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ABSTRACT

This thesis deals with different models for decision-making under risk in financial applications, mainly mod-
els that incorporate irrational human behavior. First of all, traditional expected utility theory is considered.
Hereafter, two models that incorporate irrational human behavior are discussed and compared: prospect
theory and cumulative prospect theory. Next, these models are applied to option pricing. The influence of
various levels of sentiment on the option price is investigated and the prices are compared with Black-Scholes
prices. Also, a sensitivity analysis is done in order to investigate the influence of the prospect parameters on
the option price. Furthermore, the different models discussed are applied to portfolio management for which
the optimal wealth profiles are analyzed and compared. Moreover, a data analysis with a portfolio of stocks
of different indices is done in which it is investigated whether the parameter estimates used for prospect sen-
timent are applicable to financial data. Finally, a hedge test under prospect sentiment is performed in order
to investigate whether a delta-hedge leads to sufficient results in case of asset price paths under prospect
sentiment.
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1
INTRODUCTION

In this thesis, several models for decision-making under risk are discussed and compared. The traditional
expected utility theory assumes rational investors, while experiments have shown that emotions influence
the decision-making process in such a way that the principles of expected utility are violated. Therefore, the
main focus in this thesis lies on models that incorporate irrational behavior: prospect theory and cumulative
prospect theory. These models rely on the evaluation of gains and losses instead of final positions, on differ-
ent attitudes towards gains and losses, on aversion for losses and on subjective evaluation of probabilities.
Then, the consequences of irrational behavior on option pricing and portfolio management are discussed
and compared in several settings. Also, a data analysis is done in order to investigate whether prospect senti-
ment is applicable to financial data.

The outline of this thesis is as follows. In Chapter 2, different models for decision-making under risk are
considered. First, the traditional expected utility theory is considered, in which investors are assumed to be
rational. Then, several effects that violate the principles of expected utility theory and represent irrational hu-
man behavior are discussed. Hereafter, theories that incorporate irrational behavior are discussed: prospect
theory and cumulative prospect theory. These theories account for irrational human behavior by use of a
value function and a weighting function.

In Chapter 3, option pricing under different models is discussed: Black-Scholes, prospect theory and cumula-
tive prospect theory. The relationship between these models are discussed as well as the results of computing
option prices. Option prices are computed from both writer’s and holder’s viewpoint for different levels of
sentiment. Then, it is investigated which levels of sentiment lead to a trade between holder and writer. Also,
implied volatilities are considered for different levels sentiment. After that, a sensitivity analysis is done in or-
der to measure the impact of the different prospect parameters and Black-Scholes parameters on the option
price. Also, the influence of negative interest rates as well different dynamics (Geometric Brownian Motion,
Heston dynamics) on the option price are considered.

In Chapter 4, portfolio management under different models is discussed. First, the traditional way of choos-
ing an optimal portfolio which relies on the maximization of the return for a given level of risk according to
Modern Portfolio Theory is considered. Then, models that incorporate individual risk profiles are discussed
such expected utility theory, prospect theory without a weighting function and cumulative prospect theory.
Expressions for the optimal wealth under the different models are computed and numerical examples are
given in order to compare the optimal wealth profile for different levels of the state price density. The wealth
profiles under the different models are compared and the differences are explained economically.

In Chapter 5, we bring together Chapter 3 and Chapter 4. It is investigated whether the estimates for the
different levels of prospect sentiment as used for option valuation and portfolio management and which are
derived from psychological experiments are suitable for financial applications. To this end, the prospect pa-
rameters are estimated based on historical returns of a market portfolio. Hereafter, the influence of adding
sentiment to asset price paths on the hedging strategy of an option writer is considered. To this end, first
a way of incorporating prospect sentiment in price path dynamics is discussed, after which the impact of
adding sentiment on the hedge-effectiveness is discussed.

In Chapter 6, the conclusions are presented and recommendations for further research are given.
.
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NOMENCLATURE

α Drift of GBM price process/Heston dynamics.

χ Volatility of volatility under Heston dynamics.

η Parameter of the CRRA power utility function.

γ Constant that controls for overweighting and underweighting in weighting function w(p) in prospect
theory and w+(p) in cumulative prospect theory.

κ Speed at which variance vt returns to v under Heston dynamics.

λ Degree of loss aversion in value function v .

µ N -dimensional vector of drift µ1,µ2, ...µN

Ω Set of all possible outcomes of probability space (Ω,Θ,µ).

ω(t ) Vector of fractions ω1(t ), ...,ω.N (t ) invested in risky asset S1(t ), ...SN (t ).

ω0(t ) Fraction of wealth invested in risk free asset at time t .

ωi (t ) Fraction of wealth invested in risky asset i at time t .

v Long term volatility under Heston dynamics.

Πi Portfolio value at time ti .

P Objective probability measure

Q Risk neutral probability measure

Ψ(·) Cumulative standard normal distribution

ρ(t ) State price density or stochastic discount factor at time t .

ρx,v Correlation between Brownian Motion W x and W v .

σ Volatility of GBM price process.

σm Volatility matrix including volatilities σ1,σ2, ...,σN of risky assets S1, ...,SN .

Θ Sigma-algebra onΩwith events e ∈Θ in probability space (Ω,Θ,µ).

θ Reference level to which outcomes are defined as gains or losses.

{pi }n
i=1 Chances of outcomes x1, ..., xn of a gamble g = (x1, ..., xn ; p1, ..., pn).

{xi }n
i=1 Outcomes of a gamble g = (x1, ..., xn ; p1, ..., pn).

A Event of terminal wealth being larger than the reference level A = {X (T ) ≥ θ}.

a Degree of risk aversion for gains in value function v+(x).

b Degree of risk-seekingness for losses in value function v−(x).

B(t ) N -dimensional Brownian Motion vector with elements B1(t ),...,BN (t ).

c Prospect option value of an European call at time t = 0.

ch Value of an European call option at time t = 0 from a holder’s point of view according to cumulative
prospect theory.
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cw Value of an European call option at time t = 0 from a writer’s point of view according to cumulative
prospect theory.

cModT K Cumulative prospect call option price under Moderate TK-sentiment from a writer’s viewpoint.

cT K Cumulative prospect call option price under TK-sentiment from a writer’s viewpoint.

cBS
t European call option price at time t according to Black-Scholes.

czer o Cumulative prospect call option price under zero prospect sentiment from a writer’s viewpoint.

C Eu Certainty equivalent for an investor with utility function u.

Di Cash level at time ti in a hedging strategy.

F (·) Cumulative distribution function

f (·) Probability density function

g A gamble g ∈ M for which g = (x1, ..., xn ; p1, ..., pn).

GX Quantile function of random variable X .

K Strike of an option.

KT All contingent claims which can be replicated by a self financing portfolio with initial capital x0.

L Lagrangian

M Choice set of random variables valued on outcomes [x1, ..., xn].

P Probability measure P :Θ→ [0,1] on probability space (Ω,Θ,µ).

p Prospect option value of an European put at time t = 0.

ph Value of an European put option at time t = 0 from a holder’s point of view according to cumulative
prospect theory.

pw Value of an European put option at time t = 0 from a writer’s point of view according to cumulative
prospect theory.

r (t ) Interest at time t .

r f Risk free rate.

Ru(g ) Risk premium a gamble g for an investor with utility function u.

r abs
u (x) Coefficient of absolute risk-aversion (ARA).

r r el
u (x) Coefficient of relative risk aversion (RRA).

S Vector or risky asset prices S1,S2, ...,SN .

s Risky asset price at time t = 0: S(0) = s

S0 Risk free money market account

s0 Riskless asset price at time t = 0: S0(0) = s0.

Ssent (t ) Asset path dynamics under prospect sentiment at time t .

St Stock price at time t .

U (g ) Expected utility defined for a gamble g : U (g ) = ∑n
i=1 pi u(xi ) (discrete) and U (g ) = ∫

u(z) fa(z)d z
(continuous).

u(x) Utility function representing the degree of satisfaction to an outcome x.
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v(x) Value function for outcome x which is given by v+(x) for gains and v−(x) for losses.

VBS (t ,St ) Black-Scholes price at time t .

VC PT (g ) Discrete cumulative prospect value of a prospect g = (x1, ..., xn ; p1, ..., pn).

VC PT (X ) Continuous cumulative prospect value.

V h
C PT Cumulative prospect value from a holder’s point of view.

V w
C PT Cumulative prospect value from a writer’s point of view.

VPT Prospect value of a prospect (x1, ..., xn ; p1, ..., pn).

vt Variance at time t under Heston dynamics.

w(p) Weighting function which transforms objective probabilities p to subjective decision weights w(p).

w+(p) Weighting function defined on probabilities of gains.

w−(p) Weighting function defined probabilities of losses.

X (T ) Value of total portfolio at time T .

X ∗(T ) Optimal wealth at time T

x0 Wealth at time t = 0.

y Lagrange multiplier

Z (t ) Radon-Nykodym derivative for changing from probability measure P to Q at time t

δ Constant that controls for overweighting in weighting function w−(p) in cumulative prospect theory.

Ψ+ Derivative of weighting function w+.

Ψ− Derivative of weighting function w−.

BS Black-Scholes.

CPT Cumulative Prospect Theory

EUT Expected Utility Theory

GBM Geometric Brownian Motion

k Vector of market prices of risk process or Sharp ratio k1, ...,kN of risky assets S1,...,SN .

PT Prospect Theory

TK Tversky Kahneman sentiment
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2
DECISION-MAKING UNDER RISK

Within portfolio-management investors are exposed to decision-making under risk. decision-making under
risk can be seen as choosing between the outcomes of gambles in which the decision-maker knows the dis-
tribution of the possible outcomes. In this context a decision-maker can have different attitudes to risk cor-
responding to his risk profile. For example, in case of choosing portfolios according to maximizing expected
utility, the personal risk profile of an investor consists of risk-averse behavior. In this chapter several models
that incorporate individual behavior in an investor’s decision-making processes are considered. Firstly, ex-
pected utility theory is described which is the fundamental theory for decision-making under risk. Hereafter,
irrational behavioral models are considered: prospect theory and cumulative prospect theory.

2.1. EXPECTED UTILITY THEORY
Expected utility theory (EUT) is a fundamental theory for modelling investor’s preferences with respect to
choices under risk. Choices under risk can be seen as choosing between the outcomes of gambles in which
the decision-maker knows the distribution of the outcomes. Expected utility theory states that if an investor’s
preference satisfies a certain set of rational behavior hypotheses, then the investor takes decisions by maxi-
mizing expected utility. The utility represents the value assigned to an outcome; it represents the degree at
which an investor is happy with the outcome and the degree of preference of that outcome to another out-
come. The expected utility is computed as the sum of the utility of each outcome weighted by its probability
of occurrence. In this section a description of the expected utility theory is given as described in [1].

Let (Ω,Θ,µ) be a probability space. The set Ω represents all possible outcomes, Θ is a sigma-algebra on Ω
and P :Θ→ [0,1] is a probability measure. The probability of an event e ∈Θ is represented by P (e). Choices
of an investor are identified by real random variables g : (Ω,Θ) → R in which R is the space of outcomes or
consequences.

Let M be a choice set of random variables valued on [x1, ..., xn]. For each g ∈ M we have: g ∈ M ⇐⇒ g =
(x1, ..., xn ; p1, ..., pn) such that pi ≥ 0 for i = 1, ...,n and

∑n
i=1 pi = 1. The set M can be seen as a set of gambles

or prospects g which yield outcomes x1, x2, ..., xn with probabilities p1, p2, ..., pn respectively.

The following notation is used in the remainder of this thesis:

• x1 º x2: outcome x1 is weakly preferred to x2 or in other words x1 is at least as preferred as x2.

• x1 ∼ x2: outcome x1 and outcome x2 are equally preferred.

In order to represent an investor’s preference by an expected utility function, the preference relation needs to
satisfy three general axioms: rationality, continuity and independence. These axioms are given below.

Axiom 1. Rationality
A preference relation is rational if it satisfies the following properties:

• Reflexivity: ∀g ∈ M , g º g .

• Completeness: ∀g1, g2 ∈ M , g1 º g2 or g2 º g1. This property shows that either g1 is at least as preferred
as g2 or g2 is at least as preferred as g2. Thus, an individual has the ability to choose between outcomes.

• Transitivity: ∀g1, g2, g3 ∈ M if g1 º g2 and g2 º g3 then g1 º g3. This property represents the ranking of
outcomes and thus ensures consistent decision-making.

1
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Axiom 2. Continuity

A preference relation is continuous if ∀g1, g2, g3 ∈ M s.t. g1 º g2 º g3, there exists a constant α ∈ [0,1] s.t.
αg1 + (1−α)g3 ∼ g2. The continuity assumption ensures that for any gamble there exist probabilities such
that the decision-maker equally prefers a combination of the most preferred and the least preferred gamble
and the gamble between the most and least preferred.

Axiom 3. Independence
A preference relation is independent if ∀g1, g2, g3 ∈ M and ∀α ∈ [0,1]:

g1 º g2 ⇐⇒ αg1 + (1−α)g3 ºαg2 + (1−α)g3.

The independence property shows that if two prospects are combined with a third, then the preference or-
dering of the mixture is independent of the third prospect.

The stated axioms together define a rational investor for which the main theory under EUT is defined and
which is as follows:

Theorem 1. Expected utility theory
If a preference relation satisfies the rationality, continuity and independence conditions, then the decision-
maker is rational and the preference can be represented by expected utility i.e. there exist n real numbers u(xi )
s.t.

∀g1, g2 ∈ M : g1 º g2 ⇐⇒ U (g1) ≥U (g2) where U (g ) =
n∑

i=1
pi u(xi )

In case of a continuous prospect g , the expected utility function is given by: U (g ) = ∫
u(z) fg (z)d z, in which

fg (z) represents a probability density.

The expected utility theory states that if the axioms above are satisfied, then there exists a utility function such
that an individual prefers gamble g1 over gamble g2 if and only if the expected utility of gamble g1 is larger
then the expected utility of gamble g2. Thus, under expected utility theory decision-making is based on maxi-
mizing the expected utility. It is generally assumed that a utility function is twice continuously-differentiable,
strictly increasing and strictly concave. The strictly increasing property of the utility function reflects that in-
vestors always prefer more wealth to less wealth and the strictly concave property reflects risk-aversion. The
utility function can be defined either over the positive real numbers or over all real numbers.

2.1.1. ATTITUDES TOWARDS RISK
As seen, according to expected utility theory, decision-making is based not only on the probability of an
outcome but also on the utility of an outcome. Individuals can have different attitudes towards risk which
can be established through the utility function. The attitudes towards risk are related to two key concepts in
expected utility theory: the certainty equivalent and the risk premium that are defined below.

Definition 1. Certainty equivalent
The certainty equivalent C Eu is the amount of money that an investor with utility function u considers as
equally desirable as a risky gamble g :

u(C E(g )) = E [u(g )].

Definition 2. Risk premium
The risk premium Ru of a gamble g for an investor with utility function u is the maximum amount an investor
is willing to pay to receive instead of the gamble, its expected value with certainty:

Ru(g ) = E [g ]−C E(g ).

Related to the concepts of certainty equivalent and risk premium, individuals can have different attitudes
towards risk. The different attitudes are risk averse, risk neutral and risk-seeking. These attitudes are related
to preferences between certain and uncertain decisions and are defined as follows.
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Definition 3. Risk averse investor
An investor is risk-averse if he always prefers a certain payment to an uncertain payment:

∀g ∈ M , E [u(g )] ≤ u[E(g )].

A risk-averse individual attempts to minimize the degree of uncertainty: a sure and predictable payoff is
preferred to an uncertain and unknown payoff with a higher expected value. An example of a risk-averse
investor is one who decides to put his money into a bank account with a relatively low guaranteed interest
rate rather than investing it into stocks which might result in a higher payoff but also involves the chance of
losing money.

Definition 4. Risk neutral investor
An investor is risk neutral if he is always indifferent between a certain and an uncertain payment:

∀g ∈ M E [u(g )] = u[E(g )].

Definition 5. risk-seeking investor
An investor is risk-seeking if he always prefers an uncertain outcome over an certain payment:

∀g ∈ M : E [u(g )] ≥ u[E(g )].

The different attitudes towards risk are related to the shape of the utility function and the concepts of cer-
tainty equivalent and risk-premium. The following propositions give the characteristics of the different risk
attitudes.

Proposition 1. Given an increasing utility function u and a random variable g , the following statements are
equivalent:

1. An investor is risk averse;

2. The utility function u is concave;

3. C Eu(g ) ≤ E [g ];

4. Ru(g ) ≥ 0.

Proposition 2. Given an increasing utility function u and a random variable g , the following statements are
equivalent:

1. An investor is risk-seeking;

2. The utility function u is convex;

3. C Eu(g ) ≥ E [g ];

4. Ru(g ) ≤ 0.

The proofs of these theories can be found in [1].

Propositions 1 and 2 are visualized in Figure 2.1. Note that a risk neutral is between a risk-averse and risk-
seeking individual: the utility function is linear, C Eu(g ) = E [g ] and Ru(g ) = 0.
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Figure 2.1: Different attitudes towards risk and corresponding properties of the risk premium (RP) and certainty equiva-
lent (CE) (Source [2]).

As shown, investors can have different attitudes towards risk: risk averse, risk neutral or risk-seeking. The risk
attitude is related to the curvature of utility function: risk averse investors have a concave utility function, risk
neutral investors have a linear utility function and risk-seeking investors a convex utility function. The degree
of risk-aversiness can be explained by the coefficient of absolute risk aversion (ARA) and the coefficient of
relative risk aversion (RRA), which are defined below.

Definition 6. Absolute risk-aversion

The coefficient r abs
u (x) = −u′′(x)

u′(x) is called the coefficient of absolute risk-aversion (ARA). The absolute risk-
aversion coefficient measures the risk aversion to a loss in absolute terms.

Definition 7. Relative risk-aversion

The coefficient r r el
u (x) =− xu′′(x)

u′(x) is called the coefficient of relative risk-aversion (RRA). The relative risk-aversion
coefficient measures the risk aversion to a loss relative to the current wealth.

According to the character of the coefficient of absolute risk-aversion, the following classes can be distin-
guished:

• The utility function u has a constant absolute risk aversion coefficient (CARA): as wealth increases the
investor will hold the same amount of risky assets.

• The utility function u has a decreasing absolute risk aversion coefficient (DARA): as wealth increases
the investor will increase the amount of risky assets.

• The utility function u has a increasing absolute risk aversion coefficient (IARA): as wealth increases the
investor will decrease the amount of risky assets.

According to the character of the coefficient of relative risk-aversion, the following classes can be distin-
guished:

• The utility function u has a constant relative risk aversion coefficient (CRRA): an investor will keep the
same fraction of the portfolio invested in risky assets as wealth increases.

• The utility function u has a decreasing relative risk aversion coefficient (DRRA): an investor increases
the fraction of the portfolio invested in risky assets as wealth increases.

• The utility function u has a increasing relative risk aversion coefficient (IRRA): an investor will decrease
the fraction of the portfolio invested in risky assets as wealth increases.
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2.1.2. CRITIQUES ON EXPECTED UTILITY THEORY
Expected utility theory has been the dominant approach for decision-making under risk for years. The model
has been used as a descriptive model of economic behavior as well as a normative model to determine op-
timal decisions [3]. It relies on the assumption that investors are rational and thus their decisions are rea-
sonable and predictable. In a perfect world, expected utility theory would be ideal, as it provides exact mea-
surements of utility and gives perfect predictions [7]. However, results of experiments involving hypothetical
choice problems have shown that risky decision-making systematically violates the principles of the expected
utility theory as emotions influence the decision-making process. This leads to less predictable, inconsistent
and irrational behavior [14]. In this section, first the principles of expected utility theory are summarized.
Then several phenomena which are inconsistent with these principles are described as in [3] and [4].

PRINCIPLES OF EUT
The principles of EUT as discussed in Section 2.1 can be summarized as follows:

• Expected utility linear is in probabilities: U (x1, p1; ...; xn , pn) = ∑n
i pi u(xi ). The utility assigned to a

prospect is the expected utility of the outcomes. This means that investors are able to evaluate proba-
bilities objectively.

• The domain of a utility function consists of final asset positions instead of losses or gains. This means
that the absolute value of an outcome is taken into account instead of the deviation of an outcome with
respect to a reference point.

• Investors are always risk averse: a certain prospect with outcome x is preferred to a risky prospect with
expected value y ≥ x. This is equivalent with having a concave utility function (u′′ < 0).

Before discussing phenomena that are inconsistent with the mentioned principles, remember M as the set
of all prospect where a prospect is denoted as (x1, p1; ...; xn , pn). In this representation, xi , with i = 1,2, ...n,
represent outcomes and pi , with i = 1,2, ...,n represent the corresponding probabilities. For simplicity it is
assumed that x1 ≤ x2 ≤ ... ≤ xk ≤ 0 ≤ xk+1 ≤ ... ≤ xn . The outcome xi is defined relative to reference point
which is often taken as zero.

An overview of phenomena of irrational behavior that violate expected utility theory is provided below. These
phenomena are the result of responses to hypothetical choice problems conducted by Kahneman and Tver-
sky [6].

• Non-linear decision weights
In expected utility theory it is assumed that expected utility is linear in probabilities. However, the
Allais (1953) paradox shows that preferences can be better explained by non-linear weighted utilities.
An example is the following preference: (6000,0.001;0,0.999) º (3000,0.002;0,0.998). A prospect with
a probability of 0.001 of an outcome of 6000 and a probability of 0.999 of an outcome of 0 is preferred
over a prospect with a probability of 0.002 of an outcome of 3000 and a probability of 0.998 of an out-
come of 0. The preference shows that while both prospects have the same mean, the small probability
of a large gain is exaggerated. This represents a risk-seeking attitude and explains why people par-
ticipate in lotteries. The same phenomenon, namely the overweighting of small probability of large
amounts, is observed in the domain of losses, which represents a risk-seeking behavior. In situations
with high probabilities, an opposite effect is observed as in that case the higher probable gain is pre-
ferred: (3000,0.9;0,0.1) º (6000,0.45;0,0.1). This represents a risk averse attitude. The described exam-
ples show that subjective probabilities are evaluated differently from objective probabilities and thus
non-linear decision weights are needed. The following two phenomena are in line with this effect.

• Certainty effect / possibility effect
The certainty effect is another effect which violates the principles of EUT. This effect concerns the over-
weighting of sure outcomes relative to less sure outcomes. To illustrate this effect, the following ex-
ample is considered. The results of experiments show that a sure gain of 900 is preferred over a risky
prospect (1000,0.9;10,0.1), while there is a significant chance of a larger gain in the risky prospect and
the expected values are equal. This example shows that certainty enlarges the desire of gains and as a
consequence investors are risk averse in the domain of gains.
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Another example of the certainty effect is shown by the Allais paradox as well: a change of probability
from 0.10 to a 0.11 of winning has a smaller impact than a move from probability 0.99 to 1. Conversely,
a move in probability from 0 to a 0.05 of a gain is preferred over a move from 0.05 to 0.1, the possibility
effect. In other words, high probabilities are underweighted and low probabilities are overweighted.
As in expected utility theory people should weight prospects by respective probabilities the described
attitudes to risk can not be captured by the expected utility theory.

• Reflection effect
The reflection effect is an effect related to the change in choice pattern in case all positive outcomes of
a prospect are replaced by negative outcomes. In that case, the choice pattern takes the reversed form.
The reflection effect implies that investors prefer risk-averse behavior in the domain of losses of low
probability and risk-seeking behavior in the domain of losses of high probability. An important aspect
of this effect is a reference point to which gains and losses are defined and which is described in the
following point.

• Dependence on a reference point
Under expected utility theory it is assumed that outcomes are considered as end positions. However,
experiments have shown that people tend to think in terms of gains and losses relative to a reference
point rather than outcomes in absolute terms. An example of an experiment which shows the depen-
dence on a reference point is following:

– Experiment 1

You have a starting position of 1000.

Choose between the following gambles: g11 = (1000,0.5;0,0.5) and g12 = (500,1).

– Experiment 2

You have a starting point of 2000.

Choose between g21 = (−1000,0.5;0,0.5) and g22 = (−500,1).

