data imputation techniques. As stated
by Gadelho: “GNNs can benefit from these techniques, es-
pecially when used with VCI and METR-LA datasets” [13,
p.75]

While the data sparsity percentages are similar across most
of the datasets, both models that performed considerably
worse than expected for their respective category had a more
sparse training dataset. The dataset containing information
from the fourth week of March has around 23.5% sparsity,
while the second highest sparsity percentage recorded is ap-
proximately 11.8% recorded in the dataset from the first week
of April. The average sparsity for one week datasets, exclud-
ing the fourth week of March, is approximately 7%. The spar-
sity of all the data excluding the data used in the test set is
very close to 8.11%.

However, the percentage of zero values is not the only fac-
tor relevant to sparsity. When comparing the performance
of the model when trained using time frames of one month
in Figure 3 it is clear that using the data from the month of
March leads to better results. The sparsity of data from the

4https://www.nwo.nl/en/netherlands-code-conduct-research-
integrity

month of March is almost exactly 9%, while that of the data
from the month of April is approximately 8.38%. The most
probable cause for this is the distribution of missing values
within the datasets. While few sensors not working is in-
convenient, sometimes the dataset contains some large time
frames where all sensors record values of zero. On the 26th of
March no sensor registered any cars passing for seven hours
and 40 minutes. On the 8th and 9th of April, the sensors
recorded only values of zero for a total of 29 hours and 10
minutes. This is not apparent in the performance metrics of
training the model over one week in April because the first
week uses data until the 8th, so this large block of missing
values is split over two different datasets. This would also
explain why training over the first half of April leads to worse
results than training over a week on average.

7 Future Work
Due to the limitations of this research project, such as the use
of a singular initial dataset, a singular GNN model and lack of
data imputation techniques, there are multiple aspects of this
experiment that could be changed so that new information is
derived.

First of all, this experiment can be reproduced with any
model, so observing how different GNNs behave when
trained with less and less data could help obtain more insight
into how GNNs behave for the task of traffic forecasting.

Moreover, using different initial datasets is also beneficial.
All the models are trained with data from the same location.
Using multiple datasets that contain traffic information from
various areas and with different sparsity percentages is very
useful for generalising this experiment.

In addition, observing how GNNs behave on smaller and
smaller datasets when paired up with imputation techniques
would most probably give results closer to what can poten-
tially be achieved in real life scenarios.

8 Conclusion
Considering all that has been said thus far, using training sets
that span over shorter time frames does not lead to a signifi-
cant decrease in performance on average. The expected loss
of accuracy is of less than 2 miles per hour when using a train-
ing dataset that contains sensor measurements from one week
instead of two months. This is true in cases where sensor er-
rors do not lead to a very sparse dataset.

With this information in mind, creating new datasets and
using GNNs in urban areas that did not previously have access
to this technology should be faster to implement since the
time required for gathering data after setting up sensors can
be reduced without drastically decreasing the accuracy of the
predicted traffic. However, ensuring the quality of the dataset
becomes increasingly more important as the time spend to
record training data decreases. In cases where maintenance
costs are high, it is better to focus on properly maintaining the
sensors for a shorter period of time so that the training set is of
high quality and then perform occasional maintenance checks
than to keep up with the high cost of constant maintenance for
longer periods of time in exchange for a small performance
increase.
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A Appendix A

Time Frame Start Date End Date Test MAE Test RMSE Test MAPE

METR-LA 2012-03-01 2012-06-04 2.88 5.80 7.78
March 2012-03-01 2012-03-31 3.12 6.27 8.54
April 2012-04-01 2012-04-30 3.84 9.09 9.68
March + April 2012-03-01 2012-04-30 2.97 5.96 7.99
First half of March 2012-03-01 2012-03-15 3.28 6.59 9.22
Last half of March 2012-03-16 2012-03-31 3.31 6.69 9.29
First half of April 2012-04-01 2012-04-15 5.00 11.43 12.01
Last half of April 2012-04-16 2012-04-30 3.23 6.51 9.01
First week of March 2012-03-01 2012-03-07 3.96 8.37 10.66
Second week of March 2012-03-08 2012-03-14 4.11 9.06 10.76
Third week of March 2012-03-15 2012-03-21 4.42 9.73 11.16
Fourth week of March 2012-03-22 2012-03-28 7.50 15.58 16.35
First week of April 2012-04-01 2012-04-08 3.65 7.34 11.02
Second week of April 2012-04-09 2012-04-15 3.86 7.86 11.78
Third week of April 2012-04-16 2012-04-23 3.43 6.89 9.70
Fourth week of April 2012-04-24 2012-04-30 4.20 9.33 11.13

Table 1: Performance metrics for various time frames

Note that in the above table, the exact last date used by the
training and validation set is 2012-06-04 04:45:00. The first
time stamp used in the test set is 2012-06-04 04:50:00.
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