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Introduction
Seismic data are often either irregularly or insufficiently sam-
pled. Irregular sampling can be due to encountered obstacles in 
the acquisition, thus resulting in a seismic data gap, whereas 
insufficient sampling is the result of a coarse acquisition grid, 
thus leading to sparse sampling along the spatial direction of 
the data. This irregular or insufficient sampling can affect the 
accuracy and resolution of seismic data processing steps such 
as surface-related multiple elimination, migration and inversion. 
For example, in the simple case of sparse sampling, it leads not 
just to the loss of high-wavenumbers, but also causes spatial 
aliasing due to the overlap of aliasing energy artifacts with the 
signal energy. When we image this spatially aliased coarse data, 
we encounter the trade-off between the resolution of the image 
and the aliasing artifacts. Therefore, seismic data interpolation 
has always been an essential requirement in seismic data 
processing.

There are different kinds of interpolation methods, such as 
transform-based methods (Spitz, 1991; Gulunay, 2003; Liu and 
Sacchi, 2004), rank-reduction-based methods (Trickett et al., 
2010) and wave-equation-based methods (Fomel, 2003), used 
to account for spatial sampling issues. However, most of these 
methods are more suitable for the irregularly sampled or random-
ly missing data case. For regularly sampled seismic data with 
the spatial aliasing effects, an anti-aliasing interpolation strategy 
has to be adopted in these methods to improve the interpolation 
performance. These methods’ accuracy is not just sensitive to 
the choice of the selected parameters, but in methods where they 
characterize the data in the linear way, they are also affected by 
the complexity in the seismic data.

Deep learning (LeCun et al., 2015) has gained a lot of 
attention in recent years because of its ability to extract deeper 
low-level features from the data in a non-linear setting by 
self-learning. Deep learning approaches like convolutional neu-
ral networks (CNN) (Krizhevsky et al., 2012) have proven par-
ticularly adept at image processing tasks such as de-noising and 
super-resolution (Yang et al., 2019). Super-resolution refers to 
the task of upscaling and improving the details in images, which 
leads to the image resolution enhancement. Even in the seismic 
community, several attempts have been made to mitigate the 
problem of limited resolution data using CNNs. For example, 
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Spatial aliasing removal using deep learning  
super-resolution
A. Garg1*, A. Vos2, N. Bortych2, D.K. Gupta2 and D.J. Verschuur1 use a deep learning super-
resolution network to upscale the data by a factor of two in the spatial direction and remove 
the spatial aliasing present in the data.

Halpert (2018) uses CNN-based generative adversarial network 
(GAN) (Goodfellow et al., 2014) to produce high-resolution 
realizations of low-resolution input seismic images.

Figure 1 Modified very deep super-resolution (VDSR) network architecture (Kim et 
al., 2016).
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is much more visible in the f-k domain. We train the network 
using the data generated for a part of the Marmousi model and 
use the data from the Sigsbee model as a blind test to demonstrate 
its ability to generalize. Also, for quality check, we apply imaging 
to both the input (spatially aliased) and the upscaled output (free 
of spatial aliasing) data for both training and blind cases to show 
the improvement in the seismic image. We show that the trained 
network is able to reconstruct the dense data with half the receiver 
interval and remove the spatial aliasing in the f-k domain.

In this article, we use deep learning super-resolution to apply 
seismic data anti-aliasing interpolation and reconstruct accurate 
dense seismic data. We make use of a modified version of the 
so-called very deep super-resolution (VDSR) network (Kim et 
al., 2016) to upscale the data by a factor of two in the spatial 
direction and remove the spatial aliasing present in the data. 
Moreover, in order to make the network robust, we use a loss 
function that minimizes the error both in the space-time  (x-t) 
and in the frequency-wavenumber (f-k) domain as spatial aliasing 

Figure 2 Subsurface velocity model used to generate 
the data for training the network.

Figure 3 The shot data in x-t (left) and f-k domain 
(right) from the test dataset. a) High-resolution 
unaliased dense output data, b) low-resolution 
aliased input data and c) reconstructed dense data 
with aliasing removed using the trained network.
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initially interpolated using bilinear interpolation. Also, in Figure 1, 
we see that our modified VDSR network’s property of trying to 
learn the residual function (do – ds) rather than (do → ds) mapping.