It turns out that in the first experiment (500,1) º (1000,0.5;0,0.5) while in the second experiment
(−1000,0.5;0,0.5) º (−500,1). However, if we take the reference points into account, the gambles can
be rewritten as follows: g11 = (1000,0.5;2000,0.5), g12 = (1500,1), g21 = (1000,0.5;2000,0.5) and g22 =
(1500,1). This shows that gambles g11 and g21 are exactly the same and g21 and g22 as well. However,
the different reference points lead to opposite preferences.

• Loss aversion
Loss aversion refers to the effect that the impact of losses is greater than the impact of comparable
gains: the experienced displeasure of a certain loss is greater than the pleasure of a gain of the same
amount. In terms of prospects: (y,0.5;−y,0.5) º (x,0.5;−x,0.5) with x > y ≥ 0 gains with respect to a
reference point. The following two effects are related to the description and interpretation of decision
problems.

• Framing effect
In rational decision theory it is assumed that different formulations of the same choice problem should
give the same preferences. However, experiments have shown that the framing of a decision problem
for example in terms of gains or losses yields different preference orders. This shows that the way in
which a choice problem is presented influences the choice made.
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• Heuristics
In order to simplify complex choices investors use heuristics such as disregarding common compo-
nents and other editing operations which will be described in the following section. As problems can
be represented in various ways and different representations influence the choice of heuristics, this can
lead to inconsistent preferences.

2.2. PROSPECT THEORY
As seen, investor’s behavior has shown several effects which are inconsistent with the principles of expected
utility theory and which show that expected utility is not able to capture investor’s actual behavior in risky
situations. Therefore, Kahneman and Tversky [3] introduced prospect theory as an alternative model for de-
scribing decision-making under risk. Prospect theory (PT) takes into account the observed violations and
incorporates irrational behavior. This theory describes in which way people choose between options and
how they estimate (often in a biased way) the perceived likelihood of these options [5]. While expected utility
theory is a normative model which describes how decision-makers should behave ideally, prospect theory is
a descriptive model: it models how people actually choose between options and how they estimate the per-
ceived likelihood of these options [5]. In this chapter, prospect theory is described as in [3] and [4].

Two important assumptions in prospect theory based on the described inconsistencies with expected utility
are the following: individuals are risk-averse in the domain of gains and risk-seeking in the domain of losses
and individuals tend to overweight low probabilities and underweight high probabilities. These two phenom-
ena lead to the so-called fourfold pattern of risk attitudes [4]. When individuals are exposed to risky decision
they have:

• A risk-averse attitude in case of losses of low probability. In case of losses of low probability people
behave risk-averse; they have a fear to lose money and therefore are willing to pay for the certainty of
losing nothing. This may explain why people buy insurances: a premium is paid in exchange for losing
nothing for certain.

• A risk-averse attitude for gains of moderate and high probability. A sure gain is preferred over a prospect
with an higher expected value. This attitude represents risk aversion; there is a fear of the disappoint-
ment of ending up with nothing.

• A risk-seeking attitude in the domain of gains of low probability. In cases of gains of low probability
people are willing to pay a premium for the small possibility of a large gain. There is hope for a large gain
which may explain why people participate in lotteries. This attitude represents risk-seeking behavior.

• A risk-seeking attitude in the domain of losses of high probability. In case of losses of high probability
people are willing to take risk in order to avoid a sure loss.

This fourfold pattern is summarized in Table 2.1.

Table 2.1: Fourfold pattern of risk-attitudes.

Low probability High probability

Gains Risk-seeking (lottery) Risk-averse (gambling for gains)
Losses Risk-averse (insurance) Risk-seeking (gambling for losses)

The fourfold pattern of risk attitude is incorporated in prospect theory by the use of a value function and a
weighting function.

• Value function
The utility function from expected utility is replaced by a value function which describes the risk-
attitude and the degree of loss-aversion. The value function is defined on changes (gains and losses)
relative to a reference point contrary to expected utility theory in which the domain consists of final
asset positions. This implies that an individual can make different choices in different situations de-
pendent on the determined reference point. The value function is convex for gains and concave for
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losses which implies an S-shape. Also, the value function is steeper for gains and less steep for losses
which refers to loss-aversion.

• Weighting function
While in expected utility theory the attitude towards risk is solely determined by a utility function, in
prospect theory the investor’s behavior is jointly determined by a value function and a weighting func-
tion. It is assumed that probabilities influence the evaluation of outcomes and therefore the decision-
making. The weighting function transforms objective probabilities into subjective decision weights
that reflect the attitude towards probabilities. While the utility function in expected utility theory is a
linear function of outcome probabilities, the weighting function in prospect theory is non-linear.

The exact properties and formulations of both the value and weighting function will be elaborated later on.
Firstly, the different stages of the decision-making process are described which is in addition to the use of the
value- and weighting function another key element in prospect theory. The decision-making process can be
described in two phases: an editing phase and an evaluation phase. The editing phase consists of an analysis
and reformulation of prospect by using heuristics. The editing phase is meant to simplify the choice. In the
evaluation phase the outcomes are evaluated and the prospect of highest value is chosen. These phases are
described below.

Editing phase
In the editing phase decision-makers identify the outcomes and corresponding probabilities and restructure
the problem by applying operations which transform the probabilities and outcomes of a prospect. The main
mental operations in the editing phase are coding, combination, and detection of dominance.

• Coding

Coding involves the determination of a subjective reference point to which outcomes can be framed as
gains or losses. The identification of a reference point is also affected by the framing of the problem.

• Combination

Combination is an operation in which prospects are simplified by combining probabilities correspond-
ing to identical outcomes. For example, investors will reduce a prospect (100,0.25;100,0.25) to (100,0.5).

• Segregation

Segregation is an operation that separates the riskless component and the risky component of a prospect.
For example, a prospect (250, .80; 150, .20) is decomposed into a sure gain of 150 and the risky prospect
(100, .80).

• Cancellation

Operation in which the common components of prospects are ignored. For example, the choice be-
tween (150, .20; 50, .50; -100, .30) and (150, .20; 100, .50; -150, .30) can be reduced to a choice between
(50,.50; -100,.30) and (100, .50; -150, .30).

• Simplification

Simplification is an operation that rounds the outcomes and probabilities of the prospects.

• Detection of dominance

Detection of dominance is an operation in which dominant prospects are detected and eliminated
without valuation as they are worse in all perspectives. In other words, prospects that are worse in all
aspect compared to the alternatives are neglected directly.

As decision problems can be represented in various ways, the same problem can be edited in different ways.
However, in the remainder of this thesis the focus lies on the evaluation of prospects as it is assumed that the
evaluation phase is carrying the main responsibility for the described irrational human behavior.
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Evaluation phase

In the evaluation phase a decision-maker evaluates the edited prospects and selects the prospect of high-
est overall value. The overall value VPT (g ) of a prospect g depends on two functions: the outcomes (gains
or losses) are interpreted by a subjective value function v and the probabilities are interpreted by a weight-
ing function w . Prospects can be categorized in three classes: strictly positive, strictly negative and regular
prospect prospects that are defined for prospect of the form (x1, p1; x2, p2) with at most two non-zero out-
comes.

Definition 8. Strictly positive prospect
A prospect is strictly positive, if x1, x2 > 0 and p1 +p2 = 1.

Definition 9. Strictly negative prospect
A prospect is strictly negative, if x1, x2 < 0 and p1 +p2 = 1.

Definition 10. Regular prospect
A prospect is regular if it is neither strictly positive nor strictly negative: either p1 + p2 < 1 or x1 ≥ 0 ≥ x2 or
x1 ≤ 0 ≤ x2.

If a prospect (x1, p1; x2, p2) is regular then the value of the prospect equals:

VPT (x1, p1; x2, p2) = w(p1)v(x1)+w(p2)v(x2), (2.1)

with v(0) = w(0) = 0 and w(1) = 1. The function v represents the value function and the function w repre-
sents the weighting function which will be described in Section 2.2.1 and Section 2.2.2. Equation (2.1) can be
extended to prospects with n outcomes (x1, p1; x2, p2, ...xn , pn) and which generalizes expected utility theory:

Definition 11. Discrete prospect value
The discrete prospect value of a prospect (x1, p1, x2, p2, ..., xn , pn) is defined as:

VPT (x1, p1; x2, p2, ..., xn , pn) =
n∑

i=1
w(pi )v(xi ). (2.2)

Note that VPT is defined on prospects while v is defined on outcomes.

2.2.1. VALUE FUNCTION
As seen, a key feature in prospect theory is the use of a value function which replaces the utility function of
EUT and describes the subjective evaluation of gains and losses. The results of experiments conducted by
Kahneman and Tversky [3] showed that the value function v needs to satisfy three properties:

1. Utility is defined by changes in outcomes (gains/losses) relative to a reference point instead of absolute
wealth positions as in expected utility theory. This reference point corresponds to the origin of the
value function. The identification of a reference point during the coding phase and thus the definition
of gains and losses influences the value for the reason that gains and losses are valuated differently.

2. As individuals have different behavior for gains and losses, the value function is concave for gains and
convex for losses and thus S-shaped. This implies a risk-averse attitude in the domain of gains (v ′′ <
0) and a risk-seeking attitude in the domain of losses (v ′′ > 0). The S-shape represents diminishing
sensitivity: changes around the reference point have more impact than comparable changes further
away from the reference point.

3. The value function is steeper for losses than for gains which reflects that the aversion of losses is greater
then the pleasure of comparable gains: the marginal utility of winning 1 euro is lower than the marginal
disutility of losing 1 euro. As a consequence, investors take more risk to avoid a certain loss than to ob-
tain a comparable gain.

In Figure 2.2 a hypothetical value function is given.
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Figure 2.2: Hypothetical value function (Source [6]).

A value function v(x), which has the properties described and which will be used in this thesis is defined as
follows:

Definition 12. Prospect theory value function
The prospect value function is defined as follows:

v(x) =
{

v+(x) = (x −θ)a x ≥ θ
v−(x) =−λ(θ−x)b x < θ (2.3)

The PT-value function satisfies the following properties:

• Parameter λ> 1 represents the loss-aversion parameter. As λ> 1 the value function is steeper for losses
than for gains. A larger value λ implies a larger degree of loss aversion.

• Parameters 0 < a ≤ 1 and 0 < b ≤ 1 are the risk attitude parameters. A larger value of a implies a lower
risk averse attitude in the domain of gains and a larger value of b implies a lower risk-seeking attitude
in the domain of losses. This can be derived by considering the second derivative of the value function,
for example, for gains:

v ′′
+(x) = a(a −1)

(
1

x −θ
)2−a

< 0

The higher the risk aversion parameter a, the less negative v ′′+(x) and thus the less risk averse. This
holds similarly for the risk-seeking parameter b. Note that in case a = b = λ= 1 risk and loss neutrality
are implied.

• Parameter θ represents the reference point, which usually taken as zero.

• The function is twice differentiable and strictly increasing, representing the phenomenon that more
wealth leads to a higher value.

In Figure 2.3 a value function is given for different values a,b and λ.

Figure 2.3: Value function (2.3) for different values of a,b and λ.
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2.2.2. WEIGHTING FUNCTION
Under prospect theory a weighting function is used to transform probabilities p: w(p) : [0,1] → [0,1]. Ob-
jective probabilities pi are separately transformed to decision weights w(pi ), that can be seen as individuals’
subjective attitude towards probabilities. In other words, the decision weights represent the perception of
actual probabilities.

A weighting function under PT is based on the following principles:

• Diminishing sensitivity: very low probabilities are overweighted and large probabilities are under-
weighted as described in the certainty/possibility effect. This results in a weighting function which
is concave near zero (risk-seeking) and convex near one (risk-aversion). Therefore, the weighting func-
tion is an inverse S-shaped function.

• Risk-seeking behavior: people have a risk-seeking attitude in situations where the probability of win-
ning is low, e.g. lotteries.

The weighting function w(p) based on these principles is a monotonic and non-linear transformation of the
probability measure. In Figure 2.4 a hypothetical probability weighting function is displayed which satisfies
the described properties above. The weighting function shows the overweighting of low probabilities, the
underweight of large probabilities and probabilities zero and one are perceived objectively: w(0) = 0 and
w(1) = 1. In addition, it shows a concave shape near zero, a convex shape near one and the indifference for
probability shift in the middle region which means that the subjective probability coincides with the objective
probability.

Figure 2.4: Hypothetical weighting function (Source: [6]).

A weighting function which satisfies the properties described and which will be used is the following:

Definition 13. Prospect theory weighting function
The prospect theory weighting function w : [0,1] → [0,1] with w(0) = 0 and w(1) = 1 is defined as follows:

w(p) = pγ

(pγ+ (1−p)γ)
1
γ

. (2.4)

The weighting function satisfies the following properties:

• 0.28 < γ < 1 is a constant that controls the over- and underweighting of small and large probabilities.
The value γ> 0.28 ensures an increasing function.

• The weighting function is an increasing function in p and is concave.

• The lower the value of γ, the higher the degree of over- and underweighting.

Figure 2.5 shows the probability weighting function for different values of parameter γ.
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Figure 2.5: Probability weighting function (2.4) for parameter values γ= 0.4, γ= 0.7 and γ= 1.

2.3. CUMULATIVE PROSPECT THEORY
In 1992, Kahnemman and Tversky introduced an updated version of prospect theory called cumulative prospect
theory (CPT) which will be described in this section according to [6]. Cumulative prospect theory over-
comes the violation of stochastic dominance in prospect theory. Stochastic dominance requires that if better
outcomes become more probable and worse outcomes become less probable this results in an improved
prospect. Also, cumulative prospect theory is applicable to prospects with any number of outcomes and to
uncertain as well as to risky prospects.

The main difference between prospect theory and cumulative prospect theory is the determination of deci-
sion weights. In cumulative prospect theory this is done by transforming the entire cumulative distribution
function (CDF) instead of transforming all probabilities separately. The idea is to apply the non-linear cumu-
lative weighting function proposed by Quiggin (1982) to gains and losses separately which allows for different
attitudes towards gains and losses. This way, the weighting function can explain non-linear preferences. In
cumulative prospect theory a weighting function w+(p) is defined for probabilities of positive outcomes and
a weighting function w−(p) is defined for losses.

Consider a risky prospect (x1, ..., xn , p1, ..., pn) for which x1 ≤ x2 ≤ ... ≤ xk ≤ 0 ≤ xk+1 ≤ ... ≤ xn . The discrete
CPT-value of the risky prospect with 2 ≤ i ≤ k is in this case given by:

Definition 14. Discrete CPT prospect value
The discrete CPT prospect value is given by:

VC PT (x1, .., xn , p1, ..., pn) =
k∑

i=1
v−(xi )

(
w−(

i∑
j=1

p j )−w−(
i−1∑
j=1

p j )

)
+

n∑
i=k+1

v+(xi )

(
w+(

n∑
j=1

p j )−w+(
n∑

j=i+1
p j )

)
(2.5)

The quantities w+(p) and w−(p) represent strictly increasing functions from [0,1] to [0,1] with w+(0) =
w−(0) = 0 and w+(1) = w−(1) = 1. The functions v−(xi ) and v+(xi ) represent the value function for losses
and gains respectively. The exact forms of these function will be discussed below in 2.3.1.
As can be seen, the decision weights are transformed cumulative probabilities of gains and losses that repre-
sent the risk attitude towards probabilities. Note the following definitions of the boundary cases:

• In case of i = 1 the weighting term w−(
∑i

j=1 p j )−w−(
∑i−1

j=1 p j ) is defined as w−(p1),

• In case of i = n the weighting term w+(
∑n

j=1 p j )−w+(
∑n

j=i+1 p j ) is defined as w+(pn).
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The decision weight w+(
∑n

j=1 p j )− w+(
∑n

j=i+1 p j ) denotes the difference between the transformation of a
probability of choosing a outcome at least as good as xi and the transformation of a probability of choosing
an outcome better than outcome xi . Equivalently, w−(

∑i
j=1 p j )−w−(

∑i−1
j=1 p j ) denotes the difference between

the transformation of a probability of choosing an outcome at least as bad as xi and the transformation of a
probability of choosing a worse outcome than xi . Thus, the decision weights describe the marginal contri-
bution of an event in terms of the functions w+ and w−. In other words, in the evaluation of prospects the
ranking of outcomes compared to other outcomes is of importance.

2.3.1. VALUE FUNCTION
Before turning to the weighting function, first the value function under CPT is considered. In cumulative
prospect theory the value function suggested has the same form as in prospect theory:

Definition 15. Cumulative prospect theory - value function

v(x) =
{

v+(x) = (x −θ)a , x ≥ θ,

v−(x) =−λ(θ−x)b , x < θ.
(2.6)

In this function, λ≥ 1 is the loss-aversion parameter and 0 < a ≤ 1 and 0 < b ≤ 1 are the risk attitude param-
eters. A larger value λ implies a larger degree of loss aversion, a larger value of a implies a lower risk averse
attitude in the domain of gains and a larger value of b implies a lower risk-seeking attitude in the domain of
losses. Parameter θ > 0 represents the reference level, which is usually taken as zero.

2.3.2. WEIGHTING FUNCTION
As a weighting function which reflects the mentioned properties , Kahneman and Tversky (1992) suggest the
following weighting functions:

Definition 16. Cumulative prospect theory - weighting functions The weighting function for gains and losses
under CPT are as follows:

w+(p) = pγ

(pγ+ (1−p)γ)
1
γ

, (2.7)

w−(p) = pδ

(pδ+ (1−p)δ)
1
δ

. (2.8)

Note that the weighting function is equivalent to the weighting function of prospect theory, but now sepa-
rately defined for gains and losses. Thus, in these formulas 0.28 < γ,δ< 1 are constants which represent the
overweighting of small probabilities and underweighting of large probabilities. The lower the parameters the
higher the curvature.





3
OPTION PRICING

3.1. OPTION PRICING UNDER BLACK-SCHOLES
Before turning to option pricing under irrational human behavior, the classical Black-Scholes (1973) frame-
work for option pricing is discussed [8]. Under Black-Scholes it is assumed that the price stochastic process
equals:

dSt =αSt d t +σSt dW P
t (3.1)

The price dynamics of the bank account equals:

dBt = r Bt d t . (3.2)

Furthermore, the following assumptions are made:

• Interest rate r and volatility σ are known,

• There are no transaction costs,

• Assets can be bought or sold in any amount and in continuous time,

• There is no dividend paying,

• Short selling is allowed,

• There are no arbitrage possibilities.

The Black-Scholes price at time t is represented by VBS (t ,St ). Then, the following portfolio is considered with
∆t the amount of continuously traded stocks:

Π(t ,St ) =VBS (t ,St )−∆t St . (3.3)

By use of Itô’s lemma, the dynamics of portfolioΠ(t ,St ) can be rewritten as:

dΠ= dVBS −∆t dSt

= ∂VBS

∂St
dSt + ∂VBS

∂t
d t + 1

2

∂2VBS

dS2
t

dS2
t −∆t dSt

=
(
αSt

∂VBS

∂St
+ ∂VBS

∂t
+ 1

2
σ2S2

t
∂2VBS

∂S2
t

)
d t +σSt

∂VBS

∂ST
dWt −∆t dSt

=
(
αSt

∂VBS

∂St
+ ∂VBS

∂t
+ 1

2
σ2S2

t
∂2VBS

∂S2
t

)
d t +σSt

∂VBS

∂ST
dWt −∆t (αSt d t +σSt dWt ).

(3.4)

Then, the Black-Scholes equation is derived by the following assumptions:

∆t = ∂VBS

∂St
, (3.5)

dΠ= rΠd t . (3.6)

Then, Equation (3.4) reduces to:

rΠd t =
(
αSt

∂VBS

∂St
+ ∂VBS

∂t
+ 1

2
σ2S2

t
∂2VBS

∂S2
t

)
d t − ∂VBS

∂St
αSt d t , (3.7)

15
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which can be written as:

∂VBS

∂t
+ 1

2
σ2S2

t
∂2VBS

∂S2
t

− rΠ= ∂VBS

∂t
+ 1

2
σ2S2

t
∂2VBS

∂S2
t

− r

(
VBS − ∂VBS

∂St
St

)
. (3.8)

Finally, the Black-Scholes equation equals:

∂VBS

∂t
+ 1

2
σ2S2

t
∂2VBS

∂S2
t

+ ∂VBS

∂St
St − r VBS = 0. (3.9)

A solution of the Black-Scholes equation for a European call is summarized in the following theorem [8]:

Theorem 2. The price of a European call cBS
t (t ) at time t and with strike K and maturity T equals:

cBS
t (t ) = St N (d1)−K exp(−r (T − t ))N (d2), (3.10)

with

d1 =
ln

(
St
K

)
+

(
r + σ2

2 (T − t )
)

σ
p

T − t
, (3.11)

d2 = d1 −σ
p

T − t , (3.12)

with N the cumulative standard normal distribution function, i.e., N (0,1).

Note that the Black-Scholes model could also be derived consistent with Section 2.1 by assuming an agent
maximizing an exponential utility function of wealth, which has the property of constant absolute risk aver-
sion preferences. However, the derivation previously discussed is more common.

3.2. OPTION PRICING UNDER PROSPECT THEORY
It is a well known fact that market option prices systematically deviate from Black-Scholes option prices.
Within the Black-Scholes framework it is assumed that investors are rational and take decisions consistent
with maximizing expected utility. However, as described in Section 2.1.2, observations have shown that in-
vestors actually behave irrational, which might be a possible cause for the deviations of option prices from
Black-Scholes prices. In this section option pricing under prospect theory is described, as in [10]. It is as-
sumed that the marginal investor values options under prospect theory. Within this framework the investor’s
attitude towards risk, loss aversion and subjective probabilities are incorporated.

3.2.1. THEORY
Consider a prospect with two possible outcomes: x1 which is negative with probability p1 and x2 which is
non-negative with probability p2. Then, the prospect value of g = (x1, p1; x2, p2) equals:

VPT (g ) = w(p1)v−(x1)+w(p2)v+(x2), (3.13)

in which v is given by Equation (2.3) and w is given by Equation (2.4).

Before turning to the derivation of option pricing formulas under prospect theory, first the framework in
which option pricing under prospect theory takes place is considered. It should be noted that this framework
is not in line with the traditional framework considered in Section 3.1. In the prospect option pricing frame-
work it is assumed that the price of an option is the result of the trading actions by participants in the market,
rather than the cost of hedging as under Black-Scholes. The prospect option price is determined by marginal
investors who are valuating according to prospect theory. Within this framework naked options are consid-
ered, which means that the writer’s position is not covered by owning the underlying asset: an unhedged
position. However, it is assumed that the writer can invest the received premium at the risk free rate. Then,
the option price is determined such that the prospect value of the premium invested at the risk free rate at
time T equals the subjective value of a potential loss at time T .

Consider a marginal investor who is writing a European call option on a non-dividend paying stock. At ma-
turity (t = T ) two states are possible. The first state is that the price of the underlying asset is higher than the
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exercise price (ST > K ) and the option will be exercised.

The probability of being exercised (p1) is given by:

p1 = P (ST > K ) =
∫ ∞

K
f (ST )dST , (3.14)

where K is the strike price, ST the asset price at time T and f (ST ) the probability density associated with the
underlying asset at time T .

The expectation of the option conditional on exercising x1 follows from the law of total expectation:

x1 =−E [max(ST −K ,0)|ST > K ]

=−E [max(ST −K ,0)]

P (ST > K )

=−
∫ ∞

K (ST −K ) f (ST )dST∫ ∞
K f (ST )dST

.

(3.15)

The second possible outcome is that the price of the underlying asset is lower than the exercise price (ST ≤ K )
and no exercise will take place. The probability of no exercise equals p2 = 1−p1 and has payoff x2 = 0. When
an option writer evaluates a call option, x1 is seen as a potential loss and Equation (3.13) can be simplified by
using v+(0) = 0:

VPT = w(p1)v−(x1)+w(p2)v+(x2)

= w(p1)v−(x1)+w(p2)v+(0)

= w(p1)v−(x1).

