
Analysis of Cache
Attacks and Coun
termeasures on
the 𝜌VEX Proces
sor

D.Verrer

Analysis of Cache Attacks and
Countermeasures on the 𝜌VEX Processor

by

D.Verrer
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday November 23 at 10:00.

Author: D. Verrer
Student number: 4579801
Thesis number: Q&CECEMS202110
Project duration: 9 November, 2020 – 23 November, 2021
Thesis committee: Dr. Ir. J. S. S. M. Wong TU Delft, supervisor

Dr. Ir. M. Taouil TU Delft
Dr. Z. Erkin, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover image from [1].

http://repository.tudelft.nl/

Abstract
Modern implementations of encryption algorithms on CPU’s that use frequent memory lookups of pre
computed functions, are vulnerable to Cache based SideChannel Attacks. The 𝜌VEX processor,
a runtime reconfigurable VLIW processor developed at the Computer and Quantum Engineering de
partment at the TU Delft was identified to possibly allow for special countermeasure implementations
against Cache Attacks, because of its unique Cache architecture, hardware context switching and tim
ing behaviour.

In this thesis, the possibility to use the runtime reconfigurability against Cache based SideChannel
Attacks of the 𝜌VEX processor is investigated. The ability for the 𝜌VEX to alter its execution time
based on configuration size, interfere with its own Cache state based on configuration and dynamically
switch contexts between Caches are explored.

Simple variants of the attacks Prime+Probe, Evict+Time and Final Round Collision Attack are imple
mented and ran on two setups that simulate practical scenarios of the 𝜌VEX. These are a standalone
setup and a setup with a second context sharing the processor with an arbitrary workload based on the
PowerStone benchmarks, which causes noise by itself and can amplify countermeasures. The 𝜌VEX
was instanced on the Genesys2 FPGA development board.

We have shown an implementation of timing noise through configuration size variations called n
Lane increased the amount of samples required for the timing Attacks Evict+Time and Final Round
Collision to around 800x more traces. An implementation of access noise through swapping contexts
called CacheSwap achieved 800x more traces for Evict+Time and 225x more traces for Final Round
Collision when executed in a shared processor. The effect on Prime+Probe was only strong for higher
chances to swap, but the overhead for these percentages was considered too high. An implementa
tion of isolating lookups over private Caches, called ScatterRound, had additional benefits aside from
preventing collisions. It made our Evict+Time Attack take 160x, Prime+Probe Attack 175x and Final
Round Collision Attack 225x as many samples to be successful. We have shown that the overhead
associated with 10% nLane and 10% CacheSwap was reasonable, but ScatterRound was concluded
to require a specific execution setup to achieve performance costs that are acceptable.

iii

Acknowledgements
As one of the people who made their Master Thesis during the Covid19 pandemic, I am happy to finish
this thesis. Being forced to work from home and face all practical obstacles that came with it was an
unique experience. I would like to thank the people who made it possible for me to make it all the way
through the process.

I would like to thank my daily supervisors Stephan Wong and Mottaqiallah Taouil, who not only helped
me through the technical process of this thesis but also motivated me, provided useful feedback to
improve this work and gave me moral support if certain obstacles or delays appeared along the way.

I would like to thank Cezar Reinbrecht for getting me started on the implementation aspects of Cache
Attacks, and providing a lot of useful ideas and suggestions for the project.

I would like to thank my friends and people close to me during the months I spent working on this
Thesis.

Finally I would like to thank my parents and family, who were almost more excited than me for the
whole process of finalizing the MSc Computer Engineering with this thesis.

Daan Verrer
Delft, October 2021

v

Contents

1 Introduction 1
1.1 Context . 1
1.2 State of the Art . 2
1.3 Problem statement and Methodology . 2
1.4 Thesis overview . 3

2 Background 5
2.1 Memory Hierarchy and Cache Architectures . 5

2.1.1 Memory Hierarchy . 5
2.1.2 The Cache . 6

2.2 The 𝜌VEX Processor . 9
2.2.1 VLIW processors . 9
2.2.2 The 𝜌VEX Architecture . 9
2.2.3 Runime Reconfigurability. 11
2.2.4 The 𝜌VEX Cache . 12
2.2.5 The current state of the project . 13

2.3 Advanced Encryption Standard (AES) . 14
2.3.1 The Rijndael AES proposal . 14
2.3.2 The AES operations . 15
2.3.3 The KeyExpansion . 18
2.3.4 The 32bit implementation . 18

2.4 Conclusion . 20

3 Cache Attacks and Countermeasures literature overview 21
3.1 Information leakage in Caches. 21
3.2 Overview of Cache Attacks . 22

3.2.1 Cache Attacks overview: based on SideChannel used 23
3.2.2 Other Cache Attack Classifiers . 24

3.3 Detailed description of selected Cache Attacks. 25
3.3.1 The first round attack based on lookup probability scores 25
3.3.2 Final Round Collision attack . 27
3.3.3 The 3rd round wide collision attack . 28
3.3.4 Bernsteins attack . 30
3.3.5 The first round collision attack based on traces. 30

3.4 State of the Art of Cache Attack Countermeasures. 31
3.4.1 Code Modifications . 31
3.4.2 Reduce System Level Privileges . 32
3.4.3 Cache Redesigns. 33
3.4.4 Noise based Countermeasures . 33
3.4.5 Attack Detection . 33

3.5 The 𝜌VEX Countermeasure potential. 34
3.5.1 𝜌VEX reconfiguration patterns . 34
3.5.2 Countermeasure: Cause timing noise through reconfiguration 34
3.5.3 Countermeasure: Cause access noise within a single processor 35
3.5.4 Countermeasure: Cause access noise on shared Cache levels 35
3.5.5 Countermeasure: Prevent Cache collisions within a vulnerable algorithm 35
3.5.6 Countermeasure: Prevent Cache sharing between processes 36

3.6 Selecting attacks for experimentation . 36
3.7 Conclusion . 37

vii

viii Contents

4 Cache Attacks and Countermeasures implementation on the 𝜌VEX 39
4.1 Practical details for Attack and Countermeasure implementation on the 𝜌VEX 39

4.1.1 Assumed Privileges in the 𝜌VEX . 39
4.1.2 General Attack implementation details . 40
4.1.3 Determining a new configuration word . 41
4.1.4 Random reconfigurations in code . 42

4.2 Cache Attack implementation . 43
4.2.1 Evict+Time Attack implementation. 43
4.2.2 Prime+Probe Attack implementation . 46
4.2.3 Final Round Collision Attack implementation . 46

4.3 nLane: Noise via random configuration size variations 47
4.3.1 nLane Design . 47
4.3.2 nLane Implementation. 49

4.4 CacheSwap: Access noise via lanegroup swaps of two contexts 50
4.4.1 CacheSwap Design . 50
4.4.2 Theoretical effect on specific attacks . 51
4.4.3 CacheSwap Implementation . 52

4.5 ScatterRound: Preventing internal collisions via spreading operations overmultiple Caches
52
4.5.1 ScatterRound Design. 52
4.5.2 Theoretical effect on specific attacks . 54
4.5.3 Implementation: Standalone Encryption . 55
4.5.4 Implementation: 4 context AES Setup. 55

4.6 Conclusion . 56

5 Results 57
5.1 Experimental setup . 57

5.1.1 FPGA . 57
5.1.2 𝜌VEX setup . 58
5.1.3 Interfacing setup . 60
5.1.4 Software setup . 60

5.2 AES performance on the 𝜌VEX . 61
5.3 Metrics . 62
5.4 Overview of Experiments. 63
5.5 Experiment Set A: Cache Attacks against AES in a noiseless processor 64

5.5.1 A.ET.1) unprotected Evict+Time . 65
5.5.2 A.PP.1) unprotected Prime+Probe. 66
5.5.3 A.FR.1) unprotected Final Round Collision . 67

5.6 Experiment Set B: Cache Attacks against AES in a shared 𝜌VEX processor 68
5.6.1 B.ET.1) unprotected Evict+Time, shared processor 68
5.6.2 B.PP.1) unprotected Prime+Probe, shared processor 69
5.6.3 B.FR.1) unprotected Final Round Collision, shared processor 69

5.7 Experiment Set C: Cache Attacks against nLane protected AES 70
5.7.1 C.ET.1) nLane against Evict+Time, reconfiguration patterns 70
5.7.2 C.ET.2) nLane against Evict+Time, reconfiguration percentages 72
5.7.3 C.ET.3) nLane against Evict+Time, reconfiguration interval 73
5.7.4 C.ET.4) nLane against Evict+Time, trace size requirement 74
5.7.5 C.ET.5) nLane against Evict+Time, shared processor 74
5.7.6 C.PP.1) nLane against Prime+Probe . 75
5.7.7 C.FR.1) nLane against Final Round Collision, reconfiguration percentages 76
5.7.8 C.FR.2) nLane against Final Round Collision, shared processor 77
5.7.9 Summary and Discussion . 77

Contents ix

5.8 Experiment Set D: Cache Attacks against CacheSwap protected AES 78
5.8.1 D.ET.1) CacheSwap against Evict+Time, Cache state 78
5.8.2 D.ET.2) CacheSwap against Evict+Time, targeted round effect 79
5.8.3 D.ET.3) CacheSwap against Evict+Time, reconfiguration percentages 80
5.8.4 D.ET.4) CacheSwap against Evict+Time, shared processor 81
5.8.5 D.PP.1) CacheSwap against Prime+Probe, reconfiguration percentages 82
5.8.6 D.PP.2) CacheSwap against Prime+Probe, shared processor 83
5.8.7 D.FR.1) CacheSwap against Final Round Collision, reconfiguration percentages . 83
5.8.8 D.FR.2) CacheSwap against Final Round Collision, shared processor 84
5.8.9 Summary and Discussion . 85

5.9 Experiment Set E: Cache Attacks against ScatterRound protected AES 86
5.9.1 E.ET.1) ScatterRound against Evict+Time . 86
5.9.2 E.PP.1) ScatterRound against Prime+Probe . 87
5.9.3 E.FR.1) ScatterRound against Final Round Collision, standalone execution 88
5.9.4 E.FR.2) ScatterRound against Final Round Collision, shared processor 88
5.9.5 E.EX.1) ScatterRound performance in a dedicated execution mode 89
5.9.6 Summary and Discussion . 89

5.10 Conclusion . 90

6 Conclusion 93
6.1 Summary . 93
6.2 Main contributions . 95
6.3 Future work . 96

1
Introduction

This thesis describes the MSc thesis project that researches the possibility to use the 𝜌VEX proces
sor’s design time reconfigurability to implement Countermeasures against Cache based SideChannel
attacks against the AES128 encryption algorithm.

First, the context of this project is described in Section 1.1, then a brief summary of the State of
the Art of Cache Attacks and Countermeasures is given in Section 1.2. In Section 1.3 the problem
statement and chosen methodology is stated. Finally, in Section 1.4 the structure of this thesis is
described.

1.1. Context
Encryption algorithms are designed to be logically secure. This means that while observing the input
to output behaviour when encrypting a plaintext, without knowledge of the secret key, it is impossible
for an attacker to come up with a method to derive the the secret key in feasible time. When these
encryption algorithms are automated in logical circuits in integrated circuits, measurable behaviour
of the device can correlate with the data that is processed in the device and these implementations
become vulnerable to so called SideChannel attacks that analyze this behaviour. One of these Side
Channels is the Cache Memory in a modern CPU. The Cache Memory acts as a temporary copy of data
in the Main Memory. Depending on the state of the Cache and the addresses of Memory accesses,
the execution behaviour of the encryption process and other processes sharing this Cache measurably
change. Measuring and analyzing these execution statistics can reveal the encryption key used.

The 𝜌VEX processor is a research project at the Computer and Quantum Engineering department
at the TU Delft. The project is part of a larger research direction of Liquid Computer Architectures:
computer hardware that can adapt to the executed workload by redistributing or changing its resources
during runtime. The 𝜌VEX processor is a VLIW processor that can split itself up into smaller execution
cores at runtime, if the current processes running on it can not fully utilise the full instruction bundle
length available in the VLIW Architecture. This reconfigurability increases the system throughput by
making resources available to other processes, if these resources are measured to be underutilized
by the current workload. The 𝜌VEX processor is currently designed with both the option for it to be
a standalone processing system, as well as a dedicated signal processing coprocessor. In both sce
narios, it is possible that the 𝜌VEX is utilised to do encryptions or other vulnerable secure operations,
and can thus be attacked with a Cachebased SideChannel Attack.

Because the 𝜌VEX has a unique Cache design that can redistribute itself over hardware contexts
running on the processor and because the reconfiguration can alter the timing and logical behaviour
of the processor during runtime, the 𝜌VEX was identified to find potential use in the implementation of
Countermeasures against the Cache SideChannel Attacks.

1

2 1. Introduction

1.2. State of the Art
The notion of the CPU Cache being a potentially vulnerable SideChannel to be exploited to retrieve
secret keys from encryption algorithms was first made by Kocher [2] and Kelsey et al. [3] in their studies
towards Timing Analysis Attacks. The first real Cache Attack study was described by D. Page against
the DES encryption algorithm [4]. They used the timing of encryptions and knowledge on how this timing
should correlate with Cache behaviour in order to describe an attack that was able to retrieve the secret
encryption key. They also made the first suggestions for Countermeasures against the vulnerability in
the Cache and analyzed the potential to use Cache performance traces to perform even better attacks
[5]. Future work then showed practical attacks that targeted the table lookups of the AES encryption
algorithm in [6] [7] [8]

A third channel for Cache Attacks, the Access Based SideChannel, was introduced by Percival [9],
in an attack against the RSA encryption algorithm. Then later, Access Based attacks were demon
strated against AES by Osvik et al. [10]. In the same paper, Osvik et al. also demonstrated the pos
sibility for asynchronous attacks: attack where the attacker does not need explicit knowledge on exact
isolated encryption samples with known plaintext/ciphertext, but could carry out attacks for random sets
of input plaintexts with statistics on occurrences of plaintext symbols.

As modern systems became larger and faster, these Cache Attacks got adapted to function on these
new systems. Multicore systems with shared Cache levels and shared software libraries were shown
vulnerable to Access Based Cache Attacks across isolated cores, and new attacks based on these
new features were proposed and shown to be effective [11] [12] [13]. Attacks across isolated virtual
machines running on the same system have also been shown to be possible [14] [15] and also shown
effective against AES [16].

The design of Countermeasures against the different kinds of Cache Attacks is a widely studied
topic. Full redesigns of the Cache have been proposed [17] [18]. These Architectures can dynamically
change the mappings between Memory addresses and Cache lines. This ambiguity for the mapping
of the Memory addresses make it infeasible perform Access Based attacks. Another broadly studied
approach is to implement a detection scheme [19] [20], and make the system deny services or destroy
the Cache state when an attack is detected. For specific vulnerable algorithms, like the AES encryption
algorithm, different implementations that bypass the use of table lookups from Memory have been
proposed to make the algorithm resistant to Cache Attacks. Major implementations are bitslicing [21]
[22], where multiple plaintexts are shuffled with each other and multiple encryptions are done in parallel.
Another approach is to implement algorithm specific hardware in the processor. CPU manufacturers
like Intel embed special hardware that implement the rounds of the AES encryption and decryption
process [23].

1.3. Problem statement and Methodology
The main problem statement in this thesis is:

Can the Runtime Reconfigurability of the 𝜌VEX processor be used to implement efficient Counter
measures against Cachebased SideChannel Attacks?

In order to design Countermeasures on the 𝜌VEX, first a understanding of what types of Cache At
tacks exist is required. Knowledge on how these attacks function, and if they are implementable on the
𝜌VEX is needed. This leads to the first subquestion, followed with the chosen approach:

1. What fundamental techniques are used in Cache Attacks

• Do a broad literature study, in order to quantify what types of Cache Attacks there have been
studied, and how these can be classified.

• Present the types of classifiers found in literature, and how these can be relevant in our study.

• Study Cache Attacks belonging to a variety of these classifiers, and fully analyze those that are
implementable on the 𝜌VEX hardware.

From the study, a selection of attacks that we focus on needs to be made. It is important to research
what the attacker can use the 𝜌VEX Architecture for in Cache Attacks, how effective these attacks are

1.4. Thesis overview 3

and what security issues might be caused by the Architecture itself. This leads to the following sub
question and chosen approach:

2. How vulnerable is the 𝜌VEX design to Cache Attacks?

• Make a selection from the analyzed Cache Attacks that are practical on the 𝜌VEX, to use them
in the research for the Countermeasures.

• Implement the attacks on the 𝜌VEX, and test if they work.

• Present the practical requirements to implement these attacks specifically for the 𝜌VEX, and
identify potential security threats in the design.

• Test the attacks under multiple operational circumstances, to get a indicator on how the attacks
perform without Countermeasures.

The potential for the 𝜌VEX to influence the behaviour related to the Cache needs to be analyzed,
and discussed relative to existing Countermeasures that are used to prevent Cache Attacks. This re
sults in the following sub question and methodology:

3. How can the 𝜌VEX Architecture be utilized against Cache Attacks?

• Investigate the potential of the 𝜌VEX, and how Cache or Cache Attack related behaviour can be
influenced utilising the runtime reconfiguration.

• Discuss Countermeasures found in literature, and how these could be implemented with 𝜌VEX
Architecture specific functionality.

• Design Countermeasures based on these ideas, and discuss on what attacks they could have an
effect.

The most important aspects on Countermeasures is how they perform against the baseline attack
without Countermeasures. This can result in either preventing an attack fully, or making the attack
require extra samples to perform a successful attack.

4. How effective and efficient are Countermeasures based on reconfigurability of the 𝜌VEX
Architecture?

• Implement the designed Countermeasures with multiple variations if applicable.

• Profile the Countermeasures on effectiveness and performance.

• Test the most likely candidates for practical implementation on effectiveness over large sample
sizes, and if they can fully prevent the different attacks.

• Discuss and test how the Countermeasures could be worked around by the attacker, and if this
can be prevented by the implementation.

1.4. Thesis overview
In Chapter 2, background information required to understand the rest of this thesis is given. We give
a brief introduction on Memory and Cache Architectures in Section 2.1. We then introduce the 𝜌VEX
processor Architecture in Section 2.2, andmainly focus on how its Runtime Reconfigurability and Cache
Architecture is implemented. Finally, we will describe the AES algorithm and its implementation in detail
in Section 2.3.

Chapter 3 contains a literature overview of Cache Attacks and its Countermeasures, and relates this
to the 𝜌VEX and its potential for Countermeasures. Section 3.1 briefly explains how the implementation
of the Cache can lead to SideChannel vulnerabilities. Section 3.2 gives an overview of Cache Attacks
found in literature, and identifiers used to classify them. Section 3.3 describes a set of Cache Attacks
that are implementable on the 𝜌VEX in detail. Section 3.4 provides an overview of Countermeasure
designs against Cache Attacks found in literature. Section 3.5 introduces ideas on how to utilise the

4 1. Introduction

𝜌VEX reconfigurability to implement Countermeasures, based on the Countermeasures studied in
the previous section. Finally, in Section 3.6 a decision is made on what attacks from Section 3.3 to
implement in order to test the potential of Countermeasures on the 𝜌VEX.

Chapter 4 describes the implementation of the studied Cache Attacks on the 𝜌VEX, and the design
and implementation of three Countermeasures based on the ideas presented in Chapter 3. In Section
4.1 practical details regarding the 𝜌VEX Architecture that are relevant for the attack and Countermea
sure implementations are discussed. In Section 4.2 the implementations of the three Cache Attacks,
Prime+Probe, Evict+Time and Final Round Collision are described. Then, the design and implemen
tation of the three Countermeasure designs are described. Section 4.3 describes the Countermeasure
where configuration size variations are done to cause noise in the timing measurements, called nLane.
Section 4.4 introduces CacheSwap, where executing hardware contexts briefly swap between Caches.
Finally Section 4.5 describes ScatterRound, where vulnerable rounds of the AES algorithm are split out
over multiple Caches to prevent internal Cache Collisions.

In Chapter 5, the experimental results of the Cache Attacks against the Countermeasures intro
duced in Chapter 4 are presented. Section 5.1 describes the experimental setup, synthesizing the
𝜌VEX processor on the Digilent Genesys2 Development board. Section 5.2 analyses the raw per
formance of our OpenSSL AES implementation port to the 𝜌VEX and its speedup due to cached
lookups. Section 5.3 gives an overview of the metrics that make up the results on the performance of
the Countermeasure against the attacks, and Section 5.4 gives and overview of the experiments that
are done in the rest of the chapter. Section 5.5 gives the baseline results of the attacks. Section 5.6
does experiments on the influence of the shared Memory bus between multiple processes in a shared
processor. Section 5.7 gives the experimental results of the nLane Countermeasure, Section 5.8 that
of the CacheSwap Countermeasure and Section 5.9 of ScatterRound. Finally, a conclusion on the
results is given in Section 5.10

In Chapter 6, the thesis is concluded. A summary is provided, the main contributions and answer
to the problem statement are formulated. Finally, suggestions for future work based on the results of
this thesis are presented.

2
Background

In this chapter, background information required to understand the rest of this thesis is given. We give
a brief introduction on Memory and Cache Architectures in Section 2.1. We then introduce the 𝜌VEX
processor Architecture in Section 2.2, and mainly focus on how its runtime reconfigurability and Cache
Architecture is implemented. Finally, we will describe the AES algorithm and its implementation in detail
in Section 2.3.

2.1. Memory Hierarchy and Cache Architectures
In this section a brief introduction to the Memory Hierarchy is given. We will then highlight the most
important level of the hierarchy; the Cache. We will explain the structure of the Cache, and how it
interacts with the Main Memory level.

2.1.1. Memory Hierarchy
The Memory of a modern computer is a hierarchical system. Multiple levels of increasing capacity and
decreasing access speed are connected to each other to overcome the capacity versus performance
trade off.
A schematic of the Memory Architecture, with indicators for the access delays and capacity sizesn can
be seen in Figure 2.1. The general structure contains the processor itself (data registers), the processor
Caches (SRAM), the Main Memory (DRAM), the hard drive (SSD) and finally slower local drives and
the network.

Figure 2.1: The Memory Hierarchy, with indicator values for the access delays and sizes of the Memory levels

In this Memory Hierarchy, the data on the lowest level can be (temporarily) copied to a higher level.
A program can load pages of data on the hard drive to the main memory to start working with this data.
Recently used data from the memory gets temporarily stored in the Cache Memory. Once the data
needs to be used, the data is copied into the processor registers. These levels have minimal transac
tion sizes, where for instance the data copied from main memory to Cache is in chunks of 512 bits, or
the memory is divided into chunks that are divided over the processes in the processor. Once results

5

6 2. Background

are produced that need to be stored in the memory, this data is written down the hierarchy, depending
on how long it needs to be stored.

This hierarchical structure utilises the principals of locality within computer programs and the data that
allows the hierarchical system to work with this temporary copy system. This works on the higher lev
els, as processes that are running on the system are kept in the main memory by the operating system.
This also works on the lower levels, where for instance an image is edited and the pixels are iterated
over multiple times in rapid succession. This can be divided into two types of locality:

• Temporal Locality: If a data item is used by the processor, it is very likely it will be used again
short after.

• Spatial locality: If a data item is used by the processor, data that is stored on addresses near
that item is likely to be used soon after as well.

2.1.2. The Cache
The level of the memory right before the processor is the Cache. This Cache can be implemented
as a multi layer system, where Caches of increasing size but increasing delay are connected to each
other. Figure 2.2 illustrates an example Cache Architecture of a processor with two cores. The first
level Cache, closest to the processor is called L1(level 1) Cache. After that can be L2, L3 etc. The
higher levels of the Cache are often shared among cores or processors, depending on the system,
while the lower level(s) are private to a single core.

Figure 2.2: Example of a Cache Hierarchy. Level 1 is private and split between data and instruction Cache. Level 2 private and
mixed data types. Level 3 is shared and mixed data types.

In practice, processors either use a single unified Cache, or divide their Caches into a separate
Instruction Cache and Data Cache with their own paths to the memory. These Caches can have dif
ferent implementations and specifications from each other. It is a common practice that in multi layer
Caches, the lower levels are separated between instructions and data, but the higher levels are shared
between the two data types.

The structure of the Cache
Figure 2.3 shows the structure of a basic Cache design.The Cache consists of lines that carry temporary
copies of memory data. These Cache lines are restricted in what memory addresses can map to what
line. We will look at a simple example of this mapping, the Direct Mapped Cache. When translating a
main memory address to a Cache address, the address is divided into the tag field, Cache index and
byte offset.

2.1. Memory Hierarchy and Cache Architectures 7

Figure 2.3: The Cache structure. With first the division of the address into the specific fields of tag, Cache line and byte offset,
and then how these fields map to the specific parts of the Cache lines.

A Cache consists of a list of Cache lines. The amount of Cache lines in a basic implementation is
a power of 2. Each Cache line caries the following fields:

• Data: the memory data that is currently copied to the Cache. This field is a multiple of the
minimal data length in the processor, the processor word size. A common size of the data field in
processors is 512 bits, or 16 words of 32 bits. This size is usually based on the most efficient use
of how the DRAM main memory presents its data to the processor. The line used is indicated by
the Cache index part of the address. What byte or word is specifically accessed within that line
is determined by the byte offset field.

• Tag: The tag field is used to identify from what address the data on the Cache line comes. Part
of the memory address is already conveyed based on the location of the data in the Cache (line
+ byte offset), so this field is used to carry the variable part to indicate what specific memory
address is currently using this line.

• Valid: A bit to indicate whether the current data in this Cache is still valid; if it is the correct
data that is also present in the memory on this address. Data is invalid when the system boots,
and can become invalid if for instance multiple execution sources have access to the same data
(Multicore systems).

• Index: Each Cache line has a index.It is used to identify the Cache line and used to determine
what data is mapped where.

Using the Cache
The general process in a Cache when a memory lookup is requested is as followed:

1. The processor issues a memory lookup to an address 𝑎0 e.g. 0x000000F0.

2. The Cache receives the request and does the following:

• The Cache takes the Cache index, to see what Cache line needs to be used.
• The Cache checks if the tag stored, and thus the current data stored, matches with the tag
field of the lookup 𝑎0.

• If the tag matches, the Cache checks the valid bit to see if the data is valid.

8 2. Background

3. If that tag matches, and the valid bit is correct, the byte offset is used to determine what data is
forwarded to the processor.

4. If either the tag does not match, or the data is invalid, the Cache starts a transaction with the Main
Memory. The Cache requests the data corresponding to the current tag field and Cache index,
and thus to fill the Cache line with the correct data.

5. When the transaction is complete, the tag and valid bit are set, and the requested data is for
warded to the processor.

Cache Associativity
So far, we have discussed a Direct Mapped Cache: every Memory address maps to only one Cache
line, based on the Cache index in the address field. If an address can be mapped to more than one
Cache line, we speak of an setassociative Cache. Although a fully associative Cache, where every
address can map to any Cache line, is only practical for very small Caches, setassociative caches are
practical to implement in larger Caches. A set associative Cache means that instead of one entry per
Cache index, the Cache can have multiple. This is demonstrated here with 2 entries (2way) but can
be extended to larger variants such as 4way or 8way Caches.

Figure 2.4 shows the new structure when going from from a 1way associative, directly mapped,
Cache structure to a 2way Cache. We let twice as much data ”compete” for the same spots. We get
more flexibility as now the same data can be placed in two different locations. This implementation
requires more hardware: both to handle a lookup that can come from two lines, as well as extra bits of
information to use with replacement policies. How many additional hardware we require depends on
how replacement is handled.

Figure 2.4: The structure of a 2way Cache. Valid, Tag and Data fields are duplicated. Special fields for the Replacement Policy
are included. Depending on the replacements policy, this could be only one field per index.

The general steps added when multiple Cache lines share a index are:

1. See if there is an empty space for the current requested Cache index (can be indicated by the
valid bits) and place it in the first set.

2. If there are no empty spots left, apply a replacement policy to decide in what set the line at the
current Cache index is replaced with the new data.

Replacement policy
Whenever the Cache at a certain index in a setassociative Cache if completely filled, a decision needs
to be made which one of the currently occupied Cache lines to evict in order to make room for the
new request. The method we use to determine this, is called the Cache Replacement Policy. Some
examples of Cache Replacement Policies are:
Random Replacement: The set to replace on a Cache miss is randomly selected between the nsets
available for the address.
LeastRecentlyUsed (LRU): the order in which the data in the Cache is accessed is constantly kept
track of. If an eviction needs to be made on a Cache line, then the oldest set is evicted and replaced
with the new lookup.
MostRecentlyUsed (MRU): like with LRU the order of access is also constantly tracked, but now the
most recently used item gets evicted instead of the oldest one.
FirstInFirstOut (FIFO): In a FIFO Replacement Policy, the order of which the data accessed entered
the Cache is also tracked. Unlike with LRU and MRU, additional accesses will not ’refresh’ data. A
pointer cycles over the sets and assigns what set can be evicted on the next miss.

2.2. The 𝜌VEX Processor 9

2.2. The 𝜌VEX Processor
The 𝜌VEX processor is a VLIW processor developed at the Computer and Quantum Engineering
department at the Technical University Delft, the Netherlands [24] [25]. It is a project developed by
mostly (master) student projects and PhD candidates. The design is based on the HP VEX example
[26]. The 𝜌VEX processor deviates from this design with three unique main characteristics:

• The entire toolkit is open source and documented such to allow for academic work on the project.

• The processor is design time configurable on key characteristic parameters, and the toolkit is
also configurable to support these parameters (HDL designs, compiler, headers etc.).

• The processor is runtime configurable, to adaptively switch between one large VLIW processor,
or split its resources to form multiple parallel VLIW cores.

The runtime reconfiguration of the processor allows to efficiently swap between functioning as one
large VLIW core, or multiple smaller parallel VLIW cores. This switching is done in order to extract
as much available speedup from the two levels of parallelism available in the current workload: The
Instruction Level Parallelism (ILP) of the individual processes, and the threat level parallelism in how
many subtasks currently need to be completed. A scheduler on this system can potentially use this
configurability to either use execution lanes that are not used in programswith lower ILPmore efficiently,
or to give processes with higher priority access to all resources to speedup execution.

2.2.1. VLIW processors
A Very Long Instruction Word (VLIW) Architecture [27] allows multiple computer instructions to be ex
ecuted in parallel in the same processor core. The processor is implemented via separate execution
lanes, which are essentially just copies of a single instruction processor pipeline. Separate instructions
are bundled together by the compiler, forming one long instruction word or instruction bundle. These
instructions are all submitted at the same time and execute in their own hardware components.
The relative, expected speedup of a VLIW processor is however not the perfect n times for n instruction
lanes. A VLIW processor faces the following limitations from achieving its optimal speedup:

• Limited ILP: If there are many data dependencies between the instructions of a program, this can
limit the amount of instructions that can be executed at the same time, as the next instructions
are depending on instructions not yet issued. The compiler tries to achieve maximal ILP during
compile time. VLIW processors have the possibility to issue NOP operations in lanes that get no
instructions from the current bundle.

• Limited resources per lane: In practical processors, not every lane has the same execution
units and thus not every instruction can be issued to every lane. Common instructions limited to
only a couple lanes are floating point operations because of their huge hardware costs, branching
units because only one branch is possible at once and Memory lookups, as the amount of parallel
lookups can be limited by Cache and Memory implementations.

2.2.2. The 𝜌VEX Architecture
Figure 2.6 shows a schematic of the 𝜌vex hardware involved with the reconfigurability in a 8 lane, 4
context 𝜌vex.

10 2. Background

Figure 2.5: The main components of the design time reconfigurable 𝜌VEX

The 𝜌VEX Architecture consists of the following elements:

1. context registers: hardware contexts with register files containing all current data on the exe
cution of that context. Including data registers, branching related registers and context specific
control registers. Makes it possible to make multiple hardware processes to run in parallel.

2. The lane mapping: connecting the execution lanes to the right context depending on the con
figuration of the system

3. The execution lanes: grouped together in lanegroups of 2 lanes. The hardware in every lane
group can differ, but at least all basic hardware functionality must be present in a single lanegroup
to support the smallest configuration size.

4. Cache arbitration + accociativity routing: The Caches can be grouped together to form set
associative Caches. The logic that handles this mapping based on the current system configura
tion is included in this hardware.

5. Cache banks: the physical data and instruction Caches. These are connected to the instruction
lanes via the previously mentioned routing system to form a L1 Cache.

6. Memory: The Main system Memory.

The 𝜌VEX processor can reassign its execution lanes between the 4 hardware contexts. This goes
in multiples of at least two lanes, which is called a lanegroup. We are also limited to cores with a power
of 2 execution lanes. Figure 2.6 shows the possible combinations of configuration sizes in a 8lane 𝜌
VEX, These are 1x8, 2x4, 4x2 and 1x4 + 2x2. Lanegroups can also be fully disabled for power saving
purposes. If for instance a context rarely has the ILP required for performance gain when reconfigured
from 4 to 8 lanes, then the context can be configured to only use 4 lanes and disable all other hardware
resources to save power.

