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Abstract—Large controllable loads, such as electric ve-
hicles, are increasingly penetrating electricity distribution
feeders. To avoid local congestion, their consumption be-
haviour must be steered, for which a real-time price prop-
agated down from the transmission system does not suffice,
as it does not reflect local grid conditions. To efficiently steer
the charging of EVs by multiple self-interested parties, we
propose an auction framework which accounts for local
grid conditions, the limited flexibility of EVs, and the
uncertainty inherent to small-scale networks. We formulate
the EV charging problem as a job scheduling problem for
self-interested aggregators, and auction network capacity
for discrete time slots using sequentially-cleared auctions,
which run in parallel. We simulate this auction on a local
network using realistic data for EV driving behaviour and
network capacity, showing this method leads to feasible
allocations which are fairer in case one party is weaker
than the other due to size or information asymmetry.

I. INTRODUCTION

Changes in local electricity production (due to uptake

in local renewable generation) or consumption (due to

increasing use of electricity for transportation or heating)

may lead to higher peak use on the distribution grid. Dis-

tribution grids have historically been overdimensioned to

account for the inflexibility of consumption. Accounting

for future high-consumption peaks in this manner is a

costly approach, while local grid capacity problems are

expected to be infrequent (but very expensive if they

occur) [1]. Alternatively, flexible production and con-

sumption could be be scheduled with the network con-

straints in mind, but this requires coordination between

self-interested parties located on the same distribution

network. Since increasing penetration of renewable elec-

tricity production will de-correlate the electricity price

and network usage, an additional signal reflecting grid

usage is required to ensure the grid is not overloaded.

Aside from these technical concerns, Distribution System

Operators (DSOs) may also have the more political

objective of allowing equal entry to all parties.

The goal of this paper is therefore to design an effi-

cient coordination mechanism for independent decision-

makers controlling large flexible loads, with a focus on

electric vehicles. Specifically, we propose an auction

framework in which capacity is gradually made available

over time, and the allocation and pricing functions pro-

mote early and honest reporting of valuations, while si-

multaneously allowing parties to account for uncertainty

in both supply and demand of network capacity. We aim

for a mechanism which encourages coordination for self-

interested parties, regardless of their size or number.

Due to the differences between transmission systems

and distribution systems, we cannot efficiently implement

similar schemes from the transmission system. Most

importantly, the radial network structure precludes a re-

dispatch of generators as a means of relieving congestion;

instead, flexibility must be offered by the consumers,

who shift their demand in time. This flexibility is lim-

ited, however, by requirements from the consumers: cars

simply must be charged. In allocating network capacity,

we must account for two problems: the availability of

capacity in future periods is uncertain, as some inflexible

load exists, which is difficult to predict due to the small

number of consumers; and the substitutability and com-

plementarity of capacity, leading to complex valuations

of (packages of) network capacity. We investigate a

scenario in which there is high penetration of electric

vehicle charging in a distribution grid. Electric vehicles

are likely to play an important role in reaching the limits

of the grid capacity, but at the same time their charging

behaviour may be controlled to minimise cost and ensure

the system limits are respected [2].

A. Related work

In economic literature, the allocation of multiple goods

with interdependent valuations is often viewed through

the lens of a combinatorial auction [3]. In such auctions,

Vickrey-Clarke-Groves mechanisms (VCG) can induce

truthful bidding, and lead to an equilibrium in which so-

cial welfare is maximised. Less is known, however, about

their performance in the face of uncertainty in supply,



and they impose heavy requirements on computation and

communication. In order to make computation feasible

even on short notice (15-minute intervals are commonly

used), we aim to design an auction which is simple to

understand, allows computation and communication to

take place within a few seconds, and allows for any

number of participants.

Planning demand-side response has received broad

attention in research, but not always with grid capacity

constraints in mind [4], [5], [6]. A second aspect that is

often ignored is the uncertainty with regard to available

grid capacity, electricity price, and driving schedules,

which is amplified by the absence of large numbers of

consumers; the increased variability is more problematic

if it is uncertain. A third aspect is the effect of multiple

parties being present in the market; work on EV charging

often investigates centralised approaches [7], [8], [1].

Hu [9], by contrast, presents an iterative procedure to

determine a grid capacity price in a setting with two ag-

gregators. Our research differs by including uncertainty,

and taking a different approach to the pricing mechanism.

II. METHODOLOGY AND MODEL DESCRIPTION

We approach the problem of coordinating flexible

consumption by designing an online auction framework

in which network capacity is gradually made available

over time. Our work assumes the following setting.

On an electricity distribution feeder, electric vehicles

(EVs) must be charged. We consider a single (possibly)

congested point in the network (e.g. a substation), and

auction capacity for this bottleneck. Time is discretised

into periods, and we consider a limited time horizon.