Loss function
We make use of a L1 loss function that minimizes the error both 
in space-time  (x-t) and  frequency-wavenumber (f-k) domain as 
spatial aliasing is much more visible in the f-k domain. This way, 
during the optimization, the network is forced to reduce the visual 
spatial aliasing artifacts in both the domains. It eventually makes 
the network more robust and helps to attain better signal-to-noise 
(S/N) ratio. The used loss function can be written as:

� (1)

where f represents the used network, subscript f-k represents the 
f-k transforms and Θ represents the network model parameters. 
Note that we avoided using the popular generative adversarial 

Note, we make all the codes and datasets used to train the 
network and generate the results for this article freely available. 
It can be downloaded from https://github.com/garg-aayush/
spatial-alias-removal/.

Method
The first attempt at the super-resolution problem using deep learn-
ing was the super-resolution CNN (SRCNN) network (Dong et al., 
2015). Even though the model was relatively shallow, it developed 
the interest in the problem of single image super-resolution in 
the field of deep learning. Thereafter, Kim et al (2016) used a 
VGG-style 20-layer network for the super-resolution problem and 
exploited the depth of the network to achieve better performance. 
Importantly, they used a residual approach, i.e., adding the image 
to the output of the network, so the network learns only the residual 
function instead of the full transformation. This residual learning 
helps to avoid the vanishing gradient problem in deeper layers 
and is useful for training the network with a high reconstruction 
accuracy. We make use of a modified, smaller version of the VDSR 
network for our spatial aliasing removal problem.

Network architecture
Figure 1 shows the used modified version of the VDSR network. 
The network contains four blocks, each with a convolution layer 
of 128 filters with 3x3 size followed by rectified linear activation 
function (ReLU), and a convolution layer of 128 filters with 3x3 
size. In Figure 1, the term do denotes the low-resolution aliased input 
data whereas ds represents the super-resolution unaliased output 
data during the training. To ensure that the low-resolution input data 
has the same dimensionality as the super-resolution data, the do is 

GAN discriminator loss

✓ ✗

L2 loss 
13 52.1 ✓

   f-k
29.5 52.2 ✗

 L1 loss
13 56.0 ✓  

   f-k43.7 51.0 ✗

Table 1 PSNR (in dBs) based on the grid search over the reconstruction loss and 
the loss spaces.

Figure 4 Migrated seismic images obtained for the 
marmousi dataset. Image for the a) high-resolution 
unaliased dense output data, b) low-resolution aliased 
input data and c) reconstructed dense data with 
aliasing removed using the trained network.
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to train, thus requiring a number of heuristics to solve (Arjovsky 
and Bottou, 2017).

networks (GAN) discriminator loss (Goodfellow et al., 2014) due 
to its adversarial nature. At times, it is also notoriously difficult 

Figure 5 Subsurface velocity model used to generate 
the blind dataset.

Figure 6 The two shots in the a), c) x-t and the b), 
d) f-k domain. The a), b) low-resolution aliased input 
blind data and the corresponding b), d) reconstructed 
dense data with aliasing removed using the trained 
network.
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Evaluation metrics
Since the problem is modelled as single image super-resolution, 
we use two metrics that are widely used in the super-resolution 
field (Yang et al., 2019): peak signal-to-noise ratio (PSNR) and 
structural similarity index method (SSIM). Given two images with 
the same dimensions, I1 and I2, the PSNR is computed in following 
way:

� (2)

� (3)

where N is the number of pixels, F being the Frobenius norm and 
L being the maximum value of the pixel, which is 1 in our case. 
The SSIM is defined as follows:

� (4)

where  and  are the mean and variance of corresponding 
image,  is covariance between the two images and k’s are 
constants. Note, for our case I1 and I2 are unaliased ideal output 
data and network reconstructed dense data, respectively.

Training the network
We generate 400 shot records for receiver sampling of 20 m and 
10 m using the finite-difference method for part of the Marmousi 
model shown in Figure 2. The shot record of size 256 X 151 with 
20 m receiver sampling acts as the input low-resolution spatially 
aliased data whereas the corresponding 10 m receiver sampling 
data of size 256 X 301 acts as the output high-resolution spatially 
unaliased data for training the network. Note that we split the total 
dataset randomly into test, validation and train set of 10%, 10% 
and 80% each during the training. Figures 3a and 3b show the 
output and the input data, respectively, from the test set in both 
x-t and f-k domain.

The training was carried out on the Pytorch platform (Pasz-
ke et al., 2017). We experimented with different combinations 
of hyperparameters such as number of epochs, learning rate, 
type of reconstruction loss, number of filters, filter size, batch 
size, etc. Eventually, we tuned the network shown in Figure 1 to 

have a PSNR of 59 dB and SSIM of 0.999 on the validation set. 
More details on hyperparameter tuning and the final choice of 
hyperparameters can be found in the shared github repository.

