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SUMMARY

T HE geo-graphical location at which an image or video was taken is a key piece of mul-
timedia information. Such geo-information has become an indispensable component

of systems enabling personalized and context-aware multimedia services. The research re-
ported in this thesis investigates how to automatically derive geo-information from multi-
media content. In particular, it focuses on the challenge of estimating the geo-coordinates
of the location of an image solely on the basis of its visual content.

The goal of the research is to develop a scalable visual content-based location estima-
tion system for images and to investigate the possibilities to improve its accuracy and relia-
bility to a substantial extent. The system should be applicable in both the geo-constrained
scenario, in which the multimedia item is taken at one of a previously defined set of loca-
tions, and the geo-unconstrained scenario, in which the multimedia item could have been
taken anywhere in the world.

The thesis makes two different kinds of contributions. The first is high-level framework
design. We develop a generic large-scale image retrieval-based framework for location es-
timation. The second is optimization of specific components of the system. We develop
two approaches, geometric verification and geo-distinctive visual element matching, that
address specific challenges faced by our retrieval-based framework. The resulting system
makes location estimation more tractable in case of large image collections, and also more
reliable. Our experimental results demonstrate that the system leads to an overall signifi-
cant improvement of the location estimation performance and redefines the state-of-the-
art in both geo-constrained and geo-unconstrained location estimation.

Based on the findings presented in this thesis, we make recommendations for future
research directions, which we think are substantial and promising for large scale image
retrieval and geo-location estimation.

v





SAMENVATTING

D E geografische opnamelocatie van een afbeelding of video is belangrijke multimedia-
informatie. Zulke geografische informatie is inmiddels een essentiële component in

systemen die gepersonaliseerde en contextgevoelige multimediadiensten aanbieden. Het
onderzoek in deze dissertatie houdt zich bezig met de vraag hoe geografische informatie
automatisch uit multimedia-inhoud kan worden afgeleid. In het bijzonder ligt de focus op
de uitdaging om, puur op de basis van visuele inhoud, geografische coördinaten van de
opnamelocatie van een afbeelding in te schatten.

Het doel van het onderzoek is de ontwikkeling van een schaalbaar systeem voor locatie-
inschatting op basis van visuele inhoud. Daarnaast richt het onderzoek zich erop om de
mogelijkheden te verkennen om de nauwkeurigheid en betrouwbaarheid van dit systeem
substantieel te verbeteren. Het systeem moet zowel toepasbaar zijn in de situatie waarin
de opnamelocatie van het multimedia-item binnen een eerder vastgelegde verzameling
van mogelijke locaties valt, als in de situatie waarin het multimedia-item op elke locatie in
de wereld opgenomen kan zijn.

De dissertatie levert twee hoofdbijdragen. De eerste bijdrage is het ontwerp van een
overkoepelend systeemraamwerk. We ontwikkelen hierbij een generiek raamwerk voor
locatie-inschatting, gebaseerd op zoekmachinetechnieken voor grote beeldbanken. De
tweede bijdrage is de optimalisatie van specifieke componenten in het systeem. We ont-
wikkelen twee aanpakken, geometrische verificatie en geo-discriminative matching van
visuele elementen, waarin specifieke uitdagingen van onze raamwerk worden behandeld.
Het resulterende systeem maakt de automatische inschatting van opnamelocatie haalbaar-
der en schaalbaarder voor grote beeldbanken, en daarnaast ook betrouwbaarder. De uit-
komsten van onze experimenten demonstreren dat het systeem voor een significante pres-
tatieverbetering in locatie-inschatting leidt, en dat de wetenschappelijke stand van zaken
in lokaliseringsalgoritmen voor vastgelegde locatieverzamelingen en vrije locatiemogelijk-
heden door het systeem zijn hergedefinieerd.

Op basis van de inzichten in deze dissertatie doen we aanbevelingen voor toekomstige
onderzoeksrichtingen, waarvan we menen dat die belangrijk en veelbelovend zijn voor het
zoeken van afbeeldingen op grote schaal en de inschatting van geografische opnameloca-
ties.

vii
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2 1. INTRODUCTION

1.1. WHY DO WE NEED GEO-ANNOTATED MULTIMEDIA?

W E have witnessed rapid development and widespread usage of personal multimedia
capturing devices such as cameras, phones and tablets over the past years. In com-

bination with the immense popularity of social media, this development has enabled and
stimulated generation and exchange of multimedia content on the Internet at a massive
scale. User-generated multimedia, and in particular images and videos, has become an
important aspect of our expression and interaction, complementing and enhancing the
traditional communication channels.

The relevance and significance of user-generated multimedia in this respect has further
grown with the increasing ease with which users can annotate content that they have cap-
tured. Annotations serve to accompany multimedia content with additional descriptive in-
formation, commonly referred to as metadata. For example, textual metadata in the form
of tags or captions may be added to provide additional information about the captured
content (e.g., what is displayed) or about the context in which the content was captured
(e.g., an event at which an image was taken). However, metadata can also serve to provide
“technical” information about the captured images or video, for instance, the time of cap-
ture, information about the creators, view count or sharing history. An important type of
metadata belonging to this category is geo-information. This type of information is often
expressed as geo-coordinates, i.e., the latitude and longitude of the location of the cap-
tured visual scene. In this thesis, we refer to geo-information expressed as geo-coordinates
as geo-location. Information about the geo-location at which an image or a video was taken
can assist in a wide range of applications involving user-generated content. For example,
one can find popular objects and events in a particular area [1, 2], generate representative
and diverse views of a geo-location [3], and recommend virtual tours by presenting infor-
mation mined from user-generated travelogues and photos [4].

Our use of the term geo-location emphasizes that we are interested in the position of a
location on a map. We exclude from the scope of inquiry other location-related information
such as type of location, as determined by the function of a location (e.g., amusement park,
outdoor market, or forest). We also exclude other socially or politically determined aspects
of location (e.g., the boundaries of neighborhoods within a city, or the position of the bor-
der between two countries). We often use the word “location” to discuss our approaches,
but in the context of this thesis “location” should be interpreted as “geo-location”.

With the increasing demands of users for personalized and context-aware multimedia
services, geo-information has became an indispensable component of systems enabling
such services. The research reported in this thesis looks into the possibilities to facilitate
automatic geo-annotation of user-generated multimedia, and specifically of the social im-
ages uploaded and shared on social media platforms.

1.2. ON AUTOMATIC GEO-ANNOTATION OF SOCIAL MEDIA
Many modern mobile devices make it possible via their GPS modules to automatically as-
sign geo-coordinates to images/videos during capture. If this functionality is not used, an
alternative is the use of location-aware interfaces that are designed for users to carry out
manual geo-annotation of the content that they create, e.g., the geo-tagging possibilities
offered by Flickr. Still, however, it is estimated that less than 10% of the images shared on
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social media are geo-tagged [5][6], which significantly reduces the foundations for devel-
oping the above-mentioned multimedia services. The reasons for this low percentage are
potentially various. For example, just like with offline tagging in general, users may be in-
sufficiently motivated to apply such interfaces to enrich their image collections. Offline
tagging is typically found tedious and time-consuming [7, 8].

As an alternative to GPS or manual geo-annotation, increasing research attention has
been devoted to techniques that automatically estimate geo-locations for images. Such
approaches are commonly referred to as location estimation (prediction) techniques [6, 9–
11]. There are multiple resources that can be exploited as clues for location estimation,
ranging from content to metadata. As one example, we provide Fig. 1.1, which depicts a
video shared on Flickr. People can infer the location of the video, illustrated in Fig. 1.2, from
the visual content (if they remember the particular scene depicted in the video), from the
acoustic content (if they recall the sound from the specific clock tower), from the location-
specific tags (such as “Italy”, “Tuscany” and “Florence”), or from the other media items in
the owner’s album which were taken around the same time as the video (if their locations
are known).

Among all the modalities within the multimedia, textual metadata that often accom-
pany social media usually include place names and other location-specific terms, e.g., over
13% of image tags on Flickr could be classified as locations using WordNet as reported
in [12]. As textual metadata is contributed by people, who can provide accurate and high
level information about the image, textual metadata has served as the basis for a broad
range of geo-location estimation algorithms (e.g., [6, 13]). However, the drawback of tex-
tual annotation-based location estimation is that annotations need to be manually created
by users before prediction can be carried out.

Much of the research effort seeking reliable alternatives to textual metadata has there-
fore focused on exploiting the visual content of images directly to estimate the location of
the depicted scene [9, 14, 15]. These approaches have the advantage of not depending on
the availability or resolution of textual or audio metadata. Despite the numerous methods
proposed in this direction, the challenge of estimating image location from the analysis of
its visual content remains considerable. The research reported in this thesis aims at bring-
ing the research community a substantial step further in pursuing this challenge.

1.3. THESIS FOCUS
The challenge addressed in this thesis is illustrated in Fig. 1.3 and can be formulated as
follows: “given the visual content of an image, determine the geo-coordinates of the location
of the depicted scene”.

This challenge is substantial due to several reasons. First, one and the same visual scene
can be captured under strongly varying conditions determined by the level or type of light,
distortions, zoom or occlusion. Second, depending on the capture angle and direction,
different scenes can be captured at one and the same location. For instance, standing on
a particular spot on a beach, one can take a photo of the sea, but also of the beach or of
the street running in parallel with the shore. This means that there is no unique link be-
tween the visual scene and a location. Third, the number of different unique scenes and
locations worldwide is effectively infinite. Due to these reasons, most of the work in this di-
rection has reported attempts which first make the challenge tractable before performing
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Figure 1.1: Example of a video shared by a user on Flickr.
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Figure 1.2: Illustration of the location of the video in Fig. 1.1.
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Figure 1.3: Illustration of the challenge of estimating the geo-location of an image solely using its visual content.

location estimation. These approaches typically attempt to narrow the domain of estima-
tion and tackling the task in a geo-constrained way. They either estimate location within a
geographically constrained area (e.g., in downtown San Francisco [15, 16]), within a set of
predefined regions (e.g., ca. 1.5k places of interest around the world [17]), or by reducing
the task to specific landmark recognition [14, 18].

Due to the difficulty of the challenge, there have only been a few attempts to tackle the
geo-location estimation problem in a geo-unconstrained way, that is, where the target loca-
tion can be any place around the world, for example [9]. Although the challenge is consid-
erable, a recent survey [19] has indicated that there are still ample opportunities to address
it that are waiting to be explored. In view of these considerations, and of the need for gen-
eral solutions to location estimation that can operate on a global scale, we have focused our
research on estimating geo-location of images without geo-constraints. Our expectation is
that the solutions arising from our research should work well in both scenarios, that is for
both geo-constrained and geo-unconstrained location estimation.

1.4. THESIS SCOPE
Two general approaches can be followed in order to infer the location information from the
visual content of images:

• Model-based (classification-based) approach: Models are generated for a set of pre-
defined locations by letting the system learn the visual characteristics of the location.
Then, it is still possible to estimate the location based on the match between the vi-
sual characteristics of the target image and the learned characteristics of locations.

• Memory-based (search-based) approach: Here, the target image serves as query
that is used to search a collection of geo-annotated images. Based on the prede-
fined models of computing the relevance to the query, the geo-coordinates from the
collection image(s) landing on the top of the result list are used to compute the geo-
coordinates of the target image.

Model-based approaches collect location-related visual clues from different training
images, and make a compact representation for individual locations. Their disadvantage is
that it is highly problematic to formulate a location as a single class. If one divides the world
into a limited number of regions, e.g., cities, then the visual diversity of the images collected
from such regions, which are relatively large, will make it virtually impossible to learn a
reliable (sufficiently discriminative) location model. In addition, the model tends to learn
the frequently photographed visual scenes characteristic of one location, but not the rarely
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photographed ones. For this reason, model-based approaches struggle to handle queries
that capture a rarely photographed visual scene. In contrast, memory-based approaches
only require a single relevant photo for a given query; they do not care whether this photo
captures a frequently photographed visual scene or a rarely photographed one. One single
matched relevant photo is enough to estimate the location of the given query. Furthermore,
modeling large regions with model-based approaches also implies an upper limit to the
precision of the estimated locations. This limit would make such estimation meaningless in
many application scenarios. On the other hand, if each single geo-tagged image is defined
as a location on the earth, then model-based approaches become equivalent to memory-
based approaches.

These considerations lead us to choose memory-based location estimation as the scope
of our research. The objectives of our research within this scope are to explore the possibili-
ties to develop a search-based location estimation framework and to exploit these possibil-
ities to significantly improve the location estimation performance compared to the widely
used reference methods. The emphasis of our research is on neutralizing the main bot-
tleneck of the search-based approach, namely its heavy dependence on the presence of
geo-tagged images in the collection that have been taken at or very close to the location of
the target image and substantially resemble the visual scene existing in the target image.
The specific contributions of the thesis are described in detail in the following section.

1.5. THESIS CONTRIBUTION AND LAYOUT
To understand how a memory-based approach works, it is informative to think about a
process a human might use for identifying the location of an image Given a target image,
we would try to link elements of the depicted scene with the scenes we saw before. Trans-
ferred to the system level, the visual content of a given image (“what we see now”) can be
submitted as a query to assess its match with the visual content of other images (“what
we saw before”) that are geo-annotated (“for what we know where it was taken”). If there
are geo-annotated images in the collection whose visual content is sufficiently similar to
that of the target image, the geo-coordinates of these images can be used to estimate the
geo-coordinates of the target image.

We implement this rationale from different perspectives, starting from designing a gen-
eral search-based location estimation framework and then improving specific framework
components on the basis of the findings coming out from framework assessment at vari-
ous stages. Our aim is to maximize the robustness and scalability of location estimation.
Robustness means that the system needs to be able to properly estimate the location even
if the query image and its collocated relevant images are overlapping only in a small frac-
tion of scene elements and under varying capture conditions. Scalability means that the
developed solution needs to enable efficient location estimation at a global scale relying
on a large-scale collection of geo-annotated images.

In view of above, we organize the thesis into three parts as illustrated in Fig. 1.4 and rep-
resented by the three subsequent technical chapters. In Chapter 2, we unravel the problem
of location inference from visual content, introduce the search-based approach and pro-
pose a novel way of implementing it, namely in the form of a Geo-Visual Ranking (GVR)
method that takes into account the ambiguity in how visual content reflects a location. The
rationale underlying the GVR method is that, compared to the images from a wrong loca-
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tion, more images from the true location will likely contain more elements of the visual
content of the query image. We hypothesize that, for this reason, the evidence from the
set of visually similar images from a wrong location is too weak to compete with the set
captured at the true location, independently of the set size. Finally, we investigate the ef-
fect of different visual representations on location estimation within our framework. We
find that although global features are known to be effective for retrieving semantically and
structurally similar scenes, it is challenging to exploit them to improve the prediction ef-
fectiveness. We attribute this fact to the weakness of the relationship between scene types
(e.g., “beach”, “city”, “landscape”), which global features are known to differentiate well,
and specific locations. In contrast, local representations can establish stronger links be-
tween photos with same objects captured at one particular location, and can, in this way,
generate more reliable prediction, exceeding the ability of global representations.

The findings of Chapter 2 lead us to focus on deriving location information from the
objects captured in the images, or in other words using the object-based image retrieval ap-
proach. With object-based image retrieval we understand the problem of finding images
that contain the same object(s) or scene elements as in the query image, however, possibly
captured under different conditions in terms of rotation, viewpoint, zoom level, occlusion
or blur. Many object-based image retrieval approaches and methods [20–22] have been
proposed in recent literature, largely inspired by the pioneering work of Sivic and Zisser-
man [23] and built on the bag-of-features (BOF) principle for image representation. These
retrieval systems generally consist of two main stages:

• Initial ranking stage, where the ranking of images from the collection is based on
visual similarity computed on visual feature statistics measured in different images,

• Spatial verification stage, where the initial ranked list is re-ranked by applying geo-
metric constraints to assess the reliability of visual correspondences between images.

The spatial verification stage is the key to achieving a high precision for object-based
image retrieval, especially when searching in large, heterogeneous image collections [24].
In order to improve the scalability and robustness of object-based image retrieval in our
GVR framework, in Chapter 3, we present a novel Pairwise Geometric Matching method for
the spatial verification stage. It uses global scale and rotation relations to enforce the local
consistency of geometric relations derived from the locations of pairwise correspondences.
The results presented in this chapter indicate the suitability of the proposed pairwise geo-
metric matching method as a solution for large-scale object retrieval at an acceptable com-
putational cost.