(3.16)

In order to compensate for the potential loss at expiration, the writer receives an option premium c at time
t = 0. Assuming that the writer can invest this amount at the risk-free rate its value at T equals cer f T . In
equilibrium the prospect value of the invested amount c at T should be equal to the prospect value of x1 at
T :

v+(cer f T )+w(p1)v−(x1) = 0. (3.17)

The substitution of the value function (2.3) into Equation (3.17) gives:

v+(cer f T )+w(p1)v−(x) = (cer f T )a −w(p1)λ(−x1)b = 0. (3.18)

Then, the option value c at t = 0 equals:

c = e−r f T
(
w(p1)λ(−x1)b

)1/a
. (3.19)

If the option value as in Equation (3.19) is considered all parameters are known, except for the quantities p1

and x1. The quantities p1 and x1 can be determined in case the underlying price process is known. For now
it is assumed that the underlying asset price follows a Geometric Brownian Motion with drift α and volatility
σ and thus the density of the underlying asset price equals:

f (ST ) = exp(−(log(ST /S0)− (α−σ2/2)T )2/2σ2T )/STσ
p

2πT . (3.20)

Under GMB, the quantity p1 can be written as:

p1 =
∫ ∞

K
f (ST )dST

=
∫ ∞

K
exp(−(log(ST /S0)− (α−σ2/2)T )2/2σ2T )/STσ

p
2πT dST

= 1p
2π

∫ ∞

log (K /S0)−(α−σ2/2)T )/σ
p

T
e−

1
2 x2

d x

= 1p
2π

∫ log (S0/K )+(α−σ2/2)T )/σ
p

T

−∞
e−

1
2 x2

d x

=Φ(δ−1).

(3.21)
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where Φ represents the cumulative standard normal distribution with argument δ−1 = (log(S0/K ) + (α−
σ2/2)T )/σ

p
T . The transformation used is x = l og ((ST /S0)− (α−σ2)T )/σ

p
T , for which d x = 1

σ
p

T ST
dST

and thus dST =σpT ST d x.

The equation for x1 can be rewritten as follows:

x1 =
−∫ ∞

K (ST −K ) f (ST )dST∫ ∞
K f (ST )dST

=−
∫ ∞

K (ST −K ) f (ST )dST

Φ(δ−1)

= K

Φ(δ−1)

∫ ∞

K
f (ST )dST − 1

Φ(δ−1)

∫ ∞

K
ST f (ST )dST

= K − 1

Φ(δ−1)

∫ ∞

K
exp(−(log(ST /S0)− (α−σ2/2)T )2/2σ2T )/σ

p
2πT dST

= K − 1

Φ(δ−1)

∫ ∞

log(K /S0)
exp

(
−1

2

(
y − (α−σ2/2)T

σ
p

T

)2)
S0e y

σ
p

2πT
d y

= K − 1

Φ(δ−1)

S0

σ
p

2πT
e(α−σ2/2)T+ 1

2σ
2T

∫ ∞

log(K /S0)
exp

(
−1

2

(
y − ((α−σ2/2)T +σ2T )

σ
p

T

)2)
d y

= K − 1

Φ(δ−1)

S0

σ
p

2πT
eαT

∫ log(S0/K )

−∞
exp

(
−1

2

(−y + ((α−σ2/2)T +σ2T )

σ
p

T

)2)
d y

= K − 1

Φ(δ−1)
S0eαTΦ

(
log(S0/K )+ (α−σ2/2)T +σ2T

σ
p

T

)
= K − 1

Φ(δ−1)
S0eαTΦ

(
log(S0/K )+ (α+σ2/2)T

σ
p

T

)
= K −S0eαT Φ(δ1)

Φ(δ−1)
,

(3.22)

with
δ1 = (log(S0/K )+ (α+σ2/2)T )/σ

p
T . (3.23)

Note the transformation y = log (ST /S0), dST = S0e y d y is used.

The substitution of Equations (3.21) and (3.22) in Equation (3.19) gives the final option value c:

c = e−r f T
(
w(p1)λ(−x1)b

)1/a

= e−r f T
(

w(Φ(δ−1))λ(S0eαT Φ(δ1)

Φ(δ−1)
−K )b

)1/a

.
(3.24)

3.2.2. RELATIONSHIP WITH BLACK-SCHOLES
In this section the relationship of the derived Equation (3.24) with the Black-Scholes pricing formula as de-
scribed in Section 3.1 is presented. The way of evaluating options under prospect theory relies on the idea
of taking the expected payoff as the value of an option. This method fits in the Black-Scholes framework in
case parameters are chosen in a certain way. In this section the relationship between the two methodologies
is described [12].

Suppose a European call option with exercise price K and as underlying price process a Geometric Brownian
Motion with drift α and volatility σ, see Equation (3.20). The time-zero value of the option according to the
discounted expected payoff method equals:

c = e−r T EP[max(ST −K ,0)]

= e−r T
∫ ∞

K
(ST −K ) f (ST )dST .

(3.25)
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The option value according to Equation (3.25) is of importance for investors holding or writing naked op-
tions. In contrast to Black-Scholes, this formula is derived without any idea of hedging in order to eliminate
risk, without any assumption about the no-arbitrage principle and is dependent on the drift α. This means
that this method can not be used to compute a unique fair option value. However, it can be verified that c in
(3.25) equals the Black-Scholes option value when the drift α equals the risk-free rate r : the risk-neutrality
assumption. This means that the real world P-measure is changed to the risk-neutral measure Q.

This described concept of valuating options by taking the expected payoff is also the underlying idea of op-
tion pricing under prospect theory. The premium a writer is willing to receive for the naked call option to
compensate for a potential loss equals:

c = e−r T E [max(ST −K ,0)]

= e−r T E [max(ST −K ,0)|ST > K ]P (ST > K )

= e−r T

∫ ∞
K (ST −K ) f (ST )dST

P (ST > K )
P (ST > K ).

(3.26)

Equation (3.26) can be rewritten as:

cer T −
∫ ∞

K (ST −K ) f (ST )dST∫ ∞
K f (ST )dST

∫ ∞

K
f (ST )dST = cer T +x1p1 = 0 (3.27)

with

x1 =−
∫ ∞

K (ST −K ) f (ST )dST∫ ∞
K f (ST )dST

,

as in Equation (3.15) and

p1 =
∫ ∞

K
f (ST )dST ,

as in Equation (3.14).

So far, the option value is equivalent to the option value in (3.25) but presented in a slightly different form:
the expectation is decomposed into a potential loss for the writer and the probability of this loss, in order to
incorporate prospect theory in the valuation. Under prospect theory it is assumed that Equation (3.27) still
holds but a subjective evaluation is included, which incorporates individual investor’s behavior. This means
that in equilibrium the prospect value of c equals the prospect value of x1:

v+(cer T )+ v−(x1)w(p1) = (cer f T )a −w(p1)λ(−x1)b = 0. (3.28)

This assumption is reasonable: the value a writer assigns to the future value of the premium should be equal
to the value the writer assigns to the expected loss, in order to compensate for this potential loss. The relation
of option valuation under prospect theory with the Black-Scholes methodology relies on the risk-neutrality
assumption, which is not made, and subjective valuation by applying the functions v−, v+ and w . While in
the Black-Scholes framework option values should be the same regardless the risk-attitude of an individual,
the option value now depends on the risk-attitude, the degree of loss-aversion and the subjective probability
weighting.

Note that Equation (3.28) reduces to equation (3.27) in case parameters are chosen a = b = λ = γ = 1 (no
prospect sentiment) and thus satisfies the Black-Scholes price when α= r f .

This can also be verified by substitution of these parameters a = b =λ= γ= 1 and r f =α in Equation (3.24):

c = e−r f T
(

Φ(δ−1)

Φ(δ−1)+ (1−Φ(δ−1))

)
(S0eαTΦ(δ1)/Φ(δ−1)−K )

= S0Φ(δ1)−K e−r f TΦ(δ−1),

(3.29)

which equals the Black-Scholes formula.
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3.2.3. NUMERICAL EXAMPLES
In this section the results of computing option prices as in Equation (3.24) are discussed. The prices are
computed under different prospect parameters: loss aversion λ, curvature parameters a and b and weighting
parameter γ. Three levels of prospect sentiment, as estimated by Tversky and Kahneman are considered [10],
that are based on the results of hypothetical choice problems under a group of individuals:

• Zero prospect sentiment: a = b = λ = γ = 1. This case refers to option values based on Black-Scholes:
no loss aversion, no over- and underestimation, a linear value function and α= r f .

• Tversky Kahneman (TK)-sentiment: a = b = 0.88, λ= 2.25 and γ= 0.61 based on experiments by Kah-
neman and Tversky [4]. TK-sentiment refers to a risk-averse attitude for gains, a risk-taking attitude for
losses, the overestimation of small probabilities and underestimation of large probabilities.

• Moderate TK-sentiment: a = b = 0.988, λ = 1.125 and γ = 0.961, reflecting 10% of the prospect senti-
ment: a less risk-averse attitude for gains, a less risk-taking attitude for losses and less overestimation
and underestimation of low and high probabilities, respectively.

Suppose the following Black-Scholes parameters: S0 = 100, α= 0.1, r f = 0.1, σ= 0.2 and T = 1. In Figure 3.1
call prices with respect to strikes K are given. Moderate TK-sentiment option values are a a bit higher than the
Black-Scholes values. Under TK-sentiment option values are significant increased option prices compared to
Black-Scholes option values. As α= r f the zero prospect sentiment prices coincide with Black-Scoles prices.

Figure 3.1: Call option prices for different strikes K . The Black-Scholes parameters used are S0 = 100, α = 0.1, r f = 0.1,
σ= 0.2 and T = 1.



3.3. OPTION PRICING UNDER CONTINUOUS CUMULATIVE PROSPECT THEORY 21

3.3. OPTION PRICING UNDER CONTINUOUS CUMULATIVE PROSPECT THEORY
As already stated in Section 2.3, prospect theory does not satisfy all desired properties, as it violates stochas-
tic dominance. Therefore, in this section option pricing under behavioral aspects is considered according to
continuous cumulative prospect theory from both a writer’s perspective and a holder’s perspective. First, the
option pricing theory under CPT is discussed in Section 2.3.1, according to [9] and [11]. Hereafter, several
numerical examples are discussed (Section 2.3.2), a sensitivity analysis of the option prices with respect to
several parameters is done (Section 2.3.3) and experiments with negative interest rates (Section 2.3.4) and
different price dynamics are discussed (Section 2.3.5).

3.3.1. THEORY
The approach of option pricing under CPT is discussed from writer’s and holder’s perspective for both calls
and puts. First, a continuous form of the discrete cumulative prospect value is derived. Hereafter, the option
price is derived similarly to Section 3.2.1.

VALUATION FROM WRITER’S PERSPECTIVE

As already seen in Section 2.3, the discrete cumulative value of a prospect under CPT is given by:

VC PT (x1, .., xn , p1, ..., pn) =
k∑

i=1
v−(xi )

(
w−(

i∑
j=1

p j )−w−(
i−1∑
j=1

p j )

)
+

n∑
i=k+1

v+(xi )

(
w+(

n∑
j=1

p j )−w+(
n∑

j=i+1
p j )

)
.

(3.30)
In the continuous case Equation (3.30) can be rewritten as:

VC PT (X ) =
∫ θ

−∞
v−(x)d w−(F (x))+

∫ ∞

θ
v+(x)d w+(1−F (x))

=
∫ θ

−∞
v−(x)w ′

−(F (x)) f (x)d x +
∫ ∞

θ
v+(x)w ′

+(1−F (x)) f (x)d x

=
∫ θ

−∞
v−(x)Ψ−[F (x)] f (x)d x +

∫ ∞

θ
v+(x)Ψ+[1−F (x)] f (x)d x,

(3.31)

where θ represents the reference point,Ψ−(p) = d w−(p)
d p ,Ψ+(p) = d w+(p)

d p , F (x) represents the cumulative dis-
tribution fucntion (CDF) and f (x) is the probability density function (PDF) of the outcomes with respect to a
reference point.

Let St be the price at time t , t ∈ [0,T ] of the underlying asset of a European call option with maturity T . Again,
it is assumed that this price process is a geometric Brownian motion. At time t = 0, the option writer is writing
a naked European call option with premium c and strike K . Thus, the writer receives cw at t = 0 and can invest
this at the risk-free rate, having cw exp(r T ) at time T . At expiration the writer has to pay max(ST −K ,0). It is
assumed the reference point equals zero.

• At t = 0 the writer receives cw for sure which is a gain; the subjective value assigned to it equals
v+(cw exp(r T )).

• At t = T the option expires in-the-money or out-of-the-money. If the option expires in the money
(ST > K ), the writer looses K −ST , which happens with probability P (ST > K ). Therefore, the subjective
value assigned to the option equals

∫ ∞
K Ψ−(1−F (ST )) f (ST )v−(K −ST )dST .

The cumulative prospect value follows from the following equilibrium:

V w
C PT = v+(cw er T )+

∫ ∞

K
Ψ−(1−F (ST )) f (ST )v−(K −ST )dST

= (cw er T )a −λ
∫ ∞

K
Ψ−(1−F (ST ) f (ST )(ST −K )bdST = 0.

(3.32)

In equilibrium, Equation (3.32) gives the option price cw :

cw = e−r T
(
λ

∫ ∞

K
Ψ−(1−F (ST )) f (ST )(ST −K )bdST

)1/a

. (3.33)
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In this equation ST is the underlying asset price at T , f (ST ) and F (ST ) are the PDF and CDF of the underlying
asset price at maturity, v+(x) and v−(x) represent value functions as defined in Equation (2.6) and w±(p) is
the weighting function as in Equation (2.8).

The derivative of w−(p) is as follows:

Ψ−(p) = d w−(p)

d p
= δpδ−1[pδ+ (1−p)δ]−1/δ−pδ[pδ−1 − (1−p)δ−1][pδ+ (1−p)δ]−(δ+1)/δ. (3.34)

The functions F (ST ) and f (ST ) are the CDF and PDF of the underlying asset at maturity, i.e.:

f (ST ) = 1

STσ
p

2πT
exp

(−[log (ST /S0)− (α−σ2/2)T ]2

2σ2T

)
, (3.35)

F (ST ) =Φ
(

l og (ST /S0)− (α−σ2/2)T

σ
p

T

)
, (3.36)

with α the drift, σ the volatility, S0 the current asset price and Φ(·) the cumulative standard normal distribu-
tion.

The relation with Black-Scholes is similar to Section 3.2.2: in case a = b = λ = 1 and α = r f (risk-neutral
measure) Equation (3.33) reduces to:

cw = e−r T
(∫ ∞

K
f (ST )(ST −K )dST

)
, (3.37)

which corresponds to the Black-Scholes value

cBS = e−r T
∫ ∞

0
f (ST )(ST −K )+dST .

The value of a European put under cumulative prospect theory can be obtained in a similar way. In this case
we call pw the option premium at t = 0. Then, the prospect value from a writer’s point of view follows from
the following equilibrium:

V w
C PT = v+(pw er T )+

∫ K

0
Ψ−(F (ST )) f (ST )v−(ST −K )ST = 0, (3.38)

from which follows:

V w
C PT = (pw er T )a −λ

∫ K

0
Ψ−(F (ST )) f (ST )(K −ST )bdST , (3.39)

and thus

pw = e−r T
(
λ

∫ K

0
Ψ−(F (ST )) f (ST )(K −ST )bdST

)1/a

. (3.40)

VALUATION FROM HOLDER’S PERSPECTIVE

The prospect value from a holder’s perspective for a call option is obtained analogously to the valuation from
writer’s perspective and is as follows:

V h
C PT = v−(−cer T )+

∫ ∞

K
Ψ+(1−F (ST )) f (ST )v+(ST −K )dST . (3.41)

The price ch is obtained from V h
C PT = 0:

ch = e−r T
(

1

λ

∫ ∞

K
Ψ+(1−F (ST )) f (ST )(ST −K )adST

)1/b

. (3.42)
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Similarly, the prospect value for a put option equals:

V h
C PT = v−(−pher T )+

∫ K

0
Ψ+(F (ST )) f (ST )v+(K −ST )dST . (3.43)

The price ph is obtained from V h
C PT = 0:

ph = e−r T
(

1

λ

∫ K

0
Ψ+(F (ST )) f (ST )(K −ST )adST

)1/b

. (3.44)

3.3.2. NUMERICAL EXAMPLES
In this section the results of computing CPT option prices numerically for calls and puts for both writers and
holders according to Equations (3.37), (3.40), (3.42) and (3.44) are discussed. The integrals are approximated
numerically by the trapezoidal rule. The parameters used are: S0 = 100, α= 0.02, r f = 0.02, σ= 0.2, T = 1 and
the number of intervals equals 105 as well as the upper bound of the integral in the case of a call.

In order to verify that the correct option values are obtained by using the trapezoidal rule, first CPT-values
from a writer’s viewpoint under zero prospect sentiment are compared to exact Black-Scholes values. In
Table 3.1 the option prices and the size of the absolute error are given. As can be seen, the option value under
zero prospect sentiment is a close approximation of the exact Black-Scholes value. Note that the accuracy of
the trapezoidal rule in case of puts is significantly higher due to the boundedness of the integral.

Table 3.1: Exact Black-Scholes option prices and cumulative prospect values under zero prospect sentiment. The param-
eters used are: S0 = 100, α= 0.02, r f = 0.02, σ= 0.2 and T = 1.

Call Put
Strike Black-

Scholes
Zero
prospect
sentiment

Absolute
value error

Black-
Scholes

Zero
prospect
sentiment

Absolute
value error

70 31.58 31.58 4.74e-04 0.19 0.19 2.33e-10
80 22.54 22.54 1.09e-03 0.96 0.96 6.99e-10
90 14.81 14.80 1.57e-03 3.02 3.02 1.28e-09
100 8.92 8.91 1.63e-03 6.94 6.94 1.63e-09
110 4.94 4.94 1.32e-03 12.77 12.77 1.60e-09
120 2.55 2.55 8.94e-04 20.17 20.17 1.29e-09

WRITER’S VIEWPOINT

In Table 3.2 and corresponding Figure 3.2 and Figure 3.3 the results of computing call and put option prices
from a writer’s position are reported for different strikes and prospect parameters. The parameters used are:
S0 = 100, α= 0.02, r f = 0.02, σ= 0.2, T = 1 and the number of intervals equals 105 as well as the upper bound
of the integral in the case of a call. As under prospect theory, Moderate TK-sentiment gives again a bit higher
option prices compared to Black-Scholes and TK-sentiment gives significantly higher option values. This
means that under TK-sentiment and Moderate TK-sentiment a writer asks a higher premium. Note that the
put-call parity does not hold anymore under CPT.
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Table 3.2: Option prices in the Black-Scholes model and cumulative prospect values under Tversky-Kahneman sentiment
and moderate Tversky-Kahneman sentiment from a writer’s viewpoint. The parameters used are: S0 = 100, α = 0.02,
r f = 0.02, σ= 0.2, and T = 1.

Call Put
Strike Zero

prospect
sentiment

TK Moderate
TK

Zero
prospect
sentiment

TK Moderate
TK

70 31.58 75.05 35.61 0.19 1.17 0.23
80 22.54 54.66 25.47 0.96 4.07 1.14
90 14.80 38.33 16.82 3.02 9.77 3.51
100 8.91 25.90 10.23 6.94 18.65 7.91
110 4.94 16.80 5.74 12.77 30.78 14.43
120 2.55 10.40 3.00 20.17 46.02 22.70

Figure 3.2: Call option prices from writer’s viewpoint for different strikes. The parameters used are: S0 = 100, µ = 0.02,
r f = 0.02, σ= 0.2 and T = 1.

Figure 3.3: Put option prices from writer’s viewpoint for different strikes. The parameters used are: S0 = 100, α = 0.02,
r f = 0.02, σ= 0.2 and T = 1.

HOLDER’S VIEWPOINT

In Table 3.3 and corresponding Figure 3.4 and Figure 3.5 the results of computing option prices from a holder’s
position are reported for different strikes and prospect parameters. Moderate TK-sentiment gives a bit lower
option prices compared to Black-Scholes and TK-sentiment gives significantly lower option values.
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Table 3.3: Black-Scholes option prices and cumulative prospect values under Tversky-Kahneman sentiment and Mod-
erate Tversky-Kahneman sentiment from a holder’s viewpoint. The parameters used are: S0 = 100, µ = 0.02, r f = 0.02,
σ= 0.2 and T = 1.

Call Put
Strike Zero

prospect
sentiment

TK Moderate
TK

Zero
prospect
sentiment

TK Moderate
TK

70 31.58 11.43 28.08 0.19 0.26 0.19
80 22.54 8.45 20.11 0.96 0.79 0.91
90 14.80 6.12 13.31 3.02 1.69 2.80
100 8.91 4.34 8.12 6.94 3.01 6.27
110 4.94 2.99 4.59 12.77 4.75 11.40
120 2.55 1.99 2.41 20.17 6.91 17.90

Figure 3.4: Call option prices from holder’s viewpoint for different strikes and different levels of prospect sentiment. The
parameters used are: S0 = 100, α= 0.02, r f = 0.02, σ= 0.2 and T = 1.

Figure 3.5: Put option prices from holder’s viewpoint for different strikes and different levels of prospect sentiment. The
parameters used are: S0 = 100, α= 0.02, r f = 0.02, σ= 0.2 and T = 1.

COMPARISON PRICES FROM WRITER’S AND HOLDER’S VIEWPOINT

As we now have computed prices for both calls and puts and both writers and holders the pricing problem
is now considered from both the writer’s and holder’s perspective. In Figures 3.6 and 3.7 call and put prices
under different levels are given from both writer’s and holder’s point of view. The parameters used are again:
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S0 = 100, α= 0.02, r f = 0.02, σ= 0.2, T = 1 and the number of intervals equals 105 as well as the upper bound
of the integral in the case of a call. The figure shows that if an equal level of sentiment is considered for both
writer and holder, there is no agreement about the option price and thus no trade. Therefore, in the following
section cases in which a trade is possible are considered. Also, we see that prices from a holder’s viewpoint are
lower than prices from writer’s viewpoint. The difference between the holder’s and writer’s price depends on
the level of sentiment: the higher the level of sentiment the more the difference between holder’s and writer’s
price. The Black-Scholes price lies between holder’s and writer’s price for all levels of sentiment.

Figure 3.6: Call option prices under cumulative prospect theory from both writer’s and holder’s point of view and Black-
Scholes prices. The Black-Scholes price always lies between the holder’s and the writer’s price. The more the prospect
sentiment, the larger the difference between holder’s and writer’s price. The parameters used are: S0 = 100, α = 0.02,
r f = 0.02, σ= 0.2 and T = 1.

Figure 3.7: Put option prices under cumulative prospect theory from both writer’s and holder’s point of view. The Black-
Scholes price always lies between the holder’s and the writer’s price. The more the prospect sentiment, the larger the
difference between holder’s and writer’s price. The parameters used are: S0 = 100, α= 0.02, r f = 0.02, σ= 0.2 and T = 1.
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3.3.3. TRADING
As seen, for equal levels of sentiment the writer’s and holder’s price are different. The question then arises in
which way it is possible to achieve a trade. In other words, under what conditions does ch = cw and ph = pw

hold? We take a look at the equilibrium for the call option:

cw = e−r T
(
λ

∫ ∞

K
Ψ−(1−F (ST )) f (ST )(ST −K )bdST

)1/a

= e−r T
(

1

λ

∫ ∞

K
Ψ+(1−F (ST )) f (ST )(ST −K )adST

)1/b

= ch

(3.45)

One solution to (3.45) is a = b, γ = δ and λ = 1. In order words, if the writer and holder have the same atti-
tude towards gains, losses and probabilities and if the writer and holder are both not loss averse, the writer’s
price equals the holder’s price. Another solution to (3.45) is a = b, γ = δ and λ = −1. In order words, if the
writer and holder have the same attitude towards gains, losses and probabilities and are both gain averse, the
writer’s price equals the holder’s price. However, this solution is not feasible as gain aversion is very unlikely
and the condition λ< 0 is not satisfied. The trivial solution for ch = cw is a = b = γ= δ= 1 and represents the
BS-framework. We take a look at the equilibrium for the first-mentioned solution: a = b, γ= δ and λ= 1.

