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Quantum machine learning algorithms
based on parameterized quantum circuits
are promising candidates for near-term
quantum advantage. Although these al-
gorithms are compatible with the current
generation of quantum processors, device
noise limits their performance, for exam-
ple by inducing an exponential flatten-
ing of loss landscapes. Error suppression
schemes such as dynamical decoupling and
Pauli twirling alleviate this issue by re-
ducing noise at the hardware level. A re-
cent addition to this toolbox of techniques
is pulse-efficient transpilation, which re-
duces circuit schedule duration by exploit-
ing hardware-native cross-resonance inter-
action. In this work, we investigate the im-
pact of pulse-efficient circuits on near-term
algorithms for quantum machine learning.
We report results for two standard ex-
periments: binary classification on a syn-
thetic dataset with quantum neural net-
works and handwritten digit recognition
with quantum kernel estimation. In both
cases, we find that pulse-efficient transpi-
lation vastly reduces average circuit du-
rations and, as a result, significantly im-
proves classification accuracy. We con-
clude by applying pulse-efficient transpila-
tion to the Hamiltonian Variational Ansatz
and show that it delays the onset of noise-
induced barren plateaus.

1 Introduction
Quantum machine learning (QML) is a nascent
area of research that has seen rapid developments

André Melo: am@andremelo.org
Francesco Tacchino : fta@zurich.ibm.com

over the last decade [1, 2, 3, 4]. Initial works in
the field focused on developing quantum versions
of existing classical algorithms, thereby achieving
asymptotically faster runtimes [5, 6, 7]. How-
ever, these algorithms are beyond the capabil-
ities of current quantum hardware, as they re-
quire the execution of rather deep quantum cir-
cuits and often rely on specific assumptions like
quantum memories [8] to overcome bottlenecks
in data loading and readout. More recently, the
fast technological progress and wide availability
of noisy quantum processors [9, 10] motivated the
emergence of a second generation of QML algo-
rithms based on parameterized quantum circuits
(PQCs) [11, 12, 13, 14, 15, 16, 17, 18]. In this
alternative QML paradigm, quantum computers
may function as a co-processor working in tan-
dem with classical computers. Because the cir-
cuit Ansätze can be shallow in depth, PQC-based
algorithms are in principle compatible with the
existing generation of quantum devices.

An important obstacle to the viability of QML
in the near term is the presence of hardware
noise [19]. Coherent errors often simply shift the
position of minima in the loss landscape, in which
case they can be trained away [20]. In contrast,
errors arising from incoherent noise have more ad-
verse effects that hinder trainability and perfor-
mance. As an example, incoherent errors cause
the loss function of a large family of Ansätze
to vanish exponentially with increasing number
of layers, a phenomenon known as noise-induced
barren plateaus (NIBP) [21]. A similar effect oc-
curs in kernel-based methods where noise can lead
to an exponential concentration of the kernel val-
ues [22].

A common approach to mitigate the effects
of device noise is to use protocols that esti-
mate improved expectation values through clas-
sical post-processing, a procedure known as er-
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ror mitigation [23, 24, 25, 26, 27, 28]. While
schemes such as zero-noise extrapolation [23, 24]
and virtual distillation [25] can significantly en-
hance the performances of noisy processors [29],
they also introduce additional experimental or
computational overhead and are can be ineffec-
tive in preventing noise-induced cost concentra-
tion [30, 22, 31, 32]. A complementary strategy
is to apply error suppression schemes that sup-
press noise at the hardware level, such as dynam-
ical decoupling [33, 34] and Pauli twirling [35]. A
recently-introduced tool for hardware-level error
suppression is pulse-efficient (PE) transpilation
of cross-resonance gates [36, 37]. The core idea
of this technique is to decompose two-qubit gates
into hardware-native ones, such as echoed cross-
resonance pulses on superconducting architec-
tures based on fixed-frequency qubits. The echoes
are then exposed to the transpiler to remove re-
dundant single-qubit rotations. The resulting cir-
cuits often have significantly lower schedule dura-
tions, thereby mitigating errors introduced by fi-
nite coherence times. Crucially, PE transpilation
requires no additional overhead or calibration.
Refs. [36, 38] applied this technique to combina-
torial optimization tasks and demonstrated sig-
nificant improvements over conventional CNOT-
based transpilation. Related ideas were also ex-
plored in Refs. [39, 40, 41], which directly op-
timized pulse parameters to address variational
problems. However, a comprehensive study of the
impact of PE transpilation on the performance
of paradigmatic QML algorithms powered by pa-
rameterized quantum circuits was not available
until now.