While having a robust and scalable object-based image retrieval system as module in
our framework is a necessary condition for successful location estimation, it is not a suffi-
cient one for achieving the desired level of performance. Since some objects may be com-
mon to different visual scenes, e.g., common static objects and mobile objects, an addi-
tional adaptation of the framework is required to make it focus on the scene-distinctive
objects only. Therefore, in Chapter 4, we present a novel Geo-distinctive Visual Element
Matching method to further improve the robustness of our location estimation framework.
It explores and exploits geographical distinctiveness of visual elements found in the query
image, and it further strengthens the support for finding the true location by devising an
aggregated visual representation of a location that combines all visual elements from the
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query found in the images of that location. The proposed method makes the location es-
timation more tractable in case of a large image collection, but also more reliable, which
leads to an overall significant improvement of the location estimation performance and
redefines the state-of-the-art in both geo-constrained and geo-unconstrained location es-
timation. Chapter 5 concludes the thesis with a summary of achieved results and an out-
look towards the still open research challenges in the domain of automatic geo-annotation
of social images.

1.6. HOW TO READ THE THESIS
The technical part of this thesis consists of original publications that have been adopted as
chapters 2, 3 and 4. The publications’ references are given at the beginning of each chap-
ter. As a consequence of working with original publications, the notation and terminology
may vary slightly across chapters. For the same reason, the introductory parts and related
work sections in the chapters addressing the same general topic may be similar in terms of
argumentation and the material they cover. We retain the original form of the publications
so that it is clear that the authoritative reference is the reference provided at the beginning
of each chapter.

1.7. LIST OF PUBLICATIONS RELATED TO THE THESIS
The following papers have been published by the author of this thesis while pursuing a
Ph.D. degree in the Multimedia Computing Group at the Delft University of Technology.
Those publications directly serving as chapters of the thesis are indicated accordingly.

JOURNAL

• Xinchao Li, Martha Larson and Alan Hanjalic, Global-Scale Location Prediction for
Social Images using Geo-Visual Ranking, IEEE Transactions on Multimedia, 17(5):
674-686, 2015. (Full paper)—[Chapter 2]

• Xinchao Li, Martha Larson and Alan Hanjalic, Geo-distinctive Visual Element Match-
ing for Location Estimation of Images, submitted to IEEE Transactions on Multime-
dia. (Full paper)—[Chapter 4]

CONFERENCE

• Xinchao Li, Martha Larson and Alan Hanjalic, Pairwise Geometric Matching for Large-
scale Object Retrieval, Proc. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR ’15), Boston, US, 2015. (Full paper)—[Chapter 3]

• Xinchao Li, Martha Larson and Alan Hanjalic, Geo-visual ranking for location predic-
tion of social images, Proc. International Conference on Multimedia Retrieval (ICMR
’13), Dallas, US, 2013. (Full paper)

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6MjQwMTZhMDU4MGNiMWRhZQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6MjQwMTZhMDU4MGNiMWRhZQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6M2IwZTcxMjYyMTk1NzcyMQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6M2IwZTcxMjYyMTk1NzcyMQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6M2I0YWIyMzJmZjY1YjZlOQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6M2I0YWIyMzJmZjY1YjZlOQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6NDc5OTViYmJhMmFkNjA5OQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx4aW5jaGFvbGl3ZWJ8Z3g6NDc5OTViYmJhMmFkNjA5OQ
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WORKSHOP

• Xinchao Li, Peng Xu, Yue Shi, Martha Larson and Alan Hanjalic, Simple Tag-based
Subclass Representations for Visually-varied Image Classes, Proc. International Work-
shop on Content-based Multimedia Indexing (CBMI ’16), Bucharest, Romania, 2016.

• Xinchao Li, Michael Riegler, Martha Larson and Alan Hanjalic, Exploration of feature
combination in geo-visual ranking for visual content-based location prediction, Proc.
MediaEval 2013 Workshop, Barcelona, Spain, 2013.

• Xinchao Li, Claudia Hauff, Martha Larson and Alan Hanjalic, Preliminary Explo-
ration of the Use of Geographical Information for Content-based Geo-tagging of So-
cial Video, Proc. MediaEval 2012 Workshop, Pisa, Italy, 2012.

• Jaeyoung Choi and Xinchao Li, The 2014 ICSI/TU Delft Location Estimation System,
Proc. MediaEval 2014 Workshop, Barcelona, Spain, 2014.
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2
GEO-VISUAL RANKING

In this chapter, we introduce a generic framework that takes a visual-only, search-based
approach to the prediction of the geo-location of social images. The target image is used
as a query, and a geo-location is predicted based on the evidence collected from images re-
trieved from a background collection of images, already annotated with geo-location. The
main novelty of the approach is that it leverages evidence from images that are not only
geographically close to the target location, but also have sufficient visual similarity to the
query image within the considered image collection. Our method is evaluated experimen-
tally on a public dataset of 8.8 million geo-tagged images from Flickr, released by the Media-
Eval 2013 evaluation benchmark. Experiments show that the proposed method delivers a
substantial performance improvement compared to the existing related approaches, par-
ticularly for queries with high numbers of neighbors.

This chapter is published as “Global-Scale Location Prediction for Social Images using Geo-Visual Ranking”, by X.
Li, M. Larson and A. Hanjalic in the Multimedia, IEEE Transactions on, vol. 17, no. 5, pages 674-686, 2015.
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Figure 2.1: An illustration of the challenge of predicting the geo-location of an image automatically at global scale
based on its visual content and independently of the availability and informativeness of textual metadata.

2.1. INTRODUCTION

T HROUGH rapid development and widespread usage of capture devices such as cameras,
phones and tablets, generation of social images in recent years has exploded. We de-

fine social images as photos that are either taken to share with other users on social media
platforms like Flickr1, or uploaded on such platforms for personal reasons, like memory
preservation. In addition to the visual content of images and their textual metadata (e.g.,
tags), geo-information—information about the geographic locations at which they were
taken and typically represented by geo-coordinates—is also important for supporting users
in searching, browsing, organizing and sharing their photo collections. More specifically,
geo-information can assist in finding popular objects and events in a particular area [1], in
generating representative and diverse views of a location [2, 3], and in making virtual tours
by presenting information mined from user-generated travelogues and photos [4].

While many modern mobile devices make it possible to assign geo-coordinates to im-
ages during capture, most social images are still shared and uploaded without this infor-
mation [5]. As an alternative to manual geo-annotation supported by location-aware in-
terfaces (e.g., the geo-tagging possibilities offered by Flickr), increasing research attention
has been devoted to techniques that automatically estimate geo-locations of social images.
Such approaches are commonly referred to as geo-location prediction techniques [5–9].

Textual metadata that often accompany social images may include place names and
other location-specific terms and in this way help inform the geo-location prediction pro-
cess [6, 8]. For this reason, text has served as the basis for a broad range of proposed geo-
location predication algorithms (e.g., [5, 10]). However, the drawback of textual annotation
is that it needs to be manually created first by the user. In addition, users adding tags to

1http://www.flickr.com/
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Figure 2.2: Geo-visual neighbors of a query image are images that have both a high visual similarity to the query
image and also close geographic proximity to a candidate image.

images does not guarantee that useful location-related information is provided. In other
words, although text can be useful for automated location prediction if available and suf-
ficiently informative, uncertainty remains as to its availability and informativeness for an
arbitrary image.

Alternative approaches have relied on the visual content of images only. They have the
advantage of not depending on the availability of metadata. However, images taken at a
location demonstrate a high degree of visual variability. For this reason, it is not surpris-
ing that the majority of such approaches narrow the domain of prediction and tackle the
task within a geographically constrained area [11–13], or reduce this to specific landmark
recognition [14–16].

The concerns about the availability and informativeness of textual metadata led us to
set as our mission in this chapter the development of an approach that relies solely on vi-
sual representations of images, as depicted in Fig. 2.1. However, in contrast to the majority
of related approaches mentioned above, our overall goal is to investigate the possibilities
to improve geo-location prediction accuracy and reliability to a substantial extent and to
achieve this at global scale, i.e., beyond the current, typically constrained, application sce-
narios. As indicated in recent surveys on this challenge [17, 18], there are still ample oppor-
tunities waiting to be explored. Specifically, the novelty of our work lies in addressing the
shortcomings of the existing approaches to global-scale, visual-only geo-location predic-
tion, and results in substantial performance improvement compared to these approaches.

We also note here that the problem of visual-only geo-location prediction at global scale
is of larger interest to the multimedia community, since, as this chapter witnesses, it typ-
ifies a problem addressable with a search-based, i.e., ranking, solution. Search-based ap-
proaches have been heralded as holding promise for tackling large scale image annota-
tion problems [19], and have also been successful for image classification (e.g., [20]). How-
ever, despite their simplicity and elegance, they do not provide a one-size-fits-all solution.
Rather, much more work is necessary to understand when and why they work, which mo-
tivated the detailed research questions addressed in this chapter.

The remainder of the chapter is organized as follows. In the following section, we briefly
describe the contribution of the chapter and define the main research questions to which



2

18 2. GEO-VISUAL RANKING

we will provide answers. Then, in Section 2.3, we elaborate on the related work, includ-
ing how the approach presented here matured with respect to our preliminary efforts. In
Section 2.4, we provide a detailed explanation of our proposed method for geo-location
prediction. While Section 2.5 details the experimental setup for assessing this approach,
Section 2.6 presents and analyzes the results of experimental evaluation, both in terms of
the obtained performance with respect to the state of the art and the impact of the availabil-
ity of the information that we rely on when generating predictions. Section 2.7 concludes
the chapter and provides an outlook towards future work.

2.2. RATIONALE AND CONTRIBUTION
In this chapter, we propose a novel method for predicting geo-coordinates of social images
at global scale using visual content only. With the proposed method, we specifically address
the shortcomings of previous approaches to this challenge, which can be grouped into two
main categories.

The first category exploits simple pairwise content-based image similarities, and is char-
acterized by single nearest-neighbor (1-NN) approaches [7, 21–25]. These approaches query
a geo-tagged image collection and retrieve the image with the highest visual proximity to
the query image. Once this image has been identified, its geo-coordinates are propagated
to the query image. The main weakness of this approach is its high sensitivity to false pos-
itives, that is, to images that were not taken at the query image location, but which are
visually similar to the query image nonetheless.

The second category includes clustering approaches [7], [26], [24]. Such approaches
retrieve images that are visually similar to the query image and group them into clusters
based on their geo-coordinates. The geo-coordinates of the centroid of the cluster that
contains the most images are adopted as the geo-coordinates of the query image. Com-
pared to the first category of approaches, the underlying idea here is to use more evidence
than a single reference image to improve the reliability of inferring the geo-coordinates for
the query image. However, in practice, this strategy may also work less well than the 1-NN
approach. For instance, if the cluster containing images taken at the query image location
(i.e., the true cluster) contains fewer images compared to other clusters, then it will not be
chosen, and the inferred location will be incorrect.

To address the weaknesses of these two categories of approaches, we propose a Geo-
Visual Ranking (GVR) approach. Instead of relying only on the 1-NN image, or on the
biggest cluster of visual neighbors of the query image, we search for geo-visual neighbors
of the query image. As illustrated on the example in Fig. 2.2, geo-visual neighbors are those
images that are sufficiently visually similar to the query image and are also taken at the
same location as the query image. The advantage of working with geo-visual neighbors is
illustrated in Fig. 2.3. This figure shows a query image that is found to be visually similar
to two geo-tagged social images taken at different locations (which we refer to as candidate
images). The 1-NN approach faces difficulty in this situation as the probability of select-
ing the wrong reference image from the two candidates may be high. Under our approach,
however, the selection of one of the two locations is informed by the sets of images (here
referred to as candidate geo-visual neighbors) found at both locations (here referred to as
candidate locations). Their contribution to the decision is based not on their number (i.e.,
the amount of supporting evidence as used by clustering approaches), but on their com-
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Figure 2.3: The principle underlying geo-visual ranking (GVR): The query image (left) matches two geo-tagged
candidate images equally well. Each candidate image marks one candidate location and is accompanied by other
images similar to the query and taken at that location. All images at a candidate location form the set of candidate
geo-visual neighbors of the query image. The incorrect (upper) match is distinguished from the correct (lower)
one by assessing the visual proximity of geo-visual neighbor sets to the query image.

bined visual proximity to the query image, aggregated over all images from a set. Use of
the set’s visual proximity makes it possible to point to the right candidate image (indicated
by the thicker arrow in Fig. 2.3), despite the fact that this candidate image has a smaller set
of geo-neighbors than the other candidate image. The rationale here is that, compared to
the images from the wrong location, more images from the true location will likely contain
more elements of the visual content of the query image. We hypothesize that this will make
the set of candidate geo-visual neighbors at a wrong location too weak to compete with the
set from the true location, independently of the set size.

The method proposed here represents an extension and a substantial improvement
over our previous work [22, 23], which documented a first exploration of the idea of geo-
visual ranking. In order to mature the initial idea, we improved the visual representation
of the images and the image matching strategy. These improvements are critical because
they led to a significantly better initial list of candidate images and to an improved set of
candidate locations. These improvements are non-trivial because they had a wider impact
on the system. Specifically, in order to translate the improvement of the quality of the ini-
tial list of candidate images into an increase in the accuracy of geo-location prediction, it



2

20 2. GEO-VISUAL RANKING

was necessary to develop high-performance location extraction and location ranking steps
(generation and assessment of geo-visual neighborhoods). In sum, this chapter goes above
and beyond our previous work and provides answers to four research questions:

• RQ1: Is the GVR paradigm conceptually superior to 1-NN and clustering paradigms?
(Section 2.6.1)

• RQ2: How does GVR perform with respect to state-of-the-art methods? (Section 2.6.2)

• RQ3: What is the source of relative advantages of GVR compared to 1-NN and clus-
tering paradigms? (Section 2.6.3)

• RQ4: What is scope of the applicability of the proposed method? (Section 2.6.3)

2.3. RELATED WORK
The challenge of estimating the geo-location of an image using only its visual content has
drawn increasing research attention over the past years. Work addressing this challenge
has been pursued along two major directions: geo-constrained prediction, where the pos-
sible locations at which the target image could have been taken are limited to a defined
geographic range or a set of predefined locations, and geo-unconstrained prediction, as-
suming that the target image could have been taken anywhere around the globe. We briefly
elaborate on the reported achievements in both directions.

2.3.1. GEO-CONSTRAINED CONTENT-BASED LOCATION PREDICTION
Early work on geo-location prediction focused on street-level location prediction. Zhang
and Kosecka [11] used a matching technique based on SIFT features [27] to select images
with the views closest to the target image. The estimated location is then generated by per-
forming position triangulation on the two best reference views selected by the camera mo-
tion estimation. Since the images used were densely sampled along the street, their system
could achieve relatively precise prediction: estimation errors were less than 16m. Steinhoff
et al. [28] applied fast nearest neighbor search within a collection of photos represented
by local image features to achieve realtime location estimation on mobile devices. Experi-
ments were conducted in an urban environment covering an area of a few city blocks. The
reported accuracy is comparable to that of a GPS. Chen et al. [14] investigated the problem
of city-scale landmark recognition for cell-phone images. They collected 150k panoramic
images of San Francisco using surveying vehicles, which were further converted into 1.7
million perspective images. A vocabulary-tree-based retrieval scheme based on SIFT fea-
tures [27] was built to approach this task. Gronat et al. [13] tried to attack this city-scale
location recognition problem from the classification point of view. They modeled each geo-
tagged image in the collection as a class, and learned a per-example linear SVM classifier
for each of these classes with a calibration procedure that makes the classification scores
comparable to each other. Due to the high computational cost in both off-line learning and
online querying phases, the experiment was conducted on a limited dataset of 25k photos
from Google Streetview taken in Pittsburgh, U.S., covering roughly an area of 1.2×1.2km2.

Another group of methods addresses the problem of landmark location prediction. Li et
al. [16] proposed an approach to automatically mine popular landmarks from a large-scale
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Flickr dataset and perform object recognition using a multi-class support vector machine
for top 500 discovered landmarks. Although the landmarks are located all over the globe,
this approach is geo-constrained because it limits the prediction to a finite set of locations.
Similarly, Kalantidis et al. [15] also mined representative scenes from the geo-tagged photos
from 22 European cities and then proposed an approach to estimate the location depicted
in the target image by matching it with these representative scenes. Finally, Li et al. [21]
proposed a hierarchical method to estimate a photo’s geo-location. This approach matches
the visual content of an image against a hierarchical structure mined in a set of images from
about 1.5k predefined places of interest.

One of the main bottlenecks in finding the matching geo-tagged images for the target
image is the absence of ground-level reference photos. In order to tackle this problem,
Lin et al. [29] introduced a cross-view feature translation approach to learn the relations
among three visual aspects: ground-level images, aerial images and land cover attribute
images. The experiments performed on a 40km × 40km region around Charlston, U.S.,
showed the potential of this approach to geo-localize a target image in the absence of geo-
visual neighbors. The success of the approach is, however, limited to scenes that correlate
well with aerial images and land cover attributes.