At any time we refer to the current period as τ , and

some future period under consideration as t. There is a

constraint Cmax
t on the joint simultaneous charging by

all EVs. This constraint is determined by the difference

between the fixed available network capacity limit, and

the varying inflexible consumption by households. The

capacity available for EVs may therefore differ per pe-

riod. Each period, the network operator makes a forecast

of available capacity for the entire decision horizon, with

increasing uncertainty for periods further into the future.

EVs are assigned to an aggregator, who make charging

decisions on their behalf. The EVs arrive to the network,

will depart at some deadline, and have a demand for

electricity, which must be met before said deadline. We

refer to such a charging task as a job. The arrival, demand

and deadline (a, q, d) of an EV’s next job are revealed

to the aggregator upon arrival to the network. Before

arrival, only a probability distribution is known for each

of these variables. Between arrival and departure, EVs

can charge any real number. We will refer to EVs and

their associated jobs somewhat interchangeably with the

index i. If a charging job is not completed, a penalty γ is
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Fig. 1. Availability of network capacity over time

incurred. These aggregators are responsible for ensuring

sufficient network capacity is available to meet their

charging demands, and procuring the electricity itself.

Their goal is to minimise their total cost, while meeting

the charging demands of the EVs under their control.

The procurement of electricity is associated with an

exogenous procurement cost π. Like available capacity,

this procurement price (set by the wholesale market) may

vary per period.

A. Network capacity auction

We allocate capacity through the incremental sale of

capacity in simultaneously-running, sequentially-cleared

auctions. To model capacity availability, we utilise a

simple piecewise linear curve (alternatively, any non-

decreasing function can be used, e.g. a sigmoid) de-

scribed by tstart, tsale, and tend. tstart is the period during

which capacity for t is first made available, tsale the

moment all capacity is made available, and tend the

moment from which capacity is no longer sold.

Ct(τ) =

⎧⎪⎨
⎪⎩
Cmax

t if tsale ≤ τ < tend

Cmax
t

tend−tstart · (τ − tstart) if tstart ≤ τ < tsale

0 otherwise

(1)

The cumulative availability of capacity then follows the

pattern as shown in Figure 1; A fully real-time market,

of course, would occur if tstart = tsale = tend = t.
Other known market designs can also be described in

this manner (e.g. a forward market).

Pricing for capacity at each t is determined ex-post,

allowing the network operator more freedom in deter-

mining a price. While standard first- or second-price

rules could of course be applied, we opt for an approach

which ensures the aggregators do not pay excessively

for abundant capacity; by letting them pay the nth price

when considering all auctions between τ and t, a pricing

rule similar to the critical price [10]. Formally, we define

a provisional price p̂ as the price of the highest rejected

bid (i.e. not in the set of accepted bids Bτ ), and let p
be the minimum over itself and later provisional prices.



Resultingly, the price paid by a winning bidder at time

τ for capacity at time t, is

pτt = min{p̂nt : τ ≤ n ≤ t} (2)

p̂τt = max{pτb : b /∈ Bτ
accepted} (3)

B. Aggregation of EV charging

The aggregators aim to minimise their cost, which

consists of charging costs and penalties for missed dead-

lines. The charging cost in (4) is the product of charging

decisions s (for each car i at each timestep t) and the

combined cost for electricity (πt) and network capacity

(pt). The penalty is the product of the binary variable

uj (1 if job j is completed, 0 otherwise) and penalty γ.

Equation (5) defines cti as the energy required for meeting

the deadlines dj for the jobs j ∈ Ji of car i before time

t; at any time t a car must charge at least this amount (6),

but may never charge more than the maximum capacity

of the battery SOCmax (7). Finally, there is a charging

limit per car (8), and a network capacity limitation on

all cars of aggregator a (9).

min
s

∑
t

(∑
i∈Ia

sti

)
· (πt + pt) + (1− uj) · γ (4)

s.t. cti =
∑

j∈Ji|dj≤t

(uj) · qj (5)

t∑
n=0

sni ≥ cti ∀i, t (6)

t∑
n=0

sni − cti ≤ SOCmax ∀i, t (7)

0 ≤ sti ≤ smax
i ∀i, t (8)∑

i∈Ia

sti ≤ Ct
a ∀t (9)

uj ∈ {0, 1} ∀j (10)

In order to obtain network capacity, the aggregators

must submit bids, which are defined as a (t, p, q) triple

indicating the timeslot for which capacity is bought,

the price they are willing to pay per unit, and the

desired quantity. We define three different strategies for

the aggregators to convert the result of the optimisation

problem into a set of bids which they submit:

• Optimistic: agggregators delay their purchasing de-

cisions as long as possible, submitting bids only

if the capacity remaining after this auction round

may not be enough to meet their current charging

schedule.