In this work, we demonstrate the application
of PE transpilation to three paradigmatic QML
tasks. To highlight the general applicability and
versatility of our method, we conduct our exper-
iments across three different IBM Quantum [42]
backends using qiskit [43]. We begin by train-
ing Quantum Neural Networks (QNNs) on a syn-
thetic dataset and observe that PE transpilation
significantly improves the resulting training loss
and classification accuracy. Afterwards, we apply
PE transpilation to a quantum kernel circuit that
we use to classify all 10 digits of the commonly-
used MNIST dataset. When compared to CNOT-
based transpilation, PE transpilation allows us
to significantly extend the width of the kernel
circuits and achieve a classification accuracy of

≈ 90%. Finally, we explicitly compute the ef-
fect of PE transpilation on NIBP. In particular,
we study how the loss function of the Hamilto-
nian Variational Ansatz [44] evolves for increasing
number of layers and find that PE transpilation
slows down the onset of the NIBP.

2 Application to quantum neural net-
works

QNNs are one of the leading variational algo-
rithms for QML [45, 46, 11, 47, 48]. A typical
QNN architecture for classification tasks is com-
prised of three main steps. First, classical data
x⃗ ∈ Rn is encoded onto a quantum state through
a parameterized feature map UFM(x⃗). The result-
ing state UFM(x⃗)|0⟩⊗n is then fed to a variational
ansatz Uv(θ⃗), where θ⃗ denotes a set of trainable
parameters. Finally, the expectation value of an
observable O is measured and classically post-
processed to yield the model predictions yp =
f(x⃗|θ⃗) and the loss function L(f(x⃗|θ⃗), y⃗), where
y are the true labels. A classical optimization al-
gorithm then iteratively varies θ⃗ to minimize L.

We begin by studying the impact of PE tran-
spilation on a binary classification task with the
QNN shown in Fig. 1 (see App. A for a descrip-
tion of the underlying mechanism which enables
our specific PE method). We consider an archi-
tecture similar to the one reported in Ref. [17]
but restrict entangling operations to neighbor-
ing pairs of qubits in order to avoid prohibitively
large circuit depths. A forward pass of the QNN
starts with two layers of the feature map proposed
in Ref. [14] (Fig. 1 (b)). A single layer applies
Hadamard and RZ gates on all qubits, where the
RZ rotation angle is related to the feature values
by the relation 2xi. This is followed by RZZ op-
erations on neighboring pairs of qubits, where the
rotation angle xij = 2(π −xi)(π −xj) depends on
products of the features. We then apply a vari-
ational ansatz that consists of parameterized RY

gates applied on every qubit, followed by CNOTs
on neighboring qubits, and a final set of param-
eterized RY (Fig. 1 (a)). The angles θi of the
RY operations are the training parameters that
are optimized classically to fit a given target func-
tion. Finally, we measure the parity of the output
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1Figure 1: (a) Quantum neural network architecture for
binary classification. A forward pass of the network be-
gins with an encoding stage that maps feature vectors
x⃗ to a quantum state through a parameterized feature
map UFM(x⃗). The second stage of the network consists
of a variational form with parameterized RY (whose an-
gles are optimized with a classical routine) and CNOT
gates applied on neighboring qubits. Finally, we mea-
sure the parity of the qubits in the Z basis, with the
fraction of even (odd) bitstrings representing the prob-
ability of class 0 (1). (b) A single layer of the param-
eterized feature map UFM(x⃗). Hadamard gates are ap-
plied on every qubit, followed by RZZ rotations on ev-
ery pair of neighboring qubits (highlighted in blue). (c)
Pulse schedules that implement an RZZ(0.5) gate on
ibmq_guadalupe through a conventional CNOT-based
approach (top panel) and pulse-efficient transpilation
(bottom panel). The section highlighted in red in the
top panel corresponds to the pulses that implement a sin-
gle CNOT gate through cross-resonance. Pulse-efficient
transpilation significantly decreases the schedule dura-
tion resulting in higher circuit fidelities.