The approaches mentioned above served as a source of inspiration for the choice of
visual features used in our own approach. The challenge we address is then how to deploy
these features effectively for image similarity assessment in a general case, i.e., when the
target location is not constrained to a set of predefined locations typically characterized by
specific visual scenery elements.

2.3.2. CONTENT-BASED LOCATION PREDICTION WITHOUT GEO-CONSTRAINTS

Compared to the effort that has been devoted to geo-constrained location prediction, there
has been relatively less work dedicated to predicting locations at the global scale. This can
be explained by the challenge of the task. If we consider all social images that have been
taken at arbitrary locations around the world as candidate images representing the tar-
get location, the virtually infinite and, consequently, unknown range of the visual content
covered by these images makes it difficult to define an effective strategy to assess their cor-
respondence to the query image.

A major contribution in this direction was the approach by Hays and Efros 2008 [7],
which we refer to as MSC in this chapter. They deployed various global visual represen-
tations to model the visual scene similarity between images and employed the Mean Shift
Clustering approach to estimate the location. Further contributions can be found among
the submissions to the Placing Task of the MediaEval 2013 multimedia evaluation bench-
mark, which addressed the challenge of location prediction of social images [30]. From
those approaches that made use of visual features, we mention here the approach by Li et
al. [31], who combined ranked lists of candidate images created using various global visual
representations, e.g., color and edge directivity descriptor (CEDD), scalable color (SCD)
and border/interior pixel classification descriptor (BIC), to create an overall ranked list.
The top ranked candidate image is used as the source of the geo-prediction, making this
approach a variant of 1-NN. Kordopatis-Zilos et al. [24] deployed compact visual represen-
tations, SURF+VLAD vectors, to calculate visual similarities between images and applied
an incremental spatial clustering scheme to find the most probable location. Davies et



2.4. GEO-VISUAL RANKING (GVR)

2

23

al. [26] proposed a multimodal version of MSC [7] that uses both local and global visual
representations, including LSH-SIFT and PQ-CEDD, to obtain different sets of candidate
locations. Geo-predictions are generated by selecting the mode with the highest probabil-
ity. This work was later extended to [32] with incorporation of textual metadata. Our own
contribution to the MediaEval 2013 (Li et al. [22]) deploys a combination of local and global
visual representations within the geo-visual ranking system originally proposed in [23].

Because the idea behind the clustering approach MCS [7] is closest to the one underly-
ing our proposed method, we chose this method as one of the main reference methods in
our experimental comparative study. Additionally, we also include our previous work [22]
and [23], which represent our own initial exploratory work and served as progenitor to the
approach proposed here. Especially [22] is a valuable reference method since it was the
best performing visual-only approach at the MediaEval 2013 Placing Task.

2.4. GEO-VISUAL RANKING (GVR)
The problem of predicting geo-location g of a target (query) image q can be seen as the
problem of determining the location g among the set of considered candidate locations
G , which is associated with the strongest evidence of being the correct geo-location of q .
Since we rely on visual information only, we assume that the location at which the image is
taken is also reflected in the visual content of the image. We also assume that query q could
have been taken anywhere in the world, and that set G does not a priori privilege specific
locations over others. In that case, the estimated location g̃ can be found as

g̃ = argmax
g∈G

Scor e(g , q) (2.1)

where the function Scor e(g , q) is defined to quantify the affinity between q and g . We note
that relative likelihood of the locations g ∈G can also be estimated using a dedicated model
that takes into account the domain knowledge in a given use case. This consideration is,
however, beyond the scope of this chapter.

Our proposed approach for estimating g̃ is illustrated in Fig. 2.4 and consists of three
main steps. In the first, candidate image selection step, for a given query image, we first
retrieve from the collection of geo-tagged images a ranked list C of candidate images that
are most visually similar to the query. Then, in the location extraction step, based on geo-
distribution of these candidate images, candidate locations are extracted that form the set
G . Each location from G is represented by images from the list C that form the correspond-
ing location cluster. As introduced in Section 2.2, we refer to these image sets as sets of
candidate geo-visual neighbors of the query image. For a location g , we denote this set
as Cg . Finally, Scor e(g , q) is modeled by the visual proximity between the sets Cg and the
query q and is used to rank the candidate locations for the purpose of selecting the most
likely (top-ranked) one (g̃ ) to be adopted for the query image. This last step is referred to as
location ranking. In the following subsections, we elaborate in detail on each of the steps.

2.4.1. CANDIDATE IMAGE SELECTION
Given a set of geo-tagged images crawled from the web, the goal of this step is to select
those images that, based on their visual content, are most likely to have been taken at the
same location as the query image. Since this set of candidate images serves as input for



2

24 2. GEO-VISUAL RANKING

Figure 2.5: Illustration of two cases of invariant region matching between two images. Because we allow multiple
matches per region, many matches can be identified, as shown by the links between images (b) and (c). There the
lower right region in image (b) has found matches with 17 regions in image (c). On the other hand, for the upper
left region in image (b) only 3 matching regions in image (a) were found.

all further steps, the quality of this set is critical for the success of our approach. While
we considered different visual features and matching strategies that have been proposed
in recent literature ( [7, 22, 23, 33–36]), our exploratory experiments led us to develop a
more effective methodology that better meets the specific requirements of the geo-location
matching task addressed in this chapter.

Conceptually, we search for invariant regions in the images and consider matches be-
tween invariant regions of two images as evidence that the images’ visual content reflects
the same location in the physical world, possibly captured under different conditions, e.g.,
capturing angle, scale or illumination. In order to identify the invariant regions and assess
their matches, we use the standard bag-of-visual-words paradigm, which scales up well to
a large-scale datasets [33, 35, 37].

We formulate the visual similarity Si mvi s (e, q) between images e and q as

Si mvi s (e, q) = ∑
m∈M

Wm (2.2)

where M is the set of matches found between two images. Wm is the weight of each match
m. It is computed using the method presented in [34], and is based on the distance of
the underlying visual words in the feature space, as well as the geometric consistency of
the invariant regions represented by the visual words. In addition, in order to take into ac-
count the quantization noise of visual words and to capture the geometric relation between
matches, we add Hamming embedding [38], multiple assignment [35, 38] and Hough pyra-
mid matching [34] to our bag-of-visual-words scheme.

Compared to the traditional ways of computing the similarity in Eq. 2.2, we refine the
set of region matches to be taken into account by focusing on those that support the expec-
tation of finding the same characteristic scene elements in both images if they are taken at
the same physical location. As illustrated in Fig. 2.5, in case of the same location (images
(a) and (b)), such elements would be more-or-less uniquely linked to each other. On the
other hand, numerous matches found between a region in one image and many regions
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Figure 2.6: Illustration of two different strategies for filtering out multiple alternative region matches between
two images. Case (a) shows the original matches generated by the traditional bag-of-visual-words method with
multiple assignment on the query side (left image). The lower point in the query image represents a region that
matches two different visual words marked with red and green in the right image. Case (b) illustrates the strategy
by Jegou et al. [35] that focuses on the strongest matches between the regions in two images. Case (c) is the
proposed ‘1vs1’ strategy that balances filtering out of the matches with preserving as many informative matches
as possible.

in another image (Fig. 2.5, images (b) and (c)) are typically a consequence of the ambigu-
ities in computing the image similarity and reduce the probability that two images show
the same scene. In this way, multiple matches per region may negatively bias the similar-
ity computation process in Eq. 2.2, leading to wrong geo-location prediction. In order to
prevent this negative bias, we propose to add the one-to-one mapping constraint on the
matched regions between two images to guarantee that one region in image A can only
have one matched region in image B, and vice versa. In general, this can be formulated as
an assignment problem, where one can minimize the overall distance between two region
sets by using the Hungarian algorithm with the computing time in O(m3) for set with m fea-
tures [39]. As finding optimal matches is time consuming, one can aim at an approximate
solution.

A representative method to implement the one-to-one mapping constraint in image
similarity computation was proposed by Jegou et al. [35], who addressed the effect of bursti-
ness of visual words on image matching. They proposed to reduce this effect by choosing
the strongest match per region first and then discard all the other matches associated with
matched regions. However, as can be seen from Fig. 2.6 (case (b)), this strategy may result
in insufficient number of matches for reliable image similarity computation. Compared to
this, and as also illustrated by the case (c) in Fig. 2.6, in our refinement approach, that we
refer to as ‘1vs1’, we focus on preserving those matches that have the potential to inform
the assessment of the relation between two images in terms of their geographic proxim-
ity. We first allow the matches between the regions that originally have few matching links
assigned (i.e., potential unique matches), and then discard other matches that contain re-
gions belonging to the allowed match. We continue this process until no more regions
need to be processed. As indicated by the experimental results summarized in Table 2.1
(Section 2.5), this ‘1vs1’ strategy has the potential to outperform the one of Jegou et al. [35]
in a realistic use case.

2.4.2. LOCATION EXTRACTION
Given a ranked list of candidate images, the next step is to derive a set G of candidate lo-
cations. Since multiple images from the list C could have been taken at the same location,
we propose a method that can gradually build the set G from the geo-coordinates found by
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moving down the list. If new geo-coordinates are found within the distance d of an already
selected candidate location, the geo-coordinates of this location are updated by calculating
the centroid of the geo-coordinates of all images at that location, otherwise a new candi-
date location is created. We set the distance d such to meet the maximum allowed predic-
tion deviation of the system and thus equal to the evaluation radius introduced in Section
2.5.4. We also note that the trivial realization of this approach, namely considering the
location of each individual image as the candidate location, leads to the 1-NN approach,
which we described earlier and that we will also use later on as one of the baselines in our
experimental comparative analysis.

The process of building the set G is steered by two parameters:

• N - the number of top-ranked images in the list C that we consider a reliable set of
candidate images, and

• Gmax - the maximum number of candidate locations that we consider reliable to en-
ter the selection process in Eq. 2.1.

The rationale behind specifying N is to prevent the system from considering images from
the list C that visually deviate too much from the query image and, for this reason, may
introduce noise into the set of candidate images with which we work. Setting of the pa-
rameter Gmax further helps reach this goal since it prevents that the number of candidate
locations becomes unreasonably high. If Gmax candidate locations are found before the
entire top-N part of the list C has been exploited, then no further candidate locations are
created. In that case, the size of the set G becomes equal to Gmax and we only allow already
found locations to be further populated by going further down the top-N list. Alternatively,
if less than Gmax candidate locations are found in top-N images, then we work with this
smaller number of locations only. Setting of the parameters N and Gmax will be discussed
in Section 2.6.

2.4.3. LOCATION RANKING
The step explained above could already be deployed to generate a ranked list of candidate
locations, for instance by linking the rank of each candidate location to the rank of its image
positioned highest in the list C . However, this would make the GVR approach conceptually
equal to the 1-NN category of approaches and would prevent it from making use of all the
available information derived from the geo-visual context of the candidate locations and,
consequently, from making more reliable predictions. We therefore allow all of the images
in the set Cg to contribute to the cumulative visual proximity of Cg to the query q and
compute the Scor e(g , q) determining the rank of the location g as:

Scor e(g , q) = ∑
e∈Cg

Si mvi s (e, q) (2.3)

We note here that another possibility for ranking score computation would involve nor-
malizing the sum in Eq.2.3 by the size of the Cg set. A priori, it seems that such an approach
might potentially help in the situations in which an incorrect location is more heavily pop-
ulated by images (e.g., many images of popular landmarks) than the true location. In such
a case, if the images on the wrong location are not significantly dissimilar from the target
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image, Eq.2.3 would allow the incorrect location to outrank the correct location. However,
such a normalization also has the potential to make negative impact. In particular, in the
case that the correct location has more geo-visual neighbors than the incorrect one, but if
the visual match of the images at the correct location is insufficiently strong, then the in-
correct location could possibly outrank it. Since it is difficult, if not impossible, to make
a reliable prior estimate about which of the two cases would dominate in the actual geo-
prediction problem, we tested this experimentally by comparing the performance of GVR
using both the Eq.2.3 and its normalized version. The performance is computed on our
test data collection as a part of our overall experimental study that is explained in detail
in sections 2.5 and 2.6. The results showed that the score computation using Eq.2.3 leads
to 25% improvement in GVR performance, compared to its normalized version. This in-
dicates that Eq.2.3 better reflects the phenomena present in a typical large-scale Internet
image collection related to geo-location prediction. On the basis of this result, we con-
fidently adopt Eq.2.3 for score computation as a part of our GVR framework, and do not
consider its normalized version in the remainder of this chapter.

2.4.4. REDUCING THE EFFECT OF HIGH-VOLUME UPLOADS
The reliability of the candidate location list can be negatively influenced by the tendency
of social media users to upload many images taken at the same location, for instance those
related to a specific event attended and intensively photographed by a user. High-volume
uploads of individual users damage prediction because they lead to a disproportionately
high number of images in the set Cg of a false location, which may overwhelm the other-
wise lower visual similarity between images in that set and the query compared to the true
location. For this reason, when applying Eq.2.3, a false location can be found to match the
query better than the true location. An illustration of this case is given in Fig. 2.7 using the
true example generated with the method presented in this chapter.

In order to reduce the negative effect of high-volume uploads, we introduce a constraint
that requires that sets Cg contain at most one image from any given user. In addition to
handling the high-volume upload problem, we point out that this constraint also promotes
the independence in the evidence (i.e., geo-visual neighbors have been captured by dif-
ferent users, and also during different photo-taking events) that contributes to assessing
candidate locations, leading to a more robust prediction. The positive effect of this con-
straint is also illustrated on the example in Fig. 2.7.

2.5. EXPERIMENTAL SETUP
In this section, we describe the setup of our experimental framework for assessing the per-
formance of the proposed GVR method. In the following subsections, we will elaborate on
the details regarding all aspects of this framework, including the dataset we used, features
we selected to measure visual similarity of images, reference methods from literature that
we deploy for comparative analysis and the assessment criteria.

2.5.1. DATASET
To assess the performance of the proposed GVR method, we carry out experiments on
an image collection that is based on the dataset released by the MediaEval 2013 Placing
Task [30]. To create this dataset, geo-tagged images were randomly selected from Flickr,
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but in a way that maintained the global geographic coverage and retained the original user
structure within the online image sharing network. Since the dataset release included only
the metadata and not the images themselves, we re-crawled Flickr to collect the images
using the links in the metadata. Because some images were removed from Flickr after the
dataset was collected, the final collection we worked with contained 8,799,260 images.

We adopt the same training/test set split as used in the MediaEval 2013 Placing Task.
There, 261,892 images served as test queries, leaving 8,537,368 as the training set used to
generate the predictions. The split was created such that the set of users who contributed
the test images were excluded from the set of users who contributed the training images.
This constraint makes it impossible for the algorithm to leverage the fact that a single user
often uploads (near-) duplicate images. It makes the task more challenging, but also en-
sures that it is more realistic. We further divided the test set of 261,892 images into two
partitions, 10% serving as a development partition, which we use to tune parameters, and
the rest of 90% serving as a test partition.

2.5.2. COMPUTING VISUAL SIMILARITY
In our experiments, we compare the cases in which image similarity is computed using lo-
cal and global features, either separately or in combination. We elaborate on the deployed
local and global image representations and related image matching strategies in more de-
tail in the following subsections.

IMAGE SIMILARITY BASED ON LOCAL FEATURES

In choosing local feature-based image representation, we followed a standard line of rea-
soning. Since SURF [40, 41] has been reported to be faster and more compact than SIFT [42],
we use SURF to find and describe invariant regions in the image. To further speed up the
retrieval and improve the accuracy, we also adopt the state-of-the-art technique proposed
in [38], which represents subregions of the feature space by signatures, and compares de-
scriptors not only based on their visual words, but also based on the distance between their
subregions within the feature space. To address the quantization noise introduced by visual
word assignment, we adopt the strategy used in [35, 38], which assigns a given descriptor
to several nearest visual words. As this multiple assignment strategy significantly increases
the number of visual words per image, e.g., on average 4.2 visual words per descriptor, we
only apply this at the query side.

We deploy the BoofCV software to extract SURF descriptors with default parameters
and use exact k-means to cluster these descriptors and generate visual words. As described
in [33, 34], the bag-of-visual-words-based system can have a different performance de-
pending on whether the visual words vocabulary is trained on an image set with or without
test queries, i.e., whether the vocabulary is specific or generic. To mimic the situation in a
real retrieval system, we use a separate set of 50k randomly selected images from Flickr to
train the generic 20k vocabulary set and use it in all experiments.

To select the strategy for image matching to work with, we did a preliminary experi-
mental study using the feature-extraction procedure and system setup mentioned above
and involving the proposed ‘1vs1’ and two alternative image matching strategies from [35]
and [43]. Since the image matching problem stated in Section 2.4.1 is closely related to
object retrieval, namely the problem of finding the images containing the same objects
or scene elements as in the query image, we tested these implementations against two
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standard datasets used for this purpose, namely the Oxford dataset [33] and the Holiday
dataset [38], with or without 1M randomly selected images from Flickr as distractors. The
mean average precision (mAP) for different datasets is reported in Table 2.1.