In Figure 3.8 call option prices for which ch = cw are given. Note that TK-sentiment now refers to a = b = 0.88,
λ = 1 and γ = δ = 0.69. Moderate TK-sentiment refers to a = b = 0.988, λ = 1 and γ− = γ+ = 0.969. As can be
seen, moderate TK sentiment gives slightly higher option prices for all strikes K . Under TK-sentiment the
prices are lower than the BS-prices for low strikes (in-the money options) and higher than the BS-prices for
high strikes (out-of-the-money options). This can be explained by the overestimation of small probabilities,
see the results of the sensitivity analysis in Section 3.3.4 for weighting parameter γ.

Figure 3.8: Call option prices for which ch = cw under TK-sentiment and moderate TK-sentiment. The parameters used
are: S0 = 100, α= 0.02, r f = 0.02, σ= 0.2 and T = 1.

Note that in case of a BS-writer and a CPT-holder, an agreement about the price is only made in case of
λ= γ= a = b = 1.
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IMPLIED VOLATILITY

We now take a look at the volatility implied by Black-Scholes option prices. In Figure 3.9 the Black-Scholes
implied volatility curves of call options from a writer’s viewpoint are shown. The parameters used are S0 =
100, α = 0.1, r f = 0.05 and σ = 0.2. As can be seen, a higher level of prospect sentiment results in a higher
implied volatility values. This responds to our expectations; the implied volatility derived from the Black-
Scholes equation is increasing in the option price and a higher level of prospect sentiment leads to a higher
option value compared to Black-Scholes prices, see Table 3.2. The lower the strike the higher the differences
between implied volatilities for the different levels of sentiment. Under TK-sentiment the implied volatility
curve is a skew which is a well known effect in the market.

Figure 3.9: Black-Scholes implied volatility curves. The parameters used are S0 = 100, α= 0.1, r f = 0.05 and σ= 0.2.
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3.3.4. SENSITIVITY ANALYSIS

In this section the results of a sensitivity analysis of the cumulative prospect option price with respect to var-
ious parameters are discussed. To this end, the derivatives of the option price with respect to the prospect
parameters and the Black-Scholes parameters are considered for different levels of prospect sentiment and
different strikes. First, the sensitivity towards the prospect parameters is discussed: a risk averse attitude in
the domain of gains (parameter a), a risk-seeking attitude towards losses (parameter b), a loss averse attitude
(parameter λ) and the degree of over- and underweighting of probabilities (parameters γ and δ) are consid-
ered. Hereafter, the sensitivity towards the parameters of the Black-Scholes model are considered by means
of the Greeks. The differences between the sensitivities for different levels of prospect sentiment and different
strikes are discussed and explained.

SENSITIVITIES PROSPECT PARAMETERS

First, we take a look at the sensitivity of the option price towards the prospect parameters. The sensitivity of
a call option price from a writer’s point of view towards prospect parameters a,b,λ and γ is considered for
different levels of prospect sentiment and different strikes K . Remember that the equation for a call option
price from a writer’s viewpoint is given by:

cw = e−r T
(
λ

∫ ∞

K
Ψ−(1−F (ST )) f (ST )(ST −K )bdST

) 1
a

. (3.46)

The sensitivities towards the prospect parameters are derived below.

∂cw

∂a
= e−r T

(
− (λ

∫ ∞
K Ψ−(1−F (ST )) f (ST )(ST −K )bdST )(1/a)log

(
λ

∫ ∞
K Ψ−(1−F (ST )) f (ST )(ST −K )bdST

)
a2

)
,

(3.47)

∂cw

∂b
= e−r T 1

a

(
λ

∫ ∞

K
Ψ−(1−F (ST )) f (ST )(ST −K )bdST

)(1/a)−1 (
λ

∫ ∞

K
Ψ−(1−F (ST )) f (ST )(ST −K )b l og (ST −K )dST

)
,

(3.48)

∂cw

∂λ
= e−r T

(
1

a

)
λ

1
a −1

(∫ ∞

K
Ψ−(1−F (ST )) f (ST )(ST −K )bdST

) 1
a

, (3.49)

∂cw

∂γ
= e−r T

(
1

a

)(
λ

∫ ∞

K
Ψ−(1−F (ST )) f (ST )(ST −K )bdST

)(1/a)−1 (
λ

∫ ∞

K

dΨ−(1−F (ST ))

dγ
f (ST )(ST −K )bdST

)
.

(3.50)

The sensitivities for the option price from a holder’s viewpoint

ch = e−r T
(

1

λ

∫ ∞

K
Ψ+(1−F (ST )) f (ST )(ST −K )adST

)1/b

, (3.51)

can be derived similar to the sensitivities from a writer’s viewpoint.

RESULTS

In this section, first the sensitivities of the call option prices from a writer’s point of view towards prospect
parameters a, b, λ and γ are given for different levels of prospect sentiment and different strikes K in Tables
3.10, 3.11, 3.12 and 3.13. The integrals are approximated numerically by the trapezoidal rule. Hereafter, the
results are discussed.
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Strike Zero TK Mod TK
70 -119.49 -401.19 -140.98
80 -79.97 -277.49 -94.81
90 -47.84 -182.28 -57.33

100 -25.04 -113.63 -30.60
110 -11.16 -66.62 -14.11
120 -3.99 -36.16 -5.36

Figure 3.10: Sensitivity with respect to risk averse attitude for gains a for zero prospect sentiment, TK-sentiment and
Moderate TK sentiment and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 =
100, α= 0.05, r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 125.84 350.72 143.98
80 88.08 253.73 101.08
90 57.23 177.27 66.07

100 34.42 119.63 40.13
110 19.23 77.70 22.71
120 10.05 48.38 12.05

Figure 3.11: Sensitivity with respect to risk-seeking attitude b for losses for zero prospect sentiment, TK-sentiment and
Moderate TK sentiment and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 =
100, α= 0.05, r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 33.54 40.26 34.03
80 24.59 29.86 24.98
90 16.70 21.35 17.04

100 10.45 14.75 10.75
110 6.04 9.81 6.29
120 3.25 6.26 3.43

Figure 3.12: Sensitivity with respect to loss aversion parameter λ for zero prospect sentiment, TK-sentiment and Mod-
erate TK sentiment and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 = 100,
α= 0.05, r f = 0.05, σ= 0.2 and T = 1.
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Strike Zero TK Mod TK
70 -3.89 30.53 -3.50
80 -5.31 13.39 -5.35
90 -7.37 -2.51 -8.03

100 -8.72 -16.76 -9.88
110 -8.39 -24.39 -9.72
120 -6.68 -25.64 -7.91

Figure 3.13: Sensitivity with respect to weighting parameter γ for zero prospect sentiment, TK-sentiment and Moderate
TK sentiment and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 = 100,α= 0.05,
r f = 0.05, σ= 0.2 and T = 1.

The results for the sensitivities for the call option price from a writer’s point are as follows:

• The higher the level of prospect sentiment the higher the absolute size of the sensitivities.

• The absolute sensitivities are highest for risk-seeking parameter b under TK-sentiment. Thus, the risk-
seeking attitude in the domain of losses is most influential on the option price. Under the other levels
of sentiment, the risk averse parameter a is most influential.

• The sensitivities towards risk aversion behavior in the domain of gains parameter a are negative: the
smaller a (a more risk averse attitude for gains) the higher the call price. This is reasonable as the
subjective value assigned to the premium c is lower and the subjective value assigned to possible loss
remains the same (see Equation (3.32) or (3.46)). Therefore, the premium has to be higher in order to
keep the equilibrium.

• The sensitivities towards risk-seeking behavior in the domain of losses parameter b are positive: the
smaller b (a more risk-seeking attitude for losses) the lower the call option price. This is reasonable as
the subjective value assigned to possibles losses is lower and thus the option premium is lower.

• The sensitivities towards loss aversion paramater λ are positive: the larger λ, which means more loss
averse behavior, the higher the option price. This is reasonable as the displeasure related to the writer’s
loss K −ST is higher for higher levels of loss aversion and therefore the option price is higher.

• The absolute sensitivity towards weighting parameter γ is significantly lower than the absolute sensitiv-
ities towards a,b and λ which means that the impact of the parameter γ is less than the other prospect
parameters. In case of a smaller value of γ the degree of overestimation of low probabilities and under-
estimation of high probabilities is higher. For TK-sentiment a higher level of over - and underestimation
leads to lower call option prices in the case of low strikes (in-the-money options) and higher call option
prices in the case of high strikes (out-of-the-money options). This can be explained by the following.
An in-the-money option is a bad position for a writer without hedge, as he will loose money. As un-
der prospect theory the probability of the transformation of an out-of-the-money option into an in-the
money option is overestimated, the writer wants to have more compensation in case of a higher level
of overestimation. This means that the call option price for the out-of-the-money is higher for a lower
value of γ. Similarly, the probability of the transformation of an in-the-money option into an out-of-
the-money option (good position) is overestimated under CPT which results in a lower in-the-money
option price. The above reasoning explains why a lower value of γ, that is to say a higher level of over-
estimation of the probability of turning an out-of the-money option into an in-the-money option and
vice versa, results in a lower option price for in-the-money options and a higher option price for out-
of-the-money options. Note that the level of over- and underestimation is too low in the other levels of
sentiment to see the same effect.
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Next, the sensitivities from a holder’s point of view are considered. In Tables 3.14, 3.15, 3.16 and 3.17 the
sensitivities are given. The results of the sensitivities from a holder’s viewpoint are in line with the sensitivities
from a writer’s viewpoint and are as follows:

• The higher the level of prospect sentiment, the higher the absolute size of the sensitivities. The abso-
lute sensitivities are highest for risk-averse parameter a. In other words, the risk-averse attitude in the
domain of gains is most influence on the option price. The sensitivities towards risk averse behavior
in the domain of gains parameter a are positive. The sensitivities towards risk-seeking behavior in the
domain of losses parameter b are negative as well as the sensitivities towards loss aversion parameter
λ. The sensitivity towards weighting parameter γ are equal in sign to the sensitivities from a writer’s
viewpoint, which is reasonable from Equation (3.46) and (3.51). All sensitivities from a writer’s view-
point are larger than the sensitivities from a holder’s viewpoint in absolute value. In other words, the
writer’s is more sensitive to changes in value of the prospect parameters.

Strike Zero TK Mod TK
70 125.84 54.20 113.62
80 88.08 39.99 79.87
90 57.23 28.91 52.33

100 34.42 20.46 31.90
110 19.23 14.09 18.14
120 10.05 9.39 9.68

Figure 3.14: Sensitivity with respect to risk averse attitude for gains a for zero prospect sentiment, TK-sentiment and
Moderate TK sentiment and for different strikes from a holder’s viewpoint. The Black-Scholes parameters used are S0 =
100, α= 0.05, r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 -119.49 -35.06 -103.98
80 -79.97 -23.32 -69.56
90 -47.84 -14.80 -41.76

100 -25.04 -8.87 -22.05
110 -11.16 -4.89 -9.96
120 -3.99 -2.32 -3.61

Figure 3.15: Sensitivity with respect to risk-seeking attitude b for losses for zero prospect sentiment, TK-sentiment and
Moderate TK sentiment and for different strikes from a holder’s viewpoint. The Black-Scholes parameters used are S0 =
100, α= 0.05, r f = 0.05, σ= 0.2 and T = 1.
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Strike Zero TK Mod TK
70 -33.54 -6.12 -26.83
80 -24.59 -4.59 -19.71
90 -16.70 -3.37 -13.47

100 -10.45 -2.43 -8.53
110 -6.04 -1.71 -5.01
120 -3.25 -1.17 -2.75

Figure 3.16: Sensitivity with respect to loss aversion parameter λ for zero prospect sentiment, TK-sentiment and Mod-
erate TK sentiment and for different strikes from a holder’s viewpoint. The Black-Scholes parameters used are S0 = 100,
α= 0.05, r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 -3.89 7.80 -2.59
80 -5.31 4.44 -4.11
90 -7.37 0.82 -6.30

100 -8.72 -2.06 -7.81
110 -8.39 3.84 -7.74
120 -6.68 -4.53 -6.33

Figure 3.17: Sensitivity with respect to weighting parameter γ for zero prospect sentiment, TK-sentiment and Moderate
TK sentiment and for different strikes from a holder’s viewpoint. The Black-Scholes parameters used are S0 = 100, α =
0.05, r f = 0.05, σ= 0.2 and T = 1.
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SENSITIVITY TOWARDS BLACK-SCHOLES PARAMETERS

Now, the sensitivities of call option prices with respect to the Black-Scholes parameters S, σ, r f and T are
considered from a writer’s viewpoint. First, the sensitivities are derived and hereafter the sensitivities are
considered for different levels of prospect sentiment and different strikes and are explained economically.
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In above equations the derivatives of f (ST ) and F (ST ) are as follows:
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The sensitivities towards the Black-Scholes from a holder’s point view can be derived in a similar way.

In Tables 3.18, 3.19, 3.20 and 3.21 the sensitivities of call option prices towards the Black-Scholes parameters
are given from a writer’s point of view. In Tables 3.22, 3.23, 3.24 and 3.25 the results for a holder’s position are
given. Hereafter, the results are discussed.
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Strike Zero TK Mod TK
70 64.8188 155.2994 72.9567
80 68.2814 150.4690 76.5376
90 64.2769 134.1736 71.8333

100 53.2352 113.2705 59.6364
110 38.9238 91.4325 44.0044
120 25.4689 70.2530 29.2059

Figure 3.18: Sensitivity with respect to interest rate r f for zero prospect sentiment, TK-sentiment and Moderate TK sen-
timent and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 3.65 10.05 4.19
80 4.78 14.17 5.49
90 5.93 17.11 6.80

100 6.41 18.07 7.34
110 5.90 17.29 6.78
120 4.68 15.24 5.43

Figure 3.19: Sensitivity with respect to time horizon T for zero prospect sentiment, TK-sentiment and Moderate TK
sentiment and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
50 0.03 -9.74 0.60
60 0.59 -4.78 1.21
70 4.09 22.85 5.44
80 13.62 66.49 16.66
90 27.17 104.01 32.05

100 37.53 124.10 43.54
110 39.58 127.19 44.78
120 34.08 117.25 39.67
130 25.12 98.75 1 29.60
140 16.42 76.48 19.63
150 9.77 54.79 11.87

Figure 3.20: Sensitivity with respect to volatility parameterσ for zero prospect sentiment, TK-sentiment and Moderate TK
sentiment and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2 and T = 1.
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Strike Zero TK Mod TK
70 0.98 2.35 1.11
80 0.93 2.10 1.04
90 0.81 1.76 0.91

100 0.64 1.42 0.72
110 0.45 1.11 0.51
120 0.29 0.83 0.33

Figure 3.21: Sensitivity with respect to parameter S for zero prospect sentiment, TK-sentiment and Moderate TK sen-
timent and for different strikes from a writer’s viewpoint. The Black-Scholes parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 64.82 23.32 57.43
80 68.28 21.75 60.17
90 64.28 19.08 71.83

100 53.24 113.27 59.64
110 38.92 91.43 44.00
120 25.47 70.25 29.21

Figure 3.22: Sensitivity with respect to interest rate r f for zero prospect sentiment, TK-sentiment and Moderate TK sen-
timent and for different strikes from a holder’s point of view. The Black-Scholes parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 3.65 1.70 3.33
80 4.78 2.42 4.37
90 5.93 2.86 5.39

100 6.41 2.00 5.82
110 5.90 2.91 5.38
120 4.68 2.65 4.33

Figure 3.23: Sensitivity with respect to time horizon T for zero prospect sentiment, TK-sentiment and Moderate TK
sentiment and for different strikes from a holder’s point of view. The Black-Scholes parameters used are S0 = 100,α= 0.05,
r f = 0.05, σ= 0.2 and T = 1.
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Strike Zero TK Mod TK
50 0.03 -2.93 0.70
60 0.59 -0.99 1.20
70 4.09 5.36 4.63
80 13.62 13.31 13.58
90 27.17 19.09 25.71

100 37.53 21.84 34.71
110 39.58 22.23 36.46
120 34.08 20.95 31.67
130 25.12 18.46 1 23.74
140 16.42 15.21 15.83
150 9.77 11.73 9.63

Figure 3.24: Sensitivity with respect to volatility parameter σ for zero prospect sentiment, TK-sentiment and Moderate
TK sentiment and for different strikes from a holder’s point of view. The Black-Scholes parameters used are S0 = 100,
α= 0.05, r f = 0.05, σ= 0.2 and T = 1.

Strike Zero TK Mod TK
70 0.98 0.35 0.87
80 0.93 0.31 0.82
90 0.81 0.26 0.71

100 0.64 0.21 0.56
110 0.45 0.17 0.40
120 0.29 0.13 0.26

Figure 3.25: Sensitivity with respect to parameter S for zero prospect sentiment, TK-sentiment and Moderate TK senti-
ment and for different strikes from a holder’s point of view. The Black-Scholes parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2 and T = 1.
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If the sensitivities from a writer’s point of view are considered, the following results can be derived:

• The higher the level of prospect sentiment, the higher the absolute value of all sensitivities.

• The sensitivities with respect to r and T are in line with the Black-Scholes framework. A higher value of
the interest rate r corresponds to a lower strike K and thus an increase of the option value from a writer’s
viewpoint. The sensitivity with respect to r is further considered in Section 3.3.5. A longer time horizon
T means more possibilities for the stock to rise and fall for which the writer wants a compensation.
This results in a higher option price.

• As expected the sensitivity towards volatilityσ is positive under zero prospect sentiment: higher volatil-
ity leads to a wider range of underlying asset prices which give a higher option price as out-of-the
money prices have no effect while into-the-money prices lead to a higher option value. Also, under
all levels of sentiment the volatility is increasing in the strike K . Now, the sensitivities towards σ for
the different levels of sentiments are considered. If we look at TK-sentiment we see that for in-the-
money options the sensitivity towards σ becomes negative, which can be explained by the negativity
of ∂Ψ−(1−F (ST ))

∂σ for all strikes. A possible economical explanation for this result is the following. An in-
the-money position is a bad position for a writer. If the volatility increases, this leads to a wider range
of asset prices. Therefore, the probability of becoming more in-the-money increases and the proba-
bility of becoming more out-of-the-money increases as well, the first probability being larger than the
latter. Under increasing volatility and low strikes the probability of becoming more in-the-money is
classified as a high probability and the probability of becoming out-of-the-money is classified as a low
probability under increasing volatility. The relatively high chance of being deeper in-the-money (bad)
is underestimated under prospect sentiment. On the other hand, the small chance of becoming out-
of-the-money (good) is overestimated under prospect sentiment. Therefore, for low strikes and under
TK-sentiment, a writer wants less compensation which results in a lower option price.

• The sensitivity towards price S under TK sentiment and under Moderate TK sentiment takes values
above one.

If the sensitivities from a holder’s point of view are considered, the following result can be derived:

• The sensitivities towards the Black-Scholes parameters from a holder’s point of view are have the same
sign as the sensitivities from a writer’s point of view, but are all smaller. Thus, the option price from a
holder’s point of view is less sensitivite to changes in the Black-Scholes parameters.

In conclusion, we now have a clear view on the degree at which irrational behavior and the underlying Black-
Scholes dynamics have impact on the option price for both writers and holder. Also, all sensitivities are ex-
plained from an economical/behavioral point of view.

3.3.5. NEGATIVE INTEREST RATES
In all previous experiments a risk free rate of 2% or 5% is used. However in current economic circumstances
a negative interest rate is possible as well. Therefore, the influence of a negative interest rate on the option
prices for different levels of prospect sentiment is considered in this section. In Figure 3.26 call option prices
for different strikes, different levels of sentiment are compared for positive and negative interest rates from a
writer’s viewpoint. Note that the derived results are in line with the sensitivities from 3.18. It can be concluded
that:

• A negative interest rate increases the call option price for all levels of sentiment.

• The increase in option price for a negative interest rate is larger for lower strikes.

• The increase of the option price under moderate and TK-sentiment relative to zero prospect sentiments
is equal for positive interest rate and negative interest rates or in other words cT K −czer o

czer o
= a for all values

of r f and cModT K −czer o
czer o

= b for all r f with a and b constants. This is also reasonable from Equation (3.33).

In conclusion, the option prices under CPT for negative interest are in line with our expectations; it is possible
to compute option prices with a negative interest rate, but the influence of sentiment on option prices with a
negative interest rate is equal to the influence of sentiment on option prices with a positive interest rate.
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Figure 3.26: Call option prices for zero prospect sentiment, TK-sentiment and Moderate TK sentiment and for different
strikes. The Black-Scholes parameters used are S0 = 100, α= 0.1, σ= 0.2 and T = 1. The dashed line represents a level of
r f =−0.01 and the solid line represents r f = 0.01.

3.3.6. HESTON DYNAMICS
As theoretical option prices derived by the widely known Black-Scholes formula are not in line with market
prices, in previous sections option prices under cumulative prospect theory are computed. Another possible
explanation of the deviation of theoretical option prices from market prices, is the assumed underlying GBM
in which the volatility is deterministic and constant until expiration. Therefore, in this section cumulative
prospect option pricing is combined with Heston dynamics as underlying price process. Then, the impact of
adding sentiment under Heston dynamics is compared with the impact of adding sentiment under GBM.

The Heston stochastic volatility model is given by the following dynamics:

dSt =αSt d t +p
vt St dW x

t ,

d vt = κ(v − vt )d t +χpvt dW v
t .

(3.58)

The correlation between the Brownian motions W x and W v is described by dW v
t dW x

t = ρx,v d t , α is the rate
of return, v is the long term average price variance, κ the speed at which v returns to v and γ the volatility of
the volatility. The process vt is strictly positive if the Feller condition holds: 2κv >χ2. The correlation param-
eter ρ is usually taken negative.

In contrast to GBM, under Heston dynamics there are no closed forms of the density and CDF. Therefore, it is
not possible to approximate the option prices by use of the trapezoidal rule as in the previous sections. In this
section Monte Carlo simulation is used to obtain cumulative prospect option prices. In order to verify that
the results obtained under Heston dynamics with Monte Carlo simulation are in line with the results obtained
under GBM with the trapezoidal rule, firstly prices from a writer’s viewpoint are computed under a reduced
form of the Heston dynamics which in line with dynamics of GBM: χ = 0, k = 1, v = σ2

GB M and v0 = σ2
GB M .

Also, the remaining parameters are chosen equally: S0 = 100, α = 0.02, r f = 0.02, σ = 0.2 and T = 1. The
number of timesteps equals N = 103 and the number of paths used equals M = 104. Table 3.5 shows that the
prices obtained with Monte Carlo simulation are in line with results obtained with the trapezoidal rule.
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Table 3.4: Cumulative prospect option under zero prospect sentiment, Tversky-Kahneman sentiment and Moderate
Tversky-Kahneman sentiment from a writer’s viewpoint and cumulative prospect option values under GBM and under
Heston dynamics with χ= 0, k = 1, v =σ2

GB M = 0.04, v0 =σ2
GB M = 0.04, S0 = 100, α= 0.02, r f = 0.02, σ= 0.2 and T = 1.

GBM Heston - 95%
confidence
interval

Strike Zero
prospect
sentiment

TK Moderate
TK

Zero prospect
sentiment

TK Moderate TK

70 31.58 75.06 35.61 31.55 ± 0.34 74.74 ± 0.51 35.57 ± 0.34
80 22.54 54.66 25.47 22.51 ± 0.32 54.37 ± 0.48 25.42 ± 0.33
90 14.80 38.33 16.82 14.73 ± 0.29 37.97 ± 0.44 16.73± 0.29

100 8.91 25.90 10.23 8.82 ± 0.24 25.51 ± 0.39 10.11 ± 0.24

110 4.94 16.80 5.74 4.88 ± 0.18 16.47 ± 0.34 5.66 ± 0.19
120 2.55 10.40 3.01 2.54 ± 0.1343 10.21 ± 0.30 2.99 ± 0.14

In order to compare option prices under Heston dynamics with option prices under GBM for different levels
of sentiment, the long term volatility of the Heston dynamics is chosen equal to the volatility of the GBM
process. In the following table and graphs the results are presented. The parameters used are: κ= 0.8, χ= 0.1,
v = 0.04, v0 = 0.04, ρx,v = −0.8, S0 = 100, α = 0.02, r f = 0.02, σ = 0.2, T = 1 and the number of paths equals
M = 104.