After we tuned the network, the test set was used to assess 
the network performance. The trained network was able to 
achieve the PSNR of 56 dB and SSIM of 0.999 for the test data-
set in comparison to the baseline (do) PSNR of 26 dB and SSIM 
of 0.92. Figure 3c shows a reconstructed test dataset shot and 
its f-k transform using the trained network. The reconstructed 
super-resolution shot record (Figure 3c) with half the receiver 
sampling has much more continuity in time and space and is 
identical to the unaliased output labelled data. Similarly, we 
also see the spatial aliasing disappearing in the f-k domain of 
the reconstructed test dataset shot record.

We also performed a grid search over the reconstruction 
loss terms, while keeping the other hyperparameters constant, to 
get an understanding of the influence of these hyperparameters. 
From the results shown in Table 1, we clearly show the maximum 
PSNR is achieved for the L1 loss terms (using both x-t and f-k 
domain) without using the GAN discriminators loss for the 
current used network.

As a final quality check, to see the effects of aliasing in 
the seismic imaging, we apply the pre-stack depth migration to 
all the three datasets (aliased input data, unaliased output data, 
reconstructed data) and obtain the subsurface migrated image for 
each of them (Figure 4). In Figure 4b, we clearly see the effect of 
coarse sampling and spatial aliasing in terms of unimaged steep 
dips and aliasing artifacts. On the other hand, the migrated image 
obtained for the upscaled reconstructed data (Figure  4c) is of 
much higher resolution and consistent with what we would have 
obtained by using unaliased output data (Figure 4a).

Blind dataset results
To assess the performance and generality of any trained net-
work, the blind test using data with different features is of the 
utmost importance. We generate 200 shots for receiver sampling 
of 20 m using a part of the Sigsbee model shown in Figure 5 and 
use the trained network to get the reconstructed data upscaled 
by a factor of two in the spatial direction. Figure 6 shows the 
shot records for input low-resolution spatially aliased blind data 

Figure 7 Migrated seismic images obtained for the 
a) low-resolution aliased input blind dataset and the 
corresponding b) reconstructed dense data with aliasing 
removed using the trained network.
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Data and code availability
All the data and codes used to develop the results for this 
article can be downloaded from https://github.com/garg-aayush/
spatial-alias-removal
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and the reconstructed super-resolution data in both x-t and f-k 
domain. Even for the blind dataset, we see the spatial aliasing 
disappears in the f-k domain of the reconstructed data and it 
has much more continuity and a lot less visual pixelation along 
the spatial axis. The similar effects can be seen in the migrated 
images (see Figure  7) obtained using both the datasets. The 
obtained migrated image via reconstructed dense super-reso-
lution data (Figure  7b) has much more continuity and clearly 
imaged steep events in comparison to one obtained via coarse 
aliased input data (Figure  7a). This blind test further demon-
strates the accuracy and the validity of the trained network.

Discussion
Though we have shown the promising blind test results, we can 
still expect the network performance to suffer for data with higher 
complexity features. For example, in this study, we restricted our-
selves to noise-free data, thus we can expect the results to suffer for 
noisy test data. However, the network can be made more general 
by training a larger network with different datasets. Also, we only 
showed the case of upscaling by a factor of two, upscaling by larger 
factors and more severe spatial aliasing still needs to be assessed. In 
any case, the proposed network can be used as the initial network 
for the transfer learning (Shin et al., 2016) process in order to 
obtain a more general network for spatial aliasing removal.

Conclusions
We used a deep learning super-resolution network to upscale 
the input data by a factor of two and remove the spatial aliasing 
present in the data. We trained a modified VDSR network and 
assessed its performance both qualitatively and quantitatively. We 
showed that using a loss function that minimizes error not just in 
x-t domain but also in f-k domain helps to get a robust network 
with higher PSNR, as shown in the grid search for reconstruction 
loss and loss type experiment. The reconstructed data with half 
the receiver interval in both the training and the blind test case 
showed more continuity and less visual pixilation with the spatial 
aliasing removed in the f-k domain. The effects of reconstructed 
dense data were also in seismic imaging with the obtained migrat-
ed image having more continuity and clearly imaged steep events 
in comparison to one obtained via coarse aliased input data.

The presented type of deep learning network for anti-aliasing 
interpolation, with more extensive research, has the potential to 
develop into an effective strategy for the spatial aliasing removal 
and dense data reconstruction for large volumes of coarse data.
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