bit strings

m(x⃗, θ⃗) = |⟨0|U†
FM(x⃗)U†

v(θ⃗)PUv(θ⃗)UFM(x⃗)|0⟩|2
(1)

where P = ∏
i Zi is the parity operator and Zi is

the standard Pauli Z operator acting on the i-th
qubit. We associate even parity with class 0 and
odd parity with class 1.

We benchmark the QNN performance on a syn-
thetic two-class dataset with standard and PE
transpilation. To ensure the QNN can distinguish
between the two classes with high accuracy, the
dataset is generated via the QNN model by fixing
the trainable parameters θ⃗s in such a way that the
separation of the classes is maximised. The train-
ing procedure is then carried out starting from a
new, random initialisation of the parameters, and
should ideally recover the set used to generate the
data. More formally, we uniformly sample 600
feature vectors x⃗ ∈ [0, 1)n and compute their par-
ity m(x⃗, θ⃗) through noiseless simulations. Using
the L-BFGS-B optimizer [49], we search for QNN
parameters θ⃗s that maximize the average absolute
parity 1

600
∑

i |m(x⃗i, θ⃗s)|. Out of this set of feature
vectors, we further select the 50 samples for each
class with the largest absolute parity expectation
value. Fig. 2(a) shows an example of the result-
ing dataset for 2 qubits alongside the probability
of observing class 0 p(y = 0, x⃗, θ⃗s). We observe
that the decision boundary of the QNN correctly
separates the two classes.

We train the QNNs on ibmq_jakarta us-
ing a cross-entropy loss function and 50 iter-
ations of Spall’s SPSA stochastic gradient de-
scent algorithm [50] with an automated calibra-
tion phase [44] of 50 iterations. Moreover, we ap-
ply readout error mitigation [51] and use 100 sam-
ples both for training and testing the networks.
We show example training curves for n = 3 qubits
in Fig. 2(b) which converge almost immediately
after the initial calibration stage. In Fig. 3(a-
b), we compare the training loss and testing clas-
sification accuracy of pulse-efficient and regular
QNNs with n = 2 to 5 qubits. While the perfor-
mance of the standard QNN deteriorates rapidly
after n = 2, the PE QNN remains competitive
with the performance of the noiseless simulation
throughout the whole range of n. We attribute
this improvement to a reduction in incoherent er-
ror due to the shorter schedule duration in PE
circuits (Fig. 3(c)). More specifically, as we show
in Fig. 1(c) PE transpilation significantly short-
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Figure 2: Training a quantum neural network on ibmq_jakarta. (a) Example of a synthetic two-class dataset generated
from the QNN shown in Fig. 1 with n = 2 features. The heat map represents the probability assigned to class 0 by
the QNN with the weights set to those used to generate the binary dataset. The red dashed lines correspond to the
decision boundaries p(y = 0) = p(y = 1) = 0.5 of the model. (b) Convergence of the training loss on n = 4 qubits
dataset after 120 iterations of the SPSA algorithm. The blue, orange and green curves show the training loss of the
simulated, pulse-efficient, and regular quantum neural networks, respectively.
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Figure 3: Comparison of the performance of quantum
neural networks with pulse-efficient and regular tran-
spilation. (a) Training loss after 120 iterations of the
SPSA algorithm. (b) Classification accuracy on the test
set. (c) Average schedule duration of QNN circuit. The
pulse-efficient circuits have significantly lower schedule
duration, which improves circuit fidelity and classifica-
tion accuracy.

ens the duration of RZZ gates [36] and hence of
the feature map portion of the circuit.