2.2. The 𝜌VEX Processor 11

Figure 2.6: The configuration options in a 8way 𝜌VEX, showcasing how the hardware contexts 𝐶𝑛, instruction lanes 𝐿𝑛 and
Caches 𝐶𝑎𝑛 are grouped together in these configurations

The 𝜌VEX implements so called generic binaries [28] to make the compiled instruction bundles ex
ecutable in each configuration possible. If these were not implemented, then each program would be
compiled three times for all possible issue widths, and take near three times the amount of Memory to
store. Different versions then also need to be swapped for each other in the Cache after configuration
changes, resulting in large performance costs when swapping between configuration sizes.

Generic binaries have the following characteristics:

• The maximum instruction bundle size is the same as the maximum size of 𝜌VEX processor.

• The bundle is either filled with NOP instructions if the current bundle does not have the maximum
amount of instructions possible, or a stop bit is added to the final instruction, allowing the hardware
to know where the bundle ends.

• If an executing context does not have the maximum amount of instruction lanes assigned to it,
the instruction bundle is split up and executed sequentially.

• Because of this splitting, in order to guarantee every lane can execute all programs, every lane
pair of the processor must contain the same hardware resources. Thus 𝐿0 = 𝐿2 = 𝐿4 = 𝐿6 and
𝐿1 = 𝐿3 = 𝐿5 = 𝐿7

• Only one Memory instruction and one branching instruction can be executed per bundle. This
means that in the bundles only one instruction in lane 𝐿1 can be one of these instructions. This is
also means that while in 1x8 mode only 𝐿1 gets these instructions, Lanes 𝐿3 𝐿5 and 𝐿7 still needs
to support these instructions, because they are executed in those lanes in smaller configurations.

2.2.3. Runime Reconfigurability
A reconfiguration for the Runtime Reconfiguration system can be issued via three sources on the 𝜌
VEX:

1. Directly into code via a write to a register. Every context can write a new reconfiguration to address
of its local CR_CRR register to request a new configuration.

12 2. Background

2. Via a device connected to the USB UART debug bus, writing a new configuration to the global
control register CR_BCRR register via this debug bus.

3. Via the sleep and wake up system, using interrupts. Automatically triggering a set reconfiguration
on interrupts to for instance run a default configuration to handle interrupts with a specific context,
or to save power when the processor has to sit idle and wait for an interrupt.

Reconfiguration words
A configuration is encoded in a configuration word. This 32bit word is used to describe a configuration
of the 𝜌VEX. Every nibble of 4 bits corresponds to a lanegroup of 2 execution lanes and its corre
sponding Cache.

In the 𝜌VEX configuration used for this thesis, the default configuration, 8 lanes grouped into 4 lane
groups and 4 hardware contexts are present in the processor. The 4 least significant bits of the recon
figuration word are used to indicate the processor configuration. The 4 contexts are indicated with their
integer index: 0..3. A lanegroup can also be disconnected if it is not used, using the value 8. Values
4..7 and 9..15(F) are not used in this setup, and configurations with these values are illegal and ignored
by the system.

examples: assigning all lanes to context0 is a configuration written as 0x0000. Assigning only 2
lanegroups to this context is 0x0088 or 0x8800. Sharing the processor with all 4 contexts, context0 to
context3, is 0x0123 or any variation with a different order.

There are some rules these configuration must adhere to:

1. Lanes used by the same context must be next to each other. Configuration 0x0011 is valid, but
configuration 0x0101 not.

2. Lanegroups can only be assigned to a context in powers of two, assigning 3 lanegroups to a
context is not possible and thus a configuration like 0x0001 is illegal.

3. The executing contexts must be ordered from largest to smallest configuration. 0x0012 is valid,
0x1002 is not.

The reconfiguration process
The main steps that are executed in hardware whenever a reconfiguration is requested are:

• Decoding: The requested configuration word is first verified on its validity for the current 𝜌VEX
hardware parameters. Arbitration that can happen when multiple sources request a reconfigura
tion at the same time is also handled. Only one reconfiguration is accepted, and the others are
rejected.

• Synchronization: if a reconfiguration influences a context, the current operation must be halted
and continued in the new setting. The pipeline is flushed, and the PC hardware adjusts to properly
continue the instruction flow in this new configuration. Also, in this stage it is made sure that
Memory operations and Cache write buffers are handled properly.

The reconfiguration overhead depends on the configuration issued, the current configuration and the
state of the Cache write buffer and Memory hardware. This overhead is in the order of tens of cycles.
The effective delay experienced by a context is also more if it is the context requesting the reconfigu
ration, as that adds the pipeline delay before the reconfiguration reached the register, and the pipeline
is flushed when the reconfiguration starts.

2.2.4. The 𝜌VEX Cache
The 𝜌VEX processor includes L1 Data and Instruction Caches. The Caches are designed to support
the Runtime Reconfigurability of the processor and can also be reconfigured to either function as a
single large Cache, or as multiple smaller Caches divided over the contexts.

The instruction Caches have 8 32bit words per Cache line, this is the maximum length of a single
instruction bundle supported by the 𝜌VEX. The data Caches have a single 32bit word per Cache line.

2.2. The 𝜌VEX Processor 13

The Caches are divided into four individual Cache banks. These Cache banks are connected to the
processor via Set Associativity routing. This routing routes n of these Caches to the lanes used by a
hardware context, where n corresponds to amount of lanegroups assigned to the context. The Caches
are physically aligned with the lanegroups: using lanegroup 1 with lanes 0 and 1 also yields the usage
of cachebank 0 to the context.

Figure 2.7: Diagram illustrating the organization of the reconfigurable data Cache. Instead of showing the generalized reconfig
urable logic, the effective organization for two example configurations is shown. [29]

Whenever more than 1 Cache is assigned to a context (4way or 8way 𝜌VEX mode), the Caches
are used together as an nway associative Cache: multiple Cache lines map to the same set address.
The replacement policy used in the current implementation is to use the next bit (4 lane 𝜌VEX con
figuration with a 2way associative Cache) or next two bits (8 lane 𝜌VEX configuration with a 4way
associative Cache) of the address to determine what Cache to use.
This practically means that after reconfiguration, the Cache data that is still present in the currently
assigned Caches can be accessed if needed. As the old data gets evicted out of the Cache, the Cache
starts to behave as directly mapped Cache, but now includes extra bits of the address to index Cache
sets, as the Cache in use has increased in size 2 or 4 times. The nway functionality currently only
allows data cached on the ”wrong” Cache line to still be used after a reconfiguration, but because this
simple replacement policy is implemented, performance gains from multiway associative Caches are
not achieved in the current implementation of the Cache. The only performance gain is that items that
are currently placed in the wrong set are not ignored, but can still be used after a reconfiguration.

Memory access
In the current implementation of the 𝜌VEX, only one access to the system Memory is processed at a
time. This effectively means that all issued Memory accesses in other contexts have to be stalled in
case a Memory Access is currently being done by another context. This means that the performance
of a context depends on how much the rest of the system is shared and on the amount of Memory
Accesses done by those contexts.

2.2.5. The current state of the project
Aside from the parameterised VHDL design files to instance the processor, the processor has a toolbox
to support working with the processor. This includes: a compiler, a debug program to interface with the
processor over a USB UART connection and VEXParse to optimize bundle sizes where the compiler
fails to extract maximum parallelism. Themost recent release of the 𝜌vex, 4.2, is based on the redesign
made in [29], which introduced the ability to reconfigure during runtime, created a reconfigurable Cache
Architecture and added tracing and debugging functionality. Other recent developments on the project
includes Floating Point units, ports of Operating Systems [30] and Virtual Address support with a MMU
[31]. The processor has also been implemented as an ASIC chip [32].

14 2. Background

2.3. Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) [33] is the cyptographic algorithm studied in this thesis. The
focus is on AES because of the reliance on key dependent memory lookups during encryption in fast
practical implementations on modern processors [33], and because it is widely studied in the field of
Cache Attacks [10] [34] [35] [7] [36].

In Section 2.3.1 the general concept of the AES encryption algorithm is explained. In Section 2.3.2
the details of the round transformations during encryption and decryption are explained, and in Section
2.3.3 the key expansion algorithm is explained. Finally in Section 2.3.4 the TTable implementation,
the one used in this thesis, is explained.

2.3.1. The Rijndael AES proposal

The AES encryption algorithm is a blockcipher. The input plaintext data is split into blocks of either 128,
192 or 256 bits and encrypted to a 128, 192 or 256 bit ciphertext respectively. The encryption key used
can also, independently of the length of the plaintext, be 128, 192 or 256 bits.
The data during encryption is represented as a 4xM matrix, where M depends on the data size of the
plaintext/key in that is represented (4, 6 or 8). The first dimension, size 4, referred to the as the rows
and the second dimension being the columns. See Figure 2.8 for the block notation of 128 and 192 bit
plaintext blocks. The encryption key and ciphertext are represented in the same way.

Figure 2.8: Block form notation of the AES plaintexts

In this thesis we will focus on AES128; encryptions with a 128 bit plaintext and a 128 bit key and
consequently a 128 bit ciphertext. These are represented as a 4x4 matrix, like the left matrix in Figure
2.8. The AES encryption is implemented as n encryption rounds, described in Figure 2.9. The final
round is different while all others do the same steps in order. For AES128, there are 10 total rounds. 9
iterations of the main round and then the final round. Before the first round, an individual AddRoundKey
operation is done. The output after every individual step is referred to as the state x of the encryption,
and stays represented as a matrix of the same size as the input plaintext. Details on the individual
steps are explained in the following sections.
The initial key used is expanded to a list of 11 roundkeys [𝑘0 ... 𝑘10]. The key value used in the
AddRoundKey steps is the next roundkey value from the previous AddRoundKey operation. The key
expansion algorithm is explained in Section 2.3.3.

2.3. Advanced Encryption Standard (AES) 15

Figure 2.9: The steps of AES128

Since AES is a symmetric encryption scheme, the decryption of ciphertexts is done with the same
key via an inverted version of the encryption. Inverted versions of the respective operations in encryp
tion are executed. We will not go into further detail on the decryption process in this thesis.

2.3.2. The AES operations

AddRoundKey

The AddRoundKey operation does a bit wise XOR between the current state x and the RoundKey k. It
has new state y as output. Figure 2.12 visually shows what happens to the AES state represented as
a block. Equation 2.1 shows the algebraic notation of the new state of column j.

16 2. Background

Figure 2.10: AES AddRoundKey step

⎡
⎢
⎢
⎣

𝑦0,𝑗
𝑦1,𝑗
𝑦2,𝑗
𝑦3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑥0,𝑗
𝑥1,𝑗
𝑥2,𝑗
𝑥3,𝑗

⎤
⎥
⎥
⎦
⊕
⎡
⎢
⎢
⎣

𝑘0,𝑗
𝑘1,𝑗
𝑘2,𝑗
𝑘3,𝑗

⎤
⎥
⎥
⎦

(2.1)

SubBytes
In the SubBytes operation, every individual byte in the current encryption state is substituted with a
different byte, based on the following transformation:
1) The multiplicative inverse in GF(28) is taken, with ’00’ mapped to itself.
2) an affine transformation is done according to Equation 2.2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
0
0
1
1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.2)

When implemented on modern computing systems, this transformation is precomputed and stored
in a 256 byte lookup table, the so called Sbox. Figure 2.12 shows the state transformation in the block
notation. Table 2.1 contains the precomputed values of the Sbox.

Figure 2.11: AES SubBytes step

2.3. Advanced Encryption Standard (AES) 17

Table 2.1: AES Sbox lookup table.

X0 1 2 3 4 5 6 7 8 9 A B C D E F
0X 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

ShiftRows
ShiftRows cyclically shifts the bytes in the 4 rows of the state. The upper row is not shifted, the other
3 rows are shifted by constants C1, C2 and C3. The values depend on the plaintext block size. In
AES128 these constants are C1 = 1, C2 = 2, C3 = 3. Figure 2.12 shows the transformation on state x
in the block notation, tracking every input column with a unique color. Equation 2.3 shows the algebraic
notation of the new state of column j at the output.

Figure 2.12: AES ShiftRows step

⎡
⎢
⎢
⎣

𝑦0,𝑗
𝑦1,𝑗
𝑦2,𝑗
𝑦3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑥0,𝑗
𝑥1,(𝑗+𝐶1)𝑚𝑜𝑑𝑁𝑏
𝑥2,(𝑗+𝐶2)𝑚𝑜𝑑𝑁𝑏
𝑥3,(𝑗+𝐶3)𝑚𝑜𝑑𝑁𝑏

⎤
⎥
⎥
⎦

(2.3)

MixColumns
MixColumns is a column wise transformation. Every new element of the column is computed based on
all the values in the column. The transformation is done as amatrix multiplication in GF(28). Figure 2.13
shows the transformation on state x in the block notation. Equation 2.4 shows the algebraic notation
of the new state of column j at the output.

18 2. Background

Figure 2.13: AES MixColumns step

⎡
⎢
⎢
⎣

𝑦0,𝑗
𝑦1,𝑗
𝑦2,𝑗
𝑦3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥0,𝑗
𝑥1,𝑗
𝑥2,𝑗
𝑥3,𝑗

⎤
⎥
⎥
⎦

(2.4)

2.3.3. The KeyExpansion
The KeyExpansion (or key scheduling) is computation of the RoundKeys used during AES encryption.
This done as a transformation of the key. Algorithm 2 describes the KeyExpansion algorithm. It takes
the 16byte key k, and produces 11 16byte roundkeys 𝑘𝑖, stored in output W.

Algorithm 2 The AES128 KeyExpansion algorithm as described in [33]
1: KeyExpansion(byte Key[16], word W[44])
2: for i = 0; i < 4; i++ do
3: W[i] = (Key[4*i], Key[4*i+1], Key[4*i+2], Key[4*i+3]);
4: end for
5: for (i = 4; i < 44; i++) do
6: temp = W[i 1];
7: if (𝑖%4 == 0) then
8: temp = SubByte(RotByte(temp)) ^Rcon[i / 4];
9: end if
10: W[i] = W[i Nk] ^temp;
11: end for

The SubByte operation is the same operation like discussed in Section 2.3.2. The RotByte operation
is a cyclic shift by 1 word, like the bytes of the AES state in the second row are shifted in the ShiftBytes
step of the AES algorithm. The Rcon (Round constant) value is the following list: Rcon = [0x01, 0x02,
0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36]

2.3.4. The 32bit implementation
Because the individual steps of AES handle operations on a individual byte level, the performance of
the AES algorithm can be rather poor modern processor architectures that are either 32bit or more re
cently 64bit architectures. For implementation of the algorithm on a 32bit device, the original Rijndael
proposal suggest the following: The steps Bytesub, Shiftrow, Mixcolumn and AddRoundkey can be
written as the following equations, with 𝑥𝑖,𝑗 the input state bytes and 𝑘𝑖,𝑗 the elements of the roundkey:

Bytesub:

𝑏𝑖,𝑗 = 𝑆(𝑥𝑖,𝑗) (2.5)

2.3. Advanced Encryption Standard (AES) 19

Shiftrow:

⎡
⎢
⎢
⎣

𝑐0,𝑗
𝑐1,𝑗
𝑐2,𝑗
𝑐3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑏0,𝑗
𝑏1,(𝑗+𝐶1)𝑚𝑜𝑑𝑁𝑏
𝑏2,(𝑗+𝐶2)𝑚𝑜𝑑𝑁𝑏
𝑏3,(𝑗+𝐶3)𝑚𝑜𝑑𝑁𝑏

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑆(𝑥0,𝑗)
𝑆(𝑥1,(𝑗+𝐶1)𝑚𝑜𝑑𝑁𝑏)
𝑆(𝑥2,(𝑗+𝐶2)𝑚𝑜𝑑𝑁𝑏)
𝑆(𝑥3,(𝑗+𝐶3)𝑚𝑜𝑑𝑁𝑏)

⎤
⎥
⎥
⎦

(2.6)

MixColumn:

⎡
⎢
⎢
⎣

𝑑0,𝑗
𝑑1,𝑗
𝑑2,𝑗
𝑑3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑐0,𝑗
𝑐1,𝑗
𝑐2,𝑗
𝑐3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑆(𝑥0,𝑗)
𝑆(𝑥1,(𝑗+𝐶1)𝑚𝑜𝑑𝑁𝑏)
𝑆(𝑥2,(𝑗+𝐶2)𝑚𝑜𝑑𝑁𝑏)
𝑆(𝑥3,(𝑗+𝐶3)𝑚𝑜𝑑𝑁𝑏)

⎤
⎥
⎥
⎦

(2.7)

AddroundKey:

⎡
⎢
⎢
⎣

𝑒0,𝑗
𝑒1,𝑗
𝑒2,𝑗
𝑒3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑑0,𝑗
𝑑1,𝑗
𝑑2,𝑗
𝑑3,𝑗

⎤
⎥
⎥
⎦
⊕
⎡
⎢
⎢
⎣

𝑘0,𝑗
𝑘1,𝑗
𝑘2,𝑗
𝑘3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑆(𝑥0,𝑗)
𝑆(𝑥1,(𝑗+𝐶1)𝑚𝑜𝑑𝑁𝑏)
𝑆(𝑥2,(𝑗+𝐶2)𝑚𝑜𝑑𝑁𝑏)
𝑆(𝑥3,(𝑗+𝐶3)𝑚𝑜𝑑𝑁𝑏)

⎤
⎥
⎥
⎦
⊕
⎡
⎢
⎢
⎣

𝑘0,𝑗
𝑘1,𝑗
𝑘2,𝑗
𝑘3,𝑗

⎤
⎥
⎥
⎦

(2.8)

If we write these steps as one equation, we get the operation of a single AES round as an equation.
Note that the mod Nb part of the Shiftrow stage is removed from this notation to keep it more compact.
The equation per column becomes:

⎡
⎢
⎢
⎣

𝑦0,𝑗
𝑦1,𝑗
𝑦2,𝑗
𝑦3,𝑗

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

02
01
01
03

⎤
⎥
⎥
⎦
𝑆(𝑥0,𝑗) ⊕

⎡
⎢
⎢
⎣

03
02
01
01

⎤
⎥
⎥
⎦
𝑆(𝑥1,𝑗+𝐶1) ⊕

⎡
⎢
⎢
⎣

01
03
02
01

⎤
⎥
⎥
⎦
𝑆(𝑥2,𝑗+𝐶2) ⊕

⎡
⎢
⎢
⎣

01
01
03
02

⎤
⎥
⎥
⎦
𝑆(𝑥3,𝑗+𝐶3) ⊕

⎡
⎢
⎢
⎣

𝑘0,𝑗
𝑘1,𝑗
𝑘2,𝑗
𝑘3,𝑗

⎤
⎥
⎥
⎦

(2.9)

These first four individual xor terms, based on permutations of SBox lookups, can be precomputed
in the following four, 1024 byte tables:

𝑇0 [𝑎] =
⎡
⎢
⎢
⎣

𝑆(𝑎) ⋅ 02
𝑆(𝑎)
𝑆(𝑎)

𝑆(𝑎) ⋅ 03

⎤
⎥
⎥
⎦
𝑇1 [𝑎] =

⎡
⎢
⎢
⎣

𝑆(𝑎) ⋅ 03
𝑆(𝑎) ⋅ 02
𝑆(𝑎)
𝑆(𝑎)

⎤
⎥
⎥
⎦
𝑇2 [𝑎] =

⎡
⎢
⎢
⎣

𝑆(𝑎)
𝑆(𝑎) ⋅ 03
𝑆(𝑎) ⋅ 02
𝑆(𝑎)

⎤
⎥
⎥
⎦
𝑇3 [𝑎] =

⎡
⎢
⎢
⎣

𝑆(𝑎)
𝑆(𝑎)

𝑆(𝑎) ⋅ 03
𝑆(𝑎) ⋅ 02

⎤
⎥
⎥
⎦

(2.10)

And then finally form the computation for a column after a full AES round:

⎡
⎢
⎢
⎣

𝑦0,𝑗
𝑦1,𝑗
𝑦2,𝑗
𝑦3,𝑗

⎤
⎥
⎥
⎦
= 𝑇0 [𝑥0,𝑗] ⊕ 𝑇1 [𝑥1,𝑗+𝐶1] ⊕ 𝑇2 [𝑥2,𝑗+𝐶2] ⊕ 𝑇3 [𝑥3,𝑗+𝐶3] ⊕

⎡
⎢
⎢
⎣

𝑘0,𝑗
𝑘1,𝑗
𝑘2,𝑗
𝑘3,𝑗

⎤
⎥
⎥
⎦

(2.11)

The final round of the encryption is performed like the regular implementation of AES, since the
final round lacks the MixColumn step and thus cannot use the Ttables. This final round is either
implemented with four special 1024 byte tables, computing the SBox values and placing them at the
right byte offset or by using the regular Sbox like described in 2.3.2 and shifting the bytes.

20 2. Background

2.4. Conclusion
In this chapter, the necessary background to understand the rest of this thesis was given. The design
of the Cache Memory, and its location within the Memory Hierarchy of a computer is briefly introduced.
The focus was to clarify the general concepts of Cache implementation in order to understand how these
can be vulnerable to the Cache attacks in the later chapters. Then a overview of the general concept
of the 𝜌VEX processor was given, with focus on understanding how the runtime reconfiguration is
implemented, and how the Cache of the system is designed to work with this reconfigurability. Finally
the AES encryption algorithm is described. Giving a detailed description of the steps in AES128 in
order to understand how this algorithm can become vulnerable to Cache based attacks. Finally a fast
implementation of the algorithm, the TTable implementation, is discussed as it is the most common
implementation on modern systems, and is the one studied in this thesis.

3
Cache Attacks and Countermeasures

literature overview

This chapter contains a literature overview of Cache Attacks and its Countermeasures, and relates this
to the 𝜌VEX and its potential for Countermeasures. Section 3.1 briefly explains how the implementation
of the Cache can lead to SideChannel vulnerabilities. Section 3.2 gives an overview of Cache Attacks
found in literature, and identifiers used to classify them. Section 3.3 describes a set of Cache Attacks
that are implementable on the 𝜌VEX in detail. Section 3.4 provides an overview of Countermeasure
designs against Cache Attacks found in literature. Section 3.5 introduces ideas on how to utilise the
𝜌VEX reconfigurability to implement Countermeasures, based on the Countermeasures studied in
the previous section. Finally, in Section 3.6 a decision is made on what attacks from Section 3.3 to
implement in order to test the potential of Countermeasures on the 𝜌VEX.

3.1. Information leakage in Caches
Modern computer Operating Systems allow applications to have their own isolated memory regions:
only authorized processes can access data in certain regions of the memory. This is implemented via
authorization systems that determine what sources can open specifics files from the hard disk, but also
on a hardware level in the memory. Processes are assigned memory regions (pages) which are tracked
to belong to a certain process. This memory isolation is usually implemented in a hardware compo
nent called the Memory Management Unit (MMU). This MMU maps the virtual memory addresses in
programs to real physical memory addresses.
Between the main memory and the CPU is the Cache layer. The Cache functions as a temporary buffer
between the memory and the CPU. Recently used data is stored in the Cache, and can be evicted once
another piece of data is mapped to the same line. See Section 2.1.2 for a detailed description.

The Caches in the CPU are commonly shared between processes that execute on the same system,
and do not implement physical isolation of space by default, which is the case for the main memory.
The logical memory isolation rules do however also apply to data in the Cache, preventing direct ac
cess to data belonging to other processes. This isolation is just an direct extension of the main memory
isolation, as the Cache shares the same access interface from the processors perspective, as if the
memory was directly connected. Data in the cache can not be directly accessed by processes that it
does not belong to.
However, what is not prevented is that data from two isolated memory regions share Cache lines and
thus cause interaction between two processes that share the Cache. Data from multiple processes can
be in constant ”fights” over Cache space. Evicting data from other processes to make room for their
own data. Cache Attacks aim to abuse these interactions in the Cache, and use the following practical
implementation details of the Cache:

21

22 3. Cache Attacks and Countermeasures literature overview

Hit/miss execution time distinction
The Cache is used as a smaller, faster memory unit between the main memory and the CPU. If a piece
of data is missing from the Cache, the processor has to start a transaction with the main memory, to
load the data from the memory to the Cache, and then through the Cache to the CPU. If a line of data
is missing from the Cache, the execution time of this single memory lookup uses more cycles than if
the data was present in the Cache. These extra cycles are called the miss penalty. This means that
measuring a single memory lookup in isolation can show directly if the data came from the Cache, or
from the memory. Multilevel Caches do have different miss penalties per level, so also the level in
which it is present is measurable in those systems with a certain accuracy. This also means that for a
process that has memory accesses, the execution time of this process varies depending on whether
this data comes from the Cache, or the memory. The general execution time correlates with the amount
of hits and misses in the Cache.

Cache eviction policies and Cache sharing
In the Cache, memory data is mapped to Cache lines based on parts of the memory address. If the
Cache architecture of the device under attack is known, an attacker can manipulate the data of other
processes in the Cache, given the attacker understands the Cache topology. The attacker accesses
enough data on certain addresses, and can analyse either the Cache behaviour during the attacked
process, or can analyse its own Cache behaviour as a result of the attacked process. The Side
Channels used to observe the Cache hits/misses are discussed in Section 3.2.1. Examples of practical
attacks that derive information on Cache usage by the AES128 implementation are discussed in that
section as well.

Practical Cache architecture details
Although ideally the information retrieved is that of individual memory lookups, it is not always possible
to do that in the Cache architecture under attack. Modern memory chips allow for quick memory reads
of groups of bits. A common resolution is 512 bits or 64 bytes burst reads, which result in multiple
processor words of 32/64 bits being read at the same time, and transferred to the processor in one
transaction. For efficiency , Cache lines in those CPUs are then made to store one single burst lookup,
and thus end up consisting of multiple processor words at the same time. This entire line is evicted
and replaced if a Cache miss occurs. This means that practical Caches that have longer Cache lines
can only leak addresses up to a certain uncertainty of the last couple bits, as different accesses within
a Cache line are indistinguishable from each other.

Another implementation detail is that of multiway Caches and replacement policies. Multiway
Caches make multiple Cache lines can map to the same memory address. A replacement policy
determines what Cache line will be used by a requested data line. This replacement policy influences
what the attacker need to do to force the targeted data in or out of the Cache. For instance on a LRU
policy, the attacker has to do multiple (n) data lookups mapping to the same set to make sure the
targeted data is evicted from it, as the attacker has no knowledge on what specific set the targeted
data was placed.

3.2. Overview of Cache Attacks
Cache Attacks can be classified based on different identifiers. The most common classifier is to split
based on SideChannel used to perform the attack. The three classifiers commonly used in literature
are:

• Accessdriven: Cache hits and misses are directly measured by the attacker timing individual
memory accesses.

• Timedriven: The victim process is timed by the attacker, and correlated with theoretical Cache
hits and misses on certain targeted memory accesses.

• Tracedriven: The pattern of Cache hits and misses are directly registered during the victim
process.

In Section 3.2.1, a overview of Cache Attacks against AES found in literature grouped by Side
Channel used is given. Then, Section 3.2.2 briefly introduces other classifiers used to describe Cache
Attacks, and how they can be relevant for this Thesis.

3.2. Overview of Cache Attacks 23

3.2.1. Cache Attacks overview: based on SideChannel used
In Cache Attacks, patterns of Cache hits and misses are studied during, or shortly after operation of the
crypthographic algorithm under attack. What SideChannel is used to derive information on the Cache
behaviour is a classifier that determines the fundamental type of samples that will be used during the
attack. The SideChannels that can be used are:

Accessdriven attacks
In access driven attacks, a degree of Cache sharing happens between the victim process and the
attacker. The attacker tries to either actively interfere with the Cache data used by the victim process,
or lets the victim process interfere with its own data.

The simplest example is the Prime+Probe Cache Attack [10], where large tables of data are first
loaded into memory, a victim process executes and after operation observes the presence of the primed
data in the Cache. Missing entries correspond to evicted Cache lines and thus show the used Cache
lines by the victim process.

The Evict+Time attack [10] first makes the attacked algorithm run on a chosen input to initialise
all its table data used in the Cache. Then the attacker tries to evict one lookup used by the attacked
algorithm and measures the time of a rerun with the same data. This measurement data correlates if
a address that is accessed for this input data is evicted or not.

If an attacker has access to the same memory data via shared libraries on the system, the attacker
can carry out the so called Evict+Reload[11] attack. The attacker first evicts target data from the Cache
via eviction data. Then the victim executes its code. Finally the attacker accesses data from target
data‘in the shared memory and measures if these come from Cache or system memory via timing.

If the system supports flushing Cache lines, usually through the clflush instruction in the ISA, then
the attacker can utilise this to carry out efficient cross core attacks through shared LLC’s.

With the clflush instruction, the attacker is allowed to invalidate all entries from a specific memory
address from the Cache hierarchy. Crypto libraries are often present on a system as a shared library,
making it so any process can access lookup data used by the library, such as the Ttables for AES.
Modern processors also implement page sharing or deduplication, allowing sharing of memory space
for data that is accessed by multiple sources at the same time. This is done in order to prevent multiple
contexts from loading multiple copies of the same data into the memory if its already present, allowing
for performance benefits on shared systems.

In Flush+reload[12], the attacker flushes, lets the victim execute and then measure how long it takes
to access these elements in the attacker process to see if they were put back into the Cache by the
attacker. Flush+flush[13] starts in the same way, but instead of timing access to the shared memory, it
times a second flush. The time this flush takes differs depending on if the data flushed is still present
in the Caches or not.

Finally, specific hardware functionality can lead to even easier attack implementations. The Prime+Abort
attack [37] uses the Intel TSX hardware to perform an even more efficient implementation of the
Prime+Probe attack. The Intel TSX system is an implementation of memory transactions, where the
results of an entire code section on the computer state can be instantly invalidated if the process is
aborted. Aside from Prime+Abort being faster than Prime+Probe, the attack does not require any form
of timing to retrieve its results and can wait for a hardware callback to conclude its measurement,
instead of needing to wait for a process for an arbitrary time.

The 𝜌VEX design currently has no shared Cache levels and no support for the flush operation.
This limits our attacks to those that share a single L1 Cache (Prime+probe, Evict+time).

Timingdriven attacks
The attacker observes the timing of the cryptographic algorithm under attack, and derives a statistical
model based on input plaintext and/or output ciphertext. These execution times correlate with the
amount of Cache hits and misses occurring. Deriving information based on this execution time relies
on creating models to derive theoretical collisions that can happen in execution: lookups that are done
in the Cache vs lookups that come from memory.

A common method for timing attacks are Cache collision attacks. In these attacks, the attacker
runs an encryption in an empty Cache. A Cache collision can happen when the same Cache line
is accessed multiple times by the victim process. For these attacks to success, the probability for
a iteration of the victim process where these collision do not happen need to significant enough so a

24 3. Cache Attacks and Countermeasures literature overview

measurable difference can be found with a realistic sample size. A first example is the single encryption
collision attack [36], single round collision attack. In the first round of AES, multiple lookups are made
to the same Ttable. Categorizing these samples on theoretical collisions results in a found minimum
for the right categorization: the least amount of execution time due to the collisions. This attack can
be also be performed on the last AES round, resulting in a more efficient lookup due to the use of a
unique lookup table for the Sbox operation used in this round for certain AES implementations [36].

Another category is Collisions happening between two encryptions. An example is the wide collision
attack by Bogdanove et al. [8], where input plaintext pairs are chosen where a collision between two
plaintext values is measured via five lookup collisions, a so called wide collision.

Other timing attacks are the evict+time attack, discussed in the previous subsection on access
based attacks. A timing attack that relies on similar mechanisms is Bernsteins attack [7]. For Bernsteins
attack, the attacker has access to the device under attack, or an exact copy of it. The attacker makes
a template of the timing data based on known plaintext and known key inputs. Due to natural evictions
happening during other system operations (for instance a server that handles incoming encryption
requests via a certain protocol), certain plaintext input will have larger average execution times. The
attacker can then use this template to correlate measurements on the device under attack using these
stand out combinations, deriving the real key of the system under attack.

The 𝜌VEX processor has a cycle accurate counter that can be accessed by the attacker to perform
these timing attacks.

Tracedriven attacks
In trace driven attacks, the attacker gets (partial) access to traces of access patterns. These traces
contain patterns of the sequence of Cache hits and misses. Acquisition of traces can be done via
either power measurements to identify accesses to the system memory or via hardware based tracing
functionality to track Cache performance. These often go via performance trackers, where a direct
pattern of Cache hits and misses can be acquired.

The 𝜌VEX processor has Cache performance trackers for each individual context, accessible to
the user, making it currently vulnerable against these trace attacks. The performance trackers can be
accessed by processes via the control registers.

3.2.2. Other Cache Attack Classifiers
1. Cache behavior and interference: the source of interference: whether these are Cache hits or

misses, and whether these are caused by the attacker or within the victim process itself.

2. Sharing level and degree of Concurrency: how many processor resources and Cache levels
the attacker and victim process get to share, and how much these can operate at the same time.
For instance based on the system scheduler and multithreading capabilities, and if the attacker
needs to be active during the victim process or only before and after it. Because of the nature
of the 𝜌VEX processor, it becomes very easy to go from isolated Caches, to shared Caches by
just remapping the hardware contexts to the different Caches with a reconfiguration. Because
at this point of time of the development of the 𝜌VEX processor, there is no formal rule on what
level in operation can trigger the reconfiguration; only the operating system, that bases it on ideal
performance, or also by the user processes based on requests. Multiple situations are thinkable:

• No sharing: during operation it is made sure that the cryptographic algorithm never executes
in the same lanes and thus never shares Caches with the process invoking it. The attacker
can not request a reconfiguration by itself.