• Conservative: agggregators aggressively buy capac-

ity which they cannot shift, but behave optimisti-

cally otherwise.

TABLE I
EV DATA. ARRIVAL-DEPARTURE IN 15-MINUTE INTERVALS.

Cluster # 1 2 3 4 5 6
Probability 15.6% 32.3% 13.5% 12.0% 14.2% 12.4%

Departure

μ 53,9 31,12 36,16 69,63 36,7 35,09
σ 5,95 4,86 6,28 8,86 7,05 10,18

min 41 0 0 51 0 0
max 70 45 51 94 54 78

Arrival

μ 67,05 68,55 47,6 86,17 85,93 74,94
σ 5,76 4,67 7,18 5,82 5,21 10,4

min 53 54 2 72 74 36
max 83 79 60 96 96 96

Demand
(kWh)

μ 4,84 6,55 4,67 5,8 7,83 24,1
σ 3,24 3,71 3,31 4,58 4,15 5,78

min 1,56 1,54 1,51 1,53 1,58 15
max 18 17,1 21 27 18,25 37,4

• Best Response: aggregators place a set of best-

response bids to its opponent’s (expected) bids, not

considering possible future reactions.

Of these strategies, the former two are rather simple,

while the latter is an optimal response and assumes

sufficient information is present. In our experiments, we

examine the effects of these asymmetries. Uncertainty,

finally, is dealt with by generating scenarios, for each

of which the bids to be placed are computed in a deter-

ministic fashion. The results per scenario are combined

through a voting-like method: for each t, we compute

the median of both p and q, and submit (t, p̄, q̄) as the

final bid.

C. Data

For the EV mobility data, we clustered trips from

a national mobility study [11] (grouping by departure,

arrival, and trip distance) into 6 clusters using k-means

clustering. We assigned each EV to one such group, and

drew all values from their associated truncated normal

distributions, adjusting arrival time for the previously-

drawn departure time. We assumed 150Wh/km for de-

mand. The distributions are presented in Table I. Arrival

and departure times are described by a 15-minute interval

(e.g. 32 indicates 07:45-08:00 a.m.). Inflexible demand

patterns were derived from household consumption mod-

els, using a Markov chain to capture interdependencies

between subsequent periods of high and low demand.

III. THEORETICAL PROPERTIES

Our method of incrementally making capacity avail-

able has advantages for both sides when it comes to

uncertainty: the network operator can adjust the avail-

able capacity if uncertainty decreases over time, while

aggregators can delay their purchasing decisions as the

capacity cannot be purchased in its entirety by a com-

petitor, ascertaining that at least some capacity will be

available in the future. A result of this strategy is that at

any moment τ , capacity is available for multiple future

time slots, and these auctions run simultaneously. Since

a valuation for one future time slot likely affects the
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Fig. 2. Percentage of social cost increase over central optimum for
different strategies and lead times.

valuation for another (due to the substitutability of net-

work capacity), we sequentially clear these markets, and

allow aggregators to revise their bids in between. Both

sides also benefit in determining the correct valuation of

capacity: communication and computation are minimised

for the grid operator (who would have to compute an

optimal allocation given all possible preferences in a

standard combinatorial auction), while aggregators can

adapt their valuations as auction rounds finish, and their

value for the remaining capacity changes. As a result,

any allocation is final once made, but aggregators can

take previous results into account when submitting their

bids. The pricing rule, meanwhile, effectively means

aggregators are never worse off by submitting a bid

earlier; if they are able to obtain capacity for the same

t at some τ ′ > τ at a lower price, they still pay the

price they would have paid at τ . This reduces the need

for aggregators to reason about supply and demand in a

single given auction, allowing them to submit bids which

align with their true preferences, and ensures the price is

0 if there is excess capacity. This incentivises all bidders

to bid as early as possible and at their true valuation. To

illustrate this, consider an auction in which all capacity

for a given t is made available instantaneously (which

can be described using the given parameters); considered

in isolation, this is an nth-price auction for multiple units.

IV. EXPERIMENTAL RESULTS

We experimentally evaluate our auction to determine

how the gradual sale of capacity affects total costs, and

the distribution of these costs among the aggregators.

Revenue maximisation is not among the DSO’s goals;

instead, we may use the revenue alongside social welfare

as a measure of how well the mechanism enforces coor-

dination. First of all, we investigate how the DSO should

make capacity available. We compute the total charging

cost and network capacity cost, and compare our auction

design with different settings for topen in a setting where

only the available network capacity is uncertain. We ran

simulations for two days, time steps representing 15-

minute intervals. We used two aggregators with 18 EVs

each. EVs are recurrent; some time after departure, they

may return again, at which point their battery’s charge

has been reduced by the previously demanded quantity.