3 Application to quantum kernels
We now turn to investigating the impact of PE
transpilation on fidelity-based quantum kernel
classification. This class of algorithms uses a
quantum feature map to compute a similarity
measure between input data points [15, 14, 52,
18, 53]

K(x⃗i, x⃗j) = |⟨0|U†
FM(x⃗i)UFM(x⃗j)|0⟩|2. (2)

The resulting Gram matrix K is then fed to a
classical kernel method such as a support vec-
tor machine [54] to predict the corresponding la-
bels y⃗.

For this experiment we use the same feature
map as in the QNN case presented above, but in-
crease the depth to 4 in order to achieve higher
classification accuracy. Following the approach
outlined in Ref. [14], we estimate the feature vec-
tor kernel function for all pairs of training data
x⃗i, x⃗j using 8192 shots. Specifically, we apply
the circuit U†

FM(x⃗i)U†
FM(x⃗j)|0⟩⊗n and then mea-

sure all qubits in the Z basis. The kernel entry
K(x⃗i, x⃗j) then corresponds to the frequency of
the zero bitstring 0n. Having repeated this pro-
cess for all the training data, we feed the result-
ing kernel matrix to a conventional support vec-
tor machine implemented with scikit-learn [55].
For this classification task, we choose the MNIST
dataset, a popular real-world database of hand-
written digits [56], and use 10 training and testing
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Figure 4: Impact of pulse-efficient transpilation on quantum kernel classification run on ibmq_montreal. (a) Classifi-
cation accuracy on test dataset for a noiseless simulation, pulse-efficient, and regular circuits. (b) Normalized mean
square error of the training kernel matrix compared to the simulated kernel matrix. (c) Average circuit duration for
pulse-efficient and regular circuits compared to the T1. In the bottom panel we show the training kernel matrices at
n = 9 qubits obtained with (d) noiseless simulations, (e) pulse-efficient circuits, and (f) regular circuits.

samples for each of the ten digits. The kernel cho-
sen for this experiment uses a the number of in-
put features equal to the number of qubits. In the
case of the MNIST dataset, the resolution of the
images exceeds the number of qubits we use. We
therefore reduce the number of features through
a truncated singular value decomposition, a stan-
dard dimensionality reduction procedure.

Due to the sparsity of the kernel circuits, the
qubits experience large idle times that lead to er-
ror accumulation [57]. To mitigate this source of
noise, we combine PE transpilation with a dy-
namical decoupling protocol. Whenever qubit i
has an idle time Tidle larger than twice the single
qubit gate time, we apply a dynamical decoupling
sequence τ/2−Xp−τ −Xm−τ/2 with delay times
τ = Tidle − 2TXp/m

where Xp/m are positive/neg-
ative π pulses around the x-axis and TXp/m

their
duration.

We run the kernel circuits on linearly connected
subsets of qubits on ibmq_montreal with PE and
regular transpilation, along with noiseless simu-
lations. Fig. 4(a) shows the testing classification

accuracy as a function of the number of qubits
for all three methods. Focusing first on the simu-
lated curve, the classification accuracy increases
monotonically with the number of qubits. This
occurs because the number of qubits increases
concomitantly with the number of training fea-
tures, which makes it easier to distinguish differ-
ent digits. Turning to the device runs, the perfor-
mance of the regular circuit remains very close to
the ideal curve up to 5 qubits, after which it de-
grades rapidly and stays below 80%. This sharp
turning point coincides with the average circuit
duration becoming comparable with the average
device T1, see Fig 4(c). In contrast, the PE tran-
spilation circuit durations are always well below
the coherence limit of the device, thereby yield-
ing classification accuracies that reach 90% and
closely track the simulated values. To further
quantify the performance of the device runs, in
Fig 4(c) we show the normalized mean square er-
ror of the experimental kernel matrices compared
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to the simulated matrix Ksim:

NMSE(K) =
∑

ij(Ksim
ij − Kij)2∑

ij(Ksim
ij )2 . (3)

The error curves show a similar trend to the av-
erage circuit durations, with the error of the reg-
ular circuits increasing much faster than the PE
circuits. In Fig. 4(d-f) we show training kernel
matrices with n = 9 qubits for all three methods.
The PE transpilation kernel matrix is close to
the simulated matrix and has an approximately
block-diagonal structure, indicating the feature
map is capable of separating the digits with high
accuracy. In contrast, the regular transpilation
matrix is mostly devoid of structure, which re-
sults in significantly lower classification accuracy.
Moreover, its matrix elements are close to 0, sig-
naling that the underlying bitstring distribution
is extremely noisy.

In App. B we perform additional experiments
to estimate how much of the performance boost
we observe can be attributed to PE transpilation
versus dynamical decoupling and find that PE
transpilation is the main driver of the improve-
ment.

4 Impact on noise-induced barren
plateaus
In our last experiment, we investigate the im-
pact of PE transpilation on NIBP. We implement
the Hamiltonian Variational Ansatz for the trans-
verse field Ising model as considered in Refs. [58]
and [21]. We consider a linearly connected chain
of spins, such that a single layer of the ansatz is
given by

UTFIM = exp (−iHx) exp (−iHzz) , (4)

where

Hx =
N−1∑
i=0

γiσ
x
i , (5)

Hzz =
N−2∑
i=0

βi,i+1σz
i σz

i+1, (6)

and σi
α are the conventional Pauli matrices acting

on the i-th qubit. To study the onset of NIBP, we
study the behavior of a local observable with in-
creasing number of qubits n and ansatz layers L.
Following [21], we measure the local parity of the

2 4 6 8 10
Number of qubits

10−2

10−1

(a)

⟨|C|⟩

2 4 6 8 10
Number of qubits

10−2

10−1

(b)
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Noiseless simulation Regular Pulse-efficient

1
Figure 5: Mitigation of noise-induced barren plateaus
through pulse-efficient transpilation. We consider an
ansatz similar to the Hardware Variational Ansatz with a
number of layers that increases linearly with the number
of qubits. By sampling over 100 sets of random param-
eters we compute the average (a) loss function, and (b)
partial derivative with respect to the last βi,i+1 param-
eter.

first two qubits O = Z0Z1 along with its deriva-
tive with respect to the last βi,i+1 parameter.
Further, we set the number of layers to increase
linearly with the number of qubits L = 2(n − 1)
and perform our runs on ibmq_montreal.

In Figure 5 we show the cost function and its
partial derivative with respect to the last βi,i+1
parameter averaged over 100 random parameter
sets. In the case of noiseless simulations, both
curves appear to slowly decay polynomially with
increasing number of qubits. On the other hand,
the device runs show a noticeable exponential de-
cay starting at around n = 8 qubits, which we
attribute to the onset of NIBP. However, both
the average loss function and derivative of the
PE transpilation circuits are consistently above
those of the regular circuits. Although PE tran-
spilation does not remove NIBP, it has more fa-
vorable scaling which would allow going to higher
depths of number of qubits when compared with
regular transpilation.

5 Discussion
In this work, we studied the impact of PE transpi-
lation on the performance of near-term QML al-
gorithms. We began by performing binary classi-
fication of a synthetic dataset with a QNN, where
we found that PE circuits achieved significantly
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higher classification accuracy and lower training
loss. Secondly, we used quantum kernel estima-
tion to classify a real-world dataset of handwrit-
ten digits. Combining PE transpilation with dy-
namical decoupling allowed us to accurately es-
timate kernels up to 9 qubits and achieve 90%
classification accuracy, whilst regular circuits re-
main below 80%. Lastly, we studied the onset
of NIBP on a commonly-used ansatz for quan-
tum chemistry. Our results show that PE tran-
spilation slows down the onset of NIBP, which
allows executing variational quantum algorithms
at higher numbers of qubits when compared with
regular transpilation.