• Sharing possible by operating system: The attacker can not request a reconfiguration by
itself, but because the encryption is invoked by the attacker itself, the attacker process and
cryptographic algorithm end up sharing a Cache.

• No restrictions: The attacker is allowed to request reconfigurations at its own initiative.

3. Based on the system types: based on the type of processor, and if Virtual Machine operation
is used. In our work single core attacks and multicore without shared Cache level are relevant to
apply on the 𝜌VEX platform.

3.3. Detailed description of selected Cache Attacks 25

4. Based on the target crypto algorithm: different algorithms have different weaknesses ex
ploitable by Cache Attacks, and require their own method to derive information using knowledge
on the implementation of the specific algorithm. In this thesis the focus is exclusively on AES
128. For instance an instruction Cache Attack on algorithms that have key dependent instruction
flow, like possible on RSA [38], would not be applicable, as AES does not have key dependent
instruction flow.

5. Based on initial state of the Cache: whether the attack requires a Cache clear, needs to create
some initial Cache state or needs the victim process data in the Cache. Distinction between these
is considered to not be relevant to choose what types of attacks to investigate. This distinction
only tells how the attack should be implemented.

6. Based on information of inputs: Attacks on cryptographic algorithms can be divided in de
grees of control and knowledge over the encrypted data: Chosen plaintext, where the attacker
has the freedom to make encryption calls themselves. Known input/output, where the attacker
only receives random samples of encryptions done by other processes. Finally attacks without
knowledge on exact input/output are called asynchronous attacks. For these attacks, the attacker
has to do statistical analysis of potential plaintext inputs, as they have no knowledge on the exact
inputs. An example would be analysing Cache usage of encryptions on plaintext from the English
language, demonstrated in [10]. In this thesis we will only consider synchronous attacks.

3.3. Detailed description of selected Cache Attacks
In this section, practical Cache Attacks considered to be used for this research are described. These
are selected based on the fact that they are currently implementable on the 𝜌VEX hardware (one
private Cache level, no operating system, no attacks based on crossVM mechanisms). The list of
attacks considered, that are explained in detail in this section are:

1. Prime+Probe Attack [10] in Section 3.3.1

2. Evict+Time Attack [10] in Section 3.3.1

3. Final Round Collision Attack [36] in Section 3.3.2

4. 3rd round Wide Collision Attack [8] in Section 3.3.3

5. Bernsteins Attack [7] in Section 3.3.4

6. First round Trace based Attack [35] in Section 3.3.5

3.3.1. The first round attack based on lookup probability scores
Attacks that have the attacker share the same Cache with the vulnerable code, almost always target
the first encryption round because the most information is known to the attacker at that point. In an
attack with lookup probability scores, the attacker targets specific Cache lines known to be used by the
table data of AES. The attacker interferes with these Cache lines multiple times, and uses the acquired
measurement data to derive the most likely accessed Cache line that is theoretically constant for their
targeted input plaintexts.

The first round attack
The principal of the first round attack is to use the knowledge that the state used in the first round of
lookups in the Ttables of AES, is simply a xor of the input plaintext bytes and the first roundkey bytes
in Equation 3.1.

𝑥𝑖,𝑗 = 𝑝𝑖,𝑗⊕𝑘𝑖,𝑗 (3.1)

The lookups in the first 9 rounds of AES128, per column 𝑐𝑛 are according to the following equation:

[𝑦(0,𝑐𝑛) 𝑦(1,𝑐𝑛) 𝑦(2,𝑐𝑛) 𝑦(3,𝑐𝑛)] = 𝑇0[𝑥(0+𝑐𝑛 ,0)] ⊕ 𝑇1[𝑥(1+𝑐𝑛 ,1)] ⊕ 𝑇2[𝑥(2+𝑐𝑛 ,2)] ⊕ 𝑇3[𝑥(3+𝑐𝑛 ,3)] ⊕ 𝐾𝑐𝑛
(3.2)

This means that for these 9 rounds, with 4 columns each, there will be 36 lookups per 1024 byte T
table 𝑇𝑛. The lookups in the first round are directly related to the combination of the chosen plaintext

26 3. Cache Attacks and Countermeasures literature overview

bytes and the key bytes. Also, 35 other lookups will be done to the same table during the full encryption.

Imagine a situation where we keep one single plaintext byte constant, and thus one single lookup
in the first round constant, generate the other plaintext bytes randomly, and do measurements on what
Cache lines are used by these encryptions. We call this result the measurement score Q, and we write
it as 𝑄𝑘(p, l, y). Where k is the targeted subkey, p the chosen plaintext byte at the same index at the
target key, l the targeted Ttable 𝑇𝑙 and y is the targeted Cache line.
Every encryption, the same lookup will be occurring in 100% of the encryptions during the first round.
The other 35 lookups are randomly distributed. For a Cache with Cacheline size 𝛿 in a 32bit pro
cessor, the probability that this same Cache line is not accessed in the other 35 random accesses, is
(1− 𝛿/256)35. With the common Cache line length 𝛿 = 16 this becomes a probability of approximately
0.104. In the case of the 𝜌VEX, with Cache lines of a single 32 bit word, this probability is 0.872.
Given these probabilities, if an attacker acquires a feasible set of traces where measurements are done
to determine if a Cache line was accessed or not, the most accessed Cache line and thus the highest
cumulative 𝑄𝑘(p, l, y) value will be the one targeted: the lookup that is based on the value of the xor
between the plaintext byte and roundkey byte in Equation 3.1.
In situations where Cache lines aren’t just a single processor word, the information from this attack can
be limited to only a couple bits of the key bytes. For instance with 16 word lines, only the higher nibble
(4 bits) of the key bytes can be found, as the different accesses within a line cannot be distinguished.

Measurement via Prime+Probe
The most simple implementation of an access based Cache Attack is the Prime+Probe attack. This
because the access pattern used for this attack is possible on any hardware where Caches are shared
between processes. In the PrimeProbe Cache Attack, an attacker first primes a large set of data in
the Cache by accessing a random array of data from within its own process. The attacker waits for an
encryption and then probes their previously accessed data, timing the individual lookups to decide if a
miss or a hit was registered on these lookups, and thus concluding if the line was accessed or not by
the encryption under attack.

The algorithm to acquire measurement score Q for combinations of targeted key bytes k, chosen
plaintext byte p and targeted Cache line y is as followed.

1. Attacking a nway Cache, where there are n Cache sets with m bytes of data each, the attacker
allocates a single data array of size n x m.

2. The attacker carries out the ”prime” step; they access every element in their n x m data array to
make sure they are all cached. In a Cache with multiple words per Cache line, one address per
Cache line is sufficient.

3. The targeted AES encryption is done. Either the attacker directly knows when a single encryption
is finished, or they try to wait for a certain time period to make sure the encryption finished.

4. The attacker carries out the ”probe” step; they access every element in their array again, and
time how long each entry takes to access. The attacker sets a certain timing threshold to make a
binary conclusion if the the lookup came from the Cache, or had to be reloaded from the memory.

Measurement via Evict+Time
The Evict+Time attack aims to evict a specific table entry while making sure all other table entries used
for the encryption are in the Cache. The attacker then measures the encryption time, which should
be higher if the eviction was done to a Cache line that was used for the encryption. Acquiring many
of these measurements on multiple plaintexts will result in eventual outliers for the most frequently
accessed plaintext and thus information on the key.

The Evict+Time method to perform the first round attack works according to the following method:

1. Attacking a nway Cache, where there are n Cache sets with m bytes of data each, the attacker
allocates a single data array of size n x m.

2. The attacker issues an encryption with a known plaintext. Making sure all table entries used for
this specific encryption are in the Cache.

3.3. Detailed description of selected Cache Attacks 27

3. The attacker targets a specific Cache line, and with that a specific lookup address (or a set of
addresses if the Cache line is larger) and evicts it by accessing n times at offset m in their allocated
data.

4. The attacker issues an encryption with the same known plaintext as in step 4. The attacker times
this encryption and this time becomes the measurement score.

Determining memory locations
In the descriptions above, the assumption was that the attacker knows the memory address of the
lookups tables of AES. This however, might not be the case. Usually, the layout is known, and thus
only the start address needs to be determined. The attacker can first profile on activity of Cache lines,
if the system is relatively free of noise and thus only mainly the AES code will use the Cache. A
different approach is to do the attack on the full Cache space, and then use the pattern of the most
likely candidates for multiple plaintexts to determine the key value, instead of directly computing it.

The second round attack
The first round attack can not be sufficient enough to extract all keybits, or at least not enough keybits
like in our example of Cache lines with 16 words; where the search space remains 4 bits per keybyte,
or 64 bits total that results in 264 = 1.84 ⋅ 1019 key candidates still unknown. This search space is too
large for brute force search. In order to extract the full key, the information retrieved in the first round
attack can be applied for an attack on the lookups in the second round, in order to retrieve the left over
keybits.

In the second round, we set up the equations that yields the input for the Ttables in the second
round. We write this as a function of the input plaintext and input key, and write the transformation
in a form that uses the SBox transformation 𝑆[𝑥] step (so not the Ttable notation). Let us write the
equation for element 𝑥2,0 at the start of the second round, after the AddRoundKey step.

𝑥(1)2,0 = 𝑆[𝑝0,0⊕𝑘0,0] ⊕ 𝑆[𝑝1,1⊕𝑘1,1] ⊕ 2 • 𝑆[𝑝2,2⊕𝑘2,2] ⊕ 3 • 𝑆[𝑝3,3⊕𝑘3,3] ⊕ 𝑆[𝑘3,3] ⊕ 𝑘2 (3.3)

Similar equations can be constructed for the terms 𝑥2,𝑖 in the third row. Note that the term 𝑆(𝑘3,3)⊕
𝑘2 is the roundkey 𝑘(1)2,0 , that is derived according to the key expansion algorithm in Section 2.3.3.
Depending on the term, one or more key bytes are xor’ed at the end. The lower bits of these individual
key bytes can be ignored, as they do not influence the Cache line accessed. The higher bits of these
key bytes are known. For the key bytes that are used for a Sbox, the upper bits are also known, but the
last bits that are not known are now relevant for the Cache line accessed. There are 4 unknown lower
parts of key bytes. In the common architecture, with 4 unknown bits per key, this means a search space
of 216 = 65536 bits. If the most accessed Ttable address for constant plaintexts 𝑝2,𝑖 is measured, then
the most likely candidates for these lower bits of the key bytes can be computed.

3.3.2. Final Round Collision attack
The final round collision attack proposed in [36], is a implementation of an Cache Attack based on
timing single encryptions in a assumed to be empty Cache. The attack relies on collisions between the
lookups in a single encryption, where the execution time varies depending on if multiple lookups are
done to table entries on the same Cache line. The AES implementation targeted is one where the rest
of the rounds are done via the Ttable implementation discussed in Section 2.3.4, but the final round
uses a separate table to look up SBox values directly.

At the end of the final round of AES128, a final AddRoundKey step is done on the current encryption
state 𝑥 with roundkey 𝑘10. The final lookup done and resulting ciphertext becomes that in Equation 3.4,
where 𝐶𝑠ℎ𝑖𝑓𝑡 is the shift constant of the row the ciphertext i,j is in.

𝐶𝑖,𝑗 = 𝑆[𝑥𝑖,𝑗−𝐶𝑠ℎ𝑖𝑓𝑡] ⊕ 𝑘10𝑖,𝑗 (3.4)

This round consists of 16 lookups to the same 256 byte Sbox. If these lookups are done in a
Cache where all AES data is absent, achieved by the attacker forcing out all cached data or by waiting
sufficiently long enough for other processes to claim the Cache, then the execution time will correlate
with how many collisions happen in this round.

28 3. Cache Attacks and Countermeasures literature overview

Now lets look at the situation where a collision between lookups happen. We target arbitrary output
ciphertext bytes n and m. In the final round, these are computed using the final round roundkey (𝐾10𝑖)
and the current AES state bytes 𝑥0...15 as in Equations 3.5 and 3.6

𝐶𝑛 = 𝑆[𝑥𝑖] ⊕ 𝐾10𝑛 (3.5)

𝐶𝑚 = 𝑆[𝑥𝑗] ⊕ 𝐾10𝑚 (3.6)

In case, where there is a collisions between 𝑥𝑖 and 𝑥𝑗, their values will be the same and will result
to the same lookup:

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 => 𝑆[𝑥𝑖] = 𝑆[𝑥𝑗] (3.7)

When this collision happens, we get the following equation of the xor between the targeted ciphertext
bytes:

𝐶𝑛⊕𝐶𝑚 = 𝑆[𝑥𝑖] ⊕ 𝐾10𝑛 ⊕𝑆[𝑥𝑗] ⊕ 𝐾10𝑚 = 𝐾10𝑛 ⊕𝐾10𝑚 (3.8)

Now, all samples in which the collision between these targets happens, will be grouped together
under this same xor value. Even better, only the samples where this collision happens are able to be
grouped under this sample:

Assume we have the right guess for which Equality 3.8 holds. In case of the collision, the xor of
the sbox lookups results in 0: 𝑆[𝑥𝑖] ⊕ 𝑆[𝑥𝑗] = 0 As every element in the sbox is unique, for every
other combination of lookups the inequality holds that 𝑆[𝑥𝑖] ⊕ 𝑆[𝑥𝑗] ≠ 0, and will thus always result in
a outcome that is not equal to 𝐾10𝑛 ⊕𝐾10𝑚

Then, because all other samples grouped under the other potential xor values are just randomly
selected together, while the samples grouped under the correct guess of the xor of the targeted subkeys
always share a collision, the specific ciphertext xor value that corresponds to the equality in Equation
3.8 and thus yields the xor of two key bytes will have on average a lower execution time than the other
samples.

3.3.3. The 3rd round wide collision attack
The collision attack proposed by Bogdanov et al. [8] relies on collisions happening between two se
quential encryptions, where the input plaintexts are chosen by the attacker. The plaintext used for the
second encryption is based on the plaintext of the first encryption, to create situations where collisions
appear between the lookups of the two encryptions.

The attack starts with the attacker making sure the AES data is not cached, through either doing
Cache evictions to clean the Cache, or wait a sufficiently long time that other processes evicted all AES
data. A first encryption is triggered. This encryption accesses some table entries and puts the AES
data partially back into the Cache.

Then, a diagonal of the AES data is selected. The diagonals are shown in Figure 3.1. This diagonal
targeted is a diagonal of the plaintext.

Figure 3.1: The diagonals of the input plaintext in the wide collision attack, each diagonal represented in a different color

The attacker first does their encryption on a random plaintext 𝑝1. Using this first plaintext, the
attacker generates plaintext 𝑝2 by randomizing the bytes on the targeted diagonal, copies all other

3.3. Detailed description of selected Cache Attacks 29

bytes from 𝑝1 and makes sure that 𝑝1 ≠ 𝑝2. In Figure 3.2 the new diagonal is tracked through the first
two AES rounds, and illustrates what happens when a wide collision between 𝑝1 and 𝑝2 occurs.

Assume during the second encryption, the diagonal of elements 𝑥0,0 𝑥1,1 𝑥2,2 𝑥3,3 is targeted. These
elements are potentially different when compared to the first encryption. The other bytes that remain
the same as the previous encryption are left blank.

Figure 3.2: The wide collision being caused by a collision at the end of AES round 1. Tracking the blue diagonal through the first
round. In the second round, a theoretical collision is highlighted in yellow. The purple values indicate bytes that may differ from
the first encryption while blank values are guaranteed the same as in the first encryption

The steps of the first encryption round are carried out as seen in the figure, and after the Mixcolumn
step, 3 columns (𝑐1 𝑐2 𝑐3) are identical to the first encryption, but column 𝑐0 is different, highlighted in
green. Now, because the the values in this column are all coming from the combined result of the four
values in them before the MixColumn step, these values can be identical to that in the first encryption
without having identical plaintext bytes used in the computation. This is unlike in the previous steps,
since each byte was only dependent on a single input plaintext byte in the steps before.

In the situation where there is a collision; the same value as in the previous encryption is present
in this round will result in a guaranteed Cache hit. A theoretical situation where byte 𝑦0,0 of the state at
the start of round 2 is identical to the previous encryption is highlighted with yellow in Figure 3.2. The
other bytes in this column are assumed to not collide, and highlighted in purple to show that these are
now different than in the first encryption, and we do not know anything about their value anymore.

Now, the collision in this round is also propagated to the next round. When we track 𝑦0,0. The steps
of AES are applied, and what can be seen is that, now the entire first column 𝑐0 is identical to that in
the previous encryption. The lookups done at the start of round 3 result in four additional guaranteed
Cache hits as opposed to the situation where there was none. The other three columns are now all
new values that we have no knowledge on.

Applying Wide Collisions in an Attack
To use the weakness of wide collisions the attacker constructs the following attack:

The attacker iterates over all 4 targeted diagonals. For every diagonal, n pairs of values for the
diagonals (A,B) for 4 • 𝑛 targeted diagonal pairs total. For every diagonal pair, the attacker randomly
generates I values for the other bytes, and constructs the plaintexts 𝑝1 and 𝑝2 with these, copying the
same bytes to both plaintexts, but setting the targeted diagonal to the two values of A and B. Each of
these plaintext pairs are sequentially encrypted in an empty Cache r times. The attacker thus does
4 • 𝑛 • 𝐼 • 𝑟 total encryptions.

For every diagonal pair (A,B) the binary decision is first made if a wide collision happened or not.
The list of candidates for (A,B) are used in the final step. The algebraic equation of the collision needs
to be solved based on these pairs. Equation 3.9 shows the expression of the targeted diagonal in

30 3. Cache Attacks and Countermeasures literature overview

Figure 3.2. 𝑎𝑖 and 𝑏𝑖 are the elements of the first diagonal, a combination of 4 colliding diagonal pairs
is required in order to solve this equality.

02 • 𝑆[𝑘0⊕𝑎0] ⊕ 03 • 𝑆[𝑘5⊕𝑎1] ⊕ 01 • 𝑆[𝑘10⊕ 𝑎2] ⊕ 01 • 𝑆[𝑘15⊕ 𝑎3] =
02 • 𝑆[𝑘0⊕𝑏0] ⊕ 03 • 𝑆[𝑘5⊕𝑏1] ⊕ 01 • 𝑆[𝑘10⊕ 𝑏2] ⊕ 01 • 𝑆[𝑘15⊕ 𝑏3] (3.9)

Bogdanov et al. [8] solve this by iterating over all possible combinations of 4 diagonal pairs from all
4 + m proposed collision pairs (A,B) for a diagonal. Iterating over all possible key values to check if they
satisfy the equality. They estimate the offline processing step to take 232 • ((4+𝑚4))

4 AES encryptions.
They experimentally found 66 million measurements, roughly 226, to be sufficient to get correct results.

3.3.4. Bernsteins attack
In Bernsteins attack [7] , the attacker has access to a device that is identical to the attacked device.
The attacker performs a profiling stage on the copy of the device with known plaintexts and a known
key, and tries to make a statistical model of the timing of encryptions based on these measurements.

The attacker targets a lookup in the first round, being 𝑇𝑘[𝑝𝑖,𝑗 ⊕ 𝑘𝑖,𝑗]. Now, the timing of a full
encryption can be correlated to the value of this lookup. This is mainly attributed to natural evictions
happening in the process of calling the AES encryption. For instance because of operating system
related Cache usage or because of interference with the memory location where the inputs are stored.

The attacker uses the example device to do measurements of every intermediate value for 𝑛𝑖,𝑗 =
𝑝𝑖,𝑗 ⊕ 𝑘𝑖,𝑗 for every targeted key byte. They calculate the average encryption time and the deviation
through measurement. With the knowledge on the measurements, the attacker computes for every
value of 𝑛𝑖,𝑗 how the average of that value compares to the total average of the measurements for all
values of 𝑛𝑖,𝑗. These samples are ranked on most deviation from the average.

The attacker can do measurements on the attacked device, measure plaintext values of a targeted
byte that averages the highest execution time: 𝑝𝑚𝑎𝑥. Then assume that this should be for which the
value of 𝑛𝑖,𝑗 was maximum in the profiling step: 𝑛𝑚𝑎𝑥(𝑖, 𝑗). The attacker computes 𝑘𝑖,𝑗 = 𝑝𝑚𝑎𝑥(𝑖,𝑗) ⊕
𝑛𝑚𝑎𝑥(𝑖,𝑗)

3.3.5. The first round collision attack based on traces
In a trace based attack, the attacker gains access to raw information on the hit and miss patterns in the
processor during the encryption. These traces are formatted with H for hit, M for miss. HHM means
that a processor does a sequence of three memory accesses. The first two are in the Cache and hit,
the last one is missing and results in an access to the main memory.

The way an attacker can acquire these traces is done via two methods:

1. Performance trackers: If the CPU tracks their hit and miss rates via performance trackers, and
the attacker has a method to read these trackers fast enough to registers hits and misses, then
the attacker can acquire the Cache traces via these performance trackers.

2. Power traces: The difference between Cache accesses and memory access can be distinguish
able in a power consumption trace from the processor, enabling the access behaviour trace to
be retrieved this way [39]

A practical trace attack is to target the first round of AES. The attacker makes sure the AES data is
fully evicted from the Cache by waiting long enough or doing evictions themselves. Then a encryption
with known plaintext is done and the Cache trace is registered. The attacker tries to register a collision
between the lookups after the first one in a specific table. A collision between lookups can happen with
a probability of 𝛿/256, with 𝛿 the Cache line length in words. This is done in a adaptive manner: An
arbitrary plaintext is chosen for 𝑝𝑖, then, the attacker iterates over all other plaintexts possible for the
next plaintext 𝑝𝑗 that shares the lookup tables. Once the attacker registers a hit on this second lookup,
the attacker knows the following:

𝑘𝑖⊕𝑝𝑖 = 𝑘𝑗⊕𝑝𝑗 for the upper 8 𝑙𝑜𝑔2(𝛿) bits (3.10)

𝑝𝑖⊕𝑝𝑗 = 𝑘𝑖⊕𝑘𝑗 for the upper 8 𝑙𝑜𝑔2(𝛿) bits (3.11)

3.4. State of the Art of Cache Attack Countermeasures 31

In case of an attack on the Sbox implementation of AES, this attack can generate all inequalities for
the 120 keybyte pairs.

If an exact pattern of hits and misses are registered, then colliding lookups can be identified.
The attacker can adaptively change their next input plaintext. If for instance, we find a pattern M

MHM in the lookups in table 𝑇1 in the first round, then this collision could be between lookup 1 and 3,
or lookup 2 and 3. Randomly permutating either the plaintext used in the first lookup, or in the second
lookup will then give a clear answer on which two lookups collided. This will results in the xor values
of key byte pairs 𝑘𝑖⊕𝑘𝑗

3.4. State of the Art of Cache Attack Countermeasures
As Cache Attacks have proven to be a serious security risk when executed on systems with protected
data, the potential for Countermeasures has become a widely studied topic. Countermeasures have
been successfully implemented and shown to be effective at either making Cache Attacks more difficult
or fully preventing them. In this section we will briefly introduce Countermeasure concepts found in
literature, and how they perform if implementations have been made.
We group the Countermeasures into the following categories:

• CodeModifications: Change the implementation of the AES algorithm to becomemore resistant
or immune to Cache Attacks.

• Reduce System Level Privileges: Prevent certain steps required to execute an attack to be
done by untrusted parties.

• Cache Redesigns: Alter Cache designs to remove the characteristics exploited by Cache At
tacks.

• Noise based Countermeasures: Add noise to the measured SideChannel to make attacks
require more samples.

• Attack Detection: Detect Cache Attacks in real time, and act to prevent them when detected.

For Cache Attacks targeting AES, Countermeasures that can partially operate during execution
can be implemented to only function during the vulnerable rounds: for most attacks the first or final
encryption rounds, and in specific cases the second round (using data from the first round), or the
second round plus third round for the Wide Collision Attack in Section 3.3.3, these Countermeasures
are only required to be functional during those rounds.

3.4.1. Code Modifications
Avoid Cache or memory
A first solution is to avoid memory lookups all together, so no information on data dependant lookups
can ever leak into the execution of the algorithm. In case of the AES encryption algorithm, the Sbox
lookups can be replaced by the computation done to compute the lookup data. This however has the
downside of slowing down encryption time significantly Another method is to completely bypass all
system memory by using dedicated AES hardware on the system, for instance secure crypto copro
cessors or specific hardware support for cryptographic functions, such as the AES instruction set on
Intel processors [23]. These AES specific hardware resources not only avoid Cache leakage, but also
provide significant speedup to AES throughput, with Intel reporting an average of 1.3 cycles/byte [40].

Bitslicing [21] is another promising implementation of AES that bypasses the use of tables and
thus data dependent lookups all together. It computes multiple encryption in parallel. For this imple
mentation, N input plaintexts are taken together and encrypted in parallel, where N is the bit length of
the processor words used (32/64 bits). The input plaintexts are first shuffled in such a way, that 128
processor words each have 1 bit of every plaintext, in sequential order. The Sbox transformation is
implemented via its mathematical definition. The other rounds can be implemented via simple opera
tions on the full words, with shifting and xor additions on full words. A more efficient implementation of
the bitslicing method is proposed in [22], where only four plaintexts are mixed into each other to have
more efficient throughput. This saves a lot of memory operations as all data for one encryption call
can be stored in the registers of the processor as opposed to the implementation in [21]. This faster

32 3. Cache Attacks and Countermeasures literature overview

implementation is found to only be 5% slower than the reference implementation of AES in a setup on
an AMD Opteron 146.

A different solution is to bypass the Cache and access data in memory only. How the adversary
can do this depends on what functionality the current platform supports. If the adversary can allow
processes to bypass the Cache by temporarily disabling caching, then Cache usage is completely
hidden. This however, comes at a large performance cost as every lookup has to come from memory
directly, what can lead to a slowdown of a factor up to 100 [10], depending on the memory architecture
and AES implementation.

Secure table implementations
The vulnerability to Cache Attacks for AES specifically comes from the use of lookup tables. Although
the most frequently used 32bit implementation uses four 1024byte Ttables, other implementations
can be used at cost of performance. A first transformation done is to avoid the use of a separate SBox
in the final round, and instead use transformations of the Ttables to get the SBox lookup values. This
covers the significant weakness of the final round using an isolated table with less lookups than the
other tables. This implementation currently is the standard in crypto libraries like OpenSSL.

Multiple implementations that try to manipulate AES lookup tables so they become more resistant
to Cache Attacks have been proposed [41]. The first method is to only use Ttable T0, and cyclically
shifts the bits in these to derive the values for Ttables T1 to T3, according to the definition in Section
2.3.4.

Another method is to use the classical implementation of AES, using the SBox is the only lookups
and computing the other steps. Due to the smaller size and more frequent accesses (160 lookups), an
alytical Cache Attacks can become unfeasible on systems with larger Cache lines. This implementation
however is measured to be 3 times as slow as the Ttable implementation [41].

If this implementation still proves to be vulnerable to Cache Attacks (like tracing), then the SBox
can be implemented as individual lookups per bit [41]. These are grouped as individual, bitwise sboxes
that fit on a single Cache line. Lookups will thus always result in the same Cache line being used, at
the cost of overhead for the extra lookups and the shifting of bits to get the final result. The calculated
performance cost to do this implementation for a protected round is around 60% extra cycles when
compared to the regular Ttable implementation.

Cache state normalization
In order to distort attacks relying on direct Cache accesses from the attacker in the same Cache, the
adversary can make sure that every time the AES code runs, all Cache lines containing AES data
get cached by adding in extra code that makes accesses in order to load all table data in the Cache,
accessing a set of table entries based on Cache line length. This practice is referred to as Cache
warming in [42]. A second method is to, temporarily prevent data in the Cache from being evicted.
This requires specific hardware support to enable such a mode. An example is called ”Cache as Ram
mode” in [43]. The adversary will first load all AES data into the Cache, and then lock in all data until it
is considered done with encryptions.

3.4.2. Reduce System Level Privileges
Prevent Cache sharing
The vulnerability from access based attacks comes from the fact that a spy process gets to share a
Cache with the victim process. It is possible to prevent this sharing, managed by the operating system.
An approach would be to lock the Cache to the encryption process, and before another process gets
access to the resources, the used Cache is flushed [10]. This disables the information leakage through
the Cache between two processes, but comes at a high performance price and doesn’t fully prevent all
Cache related attacks, such as those that rely on timing a single encryption [7] [36]

Prevent shared libraries and shared memory pages
Cross core attacks like flush+reload [12] rely on shared software libraries and memory deduplication,
where multiple processors end up sharing the same data from memory and thus the same items on
shared Cache levels. Preventing access to these secure libraries by untrusted parties can prevent
these attacks. Disabling Memory deduplication also disables this attack, but will hurt memory efficiency.

3.4. State of the Art of Cache Attack Countermeasures 33

Obfuscate system timers and Performance Counters
Since the timing of a single AES encryption requires access to precise timers, the system timing abilities
can be either blocked to non trusted users, making them rely on imprecise external timers, or they can
be made less precise be setting the minimal unit of time to a higher amount than clock cycles. An
example is masking the value returned by a clock counter register to only return the upper i bits [44].
To prevent attackers from performing a trace attack, the Cache Performance Counters can be blocked
from user access, or time to access can be limited so they can’t be precisely synchronized with the
execution.

3.4.3. Cache Redesigns
Cache partitioning
A way to prevent Cache sharing is through the use of Cache coloring or partitioning: a mechanism
implemented in some systems to divide Cache into groups to determine what processes can share
parts of the Cache[45]. Although Cache coloring is designed for increased Cache performance, it
can also be utilised as a Countermeasure against Access Based Cache Attacks [46]. Hardware Cache
partitioning [17] is also a effective Countermeasure against Cache Attacks. The Partition Locked Cache
(PLCache) method in [17] also implements locking of Cache lines, where internal Cache evictions and
thus SideChannel leakage because of these internal evictions are prevented on protected lines.

Randomized Cache mappings
In order to relate Cache accesses to data accessed, the attacker needs to have precise information of
the mappings of the (virtual) memory addresses to the Cache lines. These mappings can be obfus
cated. The authors in [17] propose the Random Permutation Cache (RPCache), where the mappings
between memory addresses and Cache lines is randomly permutated per process during runtime. An
attacker can thus measure what Cache lines are accessed by the victim process, but does not know
what addresses are loaded on these Cache lines and can thus make no useful conclusions on victim
data accesses. This new Cache design wasmeasured to have only 0.3% performance decrease for the
entire system. Another similar Cache redesign called NewCache is presented in [18]. In this design,
performance benefits of direct mapped Caches are layered on a dynamic memorytoCache mapping.
Aside from its security benefits, this design also improves power consumption and reduces the miss
rate of lookups.

3.4.4. Noise based Countermeasures
Timing noise
Cache Attacks that rely on acquiring timing traces of AES encryptions can be made more difficult by
trying to obscure the timing information. Making the timing behaviour more noisy by introducing some
random stalls or dummy operations during the AES encryptions, and making the attack require more
samples and less practical in the process. Including this noise can also be done in the system that
implements the system timer. Adding noise to the returned time value of the system timer, instead of
manipulating the actual measured value can also obscure Cache Attacks that require precise timing
information.

Access noise
Noise can also be generated on an access level. Additional code running on the device during the
encryption that does random accesses to the memory associated with the encryption algorithm, or evict
randomCachelines can make an attack more difficult. This creates noise for the attacker, which can not
distinguish what source accessed these Cache lines. This is either implemented via extra steps in the
AES encryption function, or via extra threads in the processor, like the flush+prefetch Countermeasure
introduced in [47] that aims to obscure Cache usage in shared Cache levels. They show their method
to actually increase performance of the victim process by 10.2% in their best case setup, as prefetching
improves the encryption throughput, andmeasure only 22.3% of leakage compared to 96.7% in a single
decryption.

3.4.5. Attack Detection
For access based attacks, detection mechanisms have been developed that aim to detect memory
access patterns that can belong to these access attacks, and deploy a certain Countermeasure to

34 3. Cache Attacks and Countermeasures literature overview

interrupt these attacks once an attack is detected. Examples are NIGHTsWATCH [19], which analyzes
file executables before running them , SCADET [20], which keeps track of performance tracker during
runtime to detect attacks, and LiDCAT [48], which has its own hardware component to monitor Cache
access patterns to detect attacks.

3.5. The 𝜌VEX Countermeasure potential
In Section 3.4 we discussed Countermeasure designs proposed in literature. In section, we apply the
theory we discovered while surveying the potential for the 𝜌VEX architecture to implement Counter
measures with its reconfiguration system.