Table 3.5: Cumulative prospect option under zero prospect sentiment, Tversky-Kahneman sentiment and Moderate
Tversky-Kahneman sentiment from a writer’s viewpoint and cumulative prospect option values under GBM and under
Heston dynamics with κ= 0.2, χ= 0.1, v = 0.04, v0 = 0.04, ρx,v =−0.8, S0 = 100, α= 0.02, r f = 0.02, σ= 0.2, T = 1 and the

number of paths equals M = 104

GBM Heston (95%
confidence
interval)

Strike Zero
prospect
sentiment

TK Moderate
TK

Zero prospect
sentiment

TK Moderate TK

70 31.58 75.06 35.61 31.77 ± 0.32 72.97 ± 0.30 35.74 ± 0.27
80 22.54 54.66 25.47 22.83 ± 0.21 53.19 ± 0.16 25.72 ± 0.10
90 14.80 38.33 16.82 14.99 ± 0.44 36.78 ± 0.41 16.96 ± 0.37

100 8.91 25.90 10.23 8.81 ± 0.32 23.94 ± 0.27 10.06 ± 0.31

110 4.94 16.80 5.75 4.57 ± 0.32 14.47 ± 0.30 5.28 ± 0.27

120 2.55 10.40 3.01 2.08 ± 0.22 7.99 ± 0.16 2.44 ± 0.11
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The following results can be derived:

• The higher the level of sentiment the higher the option price for both GBM and Heston dynamics.

• The option price under Heston dynamics is higher than under GBM for zero prospect sentiment but
lower for the other levels of sentiment.

• If the impact of adding sentiment on the option price is considered, it can be concluded that the impact
of adding sentiment to the Black-Scholes framework is different from the impact of adding sentiment
to the Heston framework. The relative increase in option price from zero sentiment to moderate TK
sentiment and from zero sentiment to TK sentiment is smaller under Heston dynamics than under
GBM. This means that sentiment has less impact on the option price under Heston dynamics than
under GBM. A possible explanation for this result is the following. Under Heston dynamics a stochastic
volatility is assumed instead of a constant volatility as under GBM. This means that a certain form of
sentiment is already incorporated in the pricing process and thus in the option price. Therefore, the
impact adding prospect sentiment is smaller under Heston dynamics than under GBM.

In the following figures and tables the results of computing the sensitivities with respect to the most important
prospect parameters are presented. The parameters used are S0 = 100, α = 0.05, r f = 0.05, σ = 0.2, χ = 0.1,
k = 0.2, ρ =−0.8 v =σ2

GB M = 0.04, v0 =σ2
GB M = 0.04 and T = 1.

Strike Zero TK Mod TK
70 -120.24 -387.20 -141.46
80 -81.135 -268.47 -95.85
90 -48.73 -174.19 -58.10

100 -24.00 -104.480 -30.34
110 -10.30 -56.57 -12.93
120 -4.41 -34.60 -5.58

Figure 3.27: Sensitivity with respect to risk averse attitude for gains a for zero prospect sentiment, TK-sentiment and
Moderate TK sentiment and for different strikes under Heston dynamics. The parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2, χ= 0.1, k = 0.2, ρ =−0.8, v =σ2

GB M = 0.04, v0 =σ2
GB M = 0.04 and T = 1.

Strike Zero TK Mod TK
70 126.38 337.78 144.19
80 88.64 242.86 101.36
90 57.20 166.12 65.72

100 33.37 107.28 38.66
110 17.37 64.61 20.37
120 8.02 35.71 9.54

Figure 3.28: Sensitivity with respect to risk-seeking attitude b for losses for zero prospect sentiment, TK-sentiment and
Moderate TK sentiment and for different strikes under Heston dynamics. The parameters used are S0 = 100, α = 0.05,
r f = 0.05, σ= 0.2, χ= 0.1, k = 0.2, ρ =−0.8, v =σ2

GB M = 0.04, v0 =σ2
GB M = 0.04 and T = 1.
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Strike Zero TK Mod TK
70 33.70 39.11 34.12
80 24.86 29.08 25.19
90 16.93 20.60 17.21

100 10.44 13.82 10.68
110 5.73 8.69 5.94
120 2.79 5.04 2.93

Figure 3.29: Sensitivity with respect to loss aversion parameter λ for zero prospect sentiment, TK-sentiment and Moder-
ate TK sentiment and for different strikes under Heston dyanmics. The parameters used are S0 = 100, α= 0.05, r f = 0.05,

σ= 0.2, χ= 0.1, k = 0.2, ρ =−0.8, v =σ2
GB M = 0.04, v0 =σ2

GB M = 0.04 and T = 1.

The following results can be derived:

• The signs of the sensitivities as well as the parameter of most impact on the option price are in line with
the results obtained under GBM.

• If compared with the results under GBM, the absolute sensitivities are smaller for the two lowest levels
of sentiment and higher for TK-sentiment. In other words, for the highest level of sentiment, the in-
fluence of the prospect parameters on the option price is higher under Heston dynamics than under
GBM. This result is in line with the earlier obtained result about the impact of adding sentiment on the
option price.

• The relative increase in sensitivity from zero sentiment to moderate TK-sentiment and TK-sentiment
is lower under Heston dynamics than under GBM. This result is again in line with the earlier obtained
result about the impact of adding sentiment on the option price.



4
PORTFOLIO MANAGEMENT

Within the financial world portfolio or wealth management is an important activitiy. Portfolio managers are
faced with the problem of investing a certain amount of money in different products over time such that the
maximum possible degree of satisfaction is achieved. In other words, the problem of portfolio management
is to invest a starting wealth in a mix of different assets in order to maximize the subjective value assigned
to it. In this chapter the mathematical formulation of optimal portfolio choice, under different models is
considered. Firstly, the setting under which investments take place is described in Section 4.1. Hereafter, in
Section 4.2, we turn to the traditional way of choosing an optimal portfolio which relies on the maximization
of the return for a given level of risk according to Modern Portfolio Theory or Mean-Variance analysis. Within
this theory individual preferences and risk profiles are absent. After this, we turn to models which incorporate
individual risk profiles. Firstly, in Section 4.3 the optimal portfolio choice under expected utility theory (EUT)
is described. In Section 4.4 the optimal portfolio choice under prospect theory without a weighting function
is presented, including numerical examples. This case may also be referred to as a portfolio choice under loss
aversion. In Section 4.5 a description of the analytical optimal portfolio choice under cumulative prospect
theory is given and applied to our defined value and weighting function. Finally, the optimal wealth for the
different models is compared in Section 4.6.

4.1. MODEL SETTINGS
In this section the settings under which investments take place are described as in [20]. A complete market
is assumed, which means that every security can be exchanged and every risk can be hedged. By the second
fundamental theorem of asset pricing, this implies the existence of a unique probability measure Q. By the
first fundamental theorem of asset pricing, it follows that no arbitrage is allowed and thus all assets have a
unique price at all times [18]. This implies the existence of a unique pricing kernel. When changing from the
objective probability measure P to risk neutral measure Q, the drift is replaced by the risk free rate.

The complete market hypothesis makes several assumptions that are described below:

• A complete probability space (Ω,F ,F,P) describes the market in which P is the objective probability
measure. The P-Brownian motion is N -dimensional and F is the filtration generated by the Brownian
motion defined on the probability space.

• Investors make decisions in a finite time horizon [0,T ], with T <∞. Decisions can be made at any time.

• The market consists of the risk free bank account with price S0 and N risky non-dividend paying assets
with price Si for i = 1,2, ...N . Investors can trade these assets continuously without transaction costs.

The price process of the risk free money market account is represented by S0(t ), for which the dynamics
are given by:

dS0(t ) = r (t )S0(t )d t , (4.1)

with S0(0) = s0 and r (·) the interest rate.

The other assets Si (t ), with i = 1,2, ...N follow Itô processes with drift µi (t ) and volatility σi (t ):

dSi (t ) =µi (t )Si (t )d t +σi (t )Si (t )dB(t ), for i = 1,2, ...N , (4.2)

with S(0) = s, µ1, ...,µN and σ1, ...σN adapted processes.

In vector notation the risky asset vector processes S(t ), µ(t ) and B(t ) are given by:

S(t ) = [
S1(t ) S2(t ) · · · SN (t )

]T
,

43
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µ(t ) = [
µ1(t ) µ2(t ) · · · µN (t )

]T
,

B(t ) = [
B1(t ) B2(t ) · · · BN (t )

]T
.

The volatility matrix is denoted as σM (t ). The dynamics of the risky asset can now be represented in
vector notation as well:

dS(t ) = S(t )µ(t )d t +S(t )σM (t )dB(t ). (4.3)

• The fraction invested in the risky asset, i = 1,2, ...N , at time t is represented by ωi (t ) and the fraction
invested the risk free bank account is represented by ω0(t ). The fraction invested in the risky asset can
be written in vector notation as:

ω(t ) = [
ω1(t ) ω2(t ) · · · ωN (t )

]T
.

Then, for any self-financing portfolio the dynamics of wealth X (t ) at time t can be written in terms of
dB(t ) and S(t ). The dynamics of wealth X (t ) can be described by the following stochastic process in
vector notation:

d X (t ) =ω0(t )r (t )X (t )d t +ω(t )
(
µ(t )′X (t )d t +σM (t )′X (t )dB(t )

)
= (1− ∑

i>0
ωi (t ))r (t )X (t )d t +ω(t )

(
µ(t )′X (t )d t +σM (t )′X (t )dB(t )

)
= r (t )X (t )d t −∑

i
ωi (t )r (t )X (t )d t +ω(t )µ(t )′X (t )d t +ω(t )σM (t )′X (t )dB(t )

= r (t )X (t )d t + (µ(t )− 1r (t ))′ω(t )X (t )d t +σM (t )′ω(t )X (t )dB(t ),

(4.4)

with X (t ) ≥ 0 and 1 represents a vector of (N ×1) ones. The initial wealth equals

X (0) = x0 =ω0(0)S0 +ω(0)s

• The Radon-Nikodym derivative for changing the probability measures is defined by

Z (t ) = dQ

dP
= exp

(
−1

2

∫ t

0
||k(s)||2d s −

∫ t

0
k(s)′dB(s)

)
, (4.5)

in which k(s) denotes the market price of the risk process or the Sharpe ratio. This quantity is defined
as:

k(t ) =σ−1
M (t )(µ(t )− 1r (t )).

The Sharp ratio represents the return of a risky asset over a risk free asset per unit of volatility. Thus, it
is a measure of the degree of compensation of the risk taken in terms of the return of the asset. Note
that the volatility matrix σM (·) is invertible as it is assumed that the market model is complete.
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4.2. MODERN PORTFOLIO THEORY
Modern Portfolio Theory (MPT) was introduced in 1952 by Markovitch [22] as a model for constructing port-
folios of assets in which risk averse investors maximize the expected return for a given level of risk. This
means that under MPT, an investor attempts to construct a portfolio such that risks are diversified, while the
expected return is not reduced. This results in an efficient portfolio; a portfolio for which the expected return
is maximized for a certain level of risk. The collection of efficient portfolios is called the efficient frontier. An
investor chooses between the efficient portfolios of the efficient frontier based on his individual risk profile.
The investor’s individual risk preference can be represented by a function f dependent on the mean µ and

standard deviation σ. It is assumed that ∂ f
∂µ > 0 and ∂ f

∂σ < 0 (risk aversion). An example of pairs (µ,σ) is given
in Figure 4.1. The black line represents the efficient frontier; all assets on the efficient frontier are preferred
over the assets southeast from the efficient frontier as µ is lower and σ is higher for these assets. As an exam-
ple, (µ,σ) pair H is preferred over all assets in the striped region. In MPT the following model assumptions
are made:

• The return of a portfolio is given by: E [rp ] = ∑
i wi E [ri ]. In this equation rp represents the portfolio

return, ri the return of asset i and wi the weight assigned to asset i .

• The variance of the portfolio return is given by: σ2
p =∑

i
∑

j wi w jσi j .

In Section 4.6 the mean-variance trade-off under MPT will be compared to a similar trade-off under PT
and the differences will be discussed.

Figure 4.1: Pairs (µ,σ) with the efficient frontier under MPT.

4.3. PORTFOLIO CHOICE UNDER EXPECTED UTILITY THEORY
In this section the formulation of the portfolio choice under the traditional expected utility theory is de-
scribed. An investor with initial wealth x0 ≥ 0 is considered at time t = 0. The investor creates a portfolio with
an amount of ω0(t ) invested in the risk free bank account and an amount of ω(t ) in the risky asset at time t .
The dynamics of these assets are given by Equation (4.1) and Equation (4.2) and the wealth dynamics at time
t is given by Equation (4.4). The investor aims is to maximize his wealth during the period [0,T ] according to
his subjective value function.

It is assumed that the investor has a power utility function:

u(x) = 1

η
xη

This utility function is a so-called constant relative risk aversion function (CRRA):

r r el
u (x) =−x

xη−1

(η−1)xη−2 = (1−η)
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Under the conditions mentioned in Section 4.1, the following maximization of the expect value of the value
function of terminal wealth X (T ) is considered:

max
ω(t )

EP[u(X (T ))]

subject to d X (t ) = r (t )X (t )d t + (µ(t )− 1r (t ))′ω(t )X (t )d t +σ(t )′ω(t )X (t )dB(t )

X (t ) ≥ 0 ∀t ∈ [0,T ],

X (0) = x0.

(4.6)

In order to obtain the optimal wealth profile for Problem 4.6 the martingale method is used, which will be
explained in the following section.

4.3.1. METHODOLOGY

In this section the martingale method to solve the optimal investment problem is explained. The method con-
sists of first finding the wealth under the optimal strategy after which the trading strategy that corresponds
to this optimal wealth can be found. The method is a probabilistic method which eliminates the dependence
on the specific price dynamics and which focuses on the terminal wealth X (T ) and portfolio replication.

Consider all contingent claims KT which can be replicated by a self financing portfolio with initial capital
x0. Contingent claims are securities which pay one in a particular state of the world and zero otherwise.
Obviously XT is part of this space on which we will focus. Then, Problem 4.6 can be reformulated as a problem
of finding the optimal portfolio of contingent claims with the desired payoff X (T ) in each state. Thus, the
following static problem is equivalent to Problem 4.6:

max
X (T )≥0

EP[u(X (T ))],

subject to X (T ) ∈ KT .
(4.7)

Note that in this formulation there is no relation with the optimal portfolio strategy but instead the focus lies
on the terminal wealth X (T ). In order to separate the problem of determining the optimal terminal wealth
from the problem of determining the optimal portfolio, the following proposition is used:

Proposition 3. Under the assumptions described in Section 4.1, the following equivalence holds for all random
variables X (T ) ∈ KT :

X (T ) ∈ KT ⇐⇒ EQ[e−
∫ T

0 r (s)d s X (T )] = x0.

The intuition behind this proposition is as follows. By the completeness assumption, there exists no arbitrage
and all contingent claims can be replicated by the available assets. The absence of arbitrage implies a unique
price for all assets at any time t . This implies the existence of a unique risk neutral probability measure Q
under which all discounted price processes are martingales.

In the setting described, the terminal wealth X (T ) thus has a unique price under Q. As the initial wealth

equals x0 and X (T ) is constructed from x0, this gives EQ[e−
∫ T

0 r (s)d s X (T )] = x0. This constraint is called the
budget constraint.

Now Problem 4.7 can be reformulated as the following static problem:

max
X (T )≥0

EP[v(XT )],

subject to EQ[e−
∫ T

0 r (s)d s X (T )] = x0.
(4.8)

The budget constraint can be transformed to probability measure P by using the transformation measure

Z (t ) = dQ
dP , i.e.,
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EQ[e−
∫ T

0 r (s)d s X (T )] = EP[e−
∫ T

0 r (s)d s dQ

dP
X (T )]

= EP[e−
∫ T

0 r (s)d s exp

(
−1

2

∫ T

0
||k(s)||2d s −

∫ T

0
k(s)′dB(s)

)
X (T )]

= EP[ρ(T )X (T )],

(4.9)

in which ρ(t ) represents the state price density and is defined as

ρ(t ) := exp

(
−

∫ t

0
r (s)d s

)
Z (t ) = exp

(
−1

2

∫ t

0
||k(s)||2d s −

∫ t

0
k(s)′dB(s)−

∫ t

0
r (s)d s

)
. (4.10)

The state price density defines the price of one unit of wealth. Note that the price density is also dependent
on the state of the world ω besides its dependence on t , so ρ = ρ(t ,ω). However, the dependence on the state
of the world is omitted in the notation in the remainder of this thesis. Also note, that in this caseω is different
from the weighting vector ω earlier defined.

The final form of the optimization problem is now as follows:

max
X (T )≥0

EP[u(X (T ))] = EP[
1

η
(X (T ))η],

subject to EP[ρ(T )X (T )] = x0.

(4.11)

In order to solve this problem the Lagrangian must be maximized over X (T ). The Lagrangian is given by:

L = E P [u(X (T ))]− y(E P [ρ(T )X (T )]−x0)

=
∫
Ω

u(X (T,ω))− y[ρ(T )X (T,ω)−x0]dP (ω).
(4.12)

The Lagrangian L must be maximized over X (T ), which implies that L can be maximized for every ω:

u′(X ∗(T )) = yρ(T ) ⇐⇒

X ∗(T )η−1 = yρ(T ) ⇐⇒

X ∗(T ) = (yρ(T ))
1

(η−1) .

The value for the Lagrange multiplier y follows from the condition E [ρ(T )X (T )] = x0. Substituting the expres-
sion for the optimal wealth X ∗(T ) gives:

E [ρ(T )X ∗(T )] = E [ρ(T )(yρ(T ))
1

η−1 ]

= y
1

(η−1) E [ρ(T )

(
1

η−1 +1
)
]

= y
1

(η−1) E [ρ(T )

(
η
η−1

)
]

= y
1

(η−1) E [e
−r T

(
η
η−1

)
− k2T

2

(
η
η−1

)
−kB(T )

(
η
η−1

)
]

= y
1

(η−1) e
−r T

(
η
η−1

)
− k2T

2

(
η
η−1

)
E [e

−kB(T )
(

η
η−1

)
]

= y
1

(η−1) e
−r T

(
η
η−1

)
− k2T

2

(
η
η−1

)
e

k2
(

η2

(η−1)2

)
T
2

= x0.

(4.13)

An equation for the Lagrange multiplier y is then given by:

y = x0

(
e

r T
(

η
η−1

)
+ k2T

2

(
η
η−1

)
−k2

(
η2

(η−1)2

)
T
2

)(η−1)

. (4.14)

As we now have derived an expression for the optimal wealth X ∗(T ), the optimal wealth can be compared to
the optimal wealth under several models, which will be done in the following sections.
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4.4. PORTFOLIO CHOICE UNDER PROSPECT THEORY - NO WEIGHTING FUNC-
TION

In this section the mathematical formulation of the portfolio choices for loss averse investors is considered
[17]. Individuals who maximize the expected value of the prospect theory value function, but without a sub-
jective weighting function are considered. Thus, the aspects of loss aversion and different risk attitudes for
gains and losses as described in Section 2.2 are included, but the subjective probability weighting is not yet
included. Instead of maximizing the utility function as in Section 4.3, the value function as defined in Section
2.2.1 is maximized. The martingale method is used in order to obtain the optimal wealth profile. The use of
this method results in the maximization of a concave function for gains and the maximization of a convex
function for losses. The optimal terminal wealth in case of the maximization of a concave function should
satisfy the Lagrange condition and the optimal wealth in case of a convex function should be located at the
boundaries.

Under the conditions mentioned in Section 4.1, the following maximization of the expect value of the value
function of terminal wealth X (T ) is considered:

max
ω(t )

EP[v(X (T ))],

subject to d X (t ) = r (t )X (t )d t + (µ(t )− 1r (t ))′ω(t )X (t )d t +σM t )′(t )X (t )dB(t ),

X (t ) ≥ 0 ∀t ∈ [0,T ],

X (0) = x0.

(4.15)

By use of the martingale method, Problem 4.15 can be rewritten as:

max
X (T )≥0

EP[v(X (T ))] =
∫ ∞

−∞
v(x)dF (x) =

∫ θ

−∞
v−(x)dF (x)+

∫ ∞

θ
v+dF (x),

subject to EP[ρ(T )X (T )] = x0.

(4.16)

Recall that v(x) is defined in Section 2.2.1 as:

v(x) =
{

v+(x) = (x −θ)a x ≥ θ,

v−(x) =−λ(θ−x)b x < θ (4.17)

with λ the loss-aversion parameter, a,b the risk attitude parameters and θ the reference level.

4.4.1. RESULTS
In this section, Problem 4.16 is solved in order to obtain the optimal wealth for a loss averse investor who
maximizes the prospect theory value function as in Equation valuefuh2. The optimal wealth for a loss averse
investor is given by the following proposition.

Proposition 4. The optimal wealth X ∗(T ) at time T for a loss averse investor with a value function as in
Equation valuefuh2 and risk aversion parameters 0 < a < 1 and 0 < b < 1 equals:

X ∗(T ) =
θ+

(
yρ(T )

a

)1/(a−1)
if ρ < ρ,

0 if ρ ≥ ρ,
(4.18)

where ρ solves f (ρ) = 0 with f (x) = ( 1−a
a

)( 1
y x

)a/(1−a)
a1/(1−a)−θy x+λθb and y ≥ 0 satisfies E [ρ(T )X ∗(T )] = x0.

Proposition 4 provides insight in the structure of the optimal terminal wealth without specifying the propor-
tion of the portfolio invested in risky assets and the proportion invested in the risk free bank account. As the
problem is now formulated in terms of the prospect value function v(x) and the state price density ρ(T ), the
optimal wealth is a function of those two variables. The proposition shows that the optimal wealth under the
prospect value function is discontinuous. As the payoff is positive (above θ) in “good states” ρ < ρ and zero
in “bad states” ρ ≥ ρ, it is optimal for loss averse-investors to maximize the probability of obtaining a wealth
level above θ.
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Proof. Let X ∗+(T ) be the optimal wealth for the concave value function v+(x) and X ∗−(T ) the optimal wealth
for the convex value function v−(x).

Case X (T ) ≥ θ
First we look at the case X (T ) ≥ θ, in which the value function v+(x) is concave and X ∗+(T ) represents the
optimal terminal wealth. We take a look at the Lagrangian L:

L = EP[v+(X (T )]− y(EP[ρ(T )X (T )]−x0)

=
∫
Ω

v+(X (T,ω))− y[ρ(T )X (T,ω)−x0]dP(ω).
(4.19)

The Lagrangian must be maximized over X (T ). This implies that L can be maximized for every ω. Setting the
first derivative of L equal to zero gives:

v ′
+(X ∗(T )) = yρ(T ), (4.20)

which gives
X ∗(T ) = (v ′

+)−1(yρ(T )). (4.21)

Note that similar to ρ(T ), the optimal wealth X ∗(T ) is dependent on the state of the worldω, which is omitted
in the notation.

Now, the above described technique will be applied to the PT-value function as in Equation (4.17) for which
v+(x) = (x −θ)a .

The derivative of v+(x) equals:
v ′
+(x) = a(x −θ)a−1.

The inverse form of v ′+(x) is determined so,(
v ′+
a

)
= (x −θ)a−1 ⇐⇒

(
v ′+
a

)1/(a−1)

= (x −θ) ⇐⇒ x = θ+
(

v ′+
a

)1/(a−1)

.

In conclusion, the optimal terminal wealth is given by:

X ∗
+(T ) = (v ′

+)−1(yρ) = θ+
(

yρ(T )

a

)1/(a−1)

. (4.22)

Case X ≤ θ
If X (T ) ≤ θ, the value function v−(X ) is convex and thus the optimal wealth X ∗−(T ) is located at X ∗−(T ) = 0 or
at X ∗−(T ) = θ.