Compared with [35] and [43], ‘1vs1’ achieved comparable performance on generic vo-
cabularies and even outperformed these alternative methods slightly. Note that the high
performance achieved by [43] on the Oxford dataset is mainly due to the specific features
optimized for unrotated images. However, this gain is at the cost of worse performance for
rotated images, e.g., on the Holiday dataset. As we do not restrict the geo-location esti-
mation task to unrotated images only, we particularly focused on the performance on the
Holiday dataset, which contains images that have undergone various transformations re-
lated to rotations, viewpoint change and blur. The Holiday dataset also includes a large
variety of scene types (e.g., not only buildings, as in the Oxford dataset, but also landscape,
animal, flowers and indoor scenes), better indicative for the strategy to be selected. The
results in Table 2.1 made us adopt the proposed ‘1vs1’ strategy to implement the candi-
date image selection step using local features, which will be used in all further experiments
reported in this chapter.

As a side remark, we note that more recent alternative strategies for image matching us-
ing visual words have been proposed in [34] and [33]. We also compared ‘1vs1’ with these
strategies and the performance was rather close (slightly better than [34] and slightly worse
than [33]). However, we did not report these results in Table 2.1 because these two alterna-
tives were assessed on Oxford dataset only, which we found too limiting for our compara-
tive analysis.

Table 2.1: mAP comparison on Oxford and Holidays for generic vocabularies

1vs1 [35] [43]

Holi d ay s 0.879 0.848 0.780

Holi d ay s +1M 0.820 0.791 –

Ox f or d 0.657 0.685 0.822

Ox f or d +1M 0.571 0.542 –

IMAGE SIMILARITY BASED ON GLOBAL FEATURES

To compute visual similarity based on global visual features, we chose GIST representa-
tion [36], which has been shown to be effective in retrieving semantically and structurally
similar scenes [7, 44]. For each image, we resize it to 375×500, which is the most common
image size in the collection, and then create the GIST descriptor in 5×5 spatial resolution
with 4 scales and 6 orientations at each scale. After this, each image is represented by a
600 dimensional vector and we use L2 distance to compare these vectors. These settings
are the same as in MSC [7], which we will introduce as one of our reference methods in the
following section.

2.5.3. EXPERIMENTAL COMPARISON
We assess the proposed GVR method through a comparative experimental analysis, which
we perform in three stages. In the first stage, we compare the performance of our proposed
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GVR approach with two other categories of methods introduced in Section 2.2. For each
category, we select one representative method which is not restricted to specific regions or
landmarks. These methods are:

• VisNN : Our implementation of the 1-NN approach, which uses the geo-location of
the image visually most similar to the query image as the predicted location. As al-
ready indicated in Section 2.4.2, we deploy here the trivial realization of our method
for location extraction, where the location of each individual image in the list C of
candidate images is considered as one candidate location. Choosing for our own
implementation here allows us to experiment with both local and global image rep-
resentations when selecting candidate images. In this way, we are able to compare
this method with GVR consistently and fairly.

• MSC: Method used in [7], which performs mean-shift clustering on the geo-locations
of the top N images most similar to the query and then ranks these clusters by their
size. The centroids of the ranked clusters are used as the predicted locations. Differ-
ent from the original work in [7], where only global image representations were used,
we evaluate this clustering method using both local and global image representa-
tions. Again, this allows us to make a fair comparison of this method with VisNN and
GVR since the visual image representations used are consistent. In addition, as the
kernel bandwidth of mean-shift clustering used in MSC is tuned for coarse-grained
location estimation, i.e., city level, with an estimation range of 25km, we use much
smaller bandwidths to maximize the performance with respect to the required pre-
diction deviation.

As the main result of the first stage, we will show that GVR outperforms the other two
alternatives when local, global and combined local-global feature representations are used.
The results of this stage are reported in Section 2.6.1 and serve to provide an answer to RQ1,
i.e., investigation of the validity of the proposed GVR paradigm.

In the second stage, and as already indicated in Section 4.3, we compare GVR with our
previous work [22] and [23]. The goal of this experiment is twofold. First, it will help us
gain more insight into the effect of combining local and global features. Second, since the
method [22] was the best performing visual-only approach at MediaEval 2013 Placing Task,
this comparison will also provide an answer to RQ2, i.e., what the improvement of GVR
method is with respect to the state of the art.

In the third stage, we investigate the relative advantages and applicability of GVR, by
analyzing the dependence of the performance of GVR, VisNN and MSC on the number of
geo-visual neighbors that are available at a location and exploited to generate predictions.
The results of this stage are reported in Section 2.6.3 and address RQ3 and RQ4, i.e., re-
veal the reasons for the relative performance among the three methods, and also provide
indication of the applicability scope of the proposed GVR method.

2.5.4. EVALUATION PROCEDURE
To evaluate the performance of the proposed system, we adopt the procedure standardly
used in the literature. We start by defining an evaluation radius reval . This radius controls
the evaluation precision and the tolerance to data noise in the ground truth, which is gen-
erated by a GPS device or through manual labeling. An image is considered to be correctly
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(a) (b)

Figure 2.8: General performance on local features. (a) HR@1 with respect to different evaluation radiuses, (b)
HR@k performance for varying k and for the evaluation radius of 1km.

predicted if its predicted geo-coordinates fall within reval around the ground truth loca-
tion. Formally expressed, the correctness of an image with respect to an evaluation radius
reval is calculated by the evaluation function freval ,

freval (g , g̃ ) =
{

r i g ht , g eoDi st (g , g̃ ) ≤ reval

wr ong , other wi se
(2.4)

where g eoDi st (g , g̃ ) designates the geographical distance between g and g̃ .
We use the Hit Rate at top K (HR@K ) as the criterion to assess the quality of prediction.

Given a query, the system returns a ranked list of possible locations. Then, HR@K mea-
sures the proportion of queries that are correctly located in the top K locations. Specifically,
HR@1 represents the ability of the system to output a single accurate prediction.

2.6. EXPERIMENTAL RESULTS
We implemented our GVR framework by constructing a Map-Reduce-based structure on a
Hadoop-based distributed server containing 90 nodes with 8 cores each. The overall run
time to build the initial visual rank (the candidate image selection step) for all 261k queries
on a dataset of 8.8 million photos is about 91 hours, which corresponds to about 1.26 sec-
onds per query image. The overall run time for location extraction and location ranking for
all 261k queries is 5 minutes, which is 2 minutes faster than for the MSC method.

In this section, we report the results of our experimental study, which compares our
GVR method with the reference methods. We deploy different settings using local and
global features for image representation, both separately and in combination, and in the
three stages defined above.

2.6.1. STAGE 1: COMPARATIVE ANALYSIS OF GVR, VISNN AND MSC
We use our development partition to tune the parameters of GVR. We set two parameters:
the number N of top-ranked images in the list C and the maximum allowed number of can-
didate locations Gmax , both defined in Section 2.4.2. The tuning is performed per exper-
iment (i.e., separately for local, global and combined local and global features) using grid
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(a) (b)

Figure 2.9: General performance on global features. (a) HR@1 with respect to different evaluation radiuses, (b)
HR@k performance for varying k and for the evaluation radius of 1km.

search, through which the best parameter combination is found. For both Gmax and N we
considered the values 10, 20, 50 and 100 and only those combinations where N >Gmax . In
the second and third stage we used the optimized best-performing version of GVR.

In order to have a fair comparison with GVR, we also searched for the optimal value
of N for MSC. We noticed, however, that the performance of MSC continuously decreases
for the increasing value of N , never outperforming either of the other two methods. We
therefore adopted the same value of N for MSC as the one that was found optimal for GVR.
While the value of N does not affect the general conclusion regarding the relative perfor-
mance of MSC, using the same value of N for both MSC and GVR proved to be beneficial for
the analysis we perform in the next section as it helps identify the reasons for the relative
performance among the three methods.

Fig. 2.8 shows the performance of different methods using local features with different
values of reval (Fig. 2.8.a) and different hit rates (Fig. 2.8.b). This figure reveals that GVR
consistently outperformed both VisNN and MSC across the board. The average gain in
performance was 5% over VisNN and 80% over MSC. The parameter combination found
optimal for this experiment was Gmax = 20 and N = 100.

The performance of different methods based on global features is illustrated in Fig. 2.9.
In general, all three methods performed significantly worse compared to the previous ex-
periment where local features were used. This indicates that global features alone may not
be discriminative enough for location prediction. Although global features such as GIST
are known to be effective in retrieving semantically and structurally similar scenes [7, 44],
scenes like beaches and forests can appear at many places around the world and have
similar general visual characteristics for different locations. In this case, even though the
scenes can be matched well by their category, it is difficult for global features to pinpoint
one precise location. The parameter combination found optimal for this experiment was
Gmax = 10 and N = 20.

In view of the results obtained using local and global features separately, we further
explored whether they could be combined for more reliable location prediction. For this
purpose, we expand the scheme of our GVR approach by an additional ranking step. We
first follow the procedure from Section 2.4.1 to create the ranked list of candidate images.
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(a) (b)

Figure 2.10: General performance on the combination of local and global features. (a) HR@1 with respect to
different evaluation radiuses, (b) HR@k performance for varying k and for the evaluation radius of 1km.

This list is generated based on image comparison using local features. We then take the
t top ranked images from this list and rank them again using global features. In the end,
we select the top N ranked photos as the final selected candidate set. Although different
reranking methods can be deployed here, we chose this simple concatenation of two rank-
ing steps in order to prevent that images too low in the list C are moved to the top of the
reranked list. Our procedure can, however, still be seen as reranking, since the initial rank-
ing influences the set of images that propagate to the next step. The prediction results for
three methods are reported in Fig. 2.10. Compared to the results in Fig. 2.8, combining lo-
cal and global features slightly underperforms with respect to using the local features only.
The parameter combination found optimal for this experiment was t = 300, N = 100 and
Gmax = 20.

While the performance of all three methods varies depending on the deployed visual
features, GVR was found to be superior to other two in all three experiments. This allows us
to answer positively to RQ1.

2.6.2. STAGE 2: COMPARATIVE ANALYSIS OF GVR AND STATE OF THE ART

To investigate the effect of combining the local and global features in more detail, we con-
ducted a comparison between GVR variants using the local only and local and global fea-
tures, referred to as Local+ and Global&Local+, respectively, and our initial work on geo-
visual ranking reported in [23] and [22], referred to as Local and Global&Local, respectively.
The notation + is used to indicate that the method variant deploys the ‘1vs1’ matching
constraint introduced and justified in Section 2.4.1. Methods Local and Global&Local can
therefore be seen as the counterparts of Local+ and Global&Local+ as there no sophisti-
cated image matching is deployed.

If we compare the methods using local features only to those relying on combination of
local and global features (Fig. 2.11), in contrast to the positive gain of about +18% achieved
by Global&Local over Local, the gain achieved by Global&Local+ over Local+ is negative,
−6%. This indicates that combining local and global features can only provide added value
if global features compensate for the suboptimal performance of local features. By applying
‘1vs1’ matching, some top-ranked, but incorrect candidate images, that potentially could
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Figure 2.11: Comparison of the performance of four methods in terms of HR@1 with respect to different evaluation
radiuses.

have been filtered out using global features, have already been removed. Since global fea-
tures significantly underperform compared to local features in a general case, deploying
global features to this optimized first step is then likely to make the end result worse. For
example, a good candidate photo may only contain one part of the scene captured by the
query and therefore have a different global image representation. In this case, although
this photo may be ranked at the top based on local features, it could be filtered out in the
second step due to wrong interpretation based on global features.

The comparison in Fig. 2.11 also provides another insight, namely on the improvement
the proposed GVR approach in its most successful variant (Local+) achieves with respect
to state of the art. We consider here the category of methods that rely solely on the social
images and their visual representation. In this category, the state of the art is represented
by our method, Global&Local, from [22] from the MediaEval 2013 Placing Task. For the
evaluation radius of 1km, Local+ results in the performance gain of about 69% compared
to Global&Local. This provides an answer to RQ2.

The fact that Local+ is the best performing method highlights the contributions made in
this chapter and consisting of image matching using ‘1vs1’ strategy from Section 2.4.1 and
the improvements in Location Extraction and Location Ranking introduced in Section 2.4,
but also of reducing the effect of high-volume uploads as explained in Section 2.4.4 and
illustrated in Fig.7. Regarding the latter, we compared the performance of Local+ with and
without this step. This experiment reveals that controlling for high-volume uploads (i.e.,
the version of Local+ in Fig. 2.11) introduced a increase of 4.2% in HR@1 at reval = 1km.
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(a) (b)

Figure 2.12: Illustration of two query photos and geo-tagged photos taken at the same location as the query. (a)
there is no visual link between query photo and photos taken in the same location. (b) within the query’s location,
there are photos which have captured similar visual content as the query.

2.6.3. STAGE 3: APPLICABILITY SCOPE
The generally low prediction performance reported in Section 2.6.1 is due to the fact that
a large majority of queries do not have any visually similar images taken in their geo-
neighborhood. The incorrect location prediction for these images pulls the overall perfor-
mance of all three compared methods down significantly. As illustrated in Fig. 2.12, if the
query has no geo-visual neighbors, the probability increases that it will find visual matches
from a wrong candidate location rather than from the right one, which leads to an incorrect
location prediction. In contrast, a sufficient number of geo-visual neighbors increases the
probability of finding the right visual match between the true location and the query, which
again helps the method to make the right prediction. In this section, we zoom in onto the
subset of the queries from our test set for which there is at least one geo-visual neighbor
available. For these cases, we perform the comparative analysis again between the three
methods from the previous section, with the objective of assessing, in a more reliable fash-
ion, the ability of each of them to use the information that is available in the training set in
order to make the right prediction.

In order to perform this experiment, we first need to find this query subset. Manual
inspection of our data for this purpose would be too tedious and time consuming: we have
261k queries, where 35% of them have more than 1000 geo-neighbors. Instead, we used
the proposed method for image similarity computation (Section 2.4.1), which deploys local
image representation and the ‘1vs1’ matching strategy, to help us create a rough judgment
about geo-visual neighborhoods of our queries. For each query, we inspected the top-N
ranked list of visually similar geo-tagged images and counted those found within the same
radius from the query location as defined in Section 2.4.2. After experimenting with differ-
ent values of N , we selected N = 1000 as the most suitable value. As illustrated in Fig. 2.13,
we found that only about 20% of the queries had at least one geo-visual neighbor.

Fig. 2.14 breaks down the geo-location prediction performance across query groups
characterized by different numbers of geo-visual neighbors. Apart from the fact that the
performance of all three methods increases dramatically compared to that reported in pre-
vious experiments, an interesting pattern becomes visible that reveals the main value of
the proposed GVR method. Note that this is the value already alluded to in the description



2.7. CONCLUSION

2

37

Figure 2.13: Distribution of queries over different numbers of geo-visual neighbors calculated over the social im-
age collection.

of the rationale in Section 2.2.

If we compare the performance of VisNN and MSC across the range, we see that VisNN
outperforms MSC for low numbers of geo-visual neighbors, while the opposite holds for
higher numbers of geo-visual neighbors. This can be explained by the fact that MSC se-
lects the candidate location with the largest cluster of candidate images as the predicted
one. Then, the probability that the true location is selected decreases with the decreasing
number of geo-visual neighbors of the query. In parallel, the probability increases that the
MSC performance becomes lower than that of VisNN, which only needs to match a sin-
gle geo-visual neighbor for the prediction. On the other hand, if there are more geo-visual
neighbors, the available visual evidence makes MSC more reliable than the single-image
evidence VisNN is based on. Furthermore, the performance distribution in Fig. 2.14 shows
that GVR mimics the best-performing method in the given geo-visual neighborhood con-
text: for few geo-visual neighbors, GVR performs like VisNN, while it becomes equivalent to
MSC for more available geo-visual neighbors. This analysis explains the reasons underlying
the relative performance among the three methods, providing an answer to RQ3.

In addition, for queries with middle level number of geo-visual neighbors, GVR out-
performs both VisNN and MSC. This makes GVR best capable of making the most use of
the available information in the given query context. As an illustration, Fig. 2.15 gives one
true example using the result generated with these three methods for one query with mid-
dle level number of geo-visual neighbors. As the answer to RQ4, concerning the applica-
bility of our proposed approach, it can be concluded that GVR can effectively be applied
across the range of the size of geo-visual neighborhoods. GVR contrasts in this respect with
both VisNN and MSC, which are best applicable solely for few or many available geo-visual
neighbors, respectively.