3.5.1. 𝜌VEX reconfiguration patterns
Let us first define all distinctive reconfiguration scenarios for context0, refer to Section 2.2.3 for an
explanation on the reconfiguration words used:

1. The current context gets more execution lanes and more Cache space: i.e. 0x0011 to 0x0000

2. The current context loses execution lanes and Cache space : i.e. 0x0000 to 0x0011

3. The current context moves to another set of instruction lanes and Cache: i.e. 0x0011 to 0x1100

4. The current context gets more execution lanes and Cache space, but in different Caches: i.e.
0x2210 to 0x0011

5. The current context loses execution lanes and Cache space, but in a different Cache: i.e. 0x0011
to 0x2210

6. The current context is disabled: i.e. 0x0011 to 0x8811 or 0x2211

The Reconfiguration types 1. and 2. are unique to the 𝜌VEX processor architecture. The execution
time can be varied by assigning different amount of instruction lanes and Cache space to a hardware
context.

Reconfigurations of type 3. effectively a context switch between two active contexts, swapping their
resources. It is a unique feature in the 𝜌VEX to do this directly into hardware. A context switch in a
regular CPU is the process of setting up a new software context in the hardware context. It is usually
implemented by storing the current state of the context (the register file) to a memory stack, and loading
in the new register contents related to this new executing software context. Where a context swap in a
regular CPU has measured overhead via this system could be in order of 10,000 cycles [49], making
it unfeasible on regular hardware to briefly switch contexts from processor resources. The process of
frequent context swaps is detrimental to the performance to these traditional CPU’s. On the 𝜌VEX
however, the reconfiguration allows processes to swap execution sources in 10’s of cycles, making it
realistic performance wise to do this often and thus a realistic approach to implement schemes against
Cache Attacks.

Reconfiguration 4. and 5. are combinations of the former. Reconfiguration 6. is to disable a context
from executing, to free up the resources to other hardware contexts.

3.5.2. Countermeasure: Cause timing noise through reconfiguration
Lane size configuration
Whenever reconfigurations are done, the following effects influence the execution time of a program:

• How many instruction lanes are assigned to the program and the ILP of the program.

• The amount of Cache hits/misses introduced by the reconfiguration

• The amount of overhead cycles from the reconfiguration request itself

A brief experiment was done on the ILP of the AES algorithm compiled by the 𝜌VEX compiler. This
includes the used Ttable implementation as well as the slower Sbox implementation described in [33].
The code is executed on the 𝜌VEX simulator. This simulator does not simulate the Cache, and has its

3.5. The 𝜌VEX Countermeasure potential 35

simulated memory delay set to 1 cycle per lookup, so only the ILP matters for the execution time. The
results can be found in Table 3.1.

2way 4way 8way
S_Box : Full encryption 2771 2242 2051
S_Box : round 1 AddRoundkey + SBOX 157 141 139
T_Table: Full encryption 625 415 347
T_Table: Round 1 (= round 2/3/4..) 67 43 34
T_Table: Final round 54 35 28

Table 3.1: Measured cycle counts for each configuration. No simulated Cache, MEMread = MEMwrite = 1 cycle

As a Countermeasure, varying the amount of execution lanes assigned to the victim process can
thus make timing based attacks more difficult. When configuring to larger configurations, only the ILP
becomes a deciding factor, and as shown with the experimental results in Table 3.1 there is enough ILP
to have a different execution time for all configuration sizes. This also means that there is the option
to cause noise by speeding up the throughput of the victim at the cost of other resources sharing the
processor.

When reconfigured to a smaller configuration, the Cache state becomes relevant, and Cachemisses
can become a cause of additional noise. This is caused by cached data not being properly being shared
between the larger and smaller configuration, both in the data and instruction Caches.

Timing noise through shared memory resources
Like discussed in Section 2.2.4, parallel processes can interfere with each other on the memory bus.
If a transaction with the main memory is done by a context, and another context needs access to the
main memory as well, then it is stalled till the previous transaction is complete. In case of a memory
write, Cache and memory access of other contexts are also stalled, till the write is finished and the
Cache consistency is guaranteed. If the 𝜌VEX is shared between two running contexts, then they will
interfere with each other and cause timing noise in measurements.

3.5.3. Countermeasure: Cause access noise within a single processor
Since the 𝜌VEX allows for frequent and relatively fast hardware context switches between Caches,
reconfiguration patterns are implementable that obscure Cache usage by moving contexts over the
Caches.

An approach could be to briefly swap two active contexts from execution lanes during vulnerable
parts of the victim process, and thus briefly swap the Caches. Because Caches can be briefly switched,
accesses can be prevented from being done in a certain Cache, and additional Cache evictions from
a different processes can briefly execute in that context, resulting in disturbance in the SideChannels.

3.5.4. Countermeasure: Cause access noise on shared Cache levels
The 𝜌VEX architecture could also be used to implement schemes that dynamically execute differ
ent contexts that try to obscure the state of higher level shared Caches, like with the flush+prefetch
Countermeasure in [47]. The fast switching between active contexts could be a very efficient way
to implement this Countermeasure on a 𝜌VEX core. However, in this thesis we limit ourselves to a
standalone 𝜌VEX core, and the implementation of such a scheme is left for future work. This imple
mentation would also require significant updates to the 𝜌VEX hardware to make it work on a system
with multiple processor cores and shared Caches.

3.5.5. Countermeasure: Prevent Cache collisions within a vulnerable algorithm
Vulnerable parts of the victim process can be spread out over a maximum of four isolated Caches in
an 8way 𝜌VEX. This way, collisions that happen between the lookups of an encryption in a cleared
Cache can be prevented from happening and attacks that exploit them can thus be made more diffi
cult or even fully prevented, depending on how many collision opportunities there are left. The Ttable
implementation for instance conveniently has 4 lookups to the same table in a round, making it pos
sible to split up all these lookups over individual Caches. Performance penalties for this method can
however be detrimental, as the victim process has to reconfigure four times in quick succession, can

36 3. Cache Attacks and Countermeasures literature overview

lose instruction lanes in case reconfiguration to a smaller configuration is required and has to reload
instruction data to the Cache for every reconfiguration, in the current architecture.

3.5.6. Countermeasure: Prevent Cache sharing between processes
Because the 𝜌VEX can quickly reconfigure to change what Cache is currently assigned to the running
context. We consider two practical applications:

• Secure schemes of operation can be implemented, where a (untrusted) process that does a call
to the encryption function never shares the Cache with the executing function.

• Detection schemes that detect an attack could use a reconfiguration to prevent the attack from
succeeding, by moving the process out of the attacked Cache. This has theoretical performance
benefits as instead of drastic measurements that are usually taken on attack detection, like full
Cache flushes or interrupting the system.

3.6. Selecting attacks for experimentation
In Section 3.3, some Cache Attacks from literature were described to give examples on how varying
SideChannels are used, how the attacks are exactly implemented and how much time they take. The
attacks were also selected because they can be implemented on the 𝜌VEX hardware in its current
implementation.

In this section, we will briefly go over these attacks again, and describe if we consider these attacks
practical to test. We also consider if these would specifically be vulnerable to a Countermeasure con
cepts presented in the previous Section. Finally, we decide what Cache Attacks to implement and test
the Countermeasures against in the rest of this thesis.

PrimeProbe attack
As we discussed in Section 3.5, we do have the potential Countermeasure ideas that logically hide
lookups into other Caches during execution. This means that this will specifically have an effect on
access based Cache Attacks, and we want to see how much we can counter these attacks with our
Countermeasure designs. The question is if we can make this uncertainty statistically significant to
make access based attacks require more samples, while keeping acceptable overhead. We want to at
least have a access based attack for this, and we identify that of the ones discussed in Section 3.2.1,
only the Prime+Probe attack currently has a practical implementation on the 𝜌VEX hardware with only
one shared Cache level.

Single encryption collision attack
Single round collision attacks are valuable to experiment with, as the Countermeasure of splitting up
rounds to prevent Cache collisions can uniquely protect against this attack type. As we know that it will
fully prevent attacks on rounds with only four colliding lookups, an implementation of the final round
collision attack with 16 Sbox lookups can thus be more interesting subject to this Countermeasure.
As some information leaking would still be left. The collision attack on this implementation of AES
(final round implemented with Sbox) should also be more efficient than one where the Ttables are
substituted, allowing for more experiments. The offline phase of this collision attack rather simple
when compared to for instance the wide collision attack, and thus repeating this attack multiple times is
feasible. The attack also already yields clear intermediate results of information on its measurements,
making it possible to analyze even without the final processing steps, but based on the correctness of
the data going into the final step. It is also possible to test a trace based attack on the same collisions,
with the embedded Cache performance counters in the 𝜌VEX. However, due to the time constraint of
project it was decided to focus on the other attacks first, and trace attacks end up not being included
in the experiments for this thesis.

EvictTime attack
The Evict+Time attack is a rather unique attack, since it combines the principals of an accessbased
attack (targeting certain Cache results), but the measurement SideChannel is not a direct access
based but timing of an encryption. Experimenting with this attack also allows us to see the effect of the
Countermeasures on a setup process, as the attack requires an initial setup encryption.

3.7. Conclusion 37

Wide collision attack
The Wide collision attack by Bogdanov et al. is implementable on the current 𝜌VEX hardware. How
ever a combination of this being a attack with high sample count required 226 and lengthy offline pro
cessing phase that can take hours or days [8], makes it rather unfeasible to repeat many times in
feasible time. A strong difference between the final result resolution (the amount of retrieved keybits
can vary from run to run) also makes this too impractical to perform multiple times. This attack however
can still potentially pose a threat if Countermeasures are implemented to be round specific, and are
not active during the second and third round. The 𝜌VEX also has the potential to allow for unique
Countermeasure influence on this attack, as it can actively tamper with the setup process that the first
encryption of the diagonal pairs of this attack does.

Bernstein’s attack
We identify Bernstein’s attack as an interesting research opportunity, as we can disturb both the model
created as well as the live tracing data acquired. It becomes especially interesting on the 𝜌VEX, as
the statistical data of the template can be influenced by the workload on the other 𝜌VEX resources,
and this might be difficult to properly emulate for an attacker that is making their template.

We however decide against testing Bernstein’s attack for the following reasons:

• Bernstein’s attack can quite lengthy, requiring in the order of 220 to 224 samples for practical
setups [50] when compared to the 213.3 samples for Evict+Time [10] or 215 to 218 samples for the
final round collision attack in [36] , on top of needing to do both template creation and live attack
for every setup, making it less practical to do a lot of variation testing of Countermeasures that
have variable settings that are testable.

• Bernstein’s attack requires natural evictions to happen during execution, coming from either OS
overhead or specific memory accesses done when encryption are processed by the device. Since
we do not have a given specific setup for the 𝜌VEX, and are testing it as a bare minimum proces
sor, we do not have the given setup where we would test the attack on. Emulating it is possible,
but might give a unrealistic model of how the attack would work in practice, more than with the
other attacks discussed.

Summary
We the select Prime+Probe, Evict+Time and Final Round Collision Attacks to investigate our Counter
measure designs on. We argued against the Bernstein and Wide Collision attacks, because they are
deemed impractical because of large sample size requirements or complicated processing steps. We
see trace based collision attacks as a interesting attack, but we keep these attack out of the scope of
this thesis because of time limitations of the project.

3.7. Conclusion
In this chapter, we first described how the Cache of a processor can pose a vulnerable SideChannel.
A broad overview of Cache Attacks against AES in literature is given, alongside classifiers commonly
used in literature. We identified a list of attacks that are implementable on the 𝜌VEX in its current de
sign. These attacks are the Evict+Time Attack, Prime+Probe Attack, Final Round Collision Attack, 3rd
round Wide Collision Attack, Bernsteins Attack and First Round Trace based Attack. These attacks are
described in detail to understand how they work and how a practical implementation would look like.
We selected the Evict+Time, Prime+Probe and Final Round Collision attacks to test in this thesis. The
other attacks were deemed to take too many samples to efficiently test multiple times, and trace based
attacks were left out of the scope of this thesis. An overview of Countermeasures found in literature was
given. These Countermeasures were divide into the categories Code modifications, Reducing System
Level Privileges, Cache Redesigns, Noise based Countermeasures and Attack Detection. Then, the
Runtime Reconfiguration system of the 𝜌VEX was analyzed, identifying the possibility to influence
execution time through lane sizes assigned to a process, and the possibility to influence access be
haviour by moving contexts between different caches. We proposed five Countermeasure concepts:
Causing timing noise by changing configuration sizes, generate access noise within a single shared 𝜌
VEX processor, efficiently generate access noise in higher Cache levels shared with other processors,
prevent internal Cache collisions within a vulnerable algorithm and finally implement efficient systems

38 3. Cache Attacks and Countermeasures literature overview

that prevent Cache sharing between processes. We additionally identified the shared memory system
between contexts to be a potential source of measurement noise.

4
Cache Attacks and Countermeasures

implementation on the 𝜌VEX
This chapter describes the implementation of the studied Cache Attacks on the 𝜌VEX, and the design
and implementation of three Countermeasures based on the ideas from the previous Chapter. In Sec
tion 4.1 practical details regarding the 𝜌VEX architecture that are relevant for the attack and Coun
termeasure implementations are discussed. In Section 4.2 the implementations of the three Cache
Attacks, Prime+Probe, Evict+Time and Final Round Collision are described. Then, the design and
implementation of the three Countermeasure designs are described. Section 4.3 describes the Coun
termeasure where configuration size variations are done to cause timing noise in the attack measure
ments, called nLane. Section 4.4 introduces CacheSwap, where executing hardware contexts briefly
swap between Caches. Finally Section 4.5 describes ScatterRound, where vulnerable rounds of the
AES algorithm are split out over multiple Caches to prevent internal Cache Collisions.

4.1. Practical details for Attack and Countermeasure implementa
tion on the 𝜌VEX

This section introduces some practical details when working with the 𝜌VEX to implement Cache At
tacks and the Countermeasures against it. In Section 4.1.1 we give a detailed explanation of how
access to the reconfiguration system and certain system information can assist an attacker, and what
assumptions we make for our attacks in regards of these privileges. Section 4.1.2 describes practical
details of the 𝜌VEX that are relevant when implementing attacks. Section 4.1.3 describes the process
of how to determine a new configuration word for Countermeasure purpose, and how we deal with
that in our implementations. Finally, Section 4.1.4 describes how we will implement Countermeasure
related reconfigurations in the AES code.

4.1.1. Assumed Privileges in the 𝜌VEX
In this thesis, we do not use an operating system on the 𝜌VEX. We directly compile and run code
together with a small standard library for the 𝜌VEX. Aside from missing operating system overhead,
this also means that we do not have formal rules on how much control the attacker has over the recon
figuration system. In case of limitless control, the attacker could just force the the system in a certain
configuration and that would leave our Countermeasures in this chapter that utilise reconfigurations
useless. The following assumptions on system privileges are made:

1. Configuration during encryption During encryption, the attacker cannot reconfigure anymore.
The control is given to this encryption process. Attacks where the attacker operates from a parallel
context to the attacked encrypting context, and can thus issue reconfigurations during the encryption,
or attacks where the attacker can utilise the debug bus to reconfigure, are left out of the scope of this
research. Attacker and the attacked algorithm are thus executed from within the same context. This
emulates a setup where the attacker makes its encryption calls from a shared library such as openSSL
[51].

39

40 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

2. Knowledge on system configuration The attacker always has a way to figure out what con
figuration size it is executing in: if the attacker has system privileges to access the control registers,
then the current configuration word can be accessed. If there is no access, then multiple tricks can
be thought of to still get at least the current issue width. Such as a small prime+probe attack on the
Cache, so see if it a 1way, 2way or 4way Cache that is currently connected. Or by measuring the
time of some section of the code with at least some instruction bundles with a length higher than 4.
These measurement take time, and thus detecting brief reconfigurations can be unreliable or impos
sible without access to the control registers. Hiding the configuration size is thus not considered as a
potential Countermeasure. We will also show that our attacks can be made to work regardless of the
configuration size in Section 4.1.2.

3. Attack phase reconfiguration A significant detail that divides the attack scenarios is if the
attacker can reconfigure during the attack phase or not. It depends on if a practical operating system
permits nontrusted sources from reconfiguring. To test the Countermeasures, we will first consider the
scenario in which the attacker has no access to reconfiguration, and see if the attacker can improve
from there if they gain access of reconfiguration in their attack code. Like discussed in point 1, we
assume the attacker is never allowed to reconfigure during the AES function call itself. Access to
reconfiguration includes access to disable other contexts. Since we consider the situations with or
without other contexts operating as a separate test case , we are indirectly testing the effect of the
attacker turning those off by comparing these results with an isolated context attack.

4.1.2. General Attack implementation details
This section describes the practical considerations that have to be made in order to successfully im
plement the Cache Attacks selected in Section 3.6. This includes considerations made based on the
unique Cache architecture of the 𝜌VEX.

Dealing with memory addresses
In this thesis, the process of determining the memory location of the AES tables will not be part of the
attack process. We will create a setup where we know exactly where the tables are allocated and our
attacks will work with that in mind. The reason for this approach, is that first it makes a successful
attack require less samples and thus less time to execute many times in profiling stages, and secondly
it will make interference from the processing of the acquired samples on the processor in the attack
preventable by mapping that data to Cache lines that are not used for AES.

Dealing with the configurable Cache
The configurable Cache of the 𝜌VEX is described in Section 2.2.4. Due to the reconfigurability, the
Cache line selected to put the data of a certain memory address is different based on the configuration
size. This is because the Cache acts as a directly mapped Cache for its current size. This has two
practical implications:

1. A certain address can get mapped to different Cache lines based on the configuration. For instance,
in a 2way configuration using lanegroup0, everything maps to Cache0. Once the configuration size
increases, the same data can now mapped to both Cache0 and Cache1, based on its address. This
is illustrated with an example of the different mappings between the configurations 0x0888(2way) and
0x0088(4way) in Figure 4.1.

Figure 4.1: The different mappings of the same addresses in different configurations

4.1. Practical details for Attack and Countermeasure implementation on the 𝜌VEX 41

2. A data word can be stored on a Cache line where it does not map to according to the eviction
scheme for the current configuration. This is caused by the fact that it did map to that line in a previous
configuration. This is illustrated in Figure 4.2. First, an eviction is tried of a specific memory address.
If we started in the current configurations 0x0088 this succeeds. If our context executed in a 2way
configuration before this (0x0888), this data will be on a different Cache line, and will stay there until
that line specifically is evicted. On the next load, it will appear on the line where we expect it.

Figure 4.2: How evictions can fail under certain reconfiguration patterns

Because detection of the current configuration requires some overhead, and because we want to
show that it is not necessary to know the configuration to carry out these attacks, we implement our
attacks to work under any of the configuration sizes: We adapt our Cache access schemes according
to point 1., by always mapping the addresses under the assumption of the maximum Cache size, 4
Caches. If two memory addresses map to the same Cache line in the largest configuration, then they
will also map to the same line in smaller configurations. We adapt to the second fact, that in case we
want to evict some specific data out of the Cache, we will evict 4 Cache lines, the Cache size separated
from each other. In the largest configuration, we make sure all Cache lines that the data could be in at
that moment are evicted. In smaller configurations, this will simply result in some extra evictions of our
own data that already evicted the data we wanted to target.

Data acquisition
For data extraction on the 𝜌VEX, we are limited to using a USB UART connection to access the mem
ory on the board. The 𝜌VEX debug bus allows for memory dumps over a given address range.The
measured data transfer speeds using the debugging software, over a 11.52 kB/s serial UART connec
tion are 9.5kB/s upload speed and 9.0kB/s download speed. Datasizes larger than 32 Mb (transfer
speed 1 hour) can take impractically long to transfer. Because of this limited transfer speed, we will do
processing of the data on the 𝜌VEX as much as possible, and then communicate the results. In order
to make this practical, we will implement our attacks with tracing checkpoints: only on trace counts
defined by the user the intermediate results will be reported.

4.1.3. Determining a new configuration word
For Countermeasures that require to reconfigure the system, a practical obstacle is that the new con
figuration words need to be determined based on our Countermeasure criteria, but also based on the
current configuration of the system. There are a couple requirements for our system that determines
the new configurations associated with our Countermeasures:

1. We need to make sure that the previous configuration is stored, so the optimal configuration
determined by the processor is restored after a Countermeasure briefly reconfigures.

2. The system that handles the current configuration must be implemented in such a way that these
random configurations done by a executed process is handled properly. If for instance the AES
process claims all processor resources, the system must be aware that it still wants to execute
the other contexts and eventually configure back.

3. If the system configuration system decides to issue its own reconfiguration, this new request
should be respected when the AES code attempts to switch back. The ability to ”lock” a config

42 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

uration could be desirable, so that another source can not reconfigure during the brief reconfigu
rations related to the Countermeasures.

4. Before reconfiguration, the current configuration must be checked to determine the new configu
ration. We do not want to interrupt other contexts if not necessary. For instance, if we execute our
AES in context0, are in configuration 0x0012 and decide that we briefly want to assign less lanes
to context0, we need to correctly reconfigure to 0x0812 instead of a configuration like 0x0888.

5. We need to make sure that the system always executes in a configuration that allows our desired
reconfigurations. For instance, if we execute AES in context0 according to the following configu
ration 0x0011 and want to configure to less lanes for AES for the nLane Countermeasure, then
0x0811 is illegal according to rule 3 of configurations in 2.2.3, and we cannot do our desired con
figuration pattern from this configuration. We would need to reconfigure to 0x1108, so it would be
more ideal if the default configuration in this scenario was 0x1100.

We decide that, for purpose of this research, we bypass all these practical issues in our experiments,
and make it so our setups can always properly do configurations in the patterns we want. The practical
details on how to implement the process that determines the correct configuration is left as an open
question, and is greatly dependent on how the processor is practically used and what the operating
system allows.

In the setups where the processor is shared with another context, we set up the base configura
tion that allows for all reconfigurations required for the Countermeasures to be issued. No contexts
will be dynamically started or stopped, so these reconfiguration words can be determined at the start.
This makes is that the Countermeasure has full control and passively tracks the current configura
tion. Reconfiguration back will always be to the same default configuration defined at the start, and a
reconfiguration from our default configuration will be guaranteed legal on the system.

4.1.4. Random reconfigurations in code
In order to implement Countermeasures that reconfigure during the AES code, a general method is
required to efficiently implement these random reconfigurations in code.

In the implementations of Countermeasures in the rest of this chapter, we will implement the majority
of the random reconfigurations in the following way:

1. Before the call to the AES code and potential timer start for the attack, generate all random
reconfiguration words required for the AES function call.

2. Store these words in a small lookup table, where the relative Cache index of this table does not
interfere with the measurements.

3. Whenever a random configuration at a certain moment is required in the AES code, implement
this as a lookup to the predetermined table, and write it to CR_CRR.

We decide to implement this because of the following reasons:
1) We consider the possibility of the process of presenting a random reconfiguration to the process
based on a specific setting made by the process (a new control register to write to), the current con
figuration and some hardware implementing a (pseudo) random number generator a possibility. This
would then possibly be implemented via another register that reads as this new configuration value,
and will thus yield a comparable implementation and AES performance.
2) Implementing the processes that determines the reconfiguration during the AES encryption call itself
in constant time might be difficult because of data dependant control flow (both instruction count and
instruction Cache interactions), and together with the extra cycles become a significant disturbance
to the measurements. Although this is beneficial to protecting our data, this is not beneficial to our
objective to purely measure the influence of executing in different configurations. We know that adding
some randomized stalls interfere with the effectiveness of the attacks, but we want to purely see what
the configuration pattern does, especially since we identify the possibility to determine valid reconfig
uration words in hardware instead of code. This setup will more accurately tell the influence of the
reconfiguration independent of what implementation might turn out to be most ideal
3) An added benefit of this implementation of reconfiguration via writing to CR_CRR is that if the current
configuration is written, the reconfiguration process is not started. These writes thus do not need to be

4.2. Cache Attack implementation 43

conditional to enable us to decide to reconfigure or not, but the current configuration can just be written
in those cases and nothing will happen to the configuration.

4.2. Cache Attack implementation
In this section, we will describe our implementations of the Evict+Time, Prime+Probe and Final Round
Collision attacks.

4.2.1. Evict+Time Attack implementation
We implement the Evict+Time attack based on the description given in Section 3.3.1.

Online phase
For the online part, we make the following decisions in implementing our attack:

• The target plaintext byte values have been limited to a subset of 9 values. Although the attack
could theoretically be implemented with only one target plaintext value in this situation, profil
ing the attack resulted in the requirement of multiple plaintext values because the attack itself
was interfering with the measurements of 4 of the 16 plaintext bytes. We decided to go with 9
plaintexts, the first ’0000 0000’ and the following 8 each with only one of the bits set to ’1’. We
emulate the attack as if we do not know about the memory location, and derive our key based
on the pattern in the measurements when setting the different target key bits. This also adds the
benefit of adding more measurements in a single attack, painting a better picture of the influence
of Countermeasures that rely on randomness.

• As we know where the tables are located in memory, we only directly target the table entries
related to the targeted subkey with evictions.

• We include the option to clear the Cache before the attack. We do this because if this process
runs in isolation, the setup encryption before the eviction only reloads the elements targeted by
the eviction. Clearing the Cache emulates that the setup process actually does an important step
in the attack, as that might be necessary if the practical processor this attack is executed on has
a lot of other processes using the Cache. This might be relevant for the effectiveness of certain
Countermeasures.

A pseudo code implementation of the evict time attack can be seen in Algorithm 3.

Algorithm 3 Evict+Time attack
1: for 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝑒𝑦𝐵𝑦𝑡𝑒 = 0, 1, … 15 do
2: for 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑡𝑆𝑒𝑡 = 0, 1, … , 8 do
3: for 𝑇𝑟𝑎𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0, 1…𝑁 do
4: Set random plaintext bytes
5: Target byte in plaintext gets set to ’0”s, TargetBitSet becomes ’1’
6: for 𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 0, 1…255 do
7: optional (partial) Cache clear
8: encrypt with generated plaintext
9: evict target n addresses for current Cache size
10: encrypt with generate plaintext and time
11: store measurement sample
12: end for
13: end for
14: if TraceIteration in TraceCheckPoints then
15: copy current results to final result array
16: end if
17: end for
18: end for

The data acquired consists of an int array of dimensions:

44 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

evict_data [N_TraceCheckPoints] [TargetSubkey = 16] [TargetKeyBit = 9] [EvictionSet = 256]

The eviction sets in these traces are aligned with the targeted table data location in the memory for
every subkey, so the eviction sets directly map to the table indexes used for the attack on the subkey.

Offline phase
The data from the attacks is loaded into MatLab. For every eviction set, we subtract the average encryp
tion speed of that eviction set from all samples targeting that set, like proposed in [10], to compensate
for evictions that hit other cached data like the roundkeys or plaintext.

Solving directly with individual samples: Figure 4.3 visualises the measurement results of one
specific keybyte target. A darker colored sample means a higher average AES encryption time and
thus a higher probability the key candidate is the correct one.

Figure 4.3: Evict+time, visualisation of measurement data on plaintext byte 2

The measurements for each plaintext value are clear enough to individually show the key value.
We solve: found lookup 𝑇[𝑛], with n = k⊕ p.

• p1 = 0b00000000, result n = 97 : k = 0x61

• p2 = 0b00000001, result n = 96 : k = 0x61

• p3 = 0b00000010, result n = 99 : k = 0x61

• p4 = 0b00000100, result n = 101 : k = 0x61

• p5 = 0b00001000, result n = 105 : k = 0x61

• p6 = 0b00010000, result n = 113 : k = 0x61

• p7 = 0b00100000, result n = 65 : k = 0x61

• p8 = 0b01000000, result n = 33 : k = 0x61

• p9 = 0b10000000, result n = 225 : k = 0x61

A potential way of solving now, is to do this calculation for all 9 plaintext targets of the results and take
the key candidate that appears the most often as the most likely candidate.

Solving with the all samples In the case of not knowing the memory location exactly, these results

4.2. Cache Attack implementation 45

would be part of a larger sample size: eviction would be done to every Cache line instead of the lines
where we know the table data is present. In that case, the pattern in these most likely candidate reveals
the key byte:
Comparing the location of the most likely accessed memory address compared to p = 0b00000000
shows the value of the individual key bit at that index: if the keybit is 1, we xor with 1 the resulting bit
becomes 0, which means the value gets reduced and the measured maximum will be to the left. The
opposite for keybit = 0 happens, then maximum index moves to the right as the output value increases.
We see the pattern of the most the likely Cache index, from top to bottom:
decrease increase increase increase increase decrease decrease increase.
Converting this to the observed key bit pattern discussed:
1 0 0 0 0 1 1 0
While keeping the correct bit order in mind we get the value 0b01100001 or 0x61, our known key byte.
We implement these processing steps in a MatLab script. We add the following features:

Verifying the key MatLab processes the samples from the input file, and estimates the key based
on both the procedure described above, where the key is either derived from the pattern of the most
likely candidates, or by selecting the majority measured key value. MatLab reports the key and how
many key bytes are correct for the known key.

Showing the correct samples If we get a result where not every key was retrievable, we would like to
know how this is caused. If only one of the 9 subsolutions used for this attack was incorrect, the entire
key will be incorrect if derived from the pattern of maximum values. We call these correct subsolutions
instead of correct keybits because the results can still reveal the full key, with all bits correct. Going by
these values represents better how effective Countermeasures are than just only looking at the correct
key guesses, since we identified multiple methods to do this with our data.

Computing the keyrank For every subsolution, we compute how the correct eviction set ranks among
all samples. We look at the plaintext were setting every individual plaintext byte to ’1’ discussed previ
ously. These are 8 measurements for each of the 16 targeted keybytes. This means that we will check
how many of 128 ”subsolutions” have the correct result.

Computing theAESperformanceBecause the Evict+Time execution conditions (relative stable Cache
state) gives a good estimation on how the AES encryption speed would be under regular execution
(without our attack), we also report the average encryption time for this attack, to determine how much
our Countermeasures influence the throughput of AES encryptions.

46 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

4.2.2. Prime+Probe Attack implementation
Online phase
The general procedure during the online phase of the Prime+Probe attack matches with that of the
Evict+Time; we generate the samemeasurement combinations: targeted keybyte, plaintext byte values
out of the 9 values like described in 4.2.1 and now targeted Cache set via the prime+probe method.

Algorithm 4 Prime Probe attack
1: for 𝑇𝑎𝑟𝑔𝑒𝑡𝐾𝑒𝑦𝐵𝑦𝑡𝑒 = 0, 1, … 15 do
2: for 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑡𝑆𝑒𝑡 = 0, 1, … , 8 do
3: for 𝑇𝑟𝑎𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 0, 1…𝑁 do
4: Set random plaintext bytes
5: Target byte in plaintext gets set to ’0”s, TargetBitSet becomes ’1’
6: Prime all Cache in current configuration
7: Encrypt generate plaintext
8: Probe all Cache, storing the measurement scores
9: end for
10: if TraceIteration in TraceCheckPoints then
11: copy current results to final result array
12: end if
13: end for
14: end for

Measuring individual memory accesses
During tests with the implementation of the Prime+Probe attack, we found that the 𝜌VEX compiler
didn’t directly allow us to reliably time a single memory lookup. The compiler reschedules the instruction
where we access CR_CNT freely, resulting in failing to measure our access times.

This reordering can be prevented by either rewriting the compiled code at assembly level, or by
changing the compiler optimization. We were no able to find direct support for pragmas in the 𝜌
VEX compiler that would allow to annotate these specific lines to prevent them from being rearranged.
Because we want to keep our code close to a realistic implementation of AES128 on the 𝜌VEX we
decide not to change the optimization level. Because we are compiling often because our variations
with the Countermeasure are for a large part directly embedded in the code (to prevent overheads that
would come with making them runtime configurable with parameters to disturb these measurements),
manually changing the assembly code was also deemed impractical because of the many times we
compile new code.

Ultimately, it was decided to do the probe step, that measures a single memory access time, in
a function call. This correctly forces the order of operations, but introduces a new problem in that a
single timing sample will have different execution times based on the configuration size, due to function
call overhead code having different execution times in different configurations. We even measured
that a Cache miss in the largest configuration is the same amount of cycles as a Cache hit in the
smallest configuration. This can be resolved by setting a specific threshold based on the configuration,
or by doing that attack on the total time of accesses instead of binary hit/miss measurements using a
threshold. We decide to go for this last solution, as it should be the easiest to implement, and is also
naturally more resistant to noise from the shared memory interface.

Offline phase
The offline part mirrors the offline step of the Evict+Time attack in Section 4.2.1. We do not subtract the
average of every probed set as this is not required for the binary accessed/not accessed measurement.

4.2.3. Final Round Collision Attack implementation
The final round collision attack is implemented as described in Section 3.3.2. We target the imple
mentation where the final round is implemented with via 16 Sbox lookups (referred to as using table
𝑇4).

4.3. nLane: Noise via random configuration size variations 47

Online phase
During the online phase, we clear the Cache, generate a random plaintext, time an encryption with this
plaintext and group this measurement based on the output ciphertext.

Algorithm 5 Final round collision attack
1: for 𝑇𝑟𝑎𝑐𝑒 = 0, 1, …𝑁 do
2: Clear the target Cache
3: Optionally clear other system Caches
4: Generate a random plaintext
5: Encrypt the plaintext and time it
6: From the output ciphertext, compute the xor terms of all 120 byte combinations
7: Store the result for every byte combination at the right xor value
8: end for
9: Compute the averages of all byte combination values

Offline phase
We implement the following pseudocode algorithm in MatLab. First, the final round key is computed
via the AES code used in this project and filled into MatLab. From these key bytes, the correct values
for the Xors between the key bytes are calculated.