Now, the local maxima X ∗− and X ∗+ are compared to find a global maximum. Consider the following equation:

f (ρ(T )) = v+(X ∗
+(T ))− yρ(T )X ∗

+(T )− (v−(X ∗
−(T ))− yρ(T )X ∗

−(T )). (4.23)

If f (ρ(T )) ≥ 0, the optimal solution is given by X ∗+(T ). Else, the optimal solution is given by X ∗−(T ).

When X ∗+(T ) is compared to X ∗−(T ) = θ, the following equation holds for f (ρ):

f (ρ(T )) = (X ∗
+(T )−θ)a − yρ(T )X ∗

++ yρ(T )θ

= a

(
1−a

a

)(
a

yρ

)a/(1−a) (4.24)

from which is clear that f (ρ(T )) > 0 for all ρ(T ) as y > 0 and 0 < a < 1. Therefore, X ∗− = θ can not represent
the optimal wealth.
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When X ∗+(T ) is compared to X ∗−(T ) = 0, then the following equation holds for f (ρ(T )):

f (ρ(T )) = a

(
1−a

a

)(
a

yρ(T )

)a/(1−a)

− yρ(T )θ+λθb . (4.25)

It is clear that f (ρ(T )) > 0 holds for ρ(T ) ≤ λ
y θ

b−1 since λ> 0, y > 0 and 0 < a < 1. As limx→∞ f (x) =−∞ and

f is strictly decreasing, f (ρ) has one zero in [λy θ
b−1,+∞) which is denoted by ρ with f (ρ) = 0. As f is strictly

decreasing, f (ρ) > 0 gives ρ(T ) < ρ and f (ρ(T )) ≤ 0 for ρ ≥ ρ. Thus, X ∗+(T ) is optimal for ρ(T ) < ρ and X ∗−(T )
is optimal for ρ(T ) ≥ ρ.

As we now have an expression for the optimal wealth, the value of Lagrange multiplier y can be determined
in order to give numerical examples in the following section. In order to determine an expression for y , we
first take a look at the distribution of the pricing kernel ρ(T ).

DISTRIBUTION PRICING KERNEL

First, we take a look at the distribution of the pricing kernel ρ(T ). Recall that, assuming a constant interest
rate r , ρ(T ) is defined as:

ρ(T ) = e−
1
2 k2T−kB(T )−r T,

with B(T ) a Brownian motion with a normal distribution N (0,T ).

The expectation of ρ(T ) equals:

E [ρ(T )] = e−
1
2 k2T−r T E [e−kB(T )] = e−

1
2 k2T−r T e

1
2 k2T = e−r T . (4.26)

The variance of ρ(T ) equals:

V ar [ρ(T )] = e−k2T−2r T V ar (e−kB(T )) = e−k2T−2r T ((ek2T −1)ek2T ) = ek2T−2r T −e−2r T . (4.27)

Thus, the distribution of ρ(T ) is log-normal:

ρ(T ) ∼ Log N (e−r T ,ek2T−2r T −e−2r T ). (4.28)

By taking the natural log of ρ(T ), the distribution of ρ(T ) can be written as a normal distribution:

l og (ρ(T )) =−1

2
k2T −kB(T )− r T,

E [l og (ρ(T ))] =−1

2
k2T − r T, (4.29)

V ar [log (ρ(T ))] = k2T. (4.30)

Then, the distribution of log (ρ(T )) equals:

log (ρ(T )) ∼ N (−1

2
k2T − r T,k2T ). (4.31)

LAGRANGE MULTIPLIER

As we now have an expression for the distribution of pricing kernel ρ(T ), we can take a look at the Lagrange
multiplier y . In order to obtain an expression for y the condition E [ρ(T )X ∗(T )] = x0 is examined. Working
out this condition gives:

E [ρ(T )X ∗(T )] = x0 ⇐⇒

E [ρ(T )(θ+
(

yρ(T )

a

)1/(a−1)

)1ρ(T )≤ρ] = x0 ⇐⇒

θe−r T N

(
l og (ρ)+ (r −0.5k2)T

k
p

T

)
+

(
yρ(T )

a

)1/(a−1)

e
a

(1−a) (r+0.5k2)T+0.5( a2

(1−a)2 k2T
N

(
log(ρ)+ (r −0.5k2)T

kT
+ k

p
T

(1−a)

)
.

(4.32)
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Thus in order to obtain a solution for the optimal wealth the following system of equations has to be solved
for Lagrange multiplier y and ρ(T ).

θe−r T N
(

log (ρ)+(r−0.5k2)T

k
p

T

)
+

(
yρ(T )

a

)1/(a−1)
e

a
(1−a) (r+0.5k2)T+0.5 a2

(1−a)2 k2T
N

(
log(ρ)+(r−0.5k2)T

kT + k
p

T
(1−a)

)
= x0,

f (ρ) = ( 1−a
a

)( 1
yρ

)a/(1−a)
a1/(1−a) −θyρ+λθb = 0.

(4.33)

4.4.2. NUMERICAL EXAMPLES
In this section several numerical examples of the optimal wealth profile for investors under loss aversion are
considered. The optimal wealth profile will be considered for different prospect parameters in order to mea-
sure the impact of different levels of prospect sentiment on the optimal wealth profile. Before the results
are considered, first an explanation is given of the way in which the results are achieved and how the results
should be interpreted.

As seen, Equation (4.18) for the optimal wealth under loss aversion is in terms of state price density ρ(T ).
Therefore, in the following examples the optimal wealth will be plotted against the state price density ρ(T ).
Thus, the x-axis represents the price of one unit of wealth from low to high: low prices of one unit of wealth are
related to good states of the world and high prices are related to bad states of the world. The y-axis represents
the optimal wealth X ∗(T ). In all examples, a constant interest rate r and a constant Sharpe ratio k over time
are considered. The expression of ρ(T ) from Equation (4.10) reduces in this case to:

ρ(T ) = e−r T− k2T
2 −kB(T ).

The x-axis values of all figures are obtained by simulating N = 105 paths of the process ρ(t ) on [0,T ] using
n = 103 steps. The possible outcomes of these simulations at final time T are displayed on the x-axis. Note
that for all examples the same set of simulated paths ρ(T ) is used. The histogram of these simulated values is
given in Figure 4.2 and shows a lognormal distribution with mean and variance as defined in Equation 4.26
and 4.27. In order to obtain the optimal wealth profile, the Lagrange multiplier y and the value of ρ are ob-
tained by solving the equations f (ρ) = 0 and E [ρ(T )X ∗(T )] = x0 numerically.

Figure 4.2: Normalized histogram of pricing kernel ρ(T ) with parameters r = 0.5%, k = 0.3 and T = 1.

In Figure 4.3 the optimal wealth X ∗(T ) of an investor with the prospect value function is plotted against
the state price density ρ(T ). The parameters used in Figure 4.3 are r = 0.5%, k = 0.3, T = 1, θ = x0 = 1,
a = b = 0.88 and λ = 2.25, which refers to prospect sentiment. As expected, the wealth profile is decreasing
in the state price density ρ(T ); if the price of one unit of wealth is higher under identical conditions for the
other parameters, the obtained optimal wealth is lower. However, the wealth profile is not continuous: for
bad states of the world with ρ(T ) > ρ the wealth profile goes to zero discontinuously. This discontinuity is
caused by the S-shape of the value function with respect to a reference point: for wealth levels above the
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reference point θ (gains) a concave function is optimized and for wealth levels below the reference point θ
(losses) a convex function is optimized. For values of ρ(T ) < ρ, corresponding to a low price of one unit
of wealth, the optimum of the concave function for gains dominates. This optimum is above the reference
level θ. For values ρ(T ) > ρ, corresponding to a high price of one unit of wealth, the optimum of the convex
function for losses dominates. This optimum equals zero. As the payoff is above θ in relatively good states of
the world and equal to zero in relatively bad states of the world, an investor should maximize the probability
of reaching the reference level θ. Note that if the value function would be globally concave, the wealth profile
would continuously tend to the reference level θ:

lim
ρ(T )→∞

X ∗
+(T ) = lim

ρ(T )→∞

(
θ+

(
yρ(T )

a

) 1
(a−1)

)
= lim
ρ(T )→∞

(
θ+

(
a

yρ(T )

) −1
(a−1)

)
= θ (4.34)

The last step in Equation (4.34) follows from the fact that 0 < a < 1 and y ≥ 0 constant.

Figure 4.3: Optimal wealth X∗(T ) at time T against the state price density ρ(T ) for an investor with a prospect value
function. The parameters used are: r = 0.5%, k = 0.3, T = 1, θ = x0 = 1, λ= 2.25 and a = b = 0.88, which refers to prospect
sentiment.

In Figure 4.4 the optimal wealth profile for different levels of the loss aversion λ is given under identical con-
ditions for the other parameters. A lower level of loss aversion corresponds to a lower level at which losses
are more painful than gains of comparable size are pleasant. As can be seen, a higher level of loss aversion
results in a higher value of ρ: there is a larger range of values ρ(T ) for which X ∗(T ) ≥ θ. This is in line with our
expectations. If the level of loss aversion increases, the degree at which losses are painful than gains are plea-
surable increases. Therefore, the optimal wealth is the optimal wealth of the gain part for a broader range of
ρ(T ) values. In other words, the optimal wealth X−(T ) = 0 for losses is obtained for a worse state of the world
or a higher value of the state price density ρ(T ). As can be seen, a higher level of loss aversion also results in
a lower optimal wealth profile for values of ρ(T ) < ρ(T ). As the investor is more averse for losses, a larger part
of the wealth is used for buying insurances to protect against potential losses. This results in a lower optimal
wealth profile in good states.

In Figure 4.5 the optimal wealth profile for different levels of starting wealth x0 is given. The higher the start-
ing wealth the higher the optimal wealth for good states ρ(T ) < ρ(T ), for example for x0 = 1 for ρ(T ) < 1.4.
This means that if the starting wealth increases, the investor decreases the amount of wealth invested in in-
surances for protecting against potential losses: the investor is less careful as his wealth is larger. On the other
hand, the higher x0 the wider the range of ρ(T )-values for which the investor buys insurances.
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Figure 4.4: Optimal wealth at time X∗(T ) at time T for an investor with a prospect value function for different levels of
loss aversion λ. The parameters used are: r = 0.5%, k = 0.3, T = 1, θ = x0 = 1 and a = b = 0.88.

Figure 4.5: Optimal wealth X∗(T ) at time T for an investor with a prospect value function for different levels of starting
wealth x0. The parameters used are: r = 0.5%, k = 0.3, T = 1, θ = x0 = 1, a = b = 0.88 and λ= 2.25.

4.5. PORTFOLIO CHOICE UNDER CUMULATIVE PROSPECT THEORY
In the previous section a solution for the optimal wealth under the prospect value function without a weight-
ing function is obtained and numerical examples related to this wealth were considered. The phenomena of
loss aversion and individual risk attitudes are incorporated, but the subjective weighting function is absent
which is however an essential part of cumulative prospect theory; cumulative prospect theory describes hu-
man behavior by using an S-shaped value function, a reference point and probability weighting functions.
In the context of investment problems, the use of a non-linear probability weighting function and a partly
concave and partly convex value function leads to highly involved problems, that are not solvable via con-
ventional approaches for expected utility maximization such as dynamic programming and the martingale
approach. Therefore, in this section a new approach is considered.
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In this section first the objective function of cumulative prospect theory without a weighting function is com-
pared to the objective function of CPT. Then, in Section 4.5.1, the portfolio optimization problem under CPT
is described. In Section 4.5.2 the difficulties related to this problem that make it impossible to use conven-
tional approaches are discussed. In Section 4.5.4, the mathematical approach to deal with the CPT-portfolio
problem is discussed according to [16] and [14]. It should be noted that the main purpose of these sections is
to give a general idea of the solution procedure and the final solution of the CPT-optimization problem. Due
to the difficulty of the problem, the proofs of the theories to obtain the final result are extensive. Therefore,
these proofs are not included in this thesis. However, all the proofs can be found in [16] and [14]. The final
goal is to apply the described solution procedure of Section 4.5.4 to our defined value and weighting func-
tions in order to derive an expression for the optimal wealth. This is described in Section 4.5.5. Then, these
results are compared with the results of Section 4.4, in Section 4.6, in order to measure the degree at which
the weighting function influences the final optimal wealth profile.

COMPARISON

First, we take a look at the objective functions that are maximized under prospect theory without a weighting
function (Section 4.4) and under cumulative prospect theory. Recall that under prospect theory without a
weighting function the goal is to maximize the expected value of the value function of wealth X (T ) at time T .
The quantity to maximize equals:

VPT (X (T )) = E [v(X (T )] =
∫ ∞

−∞
v(x)dFX (x) =

∫ θ

−∞
v−(x)dFX (x)+

∫ ∞

θ
v+(x)dFX (x). (4.35)

As can be seen, v is a non-linear distortion on x when evaluating the mean of X (T ).

Now the following CPT-criterion is considered, for example, for gains:

VC PT (X+(T )) =
∫ +∞

−∞
w(P (v(X +) > v(x))d v(x)

=
∫ +∞

−∞
w(P (X + > x)d v(x)

=
∫ ∞

−∞
w(1−F (x))d v(x)

=
∫ ∞

−∞
v(x)d [−w(1−F (x)]

=
∫ ∞

−∞
v(x)w ′(1−F (x))dF (x).

(4.36)

In this derivation, the fourth equality follows from integration by parts. In this equality the CDF is distorted by
the weighting function in contrast to Equation (4.35). In the last equality, w ′(1−FX (x)) represents a weight as-
signed to F (x). Thus, in the CPT-criterion the risk attitude is incorporated by the non-linear weight assigned
to the decumulative distribution rather than only the value function applied to the payoff x as in Equation
(4.35).

The prospect value of the terminal wealth X (T ) can now be written as

VC PT (X (T )−θ) =V +
C PT (X +(T )−θ)−V −

C PT (X −(T )−θ),

where

VC PT (X (T )) =V +
C PT (X +(T ))−V −

C PT (X −(T ))

=
∫ ∞

0
w+(P (v+(X +(T )) ≥ x))d x −

∫ ∞

0
w−(P (v−(X −(T )) ≥ x))d x

=
∫ ∞

0
w ′

+(1−F (x))v+(x) f (x)d x −
∫ ∞

0
w−(P (v−(X −(T )) ≥ x))d x

=
∫ ∞

0
w ′

+(1−F (x))v+(x) f (x)d x +
∫ 0

−∞
w ′

−(1−P (v−(X −) ≥ y))d y

=
∫ ∞

0
w ′

+(1−F (x))v+(x) f (x)d x +
∫ 0

−∞
w ′

−(F (y))v−(y) f (y)d y.

(4.37)
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Note that the result of Equation (4.36) is used and that definition 4.37 is equivalent to the CPT-value, as de-
fined in Equation (3.31).

In the coming sections general definitions of the value and weighting functions are used. The CPT-agent
considered has a reference point zero at time T , to which the terminal wealth X (T ) is evaluated as a gain or a
loss. The overall value function is S-shaped and is given by:

v(x) = v+(x)1x≥0(x)− v−(x)1x<0 (4.38)

In this equation the functions v±(x) are strictly increasing and concave functions on R+ satisfying v±(0) = 0
and representing risk-aversion on gains and risk-seeking on losses. Note that the value function in cumu-
lative prospect theory as formulated in Definition 2.6 satisfies the general definition 4.38 with v+(x) from
Definition 4.38 equal to v(x) from Definition 2.6 and similarly v−(x) equal to v(−x). The functions w±(x) are
non-linear, nondecreasing and differentiable probability distortions on gains and losses from [0,1] to [0,1]
satisfying w±(0) = 0, w±(1) = 1 and w±(p) > p for p close to 0, and w± < p for p close to 1. Note that the
weighting function as formulated in Definition 2.7 satisfies above definition.

4.5.1. MODEL
The setting in which investments take place under CPT is equal to the setting as described in Section 4.1. The
CPT portfolio choice problem in terminal wealth X (T ) can be formulated as:

max
X (T )≥0

VC PT (X (T )) ,

subject to EP[ρ(T )X (T )] = x0.
(4.39)

Once this problem is solved with optimal value X ∗(T ), the optimal portfolio is the portfolio which replicates
X ∗(T ). Note that in the case of w+(x) = x, the equation for V +

C PT (X ) reduces to V +
C PT (X +(T )) = E [v+(X (T ))]

and identically if w−(x) = x then the equation of V −
C PT (X (T )) reduces to V −

C PT (X −(T )) = E [v−(X (T ))]. Note
also that it is assumed that the investor’s behavior only affects his value function and not the market: the con-
dition E [ρ(T )X (T )] = x0 is according to market pricing and is not influenced by an individual value function.
The optimization problem 4.39 has different features compared to portfolio optimization under expected
utility theory as in Section 4.3 and the optimization problem under loss aversion as in Section 4.4. In the
following section it will be clear that Problem 4.39 is a difficult problem to solve. The difficulties arise from
the overall S-shaped value function instead of a global convex/concave value function and the non-linear
probability weighting function.

4.5.2. DIFFICULTIES
In this section the difficulties related to optimization problem 4.39 are described: time-inconsistency and
absence of global concavity/convexity. Due to these difficulties, it is not possible to apply conventional tech-
niques to solve the optimization problem.

TIME INCONSISTENCY

The use of the probability weighting function causes the phenomonon of time-inconsistency. Time-consistency
holds if and only if the trade-off between CPT-values at time τ and τ′ is evaluated equally at time 0 and at time
t for all τ,τ′ and t :

V τ,0
C PT

V τ′,0
C PT

= V τ,t
C PT

V τ′,t
C PT

. (4.40)

An example of time-inconsistency under discrete prospect theory, see Definition 11, is given below. Note that
under CPT the line of thought is similar.
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Consider an agent at the casino. The following time positions are considered:

• τ: time after winning five bets.

• τ′: time after winning three bets.

• t : time after winning two bets.

The agent gains two euros for every winning bet. When the agents enters the casino, he knows that the prob-
ability of winning five bets in a row, and hence of accumulating a total of ten euros, is very low:

P (winning five bets in a row) =
(

1

2

)5

= 1

32

The probability of winning three bets in a row and thus of gaining six euros equals:

P(winning three bets in a row) =
(

1

2

)3

= 1

8
.

However, if the agent actually wins the first two bets, the probability of winning the fifth bet and hence of
winning ten euros equals:

P(winning five bets in a row|first two bets won) = 1

8
.

Similarly, the probability of winning three bets given the agent already won the first two bets equals:

P(winning three bets in a row|first two bets won) = 1

2
.

The trade-off of Equation (4.40) can now be written as:

V τ,0
pr os

V τ′,0
pr os

= w( 1
32 )v+(10)

w( 1
8 )v+(6)

6= V τ,t
pr os

V τ′,t
pr os

= w( 1
8 )v+(10)

w( 1
2 )v+(6)

. (4.41)

The inequality is caused by the non-linear weighting function w(x), as defined in Equation (2.4). As time
passes, the probabilities of final outcomes change, which in turn means that the degree to which the agent
under- or overweights these outcomes also changes. For example, under probability weighting, a moder-
ate probability outcome is underweighted while a low probability is overweighted. The fact that some final
outcomes are initially overweighted but subsequently underweighted, or vice-versa, means that the agent’s
preferences over gambling strategies change over time [23]. Due to the absence of time-consistency, it is not
possible to solve Problem 4.39 via dynamic programming. First, the absence of these properties is discussed,
after which the solution procedure is discussed in Section 3.5.4.

ABSENCE OF GLOBAL CONCAVITY/CONVEXITY

If we look at the objective function 4.36 of Problem 4.39, the global concavity of the left integral (gains) and
the global convexity of the right integral (losses) is destroyed by the derivatives of the non-linear weighting
functions w−(x) and w+(x) which will be elaborated below. Similar to the function to maximize in the proof
of Proposition 4 in Section 2.1, the aim now is to maximize in a pointwise fashion,

w ′
+(1−F (x))v+(x)− y[ρ(T )x −x0]. (4.42)

However, if we look at the second derivative of w ′+(1−F (x))v+(x), this equals:

w ′′′
+ (1−F (x)) f (x)2v+(x)+w ′′

+(1−F (x)) f ′(x)v ′
+(x)+w ′′

+(1−F (x)) f (x)v ′
+(x)+w ′′

+(1−F (x)) f (x)v ′
+(x)+w ′

+(1−F (x))v ′
+(x)

(4.43)
The second derivative is clearly not concave in x. Therefore, the method applied as in Section 4.4 for investing
under loss aversion is not applicable. The problem of non-concavity will be solved in the next sections using
a transformation. This transformation turns the problem in a concave maximization problem for which the
Lagrangian multiplier method can be applied.
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In case of losses the aim is to maximize in a pointwise fashion:

w ′
−(F (x))v−(x)− y[ρ(T )x −x0]. (4.44)

If we look at the second derivative it is equal to:

w ′′′
− (F (y)) f (y)2v−(y)+w ′′

−(F (y)) f (y)′v−(y)+w ′′
−(F (y)) f (y)v−′(y)+w ′′

−(F (y)) f (y)v ′
−(y)+w ′

−(F (y))v ′′
−(y).

(4.45)
The second derivative is clearly not convex in x.

4.5.3. ILL-POSEDNESS
Prior to discussing the solution procedure of Problem 4.39, first the ill-posedness of the problem is consid-
ered. A maximization problem is called ill-posed if its supremum is not finite. This means that an investor
can reach an infinite value without taking into consideration the payoffs. Under the CPT-model the well-
posedness is not guaranteed. The following theory holds for ill-posedness:

Theorem 3. Problem 4.39 is ill-posed under one of the following conditions:

1. There exists a non-negative FT -measurable random variable X such that E [ρ(T )X (T )] <∞ and V +
C PT (X (T )) =

+∞.

2. v+(∞) =+∞, ρ(T ) =+∞ and w−(x) = x.

The first part of Theorem 3 states that the problem is ill-posed if one can find a claim which is non-negative
and which has a finite price and an infinite cumulative prospect value. Thus, the investor can buy the claim
at initial time and reach a infinite value at final time. The second part states that if the value function can
reach arbitrarily large values, a probability weighting function on losses is necessary in order to have a well-
posed problem. In order to exclude the ill-posedness of Problem 4.39, it is assumed that V +

C PT (X ) <∞ for any
nonnegative FT -measurable random variable X satisfying E [ρ(T )X (T )] < +∞. Note that the ill-posedness
as stated in part in Theorem 3 is automatically excluded by the non-linearity of the cumulative prospect
weighting function.

4.5.4. SOLUTIONS
In order to solve the continuous-time CPT problem, methods are needed to handle the S-shaped value-
function and the probability distortion. To handle the S-shaped value function, the problem is decomposed
into a gain part problem and a loss part problem. The gain part problem is a maximisation problem involving
a concave value function and a probability distortion. The probability distortion is overcome by a quantile
formulation, which changes the random variable X (T ) to its quantile. The loss part problem is to minimise a
concave function which leads to corner point solutions. Hereafter, the solutions of the gain part problem and
the loss part problem are combined in an optimal way to solve the original problem.

STEP 1
In Step 1, the problem is decomposed into two subproblems. The splitting of the problem is based on the
following. If X (T ) is feasible for Problem 4.39, then it can be split in X +(T ), which defines an event A =
{X (T ) ≥ 0} and initial price x+ = E [ρ(T )X +(T )], and X −(T ) which corresponds to Ac and E [ρ(T )X −(T )] = x+−
x0. After solving the gain- and loss part problems, their solutions are combined by optimising the parameters
in the first step in order to find the optimal A and x+.

• Gain part problem with parameters (A, x+)

max
X (T )

V +
C PT (X (T )) = ∫ ∞

0 w+(P (v+(X (T )) > y))d y,

subject to E [ρ(T )X (T )] = x+, X (T ) ≥ 0 a.s , X (T ) = 0 a.s. on Ac ,
(4.46)

with x+x+
0 ≥ 0 and A ∈FT given. Note that V +

C PT (X (T )) is finite for any feasible X (T ) as assumed. Let’s
denote ν+(A, x+) the optimal value of Problem 4.46. The following three cases are possible:

– If P (A) > 0, then the feasible region of Equation (4.46) is non-empty: let

X (T ) = x+1A

ρ(T )P (A)
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then
E [ρ(T )X (T )] = x+

P (A)
E [1A] = x+

. In this case ν+(A, x+) is defined as the supremum of Problem 4.46.