2.7. CONCLUSION
We have presented a geo-visual ranking approach addressing the challenging task of pre-
dicting geo-locations of social images using only the visual content of images. The main
contribution of the approach is that it improves over two major classes of previous ap-
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Figure 2.14: HR@1 with reval = 1km for queries with different numbers of geo-visual neighbors.

proaches, addressing the disadvantages of both 1-NN and clustering. We carry out evalua-
tion using the publicly available dataset from the MediaEval 2013 Placing Task containing
8.8M images. This data set does not set specific focus on frequently photographed areas or
on a limited set of locations or landmarks. It therefore allows us to evaluate our approach
as a geo-unconstrained prediction approach, i.e., given a photo, it predicts a location any-
where in the world. Compared with other methods that have been proposed to tackle the
same problem, and evaluated on the same dataset, the proposed GVR method achieves
sound performance for geo-location prediction and significantly outperforms state of the
art in its approach category. The performance is especially high for images with many geo-
visual neighbors in the collection. Crucially, however, the GVR approach also retains reli-
able performance for queries with a low number of geo-visual neighbors, which are highly
problematic for the clustering-based MSC approach.

In terms of the roles of different visual representations of images for location prediction,
we find that although global features such as GIST are known to be efficient for retrieving
semantically and structurally similar scenes, it is challenging to exploit them to improve the
prediction performance. We attribute this fact to the weakness of the relationship between
scene types (which GIST is known to differentiate well) and specific locations. Because it
is difficult for global features to pinpoint one precise location, it is also difficult to exploit
them for geo-prediction. In contrast, local representations can establish stronger links be-
tween photos taken at one particular location, and can, in this way, generate relatively re-
liable prediction, exceeding the ability of global representations. The effectiveness of local
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features is also further improved if they are combined with sophisticated image matching
strategies, like the ‘1vs1’ strategy proposed in this chapter.

We note in closing that this chapter has shed light on the difficulty of the problem of
geo-location prediction for social images. Fig. 2.12.a illustrated the problem of query pho-
tos for which there is no visual connection to the photos in the social image collection
taken at the correct location. Fig. 2.13 reveals that there are only ca. 20% of the photos in
our collection for which we can find at least one geo-neighbor. The converse problem is
also worth consideration, namely, the occurrence of visually similar images taken at dif-
ferent locations. For example, a view onto an unbroken expanse of desert can be shot at
multiple locations on the surface of the earth. Taking the next step forward in geo-location
prediction for social images involves determining to which extent these issues character-
ize large collections of images taken by users. Our future work will move in this direction.
Specifically, it will include investigation of geo-visual diversity and ambiguity in how visual
content reflects the locations at which images were taken. We will explore these issues in
greater depth to arrive at insight that would help us to further improve geo-location pre-
diction of social images.
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3
PAIRWISE GEOMETRIC MATCHING

The key to effective search-based geo-location prediction, introduced in the previous chap-
ter, is the verification step in the retrieval process. In this chapter, we turn specifically to
the issue of spatial verification. Specifically, we consider the pairwise geometric relations
between correspondences and propose a strategy to incorporate these relations at signifi-
cantly reduced computational cost, which makes it suitable for large-scale object retrieval.
In addition, we combine the information on geometric relations from both the individual
correspondences and pairs of correspondences to further improve the verification accu-
racy. Experimental results on three reference datasets show that the proposed approach
results in a substantial performance improvement compared to the existing methods, with-
out making concessions regarding computational efficiency.

This chapter is published as “Pairwise Geometric Matching for Large-scale Object Retrieval”, by X. Li, M. Larson
and A. Hanjalic in the Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’15), Boston, US,
2015.
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3.1. INTRODUCTION

I N this chapter, we address the challenge of improving the efficiency and reliability of
image matching in an object-based image retrieval scenario. Under object-based image

retrieval, further referred simply to as “object retrieval”, we understand the problem of find-
ing images that contain the same object(s) or scene elements as in the query image, how-
ever, possibly captured under different conditions in terms of rotation, viewpoint, zoom
level, occlusion or blur. Many object retrieval approaches and methods [1–5] have been
proposed in recent literature, largely inspired by the pioneering work of Sivic and Zisser-
man [6] and built on the bag-of-features (BOF) principle for image representation. An anal-
ysis of the state-of-the-art reveals that these approaches and methods are typically cen-
tered around the idea of detecting and verifying correspondences between salient points
in a given pair of images. The initial set of correspondences are detected based on matches
between visual feature statistics measured in different images around found salient points.
The correspondence verification step then serves to filter out unreliable correspondences.
This verification is typically a spatial (geometric) one and involves geometric constraints
to secure consistency of transformation of different image points. Spatial verification is
the key to achieve high precision for object retrieval, especially when searching in large,
heterogeneous image collections [6, 7].

A common way of verifying the initial correspondences is to apply a geometric match-
ing. Geometric matching can be done either explicitly, by iteratively building an optimized
transformation model and fitting it to the initial correspondences (e.g., RANSAC-based
model fitting approaches [7, 8]), or implicitly, e.g., by verifying the consistency of the image
points involved in the correspondences in the Hough transform space [9, 10]. Compared to
these approaches, pairwise relative geometric relations between the correspondences have
not been frequently exploited for spatial verification. This may be due to the fact that the
typical number N of initially detected correspondences is usually large, resulting in high
computational complexity of pairwise comparisons, which can be modeled as O (N 2). This
complexity makes exploitation of pairwise relations less attractive when operating on large
image collections. Exploiting these pairwise geometric relations could, however, further
improve the performance of image matching as it brings valuable additional information
about local object or scene constraints of the correspondences into the matching process.
As illustrated in Figure 3.1, the geometric relations in terms of rotation and scaling between
vectors formed by a pair of correspondences are closely related to the global geometric re-
lations between images that are encoded in the transformation of the image regions sur-
rounding the salient points. Our goal in this chapter is therefore twofold. First, we aim
at generating the conditions under which pairwise geometric relations can be applied for
spatial verification at a reasonable computational cost. Second, we aim at maximizing the
benefit of involving these relations for improving the object retrieval performance.

We pursue the goal specified above by a novel pairwise geometric matching method that
consists of three main steps. We first propose a one-versus-one (‘1vs1’) matching strategy
for the initial correspondence set to handle the redundancy of one-to-many correspon-
dences, which is a typical result of detecting correspondences between two images [3] [10].
By removing this redundancy, a new, significantly reduced correspondence set is gener-
ated. Then, similarly to [9, 11], we reduce this set even further, by deploying Hough voting
in the scaling and rotation transformation space. After these two steps, a large fraction of
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Figure 3.1: (a) Three correspondences found for two images, (b) global rotation and scale relations between im-
ages encoded in the transformation of the matched salient points from individual correspondences, (c) rotation
and scale relations between vectors formed by pairwise salient points involved in the correspondences. Transfor-
mations in cases (b) and (c) are closely related to each other and can be used to emphasize each other for spatial
verification.

original correspondences are filtered out, which enables us to exploit pairwise geometric
relations for spatial verification at a significantly reduced computational cost. Finally, a
simple pairwise weighting method is devised to incorporate both the global geometric re-
lations derived from individual correspondences and the local pairwise relations of pairs
of correspondences. As we will show by experimental results in Section 3.6, our proposed
method makes the spatial verification of correspondences more tractable in case of a large
image collection, but also more reliable, which leads to an overall significant improvement
of the object retrieval performance compared to state-of-the-art methods.

3.2. RELATED WORK AND CONTRIBUTION

The existing work addressing the problem of verifying the geometric consistency within a
set of correspondences can be grouped in two main categories. The first category com-
prises the methods exploiting individual point correspondences for spatial verification,
while the methods from the second category exploit multiple correspondences for this pur-
pose. We briefly analyze the representative methods from these categories and position our
contribution with respect to them.
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3.2.1. EXPLOITING INDIVIDUAL CORRESPONDENCES

Model-based methods. For two images capturing the same object, a limited number of
correspondences can be deployed to estimate the geometric model transforming the points
of one image into those of the other image [12]. Once the model is obtained, each corre-
spondence can be assessed in how it fits this model. The key challenge here is how to do
model estimation in the presence of noisy correspondences. One of the classical meth-
ods to pursue this challenge is RANSAC [13]. Over the years, several attempts have been
made to improve its efficiency. For example, Chum et al. [8] managed to significantly speed
up the model estimation by adding a generalized model optimization step when the new
maximum of inliers is reached. This results in less iterations needed for model estima-
tion to converge. Philbin et al. [7] exploited local appearance of matched image points to
generate model hypotheses using a single correspondence, which significantly reduces the
amount of possible model hypotheses. Different from RANSAC-based methods, Lowe [11]
applied Hough transform to the geometric transformation space to find groups of con-
sistently transformed correspondences prior to estimating the transformation model. In
contrast to these model-based methods, which typically need complex iterative model op-
timization, we are targeting a more lightweight, model-free method.

Model-free methods. As an alternative to the methods discussed above, one can also im-
plicitly verify the correspondences with respect to their consistency in the Hough transfor-
mation space. Avrithis and Tolias [10] exploited the relative geometric relations, i.e., scal-
ing, orientation and location, between the local appearance of the matched points. Each
correspondence generates one vote in the 4-dimensional transformation space and is then
weighted by pyramid matching to capture its consistency with other correspondences. Jé-
gou et al. [9] used the scaling and orientation relations between matched points to find the
correspondences that agree with the dominant transformation found in the transforma-
tion space. Similarly, Zhang et al. [14] exploited the translation between matched points
using Hough voting in a 2-dimensional translation space. Shen et al. [15] also exploited the
translation using Hough voting. However, instead of using only the original query object,
they applied several transformations with different rotations and scales to the query object,
and searched for the best possible translation of these transformed query objects against
a collection image. In this way, rotation and scaling invariance can be added to the sys-
tem. Our proposed method belongs to this category of model-free approaches. However,
in contrast to most of the existing work which focuses on individual correspondences, we
are considering the pairwise relations between correspondences as well.

3.2.2. EXPLOITING MULTIPLE CORRESPONDENCES

In contrast to rich previous work focusing on individual correspondences, the information
encoded in groups of correspondences has remained less exploited for spatial verification.
Some related methods implicitly encode the spatial-order information of the correspon-
dences. Wu et al. [16] bundled the local features according to their location and captured
the relative order consistency of the correspondences along the X- and Y-coordinates in
each image. As this simple way of capturing order consistency cannot support complex ge-
ometric transformations, it is primarily suitable for problems of near-duplicate detection.
Compared to this, Cao et al. [17] encoded the spatial-order relation between local features
by ordering them in a set of linear and circular directions, so rotation can be handled as
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well. Instead of relying on the ordering of the correspondences, we deploy a more subtle
information for spatial verification, namely the rotation and scaling relations between the
vectors formed by salient points involved in correspondences. This is likely to make spatial
verification more reliable.

We are not the first ones exploiting pairwise geometric relations between correspon-
dences. Carneiro and Jepson [18] employed a pairwise semi-local spatial similarity to cap-
ture the pairwise relations of correspondences and grouped them using connected compo-
nent analysis based on the pairwise similarity matrix. This work was further combined with
a probabilistic verification method in [19] to increase the proportion of correct matches in
the correspondence set. Likewise, by building a pairwise similarity matrix of correspon-
dences, Leordeanu and Hebert [20] employed a spectral method to greedily recover inliers
and find the strongly connected cluster within the correspondence set. These works are
related to our approach as they all exploit the pairwise relation between correspondences.
However, these methods were designed to exploit the pairwise relations directly from the
initial correspondences. As discussed earlier in this chapter, the complexity of spatial verifi-
cation in this case becomes too high to be applicable in the case of a large image collection.
Compared to these methods, our contribution is twofold. First, we significantly reduce the
number of correspondences and in this way make the proposed spatial verification more
tractable. Second, our pairwise geometric matching method combines both the global ge-
ometric relations derived from individual correspondences and the local pairwise relations
of pairs of correspondences for improved object retrieval performance.

3.3. CORRESPONDENCE PROBLEM FORMULATION
We start out from a standard representation of an image using local features. This represen-
tation typically involves detection of salient points in the image and representation of these
points by suitable feature vectors describing local image regions around these points. For
instance, in the SIFT [11] scheme, which is widely deployed for this purpose, salient points
are detected by a Difference of Gaussians (DOG) function applied in the scale space. The
points are then represented by local feature vectors f = [x,θ,σ,q], where x, θ and σ stand
for the spatial location, dominant orientation and scale of the represented region around
the point, respectively, and q is the feature description of the region. Given the images F
and F̃ , and their salient points with indexes i and m and represented by feature vectors fi

and f̃m , respectively, we define the initial set C of correspondences ci m between them as

C = {(fi , f̃m ,Wi ni (ci m)|Φ(fi , f̃m) = 1} (3.1)

Here,Φ(.) ∈ {0,1} is the binary matching function serving to judge whether two image points
capture the same object point in the physical world. For instance, in the BOF scheme,
this function is typically computed as Φ = δ(u(qi )−u(q̃m)), where u(qi ) is the quantized
cluster center of the description vector qi of local feature fi and where δ(.) is the Kronecker
delta. Furthermore, Wi ni (ci m) is the weight initially assigned to a correspondence ci m and
representing the proximity between two points in the local feature space. For instance, the
weight can be computed in terms of the statistical distinctiveness of the quantized visual
feature center within the image collection, e.g., using the inverse document frequency (idf )
scheme applied in the BOF context [6]. As an alternative, this weight can also be computed
using Hamming distance employed in the Hamming Embedding scheme [3, 9].
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Figure 3.2: Illustration of two different strategies for filtering out multiple alternative correspondences. Case (a)
shows the original correspondences. The lower point in the query image (left image) represents a point that
matches two different points marked with red and blue in the right image. Case (b) illustrates the strategy by
Jegou et al. [3] that focuses on the strongest correspondences. Case (c) is the proposed ‘1vs1’ strategy that bal-
ances filtering out of the correspondences with preserving as many informative correspondences as possible.

3.4. PAIRWISE GEOMETRIC MATCHING
In this section we describe the three steps of our proposed pairwise geometric matching
method: (a) applying the ‘1vs1’ matching constraint, (b) Hough voting and (c) integrating
global and pairwise geometric relations.

3.4.1. 1VS1 MATCHING
The initial correspondence set C usually contains a large portion of outliers, or incorrect
correspondences, and can include multiple mappings for one single point, i.e., the bursti-
ness phenomenon observed in [3]. However, object matching implies that one object point
in one image can only have one corresponding point in another image. Therefore, the final
verified correspondence set should only contain unique correspondences between points.

To achieve this, one can formulate an assignment problem, where one can minimize
the overall distance between two point sets by using the Hungarian algorithm with the
computing time in O(N 3) for set with N features [21]. As finding optimal matches is time
consuming, one can aim at an approximate solution. For instance, Jégou et al. [3] proposed
to choose the strongest match per point first and then discard all the other matches associ-
ated with matched points. However, as can be seen from Figure 3.2 (case (b)), this strategy
may result in insufficient number of matches for geometric check. In order to generate
a more robust solution, we devise the ‘1vs1’ matching strategy and apply it to the initial
correspondence set C.

As illustrated by the case (c) in Figure 3.2, in our approach we focus on preserving as
many correspondences as possible to maximally inform the assessment of the relation be-
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tween two images. We first start from the point that originally has fewest matching cor-
respondences assigned (i.e., potential unique matches), select the one with the highest
weight, and then discard other matches that contain points belonging to this selected cor-
respondence. We continue this process until no more points need to be processed. In this
way, we generate a correspondence set C1v s1 that serves as input for further steps.

3.4.2. HOUGH VOTING
We now depart from the set C1v s1 and follow the strategy from [9, 11] to apply a Hough vot-
ing scheme in search for dominant ranges of the target transformation parameters, specif-
ically for the rotation and scaling, in the transformation space. Then, we further reduce the
number of correspondences by filtering out those that are not consistently transformed
within these ranges.

Each correspondence, ci m , stands for a transformation from point i in image F to point
m in image F̃ . The rotation and scaling relations for this correspondence are denoted,
respectively, by

θ = θm −θi , σ=σm/σi (3.2)

Each correspondence gives a vote in the 2-dimensional rotation-scaling transforma-
tion. The dominant ranges of these two transformation parameters, denoted as Bϑ and
Bς, emerge as the corresponding ranges of the largest bin in the 2-dimensional voting his-
togram. The correspondences with votes falling in this largest bin are considered to most
reliably reveal the transformation between two images. They form the set CR&S , which
serves as input into the last step of the proposed method.