To ease the analysis of the attack, we will stop at the step where all Keycandidates of the final round
key are generated in our experiments. The amount of correct ”subsolutions” is reported instead. When
there is a majority of correct subsolutions, the key should become retrievable.

Algorithm 6 Final round collision attack
1: for 𝐶𝑖𝑝ℎ𝑒𝑟𝐵𝑦𝑡𝑒𝐶𝑜𝑚𝑏𝑜 = 0, 1, … 119 do
2: Find the index of the lowest average execution time: MinIndex
3: Convert MinIndex to bit representation: MinIndexToBits
4: CipherXorGuess[CipherByteCombo] = MinIndexToBits
5: end for
6: for 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑖𝑡 = 0, 1, … 7 do
7: for BitStringValue = 0,1,…65535 do
8: Convert BitStringValue to a bit string of 16 bits
9: Check all CipherXorGuesses, count how many are satisfied for the current bit candidates
10: end for
11: Report bit string that satisfies most Cipher xor guesses: SolutionCandidateString[TargetBit]
12: end for
13: generate all 256 KeyCandidates from all combinations of SolutionCandidateString[0…7] and

xorBits(SolutionCandidateString[0…7]), by doing key inversion.
14: for KeyCandidate = 0,1 …255 do
15: verify if the KeyCandidate is correct with plaintext ciphertext pair.
16: end for

4.3. nLane: Noise via random configuration size variations
This section describes the design and implementation of a Countermeasure that utilises random vari
ations of the configuration size of the 𝜌VEX. We call this Countermeasure nLane.

4.3.1. nLane Design
The first proposed Countermeasure is to utilise the ability of the 𝜌VEX to assign a different amount of
execution lanes to a specific context. When assigning different amounts of lanes to a context, the con
text gains the ability to execute more or less instructions per clock cycle, as far as the ILP of the current
program allows. The amount of measured cycles can thus be altered by changing this configuration
during runtime.

As a Countermeasure, the adversary can try to randomly alter the amount of execution lanes as
signed to a context. In the meantime, lanes becoming available can be assigned to other contexts, or

48 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

other contexts can potentially be stalled if the AES context requests all available lanes. We call this
Countermeasure nLane.

Two scenarios are possible for this Countermeasure. The first is where there is only execution time
influence caused by the ILP, the instruction throughput that varies for different configuration sizes. In this
setting, the Cache data should be perfectly shared between the configurations, and the implementation
of AES should thus run in such a way to only one Cache’ address space is used for the data. The
second scenario is where we do not keep the potential Cache disturbance in mind. This means that for
a reconfiguration from a larger configuration to a smaller one, the encryption process itself can disturb
the Cache state from its regular configuration, by allowing evictions between its own data that would
not happen in the default configuration. This can disturb measurement samples beyond the encryption
that is ran in a different configuration size.

If we can both reconfigure to a larger and a smaller configuration (so the baseline configuration
is a 4way configuration), then there is a theoretical balance possible where we do not reduce our
encryption throughput, at the cost of stalling other contexts that share the processor.

The following subsections highlight the practical details that are relevant for the implementation of
the Countermeasure:

Losing data between configurations
As we vary the amount of instruction lanes between the allowed configurations: 2 lanes, 4 lanes or 8
lanes, we can lose or gain access to different Caches when compared to the previous configuration.
If we make reconfigurations where the cached AES data is lost, significant performance decreases
will result. So in order to implement this Countermeasure, and only get performance variations from
the ILP of the AES code, one Cache needs to be included in all these configurations. The 2way
and 4way configurations are then selected in such a way that they have a shared Cache unit in their
configurations. The 8way configuration naturally has access to all Caches.

Placing the AES data
An additional concern, even if we keep a constant Cache between all configurations, is that the default
mode of operation can place the data in the Cache in such a way that parts of it or the entire range
of data is lost when reconfiguring to a smaller configuration. This is illustrated in Figure 4.4, where
the placement in the Cache is no issue when going from 4way to 8way or 2way to 4way, but can
become a problem from 4way to 2way or 8way to 4way.

Figure 4.4: Effect on Cache when running the nLane Countermeasure on an encryption that is executed in 4way by default

Against this effect, the adversary implementing this Countermeasure has a couple options to mini
mize the effect:

4.3. nLane: Noise via random configuration size variations 49

1. Make sure that the interference of other processes is minimal. If under normal operation, the
processor gets to do many encryptions in the same core undisturbed, then the perceived perfor
mance hindrance is relatively low. The encryptions will just eventually cause two copies of certain
table data to reside in the Cache at the same time.

2. Influence the address of the AES data. Although it is likely not easy to do this with instruction
addresses, it is possible with the data by allocating a sufficiently large array and place the table
data based on the start address of this table. This way it perfectly forced in the Cache belonging
to only one lanegroup.

3. Only configure to larger configurations in this Countermeasure implementation.

4. Don’t keep this property in mind, and see if the slowdown of the Countermeasure is still reason
able.

Comparison with random delays
The direct contender to the nLane method, is to insert random delays into the AES function itself.
An implementation would be to do a random amount of dummy operations or execute some random
amount of NOP instructions at the end or start of an AES encryption.

The implementation on the 𝜌VEX via variations with the execution lanes has a few upsides com
pared to inserting random delays:

• Access to speedup as a way to add measurement noise, as opposed to only slow down. This
at the cost of interfering with other processes, that might have a lower priority as opposed to
encryption. This allows us to effectively move the cost of this Countermeasure to other lower
priority processes instead of slowing down the effective throughput of AES encryptions. Think of
a system that has to encrypt and decrypt messages over a communication channel under certain
deadlines.

• The patternmight naturally occur in the processor under certain use cases. Think about a situation
where the processor often decides to change lanes assigned to contexts to fit the workload. This
means that under normal operation the 𝜌VEX could already add measurement noise to time
based Cache attacks. To amplify this, a lower additional percentage of random reconfigurations
could be added to amplify this noise.

• As discussed before, the reconfiguration has the potential to load data in the Cache on dif
ferent lines than with the default configuration, potentially making access based attacks like
Prime+Probe more difficult as well.

Why we consider the nLane Countermeasure as a very realistic option to achieve disturbance
in timing measurements, is because although the raw throughput of the encryptions is slowed down,
the resources of the processor are not wasted in the meantime if other contexts are executing. like
adding in timing noise through random stalls would. While the AES encryption forces a reconfiguration
to smaller configurations, the other lanes can be used by other contexts running in the processor,
potentially speeding them up.

In a situation where we get the proper setup to prevent many Cache misses coming from this
method, and only doing a small fraction of the encryptions in another configuration, then the relative
slowdown should stay within reasonable ranges.

4.3.2. nLane Implementation
For nLane, we want to reconfigure to different issue widths to gain execution time variations through
the varied use of the victim process’ ILP, and study the influence of potential Cache disturbance that
happens because of the reconfiguration pattern.

We identify multiple potential ways to implement the general concept of this Countermeasure.

1. In software: At the start of every encryption, configuring back at the end.

2. In software: Between every round of the encryption, allowing for more potential variation in the
noise.

50 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

3. In software: For multiple sequential encryptions.

4. In hardware: At any point during the encryption

For the experiments in Chapter 5 we will mainly implement the nLane Countermeasure as a recon
figuration at the start of the AES encryption, and by default configure back to the default configuration
after the function has executed. This also gives us the option to exclude the entire reconfiguration
process from the measurement data in case of timing attacks. We do this in order to only measure
interference from the configuration changes, and prevent the code that decides the configuration, with
potential variable execution time, to be included in these measurements.

We acknowledge that this will result in a very easy workaround for an attacker, that is, to cluster
the measurement results and drop a percentage of the highest and lowest execution times. However,
we also do a small experiment with reconfiguration between rounds, in order to compare this to the full
encryption reconfiguration interval. These results should be indicative of the potential of the Counter
measure in implementations where the reconfiguration happen at different intervals.

We set the chance to reconfigure as a configurable parameter. We allow to either reconfigure to only
large configurations, only smaller configurations or to both. The default is to do both. The percentages
of which either occur can also be altered. This defaults is a 50/50 chance to select either of the two
configurations associated with the nLane reconfiguration. The default nLane implementation in a 4
way execution mode, with a 10% chance to reconfigure, has a 5% chance to configure to a 8way
mode for a single encryption, a 5% chance to configure to 2way and a 90% chance to do nothing and
execute a AES encryption in the default configuration.

4.4. CacheSwap: Access noise via lanegroup swaps of two con
texts

This section describes the design and implementation of a Countermeasure that utilises brief ran
dom swaps of processes between Caches to generate access noise. We call this Countermeasure
CacheSwap.

4.4.1. CacheSwap Design
A Countermeasure that has interesting potential when another context is executing in parallel to the
encrypting context, is to randomly swap the contexts between resources and then switch them back
after a brief time. We call this Countermeasure CacheSwap. We require the operation to be in either a
2way or 4way mode reconfiguration to fully implement this idea, as we require the 𝜌VEX to operate
as multiple parallel processors. We ideally have at least one other context executing in the processor
at the same time.

We identify the following effects this pattern has on the attacks:

1. The context that is switched to the default AES execution resources, does some Cache evictions,
partially destroying the assumed Cache state on following steps of the encryption.

2. During the time that AES context has access to a different context, execution based on the as
sumed Cache state before the round is obscured and the part of the encryption acts like it didn’t
happen in the main Cache, obscuring information leaking from further lookups and potentially
removing leakage from targeted lookups.

3. the reconfiguration overhead and the Cache misses resulting from this process (both data and
instruction) are a noise source in timing measurements used for timing based attacks.

A random Cache swap can also potentially disturb an attack process that is executing a setup step
or processing step of the attack. Think of the Prime+Probe attack that can be disturbed in either Prime
or Probe step of the attack by a brief Cache swap. However, in practice this would mean that any
non trusted process should have frequent swaps in their code, which would result in unacceptable
performance costs that influence all processes on the processor. Thus we will only look at the potential
to do swaps during the victim process.

4.4. CacheSwap: Access noise via lanegroup swaps of two contexts 51

4.4.2. Theoretical effect on specific attacks
Prime+Probe
This method prevents a small amount of the targeted accesses to be made in the currently targeted
Cache. For an individually targeted lookup, this is equal to the percentage selected for the random
Cache swap. The context that is briefly swapped into the main Cache can do random accesses that
can add additional noise to the measurement. Since this attack directly measures if a Cache set has
been accessed or not, moving this to another Cache will remove the information directly and invalidate
the trace sample. For this to be significant, one would expect higher probabilities to be required. There
is a potential security risk in this Countermeasure however. If the attacker has the option to freely
configure to also access the second Cache, and if they can somehow guarantee a workload with a
low amount of Cache accesses (or at least lower than AES), then the attacker can decide to attack
the second Cache instead, potentially getting an even more efficient attack based on the CacheSwap
reconfigurability process and workload in the second context.

Evict+Time
The CacheSwap Countermeasure can result in the setup process of the Evict+Time attack to not be
successful, as the setup process uses a single encryption to guarantee a certain Cache state, resulting
in a incorrect measurement sample. The attacker could work around this by doing the same encryption
multiple times, to lower the probability of the Cache state being incorrectly initialised, or by manually
loading all AES data in the Cache if that is something the attacker can do. The same chance happens
in the measured encryption after the setup step, where the attacked access is done in a different Cache
and thus invalidates the trace.

The CacheSwap also causes timing noise, by introducing extra random Cache misses in an en
cryption. A reconfiguration adds random noise by itself, adds extra Cache misses in the part that is
executed in the different configuration and can cause random Cache evictions of the AES data add
extra misses after the reconfiguration.

Final Round Collision attack
Randomly swapping to a different Cache generally leads to certain collisions expected to happen being
prevented from happening, both by the setup lookups of the encryption being redirected to the other
Cache, or by the expected second lookup that collides with the earlier lookup being redirected. This
also means that for higher percentages, the performance of the attack is actually expected to increase
again since then the majority of lookups will share the same Cache again, only now in the other Cache.
An additional benefit is, that if the attack relies on the attacker doing Cache clearing before the sample
themselves, they might be prevented from clearing the other Cache. This makes it possible that certain
AES data is still present from a previous swap and yield an invalid measurement sample.

Other attacks
From the other kinds of Cache Attacks discussed in Section 3.3, we briefly analyze the theoretical
effects:

Against Trace Attacks, collisions can be caused to be absent in a the trace while they are sup
posed to happen, invalidating a set amount of traces. This will likely only become significant to the
effectiveness of the attack for higher swap probabilities.

Against Bernsteins Attack, effects similar to those in the Evict+Time attack are possibly found, as
it relies on similar principals as that attack. Where instead of evicting many addresses on the same
plaintext, we test many plaintexts on some arbitrary evictions that the system under attack does.

Against theWide collision attack, which attack relies on 5 collisions split over round 2 and 3 between
two encryptions. This means that this would require the CacheSwap Countermeasure to also be active
during those rounds. Also, theoretically the entire third round should execute in the other Cache at
once, since only swapping single columns would still leave the other collisions in the measurement
data, having an diminished effect on the effectiveness of the Countermeasure. The Countermeasure
would thus need to be implemented for this attack specifically by implementing it during the third round,
and likely swap for the full round. This should then be more efficient for lower swap chances, as higher
chances above 50% would lead to the collisions happening more often again.

52 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

4.4.3. CacheSwap Implementation
We implement the CacheSwap Countermeasure on the Cache attacks running in a 4way 𝜌VEX con
text. Between every column of the targeted AES round. The first round for Prime+Probe and Evict+time,
the final for Final Round Collision. These reconfigurations are stored to not disturb the Cache state and
submitted like described in Section 4.1.4

Before the encryption, a small function determines what AES column should be in what Cache,
based on the percentage chance to swap Caches. This small process is not included in the measure
ments, as its implementation is not a constant time functions.

This implementation potentially causes multiple swaps in a single AES encryption round. For in
stance swapping for the first column, swapping back, then swapping again for the third column and
swapping back again. After the final column is computed, the Countermeasure always switches back
to the default configuration for the rest of the encryption.

4.5. ScatterRound: Preventing internal collisions via spreading op
erations over multiple Caches

This section describes the design and implementation of a Countermeasure that spreads out a round
of the AES algorithm over multiple isolated Caches to prevent internal Cache collisions. We call this
Countermeasure ScatterRound.

4.5.1. ScatterRound Design
Amore specific Countermeasure against attacks that rely on collisions in the lookups in the encryptions,
is to spread the lookups of targeted rounds over multiple Caches so the expected collisions do not
happen at all. This is similar to the CacheSwap method, but opposed to the random Cache swaps we
will now guarantee specific rounds to be split over the available Caches. This method also does not
rely on other processes to do random Cache evictions in the main AES Cache, but could be added
to the implementation to generate even more noise to the encryptions. We call this Countermeasure
ScatterRound.
We do this split based on columns, as our state is computed column wise, and we can thus easily split
the four lines of C code over the Caches. Figure 4.5 illustrates what happens with the lookups in a
round that is split up over four Caches via this method.

Figure 4.5: Visualization of splitting up a AES round over four Caches with the ScatterRound Countermeasure, indices 𝑇𝑥 indicate
what TTable is used in case the round is implemented with the use of TTables.

Instead of collisions being possible between all 16 lookups, now only collisions can happen between
the lookups done in the same column. In case of one single lookup table, we thus lose the information
of collisions that happen between the elements in different columns. In case of a TTable implemented
round, collisions can’t happen at all, since no two lookups to the same table are done in the same
Cache in this round.

Practical implementation scenarios
There are multiple scenarios in which this technique could be applied. If forced on a configuration that
has a default 2way size, then the overhead costs are of the four reconfigurations required, and the
additional Cache misses caused by execution in the other Caches. This can be quite costly, especially

4.5. ScatterRound: Preventing internal collisions via spreading operations over multiple Caches 53

since multiple bundles of instructions need to be loaded in every context. If proven to be effective, then
maybe the design of the 𝜌VEX could be altered to decouple the mappings of the instruction and data
Caches from the execution lanes, such that only the data Caches can be reassigned while keeping the
current instruction Caches mapped the same.

If applied in larger configurations, then there is relatively more slowdown, as the split up round re
quires extra cycles when compared to the default configuration, because the instructions executed in
this round have less instruction lanes than with the default configuration given to the AES encrypting
context. This configuration scheme can also cause the internal Cache state of the main configura
tion Cache to be disturbed, both data and instruction, leading to additional slowdown from the ideal
execution.

Another potential approach is to set up a special execution mode, where four individual contexts
do four encryptions in parallel, and swap system sources in their vulnerable round. This would cost
up to three context switches per hardware contexts per encryption, but adds the benefit of a lot of
the associated data staying in the Caches between encryptions. Operating system overhead would
be required to execute a certain mode, as all other contexts need to do a software context switch to
start encrypting. If a lot of encryptions are done after each other, the average overhead will eventually
approach just the reconfiguration cost, as this context switch is only a one time overhead at the start
of the first encryptions. The synchronization between the contexts is also an issue. If a context is
carrying out its splitting up of a protected round, then ideally the other three encrypting contexts should
not interfere with this. Synchronization is required, and contexts that want to do the split up round need
to be stalled if another context is currently doing a split round.

Comparison with existing Countermeasures
On any CPU architecture, effectively the same effect could be achieved by making 3 copies of tables
accessed in the targeted round, and computing every column with a lookup to a unique table. This
however has some downsides:

• The Cache space occupied by the targeted tables increases with a factor 4. If this is done against
the Ttable implementation, then the required space for all these tables increases from 212 = 4𝑘𝐵
to 214 = 16𝑘𝐵, which can cause significant slowdown by making it so not all these entries can fit
in the Cache.

• The memory demand increase could also be of significance if the implemented architecture does
not have a sufficiently large main memory that would a memory size increase of that order (12kB
in case the 4 Ttables are stored 3 extra times).

• The use of more tables means the lookups done during AES are more isolated, making them an
easier target of access based attacks.

• ScatterRound potentially has extra benefits against attacks that do not rely on Cache Collisions.
Further explained in Section 4.5.2.

When implemented on an isolated context that does encryptions and allowing the ScatterRound
Countermeasure to spread one round over 4 Caches, it logically behaves similar to disabling the Cache
on the final three column lookups of the round. However, there are some upsides when compared to
Cache disabling:

• The 𝜌VEX currently cannot disable data Cache usage for a single context, neither can it directly
request a single lookup from memory instead of Cache. Making it impossible to implement this
without also hurting the performance of other contexts.

• Cache disabling on small parts of code might be difficult to implement, especially if the operating
system is designed without it in mind. If the operating system is not implemented with this in
mind, the Cache could be kept disabled when software context switches happen, leading to large
performance costs.

• This method can theoretically have more data hits on some of the lookups, if the other workloads
do not have a high amount of memory accesses, while the Cache bypass method will surely need
to access memory on all of them. This means theoretical performance increases.

54 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

However, there are downsides as well:

• On the current 𝜌VEX hardware, instruction misses will also be caused by this Countermeasure
which add extra performance costs.

• Evictions to another processes cached data are done and they are also briefly stalled, causing
performance decreases for workloads sharing the system.

4.5.2. Theoretical effect on specific attacks
We analyze the theoretical influence of scattering the Cache lookups on the following attacks:

Final Round collision
In the unprotected case of our final collision attack, we end up with a relation between all 16 key bytes.
We iterate over one targeted keybyte from 0 to 255, and compute the other 15 keybytes based on this
decision. We iterate over all possible options on a known sample to verify which is the correct key
value.

If the Cache lookups are spread out over 2 or 4 Caches, then only collisions can happen is between
subsets of the keys. Instead of using all 120 inequalities, we can only use the inequalities belonging to
two sets of 30 inequalities, or four sets of 6 inequalities. In the baseline attack, we knew the relations
between all keys and only had to check all variations of one targeted key value, to compute all values
of the other keys. This meant that the final verification step was to do 28 = 256 encryptions. If split
over two Caches, we have two isolated systems of inequalities, and have to match for all combinations
of the two, and thus needs to do 28∗2 = 65536 encryptions. When split out over 4 Cache, this becomes
28∗4 ≈ 4.3 ∗ 109 encryptions of offline overhead.

These larger key candidate spaces do complicate the attacks, but the search space of 4.3 ∗109 key
candidates is still within feasible brute force search with a known plaintext ciphertext combination.
The attacker also to adjust their attack with the Countermeasure in mind, as they cannot use the invalid
subkey combinations in determining the most likely bit values.

If the Countermeasure is combined with a implementation where the final round is implemented
without Sbox lookups, but with shifts of Ttable lookups, then the attack should be fully prevented, as
no lookups of the targeted round can collide.

Additionally, if we had access to a theoretical 16way 𝜌VEX, with 8 execution lanegroups and thus
8 Caches, then we could potentially alter the code of the AES implementation to be able to split over
these 8 Caches. This yields a search space of (28)8 = 1.8∗1019 which would in fact make it impractical
for brute force search, and nullifies this type of attack. However, such an implementation would likely
be too impractical.

Evicttime attack
Doing every single column lookup spread out over the same Caches will not directly remove informa
tion that the attacker tries to retrieve with the Evict+Time attack. However, this Countermeasure can
significantly complicate the attack:

• A single encryption before the eviction no longer guarantees that the table data is properly loaded
like it needs to be for this attack to work. If the Countermeasure makes it so the second encryption
does a column in another Cache than in the first encryption, the acquired sample does not contain
the expected information.

• The attacker has to keep in mind that the Cache line to evict might be positioned in another context
Cache than in the main targeted context, complicating the attack, or even leaving it invalid if the
attacker can not configure to that Cache by itself.

• If another context runs in the processor, it can interfere with the attack, as it has the chance to
evict lookups that are done in Caches allocated to other contexts in the main configuration.

Prime Probe
The effect of the ScatterRound Countermeasure against the Prime+Probe attack depends on the cur
rent system privileges of the attacker, and can either result in making the attack more difficult but also
potentially easier.

4.5. ScatterRound: Preventing internal collisions via spreading operations over multiple Caches 55

When our attacker is naive and only keeps scanning for the Cache address where the attacker
expect the Ttable lookups to map to, then only 1/4th of the samples will contain the correct lookup.
If our attacker adjusts their attack with this process in mind, then they can for instance scan multiple
regions of the Cache. If the current configuration is a 4way configuration, then the attacker can scan
for two potential locations per table lookup and combine the results.

In our hypothetical situation, where the attacker only has access to certain lanegroups and can not
configure to the other Caches (while the AES library has the privilege to do so), we isolate a part of
the lookups outside our attacked Cache. If however, the attacker has access to a setup where they do
have access to all system resources, and the vulnerable round is split up over the individual Caches,
then the attacker can only target the ”extra” Caches for a Prime+Probe Cache. These can theoretically
have less noise if the a process execute with less memory accesses, or memory accesses that map
less to the table address space, or even isolate the lookups by making sure no memory accesses are
done in those contexts.

Trace Attacks
Trace attacks on implementations with four tables used on a round should be fully prevented, as the
targeted lookups that potentially collide no longer share a Cache. Trace attacks that target rounds
implemented with the same lookup table for every lookup will be hit like with the previously described
final round collision attack, Where collision attacks on the 𝜌VEX can ideally reduce the search space to
256 options, or 8 bits of uncertainty, splitting up these encryptions increases it to 32 bits of uncertainty,
or 232 = 4.3 ∗ 109 iterations of brute force search.

4.5.3. Implementation: Standalone Encryption
We first describe the implementation when a single context runs AES encryptions and the processor is
potentially shared with other contexts or claims all 8 instruction lanes.

Before the AES encryption, we randomize the order of configurations to the 4 smallest Caches in
the system (that would be 0x0888, 0x8088, 0x8808 and 0x8880 if no other contexts run).

If another context runs in the processor, the configuration words are chosen in a way that no ille
gal configurations are requested. There are certain options on possible configurations patterns. Lets
illustrate this with an example.

We have our AES encryptions running in Context0, and another workload in Context1. We initialise
this in configuration 0x1100, so context1 can theoretically keep running if Context0 configures to a
smaller issue width (as 0x0811 and 0x8011 are illegal configurations). If we want to generate our
pattern of splitting Context0 over all Caches, two of the configuration words are easily derived: those
would become 0x1108 and 0x1180. Now, if we interrupt context1 to briefly allow context0 access to its
resources, we can choose to let context1 run in the resources not selected by context0. This would
however interfere with the Cache state for Context1 even further. We decide to stall Context1 during
those cycles. From 0x1100 we will thus generate the configurations 0x0888, 0x8088, 0x1108 and
0x1180.

4.5.4. Implementation: 4 context AES Setup
Another approach is to run AES encryptions in a dedicated mode where all four hardware contexts run
AES encryptions in parallel. This solves the issue of large Cache related performance costs associated
with this Countermeasure, as all contexts will (partially) have the same data cached.

We implement ScatterRound Countermeasure on a setup of 4 parallel AES encryptions as followed:

1. Start all encrypting contexts, this can be done via synchronizing what block to encrypt and re
questing the next one per context. We implement this as every context just generating random
plaintexts in these experiments.

2. When the protected round is reached, the context requests the privilege to rotate, making sure
no other round issues reconfigurations during this part of the algorithm.

3. When another active context is in this rotation mode, wait till it leaves this mode, and this context
can claim privilege to rotate.

4. Randomly initialise the rotation direction to clockwise or counter clockwise.

56 4. Cache Attacks and Countermeasures implementation on the 𝜌VEX

5. Execute the AES round, rotate all active contexts after the first three columns.

6. After the final column, stay in the new configuration. Release the privilege to rotate.

We identify this implementation to have a couple beneficial characteristics:

• When encrypting a large amount of blocks, the execution will eventually synchronize in such a
way that no stalls for waiting on entering the protected round should happen. As the rest of the
encryption takes at least 9 times the execution time of the protected round.

• This implementation keeps the randomness aspect of the earlier discussed implementation ideas
for this Countermeasure, through the combination of a random rotation direction, and not switch
ing back to the default configuration but keeping the final rotation. This implementation thus also
obscures in what Cache exactly which encryption happens, which can be beneficial against other
types of attacks that do not rely on collisions.

We will estimate the cost of this Countermeasure. In [29], the design of the runtime reconfiguration
is described. An example describes the best case delay, but explains that it is difficult to determine the
configuration delay, as it depends on if the memory bus is currently accessed, the state of the Cache
write buffers and the exact reconfiguration words.

It does describe the best case reconfiguration cost for the reconfiguration 0x0123 to 0x3210. This
is 14 stall cycles for the main context that issued the reconfiguration, and 6 cycles for the other contexts
involved. In the best case, we thus get stalls from 3 self issued reconfigurations and 9 reconfigurations
issued by other contexts per encryption, this is 14*3 + 6*9 = 96 cycles overhead per encryption.

4.6. Conclusion
In this chapter, implementations of the Cache Attacks Prime+Probe, Evict+Time and Final Round Col
lision on the 𝜌VEX are described. Then, three Countermeasure concepts proposed in Chapter 3 are
worked out in three Countermeasure implementations called nLane, CacheSwap and ScatterRound.
Practical details required to implement the Cache Attacks and Countermeasures are first introduced,
describing the assumptions on reconfiguration privilliges, how to construct access attacks against the
Cache architecture, how to determine reconfiguration words and how random reconfigurations as a
Countermeasure are implemented in code. Our implementations of Evict+Time, Prime+Probe and Fi
nal Round Collision are described in detail. Then, three Countermeasure are introduced, describing
their design, implementation, and potential effect on the attacks under certain circumstances. We first
describe nLane: Noise via random configuration size variations. The amount of execution lanes is
randomly changed during execution. The practical issue of losing cached data between configurations
is discussed, and the potential for this Countermeasure to disturb the Cache state of the context is
described. Finally the code implementation of the Countermeasure is described. We decide to test
multiple configuration patterns possible within this Countermeasure, varying with what Caches are
used and what reconfiguration percentages are used. Then, we describe CacheSwap: access noise
via lanegroup swaps of two contexts. Another process is briefly swapped with the attacked process,
so that the assumed Cache state is disturbed. The potential effects this Countermeasure can have
on specific Cache Attacks is discussed, as it should influence all our attacks in unique ways. The
importance of another context sharing the processor is highlighted. Finally we introduce the Counter
measure ScatterRound: preventing internal collisions via spreading operations over multiple Caches.
This Countermeasure combines the potential of preventing collisions that are used for collision attacks
andmoving certain data lookups to a different Cache, by moving parts of the attacked rounds to isolated
Caches on every encryption.

5
Results

In this chapter, the experimental results of the Cache attacks against the Countermeasures introduced
in Chapter 4 are presented. Section 5.1 describes the experimental setup, synthesizing the 𝜌VEX
processor on the Digilent Genesys2 Development board. Section 5.2 analyses the raw performance
of our AES implementation on the 𝜌VEX and its speedup due to cached lookups. Section 5.3 gives
an overview of the metrics that are provided in the results that show the performance of the Counter
measure against the attacks, and Section 5.4 gives and overview of the experiments that are done
in the rest of the chapter. Section 5.5 gives the baseline results of the attacks. Section 5.6 does
experiments on the influence of the shared memory access between multiple processes in a shared
processor. Section 5.7 gives the experimental results of the nLane Countermeasure, Section 5.8 that
of the CacheSwap Countermeasure and Section 5.9 of ScatterRound. Finally, a conclusion on the
results is given in Section 5.10

5.1. Experimental setup
5.1.1. FPGA
FPGA’s and HDL’s
A Field Programmable Gate array (FPGA) is an integrated circuit that implements a reconfigurable logic
circuit. A designer describes their logic design in a hardware description language (HDL). The two most
commonly used languages are VHDL and Verilog. Synthesis tools like Xilinx Vivado are used to first
Synthesis a circuit: translate the HDL code to a virtual circuit of logic gates. Then this synthesized
design is implemented on a FPGA board, implementing the synthesized design with the resources
available on the FPGA.

The main building blocks of the FPGA are configurable logic functions (LUTs) and register based
storage grouped together on so called slices or logic blocks. Finally, configurable interconnect connects
these slices together. Modern FPGA’s also include certain hardwired function blocks, for functionality
that is traditionally very inefficient if implemented in the standard slices. These include more complex
computation blocks like multipliers, or Digital signal processing (DSP) slices and larger BRAM memo
ries on Xilinx boards.

FPGA’s find wide usage as a substitution of a dedicated ASIC chip. Common reasons to use FPGA’s
over ASICs are debugging functionality, saving cost for small volumes, research or academic purposes
or in applications with runtime reconfigurable chip designs.

Genesys2
The FPGA development board used to instance the 𝜌VEX processor is the Digilent Genesys2 [52],
seen in Figure 5.1. The FPGA part on this board is a Xilinx Kintex7 chip, XC7K325T2FFG900C [53].
It has 326,080 logic cells. Consisting of 50,950 logic slices that can be configured to a maximum of
4,000 kB of distributed ram. It further contains 840 DSP slices and 16,020 kbit of BRAM.

The board includes 1 Giga Byte of volatile DDR3 memory and 16 Mega Byte of nonvolatile flash
memory. It has various connection ports for peripherals, including multiple USB connectors, HDMI,

57

58 5. Results

AUX, FMC, VGA and microSD card connector. Only the DDR3 memory, USB UART connection and
switches for debugging purposes are used on this board.

Figure 5.1: Genesys2 development board [52]

5.1.2. 𝜌VEX setup
This section briefly describes how the 𝜌VEX design is instanced on the FPGA.

Selecting system parameters
We will use the default parameters of the 𝜌VEX presented in [29] and included in the v4.2 hardware
design of the 𝜌VEX. A brief summary of the selected parameters can be found in Table 5.1

𝜌VEX configuration config details
Lanes 8 Instruction lanes
Lanegroups 4 Pairs of two lanes
Contexts 4 Hardware contexts with register files
Bundle alignment 2 Instruction bundle minimal size, using stop bits
LIMMH from next yes Long immediate syllable forwarding
LIMMH from previous no Long immediate syllable forwarding
Lanes with multipliers all lanes that can execute multiplication instructions
Lanes with memory units 0,2,4,6 Lanes that can acces system memory
Instruction Cache 4x16kB Up to 64kB in largest configuration
Data Cache 4x8kB Up to 32kB in largest configuration

Table 5.1: 𝜌VEX configuration

These settings are mainly the default parameters provided with the design. We adjusted the Cache
parameters to fit the requirements for the experimental Cache attacks:

5.1. Experimental setup 59

• Data Cache: at least enough space for all AES table data is required to prevent Cache data
being evicted by the AES process itself. With the AES implementation used, 4 tables of 1024
bytes and 1 table of 256 bytes are used for a total of 4352 bytes. As we can only pick a power of
2 Cache lines of 4 bytes, the Cache size is set to 211 lines, 8kB per lanegroup thus 32 kB total.
We guarantee no Cache size penalty and thus no evictions of the AES data by its own lookups
in the smallest configuration that uses only one Cache.

• Instruction Cache: with the instruction Cache size, we want to prevent that the smaller config
urations have a large performance penalty in comparison to the larger configurations, so at least
the full AES code should fit into the instruction Cache. it was found out experimentally that an
instruction Cache size of 29 lines (16kB) per lanegroup was sufficient.