– If P (A) = 0 and x+ = 0, then the only feasible solution is X (T ) = 0 and thus ν+(A, x+) = 0.

– If P (A) = 0 and x+ > 0 then the problem has no feasible solution and we define ν+(A, x+) =−∞.

• Loss part problem with parameters (A, x+)

min
X (T )

V −
C PT (X (T )) = ∫ ∞

0 w−(P (v−(X (T ) > y))d y,

subject to E [ρ(T )X (T )] = x+−x0, X (T ) ≥ 0 a.s. , X (T ) = 0 a.s. on A,
(4.47)

with x+ ≥ x+
0 and A ∈FT given.

Let’s denote ν−(A, x+) the optimal value of problem (4.47). Again we have three cases:

– If P (A) < 1, then v−(A, x+) is defined as the infimum of Problem 4.47.

– If P (A) = 1 and x+ = x0, then the only feasible solution is X (T ) = 0 and then ν−(A, x+) = 0.

– If P (A) = 1 and x+ 6= x0, then there is no feasible solution and we define ν−(A, x+) =∞.

STEP 2

In Step 2 the solutions from the gain part problem and the loss part problems are combined in an
optimal way to solve the original problem. The following problem is solved:

maximize
(A,x+)

ν+(A, x+)−ν−(A, x+),

subject to

{
A ∈FT , x+ ≥ x+

0 ,

x+ = 0 when P (A) = 0, x+ = x0 when P (A) = 1.

(4.48)

Problem 4.48 consists of finding the optimal event A which means the optimal split between good states
(gains) and bad states (losses) and the corresponding price of the gains x+.

JUSTIFICATION

The justification of splitting the original problem in two subproblems is based on the following two proposi-
tions.

Proposition 5. Problem 4.39 is ill-posed, iff Problem 4.48 is ill-posed.

Proposition 6. Given X ∗(T ) and define A∗ = {ω : X ∗(T ) ≥ 0} and x∗+(T ) = E [ρ(T )(X ∗)+(T )]. Then X ∗(T ) is
optimal for 4.39 iff (A∗, x∗+) are optimal for Problem 4.48 and X ∗+(T ) and X ∗−(T ) are optimal respectively for
problems 4.46 and 4.47 with parameters (A∗, x∗+).

The implication of the propositions 5 and 6 is that the original Problem 4.39 is equivalent to the combination
of problems 4.46, 4.47 and 4.48. As a consequence, a solution of 4.39 can be obtained via the solutions of
problems 4.46, 4.47 and 4.48.

SIMPLIFICATION

If we look at the optimization problem of Step 2, the decision variables are a real number x+ and a random
event A. In order to solve this problem the following theorem from [14] is used:

Theorem 4. For any feasible pair (A, x+) of Problem 4.48, there exists a real number d ∈ [ρ,ρ] such that A =
{ω : ρ ≤ d} satisfies:

v+(A, x+)− v−(A, x+) ≥ v+(A, x+)− v−(A, x+).
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According to Theorem 4, only events of the form A = {ρ(T ) ≤ d} have to be considered with d real. Thus,
the event of having gains is characterised by the pricing kernel and a threshold. In view of Theorem 4, Prob-
lem 4.48 can be replaced by a simpler problem, where ν+(d , x+) denotes ν+({ω : ρ(T ) ≤ d}, x+) and ν−(d , x+)
denotes ν−({ω : ρ(T ) ≤ d}, x+):

maximize ν+(d , x+)−ν−(d , x+),

subject to

{
ρ ≤ d ≤ ρ, x+ ≥ x+

0 ,

x+ = 0 when d = ρ, x+ = x0 when d = ρ,

(4.49)

with ρ and ρ the essential upper- and lower bounds.

The following theory characterizes the solution of Problem 4.49:

Theorem 5. Given X ∗(T ) and let d∗ = F−1(P {X ∗ ≥ 0}), x∗+ = E [ρ(X ∗)+], with F representing the cdf of ρ. The
wealth X ∗ is optimal for the original Problem 4.39 iff (d∗, x∗+) is optimal for the simplified Problem 4.49 and
(X ∗)+1ρ≤d∗ and (X ∗)−1ρ>d∗ are optimal for the subproblems 4.46 and 4.47 with parameters ({ω : ρ ≤ d∗}, x∗+).
In this case {ω : X ∗ ≥ 0} and {ω : ρ ≤ d∗} are identical.

Now the gain part problem is solved in order to obtain ν+(d , x+) and the loss part problem is solved in order
to obtain ν−(d , x+)

GAIN PART PROBLEM

In this section, the gain part problem is solved with A = {ω : ρ ≤ d}, ρ ≤ d ≤ ρ and x+ ≥ x+
0 > 0. To solve the

gain part problem, first a more general gain part problem is considered according to []

max
X (T )

V +
C PT (X (T )) =

∫ ∞
0 w(P (v+(X ) > y))d y,

subject to E [ρ(T )X (T )] = x+, X (T ) ≥ 0.
(4.50)

Note that it is assumed that x+ ≥ x+
0 > 0 as the case x+ = 0 gives the trivial solution X ∗(T ) = 0.

CHANGE OF VARIABLES: QUANTILE FORMULATION

As already seen, v+ is a concave function but the objective function V +
C PT (X (T )) is not concave in y due to the

weighting function w+(x) resulting in a non-convex optimization problem with a constraint. To overcome
this problem, the quantile formulation is used according to [15]. The decision variable X (T ) is changed to its
quantile function G . This transformation results in concavity in terms of G .

The idea of the quantile formulation is the following: as X ∼GX (Z ), with Z ∼U (0,1), where GX is the quantile
function of X , X can be replaced by GX (Z ) without changing the value of the objective function. In order to
solve Problem 4.50 the following lemma and assumption can be used:

Lemma 6. If an optimal solution is admitted to Problem 4.50, then it is of the form: X ∗(T ) = G−1(1−Fρ)(ρ)
with G(·) the distribution function of X ∗(T ).

Assumption 1. The CDF of pricing kernel ρ is continuous.

With the use of Lemma 6 and Assumption 1 a change of variables method will be used to eliminate the
negative effect of the weighting function for solving the gain part problem. Denote by Z = 1−Fρ(ρ), then
Z ∼U (0,1) and ρ = F−1

ρ (1− Z ), due to the fact that ρ has a continuous CDF. As a result of Lemma 6 the deci-

sion variable of Problem 4.50 is of the form G−1(Z ), with G(·) the distribution function of X ∗(T ). Therefore,
we will write Problem 4.50 in terms of G(·).
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The objective function of Problem 4.50 can be rewritten as:

V +
C PT (X (T )) =

∫ ∞

0
w(P (v+(X ) > y))d y

=
∫ ∞

0
v+(x)d [−w(1−F (x)]

=
∫ ∞

0
v+(x)w ′(1−F (x))dF (x)

=
∫ 1

0
v+(Gx (z))w ′(1− z))d z

= E [v+(GX (Zρ)w ′(1−Zρ)].

(4.51)

Thus, Problem 4.50 can be rewritten by using a quantile formulation as:

max
GX (T )

V+
C PT (X (T )) = ∫ 1

0 v+(GX (z))w ′(1− z)d z = E [v+(GX (Zρ))w ′(1−Zρ)],

subject to
∫ 1

0 GX (z)F−1
ρ (1− z)d z = E [F−1

ρ (1−Zρ)GX (Zρ)] = x+,G ∈ G.
(4.52)

in which G is the set of quantile functions and F−1
ρ is the quantile function of pricing kernel ρ. Because ρ

has a continuous CDF, the function F−1
ρ is strictly increasing. Note that while the original problem was not

concave in X , the objective function of Problem 4.52 is concave in GX . The second derivative reads:

v ′′
+(GX (Zρ))w ′(1−Zρ). (4.53)

As v ′′+ < 0 and w ′ > 0 the second derivative is negative and thus the objective function is concave in GX .
The original problem is now transformed into a problem which is solvable via conventional techniques. Be-
fore solving the transformed problem, first the equivalence of the transformed and the original problem is
considered. The following lemma from [14] shows the equivalence of the original Problem 4.50 and the trans-
formed Problem 4.52.

Proposition 7. If G∗ is optimal for Problem 4.52, then X ∗(T ) = (G∗)−1(Z ) optimal for Problem 4.50 and also
conversely if X ∗ optimal for Problem 4.50, then its distribution function G∗ is optimal for Problem 4.52 and
X ∗(T ) = (G∗)−1(Z ).

In order to solve problem 4.52 the Lagrange multiplier method now can be used as the objective function is
concave with respect to the quantile function and the constraint is linear. The following problem is consid-
ered:

max
G∈G

L =
∫ 1

0
v+(GX (z))w ′(1− z)− yGX (z)F−1

ρ (1− z)d z, (4.54)

for some y > 0. In order to solve this problem, the Lagrangian can be maximized in a pointwise fashion for
each z ∈ (0,1). Setting the derivative equal to zero gives:

v ′
+(GX (z))w ′(1− z)− yF−1

ρ (1− z) = 0,

and thus

G∗
X (z) = (v ′

+)−1

(
yF−1

ρ (1− z)

w ′(1− z)

)
. (4.55)

for z ∈ (0,1) and y > 0 satisfying
E [G∗(1−F−1

ρ (ρ(T ))ρ(T )] = x+

It is assumed that
F−1
ρ (1−z)

w ′(1−z) is non-decreasing and thus the solution 4.55 is a quantile function. Once G∗(·) is
obtained, the optimal terminal wealth X ∗(T ) can be obtained by X ∗(T ) =G∗(1−Fρ(ρ)), according to Lemma
6.

Now we turn back from the general gain part related to Problem 4.50 to Problem 4.46. In order to obtain an
optimal solution for the positive part Problem 4.46, the general results described above for Problem 4.50 are
applied to Problem 4.46 with A = {ρ(T ) ≤ d} and x+ ≥ x+

0 > 0. It is assumed that P (A) > 0 or d > ρ. Then, the
following theory holds for the optimal solution of Problem 4.46.
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Theorem 7. Given A = {ω : ρ(T ) ≤ d} with ρ ≤ d ≤ ρ and x+ ≥ x+
0 > 0.

Then, the optimal solution for Problem 4.46 is given by:

X ∗
+(T ) =

(
(v ′

+)−1
(

yρ

w ′+(Fρ(ρ)

))
1ρ(T )≤d ,

with optimal value

v+(c, x+) = E [v+
(
(v ′

+)−1
(

yρ(T )

w ′+(Fρ(ρ(T ))

))
w ′

+(Fρ(ρ(T ))1ρ≤d ],

with y > 0 the unique real numbers satisfying E [ρ(T )X ∗(T )] = x+.

LOSS PART PROBLEM

Now we turn to solving the loss part problem. In order to solve the loss part problem, again first a more
general loss part problem is considered:

min
X (T )

V −
C PT (X (T )) =

∫ ∞
0 w(P (v−(X ) > y))d y,

subject to E [ρ(T )X (T )] = x+−x0, X (T ) ≥ 0.
(4.56)

A quantile transformation transforms Problem 4.56 into:

min
G

V −
C PT (X (T )) =

∫ 1
0 v−(G(z))w ′(1− z)d z

subject to
∫ 1

0 F−1
ρ (z)G(z)d z = x+−x0, X (T ) ≥ 0,G ∈ G

(4.57)

The following proposition [14] ensures the equivalence between general loss part Problem 4.56 and Problem
4.57:

Proposition 8. If G∗ is optimal for Problem 4.57, then X ∗ = (G∗)(Z ) is optimal for Problem 4.56 and also
conversely if X ∗ optimal for Problem 4.56, then its distribution function G∗ is optimal for Problem 4.57 and
X ∗ = (G∗)(Z ).

In contrast to the gain part problem, if we use a quantile transformation, a concave function is to be min-
imised due to the S-shaped value function. This requires an approach different from the Lagrange multiplier-
method. The problem is a combinatorial optimisation problem, which gives a corner point solution and
which is characterized by the following propositon:

Proposition 9. The optimal solution to Problem 4.57, if it exists, must be of the form

G∗(z) = x+−x0

E [ρ1{Fρ (ρ)>b}]
1(b,1)

with z ∈ [0,1) and b ∈ [0,1). In this case, the optimal solution to Problem 4.56 equals X ∗−(T ) =G∗(Fρ(ρ)).

Using the result of proposition 9, problem 4.57 can be rewritten, for some b ∈ (0,1), as:

min
b

f (b) =
∫ 1

0 v−(G(z))w ′(1− z)d z,

subject to G = x+−x0
E [ρ1Fρ>b ] 1(b,1] with 0 ≤ b < 1.

(4.58)

Theorem 8. Problem 4.58 admits an optimal solution iff min0≤d<ρ v−
(

x+−x0
E [ρ1{ρ>d}

)
w(P (ρ > d)) admits an opti-

mal solution d∗, in which case the optimal solution to 4.56 equals

X ∗
−(T ) = x+−x0

E [ρ(T )1ρ>d∗ ]
1ρ>d∗.
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COMBINING GAIN AND LOSS PARTS

The combination of the gain and loss parts leads to solving the following problem, which is related to Problem
4.48:

max
(d ,x+)

E [v+
(
(v ′+)−1

(
y(d ,x+)ρ
w ′+(Fρ (ρ)

))
w ′+(Fρ(ρ))1ρ≤d ]− v−

(
x+−x0

E [ρ(T )1ρ>d ]

)
w−(1−Fρ(d)),

subject to ρ ≤ d ≤ ρ, x+ ≥ x+
0 , x+ = 0 in case d = ρ and x+ = x0 in case c = ρ.

(4.59)

in which y satisfies

E [(v ′
+)−1

(
y(d , x+)ρ

w ′+(Fρ(ρ)

)
ρ1ρ≤d ] = x+.

The final solution for Problem 4.39 is given by the following theorem:

Theorem 9. If (d∗, x∗+) is optimal for Problem 4.59 then {X ∗ ≥ 0} and {ρ(T ) ≤ d∗} are identical up to a zero
probability event and the final optimal solution is given by:

X ∗ =
[

(v ′
+)−1

(
yρ(T )

w ′(Fρ(T )(ρ))

)]
1ρ≤d∗ −

[
x∗+−x0

E [ρ(T )1ρ>d∗ ]

]
1ρ>d∗

ECONOMIC INTERPRETATION

Before applying the described method for solving problems under CPT to our specific value and weighting
function, the economic interpretation of the final solution as stated in Theorem 9 is considered according to
[14]. The final solution given in Theorem 9 is completely determined by the pricing kernel ρ and threshold
d∗. This threshold divides the world in two states: ρ ≤ d∗ represents a good state and ρ > d∗ a bad state. In a
good state the agent obtains a wealth above the reference wealth and in a bad state he looses a fixed constant

value
[

x∗+−x0
E [ρ(T )1ρ>d∗ ]

]
1ρ>d∗ . The equation for the optimal wealth shows that under the optimal strategy, the

agent should buy a lottery ticket in good states (ρ ≤ c∗) with payoff (v ′+)−1
(

yρ
w ′(Fρ )

)
1ρ≤c∗ and at cost x∗+ ≥ x0.

As the price of gains at time T x∗+ is above the initial wealth x0, a claim has to be sold in bad states (ρ > c∗),
with payoff x+−x0

E [ρ1ρ>c∗ ] 1ρ>c∗ in order to overcome the shortage x∗+−x0. This means that the investor borrows to

invest in stocks. Thus, the optimal strategy is a gambling strategy in which the agent gambles on good states
of the market and accepts a fixed loss in bad states.

4.5.5. APPLICATION
In this section the general technique of deriving the optimal wealth under cumulative prospect theory is
applied to the case of our defined value and weighting functions and pricing kernel. It is assumed that the
value function is of the form v+(x) = xa and v−(x) = λxb , for x ≥ 0. This is equivalent to the value function
earlier defined in Definition 2.6 with reference point taken as zero. The weighting function is as defined in
Definition 2.7 and the pricing kernel as in Definition 4.10. As already shown, this value function and weighting
function clearly satisfy the conditions of the general defined value function in Section 2.2. Therefore, the
solution method of Section 4.5.4 is applicable.

GAIN PART

First, we take a look at the gain part problem for a given (d , x+) with 0 < d ≤∞ and x+ ≥ x+
0 , as d = 0 would

give the trivial solution x+ = 0. By the use of Theorem 7, the optimal solution can be written as:

X ∗
+(d , x+) = (v ′

+)−1
(

y(d , x+)ρ(T )

w ′(Fρ(ρ)

)
1ρ(T )≤d =

(
y(d , x+)ρ(T )

w ′(Fρ(ρ(T ))a

)1/(a−1)

1ρ(T )≤d ,

as the inverse of the derivative of the value function equals:

(v ′
+)−1(y) =

( y

a

)1/(a−1)
.

In order to determine the value of the Lagrange multiplier y(d , x+), we solve the condition

E [ρ(T )X ∗
+(d , x+)] = x+ ⇐⇒
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E [ρ(T )

(
y(d , x+)ρ(T )

w ′(Fρ(ρ(T ))a

)1/(a−1)

1ρ(T )≤d ] = x+ ⇐⇒
(

y(d , x+)

a

)1/(a−1)

E [

(
ρ(T )

w ′(Fρ(ρ(T ))

)1/(a−1)

ρ(T )1ρ(T )≤d ] = x+ ⇐⇒

y(d , x+) = a

 x+

E [
(

ρ(T )
w ′(Fρ (ρ(T ))

)1/(a−1)
ρ(T )1ρ(T )≤d ]


(a−1)

.

Rewriting gives the expression for X ∗+ :

X ∗
+ =

 x+

E

[(
ρ(T )

w ′(Fρ (ρ(T ))

)1/(a−1)
ρ(T )1ρ≤d

]
(

ρ(T )

w ′(Fρ(ρ(T )))

)1/(a−1)

1ρ(T )≤d

=
(

x+
φ(d)

)(
ρ(T )

w ′(Fρ(ρ(T )))

)1/(a−1)

1ρ(T )≤d ,

(4.60)

with φ(d) = E

[(
ρ(T )

w ′(Fρ (ρ(T ))

)1/(a−1)
ρ(T )1ρ(T )≤d

]
.

The corresponding optimal value is given by:

ν(d , x+) = E [v+(X ∗
+(d , x+))w ′(Fρ(ρ(T )))1ρ(T )≤d ]

= E

[(
x+
φ(d)

)a (
ρ(T )

w ′(Fρ(ρ(T )))

)a/(a−1)

w ′(Fρ(ρ(T )))1ρ(T )≤d

]

=
(

x+
φ(d)

)a

E

[(
ρ(T )

w ′(Fρ(ρ(T )))

)a/(a−1)

w ′(Fρ(ρ(T )))1ρ(T )≤d

]

=
(

x+
φ(d)

)a

E

[(
ρ(T )

w ′(Fρ(ρ(T )))

)a/(a−1) ( ρ(T )

w ′(Fρ(ρ(T )))ρ

)−1

1ρ(T )≤d

]

=
(

x+
φ(d)

)a

E

[(
ρ(T )

w ′(Fρ(ρ(T )))

)a/(a−1)−1

1ρ(T )≤d

]

=
(

x+
φ(d)

)a

φ(d)

=φ(d)1−a xa
+.

(4.61)

Now, Problem 4.59 can be rewritten as:

max
(d ,x+)

ν(d , x+) =φ(d)1−a xa+− λ(x+−x0)b w−(1−Fρ(d))

(E [ρ(T )1ρ(T )>d )b
,

subject to 0 ≤ d ≤∞, x+ ≥ x+
0 , x+ = 0 in case d = 0, and x+ = x0 in case d =∞.

(4.62)

We solve Problem 4.62 in order to get the optimal wealth. The following theorem [14] characterizes the opti-
mal wealth.

Theorem 10. Assume x0 ≥ 0, a = b and let ν(d , x+) =φ(d)1−a[xa+−k(d)(x+−x0)a] with

k(d) = λw−(1−F (d))

φ(d)1−a(E [ρ(T )1ρ>d ])a .

Assume that infd>0 k(d) ≥ 1. Then, the optimal portfolio for the problem is the portfolio which replicates the
following wealth:

X ∗(T ) = x0

φ(∞)

(
w ′+(F (ρ(T ))

ρ(T )

)1/(1−a)

, (4.63)

with

φ(d) = E

[(
ρ(T )

w ′(Fρ(ρ(T ))

)1/(a−1)

ρ(T )1ρ≤d

]
. (4.64)



64 4. PORTFOLIO MANAGEMENT

Proof. Before considering supd>0,x+>x0
, first the following problem is considered:

maxx+>x0 (xa −k(x −x0)a),

with k ≥ 1 fixed. The derivative of the function to maximize equals f ′(x) = a(xa−1 −k(x − x0)a−1). If k ≥ 1,
then f ′(x) ≤ 0 for all x ≥ x0 and thus x∗ = x0 is optimal with optimal value xa

0 . This result is used in rewriting
supd>0,x+>x0

:

sup
d>0,x+>x0

ν(d , x+) = sup
d>0

(
φ(d)1−a sup

x+≥x0

(xa
+−k(d)(x+−x0)b

)
= sup

d>0

(
φ(d)1−a xa

0

)
=φ(∞)1−a xa

0 = ν(∞, x0) ≥ 0.

(4.65)

From Equation (4.65) it follows that (d∗, x∗+) = (∞, x0) is optimal for Problem 4.62. Substituting the optimal
values for (d∗, x∗+) in Equation (4.60) gives the optimal wealth:(

x+
φ(∞)

)(
ρ(T )

w ′(Fρ(ρ(T )))

)1/(a−1)

1ρ(T )≤d . (4.66)

4.5.6. NUMERICAL EXAMPLE
As we have an expression for the optimal wealth under CPT, in this section a numerical example is discussed
to measure the impact of the prospect parameters. It is important to note that under CPT the optimal wealth
profile is independent of loss aversion parameter λ and risk-seekingness parameter b for losses. Therefore,
only the impact of weighting parameter γ is considered. Remember that the lower γ the more overweighting
of low probabilities and the more underweighting of high probabilities. The following conclusions can be
made:

• The higher the value of γ, the higher the optimal wealth X ∗
C PT for all values of ρ(T ). A possible explana-

tion is that an attitude with less over- and underweighting is more rational, resulting in a higher optimal
wealth.

• The better the state of the world ρ(T ) the higher the sensitivity towards γ. This means that for lower
prices of the one unit of wealth, the optimal wealth is more sensitive to changes in the investor’s attitude
towards the over- and underweighting of probabilities.

• The higher the level of sentiment, or in other words the lower γ, the lower the sensitivity towards γ.
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4.6. COMPARISON PORTFOLIO MODELS
So far, we have discussed three different models for portfolio management; portfolio management under
EUT, under loss aversion and under CPT. In this section, a comparison between these models is made to in-
vestigate the influence of the prospect value function and the prospect weighting function on the optimal
wealth profile. Firstly, an overview of the optimal wealth levels under the different models is given below.

• Optimal wealth under EUT - rational investor

X ∗
EU T (ρ(T )) = (

yρ(T )
) 1
η−1 ,

with

y = x0

(
e

r T
(

η
η−1

)
+ k2T

2

(
η
η−1

)
−k2

(
η2

(η−1)2

)
T
2

)(η−1)

.

• Optimal wealth under loss aversion - only value function

X ∗
L A(T ) =

X ∗+(T ) = θ+
(

yρ(T )
a

)1/(a−1)
if ρ < ρ,

X ∗−(T ) = 0 if ρ ≥ ρ,

with ρ so that f (ρ) = 0, with

f (x) =
(

1−a

a

)(
1

y x

)a/(1−a)

a1/(1−a) −θy x +λθb

and y ≥ 0 satisfies E [ρ(T )X ∗(T )] = x0.

The reference level (gains/losses) is represented by θ, a represents the risk aversion parameter in the
domain of gains (the lower a the more risk averse for gains), b represents the risk-seeking parameter
in the domain of losses (the lower b the more risk-seeking for gains) and λ represents the loss aversion
parameter (the higher λ the higher the displeasure of a loss relative to the pleasure of a gain).