3.4.3. INTEGRATING GLOBAL AND PAIRWISE GEOMETRIC RELATIONS
We start out from the correspondences included in the set CR&S and assess the match
between images F and F̃ based on pairwise geometric relations between the correspon-
dences. These pairwise geometric relations are derived from the rotation and scaling rela-
tions between the corresponding vectors connecting the correspondences in the two im-
ages. Given the correspondences, cg and ch , which connect point i in image F to point m
in image F̃ , and point j in image F to point n in image F̃ , respectively, we can generate
vector vi j = xi −x j in image F and vector ṽmn = xm −xn in image F̃ . The pairwise geometric
relations between the two vectors in terms of rotation and scaling can then be defined as

θg h = arccos(
vi j · ṽmn

||vi j || · ||ṽmn ||
) · sgn(vi j × ṽmn)

σg h = ||ṽmn ||
||vi j ||

(3.3)

where θg h and σg h are the counterclockwise rotating angle and the scaling factor from vi j

to ṽmn , respectively.
Each correspondence cg is then weighted by its pairwise rotation and scaling consis-

tence with other correspondences:

WPG (cg ) = ∑
ch∈CR&S ,h 6=g

f (θg h ,σg h) (3.4)
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where

f (θg h ,σg h) =
{

1, if θg h ∈ Bϑ, σg h ∈ Bς

0, otherwise
(3.5)

We note that the weights computed using Eq.3.4 combine together the information on
geometric relations obtained from individual correspondences, as imposed by the rota-
tion and scale range limits Bϑ and Bς in Eq.3.5, and from the pairs of correspondences, as
indicated by vector relations in Eq.3.3. The final matching score between two images is
obtained as the sum of the weights WPG (cg ) of all correspondences from the set CR&S :

S(F, F̃ ) = ∑
cg ∈CR&S

WPG (cg ) (3.6)

3.5. EXPERIMENTAL SETUP

3.5.1. OBJECT RETRIEVAL FRAMEWORK

We evaluate our proposed pairwise geometric matching method in an object retrieval con-
text. For this purpose, we implemented an object retrieval system based on the classical
bag-of-feature-based scheme [6] and considering recent advances in realizing this scheme [2,
3, 9]. To make the system scalable to large image collections, we implemented it using a
Map-Reduce-based structure on a Hadoop-based distributed server1.

Local descriptors and visual words: we use Hessian-affine detector [22] to detect salient
points and compute SURF descriptors [23] for these points. As described in [4, 10], the
bag-of-feature-based system performs differently depending on whether the visual words
vocabulary is trained on an image set with or without test data, i.e., whether the vocabulary
is specific or generic. To mimic the situation in a real retrieval system, we use a separate set
of 50k randomly selected images from Flickr to learn the generic vocabulary set with exact
k-means and use it in all experiments.

Weighting the initial correspondences and calculating initial ranking score: As indicated
in Section 3.3, the initial set of correspondences can be weighted using different methods.
We deploy two common weighting schemes:
(1) BOF : We use the square of the inverse document frequency (idf ) of the visual word as-
sociated with a correspondence as the matching weight. The initial ranking score for the
retrieved images is obtained as the sum of the weights of all correspondences, divided by
the L2 norm of the bag-of-feature vector.
(2) HE: We employ the Hamming Embedding (HE)-based method proposed in [3] to weight
the matched features based on the Hamming distance between their signatures. When cal-
culating the initial ranking score, the burst weighting scheme developed in [3] is employed
to handle the burstiness phenomenon in the initial ranking phase.

Multiple assignment (MA): To take into account the quantization noise introduced by a
bag-of-feature image representation, we adopted the method from [3] to assign a descrip-
tor to multiple visual words and applied it on the query side only to reduce the computa-
tional cost.

1This work was carried out on the Dutch national e-infrastructure with the support of SURF Foundation.
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3.5.2. EXPERIMENTAL PROTOCOL
We assess the proposed method through a comparative experimental analysis and by fol-
lowing similar protocol and criteria as in [10]. We use the precision-recall curve to evaluate
the pairwise image matching performance and use mean average precision (mAP) to evalu-
ate the improvement in object retrieval using the proposed spatial verification method. In
the experiments, we use three variants of our implemented object retrieval system based
on the two weighting schemes introduced in Section 3.5.1: (1) BOF , with a generic vocab-
ulary of 100K , as also deployed in [10], (2) HE, with a generic vocabulary of 20K and with
64-bit Hamming signature and (3) HE+MA, which is equivalent to HE combined with mul-
tiple assignment. This is the same setting as in [3]. We further denote our proposed pair-
wise geometric matching method as (PGM) and its three steps described in sections 3.4.1,
3.4.2 and 3.4.3 as 1vs1, HV and PG, respectively. We refer to the three system realizations
incorporating PGM as BOF+PGM, HE+PGM and HE+MA+PGM.

We compare these system realizations with state-of-the-art methods both integrally
and by adding individual steps one by one in order to assess the contribution of each step
to the overall object retrieval performance. We use three state-of-the-art methods as base-
lines that we refer to as HPM [10], SM [20] and FSM [7]. With respect to HPM, we do the
comparison directly by integrating the binary code of [10] into our system. As this binary
code does not support Hamming embedding, we only integrate it into the BOF setting,
which is referred to as BOF+HPM. Regarding SM and FSM, as there were no original im-
plementations available for them, the comparison is only indirect, using the experimental
results reported in [10] that were obtained on the same datasets as in this chapter.

3.5.3. DATASETS
We conduct the experiments on three publicly available datasets commonly used in the
related work, namely Oxford [7], Holidays [24] and Barcelona [25]. To mimic the large-
scale image retrieval scenario, we follow the same strategy used in [3, 10] to add distractors
to dataset images. We crawled 10 million geo-tagged photos from Flickr for this purpose.
These photos are distributed all around the world, except for Oxford and Barcelona regions.

3.6. EXPERIMENTS

3.6.1. IMPACT OF THE PARAMETERS
We start our series of experiments by evaluating the impact of two main parameters, namely
the bin sizes of rotation and scale used in Hough voting, on the system performance. These
parameters control the trade-off between filtering out the mismatches and remaining tol-
erant to nonrigid object deformations. We evaluate these parameters in the object retrieval
scenario using the HE+MA system implementation. Based on the results in Table 3.1, we
choose the bin size of 30 degrees for rotation and 0.2 for logarithmic scale as they are best
performing across the two datasets, and we adopt these parameter values for all subse-
quent experiments.

3.6.2. PAIRWISE IMAGE MATCHING
To assess the PGM method, we follow the same experimental procedure as in [10], which
enumerates all pairs of images in the Barcelona dataset and classifies each image pair to be
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Table 3.1: mAP comparison of PGM on Oxford and Holidays datasets with different bin sizes for rotation and scale.

Oxford Holidays

0.1 0.2 0.3 0.1 0.2 0.3

15 0.725 0.734 0.730 0.882 0.893 0.888

30 0.735 0.737 0.731 0.883 0.892 0.890

45 0.728 0.732 0.724 0.886 0.888 0.882

relevant or irrelevant based on whether its matching score is higher than a threshold. There
are in total 927 images in the Barcelona dataset, which form 927×927 = 859329 image pairs,
and among which 74,075 image pairs are relevant according to the ground truth. Figure 3.3
shows the precision-recall curves computed for various realizations of our system. Regard-
ing the state-of-the-art, we compare our method directly with HPM and indirectly with SM
based on the results reported in [10] and using similar basic system configuration. For re-
call of 0.9, BOF+PGM achieves the precision of 0.68, which is better than 0.42 achieved by
BOF+HPM or 0.2 achieved by SM. We note that according to Figure 3.3, our method can
achieve even better performance (precision of 0.83 at recall 0.9) if the best performing sys-
tem variant is deployed.

3.6.3. SPATIAL VERIFICATION FOR OBJECT RETRIEVAL

We now evaluate the proposed method in the object retrieval context. For each query im-
age, top-1000 ranked images are selected to perform spatial verification. Since the rank or-
der of these images is adjusted based on verification, we refer to this set of top-1000 images
as the reranking range. We first evaluate PGM against the original datasets without dis-
tractors. According to Table 3.2, PGM clearly outperforms the baselines. Figure 3.4 shows
examples of ranked images obtained using PGM and HPM.

Table 3.2: mAP comparison of different spatial verification schemes. All results are generated under the same
conditions: reranking on top 1K ranked photos from BOF using SURF feature and Single Assignment on 100K
vocabulary.

FSM1 HPM1 HPM PGM

Oxford 0.503 0.522 0.525 0.609

Holidays - - 0.734 0.825

Barcelona 0.827 0.832 0.888 0.900

1 The results are from [10].

Figure 3.5 illustrates the system performance with different sizes of image database.
The binary code of HPM needs to keep all the index information in the memory, which
in the case of a database of 10 million images, leads to memory consumption that is too
large. For this reason, HPM is not included at this scale. The curves in the figure indicate
the improvement of the performance after adding each of the steps of our method to the
basic BOF system configuration. Step-for-step improvement is not clearly evident in the
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Figure 3.3: Precision-recall curves over all pairs of images in the Barcelona dataset.

case of the HE system configuration. This is because in this configuration the ‘burstiness’
phenomenon is handled in the initial retrieval phase using burst weighting [3]. Therefore,
the 1vs1 and HV steps cannot bring much additional improvement. PG, on the other hand,
becomes the key step to improve over HE.

Regarding the comparison with the best performing baseline, HPM, we observe that
BOF+PGM (cf. +PG in Figure 3.5) consistently outperforms HPM at each scale. Further-
more, as a flat and much simplified version of HPM, BOF+1vs1+HV (cf. +HV in Figure 3.5)
can still achieve comparable performance. This is mainly because, in contrast to detecting
conflicts at the visual word level in HPM, the proposed 1vs1 matching strategy operates at
the point level, which makes it more accurate.

In addition, we observe that the improvement of BOF+PGM over HPM shrinks with the
increasing scale of image collection. Due to the increasing number of distractor images in
this case, the number of true-matching photos included in the (in this case fixed) rerank-
ing range is likely to decrease. However, within this range, it becomes increasingly easy to
separate true matches from the false ones using spatial verification, with the consequence
that all verification methods start performing similarly. As illustrated in Figure 3.6, the im-
provement achieved by PGM becomes significant again when we increase the reranking
range with increasing image collection scale.

In the next experiment, we compare our best performing system variant, HE+MA+PGM
with other state-of-the-art image retrieval systems in a similar setting: constructing the sys-
tem on generic vocabulary, employing multiple assignment, using any form of spatial ver-
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ification, and without query expansion. As summarized in Table 3.3, our system achieves
state-of-the-art performance for image retrieval. The high performance achieved by [26,
27] on the Oxford dataset is mainly due to use of superior features, which can efficiently
represent unrotated photos. This gain is, however, at the cost of worse performance for
rotated photos, e.g., on the Holiday dataset. We note that we did not add query expan-
sion [1, 28] and incremental spatial verification [28] into our system, as they usually require
re-calculating the correspondences for the new expanded query. We believe, however, that
the proposed pairwise geometric matching method is compatible with these schemes.

Table 3.3: mAP comparison of different image retrieval system on generic vocabulary with spatial verification on
top 200 (SP200) or top 1000 (SP1000) ranked photos.

SP Oxford Holidays

Jégou et al. [3] 200 0.685 0.848

Philbin et al. [2] 200 0.598 -

HE+MA+PGM 200 0.691 0.892

Perd’och et al. [26] 1000 0.725 0.769

Mikulík et al. [27] 1000 0.742 0.749

HE+MA+PGM 1000 0.737 0.892

Table 3.4: Computing time and mAP comparison of PGM and HPM with spatial verification against all database
images.

Oxford Holidays Barcelona

Time1 mAP Time1 mAP Time1 mAP

PGM 2.2 0.635 1.2 0.825 1.1 0.900

HPM 2.8 0.527 1.7 0.734 0.85 0.888

1 average matching time per pair of images in ms.

3.6.4. RUN TIME EFFICIENCY
In the last experiment, we evaluate the run time efficiency of our system. To do this, we
conduct spatial verification against all database images. We first analyze the effect of the
two filtering steps, 1vs1 amd HV, on reducing the size of the correspondence set. As illus-
trated in Figure 3.7, for about 60% of the image pairs, only 20% of matches remained to
be checked after these two filtering steps, which dramatically reduces the influence of the
pairwise operation on the overall run time. To evaluate the overall run time efficiency, we
implement a toy version of our system in Java in a single-thread fashion to be compara-
ble with the available binary code from HPM, and test it on a 2.3GHz 8-core processor. As
summarized in Table 3.4, PGM achieves comparable run time efficiency, while significantly
improving the performance. We also evaluate the query time of the entire retrieval system
with spatial verification on top-1000 ranked images in the BOF setting. PGM achieves 2.7s,
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1.6s and 0.7s for Oxford, Holidays and Barcelona datasets, respectively. In contrast, HPM
consumes 2.9s, 2.7s and 0.7s.

3.7. DISCUSSION
The results presented in the previous section indicate the suitability of the proposed pair-
wise geometric matching method as a solution for large-scale object retrieval at an accept-
able computational cost. The superiority of PGM compared to the state-of-the-art solu-
tions becomes evident in a context in which a high number of outliers in the initial corre-
spondences generated by BOF and errors in detected features’ scale, rotation and position
hinder the fit of a specific model (e.g., RANSAC). PGM encodes not only scale and rota-
tion information derived from the local points, but also their locations. This is achieved
by using global scale and rotation relations to enforce the local consistency of geometric
relations derived from the locations of pairwise correspondences. By mapping locations of
points to pairwise rotation and scale, the approach is more tolerant to the detection noise.
At the same time, using a number of filtering steps, PGM significantly reduces the number
of correspondences that must be considered, which makes it possible for PGM to maintain
high image matching reliability at a substantially reduced computational cost.
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(a) BOF&Oxford (b) HE&Oxford

(c) BOF&Holidays (d) HE&Holidays

(e) BOF&Barcelona (f) HE&Barcelona

Figure 3.5: mAP of BOF-based and HE-based systems against different sizes of image database with fixed rerank-
ing range.
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(a) BOF&Oxford

(b) BOF&Holidays

(c) BOF&Barcelona

Figure 3.6: mAP of BOF-based system against 1M image database with different reranking ranges.
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(a) 1vs1

(b) HV

(c) 1vs1 and HV

Figure 3.7: Distribution of the percentage of selected matches after 1vs1 and HV steps, taken individually and
together.
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4
GEO-DISTINCTIVE VISUAL ELEMENT

MATCHING

In this chapter, we further improve our visual-only, search-based framework for geo-location
prediction of social images. Specifically, we focus on the geo-distinctiveness of visual ele-
ments within an image collection, and introduce an approach called distinctive visual ele-
ment matching (DVEM). This approach uses representations that are specific to the query
image whose location is being predicted. These representations are based on visual el-
ement clouds, which robustly capture the connection between the query and visual evi-
dence from candidate locations. We then maximize the influence of visual elements that
are geo-distinctive because they do not occur in images taken at many other locations.
We carry out experiments using two large-scale, publicly-available datasets: the San Fran-
cisco Landmark dataset with 1.06 million street-view images and the MediaEval 2015 Plac-
ing Task dataset with 5.6 million geotagged images from Flickr.

This chapter is submitted as “Geo-distinctive Visual Element Matching for Location Estimation of Images”, by X.
Li, M. Larson and A. Hanjalic to the Multimedia, IEEE Transactions on, 2016.
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4.1. INTRODUCTION

I NFORMATION about the location at which an image was taken is valuable image meta-
data. Enriching images with geo-coordinates benefits users by supporting them in search-

ing, browsing, organizing and sharing their images and image collections. Specifically, geo-
information can assist in generating visual summaries of a location [1, 2], in recommend-
ing travel tours and venues [3, 4], in photo stream alignment [5], and in event mining from
media collections [6, 7].

While many modern mobile devices can automatically assign geo-coordinates to im-
ages during capture, a great number of images lack this information [8]. Techniques that
automatically estimate the location of an image [8–12] have been receiving increasing re-
search attention in recent years. Specifically, predicting geographic location solely from
visual content holds the advantage of not depending on the availability of the textual an-
notation. The challenge of visual content-based geo-location estimation derives from the
relationship between visual variability and location. Images taken at a single location may
display high visual variability, whereas images taken in distinct locations may be unexpect-
edly similar.

The core idea underlying our approach to this challenge is depicted in Fig. 4.1, which
illustrates the pattern of visual matching that we will exploit in this chapter. Inspecting
each column of images in turn, we can see similarities and differences among the areas
of the images marked with colored boxes. These areas contain visual elements that match
between query image (top row) and the location images (lower rows). We use the term vi-
sual element to denote a group of pixels (i.e., an image neighborhood) that is found around
salient points and that also can automatically be identified as being present in multiple
images, i.e., by means of visual matching.

Moving from left to right in the figure, we notice that the areas matched in the first two
locations (left and middle columns) share similarity. Here, the visual elements contained
in these areas correspond to FedEx trucks, street lights, and fire escapes. The locations in
these two columns are different from the query location. These visual matches introduce
visual confusion between the query image and images taken at other locations. In contrast,
location in the third column is the same as the query location. The matching areas contain
visual elements correspond to specific, distinguishing features of the real-world location,
not found in other locations, in this case, elements of the architecture. We call such visual
elements geo-distinctive.