Full system

The 𝜌VEX core is integrated into two types of full computing systems.
1. The first is a standalone setup. Where the system memory is emulated into the FPGA DRAM slices.
The access time delay for lookups to this emulated memory can be configured to emulate the delay a
external memory would cause. This system also implements a connection to the debug bus over USB
UART.
2. A GRLIB based system. Figure 5.2 show a schematic of this system. This system is based on
the LEON3 example design for the ML605 development board [54] found in the GRLIB library [55]. It
substitutes the LEON3 processor with the 𝜌VEX. Figure 5.2 shows a general schematic of this design.
This system allows peripherals compatible with the GRLIB standard library to be connected to the core.
Most importantly, this allows external (DDR3) memories to be connected to the core.

Figure 5.2: Block diagram of the GRLIB processing system. [29]

Since we want to have realistic memory behaviour, and sufficient emulated memory size can not be
reasonably achieved with the DRAM on the Genesys2, which is only 16Mbit, the GRLIB based system
was selected. This system was ported by using the design presented in [29]. Figure 5.3 shows a
schematic overview of the system. Major adjustments made were the removal of unused connections
(Ethernet, PCIe), adjusting clocking to match the board and creating the memory interface to work
with the DDR3 memory on the Genesys2 board. In the synthesis tool Xilinx Vivado, the build in MiG
(Memory interfaceGenerator) was used to generate theMiG component that connects the DDR3 pins to
the FPGA and creates an interface with it. A ahb2mig component was present in the example design,
which converts the MiG interface to the AHB bus. This design was adjusted to match the changed
interface for the Series 7 equivalent. The design was synthesized and implemented in Xilinx Vivado.
The system runs on a clock speed of 20MHz.

60 5. Results

Figure 5.3: Schematic of the GRLIB based processing system on the Genesys2

5.1.3. Interfacing setup
Because no support to directly dump memory data to a file was found within the debugger toolkit, a
small pipeline was set up to get memory dump data from console output to a xlsx format. The pipeline
for the memory dump goes via the following steps:

1. The console output in unix is stored in a txt file

2. The textfile is loaded into python

3. Python removes characters used for the command line layout, keeps raw data of addresses and
data in a data structure.

4. Python substitutes columns that indicate that certain memory ranges are the same with copies of
that data. These are originally not printed by the debug tool.

5. Python splits the lines into words, converts them from hexadecimal to integer and stores them in
a xlsx file.

This will result in a 4xn table of data in a xlsx file. The offline attack part in MatLab will interpret this
data, and further group the data based on the known layout of the measurement data for that specific
attack.

5.1.4. Software setup
We create two setups by compiling two sets of code. One to run an isolated attack process on the
𝜌VEX, and a second setup where a shared processor is emulated with one other context executing a
random workload.

Standalone setup
The OpenSSL Ttable implementation of AES128 was ported to the 𝜌VEX for this thesis. Instead of
implementing the final round with transformations on the main 4 Ttables, like in the current OpenSSL
implementation, the final round is implemented using the AES SBox implemented with a fifth table,
T4. This table has 256 32bit entries, with the Sbox values at all 4 byte offsets. This implementation
allows for the final round collision attack to be tested efficiently. This has a small benefit to attacks
that use earlier rounds, as 4 random lookups per table are no longer done during an encryption when
compared to the OpenSSL implementation. The attackers code is compiled together with this AES128
implementation. The memory location of the Table data is initialised at a memory offset that is known
to the attacked. The AES key expansion is first initialised, after which the attacker code starts, which
invokes the AES encryption function at its own initiative. The 𝜌VEX is initialised in the configuration
0x0088 by default, and thus runs in 4way mode.

5.2. AES performance on the 𝜌VEX 61

Shared processor setup
In order to simulate a workload sharing the processor with the encrypting context, we run a set of
PowerStone benchmarks [56] in randomized order on a context in parallel to the encrypting context.
The list of PowerStone benchmarks, bcnt, blit, compress, crc, des, engine, fir, g3fax, jpeg, pocsag, qurt,
uxbqsort and v42, have been previously ported to the 𝜌VEX. We initialise the first context, context0
to run the same attack process as in the standalone setup, and initialise context1 to run a random
selection of the PowerStone Benchmarks until context0 finishes. Between each benchmark, we add a
set amount of stall cycles, so that the amount of workload on that context can be varied. The processor
then runs in the configuration 0x1100 by default.

5.2. AES performance on the 𝜌VEX
Although performance penalties of bypassing the Cache completely in literature have been stated to
be up to a factor 100, we would like to get an indicator of the performance of the AES implementation
used in these experiments.

The Cache miss penalty for a single lookup, without noise from the shared memory bus, was mea
sured to be 9 cycles.

The instruction Cache has 8 words per line. Reloading such a line take an additional cycle per word,
thus 16 stall cycles. If variable length bundles are enabled, then two Cache lines can result in misses
for a single instruction bundle, resulting in 32 stall cycles if the bundle is not aligned with the instruction
Cache lines.

If other contexts are executing, then the delay on a read or write from the memory can be increased,
as the 𝜌VEX only allows one context at a time to access the memory. If a context is already being
serviced, the others have to wait till they gain access to the memory. If a write is being handled, Cache
lookups have to wait for it because it is required for Cache consistency [29].

Cache misses in mainstream CPU’s have relatively more penalty on a single Cache miss. This is
partly caused by longer Cache line sizes. A Cache line size implementation on the 𝜌VEX, of 16 32bit
words per line, would increase the stall cycles on a Cache miss in the 𝜌VEX to 21 cycles if these all
are sequentially transferred.

These fast memory lookups are relevant to keep in mind with Countermeasures that (purposely)
causes Cache misses, as the measured performance decrease can be misleading if not held against
the worst case execution (data Cache bypasses) for the current platform. Thus, Countermeasures that
cause Cache misses will have to be put into perspective by using these worst case execution times,
when fully bypassing the Cache for vulnerable lookups.

AES implementation performance
During testing, the performance of smallest configuration was disproportionate to what was expected
based on assigned lanes, this was caused by a high amount of instruction Cache misses. Because
in this research we want execution in the tiniest configuration to be efficient, we decided to rewrite the
code to be more compact, to lower the chance of disproportional performance costs because of the
instruction Cache. The original implemented the rounds as manually written out lines of all rounds. In
our implementation, 8 rounds were written more compactly in a forloop of two rounds that repeats 4
times with parameterised indexes for the roundkeys. This means the effective amount of execution
cycle is a bit higher than in the OpenSSL version, but it requires less instruction Cache and we mea
sured better performance that comes closer to the difference someone would expect when switching
between configuration size.

Table 5.2 shows themeasurement results we didmeasurements on the performance in all 3 possible
issue widths of the 𝜌VEX. The 𝜌VEX has the ability to disable the data Cache and bypass it directly
to the memory. The instruction Cache will remain active in this mode. These results can also be seen
in this table.

62 5. Results

AES performance Baseline Disabled data Cache Disabled data Cache % extra cycles
2way 912 3966 +435%
4way 587 3433 +585%
8way 323 2334 +650%

Table 5.2: Baseline performance of our AES implementation for all issue widths. Compared to function call with data Cache
bypass.

Cost of disabling Cache in targeted rounds
In order to get a grasp of how much performance we waste in our harshest Countermeasure possible;
bypassing the Cache for all lookups that are targeted by our attacker, we compute how much overhead
costs we expect if we bypass these lookups:
Although in the setup we were not able to disable the data Cache directly in code (only via the debug
bus), we can compute theoretical performance costs if we disable the Cache in a AES round:
Perfect implementation: Only the 16 table lookups for a round are disabled. A noncached lookup
adds 9 cycles so the cost is 144 cycles per round.
Full round implementation: If the designer of the code has no access to directly disable per individual
lookup, but has to do the disabling for a full round then 20 lookups are bypassing the Cache, resulting
in 180 extra cycles.

The costs for the most drastic approach, disabling the Cache for targeted lookups, can be found
in Table 5.3. We make the distinction between the possibility of bypassing the Cache for the Table
lookups only or for all lookups in a round. These computations are for a 4way configuration, as that is
the one we will use as the baseline configuration in our experiments.

Cache disabling costs Baseline 1 round, Tables 1 r, Round 2 rounds, Tables 2 r, Round
Cycles 1 AES encryption, 8way 323 467 503 611 683
% execution time, 4way +44.6% +55.7% +89.2% +114.6%
Cycles 1 AES encryption, 4way 587 731 767 875 947
% execution time, 4way +24.5% +30.7% +49% +61.3%
Cycles 1 AES encryption, 2way 912 1056 1092 1200 1272
% execution time, 4way +15.8% +19.7% +31.6% +39.5%

Table 5.3: Costs for disabling the Cache in targeted rounds, on the 𝜌VEX in a 4way configuration

5.3. Metrics
Key rank or solution rank as a function of traces
For Prime+Probe and Evict+Time these subsolutions directly reveal the key byte values, in these at
tacks we will thus refer to this metric as the average keyrank. In the Final Round Collision these
measurement are the values of xor’s between key bytes, and thus we express this metric as the aver
age subsolution rank. We choose to look at this metric for this attack as it most accurately shows the
influence of Countermeasures on the measured data.

Correct subsolutions as a function of traces
In Prime+Probe and Evict+Time, a subsolution is the most likely candidate access, and thus table
lookup, for a chosen key byte index and a chosen plaintext byte on that same index. This is one sub
measurement to target a specific key byte. We consider this to carry more information than presenting
how many key bytes were retrieved correctly, as this depends on the method in which the attacker
decides to do the post processing. This method will be the most neutral way to present the influence
of the Countermeasures on the measured data used for the attack.

Relative processor performance
The relative performance of the AES encryption code will be measured as part of the Evict+Time at
tack. This is expressed in a percentage increase or decrease of the average encryption time, when
executing in the same baseline configuration. The measurements from Evict+Time are used, because
this execution is the most accurate to regular execution conditions of the three attacks, as Prime+Probe
and Final Round Collision clear all cached TTable data during their attacks before encryption.

5.4. Overview of Experiments 63

Why it is also ideal to combine these measurements in the Evict+Time attack is to make sure the
overhead costs closely match with the measured influence on attack effectiveness, in order to compare
both. If these measurements were done in isolation, then for instance the instruction Cache usage of
the process that does the measurement individually can cause different levels of interference from the
Countermeasures and thus also different performance costs.

In the setup with a shared processor, the performance of the PowerStone benchmarks [56] are
measured. These are also reported as relative performancewhen compared to baselinemeasurements
in the same default configuration.

5.4. Overview of Experiments
For every Countermeasure there are certain variations the can be done during the experiment. These
include:

• Changing the fundamental reconfiguration pattern used; adjusting what contexts are used and in
what ratio configurations occur and if they are randomly selected or have set order.

• Changing probabilities for Countermeasure that have a chance to be triggered.

• Cache state variations at the start of encryption.

• Shared processor setup vs isolated process.

We will test the Countermeasures: nLane, where we randomly change the amount of execution
lanes assigned to our encrypting context, CacheSwap, where we randomly swap executing contexts
briefly from resources and thus Cache used, and ScatterRound, where vulnerable rounds are split
among multiple Caches. These are tested against the studied attacks Prime+Probe, Evict+Time and
Final Round Collision.

At the end of the experiment sets on the Countermeasure, sets C, D and E, there is a small sec
tion where we summarize our main results of the experiment: the effect on the attack effectiveness,
the overhead costs and additional findings with regards to the different implementation and execution
scenarios possible with the Countermeasure. We will then discuss the findings of the experiment set.
Since the experiment sets can be quite lengthy, we recommend the reader to first read this summary
and discussion section, to then decide on what experiments to look at in detail.

Experiment Set A: Cache Attacks against AES in a noiseless processor
First, the performance of the three studied Cache Attacks in a noiseless processor are measured.
The attack, that invokes the encryptions itself, is the only running process in the processor. All other
resources not used are disabled. The experiments are:

• A.ET.1) unprotected Evict+Time

• A.PP.1) unprotected Prime+Probe

• A.FR.1) unprotected Final Round Collision

Experiment Set B: Cache Attacks against AES in a shared processor
The second experiment set executes the attacker process, that is isolated in Experiment Set A, on
half of the processor resources, in 4way mode. In the other half of the processor, a second context is
executing in 4way mode. This context executes randomly selected PowerStone benchmarks [56], with
a set amount of stalled cycles in between those benchmarks to emulate different workload conditions.

• B.ET.1) unprotected Evict+Time, shared processor

• B.PP.1) unprotected Prime+Probe, shared processor

• B.FR.1) unprotected Final Round Collision, shared processor

64 5. Results

Experiment Set C: Cache Attacks against nLane protected AES
Experiment set C shows the results of the nLane Countermeasure, that generates noise via reconfig
uration size variations.

• C.ET.1) nLane against Evict+Time, reconfiguration patterns

• C.ET.2) nLane against Evict+Time, reconfiguration percentages

• C.ET.3) nLane against Evict+Time, reconfiguration interval

• C.ET.4) nLane against Evict+Time, trace size requirement

• C.ET.5) nLane against Evict+Time, shared processor

• C.PP.1) nLane against Prime+Probe

• C.FR.1) nLane against Final Round Collision, reconfiguration percentages

• C.FR.2) nLane against Final Round Collision, shared processor

Experiment Set D: Cache Attacks against CacheSwap protected AES
Experiment set D shows the results of the CacheSwap Countermeasure, that generates access noise
via lanegroup swaps of two contexts.

• D.ET.1) CacheSwap against Evict+Time, Cache state

• D.ET.2) CacheSwap against Evict+Time, targeted round effect

• D.ET.3) CacheSwap against Evict+Time, reconfiguration percentages

• D.ET.4) CacheSwap against Evict+Time, shared processor

• D.PP.1) CacheSwap against Prime+Probe, reconfiguration percentages

• D.PP.2) CacheSwap against Prime+Probe, shared processor

• D.FR.1) CacheSwap against Final Round Collision, reconfiguration percentages

• D.FR.2) CacheSwap against Final Round Collision, shared processor

Experiment Set E: Cache Attacks against ScatterRound protected AES
Experiment set E shows the results of the CacheSwap Countermeasure, that obfuscates Cache ac
cesses via spreading operations over multiple Caches

• E.ET.1) ScatterRound against Evict+Time

• E.PP.1) ScatterRound against Prime+Probe

• E.FR.1) ScatterRound against Final Round Collision, standalone execution

• E.FR.2) ScatterRound against Final Round Collision, shared processor

• E.EX.1) ScatterRound performance in a dedicated execution mode

5.5. Experiment Set A: Cache Attacks against AES in a noiseless
processor

We test our attacks in a noiseless environment. We only have one context active on the processor.
All resources not used by our active context are idle, meaning there is no interference on memory
accesses from the shared memory ports. Other interference is kept to a minimum: the encryptions and
attackers code come directly from the same compiled files; there is no operating system in between
and the tasks are executed without other tasks getting scheduled.

5.5. Experiment Set A: Cache Attacks against AES in a noiseless processor 65

5.5.1. A.ET.1) unprotected Evict+Time

The evict time attack is done on all 3 configuration sizes. Figure 5.4(a) shows that our attack is suc
cessful in retrieving the full key after 10 iterations per plaintexttargetkeyeviction target combination,
which means we achieve these results after 368640 encryptions timed.

((a)) Evict+Time Baseline subkeys correct ((b)) Evict+Time Baseline subsolutions correct

Figure 5.4: Evict+Time Baseline results

We see that for a 2way configuration, the attack fails to retrieve the all correct subkeys. To analyse
further, we also plot the amount of plaintexttargetkey combinations correct (128 total), which are so
called ”subsolutions” used to retrieve the correct key. Note that this does not necessarily mean the
correct keybit guess, which could still be correct depending on how we guess the key (pattern vs direct
calculation, as discussed in Section 4.2.1) but indicates if the maximum value is on the eviction address
we expect it to be. In theory, 32 correct subsolutions (2 per subkey) should be enough to confidently
guess the correct key in these attacks, if the other samples yield randommaximums on the other values
because of measurement noise. Yet we will visualize the performance of the attack via the amount of
correct subsolutions to paint a more accurate image of how much useful information we retrieve from
our samples, as opposed to only stating how many subkeys are correct in our attack. Figure 5.4(b)
shows the correctness of the subsolutions as a function of the amount of traces used.

We observe that the incorrect subkeys are caused by only 3 incorrect subsolutions. These should
be caused by Cache interference from its own calling procedure that is only caused in the 2way con
figuration, because more addresses are mapped onto the same lines in the smaller configurations.
Lookups to either the stack or locations of the plaintext, expanded key or software stack can cause
evictions to the table data.

In Figure 5.5 the average subsolution ranks for the trace counts are plotted. For every subsolution,
we determine how the correct samples rank among the potential candidates. In case of Evict+Time
this means that we rank the samples from highest to lowest average time, and check on what position
the correct subsolution is ranked. We see the average keyranks approach 1 for the measurements
on the 2way configuration, meaning the wrong samples are only off by a small amount, verifying that
indeed natural evictions make it impossible to directly measure these samples.

66 5. Results

Figure 5.5: Evict+Time Baseline average keyranks

5.5.2. A.PP.1) unprotected Prime+Probe

The Prime+Probe attack yields the samemeasurement results as with the Evict+Time attack, but based
on different measurement samples. We apply the same result analysis as we did with Evict+Time. In
Figure 5.6(a) the amount of subkeys correctly found are plotted for increasing trace counts. We test this
for all three configuration sizes. We found that at an arbitrary low value of 5 encryptions per plaintext+
target subkey combination, enough samples were acquired to successfully execute the attack in all
configurations. Figure 5.6(b) shows the plot of the subsolutions, which also are all correct for this low
sample count. We conclude on 720 encryptions as the baseline sample requirement.

((a)) Prime+Probe Baseline correct subkeys ((b)) Prime+Probe Baseline correct subsolutions

Figure 5.6: Prime+Probe Baseline results

Figure 5.7 shows the plot the average keyrank of the subsolutions. We see that these also perfectly
match with what we expect: all subsolutions are correct, and thus our average keyrank is 1.

5.5. Experiment Set A: Cache Attacks against AES in a noiseless processor 67

Figure 5.7: Prime+Probe Baseline keyranks

5.5.3. A.FR.1) unprotected Final Round Collision
We perform the Final Round Collision attack on our random plaintexts. Figure 5.8(a) shows the amount
of subsolutions that are correct. Subsolutions are the found values of the 120 XOR inequalities between
ciphertext outputs based on the value that has the minimum execution time. Figure 5.8(b) shows the
average rank of the 120 inequalities for the amount of traces used in the attack.

((a)) Final Round Collision Baseline correct subsolution ((b)) Final Round Collision Baseline subsolution ranks

Figure 5.8: Final Round Collision Baseline results

Since the measurement results do not directly translate to a single key guess but 256 key candi
dates, and because these are not directly translated as individual subkey guesses but combinations,
we will not include the correct amount of subkeys as a result of this attack.

Instead, we only take a look at how many subsolutions are correct when rating the success of the
attack in further experiments. We found experimentally that the point on which the correct candidate
is retrievable is around 75 correct subsolutions on average. A small majority of correct subsolutions
means that the correct guesses for the bit candidates will be the most likely candidates, satisfying the
majority on the inequalities. All attacks have enough samples to retrieve the full key around 40000
samples. Just over 100000 samples are required to have correct measurement data on all subsolu
tions. The experiment on the 4way configuration showed that 1 subsolution was not correct in this
experiment.

68 5. Results

5.6. Experiment Set B: Cache Attacks against AES in a shared 𝜌
VEX processor

In this section, the results from the attacks performed on a 𝜌VEX system executing a second workload
in half of the processor resources are presented. The attack process and AES runs in context0 on
a 4way configuration, and a context executes random PowerStone benchmarks runs on context1
in a 4way configuration. Because the multiple hardware contexts share memory access resources,
and have to wait on each other if the resources are occupied, influence on the performance of the
attacks is expected. Because some Countermeasures rely on the fact another process is executing,
these measurements are also done to get a reference on how much the attacks are influenced by the
resource sharing itself.

5.6.1. B.ET.1) unprotected Evict+Time, shared processor
Figure 5.9 shows the results of the Evict+Time attack on the shared processor. The workload on the
second processor is varied with stall cycles in between benchmarks, varying between 103 and 108
cycles. Table 5.4 shows the measured average performance cost for the throughput of the AES on our
main context. The random extra cycles during encryption prove to be very disruptive to the Evict+Time
attack, which relies on timing measurements of a full encryption which includes hundreds memory
accesses, leaving room for many moments the other contexts can disturb the process via their own
accesses.

((a)) Evict+Time shared processor correct subsolutions ((b)) Evict+Time shared processor subkey ranks

Figure 5.9: Evict+Time shared processor results

Evict+Time 2Context 1) 1k 2) 1m 3) 10m 4) 100m
% average execution time AES +3.4% +0.8% +0.1% +0.01%

Table 5.4: Additonal execution time for the attacker + victim context when a second context shared the system

Figure 5.10 shows the results for a higher amount of traces for the parallel workloads with 1000 and
1 million stalls, since the attacks were found to not be successful yet for the amount of traces in the
experiments in Figure 5.9. We see that the influence is rather insignificant for low workloads. We see
the requirement of traces for all correct subsolutions go from a factor of 2 for the lowest workloads, to
a factor up to 200 for the highest workload.

5.6. Experiment Set B: Cache Attacks against AES in a shared 𝜌VEX processor 69

((a)) Evict+Time shared processor correct subsolutions ((b)) Evict+Time shared processor subkey ranks

Figure 5.10: Evict+Time shared processor, high workload increased sample count

5.6.2. B.PP.1) unprotected Prime+Probe, shared processor
Figure 5.11 shows the results of the Prime+Probe attack on the shared processor. We see a much
smaller influence on the effectiveness of the attack. It takes up to 20 times more samples to fully
stabilize on having all correct subsolutions for the highest workload. However, we see that the samples
are only distorted by a small amount around the trace count of our baseline. They average keyrank
starts at only 2, and already 96 subsolutions are measured correctly (75%). This good performance
is partly contributed to the way we implemented the attack, which does not take binary conclusions on
hits/misses based on access times of a memory lookup, but averages the total time it took to access
a Cache line. Based on the processing technique, this could already result in the correct full key
retrieved based on this sample count. We thus conclude that the influence of the shared processor on
the effectiveness of the Prime+Probe attack is negligible.

((a)) Prime+Probe shared processor correct subsolutions ((b)) Prime+Probe shared processor subkey ranks

Figure 5.11: Prime+Probe shared processor high workload increased sample count

5.6.3. B.FR.1) unprotected Final Round Collision, shared processor
Figure 5.12 shows the results of the Final Round Collision attack on the shared processor. We roughly
need 3 times as many traces to do a successful attack for the lowest workload. and the other two
workloads tested are not solvable yet for 106 samples, already a factor 25 over the baseline.

70 5. Results

((a)) Final Round Collision shared processor correct subsolu
tions

((b)) Final Round Collision shared processor subkey ranks

Figure 5.12: Final Round Collision shared processor results

We repeat the attack against the system shared with the highest workload in Figure 5.13, for five
times as many samples. We do see the subsolution rank further decrease. We estimate the amount of
traces required to be at least 8 ∗ 106 and thus at least 200 times as many traces as the baseline attack
are required, similar to the Evict+Time attack in a shared processor for this same workload.

((a)) Final Round Collision shared processor correct subsolu
tions

((b)) Final Round Collision shared processor subkey ranks

Figure 5.13: Final Round Collision shared processor, high workload increased sample count

5.7. Experiment Set C: Cache Attacks against nLane protected
AES

5.7.1. C.ET.1) nLane against Evict+Time, reconfiguration patterns
The first experiment done on the nLaneCountermeasure is to see the difference between the variations
done on the reconfiguration pattern that is used in the nLane Countermeasure. This is tested against
the Evict+Time Attack. The probability of a reconfiguration is set to 10%. From the main configuration,
0x0088 we can either configure to larger configuration 0x0000, or smaller configurations 0x8088 and
0x0888. We will test for multiple variations of switching between these configurations.We also tweak
the ratio between the amount of reconfigurations to the larger and smaller configuration, aside from the
default 50/50 option. We test the following patterns:

1. Only to larger configuration 0x0000

5.7. Experiment Set C: Cache Attacks against nLane protected AES 71

2. Both larger and smaller configuration, 0x0888 for the smaller configuration

3. Both larger and smaller configuration, 0x8088 for the smaller configuration

4. only smaller configuration 0x0888

5. only smaller configuration 0x8088

6. experiment 2. with 66.6% chance to configure larger and 33.3% to configure smaller

7. experiment 3. with 66.6% chance to configure larger and 33.3% to configure smaller

8. 3.33% chance to configure smaller to 0x0888 only

The results of experiment 1. to 5. are seen in Figure 5.14. The results of experiment 6. to 8. in
Figure 5.15. Table 5.5 shows themeasured relative slowdown of AES encryptions in these experiments.

((a)) Evict+time nLane 10% patterns subsolutions ((b)) Evict+time nLane 10% patterns subkey ranks

Figure 5.14: Evict+Time nLane 10% patterns 1

((a)) Evict+time nLane 10% patterns subsolutions ((b)) Evict+time nLane 10% patterns subkey ranks

Figure 5.15: Evict+Time nLane 10% patterns 2

72 5. Results

nLane configurations 1) 2) 3) 4) 5) 6) 7) 8)
% average execution time AES 5.1% +8.2% +4.1% +19.1% +12.3% +4.6% +1.2% +6.73%

Table 5.5: overhead costs of the reconfiguration patterns in Figure 5.14 and Figure 5.15

We summarize our findings in these experiments:

1. The random reconfigurations to smaller configurations add more noise: this can be seen
through comparing experiments 1, 4 and 5 with each other. The chance to configure is constant
between these experiments, but when configured to the smaller configurations we see that the
loss of cached data and potential extra evictions add extra noise.

2. There is a smaller configuration that suboptimal for performance, but adds more noise:
When comparing experiment 2 with 3, 4 with 5 and 6 with 7, it is observed that the configuring
to configuration 0x0888 adds more noise than 0x8088. In Table 5.5 it is also seen that using this
configuration reduces AES performance more than the other.

3. Both smaller and larger configuration together contribute to noise: Experiment 8 tests
3.33% chance to reconfigure to only smaller configurations. Adding the chance to also configure
larger in experiment 6 adds extra noise.

4. A balanced ratio in the reconfiguration pattern is possible that still adds measurement
noise: We show with the reconfiguration ratio used in experiments 6 and 7 that we can adjust
the ratios between the configurations, and eventually achieve a point where we do not decrease
the throughput. We do however decrease the performance of other contexts by stalling them
for our larger configuration. We can even improve throughput while adding noise, as seen in
experiment 1.

5.7.2. C.ET.2) nLane against Evict+Time, reconfiguration percentages
From the previous configuration testing in Experiment C.ET.1), Section 5.7.1, the default configura
tion pattern of selecting both larger and smaller configurations with equal probability is chosen. The
smaller configuration that has the most interference, the pattern of experiment 2, is selected as the con
figuration pattern to further experiment on. In these experiments, we look at the behaviour of higher
reconfiguration probabilities for this pattern. In Figure 5.16 probabilities from 10% to 50% are tested.
In Table 5.13, the relative AES performance is given. Up to around a 30% reconfiguration chance, the
performance is above that of bypassing the data Cache for the lookups in a single round.

((a)) Evict+time nLane percentages subsolutions ((b)) Evict+time nLane percentages subkey ranks

Figure 5.16: Evict+time nLane percentages

5.7. Experiment Set C: Cache Attacks against nLane protected AES 73

Evict+Time nLane percentages 1) 10% 2) 20% 3) 30% 4) 40% 5) 50%
% average execution time AES +8.2% +16.0% +26.1% +33.9% +41.0%

Table 5.6: Overhead costs of the reconfiguration percentages in Figure 5.16

Because the sample size in Figure 5.16(b) is not sufficient to see if the general keyranks are de
creasing for larger sample sizes. We increase the sample size by a factor 10 and do the attack on
10%, 30% and 50% nLane in Figure 5.17(a). Because for nLane 50% it still is unclear if eventually
the key rank starts decreasing with more samples, we increase the sample size once again and repeat
for nLane 50% in Figure 5.17(b). Between the percentages, the decline rate decreases for higher per
centages. The amount of traces required for a successful Evict+Time attack against the AES protected
by 50% nLane seems to be enormous. The cost on the throughput of AES is 41%, but is still below the
cost avoiding the use of Cache in two AES round, while it can be effective against attacks that target
either round. A bottleneck however, is the performance cost to the rest of the system, as this would
stall the other contexts in the processor during 25% of the encryptions.

((a)) Evict+time nLane percentages subkey ranks ((b)) Evict+time nLane 50% subkey ranks

Figure 5.17: Evict+time nLane percentages

5.7.3. C.ET.3) nLane against Evict+Time, reconfiguration interval
In all other experiments in this section the reconfiguration is done for a full encryption. Excluding the
noise caused by the reconfiguration cycles itself from the measurements in the process. Although
the results in previous experiments are very optimistic there is a huge vulnerability. If the attacker is
aware of the Countermeasure, then it should be easy to filter the samples. If the attacker knows we
reconfigure for 10% of the iterations of AES, then they can try to reject the 5% samples with longest
execution time and 5% shortest execution time and the influence of the Countermeasure is greatly
reduced, if not nullified.

A more resistant implementation would be to initiate this random configuration at any point during
encryption, so samples where the Countermeasure activates are more difficult to filter. We will test the
effect of a more fine grained reconfiguration pattern. We do reconfiguration with a probability of 20%,
but we implement this to reconfigure at the start of a random AES round, and also reconfigure back
at the end of a random round. On average, half of the rounds will execute in the other configuration,
and thus a comparable time is spend in different configurations when compared to when 10% of the
encryptions is fully ran in a different configuration. Figure 5.18 shows the comparison between the
measurements results of these two different implementations of nLane.

74 5. Results

((a)) Evict+time nLane 20% between AES rounds, subsolutions ((b)) Evict+time nLane 20% between AES rounds, subkey
ranks

Figure 5.18: Evict+time nLane 20% between AES rounds

We see that the order of interference with the attack is comparable to reconfiguring for a full encryp
tion, and even seems to require a bit more samples to make the attack successful, likely caused by
the fact the reconfiguration cycles are now included in the measurements. We thus conclude that the
further results we find in the experiments with the nLane Countermeasure should be representative
even if the implementation is done differently such that the reconfigurations are spread out differently.

5.7.4. C.ET.4) nLane against Evict+Time, trace size requirement
We do an additional experiment with the 10% nLane Countermeasure with the default reconfiguration
pattern. We run for a larger sample size to estimate howmany traces we would need to make the attack
succefull. Figure 5.19 shows the results for the Evict+Time attack on 3 ∗ 108 timed encryptions on the
nLane 10% protected AES are presented. The amount of traces required increased with a factor of at
least 800 when compared to the unprotected baseline in 5.5.

((a)) Evict+time nLane 10% subsolutions ((b)) Evict+time nLane 10% subkey ranks

Figure 5.19: Evict+time nLane 10%

5.7.5. C.ET.5) nLane against Evict+Time, shared processor
Figure 5.20 shows the results for the combination of sharing the processor with another context, as well
as running the default 10% nLane Countermeasure. This was tested for both configurations patterns
possible to verify which one generated the most noise in this different code setup.

5.7. Experiment Set C: Cache Attacks against nLane protected AES 75

Table 5.7 shows the performance costs on AES throughput of the Countermeasure in this setup,
when either compared to the parallel setup on this same workload, like tested in Section 5.6.1, or when
compared to the baseline in Section 5.5.1.

We seen an increase of the amount of cycles required for the successful attack when compared
to only sharing the system without the Countermeasure active. However, the amount of influence the
Countermeasure has on this situation seems to match that without a shared processor. These noise
sources do thus not amplify each other, but both get averaged out at a sufficient large sample size,
which in this case is larger for the nLane Countermeasure.

((a)) Evict+time nLane 10% shared processor subsolutions ((b)) Evict+time nLane 10% shared processor subkey ranks

Figure 5.20: Evict+time nLane 10% shared processor

Evict+Time nLane 1) to 2Context 2) to 2Context 1) to baseline 2) to baseline
% average execution time AES +11.7% +5.9% +15.5% +9.5%

Table 5.7: Overhead costs of Countermeasure on AES performance, in comparison to the performance in either the parallel
setup, or the baseline setup.

Evict+Time nLane 1) config1 2) config2
% execution time benchmarks +9.9% +5.0%

Table 5.8: Overhead costs of Countermeasure on the workload of the second context.