• Optimal wealth under CPT - value and weighting function

X ∗
C PT (T ) = x0

φ(∞)

(
w ′+(F (ρ(T ))

ρ(T )

)1/(1−a)

, (4.67)

with

φ(d) = E

[(
ρ(T )

w ′(Fρ(ρ(T ))

)1/(a−1)

1ρ≤d

]
. (4.68)

The function w+ represents the weighting function. The lower γ the higher the degree of overweighting
of low probabilities and underweighting of high probabilities.

4.6.1. MODERN PORTFOLIO THEORY VS PROSPECT THEORY
The first comparison made, is the comparison between modern portfolio theory and PT. In order to compare
these models, a similar concept to that of the mean-variance diagram is defined. The difference between the
models is made clear by means of a fictive data set.

As seen in Section 4.2, if an MPT-investor wants to increase the portfolio’s expected return, he must invest in
more risky or more volatile assets. As explained, the trade-off between mean and variance can be represented
in a mean-variance diagram. In case of CPT the expected return above the investor’s reference point is con-
sidered instead of the expected return of an investment. This means that the average gain with respect to the
investor’s reference point is considered, weighted by the investor’s subjective probability function. Thus, the
average gain is defined as:

µC PT = ∑
s,∆s>0

w+(ps )v+(rs −θ), (4.69)
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in which s represents the state. The average gain can be seen as the value assigned to gains.

Under PT instead of the deviation of the expected return as in MPT, now the expected portfolio return under
the investor’s reference point is considered or in other words the average loss [21]:

σC PT =− 1

λ

∑
s,∆s<0

w−(ps )v−(θ− rs ).

It is important to note that the investor’s risk attitude and attitude towards probabilities is now incorporated
via the value- and weighting function. The average loss can be seen as the absolute value of the normalized
losses. The expression for the average loss is normalized. In Figure 4.6 the PT return-risk profile is plotted.

Figure 4.6: Return-risk profile under PT (Source: [21]).

In order to illustrate the difference between the trade-off between reward and risk between MPT and PT, a
fictive portfolio of risky and risk free assets is considered. Consider a time period of ten years, two risky assets
(for example a share index and a commodity) and one risk free asset (government bond). In Figure 4.7 a
mean-variance diagram of the assets returns is given, based on fictive data. As can be seen, Asset 2 and Asset
3 are equal in mean. However, Asset 3 has a significantly lower standard deviation and is therefore preferred
over Asset 2.
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Figure 4.7: Mean-variance diagram.

In Figure 4.8 an average-gain and average-loss diagram is given. This means that the returns are considered
under CPT under TK-sentiment. As can be seen, Figure 4.8 is significantly different from Figure 4.7. While in
the previous case Asset 2 was preferred over Asset 3, this preference is not immediately clear as Asset 3 now
has a lower average gain than Asset 2.

Figure 4.8: Average gain-average loss diagram under TK-sentiment.
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4.6.2. EXPECTED UTILITY THEORY VS LOSS AVERSION
In this section we will discuss the results of comparing the optimal wealth profile under EUT with the optimal
wealth profile under loss aversion. In Figure 4.9 the optimal wealth profile under EUT and the optimal wealth
level under loss aversion are given. The level of risk aversion for gains under loss aversion equals the levels
of risk aversion under EUT. As can be seen, the optimal wealth profile under EUT decreases gradually to zero
for bad states of the world, while the wealth profile under loss aversion decreases discontinuously to zero
because of the risk-seeking behavior for losses. Before the loss aversion profile arrives at zero it approaches
the reference level θ. For low values of ρ(T ), or in other words, in good states of the world, the wealth profile
under loss aversion is significantly lower than the wealth profile under EUT. This can be explained by the
phenomenon of loss aversion; as the investor is averse for losses he invests a part of his wealth in insurances
in order to protect for bad states of the world. This results in a lower optimal wealth for good states of the
world.

Figure 4.9: Optimal wealth profile for a loss averse investor and a EUT investor with a power utility function. The param-
eters used are a = b = 0.5, θ = 0.8, λ= 2.25, k = 0.003, T = 1, x0 = 1 and η= 0.88.

4.6.3. LOSS AVERSION VS CUMULATIVE PROSPECT THEORY
In this section the focus is on comparing the optimal wealth for investors under loss aversion with the optimal
wealth for investors under cumulative prospect theory in order to investigate the influence of incorporating
the weighting function. If a weighting function is included in the investor’s behavior, the following results can
be derived:

• If TK-sentiment and Moderate TK sentiment are considered, the optimal wealth under loss aversion is
significantly higher than the optimal wealth profile under CPT for all values of pricing kernel ρ(T ) and
for all values of weighting parameter γ. The better the state of the world, the larger the difference. This
means that under good states of the world the weighting function has a significant negative impact on
the optimal wealth profile, while under worse states the negative impact becomes smaller.

• The higher the value of γ, or in other words the smaller the over- and under weighting of probabili-
ties, the smaller the difference between the optimal wealth under CPT and under loss aversion. This
is reasonable as in case of a higher γ, the CPT framework resembles more closely the loss aversion
framework.
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DATA ANALYSIS

In the previous chapters different levels of prospect sentiment are considered: TK-sentiment, Moderate TK-
sentiment and zero prospect sentiment. These levels of sentiment are used for option valuation and optimal
portfolio management. It is important to note that the estimates of prospect parameters are based on psy-
chological experiments and therefore the question is whether these estimates are suitable for financial appli-
cations. To this end, in Section 5.1 the prospect parameters are estimated based on the historical returns of a
market portfolio. In Section 5.2 a hedge test is performed under prospect sentiment dynamics.

5.1. EMPIRICAL ESTIMATES PROSPECT PARAMETERS
In this section a method of estimating the prospect parameters empirically is considered based on [17]. First
a method for estimating the loss aversion parameter λ from portfolio management under loss aversion is
considered. Hereafter the results of applying the method to market data is considered.

5.1.1. METHODOLOGY
Again a time horizon of [0,T ] is considered in which a representative agent invests in N risky assets with re-
turns r1,r2, ...,rN and a risk free asset with risk free asset r0. The agents assigns weightsω1, ...,ωN with the goal
to maximize the expected value of the value function of his wealth at time T . Let ω be the vector of weights
and let v(x) be the value function as defined in Definition 2.3.

The maximization problem is then as follows:

max
ω

EP

[
v(X (T )) =

{
−λ(θ−X (T ))b , if X (T ) ≤ θ,

(X (T )−θ)a , if X (T ) > θ

]
subject to X (T ) ≥ 0; X (T ) = (r0 + (r − 1r0)′ω)x0

(5.1)

where r is a vector of (N ×1) returns rk , w is a vector of weights wk and 1 is a vector (N ×1) ones.

Then, a first-order optimality condition is considered for the excess returns of E M = (r − 1r0)′ω which repre-
sents the return of a market portfolio relative to the risk free rate. The market portfolio is considered as it is
representative for an agent in the market and thus provides the optimal solution to Problem 5.1. The final
wealth X (T ) can be written as X (T ) = (r0 +E M )x0 and the optimality conditions are as follows:∫

E M≤0
λb(θ− (r0 +E M )x0)(b−1)E M dG(r )+

∫
E M>0

a((r0 +eM )x0 −θ)(a−1)E M dG(r ) = 0, (5.2)

λ

∫
E M≤0

b(θ− (r0 +E M )x0)(b−1)E M dG(r ) =−
∫

E M>0
a((r0 +E M )x0 −θ)(a−1)E M dG(r ).

Now it is possible to write the loss aversion parameter λ in terms of the distribution of the returns and risk
aversion and risk-seekingness parameters a and b, i.e.,

λ=−
∫

E M>0 a((r0 +E M )x0 −θ)(a−1)E M dG(r )∫
E M≤0 b(θ− (r0 +E M )x0)(b−1)E M dG(r )

. (5.3)

With the use of the observed excess returns a sample estimator for λ in Equation (5.3) can be constructed
by summing over the positive and negative excess returns. Let {E M

t }n
t=1 be the negative excess returns and

{E M
t }N

t=n+1 the positive ones. A sample estimator λ̂ of λ is then given by:

λ̂=−
∑n

t=1 a((r0 +E M
t )x0 −θ)(a−1)E M

t∑N
t=n+1 b(θ− (r0t +E M

t )x0)(b−1)E M
t

. (5.4)
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5.1.2. RESULTS - LOSS AVERSION PARAMETER
In this section the method described in Section 4.1.1 is applied to a set of historical returns of a market portfo-
lio. In Figure 5.1 the results of applying the described methodology on a portfolio of stocks of different indices
(NYSE, AMEX, NASDAQ) for a period from 1927 till 2017 with yearly excess returns. As an estimate of the risk
free rate every year the US Treasury bill rate over one month is used. From Figure 5.1 we can conclude the
following:

• The estimates of λ are quite close to the estimates derived from psychological experiments for the dif-
ferent levels of sentiment. If TK-sentiment is considered (a = b = 0.88) an estimate of λ̂ = 2.5379 is
found.

• The lower the level of risk aversion for gains the higher the estimated value of λ. This is a reasonable
result as loss- and risk aversion are similar concepts.

• The lower the level of risk-seeking for losses, the lower the estimated value of λ. This is a reasonable
result as these are opposite concepts.

• A higher level of θ results in higher estimates of λ. A higher level of θ corresponds to a wider range of
returns considered as losses which results in a higher level of loss aversion.

Figure 5.1: Estimates of loss aversion parameter λ from prospect value function for different levels of risk aversion a and
risk-seekingness b based on historical returns from 1927 till 2017.
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5.2. HEDGING STRATEGIES
In this section, firstly the idea of hedging used to derive the Black-Scholes PDE is considered [13]. Hereafter,
the described hedging strategy is performed and the results are discussed. Finally, the hedge strategy for the
case of asset paths in which sentiment is included is described and performed and the results are discussed.

5.2.1. THEORY
First, in this section the derivation of the hedging strategy under Black-Scholes is considered [13]. As seen in
Section 3.1, the Black-Scholes option value is found by setting up a replicating portfolio consisting of assets
and cash that replicates the risk of the option at all time. The portfolio value can be described by the following
equation:

Π(S, t ) = A(S, t )S +D(S, t ), (5.5)

in which A represents the number of assets and D the cash deposit. The number of assets is kept constant
over a timestep d t . Then, the changes in the portfolio value are caused by fluctations in the asset price and
interest on the cash deposit. The portfolio dynamics can be written as:

dΠi = Ai dSi + r Di d t (5.6)

Then, the value of portfolioΠi+ at ti +d t is given by:

Πi+1 = Ai Si+1 + (1+ r d t )Di (5.7)

The number of assets is changed to Ai+1 and the cash holding to Di+1. As the system is closed, which means
that no money is added or removed from the system, the new portfolio, Ai+1Si+1 +Di+1 has to be equal to
Equation (5.7), i.e.:

Ai Si+1 + (1+ r d t )Di = Ai+1Si+1 +Di+1, (5.8)

which implies that
Di+1 = (1+ r d t )Di + (Ai − Ai+1)Si+1. (5.9)

The hedging strategy under Black-Scholes can be summarized as:

• Set A0 = ∂V0
∂S , D0 = 1,Π0 = A0S0 +D0.

• For each time t = (i +1)d t :

– Observe Si+1,

– Compute new portfolio valueΠi+1 as in Equation (5.7),

– Compute Ai+1 = ∂Vi+1
∂S ,

– Compute the new asset holding Di+1 as in Equation (5.9). Then, the new portfolio equals
Ai+1Si+1 +Di+1.

The hedging strategy is discrete as rebalancing is done at times i d t . The smaller d t , the smaller the error in
the risk elimination.
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5.2.2. HEDGING TEST UNDER BLACK-SCHOLES
Now an example of the implementation of the described hedging test is given for a European call option. The
parameters used are S0 = 1, σ= 0.4, K = 1.5, α= 0.05, r = 0.03, T = 5, d t = 10−2 and the number of timestep

equals N = 500. Figure 5.2 shows a discrete GBM asset path (ti ,Si ), the corresponding delta (ti ,
∂C BS

i
∂S ) which

represents the amount of assets held in the portfolio, the cash level (ti ,Di ) and the portfolio value (ti ,Πi ). As
can be seen, the asset path ends in-the-money at expiry, which is in line with the delta-level of one at expiry.
In Figure 5.3 another example is given, but now the strike equals K = 2.5. In this example the asset path ex-
pires out-of-the-money and the delta-level is zero at expiry. As can be seen, in the Black-Scholes framework
the writer is able to deliver the asset in all cases.

Figure 5.2: Hedging simulation. First graph from above: asset path, second graph: delta values, third graph: cash holding
and fourth graph: portfolio value. The parameters used equal S0 = 1, σ= 0.4, K = 1.5, α= 0.05, r = 0.03, T = 5, d t = 10−2

and N = 500.

Figure 5.3: Hedging simulation. First graph from above: asset path, second graph: delta values, third graph: cash holding
and fourth graph: portfolio value. The parameters used equal S0 = 1, σ= 0.4, K = 2.5, α= 0.05, r = 0.03, T = 5, d t = 10−2

and N = 500.
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5.2.3. HEDGING TEST UNDER PROSPECT SENTIMENT
In the examples discussed, GBM-dynamics are assumed for the asset price paths. An interesting case is to
investigate the influence of adding sentiment to the price paths on the hedging strategy. In other words, it is
assumed that people behave according to prospect theory, but the hedger is not aware of this and sets up his
hedge according to the Black-Scholes framework. Then, it is considered whether the delta-hedge is sufficient
or not.

Before turning to the results, first a way of including prospect theory into the asset price dynamics is dis-
cussed. To this end, GBM-dynamics are still considered, but now subjectively evaluated by prospect investors.
In order to simplify the problem, a prospect investor under loss aversion is considered. This means that out-
comes are evaluated by a value function which incorporates loss aversion, risk aversion for gains and risk-
seekingness for losses as in Section 4.4. The prospect investor monitors fluctuations in the price path S(t )
every timestep t and gives a value to these fluctuations. As a reference point the asset price of the previous
timestep is taken. Then, the asset path under sentiment Ssent (t ) at time t is given by:

Ssent (t ) =
{

S(t −1)+ (S(t )−S(t −1))a if S(t ) ≥ S(t −1),

S(t −1)−λ (S(t −1)−S(t ))b if S(t ) < S(t −1).
(5.10)

Now, comparisons between paths following GBM-dynamics and paths under prospect sentiment are consid-
ered, both using the same random numbers. The parameters used are as follows: S0 = 1, σ = 0.2, α = 0.05,
T = 5, d t = 10−2 and N = 200. In order to illustrate the impact of sentiment on the asset price path, three
levels of sentiment are considered which are derived from TK-sentiment (a = b = 0.88, λ= 2.25):

• Sentiment 1: a = 1, b = 1 and λ= 2.25.

• Sentiment 2: a = 1, b = 0.88 and λ= 1,

• Sentiment 3: a = 0.88, b = 1 and λ= 1,

In Figures 5.4, 5.5 and 5.6 the results are given. As can be seen, under Sentiment level 1, negative changes in
the value of the asset price path are enlarged. Under Sentiment level 2 and Sentiment level 3 the influence of
the risk-seeking attitude for losses and risk averse attitude for gains is clearly visible.

Figure 5.4: Sentiment 1 v.s. GBM. The parameters used are as follows: S0 = 1, σ= 0.2, r = 0.03, α= 0.05, T = 5, d t = 10−2

and N = 200.
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Figure 5.5: Sentiment 2 v.s. GBM. The parameters used are as follows: S0 = 1, σ= 0.2, r = 0.03, α= 0.05, T = 5, d t = 10−2

and N = 200.

Figure 5.6: Sentiment 3 v.s. GBM. The parameters used are as follows: S0 = 1, σ= 0.2, r = 0.3, α= 0.05, T = 5, d t = 10−2

and N = 200.

As we now have considered the dynamics of asset paths of prospect investors, the results of performing the
hedge test as in Section 4.2.2 are now considered. The level of prospect sentiment used is TK-sentiment. The
results of the quality of the hedge portfolio are compared by means of the variance of the hedge portfolio
for different values of the rebalancing frequency. If we look at the portfolio value |C (S(T ),T )−Π(S(T ),T )−
(C (S0,0)−Π(S0,0))er T | at time T for 105 paths and for both GBM and sentiment paths, the results obtained are
presented in Table ??. As can be seen, while the variance of the portfolio under GBM is closer to zero for higher
values of the rebalance frequency, the variance for the portfolio under TK-sentiment increases. Therefore, it
can be concluded that the Black-Scholes delta-hedge is not sufficient if market prices are approximated by
asset paths under sentiment.

Table 5.1: The impact of the re-balancing frequency on the variance of the hedge portfolio at time T .

Rebalance frequency Variance portfolio under GBM Variance portfolio under TK-sentiment
5 0.0159 0.0269
50 0.0063 0.0417
500 0.0021 0.0533
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CONCLUSIONS

In this thesis, several models for decision-making under risk applied to option pricing and portfolio man-
agement are investigated. The traditional model for decision-making under risk assumes rational behavior,
while investors typically do not behave rationally. Therefore, two models that incorporate irrational behavior
are considered and compared. These models are discussed in Chapter 2 and are applied to option pricing
and portfolio management.

In Chapter 3, option prices under prospect theory for different levels of prospect sentiment are discussed.
Prospect sentiment includes a risk-averse attitude for gains, a risk-taking attitude for losses and overestima-
tion of small probabilities and underestimation of large probabilities. As a result, call option prices are higher
than Black-Scholes prices and are progressively higher for a higher level of sentiment.

As cumulative prospect theory is an improved version of prospect theory, the focus is turned to CPT. After
having described a way of deriving option values under CPT, numerical examples of option prices are given
from both writer’s and holder’s point of view. Again, the higher the level of sentiment, the higher the option
price from a writer’s viewpoint. If equal levels of sentiment are considered, the holder’s price is lower than the
writer’s price and the Black-Scholes price is in between. This means that if a writer and a holder have equal
levels of sentiment, no trade is possible. The higher the level of sentiment, the wider the difference between
holder’s and writer’s price and thus the less likely a trade. Therefore, cases for which the holder’s price equals
the writer’s price are considered. As a conclusion, in this case the call option price under sentiment for in-
the-money options is lower than the Black-Scholes price and is higher for out-of-the-money options which
is in line with the overestimation and underestimation of probabilities under sentiment. It should be noted
that if the writer behaves according to Black-Scholes and the holder according to CPT, an agreement about
the price is only reached in case of no sentiment. Also, the implied volatility is considered for option prices
under CPT. As a result, under the highest level of sentiment, a clear volatility skew is visible which is a well
known effect in the market.

Hereafter, a sensitivity analysis is done in order to measure the impact of the different aspect of prospect
sentiment on the option price. First, expressions for the sensitivity with respect to the prospect parameters
and Black-Scholes parameters are derived. Then, the sensitivities are computed under different levels of
sentiment. For the sensitivities with respect to the prospect parameters from a writer’s viewpoint, it appears
that in all cases:

• A higher level of sentiment leads to a higher absolute size of the sensitivities,

• Under TK-sentiment, the risk-seeking parameter for losses is of highest influence on the option,

• The weighting parameter is of lowest influence on the option price.

All signs of the sensitivities towards prospect parameters and Black-Scholes parameters are explained eco-
nomically. Besides the sensitivity analysis, the impact of negative interest rates on the option price is consid-
ered for different levels of sentiment. It can be concluded that the influence of sentiment on the option price
is equal under negative and positive interest rates.

Finally, the impact of sentiment on the call option price under different dynamics are compared. Under
sentiment, the Heston prices are lower than GBM prices and the impact of adding sentiment under Heston
dynamics is lower than under GBM. This difference can be explained by the fact that Heston dynamics already
incorporate a certain form of sentiment because of the stochastic volatility. Therefore, the impact of adding
extra sentiment is smaller under Heston dynamics than under GBM. This is confirmed by results that show
that for GBM the sensitivities towards prospect parameters under sentiment are higher than under Heston
dynamics.
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A recommendation for further research is to investigate which model under which dynamics is most in line
with actual market option prices.

In Chapter 4, portfolio management under different models is discussed. Firstly, the description of portfolio
management under different models is given: Modern Portfolio Theory, expected utility theory, prospect the-
ory without weighting function and under cumulative prospect theory. For prospect theory without weight-
ing and for cumulative prospect theory, numerical examples for the optimal wealth profile against the state
price density are provided. As as result, the optimal wealth profile under loss aversion is discontinuous, which
is in line with the assumed different attitudes towards gains and losses. If different levels of loss aversion are
considered, it can be concluded that a higher level of loss aversion results in a larger range of values of the
state price density for which the optimal wealth profile is above reference level θ and in a lower optimal
wealth profile for values of the state price density below turning point ρ. This in line with our expectations;
if investors are more averse for losses, a larger part of their wealth is used for buying insurances to protect
against potential losses. The opposite result is obtained for a higher starting wealth: the higher the starting
wealth the lower the optimal wealth for values of the state price density below turning point ρ; this could be
explained by a more careful behavior of the investor in case of a larger start wealth.

If the optimal wealth profile under CPT is considered, the only parameter of impact is the weighting param-
eter. It can be concluded that for all values of the state price density, a larger value of the weighting parameter
results in a higher optimal wealth. A possible explanation for this result is a more rational behavior in case
of a larger value of the weighting parameter. It can also be concluded that in better states of the world, the
optimal wealth is more sensitive to changes in the weighting parameter.

Finally, the wealth profiles of all models considered are compared. If MPT is compared with PT, it is con-
cluded that the two different models lead to significant different choices of assets based on the mean-variance
diagram or average gain-average loss diagram under prospect sentiment. The results could be extended to
CPT, if a method similar to the mean-variance diagram or average gain-average loss diagram is derived. Then,
EUT is compared with CPT without weighting function or in other words under loss aversion. A first differ-
ence is that the optimal wealth profile under EUT is continuous, while under loss aversion discontinuous
due to the different risk attitudes for gains and losses under loss aversion. Also, for low values of the state
price density the wealth profile under loss aversion is significantly lower than under EUT, which could be
explained by the loss averse behavior that leads to extra investment in insurances. If the loss averse wealth
profile is compared to the wealth profile under CPT, the wealth profile under CPT is significantly lower than
under loss aversion for all values of the weighting parameter and for all values of the state price density. In
case of a lower value of the weighting parameter, the differences becomes smaller, as the CPT framework re-
sembles more closely the loss aversion framework. It is not possible to conclude which model leads in general
to the highest optimal wealth profile, as it depends on the state price density.

A topic for further research would be to investigate the consequences of combining several models and to
translate the different optimal wealth profiles to contents of the corresponding portfolios.

In Chapter 5, a data analysis is done in order to investigate whether the estimates of the parameter for the
different levels of prospect sentiment used in the previous chapters are applicable to financial data. To this
end, a portfolio of stocks of different indices is considered. The loss aversion parameter is estimated for
different levels of risk aversion for gains and for different levels of risk-seeking for losses. The estimate of the
loss aversion parameter for TK-sentiment turns out to be quite close the value as used under TK-sentiment.
Also, the lower the level of risk aversion for gains, the higher the estimate of the loss aversion parameter,
which is reasonable as these concepts are similar and thus can replace each other. Equivalently, the lower the
level of risk-seeking for losses, the lower the estimated value of the loss aversion parameter.

Finally, the hedge framework under Black-Scholes is described and translated to the PT-framework. There-
fore, first a way of incorporating prospect sentiment into asset path dynamics is developed. Also, numerical
examples are given for different levels of sentiment, which show results in line with the earlier obtained sensi-
tivities towards prospect parameters. Hereafter, the described delta hedge test under Black-Scholes is applied
to asset paths under sentiment. If the quality of the hedge portfolio under GBM and TK-sentiment is consid-
ered by means of the variance of the portfolio, it can be concluded that the portfolio’s variance under GBM
decreases to zero if the rebalancing frequency increases, while the variance under TK-sentiment does not
decrease. Therefore, if a writer uses delta-hedging and asset price paths are described by prospect dynam-
ics instead of GBM, delta hedging is not sufficient. A topic for further research would be to investigate what
hedging strategy could be used instead of delta hedging if sentiment is present in the asset price paths.
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