This chapter introduces a visual matching approach to image geo-location estimation
that exploits geo-distinctive visual elements, referred to as distinctive visual element match-
ing (DVEM). This approach represents a contribution to the line of research dedicated
to developing search-based approaches to visual-content-based geo-location estimation
for images. Under search-based geo-location estimation, the target image (whose geo-
coordinates are unknown) is used to query a background collection, a large collection of
images whose geo-coordinates are known. Top-ranking results from the background col-
lection are processed to produce a prediction of a location, which is then propagated to
the target image. As is customary in search-based approaches, we refer to the target image
as the query image. The DVEM approach represents a significant extension to our generic
geo-visual ranking framework [13] for image location estimation.

As will be explained in detail in Section 4.2 and 4.3, DVEM represents a considerable
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Figure 4.1: Colored boxes indicate match between areas of a query image (top row) and location images taken
at three different locations (columns). Note how these areas differ when the location is different from the query
location (left and middle columns) and when it is the same (right column).

advancement of the state of the art in search-based approaches to visual-content-based
image geo-location estimation. In a nutshell, the innovation of DVEM is its use of a visual
representation that is ‘contextual’ in that it is specific to the query image. This representa-
tion is computed in the final stage of search-based geo-location, during which top-ranked
results are processed. The key is that the representation is not fixed in advance, but rather is
calculated at prediction time, allowing it to change as necessary for different queries. This
factor sets DVEM apart from other attempts in the literature to exploit geo-distinctiveness,
which pre-calculate representations based on the background collection, rather than ze-
roing in on visual information most important for an individual query. The experimental
results we present in this chapter demonstrate that DVEM can achieve a substantial im-
provement for both major types of image geo-location prediction covered in the literature:
geo-constrained and geo-unconstrained.

The remainder of the chapter is organized as follows. In Section 4.2, we present the
rationale underlying our proposed approach, DVEM, and describe its novel contribution in
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more detail. Then, in Section 4.3, we provide an overview of the related work in the domain
of image location estimation and position our contribution with respect to it. Section 4.4
describes the DVEM approach in detail. Our experimental setup is explained in Section 4.5
and Section 4.6 reports our experimental results. Section 4.7 concludes the chapter and
provides an outlook towards future work.

4.2. RATIONALE AND CONTRIBUTION
The fundamental assumption of content-based geo-location estimation is that two images
that depict the same objects and scene elements are likely to have been taken at the same
location. On the basis of this assumption, search-based geo-location estimation exploits
image content by applying object-based image retrieval techniques. The rationale for our
approach is grounded in a detailed analysis of the particular challenges that arise when
these techniques are applied to predict image location. We examine these challenges in
greater depth by returning to consider Fig. 4.1. In Section 4.1, we have already discussed
the existence of confounding visual elements in images from the wrong location (left and
middle columns), and also of characteristic visual elements in images from the true loca-
tion (right column). We now look again at these cases in turn.

Geo-distinctivness. Images taken at a wrong location (Fig. 4.1 left and middle) capture a
underlying reality that is different from the reality captured by the query. The figure shows
two typical sources of confounding visual elements. First, elements corresponding to real-
world objects that are able to move from one location to the other, such as a FedEx truck.
Second, elements corresponding to objects that are identical or highly similar and occur at
multiple locations, such as the fire escapes and the street lamps. A third case (not depicted)
occurs when objects or scene elements at different locations appear having similar visual
elements in images due to the way in which they were captured (i.e., perspective, lighting
conditions, or filters).

Our approach is based on the insight that confounding visual elements will occur in
many locations that are not the true location of the image. DVEM is designed to limit the
contribution of visual elements that occur in many locations, and instead base its predic-
tion on visual elements that are discriminative for a specific location.

Location representation. Images taken at the true location (Fig. 4.1 right column) imply
a related set of challenges. Conceptually, to relate a query image and its true location, we
would like to count how many visual elements in the query correspond to real-world as-
pects of the location. Practically, however, such an approach is too naïve, since we cannot
count on our image collection to cover each location comprehensively. Further, we face
the difficulty that the true-location images in our background collection may have only a
weak link with the query image. Specifically for the example in Fig. 4.1, the variation in per-
spective is significant between the query and images from the true location (right column),
which will heavily weaken their visual correspondences. We again must deal with the same
set of factors that give rise to confounding visual elements, mentioned above: camera an-
gle, zoom-level, illumination, resolution, and filters. These also include the presence of
mobile objects such as pedestrians, vehicles, and temporary signs or decorations. We have
no control over the presence of these distractors, but we can seek to reduce their impact,
which will in turn limit their contribution to the match between query and wrong locations.
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DVEM builds on the practical insight that we should focus on aggregating evidence
strength, rather than merely counting visual elements common between a query and a lo-
cation. In particular, we aim to integrate two tendencies, which are illustrated by the right
column of Fig. 4.1. Here, it can be seen that the match between query image and true lo-
cation involves (a) a wider variety of different visual elements than matches with wrong
locations and (b) visual elements that are distributed over a larger area within the image.
These tendencies can be considered as reflections of the common sense expectation that
the number of ways in which a query can overlap with true-location images is much larger
than the number of ways in which a query can overlap with wrong-location images.

Connection with search-based geo-location estimation. Next we turn to describe how
DVEM extends our general geo-visual ranking (GVR) framework [13]. As previously men-
tioned, DVEM contributes to the processing step in a search-based geo-location estimation
pipeline. Fig. 4.2 depicts the GVR framework in the top row, and the DVEM extension in the
bottom row. The dashed line indicates the steps that compose DVEM and the arrow show
that it replaces the Location Ranking step of GVR.

Here, we provide a brief review of the functioning of GVR. In the Candidate Image Selec-
tion step, we use the query image to query a background collection (corpus) of geo-tagged
images, i.e., images annotated with geo-coordinates. In the Location Extraction step, we
group the retrieved images according to their locations, creating image sets corresponding
to candidate locations. This information serves as input into DVEM.

The three steps of DVEM are designed to address the challenges covered at the begin-
ning of the section, and incorporate both geo-distinctiveness and location representation:

• Location as Visual Element Cloud builds a ‘contextual’ query-specific representation
of each candidate-location image set that reflects the strength of the visual evidence
relating that image set to the query.

• Geo-Distinctiveness Modeling captures the ability of visual elements to discriminate
the image sets of the candidate locations that are competing for a given query.

• Visual Matching per Location calculates the ranking score for each candidate loca-
tion with the target to incorporate both the distinctiveness of visual elements and
the matching strength between visual elements and the location.

These steps are explained in more detail in Section 4.4, which also includes further moti-
vating examples.

Novel contributions. As stated in the introduction, the novel contribution of DVEM is its
use of query-specific, ‘contextual’, visual representations for geo-location estimation. No
collection-wide representation of location is needed. Instead, flexible representations are
built at prediction time that aggregate evidence for ranking a location optimally against
its specific competitors for each query. The implications of this contribution are best un-
derstood via a comparison with classical information retrieval. DVEM can clearly claim the
traditional vector space model with TF-IDF weighting scheme used in information retrieval
as a progenitor. TF-IDF consists of a Term Frequency (TF) component, which represents
the contents of items (documents), and an Inverse Document Frequency (IDF) compo-
nent, which discriminates items from others in the collection [14]. DVEM uses the same
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basic principle of combining a representative component, the visual element cloud, and a
discriminative component, geo-distinctiveness modeling. However, its application of these
principles is unique, and differentiate DVEM from the ways in which TF-IDF has been de-
ployed for bag-of-feature-based image retrieval in the past.

• DVEM moves matching from the level of the item (i.e., individual image), to the level
of the candidate image set. The visual element cloud generated from the candidate
image set makes it possible for individual visual elements to contribute directly to
the decision, compensating for the potentially weak visual link of any given location
image with the query.

• DVEM dispenses with the need to define individual locations at the collection level
offline at indexing time. Instead DVEM defines ‘contextual’ visual representations of
locations over the candidate image sets, which represent the images most relevant
for the decision on the location of a particular query at prediction time.

The use of ‘contextual’ visual representations of locations that are created specifically
for individual queries have two important advantages. First, these representations involve
only images that have been visually verified in the candidate image selection step. Since
images that are not relevant to the location estimation decision are not present in the can-
didate image set, the location representations can focus on the ‘contextual’ task of ranking
the competing locations to make the best possible decision for a given query, improving ro-
bustness. Second, the number of competing locations for any given query is relatively low,
meaning that the geo-distinctiveness calculation is computationally quite light. This solves
the problem of making geo-distinctiveness computationally tractable. It allows DVEM to
scale effortlessly as the number of possible candidate locations grows to be effectively infi-
nite in the case of geo-location estimation at global scale.

As we will show by experimental results in Section 4.6, these advantages delivers an
overall significant improvement of the location estimation performance compared to state-
of-the-art methods.

4.3. RELATED WORK
Visual-only geo-location estimation approaches can be divided into two categories. The
first is geo-constrained approaches. Such approaches estimate geo-location within a ge-
ographically constrained area [15, 16] or a finite set of locations [17–20]. The second is
geo-unconstrained approaches, which estimate geo-location at a global scale [10, 13]. The
challenge of geo-unconstrained geo-location estimation is daunting: a recent survey [21]
indicated that there are still ample opportunities waiting to be explored in this respect.
In this work, our overall goal is to substantially improve the accuracy of image location
estimation using only their visual content, and to achieve this improvement in both the
geo-constrained and geo-unconstrained scenarios. As demonstrated by our experimental
results, DVEM’s representation and matching of images using geo-distinctive visual ele-
ments achieves a substantial performance improvement compared to existing approaches
to both geo-constrained and geo-unconstrained location estimation.



4

72 4. GEO-DISTINCTIVE VISUAL ELEMENT MATCHING

4.3.1. GEO-CONSTRAINED CONTENT-BASED LOCATION ESTIMATION

City-scale location estimation. Chen et al. [15] investigated the city-scale location recog-
nition problem for cell-phone images. They employed a street view surveying vehicle to
collect panoramic images of downtown San Francisco, which were further converted into
1.7 million perspective images. Given a query image taken randomly from a pedestrian’s
perspective within the city, a vocabulary-tree-based retrieval scheme based on SIFT fea-
tures [22] was employed to predict the image’s location by propagating the location infor-
mation from the top-returned image.

Gopalan [23], using the same data set, modeled the transformation between the image
appearance space and the location grouping space and incorporated it with a hierarchical
sparse coding approach to learn the features that are useful in discriminating images across
locations. We choose this dataset for our experiments on the geo-constrained setting, and
use this approach as one of our baselines. The other papers that evaluate using this data set
are the aggregated selective matching kernel purposed by Tolias et al. (2015) [24], the work
exploiting descriptor distinctiveness by Arandjelović and Zisserman (2014) [25], the work
exploiting repeated pattens by Torii et al. (2013) [16], the graph based query expansion
method of Zhang et al. (2012) [26] and the initial work of Chen et al. (2011) [15]. The
experiments in Section 4.6.4 makes a comparison with all of these approaches.

The DVEM is suited for cases in which there is no finite set of locations to apply a clas-
sification approach. However, we point out here, that classification approaches have been
proposed for geo-constrained content-based location estimation. Gronat et al. [27] mod-
eled each geo-tagged image in the collection as a class, and learned a per-example linear
SVM classifier for each of these classes with a calibration procedure that makes the classi-
fication scores comparable to each other. Due to high computational cost in both off-line
learning and online querying phases, the experiment was conducted on a limited dataset
of 25k photos from Google Streetview taken in Pittsburgh, U.S., covering roughly an area of
1.2×1.2km2.

Beyond city scale. Authors that go beyond city scale, may still address only a constrained
number of locations. Kalantidis et al. [18] investigate location prediction for popular loca-
tions in 22 European cities using scene maps built by visually clustering and aligning images
depicting the same view of a scene. Li et al. [17] constructed a hierarchical structure mined
from a set of images depicting about 1,500 predefined places of interest, and proposed a
hierarchical method to estimate image’s location by matching its visual content against
this hierarchical structure. Our approach resembles [18] in that we also use sets of images
to represent locations. Note however that in DVEM location representations are created
specifically for individual queries at prediction time, making it possible to scale beyond the
fixed set of locations.

4.3.2. GEO-UNCONSTRAINED CONTENT-BASED LOCATION ESTIMATION

Estimating location from image content on a global scale faces serious challenges. First,
there is effectively an infinite number of locations in the world. Second, geo-unconstrained
location prediction is generally carried out on large collections of user-contributed social
images. As a consequence, less photographed locations are underrepresented. These chal-
lenges imply that geo-unconstrained location estimation cannot be addressed by training
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a separate model for each location. Finally, the visual variability of images taken a given
location is often high, and is also quite erratic. For instance, images taken at a location of
a monument that is a tourist attraction will probably focus on some aspects of the monu-
ment, limiting the scope of the captured visual scene. However, images taken at an arbi-
trary beach may be taken from any view point to capture a wide variety of the visual scene.
This variability can heavily hinder inference of location-specific information from the vi-
sual content of images, and exacerbates the difficulty of linking images showing different
aspects of a location.

The problem of geo-unconstrained content-based image location estimation was first
tackled by Hays and Efros [10]. They proposed to use visual scene similarity between im-
ages to support location estimation with the assumption that images with higher visual
scene similarity were more likely to have been taken at the same location. In recent years,
research on geo-unconstrained location prediction has been driving forward by the Media-
Eval Placing Task [21]. The Placing Task result most relevant to DVEM is our submission to
the 2013 Placing Task [28]. This submission deployed a combination of local and global vi-
sual representations within the GVR system [29], and out-performed other visual-content-
based approaches that year. Here, we will focus on 2015, the most recent edition of the Plac-
ing Task [30], which received three submissions using visual-content-based approaches.
Kelm et al. [31] exploited densely sampled local features (pairwise averaged DCT coeffi-
cients) for location estimation. Since this submission is not yet a functional, mature result,
it is not considered further here. Li et al. [32] employed a rank aggregation approach to
combine various global visual representations in a search-based scheme, and used the top
ranked image as the source for location estimation. Instead of using hand-crafted features,
Kordopatis-Zilos et al. [33] made use of the recent developments in learning visual rep-
resentations. They fed a convolutional neural network with images from 1,000 points of
interest around the globe and employed it to generate the CNN features. Location is then
estimated for the query image by finding the most probable location among the most visu-
ally similar photos calculated based on their proximity in the feature space.

Our DVEM is related to these approaches in the sense that it is data driven and search
based. However, these approaches depend on finding significant image-level matches be-
tween the query image and individual images in the background collection. They do not
attempt to compensate for the possibility that the match between the query image and in-
dividual images taken at the true location might be minimal, due to the way in which the
image was taken, or exploit geo-distinctiveness.

4.3.3. GEO-DISTINCTIVE VISUAL ELEMENT MODELING

As discussed in Section 4.2, in a classical information retrieval system, document (item)
distinctiveness is traditionally computed off-line during the indexing phase at the level of
the entire collection [14]. This approach is also used in the classical bag-of-feature-based
image retrieval system. For example, in [34], the distinctiveness of each visual word is gen-
erated from its distribution in the image database. Note that our system uses the approach
of [34] in the Candidate Image Selection step (first block in Fig. 4.2), as a standard best prac-
tice. Our novel use of geo-distinctiveness goes above and beyond this step, as described in
the following.

The key example of the use of distinctiveness for content-based geo-location estima-
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tion is the work of Arandjelović and Zisserman [25], who modeled the distinctiveness of
each local descriptor from its estimated surrounding local density in the descriptor space.
This approach differs from ours in two ways: first, we use geo-distinctiveness, calculated
on the basis of individual locations, rather than general distinctiveness and, second, we
use geo-metrically verified salient points, rather than relying on the visual appearance of
the descriptors of the salient points. As we will show by experimental results in Section 4.6,
which uses Arandjelović and Zisserman [25] as one of the baselines, this added step of geo-
distinctive visual elements matching significantly improves location estimation

Where geo-distinctivenss has been used in the literature, it has been pre-computed
with respect to image sets representing a pre-defined inventory of locations. Typical for
such approaches is the work from Doersch et al. [35]. They built a collection of image
patches from street view photos of 12 cities around the world, and mined the image patches
that are location-typical—both frequent and discriminative for each city—based on the ap-
pearance similarity distribution of the image patches. Similarly, Fang et al. [36] incorpo-
rated the learned geo-representative visual attributes into the location recognition model
in order to improve the classification performance. These learned geo-representative vi-
sual attributes were shown to be useful for city-based location recognition, i.e., to assign a
given image to one of the cities. However, this approach faces a significant challenge. As
the number of pre-defined locations grows larger, there are less geo-representative visual
attributes exist per location. For this reason, the risk increases that a query image contains
few of the location-typical elements that have been found for the location at which it was
taken. In our work, instead of extracting location-typical features from the image collec-
tion and using them to assess the query, we turn the approach around. Our approach is
to focus on the visual elements that we extract from the query, and to model their geo-
distinctiveness around candidate locations for this particular query at prediction time.