5.7.6. C.PP.1) nLane against Prime+Probe
Figure 5.21 shows the results of the default 10% nLane Countermeasure implementation against
the Prime+Probe attack. Although the nLane Countermeasure is not intended to specifically target
Prime+Probe attacks, as it is not a timing based attack, the Countermeasure has a small influence
on the effectiveness of the attack. In our setup, where we only required 5 samples of plaintext value
and keybyte combinations, we now require 3 times as many to get to our maximum amount of cor
rect solutions for any of the percentages chosen. The error on our baseline sample count however is
rather insignificant. For a small amount of samples we were also unable to find the correct solution.
Certain specific measurements might fail due to the different internal evictions associated with the con
figurations, making it so a smaller configurations always access a specific Cache line resulting in our
attack concluding the wrong most accessed line. This could become more significant if a lot of extra
Cache usage is done in the process of calling the AES function, but it is kept to a minimum amount of
measurements this affects because of our minimal setup.

76 5. Results

((a)) Prime+Probe nLane correct subsolutions ((b)) Prime+Probe nLane subsolutions ranks

Figure 5.21: C.PP.1) nLane against Prime+Probe

5.7.7. C.FR.1) nLane against Final Round Collision, reconfiguration percent
ages

Figure 5.22(a) shows the results of small experiments with different percentage settings of nLane, and
seem to suggest a similar pattern as the Countermeasure against the Evict+Time attack in Section
5.7.2. Figure 5.22(b) shows the results of a larger sample size of 5 ∗ 106 encryptions for 10%, 30%
and 50% nLane. We see a smaller influence on increasing the nLane percentage than we did with
Evict+Time in Experiment C.ET.2), Section 5.7.2. This is likely explained by the fact that the logical
behaviour that is used in the attack, the collisions, is not disturbed by the Countermeasure, unlike with
the Evict+Time attack.

((a)) Final Round Collision nLane percentages subkey ranks ((b)) Final Round Collision nLane 10% subkey ranks

Figure 5.22: Final Round Collision nLane percentages

Figure 5.23 shows the keyrank for higher sample counts, for the default 10% nLane Countermea
sure. We estimate at least 3 ∗ 107 samples to be required for a successful attack, and thus at least
a factor of 750 more traces, comparable to the factor concluded for the Evict+Time attack in Section
5.7.4.

5.7. Experiment Set C: Cache Attacks against nLane protected AES 77

((a)) Final Round Collision nLane 10% subkey subsolutions ((b)) Final Round Collision nLane 10% subkey ranks

Figure 5.23: Final Round Collision nLane percentages

5.7.8. C.FR.2) nLane against Final Round Collision, shared processor
Figure 5.24 shows the results of the default 10% nLane Countermeasure against the Final Round
Collision attack in a shared processor. We see the similar phenomenon as with the nLane Counter
measure on top of parallel setup against the Evict+Time attack in experiment C.ET.5) in Section 5.7.5,
where is noise of the two noise sources doesn’t amplify each other, but only set a requirement for min
imal amount of traces to overcome the strongest source. In this case this is the noise caused by the
nLane Countermeasure.

((a)) Final Round Collision nLane 10% with shared processor,
subsolutions

((b)) Final Round Collision nLane 10% with shared processor,
subkey ranks

Figure 5.24: Final Round Collision nLane 10% with shared processor

5.7.9. Summary and Discussion
Influence on attack effectiveness
When the AES was protected by the default 10% nLane implementation, the Evict+Time Attack was
estimated to take over 800x as many samples to be successful. The Final Round Collision attack is
estimated to be successful after at least 750x as many samples. We saw a small influence on the effec
tiveness of the Prime+Probe attack, requiring around 3x as many samples for all correct subsolutions,
and making a couple subsolutions immeasurable. For both the Evict+Time and Final Round Collision
attacks, we saw no further increase in the amount of samples required when this Countermeasure was
applied on top of running on a shared processor.

78 5. Results

Overhead costs
The default 10% nLane Countermeasure added 8.2% more average execution cycles to the AES
encryptions. The overhead scaled roughly linear with the probability to reconfigure. The measured
performance cost for workload sharing the processor with the context that encrypts with this Counter
measure, was an average increased execution time of 11.7% for the workload.

Countermeasure implementation details
• Reconfiguring to a smaller configuration had the additional benefit of causing random Cache
misses and invalidating samples of the Evict+Time attack. We saw that one configuration gener
ated more noise than the other, and also doubled the overhead of the Countermeasure.

• Balancing between configuring to larger and smaller configurations is possible, keeping the same
throughput of AES, while still contributing considerable levels of noise against the attacks.

• Noise caused by sharing the processor had no benefit on top of the nLane Countermeasure, as
the noise generated by this noise was dominating.

• The implementation used in these experiments is considered representative to different imple
mentations of this Countermeasure. These implementations could divide the time spent in the
unique configurations differently, compared to just a full encryption in our implementation. This
is shown by testing a different implementation of the Countermeasure.

Discussion
We have seen that the earlier discussed issue of losing cached data between configurations didn’t
cause the high delay cost that we theoretically associated with this issue as we speculated in Section
4.3. Our overhead cost for 10% nLane doubled from 4.1% to 8.2%, what we still consider reasonable.
The main reason is that aside from encryptions, the process had little extra operations, allowing data
that got cached twice in the 4way Cache due to it missing in the smaller configuration to remain as a
copy in the Cache. This might however become an issue if there is more Cache interference in between
encryptions.

The option to briefly assign more execution lanes to the encrypting context to generate noise, and
thus briefly increase throughput of encryptions, is a upside in system setups where we let the 𝜌VEX
operate on scheduled tasks with different priorities. We saw reconfiguration patterns where we only
increased the average encryption time with 4.6% and 1.2% while considerably increasing the amount
of traces required when compared to our baseline attack.

For more disruptive patterns with high percentages and even with 50% chance to reconfigure the
overhead cost stayed below the minimal cost of disabling the Cache in two rounds, 41% overhead
when compared to at least 49% overhead for Cache bypass of the table lookups in two rounds.

Two downsides associated with this Countermeasure is the fact that this Countermeasure is mainly
purely timing noise, meaning that if our attack already requires a lot of samples then we do not gain
much benefit from this Countermeasure. Another is that it is relatively easily detectable if the system
is relatively noiseless aside from this Countermeasure if implemented like we did. Samples executed
in the different configurations can then be clustered based on execution time.

5.8. Experiment Set D: CacheAttacks against CacheSwap protected
AES

5.8.1. D.ET.1) CacheSwap against Evict+Time, Cache state
Figure 5.25 shows the results of experiments on the CacheSwap Countermeasure, where the influence
of the state of the secondary Caches on the processor, not used by the encrypting process is tested. The
experiments are done on the CacheSwap Countermeasure with 10% swap chance, in three different
scenarios. Table 5.9 shows the measured performance cost in those scenarios. In experiment 1) the
attack runs in isolation, the Cache state of the other system Caches is not touched and will eventually
contain all AES related data. The only effect we thus have from the Countermeasure is the overhead of
reconfiguration cycles, and the sample occasionally not containing the correct information because not
all copies of the data are evicted, only that in the main Cache. In experiment 2) we fully clear the other
Caches after every attacked encryption. This emulates what happens if other system resources do

5.8. Experiment Set D: Cache Attacks against CacheSwap protected AES 79

evictions to these randommemory lookups that are redirected to the other Cache, and a reconfiguration
thus also adds noise in form of Cache misses. In experiment 3, we guarantee a consistent Cache state
between the two Caches that we swap between, by doing both the setup encryption and the Cache
eviction in both Caches. This way we measure the noise from the reconfiguration overhead only.
We see that the random Cache misses that occur during these brief swaps add considerable more
noise than the logical effect that certain samples become invalid due to the reconfiguration pattern in
either the setup or measured encryption. This can be seen by the increase of average keyrank from
experiment 1 to 2, but also by the fact that experiment 1 and 3 have very similar performance. We
will test this attack on multiple percentages of CacheSwap against Evict+Time, but to see how the
logical behaviour changes with the different percentages the measurements against the Prime+Probe
attack in Experiment D.PP.1), Section 5.8.5, should be a better indicator. We conclude that for this
ideal experiment 2, 10% CacheSwap where the other Cache is cleared, the amount of traces required
increases with a factor estimated at 40 for a average execution time increase of 9.5%.

We will continue with emulating a different process by clearing the second Cache between encryp
tions in the standalone experiments for CacheSwap against all attacks in the rest of the experiments.
In the experiments on the shared processor this ideal clearing is replaced with a second context doing
Cache evictions because of its own lookups.

((a)) Evict+time CacheSwap 10% correct subsolutions ((b)) Evict+time CacheSwap 10% subkey ranks

Figure 5.25: Evict+time CacheSwap 10%

Evict+Time CacheSwap 10% 1) no clear 2) clear 3) consistent Cache
% average execution time AES +5.4% +9.5% +5.4%

Table 5.9: Overhead costs of the 10% CacheSwap Countermeasure, based on the Cache state of the second Cache.

5.8.2. D.ET.2) CacheSwap against Evict+Time, targeted round effect
Figure 5.26 shows the results of CacheSwap 20% against the Evict+Time attack. In experiment 1 we
implement it as the default, but in experiment 2 we protect the second AES round instead of the first
round. We thus set the difference between the scenarios like in Experiment D.ET.1), Section 5.8.1,
where we effectively measure how much the invalidated samples contribute to the noise on the attack.
We see an apparent larger difference between the two scenarios than with 10% CacheSwap for this
higher percentage 20%. Meaning the logical influence on the attack by this reconfiguration pattern
starts becoming more significant for this percentage.

80 5. Results

((a)) Evict+time CacheSwap 10% correct subsolutions ((b)) Evict+time CacheSwap 20% subkey ranks

Figure 5.26: Evict+time CacheSwap 20%

5.8.3. D.ET.3) CacheSwap against Evict+Time, reconfiguration percentages
Figure 5.27 shows the effect of the reconfiguration chance of the CacheSwap Countermeasure on the
performance of the Evict+Time attack in an isolated setup with a empty second Cache. Table 5.10.

We see the overhead decrease for percentages above 60%. This can be attributed to the fact
that now more lookups between setup encryption and timed encryption will result to hits in the second
Cache, but also because effectively less configurations will be issued since the CacheSwap swaps will
switch Caches less often. This is partially caused by our setup: if a heavy workload runs in parallel in
the second Cache, than the overhead costs can increase further beyond this 60%, as we do not clear
between our setup encryption and measured encryption in this setup.

((a)) Evict+time CacheSwap percentages correct subsolutions ((b)) Evict+time CacheSwap percentages subkey ranks

Figure 5.27: Evict+time CacheSwap percentages

Evict+Time CacheSwap percentages 1) 20% 2) 30% 3) 40% 4) 50% 5) 60% 6) 70% 7) 80%
% average execution time AES +14.6% +18.7% +21.7% +23.5% +24.0% +23.3% +21.9%

Table 5.10: Overhead costs of different reconfiguration percentages of the CacheSwap Countermeasure, second Cache cleared
between samples

We repeat the experiment with 20% and 30% CacheSwap with a higher sample count, to get a

5.8. Experiment Set D: Cache Attacks against CacheSwap protected AES 81

indicator for how much extra traces are required for higher percentages. we see that even when we
nearly have a factor of 70 more samples, not all subsolutions show the correct result. Following the
current pattern, both should be successful around a factor 100 more samples. We also see that the
difference between 20% and 30% is minimal, but the difference with experiment with 10% CacheSwap
in Section 5.8.1 is more significant.

((a)) Evict+time CacheSwap percentages correct subsolutions ((b)) Evict+time CacheSwap percentages subkey ranks

Figure 5.28: Evict+time CacheSwap percentages

5.8.4. D.ET.4) CacheSwap against Evict+Time, shared processor

Figure 5.29 shows the results of experiments of the CacheSwapCountermeasure against the Evict+Time
attack running on a shared processor setup. Table 5.11 shows the increase of average AES executon
time, and the increased execution time of the benchmarks due to this pattern. We measure 13.3%
and 15.9% overhead for the Countermeasure for 1m and 1k stall cycle benchmark workloads respec
tively, as opposed to the 9.5% measured in the baseline with a cleared Cache in Experiment D.ET.1),
Section 5.8.1, this because now also the state of the encryption Cache is disturbed by the the parallel
context, and we no longer keep our instruction Cache data consistent in the other resources between
encryptions. The measured overhead for the context executing benchmarks is 8.16% and 8.94% for
CacheSwap 10% on the 1m and 1k stall cycle benchmark workloads respectively, and for CacheSwap
30% on 1k stall workload it is 13.66%. With the shared processor baseline measurements in Exper
iment B.ET.1), Section 5.6.1, we found for a 1m workload the attack required around 100 times as
many samples for a successful attack, and for the 1k workload 200 times as many samples. For 10%
CacheSwap this increases to around a factor 800 for the high 1k workload, and a bit under that for low
1m workload. For 30% we are not able to estimate how many more samples are required, but the dif
ference in factors when compared to 10% seems to be increased than with the previous measurements
on the isolated case.

82 5. Results

((a)) Evict+time CacheSwap 10% shared processor correct sub
solutions

((b)) Evict+time CacheSwap 10% shared processor subkey
ranks

Figure 5.29: Evict+time CacheSwap 10% shared processor

E+T CacheSwap Shared Processor 1) 10%, 1m workload 2) 10%, 1k workload 3) 30%, 1k workload
% average execution time AES +11.5% +11.8% +14.4%
% average benchmark execution time +8.16% +8.94% +13.66%

Table 5.11: Performance cost caused by CacheSwap on the parallel context in a shared processor setup

5.8.5. D.PP.1) CacheSwap against Prime+Probe, reconfiguration percentages
Figure 5.30 shows the effect of the reconfiguration chance of the CacheSwap Countermeasure on the
performance of the Prime+Probe attack in an isolated setup with a empty second Cache. For the lower
percentages there is barely an effect on the effectiveness of the attack. Even for an high percentage
of 50%, it seems that only around a factor of 7 times more traces are required to reach a level where
nearly all subsolutions are found. But even before that point, when there are only twice as many traces
used as for the minimal amount of traces in the baseline attack, already 70 subsolutions are found so
there is high probability that the key is already fully retrievable in offline processing step.

((a)) Prime+Probe CacheSwap percentages correct subsolu
tions

((b)) Prime+Probe CacheSwap percentages subkey ranks

Figure 5.30: Prime+Probe CacheSwap percentages

5.8. Experiment Set D: Cache Attacks against CacheSwap protected AES 83

5.8.6. D.PP.2) CacheSwap against Prime+Probe, shared processor

Figure 5.31 shows the effect of the reconfiguration chance of the CacheSwap Countermeasure on the
performance of the Prime+Probe attack in an isolated setup. We need roughly a factor of 12 more
samples before we get all correct samples for 20% CacheSwap on the workloads, but this relatively
close to the baseline shared setupwithout CacheSwap. For CacheSwap 50%however, a factor 25 total,
or roughly a factor 3 of extra samples when compared to the shared processor setup was required. The
average keyranks already start relatively low for a lower amount of samples, like in the isolated setup
in Experiment A.PP.1), Section 5.5.2, and multiple correct subsolutions are already found.

((a)) Prime+Probe CacheSwap shared processor correct sub
solutions

((b)) Prime+Probe CacheSwap shared processor subkey ranks

Figure 5.31: Prime+Probe CacheSwap shared processor

5.8.7. D.FR.1) CacheSwap against Final Round Collision, reconfiguration per
centages

Figure 5.32 shows the results of the Final Round Collisions attack against AES protected with the
CacheSwap Countermeasure with percentages varying from 20% to 80%. For this small sample sizes
we do not have enough information yet on the increase of sample size requirement, but the results
suggest the influence of the Countermeasure is stronger than on the previous two attacks. It is also
shown that, with CacheSwap with percentages higher than 50%, more collisions happen again in the
other Cache. We thus see average key ranks decrease for higher percentages. For instance, for
70% CacheSwap, the same amount of collisions as 30% CacheSwap is expected. 70% CacheSwap
does seem to cause more noise than 30% in this experiment, likely due to more noise caused by the
reconfiguration overhead.

84 5. Results

((a)) Final Round Collision CacheSwap percentages correct
subsolutions

((b)) Final Round Collision CacheSwap percentages subsolu
tion ranks

Figure 5.32: Final Round Collision CacheSwap percentages

‘
We test the percentages 10% to 30% on a higher samples size of 2 ∗ 106 encryptions. Figure 5.33

shows the results of these experiments. We see a similar behaviour of the Countermeasure when
increasing the chance to swap. Where the jump from 10% to 20% makes a larger difference than the
jump from 20% to 30%. We estimate the attack to take 50 times as many traces to be successful when
AES is protected with 10% CacheSwap.

((a)) Final Round Collision CacheSwap percentages correct
subsolutions

((b)) Final Round Collision CacheSwap percentages subkey
ranks

Figure 5.33: Final Round Collision CacheSwap percentages

5.8.8. D.FR.2) CacheSwap against Final Round Collision, shared processor
Figure 5.34 shows the result of the CacheSwap Countermeasure against the attacked encryption pro
cess running in shared processor, with the PowerStone benchmark workload with 105 stall cycles
between benchmarks. The baseline performance of the attack against AES sharing the processor with
this workload is also included, as this workload was not tested in Experiment B.FR.1), Section 5.6.3.
The amount of samples required for a successful attack when 10% CacheSwap is added, increases
with a factor of roughly 3 when compared to the shared processor setup with this workload, with a factor
8.5 compared to the isolated CacheSwap setup and a factor 225 when compared to the unprotected
baseline.

5.8. Experiment Set D: Cache Attacks against CacheSwap protected AES 85

((a)) Final Round Collision CacheSwap shared processor cor
rect subsolutions

((b)) Final Round Collision CacheSwap shared processor sub
solution ranks

Figure 5.34: Final Round Collision CacheSwap shared processor

5.8.9. Summary and Discussion
Influence on attack effectiveness
When the AES encryption was protected by the default 10%CacheSwap implementation, the Evict+Time
Attack was estimated to need 40x as many traces to succeed. The Prime+Probe Attack was seemingly
unaffected by lower percentages up to 20% of CacheSwap in the isolated setup, and only increasing
with a factor 10x for the higher CacheSwap percentage 50%. The Final Round Collision Attack was
estimated to take 50x as many traces when protected under 10% CacheSwap. In the shared processor
setup, the trace amount required for the Evict+Time attack increased to 800x, this was 4x as many as
the unprotected shared processor setup. For a lower workload, the effect seemed similar and thus the
noise was increased more by introducing the Countermeasure. The Prime+Probe attack became more
noticeably affected by this Countermeasure in the shared processor setup, this was still only significant
for higher swap percentages, where 50% CacheSwap on top of a high workload increased the amount
of samples required for a successful attack from a factor 8 to a factor 25. For the Final Round Collision
attack in this setup 225x as many traces were required, 3x as many as the parallel processing baseline.

Overhead costs
The measured overhead cost of the 10% CacheSwap Countermeasure, without extra overhead costs
from evictions caused by a process briefly swapped to the main context, was 9.5% in the worst case of
the other Cache being fully cleared. This increased to up to 24.0% for 60% CacheSwap, decreasing
beyond this percentage. For a shared processor setup with the highest workload, the overhead for AES
throughput increasing from 9.5% to 11.5% for 10% CacheSwap, and saw the overhead costs increase
less for increased percentages CacheSwap than with our isolated setup. The average execution time
of the workload sharing the processor increased by 8.94% for 10% CacheSwap.

Countermeasure implementation details
• The access based noise seems to only become noticeable for higher percentages and when
combined with other contexts that run workloads that cause evictions during swaps.

• The noise caused by the combination of CacheSwap and sharing the processor amplify each
other, gaining benefits when both are combined.

• The diminished returns on CacheSwap above 50% against Collision Attacks seems to become
apparent above 60%, still gaining noise by the reconfiguration pattern above 50% CacheSwap.

Discussion
In the isolated setup, the timing noise caused by CacheSwap was much weaker when compared to the
nLane Countermeasure tested in the previous section, while the cost associated with it was higher. It is

86 5. Results

only when combined with the shared processor setup that it can become the same order of significance
as the nLane Countermeasure. We saw the combination of a high workload, 1k stall cycles, and 10%
CacheSwap against Evict+Time reach the same order of trace count demand, 800x. A lower parallel
workload, 100k stall cycles, in combination with 10% CacheSwap on the Final Round Collision Attack
did not reach the same level as the nLane Countermeasure did against this attack. For CacheSwap
above 50% the overhead cost became more than bypassing the Cache on the table lookups for a full
round, making it undesirable to go up to this percentage if the attacker could likely just bypass the Cache
for that round. Aside from diminishing returns on Collision attacks, the attacker has to also question if
for these higher percentages, they would rather just look at mechanisms to fully isolate this round from
the attacker process. Although the logical noise on the current implementation of the 𝜌VEX seemed to
be very insignificant, even for higher percentages, it can become way more significant if the Cache was
implemented with larger Cache lines. Using the most common Cache line length, 𝛿 = 16, then there
is a much higher chance a briefly swapped process does evictions to the AES table data. However,
with this Cache line size, the penalty of a Cache miss also increase and thus our measurements in this
thesis are no longer indicative of performance cost. Updating the 𝜌VEX design to include larger Cache
lines by itself can be beneficial to both performance as well as resistance against Cache attacks, but
could also make this Countermeasure significant enough to consider implementing.

5.9. Experiment Set E: Cache Attacks against ScatterRound pro
tected AES

5.9.1. E.ET.1) ScatterRound against Evict+Time

Figure 5.35 shows the results of the ScatterRound Countermeasure against the Evict+Time attack,
tested in four scenarios. In Experiment 1 we only run the reconfiguration of ScatterRound, and we
clear the Cache of the main AES context, so the effect on the setup process becomes relevant. In
Experiment 2 we also clear the Cache that is not assigned to the encrypting context, so switching to
those Caches will cause Cache misses, and more accurately allows to estimate the performance cost.
Experiment 3 repeats Experiment 2, but with only 50% of the encryptions are scattered. Experiment
4 applies the same scattering condition as in Experiment 2, but now the second round is scattered
instead of our targeted first round.

((a)) Evict+time ScatterRound correct subsolutions ((b)) Evict+time ScatterRound subkey ranks

Figure 5.35: Evict+time ScatterRound

5.9. Experiment Set E: Cache Attacks against ScatterRound protected AES 87

Evict+Time ScatterRound 1) 100% full clear 2) 50% full clear
% average execution time AES +63.2% +31.7%

Table 5.12: overhead costs of ScatterRound Countermeasure

Table 5.12 shows the overhead cost associated with the ScatterRound Countermeasure, measured
in experiments 2 and 3, with a cleared Cache. This is when the main configuration is a 4way Cache.
The reconfiguration overhead, decreased instruction throughput in the smaller configuration, Cache
misses in the secondary Caches and interference on the own Cache state all contribute to high over
head costs for this Countermeasure. ScatterRound applied to only one round can require more per
formance cost than Cache bypassing the lookups of two full rounds, as shows in Table 5.3 in Section
5.2

We see that the noise coming from the logical influence on invalidating samples is much higher than
the noise coming from the reconfiguration pattern. The logic behaviour is close to CacheSwap with
higher reconfiguration probabilities. The timing noise is also less, since there is a constant amount of
reconfigurations. This is also why ScatterRound with 50% scatter chance has a relatively high influence
on the attack, since this adds more timing noise through randomly distributed reconfigurations.

We repeat Experiment 2 on a larger sample size to estimate how many samples it would require
to successfully perform the Evict+Time attack. Figure 5.36 shows the results of this experiment. We
estimate the amount of samples required for the attack to be successful to increase with at least a
factor 160.

((a)) Evict+time ScatterRound correct subsolutions ((b)) Evict+time ScatterRound subkey ranks

Figure 5.36: Evict+time ScatterRound

5.9.2. E.PP.1) ScatterRound against Prime+Probe

Figure 5.37 shows the results of the ScatterRound Countermeasure against the Prime+Probe attack.
It is implemented with a full clear of all Cache of the Caches not belonging to to the encrypting context
between encryptions. In these measurements, only 1/4th of the samples correctly access the Cache
with the data we target. We see this in our results: at a factor 15 more traces we only have half
of the correct measurements. At the end, at a factor 175 more traces, we do not have all correct
measurements yet.

88 5. Results

((a)) Prime+Probe ScatterRound correct subsolutions ((b)) Prime+Probe ScatterRound subkey ranks

Figure 5.37: Prime+Probe ScatterRound

5.9.3. E.FR.1) ScatterRound against Final Round Collision, standalone execu
tion

Figure 5.38 shows the results of the Final Round Collision attack against the ScatterRound protected
AES.We additional test the results if only 50% of the encryptions is protected with the Countermeasure.
The average subsolution rank plot in Figure 5.38(a) only shows the average subsolution rank of the
keybyte combinations that are allowed to collide under this Countermeasure: the 24 pairs consisting
of keybytes in the same column.

We see that, now that 50% of samples do not contain the information we expected them to have,
that the amount of samples required to successfully do this attack increases roughly with a factor 100.
For the full ScatterRound Countermeasure this sample size was not sufficient to accurately estimate
the amount of traces required, but under the current trend it should be atleast above 9 ∗ 106 samples,
an increase of a factor 225 over the baseline.

((a)) Final Round Collision ScatterRound patterns subsolution
ranks

((b)) Final Round Collision ScatterRound subsolution ranks

Figure 5.38: Final Round Collision ScatterRound

5.9.4. E.FR.2) ScatterRound against Final Round Collision, shared processor
Figure 5.39 shows the combined influence of ScatterRound and sharing the processor. The average
subsolution ranks decreases much slower than either of these two noise sources alone. Estimating
that we would need well over 2 ∗ 107 samples and thus at least 500 times as many samples as in the

5.9. Experiment Set E: Cache Attacks against ScatterRound protected AES 89

isolated unprotected setup. This is an increase of a factor 2.5 as the amount of samples required for
the shared processor with this workload.

((a)) Final Round Collision ScatterRound shared processor sub
solution ranks

((b)) Final Round Collision ScatterRound shared processor sub
solution ranks

Figure 5.39: Final Round Collision ScatterRound shared processor

5.9.5. E.EX.1) ScatterRound performance in a dedicated execution mode
In Table 5.13 the results of the performance experiments are done. We express the performance losses
as an increased percentage of execution time when compared to execution of encryptions in a single
context in 8way mode. We see the performance cost when going from 8way to 2way we measure
+227% extra cycles execution time, a bit higher than our baseline measurements in Section 5.2, where
the increase was from 323 to 912 cycles or +180% extra execution time. This is likely caused by the
Cache behaviour that changed for this setup, where more internal evictions (instructions and data)
happen in this setup than the baseline experiment.

AES performance 8way, 1 context 2way, 1 cntx 2way, 4 cntx 2way, 4 cntx, ScatterRound
% execution time AES +0.0% +227% +81% +99%

Table 5.13: Overhead costs of the reconfiguration percentages in Figure 5.16

We then activate all other contexts, so 4 encryptions are done in parallel. We see the slowdown
drop by a factor 2.8 instead of 4, since all contexts can stall each other because of the shared memory
bus. Finally, we test this same setup but now with our ScatterRound implementation like discussed in
Section 4.5.4, where a context randomly rotates all contexts over the hardware resources in vulnerable
round (in this case the first round) for a setup executing 4 AES encryptions in parallel. and can briefly
stall other contexts that want to do the same.

Adding in 9.5% extra execution time per encryption when compared to the 4 parallel encryptions
without the Countermeasure. The amount of extra cycles measured, 109, is just a bit higher than the
computed best case extra execution time per encryption Section 4.5.4 of 96 cycles. This is can be
caused by extra reconfiguration delay or because our Countermeasure implementation can stall our
contexts for the reconfiguration privilege system.

5.9.6. Summary and Discussion
Influence on attack effectiveness
The increase in amount of encryptions required for a successful Evict+Time attack was estimated to
be 160x for the isolated setup. For the Prime+Probe attack, where we did not adjust our attack to keep
all Cache space in mind, the amount of samples required increased with factor 175x. The increase for
the Final Round Collision was 225x in the isolated setup, and 500x in the shared processor setup for
the highest workload, an increase of 2.5x of the attack on the shared processor with just this workload.

90 5. Results

Overhead costs
Applying the ScatterRound Countermeasure on a single round of the AES encryptions running on a
4way 𝜌VEX configuration increased the average cycle count per encryption with 63.2%, unacceptable
performance wise. For a dedicated setup, with four parallel encryption contexts in 2way mode, the
Countermeasure caused 9.5% performance cost compared to this operation mode without the Coun
termeasure, but measured to be 99% slower than if the processor was used in a 8way mode without
countermeasures.

Discussion
Aside from being able to fully prevent a collision attack for rounds implemented with the 4 TTables, we
saw additional benefits. Making collision attacks targeting a SBox AES round implementation, like our
Final Round Collision attack, take more offline encryptions and require at least 225x as many online
samples. Against the Evict+Time and Prime+Probe we identified similar benefits of the Countermea
sure as achieved by the CacheSwap Countermeasure, and as Collision attacks through the tracing
SideChannel is usually done on the first round, this would advocate for implementing this Counter
measure on both the first and final round.

We concluded that the overhead associated with this Countermeasure is unfeasible when imple
mented on just an encrypting context running in isolation. However, in our dedicated setup we realised
a very reasonable overhead cost of 9.5% when compared to this setup when it is unprotected. This
setup however ends up having a total of 99% increased average encryption time than when the full
processor is used in 8way mode. This setup also potentially has further security benefits: four parallel
encryptions cause timing noise between each other. The constant rotation between Caches can also
complicate access based attacks, as it becomes unclear what Cache to target and potentially requires
privileges to access all Cache.

This setup is especially interesting if the 𝜌VEX is used as a coprocessor in a multi processor
system. User access to this processor can be limited because the use of the processor is mainly
determined by a scheduling CPU determining what tasks to route to this core. This by itself can make
the encryptions done on the 𝜌VEX more resistant or potentially to access attacks on its private Cache
levels, andmakes timing attacks a greater concern, which we have shown the 𝜌VEXCountermeasures
to be more effective against timing based attacks than against access based attacks.

5.10. Conclusion
In this chapter, we did experiments on Cache Attacks and Countermeasures on a Genesys2 FPGA
development board running the default 𝜌vex design, with increased Cache capacity to benefit our
attacks and Countermeasure performance. The standalone GRLIB version of the 𝜌VEX system was
ported to this board to use the onboard DDR3 memory chip. The OpenSSL AES implementation with
Table T4 in the final round was ported to the system. We ran the attacker process and the AES code
in a single process in a single hardware context, defaulting to a configuration that uses 4 of the 8
execution lanes. We made two setups. The first setup was a standalone setup where this process ran
in isolation, and effects of a shared processor were partially emulated. In the second setup a second
context executing a random selection of PowerStone benchmarks was running, with a configurable
amount of stall cycles. This emulates a shared processor with varying workloads.

Executed in isolation, our attacks required comparable amounts of samples to that found in litera
ture, but consistently less because of the smaller Cache lines and noiseless setup. Sharing the system
with another workload significantly affected our timing attack efficiency, taking up to 200x as many sam
ples for the Evict+Time and Final Round Collisions Attacks for the highest workload. The access based
attack Prime+Probe also took up to 10x as many samples because of the shared memory system.

The nLane Countermeasure was mainly tested with a 10% chance to randomly reconfigure be
tween the three configuration sizes at the start of an encryption. The overhead cost was 8.2% in the
isolated setup, and increased roughly linear when increasing this percentage. The required amount
of samples increased 800x for the Evict+Time attack and 750x for the Final Round Collision attack.
Although not intended, the Prime+Probe attack also required 3x as many encryptions for all correct
samples, but had no significant influence on the success of the attack. In a shared processor, the
overhead cost for the parallel workload was 11.7%. However, running the nLane Countermeasure
on this setup had no additional benefit when compared to the baseline. We saw that when trying to

5.10. Conclusion 91

optimize the performance, the noise was significantly reduced. The cost of the unoptimized version
was considered acceptable.

The CacheSwap Countermeasure was mainly tested with a 10% chance to randomly swap Caches
with another process, during the computation of one column of a protected AES round. The overhead
cost was 9.5% in the isolated setup , and increased to a maximum of 24% for 60% CacheSwap. The
overhead cost increased to 11.5% in a shared processor setup. The required amount of traces in
creased with 40x for Evict+Time, 50x for Final Round Collision, but Prime+Probe was unaffected for
lower percentages of CacheSwap, and only increasing with a factor 8x for the higher CacheSwap per
centage 50%. When testing on the shared processor, the noise from the Countermeasure became
for significant. 10% CacheSwap caused 8.94% extra execution cycles for the workload. For a high
workload with 1k stall cycles, Evict+Time required 800x as many samples as the baseline, 4x as many
as the unprotected shared setup. A lower workload with 1m stall cycles the increase was comparable.
The Final Round Collision required 225x with a medium workload. The 50% CacheSwap against the
Prime+Probe attack made the trace requirement increase from 8x to 25x as many in this setup. The
influence of this Countermeasure would theoretically increase with larger Cache lines. Larger Cache
lines can have both performance and security benefits, so we identify this as a desirable architecture
change.