Our results highlight a key advantage of PE
transpilation, namely that it introduces no addi-
tional overhead or calibrations and is compatible
with most qiskit-based programs with minimal
modifications. Furthermore, we observe that it
consistently improves circuit performance across
different models and devices. This makes our
proposed approach particularly appealing for ap-
plications and use cases that rely on remote de-
vice access and control. We expect that these
improvements extend to most protocols featur-
ing parameterized RZX(θ) gates: these natively
appear in a broad class of quantum algorithms,
such as Hamiltonian simulation schemes [59, 60]
– with potential applications to optimization [61]
and sampling problems [62, 63] – and unitary cou-
pled cluster circuits in quantum chemistry.

While finalizing this work, we became aware of
a recent preprint [64] that also applies PE transpi-
lation to PQCs designed for quantum chemistry
and optimization tasks.
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In this appendix we briefly review pulse-efficient
transpilation for cross-resonance-based hardware
(typically coupled fixed frequency transmons).
The cross-resonance interaction arises by driving
a control qubit at the target qubit’s frequency.
Within the two-level approximation, the result-
ing time-independent Hamiltonian reads

HCR = 1
2 (Z ⊗ B + I ⊗ C) , (7)

where B = ωZII + ωZXX + ωZY Y , C = ωIXX +
ωIY Y + ωIZZ, and I, X, Y, Z are Pauli matri-
ces [65, 66, 67]. By using echoed cross-resonance
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Figure 6: Impact of pulse-efficient transpilation on quantum kernel classification run on ibmq_gaudalupe.

pulses with rotary tones [68, 69], it is possible to
isolate the ZX interaction and thus implement
the unitary RZX(θ) = exp{−iZXθ/2} with good
accuracy. To first approximation, the rotation
angle of this conditional rotation is given by θ =
tCRωZX(A), where ωZX(A) is a non-linear inter-
action term that depends on the amplitude of
the cross-resonance pulse. IBM Quantum back-
ends leverage the cross-resonance interaction to
implement CNOT gates constructed with echoed
rotations RZX(π/2) = CR(π/4)XCR(−π/4)X.
Here, CR are the non-echoed cross-resonance
pulses, typically shaped as flat-top gaussians. To-
gether with a complete set of one-qubit gates,
this CNOT gate is then used as a primitive
to synthesize arbitrary two-qubit gates. How-
ever, it is possible to implement arbitrary rota-
tions RZX(θ) by appropriately scaling the cross-
resonance pulses [36]. The core idea of PE tran-
spilation is to leverage this native parametric gate
to decrease circuit duration and achieve higher fi-
delities. The scheme works as follows. Using Car-
tan’s decomposition, we first rewrite a CNOT-
transpiled circuit in terms of parameterized, non-
echoed RZX(θ) rotations. Then, we expand the
RZX(θ) gates and expose its echoed implemen-
tation CR(θ/2)XCR(−θ/2)X. A final transpi-
lation pass removes redundant single-qubit rota-
tions, leaving at most one single-qubit rotation
between non-echoed RZX pulses. Though non-
linear behaviour can result in coherent over or
under rotations, this method achieves significant
reductions in circuit duration for certain gates
(such as the RZZ(θ) interaction used in this work)
compared to conventional CNOT-based transpi-

lation.

B Pulse-efficient kernel classification
without dynamical decoupling
In Section 3, we showed kernel estimation results
for circuits with PE transpilation and dynami-
cal decoupling. A natural follow-up question is
how much of the performance improvement can
be attributed to each of the two error suppression
strategies. To address this question, we run a
smaller set of experiments on ibmq_gaudalupe to
classify digits 0, 7, and 9. We execute the kernels
with PE transpilation with and without dynam-
ical decoupling and show the resulting classifica-
tion accuracy and NMSE in Fig. 6. Although dy-
namical decoupling has a sizeable effect, we con-
clude that PE transpilation is the primary driver
of the performance improvement over regular cir-
cuits.
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