0
10

00
0

30
00

0

Optimistic Conservative Best Response

Fig. 3. Total price paid for capacity in deterministic setting for different
strategies and lead times.

We assume that at any time, an EV requires charge for

its next single trip only; we do not differentiate between

different demand levels for which an EV has different

utilities. We replicated each experiment five times, using

different EV schedules in each replication. Presented

values are the average of these replications.

We compare the experimental results to two bench-

marks: first, to a central solution with perfect informa-

tion, which provides a lower bound on the costs; and

second, to a decentralised solution where aggregators

repeatedly best-respond, which provides a lower bound

on network capacity prices. We ignore the different

possible settings for tclose, setting it equal to t for ease of

analysis. Resultingly, network capacity is made available

between topen and t, with constant slope.

A. Total charging cost and network capacity cost

In a setting with EV schedules assumed to be known,

we first evaluate the performance in terms of total cost

for different lead times, i.e. tstart − tend. Figure 2 shows

the results. Note that with a short lead time, the outliers

indicate jobs are missed by the simple strategies. As we

increase lead time, however, even combinations of these

strategies are able to complete all jobs due to the coordi-

nation enforced by the auction. In this setting, completing

all jobs does not require much lead time. The decrease of

social cost as lead time increases indicates coordination

emerges from the auction mechanism, signalling capacity

scarcity ahead of time and allowing aggregators to revise

their plans accordingly. Next, we turn our attention to the

different auction prices for different lead times, shown

in Figure 3. Due to the pricing rule, high auction prices

indicate either actual scarcity or absence of coordina-

tion. Observe that even in cases where all jobs can be

completed, network capacity prices are very high. These

high spikes are somewhat artificial as they are in part

due to the arbitrary penalty on not completing a job,

and we therefore offer a more qualitative interpretation;

high average total network capacity cost is due to last-

minute bidder ”panick”, as they were forced to pay a

network capacity price close to their value of lost load.

Furthermore, we also observe that a longer lead time

avoids these spikes, enforcing cooperation through the

market design itself. The inset shows the results for the
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longer lead times. Again, even simple strategies rapidly

approximate the benchmark result of best response. The

case of best-responding aggregators is also of interest

by itself. Irrespective of the lead time, network capacity

costs are negligible. Due to the pricing rule, there is an

incentive for demand reduction once outbidding the op-

ponent is no longer profitable. By reducing demand until

combined demand precisely matches supply, the resulting

price drops to zero. Essentially, this is oligopolistic

market sharing. Note that the likelihood of this result

leans heavily on the assumption that aggregators have

the correct information to determine their best response.

B. Cost distribution

Next, we examine the case where the aggregators

are more asymmetric, one aggregator having a weaker

position (e.g. due to information asymmetry or size). We

compare our auction to a day-ahead benchmark, in which

capacity is not released onto the market gradually, but

immediately. Figure 4 shows the resulting cost for the

weaker aggregator in different scenarios. We see that

both the total charging cost increases for the weaker

party if the network capacity is made available day-

ahead. Gradually making capacity available can improve

fairness by preventing the stronger aggregator from buy-

ing desirable capacity early on. It is also noteworthy to

observe that a similar effect occurs when lead times are

long. This suggests there is an optimal lead time, which

depends on the model of the uncertainty involved (the

EV driving schedule in this case).

V. CONCLUSION & FUTURE WORK

Existing work on congestion management in the dis-

tribution grid does not account for the uncertainty that is

inherent to a small-scale system due to the small number

of loads. In this work, we have proposed an auction

framework in which capacity is gradually made available

over time. We have shown that the gradual auctioning

scheme does not necessarily require sophisticated strate-

gies by its users, but is able to signal impending scarcity

through the design of the auction itself. For scenarios

with both deterministic and unknown EV schedules, our

auction design allowed for relatively simple strategies.

In a deterministic scenario, too short lead times caused

jobs to be missed, but these quickly disappeared as

lead time increased. Moreover, increased lead time also

led to the decrease of network capacity prices. Markets

operating closer to real time require more sophisticated

strategies, as careful planning is required if load must be

shifted to earlier time steps. Furthermore, we have shown

that the gradual sale of network capacity can protect

weaker parties (here we used a simple strategy as an

example, but this might also be due to size, information,

or risk aversity) by ensuring late availability of network

capacity. This prevents stronger parties from buying

all available capacity early on. This lesson potentially

extends to other capacity auctions, such as continental

gas pipelines.

Avenues of research which remain open include filling

the gap in the strategy space for sophisticated strategies

under imperfect information, and assessing the perfor-

mance of our auction for more intelligent agents. Fur-

thermore, in our work we made a number of choices with

respect to the pricing and allocation functions, which we

aim to investigate more broadly.
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