The ScatterRound Countermeasure was tested when implemented on a standalone context exe
cuting in 4way mode, and as part of a dedicated setup with 4 contexts encrypting in parallel. Aside
from fully preventing collision attacks in a round that uses 4 tables, we saw 225x more samples in
isolated setup increasing 500x in shared setup, a factor 2,5x over just the shared processor. Both
the Evict+Time and Prime+Probe attacks are influenced in this setup, since they have a similar effect
to CacheSwap. Evict+Time required 160x as many samples in an isolated setup, and Prime+Probe
175x as 3/4th of its samples is invalidated. Overhead cost when in the 4way configuration is 63.2%,
which is more than Cache bypass of two rounds and thus infeasible. However, in a dedicated setup
of 4 parallel encryptions the cost was 9.5%, compared to the AES throughput in that mode. However,
the full overhead was 99% when compared to using the full processor in 8way mode, twice as slow.
This mode is especially interesting when using the 𝜌VEX as a coprocessor, and could have additional
security benefits because 4 parallel encryptions are mixed over Caches.

6
Conclusion

This section concludes the thesis on the Analysis of Cache Attacks and Countermeasure on the 𝜌
VEX Processor. In Section 6.1 a summary of the entire thesis is given. Section 6.2 answers the main
problem statement and lists the main contributions. Section 6.3 list the future work that can be done
on implementing Countermeasures against Cache Attacks on the 𝜌VEX.

6.1. Summary
In Chapter 2, the necessary background to understand the rest of this thesis was given. The design
of the Cache memory, and its location within the memory hierarchy of a computer is briefly introduced.
The focus was to clarify the general concepts of Cache implementation in order to understand how
these can be vulnerable to the Cache attacks in the later chapters. Then a overview of the general
concept of the 𝜌VEX processor was given, with focus on understanding how the runtime reconfigu
ration is implemented, and how the Cache of the system is designed to work with this reconfigurability.
Finally the AES encryption algorithm is described. Giving a detailed description of the steps in AES128
in order to understand how this algorithm can become vulnerable to Cache based attacks. Finally a fast
implementation of the algorithm, the TTable implementation, is discussed as it is the most common
implementation on modern systems, and is the one studied in this thesis.

In Chapter 3, we first described how the Cache of a processor can pose a vulnerable sidechannel.
A broad overview of Cache attacks against AES in literature is given, alongside classifiers commonly
used in literature. We identified a list of attacks that are implementable on the 𝜌VEX in its current de
sign. These attacks are the Evict+Time Attack, Prime+Probe Attack, Final Round Collision Attack, 3rd
round Wide Collision Attack, Bernsteins Attack and First Round Trace based Attack. These attacks are
described in detail to understand how they work and how a practical implementation would look like.
We selected the Evict+Time, Prime+Probe and Final Round Collision attacks to test in this thesis. The
other attacks were deemed to take too many samples to efficiently test multiple times, and trace based
attacks were left out of the scope of this thesis. An overview of Countermeasures found in literature was
given. These Countermeasures were divide into the categories Code modifications, Reducing System
Level Privileges, Cache Redesigns, Noise based Countermeasures and Attack Detection. Then, the
Runtime Reconfiguration system of the 𝜌VEX was analyzed, identifying the possibility to influence
execution time through lane sizes assigned to a process, and the possibility to influence access be
haviour by moving contexts between different caches. We proposed five Countermeasure concepts:
Causing timing noise by changing configuration sizes, generate access noise within a single shared 𝜌
VEX processor, efficiently generate access noise in higher Cache levels shared with other processors,
prevent internal Cache collisions within a vulnerable algorithm and finally implement efficient systems
that prevent Cache sharing between processes. We additionally identified the shared memory system
between contexts to be a potential source of measurement noise.

In Chapter 4, implementations of the Cache Attacks Prime+Probe, Evict+Time and Final Round Colli
sion on the 𝜌VEX are described. Then, three Countermeasure concepts proposed in Chapter 3 are

93

94 6. Conclusion

worked out in three Countermeasure implementations called nLane, CacheSwap and ScatterRound.
Practical details required to implement the Cache Attacks and Countermeasures are first introduced,
describing the assumptions on reconfiguration privilliges, how to construct access attacks against the
Cache architecture, how to determine reconfiguration words and how random reconfigurations as a
Countermeasure are implemented in code. Our implementations of Evict+Time, Prime+Probe and Fi
nal Round Collision are described in detail. Then, three Countermeasure are introduced, describing
their design, implementation, and potential effect on the attacks under certain circumstances. We first
describe nLane: Noise via random configuration size variations. The amount of execution lanes is
randomly changed during execution. The practical issue of losing cached data between configurations
is discussed, and the potential for this Countermeasure to disturb the Cache state of the context is
described. Finally the code implementation of the Countermeasure is described. We decide to test
multiple configuration patterns possible within this Countermeasure, varying with what Caches are
used and what reconfiguration percentages are used. Then, we describe CacheSwap: access noise
via lanegroup swaps of two contexts. Another process is briefly swapped with the attacked process,
so that the assumed Cache state is disturbed. The potential effects this Countermeasure can have
on specific Cache Attacks is discussed, as it should influence all our attacks in unique ways. The
importance of another context sharing the processor is highlighted. Finally we introduce the Counter
measure ScatterRound: preventing internal collisions via spreading operations over multiple Caches.
This Countermeasure combines the potential of preventing collisions that are used for collision attacks
and moving certain data lookups to a different Cache, by moving parts of the attacked rounds to iso
lated Caches on every encryption.

In Chapter 5, we did experiments on Cache Attacks and Countermeasures on a Genesys2 FPGA de
velopment board running the default 𝜌vex design, with increased Cache capacity to benefit our attacks
and Countermeasure performance. The standalone GRLIB version of the 𝜌VEX system was ported to
this board to use the onboard DDR3 memory chip. The OpenSSL AES implementation with Table T4
in the final round was ported to the system. We ran the attacker process and the AES code in a single
process in a single hardware context, defaulting to a configuration that uses 4 of the 8 execution lanes.
We made two setups. The first setup was a standalone setup where this process ran in isolation, and
effects of a shared processor were partially emulated. In the second setup a second context executing
a random selection of PowerStone benchmarks was running, with a configurable amount of stall cycles.
This emulates a shared processor with varying workloads.

Executed in isolation, our attacks required comparable amounts of samples to that found in litera
ture, but consistently less because of the smaller Cache lines and noiseless setup. Sharing the system
with another workload significantly affected our timing attack efficiency, taking up to 200x as many sam
ples for the Evict+Time and Final Round Collisions Attacks for the highest workload. The Access based
Attack Prime+Probe also took up to 10x as many samples because of the shared memory system.

The nLane Countermeasure was mainly tested with a 10% chance to randomly reconfigure be
tween the three configuration sizes at the start of an encryption. The overhead cost was 8.2% in the
isolated setup, and increased roughly linear when increasing this percentage. The required amount
of samples increased 800x for the Evict+Time attack and 750x for the Final Round Collision attack.
Although not intended, the Prime+Probe attack also required 3x as many encryptions for all correct
samples, but had no significant influence on the success of the attack. In a shared processor, the
overhead cost for the parallel workload was 11.7%. However, running the nLane Countermeasure
on this setup had no additional benefit when compared to the baseline. We saw that when trying to
optimize the performance, the noise was significantly reduced. The cost of the unoptimized version
was considered acceptable.

The CacheSwap Countermeasure was mainly tested with a 10% chance to randomly swap Caches
with another process, during the computation of one column of a protected AES round. The overhead
cost was 9.5% in the isolated setup , and increased to a maximum of 24% for 60% CacheSwap. The
overhead cost increased to 11.5% in a shared processor setup. The required amount of traces in
creased with 40x for Evict+Time, 50x for Final Round Collision, but Prime+Probe was unaffected for
lower percentages of CacheSwap, and only increasing with a factor 8x for the higher CacheSwap per
centage 50%. When testing on the shared processor, the noise from the Countermeasure became
for significant. 10% CacheSwap caused 8.94% extra execution cycles for the workload. For a high
workload with 1k stall cycles, Evict+Time required 800x as many samples as the baseline, 4x as many

6.2. Main contributions 95

as the unprotected shared setup. A lower workload with 1m stall cycles the increase was comparable.
The Final Round Collision required 225x with a medium workload. The 50% CacheSwap against the
Prime+Probe attack made the trace requirement increase from 8x to 25x as many in this setup. The
influence of this Countermeasure would theoretically increase with larger Cache lines. Larger Cache
lines can have both performance and security benefits, so we identify this as a desirable architecture
change.

The ScatterRound Countermeasure was tested when implemented on a standalone context exe
cuting in 4way mode, and as part of a dedicated setup with 4 contexts encrypting in parallel. Aside
from fully preventing collision attacks in a round that uses 4 tables, we saw 225x more samples in
isolated setup increasing 500x in shared setup, a factor 2,5x over just the shared processor. Both
the Evict+Time and Prime+Probe attacks are influenced in this setup, since they have a similar effect
to CacheSwap. Evict+Time required 160x as many samples in an isolated setup, and Prime+Probe
175x as 3/4th of its samples is invalidated. Overhead cost when in the 4way configuration is 63.2%,
which is more than Cache bypass of two rounds and thus infeasible. However, in a dedicated setup
of 4 parallel encryptions the cost was 9.5%, compared to the AES throughput in that mode. However,
the full overhead was 99% when compared to using the full processor in 8way mode, twice as slow.
This mode is especially interesting when using the 𝜌VEX as a coprocessor, and could have additional
security benefits because 4 parallel encryptions are mixed over Caches.

6.2. Main contributions
The main problem statement stated in the introduction of this thesis was:

Can the Runtime Reconfigurability of the 𝜌VEX processor be used to implement efficient Counter
measures against Cachebased SideChannel Attacks?

The Runtime Reconfigurability can be used to implement three types of Countermeasures in a stan
dalone processor setup. The first is to use the variable amount of execution lanes assigned to a process
to generate timing noise during execution. The second is to use the ability to swap executing contexts
between Caches to cause extra Cache misses and random evictions. The final Countermeasure is to
split memory lookups that can cause Cache collisions over multiple Caches in order to prevent them.

We selected three attacks to experiments Countermeasures against, the Evict+Time Attack, Prime+
Probe Attack and Final Round Collision attack. We implemented timing noise through configuration size
variations in a Countermeasure called nLane, implemented access noise through swapping contexts
in a Countermeasure called CacheSwap and implemented preventing Cache collisions in a Counter
measure called ScatterRound.

TheGenesys2 FPGA development board was used to instance the 𝜌VEX processor. TheOpenSSL
AES implementation was ported to the 𝜌VEX, and ran in two setups. The first as an isolated process,
and the second in a shared processor where a workload consisting of randomly selected PowerStone
benchmarks executed in parallel. All setups run in a default 4way setting, using half of the processor
resources to do AES encryptions.

10% nLane increased the required samples for a successful attack 800x for the Evict+Time attack,
750x for the Final Round Collision attack and a negligible amount for the Prime+Probe attack as a side
effect. This Countermeasure added an average 11.7% of extra execution cycles per encryption, and
added an average of 8.2% extra execution cycles to a workload sharing the processor, parallel to the
encryption context. Running with this parallel workload did not make the attack require more samples.

10% CacheSwap running in a setup that forced Cache misses on every swap by clearing the other
Caches of the system during runtime increased the required samples for a successful attack 40x for the
Evict+Time attack and 50x for the Final Round Collision Attack. This Countermeasure added an aver
age 11.5% of extra execution cycles per encryption, and added an average of 8.94% extra execution
cycles to a workload sharing the processor. Sharing the processor with a parallel workload increased
the sample size increase because of 10%CacheSwap to 800x for Evict+Time and 225x for Final Round
Collision. Only higher percentages of CacheSwap had a notable effect on the Prime+Probe attack. The
sample size requirement increased 8x for the isolate setup, and 25x in the shared processor setup with
the 50% CacheSwap Countermeasure. The Countermeasure was considered to be a potential good
Countermeasure for access based attacks if the Cache Line Size of the processor would be increased.

96 6. Conclusion

The ScatterRound Countermeasure prevented Cache collisions, making collision attacks impossi
ble or more difficult based on how many collisions were prevented. Countermeasure had the additional
benefit of generating noise similar to the CacheSwapCountermeasure, increasing the required samples
for a successful attack 160x for the Evict+Time attack, 175x for the Prime+Probe attack that was not
adapted to scan multiple Cache addresses and 225x for the Final Round Collision Attack, increased to
500x for the shared processor setup. We have seen that the performance costs were too great, 63.2%,
when implemented in a regular, single encryption process on a shared processor. We thus suggested
to run this Countermeasure on a setup where the 𝜌VEX processed four encryptions in parallel, and
saw that within this setup, the performance cost was 9.5%.

The main contributions of this thesis can be summarized as:

A general analysis of the vulnerability of the 𝜌VEX has been done
We have shown that the current reconfigurable Cache design used on the 𝜌VEX does not pose a
specific threat to Cache attacks that require knowledge on the mappings of the data to the Cache, as
these attacks can easily be adapted to work in any configuration size. We have seen that the Cache line
size of just one 32bit word in the data Cache made the attacks very efficient. We were able to retrieve
a full key with just a one round attack in the Prime+Probe and Evict+Time attacks, and measured very
low sample size requirements for successful attacks when compared to that reported in literature. We
fully analyzed the security risk if an attacker can reconfigure at will. They can briefly reconfigure to
execute select parts of an attacked algorithm in a isolates Cache, making for very efficient attacks.
A reconfiguration also allows access to the Cache of processes sharing a 𝜌VEX processor, allowing
for crosscontext attacks within the same processor. Finally, an attacker can stall processes sharing
the processor in order to minimize noise in timing measurements, or in order to target the start of
an algorithm and freeze it after the first couple of operations. Finally, the shared memory resources
between the hardware contexts was identified to potentially be a significant noise source when multiple
contexts are running in parallel on the same 𝜌VEX processor. It was then experimentally shown that
a timing based attack could take up to 200x more samples to be successful in a shared processor.

A collection of Countermeasure ideas on the 𝜌VEX architecture has been proposed, three of
which have been implemented and tested
In this thesis, five directions to implement Countermeasures were proposed. Causing timing noise by
changing configuration sizes, generate access noise within a single shared 𝜌VEX processor, efficiently
generate access noise in higher Cache levels shared with other processors, prevent internal Cache col
lisions within a vulnerable algorithm and finally implement efficient systems that prevent Cache sharing
between processes. We have shown an implementation of timing noise through configuration size vari
ations called nLane increased the amount of samples required for the timing attacks Evict+Time and Fi
nal Round Collision to around 800x more traces. An implementation of access noise through swapping
contexts called CacheSwap achieved 800x more traces for Evict+Time and 225x more traces for Final
Round Collision when executed in a shared processor. The effect on Prime+Probe was only strong for
higher chances to swap, but the overhead for these percentages were considered too high. An imple
mentation of isolating lookups that can be used in private Caches, called ScatterRound, had additional
benefits aside from preventing collisions. It made our Evict+Time Attack take 160x, Prime+Probe Attack
175x and Final Round Collision Attack 225x as many samples to be successful. We have shown that
the overhead associated with 10% nLane and 10% CacheSwap was reasonable, but ScatterRound
was concluded to require a specific execution setup to achieve performance costs that are acceptable.

6.3. Future work
Implement larger Cache Lines in the 𝜌VEX Data Cache and compare Countermeasure perfor
mance
Modern CPU’s that implement their Cache Lines with multiple processor words are more resilient to
Cache Attacks. It reduces the amount of information leaked on accessed memory addresses by the
amount of bits used to index the line because an attacker can only conclude what line is accessed and
not what specific address on this line. An additional benefit is that there is a higher probability a line is

6.3. Future work 97

accessed for a lookup that is not the targeted lookup, and thus more samples are required to get clear
results in Cache Attacks.
By itself increasing the line size should complicate the attacks, but it should also be beneficial to the
effect of Countermeasures that generate access based noise, especially the CacheSwap Countermea
sure. The random evictions caused by the CacheSwap Countermeasure can be more intrusive since
entire Cache lines are evicted. As the Cache Miss Penalty increases with larger Cache Line sizes, the
timing noise generated by this Countermeasure also increases. The increased cost of Cache Misses
also influence the overhead costs related to all the Countermeasures. Rating the Countermeasures
in terms of performance and influence on the attacks should be done again if the Cache Line size is
increased.

OS formalization that allows trusted processes to issue their own configurations
At time of writing, there is no formalization of the rules of who can reconfigure the system. With this in
mind, we would recommend the Operating System to be designed in such a way to improve security
and Countermeasure implementation potential. The first suggestion is to make sure only a select set of
processes can reconfigure the system. This should contain at least a system in the OS that manages
the configurations to maximize performance and trusted operations that request reconfigurations to
protect their data. If there is no way an attacker can manipulate the configuration of the 𝜌VEX, then
the full scale of options we discussed in this thesis becomes accessible for the protected process. The
second suggestion is to implement the configuration selection of the OS in such a way to facilitate the
sudden reconfigurations done by the protected processes, in such a way that neither reconfigurations
clash with each other. Think of a Countermeasure related brief reconfiguration preventing the system
from switching to a desired configuration that maximizes performance for the current workload.

Test hardware adjustments to enable efficient implementations of the proposed Countermea
sures
In this thesis, we made assumptions that made determining the configuration words for our Counter
measure reconfigurations trivial. However, in practice, there might be a need for a dynamic system
that determines what reconfiguration word needs to be produced. One way in which we think this could
be possible is to have hardware support to track the possible configurations and provide a candidate
random configuration word based on the main reconfiguration, the requested type of random reconfig
uration and a hardware based random number generator.
Another adjustment that could lead to more efficient implementations of these Countermeasures is to
decouple the instruction lane mappings and the instruction and data Cache mappings individually. This
would make it possible to briefly swap contexts between data Caches without performance penalties
related to the instruction Cache. This can also lead to more flexibility in reassigning system resources
and could lead to performance benefits if used smartly.

Test the 𝜌VEX security and Countermeasure potential in more practical setups
In this thesis we emulated two practical setups to test our attacks on a standalone processor. However,
in a practical setup a lot of other factors can play a role in rating these Countermeasures. Is the 𝜌VEX
fully accessible to user processes, and are L1 access attacks thus a vulnerability? What is the required
throughput of the setup, and what amounts of slowdown is thus acceptable? Is the system using extra
Cache levels? This would decreasemiss penalties associated with the Countermeasures, but introduce
the risk of a cross core attack. What other workloads share this processor, and are the overhead costs
to those processes associated with the Countermeasures acceptable?

Bibliography
[1] A. Goldstein, [ONLINE], Available: https://unsplash.com/photos/EUsVwEOsblE.

[2] P. C. Kocher, “Timing attacks on implementations of diffiehellman, rsa, dss, and other systems,”
in Annual International Cryptology Conference. Springer, 1996, pp. 104–113.

[3] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis of product ciphers,” in
Computer Security—ESORICS 98, J.J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 97–110.

[4] D. Page, “Theoretical use of cache memory as a cryptanalytic sidechannel.” IACR Cryptol. ePrint
Arch., vol. 2002, no. 169, pp. 1–23, 2002.

[5] ——, “Defending against cachebased sidechannel attacks,” Information Security Technical Re
port, vol. 8, no. 1, pp. 30–44, 2003.

[6] O. Acıiçmez, W. Schindler, and Ç. K. Koç, “Cache based remote timing attack on the aes,” in
Cryptographers’ track at the RSA conference. Springer, 2007, pp. 271–286.

[7] D. J. Bernstein, “Cachetiming attacks on aes,” 2005.

[8] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differential cachecollision timing attacks
on aes with applications to embedded cpus,” in Cryptographers’ Track at the RSA Conference.
Springer, 2010, pp. 235–251.

[9] C. Percival, “Cache missing for fun and profit,” 2005.

[10] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes, and countermeasures,”
Journal of Cryptology, vol. 23, no. 1, pp. 37–71, 2010.

[11] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Automating attacks on inclusive
lastlevel caches,” in 24th USENIX Security Symposium USENIX Security 15), 2015, pp. 897–912.

[12] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise, l3 cache sidechannel
attack,” in 23rd Security Symposium Security 14), 2014, pp. 719–732.

[13] D. Gruss, C. Maurice, K.Wagner, and S. Mangard, “Flush+ flush: a fast and stealthy cache attack,”
in International Conference on Detection of Intrusions andMalware, and Vulnerability Assessment.
Springer, 2016, pp. 279–299.

[14] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyperspace: Highbandwidth and reliable covert
channel attacks inside the cloud,” IEEE/ACM Transactions on Networking, vol. 23, no. 2, pp. 603–
615, 2015.

[15] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Crossvm side channels and their use to extract
private keys,” in Proceedings of the 2012 ACM conference on Computer and communications
security, 2012, pp. 305–316.

[16] B. Gulmezoglu, M. S. İnci, G. Irazoqui, T. Eisenbarth, and B. Sunar, “Crossvm cache attacks on
aes,” IEEE Transactions on MultiScale Computing Systems, vol. 2, no. 3, pp. 211–222, 2016.

[17] Z. Wang and R. B. Lee, “New cache designs for thwarting software cachebased side channel
attacks,” in Proceedings of the 34th Annual International Symposium on Computer Architecture,
ser. ISCA ’07. New York, NY, USA: Association for Computing Machinery, 2007, p. 494–505.
[Online]. Available: https://doi.org/10.1145/1250662.1250723

99

https://unsplash.com/photos/EUsVwEOsblE
https://doi.org/10.1145/1250662.1250723

100 Bibliography

[18] ——, “A novel cache architecture with enhanced performance and security,” in 2008 41st
IEEE/ACM International Symposium on Microarchitecture. IEEE, 2008, pp. 83–93.

[19] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre, and G. Gogniat, “Nightswatch: A
cachebased sidechannel intrusion detector using hardware performance counters,” in Proceed
ings of the 7th International Workshop on Hardware and Architectural Support for Security and
Privacy, 2018, pp. 1–8.

[20] M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding, “Scadet: a sidechannel attack detection tool for
tracking prime+ probe,” in Proceedings of the International Conference on ComputerAided De
sign, 2018, pp. 1–8.

[21] C. Rebeiro, D. Selvakumar, and A. Devi, “Bitslice implementation of aes,” in International Confer
ence on Cryptology and Network Security. Springer, 2006, pp. 203–212.

[22] R. Könighofer, “A fast and cachetiming resistant implementation of the aes,” in Topics in Cryp
tology – CTRSA 2008, T. Malkin, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
187–202.

[23] S. Gueron, “Intel advanced encryption standard (aes) new instructions set,” 2010.

[24] S. Wong, T. van As, and G. Brown, “ρvex: A reconfigurable and extensible softcore vliw proces
sor,” in 2008 International Conference on FieldProgrammable Technology, 2008, pp. 369–372.

[25] S. Wong and F. Anjam, “The delft reconfigurable vliw processor,” system, vol. 1, p. 3, 2009.

[26] HewlettPackard Development Company, L.P., VEX Toolchain, https://www.hpl.hp.com/
downloads/vex/, 2009.

[27] J. A. Fisher, P. Faraboschi, and C. Young, Embedded computing: a VLIW approach to architecture,
compilers and tools. Elsevier, 2005.

[28] A. Brandon and S. Wong, “Support for dynamic issue width in vliw processors using generic bi
naries,” in 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2013, pp. 827–832.

[29] J. van Straten, “A dynamically reconfigurable vliw processor and cache design with precise trap
and debug support,” Master’s thesis, Delft University of Technology, Delft, Netherlands, May 2016.

[30] M. Yousaf, “Exploiting the reconfigurability of 𝜌vex processor for realtime robotic applications,”
Master’s thesis, Delft University of Technology, Delft, Netherlands, August 2016.

[31] J. Johansen, “Implementing virtual address hardware support on the 𝜌vex platform,” Master’s
thesis, Delft University of Technology, Delft, Netherlands, February 2016.

[32] L. van Bremen, “𝜌vex on chip: The design of an asic for a dynamically reconfigurable vliw proces
sor with 24port register file,” Master’s thesis, Delft University of Technology, Delft, Netherlands,
August 2017.

[33] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

[34] M. Neve and J.P. Seifert, “Advances on accessdriven cache attacks on aes,” in Selected Areas in
Cryptography, E. Biham and A. M. Youssef, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 147–162.

[35] O. Aciçmez and Ç. K. Koç, “Tracedriven cache attacks on aes,” 2006.

[36] J. Bonneau and I. Mironov, “Cachecollision timing attacks against aes,” in International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2006, pp. 201–215.

[37] C. Disselkoen, D. Kohlbrenner, L. Porter, andD. Tullsen, “Prime+ abort: A timerfree highprecision
l3 cache attack using intel tsx,” in 26th USENIX Security Symposium USENIX Security 17), 2017,
pp. 51–67.

https://www.hpl.hp.com/downloads/vex/
https://www.hpl.hp.com/downloads/vex/

Bibliography 101

[38] O. Aciiçmez, “Yet another microarchitectural attack: exploiting icache,” in Proceedings of the
2007 ACM workshop on Computer security architecture, 2007, pp. 11–18.

[39] J.F. Gallais, I. Kizhvatov, and M. Tunstall, “Improved tracedriven cachecollision attacks against
embedded aes implementations,” in International Workshop on Information Security Applications.
Springer, 2010, pp. 243–257.

[40] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Ozturk, G.Wolrich, and R. Zohar,
“Breakthrough aes performance with intel aes new instructions,” White paper, June, p. 11, 2010.

[41] J. Blömer and V. Krummel, “Analysis of countermeasures against access driven cache attacks on
aes,” in International Workshop on Selected Areas in Cryptography. Springer, 2007, pp. 96–109.

[42] D. Page, “Theoretical use of cache memory as a cryptanalytic sidechannel.” IACR Cryptol. ePrint
Arch., vol. 2002, no. 169, pp. 1–23, 2002.

[43] Y. L. Amd, L.T. Lo, G. R. Watson, and R. G. Minnich, “Car: Using cache as ram in linuxbios.”

[44] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking timekeeping and perfor
mance monitoring mechanisms to mitigate sidechannel attacks,” in Proceedings of the 39th An
nual International Symposium on Computer Architecture, ser. ISCA ’12. USA: IEEE Computer
Society, 2012, p. 118–129.

[45] R. E. Kessler and M. D. Hill, “Page placement algorithms for large realindexed caches,” ACM
Transactions on Computer Systems (TOCS), vol. 10, no. 4, pp. 338–359, 1992.

[46] J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cachebased sidechannel in multitenant cloud
using dynamic page coloring,” in 2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops (DSNW), 2011, pp. 194–199.

[47] M. A. Mukhtar, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gogniat, “Flush+ prefetch: A coun
termeasure against accessdriven cachebased sidechannel attacks,” Journal of Systems Archi
tecture, vol. 104, p. 101698, 2020.

[48] C. Reinbrecht, S. Hamdioui, M. Taouil, B. Niazmand, T. Ghasempouri, J. Raik, and J. Sepúlveda,
“Lidcat: A lightweight detector for cache attacks,” in 2020 IEEE European Test Symposium (ETS).
IEEE, 2020, pp. 1–6.

[49] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in Proceedings of the 2007
workshop on Experimental computer science, 2007, pp. 2–es.

[50] H. Aly and M. ElGayyar, “Attacking aes using bernstein’s attack on modern processors,” in
Progress in Cryptology – AFRICACRYPT 2013, A. Youssef, A. Nitaj, and A. E. Hassanien, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 127–139.

[51] The OpenSSL Project Authors, OpenSSL Cryptography and SSL/TLS Toolkit, https://www.
openssl.org/.

[52] Digilent, Genesys 2 FPGA Board Reference Manual, Available: https://reference.digilentinc.com/
programmablelogic/genesys2/referencemanual.

[53] Xilinx, 7 Series FPGAs Data Sheet: Overview, Available: https://www.xilinx.com/support/
documentation/data_sheets/ds180_7Series_Overview.pdf.

[54] Xilinx, ML605 Hardware User Guide, Available: https://www.xilinx.com/content/dam/xilinx/
support/documentation/boards_and_kits/ug534.pdf.

[55] C. G. AB,GRLIB IP Library User’s Manual, Available: https://www.gaisler.com/products/grlib/grlib.
pdf.

[56] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache architecture providing power and
performance flexibility,” in ISLPED’00: Proceedings of the 2000 International Symposium on Low
Power Electronics and Design (Cat. No.00TH8514), 2000, pp. 241–243.

https://www.openssl.org/
https://www.openssl.org/
https://reference.digilentinc.com/programmable-logic/genesys-2/reference-manual
https://reference.digilentinc.com/programmable-logic/genesys-2/reference-manual
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/boards_and_kits/ug534.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/boards_and_kits/ug534.pdf
https://www.gaisler.com/products/grlib/grlib.pdf
https://www.gaisler.com/products/grlib/grlib.pdf

	Introduction
	Context
	State of the Art
	Problem statement and Methodology
	Thesis overview

	Background
	Memory Hierarchy and Cache Architectures
	Memory Hierarchy
	The Cache

	The –VEX Processor
	VLIW processors
	The –VEX Architecture
	Runime Reconfigurability
	The –VEX Cache
	The current state of the project

	Advanced Encryption Standard (AES)
	The Rijndael AES proposal
	The AES operations
	The KeyExpansion
	The 32-bit implementation

	Conclusion

	Cache Attacks and Countermeasures literature overview
	Information leakage in Caches
	Overview of Cache Attacks
	Cache Attacks overview: based on Side-Channel used
	Other Cache Attack Classifiers

	Detailed description of selected Cache Attacks
	The first round attack based on lookup probability scores
	Final Round Collision attack
	The 3rd round wide collision attack
	Bernsteins attack
	The first round collision attack based on traces

	State of the Art of Cache Attack Countermeasures
	Code Modifications
	Reduce System Level Privileges
	Cache Redesigns
	Noise based Countermeasures
	Attack Detection

	The –VEX Countermeasure potential
	–VEX reconfiguration patterns
	Countermeasure: Cause timing noise through reconfiguration
	Countermeasure: Cause access noise within a single processor
	Countermeasure: Cause access noise on shared Cache levels
	Countermeasure: Prevent Cache collisions within a vulnerable algorithm
	Countermeasure: Prevent Cache sharing between processes

	Selecting attacks for experimentation
	Conclusion

	Cache Attacks and Countermeasures implementation on the –VEX
	Practical details for Attack and Countermeasure implementation on the –VEX
	Assumed Privileges in the –VEX
	General Attack implementation details
	Determining a new configuration word
	Random reconfigurations in code

	Cache Attack implementation
	Evict+Time Attack implementation
	Prime+Probe Attack implementation
	Final Round Collision Attack implementation

	n-Lane: Noise via random configuration size variations
	n-Lane Design
	n-Lane Implementation

	CacheSwap: Access noise via lanegroup swaps of two contexts
	CacheSwap Design
	Theoretical effect on specific attacks
	CacheSwap Implementation

	ScatterRound: Preventing internal collisions via spreading operations over multiple Caches
	ScatterRound Design
	Theoretical effect on specific attacks
	Implementation: Standalone Encryption
	Implementation: 4 context AES Setup

	Conclusion

	Results
	Experimental setup
	FPGA
	–VEX setup
	Interfacing setup
	Software setup

	AES performance on the –VEX
	Metrics
	Overview of Experiments
	Experiment Set A: Cache Attacks against AES in a noiseless processor
	A.ET.1) unprotected Evict+Time
	A.PP.1) unprotected Prime+Probe
	A.FR.1) unprotected Final Round Collision

	Experiment Set B: Cache Attacks against AES in a shared –VEX processor
	B.ET.1) unprotected Evict+Time, shared processor
	B.PP.1) unprotected Prime+Probe, shared processor
	B.FR.1) unprotected Final Round Collision, shared processor

	Experiment Set C: Cache Attacks against n-Lane protected AES
	C.ET.1) n-Lane against Evict+Time, reconfiguration patterns
	C.ET.2) n-Lane against Evict+Time, reconfiguration percentages
	C.ET.3) n-Lane against Evict+Time, reconfiguration interval
	C.ET.4) n-Lane against Evict+Time, trace size requirement
	C.ET.5) n-Lane against Evict+Time, shared processor
	C.PP.1) n-Lane against Prime+Probe
	C.FR.1) n-Lane against Final Round Collision, reconfiguration percentages
	C.FR.2) n-Lane against Final Round Collision, shared processor
	Summary and Discussion

	Experiment Set D: Cache Attacks against CacheSwap protected AES
	D.ET.1) CacheSwap against Evict+Time, Cache state
	D.ET.2) CacheSwap against Evict+Time, targeted round effect
	D.ET.3) CacheSwap against Evict+Time, reconfiguration percentages
	D.ET.4) CacheSwap against Evict+Time, shared processor
	D.PP.1) CacheSwap against Prime+Probe, reconfiguration percentages
	D.PP.2) CacheSwap against Prime+Probe, shared processor
	D.FR.1) CacheSwap against Final Round Collision, reconfiguration percentages
	D.FR.2) CacheSwap against Final Round Collision, shared processor
	Summary and Discussion

	Experiment Set E: Cache Attacks against ScatterRound protected AES
	E.ET.1) ScatterRound against Evict+Time
	E.PP.1) ScatterRound against Prime+Probe
	E.FR.1) ScatterRound against Final Round Collision, standalone execution
	E.FR.2) ScatterRound against Final Round Collision, shared processor
	E.EX.1) ScatterRound performance in a dedicated execution mode
	Summary and Discussion

	Conclusion

	Conclusion
	Summary
	Main contributions
	Future work