4.4. GEO-DISTINCTIVE VISUAL ELEMENT MATCHING
In this section, we present DVEM in depth, providing a detailed description of the com-
ponents depicted in Fig. 4.2. We start with the GVR framework [13] (Fig. 4.2, top row), the
generic search-based location estimation pipeline upon when DVEM builds. The frame-
work was described in Section 4.2. Here, we provide the necessary additional detail.

The first step of GVR is Candidate Image Selection, and serves to retrieve, from the col-
lection of geo-tagged images, a ranked list of candidate images that are most visually simi-
lar to the query q . In contrast to the original version of GVR, our new pair-wise geometrical
matching approach is used for this step [37]. The result is a ranked list of images that have
been visually verified, ensuring that we can be confident that their visual content is rele-
vant for the decision on the location of the query image. We limit the ranked list to the top
1000 images, since this cutoff was demonstrated to be effective in [13]. In the second step,
Location Extraction, candidate locations are created by applying a geo-clustering process
to the ranked list (see [13] for details), resulting in the set G of candidate locations. The set
of images Ig associated with each location g in G is referred to as the candidate location im-
age set. In the third step, Location Ranking, visual proximities for each g are calculated on
the basis of sets Ig and the query q , resulting in Scor e(g , q). Finally, Scor e(g , q) is used to
rank the locations g in G . The top-ranked location provides the geo-location estimate, and
is propagated to the query image. As previously mentioned, DVEM replaces the Location
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Ranking step of GVR. Specifically, it contributes an advanced and highly effective method
for calculating Scor e(g , q). The remainder of this section discusses each of the steps of
DVEM (bottom row Fig. 4.2) in turn.

4.4.1. LOCATION AS VISUAL ELEMENT CLOUD
The visual element cloud is a representation of Ig that aggregates the evidence on the
strength of the visual link between Ig and the query q . The cloud, illustrated in Fig. 4.3,
serves as a representation of the location g in terms of visual elements that occur in the
query. For the first step of creating the cloud, we adopt the standard approach (as used,
e.g., with SIFT) of detecting salient points in the images using a salient point detector and
representing these points with feature vectors (i.e., descriptors) describing the local im-
age neighborhoods around the points. The size of the neighborhood is determined by the
salient point detector.

Next, we calculate correspondences between the salient points in the query and in the
individual images on the basis of the local image neighborhoods of the points. Then, we
apply geometric matching, which secures the consistency of transformation between dif-
ferent salient points. In this work, we use PGM [37], as applied in the Candidate Image
Selection step, but another geometric verification approach could also be chosen. The re-
sult of geometric matching is a set of one-to-one correspondences c between salient points
in the query and in the individual images Ig (cf. Fig. 4.3a), and a set of matching scores
Ini Scor e(c) associated with the correspondences c. The visual elements are the salient
points in the query image that have verified correspondences in Ig . Note that our use of
one-to-one correspondences ensures that a visual element may have only a single corre-
spondence in a given image. As will be seen in detail below, the matching score Ini Scor e(c)
allows us to incorporate our confidence concerning the reliability of the visual evidence
contributed by individual visual elements into the overall Scor e(g , q), which is used to rank
the location.

Finally, we aggregate the visual elements and their scores per image in Ig in order to
generate the visual element cloud (cf. Fig. 4.3b). Formally expressed, the visual element
cloud Sg for location g is calculated as:

Sg = {We |e ∈ Eg ,We = {w(e) j | j = 0,1...m(e)}} (4.1)

Here, Eg is the set of visual elements that occur in the query and link it with the images
Ig representing location g . We is the set of weights w(e) j of correspondences between the
visual element e appearing in the query and the j th image in Ig in which it also appears.
The total number of images which have correspondences involving element e in the set Ig

is denoted by m(e).
The weights w(e) j are obtained by using a Gaussian function to smooth the initial

matching score, Ini Scor e(c), of the correspondence c in which the j th appearance of the
visual element e is involved, and is denoted as

w(e) j = 1−exp(− Ini Scor e(c)2

δ2 ). (4.2)

Here, δ controls the smoothing speed as shown in Fig. 4.4.
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Figure 4.4: Matching score smoothing function w(e) j vs. Ini Scor e(c) for various δ.

The δ parameter is set according to the general, data-set independent, behavior of the
geometric verification method that is employed. Note that when δ= 1 the values of w(e) j

are effectively either 0 or 1, meaning that visual elements either contribute or do not con-
tribute, rather than being weighted.

4.4.2. GEO-DISTINCTIVENESS MODELING
We start our explanation of geo-distinctiveness modeling with an illustration of the basic
mechanism. Fig. 4.5(a) (top two rows) contain pairs of images. They show the correspon-
dences between the query image (lefthand member of each pair) with images taken at lo-
cations other than the query location (righthand member of each pair). As in the case of
the visual element cloud, these correspondences pick out the visual elements that we use
for further modeling.

Fig. 4.5(b) (bottom row) shows how the geo-distinctiveness weights are calculated. The
image is divided into regions, and a geo-distinctiveness weight is calculated per region. The
three versions of the query image represent three different settings of region size, indicated
by the increasing diameters of the circles. In the figure, the center of the circle indicates
the center of the region, and the color indicates the weight. The color scale runs from red
to black, with red indicating the most geo-distinctive regions. Examination of Fig. 4.5(b)
shows the ability of geo-distinctiveness weights to focus in on specific, distinguishing fea-
tures of the real world location. Visual elements corresponding to common objects occur-
ring at multiple locations (e.g., the white delivery van and fire escape) automatically receive
less weight (i.e., as shown by black).

Expressed formally, geo-distinctiveness is calculated with the following process. We
divide the query image, of size w ×h, into non-overlapping small regions with size ã × ã,
ã = mi n(w/a,h/a). For completeness note that we allow right and bottom regions to be
smaller than ã × ã, in the case that w or h is not an integer multiple of a.
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We then transfer the scale represented by each visual element from the level of the
neighborhood of a salient point to the level of an image region. We carry out this transfer
by mapping visual elements to the regions in which they are located. Note that the con-
sequence of this mapping is that all visual elements contained in the same image region
are treated as the same visual element. The effect of the mapping is to smooth the geo-
distinctiveness of the visual elements in the query image. Changing a will change the size
of the region, and thereby also the smoothing. The effect can be observed in Fig. 4.5(b), e.g.,
the fire escape at the top middle of the photo is less discriminative (the circle turns black)
as the area becomes larger.

For each visual element e in each image in the image set Ig for location g in G , we
calculate a geo-distinctiveness weight WGeo . Recall that e in each image in Ig stands in
a one-to-one correspondence c with a visual element in the query image. WGeo is then
defined as

WGeo(e) =
{

log(N /n(r (e))), if n(r (e)) <ϑ
0, otherwise,

(4.3)

where N is the total number of location candidates (i.e., |G|), r (e) is the image region of the
query containing the visual element corresponding to e, and n(r (e)) is the total number
of locations in G with an image from their image set Ig that is involved in a correspon-
dence with any visual element occurring in the query region r (e). Finally, ϑ is a threshold
completely eliminating the influence of elements that have correspondences with many
locations in G . The effect of parameters a and ϑ is discussed in the experimental section.

4.4.3. VISUAL MATCHING PER LOCATION
We start our discussion of visual matching by considering the patterns of visual elements
associated with a true match between an query image and a location. First, we investigate
whether or not we can indeed expect more visual elements in true-location visual element
clouds compared to wrong-location visual element clouds. We carry out the analysis on two
datasets, the San Francisco Landmark dataset and the MediaEval ’15 Placing Task dataset,
the geo-location estimation image sets used in our experiments, which will be described
in detail in Section 4.6. Results are shown in Fig. 4.6. Here, we see that the ratio between
the number of unique visual elements in a wrong-location cloud and a true-location cloud
is mainly distributed between 0 and 1. The observation holds whether the top-10 ranked
wrong locations are considered (solid line), or whether only the wrong location with the
most visual elements is considered (dashed line). This analysis points to the ability of the
number of visual elements to distinguish true from wrong locations, and motivates us to
include aggregation of visual elements as part of our visual matching model.

Next, we return to our earlier statement (Section 4.2) that we expect the match between
queries and a true location to display (a) a wider variety of visual elements, and (b) visual
elements that are distributed over a greater area of the image, than in the case of a match
with a false location. These expectations are borne out in our calculations of visual cor-
respondences, as illustrated in Fig. 4.7. The images from the true location (lefthand side)
capture a broad and diverse view of the scene and thus match different regions of the query
image, e.g., the column and the bridge, as opposed to the images taken at a wrong location
(righthand side) that only have correspondences with few specific visual elements, e.g., the
top of the column. This pattern leads us to not simply aggregate visual elements, but se-
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Figure 4.6: Distribution of the ratio of number of unique visual elements between wrong location and true loca-
tion. The scheme with @10 means the results are calculated based on the top-10 wrong locations in the initial
ranked list for each query. The scheme with @Max means the results are calculated based on the wrong location
that has the maximum number of visual elements among all wrong locations in the initial ranked list.

lect them in a particular way. Specifically, for a given area of the image query, only a single
visual element is allowed to contribute per location. This approach rewards locations in
which visual elements are diverse and distributed over the query image.

Expressed formally, visual matching uses the following procedure. We divide the query,
of size w ×h, into regions b̃ × b̃, b̃ = mi n(w/b,h/b). This splitting resembles what we used
for geo-distinctiveness modeling, but serves a separate purpose in the current step. Then,
in order to calculate the match between q with a candidate location image set Ig , we it-
erate through each region of the query image. For each region, we select the single visual
element e that has the strongest matching score with images from a given location. Recall-
ing that We are the weights of the visual correspondences with the query for image set Ig

representing location g , the strongest matching score is expressed as w̃e = max(We ). The
result is a set of k visual elements. Note that although the same query image regions are
used for all locations, k may vary per location, and is less than the total number of query
regions in the cases where some query regions fail to have links in terms of visual elements
with a location.

The final visual proximity between location g and query image q combines a visual
representation of the location g and of the query q . The representation of the query uses
the visually distinctive weights WGeo(e) from Eq. 4.3: rq = (WGeo(0),WGeo(1), ...,WGeo(k)).
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Figure 4.7: Illustration of the initial correspondence set between the query image and the photos in two different
locations with the color intensity from black to red representing the increase of the strength of the initial matching
score. The left photo set is from the same location as the query image.

The representation of the location combines these weights with visual matching weights
w̃e : rg = (w̃0WGeo(0), w̃1WGeo(1), ..., w̃kWGeo(k)). The combination is calculated as,

Scor e(g , q) = rq · rg = ∑
e∈Eg

w̃eWGeo(e)2 (4.4)

The final location estimation for the query is calculated by ranking the locations by this
score, and propagating the top-ranked location to the query.

4.5. EXPERIMENTAL SETUP
In this section, we describe the setup of our experimental framework for assessing the
performance of DVEM. This provides the background for our experimental results of pa-
rameter selection (Section 4.6.1), geo-contrained location estimation (Section 4.6.2), geo-
unconstrained location estimation (Section 4.6.3), and our comparison with the state of the
art (Section 4.6.4).
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4.5.1. DATASET
We carry out experiments on two image datasets that are commonly used in location esti-
mation, one for the geo-constrained, and one for the geo-unconstrained image geo-location
prediction scenario.
San Francisco Landmark dataset [15]: This dataset is designed for city-scale location esti-
mation, i.e., geo-constrained location estimation. The database images (background col-
lection) are taken by a vehicle-mounted camera moving around downtown San Francisco,
and query images are taken randomly from a pedestrian’s perspective at street level by var-
ious people using a variety of mobile photo-capturing devices. We use 1.06M perspective
central images (PCI) derived from panoramas as the database photos, and the original 803
test images as queries. For our detailed experiments in Sections 4.6.1 and 4.6.2 we use 10%
of the test images for development, and report results on the other 90% of the test images.
The ground truth for this dataset consists of building IDs. The geo-location of an image is
considered correctly predicted if the building ID is correctly predicted.
MediaEval ’15 Placing Task dataset [30]: This dataset is designed for global scale location
estimation, i.e., geo-unconstrained location estimation. It is a subset of the YFCC100M
collection [38], a set of Creative Commons images from Flickr, an online image sharing
platform. The background collection and the query images were randomly selected in a
way that maintained the global geographic distribution within the online image sharing
community. The MediaEval 2015 Placing Task dataset is divided into 4.6M training and
1M test images. Here again for our detailed experiments in Sections 4.6.1 and 4.6.3 we
use 2% of the test set for development, and report results on the other 98% of the test set.
The ground truth for this dataset consists of geo-coordinates, either recorded by the GPS
of the capture device or assigned by hand by the uploading users. An image is considered
to be correctly predicted if its predicted geo-coordinates fall within a given radius reval of
the ground truth location. reval controls the evaluation precision and the tolerance of the
evaluation to noise in the ground truth.

4.5.2. COMPUTING VISUAL SIMILARITY
Conceptually, we consider the visual matches between different areas of two images as ev-
idence that their visual content reflects the same location in the physical world, possibly
differing as to how they are captured, e.g., capturing angle, scale or illumination. In order to
identify these areas and assess the strength of the link between their occurrences in images,
we deploy our recently-developed image retrieval system [37]. This system is based on pair-
wise geometric matching technology and is built upon the standard bag-of-visual-words
paradigm. The paradigm is known to scale up well to a large-scale datasets [34, 39, 40]. To
further speed up retrieval and improve accuracy, we use pairwise geometric matching in
the following pipeline of state-of-the-art solutions:

• Features & Vocabularies: Since up-right Hessian-Affine detector and Root-SIFT [40]
have proven to yield superior performance, we use this feature setting to find and
describe invariant regions in the image. We use exact k-means to build the specific
visual world vocabularies with the size of 65,536 based on the features from the train-
ing images.

• Multiple Assignment: To address the quantization noise introduced by visual word
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assignment, we adopt the strategy used in [41], which assigns a given descriptor to
several of the nearest visual words. As this multiple assignment strategy significantly
increases the number of visual words per image, we only apply this at the query side.

• Initial ranking: We adopt the Hamming Embedding technique combined with bursti-
ness weighting proposed in [39] in the initial ranking phase.

• Geometric verification: To find the reliable correspondences for DVEM, the pair-
wise geometric matching technology [37] is employed for fast geometric verification,
which is reported to be the state-of-the-art in image retrieval in terms of speed and
accuracy. In the experiment conducted on the development set, we found that due
to a high inter-similarity of the street view images taken in downtown San Francisco,
removing the correspondences with low matching score generated by pairwise geo-
metric matching can generally help to improve the estimation. Here the threshold is
set to 4.

The ranked list resulting from this computation of visual similarity is used in the Candidate
Image Selection step (cf. Fig. 4.2) and for two baselines, as discussed next.

4.5.3. EXPERIMENTAL DESIGN
We carry out two different sets of evaluations that compare the performance of DVEM to
the leading content-based approaches to image geo-location estimation. The first set (Sec-
tions 4.6.2 and 4.6.3) assesses the ability of DVEM to outperform other search-based geo-
location estimation approaches, represented by VisNN and GVR:

• VisNN : Our implementation of the 1-NN approach [10], which uses the location of
the image visually most similar to the query image as the predicted location. It is a
simple approach, but in practice has proven difficult to beat.

• GVR: Method used in [13], which expands the candidate images by their locations
and uses the overall visual similarity of images located in one location as the rank-
ing score for that location. This method is chosen for comparison since it has been
demonstrated to outperform other state-of-the-art approaches for geo-unconstrained
location estimation [28, 29].

The second set of evaluations (Section 4.6.4) compares our methods with other state-of-art
methods, which do not necessarily use a search-based framework.

Our evaluation metric is Hit Rate at top K (HR@K ). Recall that given a query, the system
returns a ranked list of possible locations. HR@K measures the proportion of queries that
are correctly located in the top K listed locations. Specifically, HR@1 represents the ability
of the system to output a single accurate estimate.

4.6. EXPERIMENTAL RESULTS
We implemented our DVEM framework on top of the object-based image retrieval sys-
tem [37] by constructing a Map-Reduce-based structure on a Hadoop-based cluster1 con-
taining 1,500 cores. The initial visual ranking (the candidate image selection step) takes

1This work was carried out on the Dutch national e-infrastructure with the support of SURF Foundation.
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about 105 mins for San Francisco dataset (803 queries on a collection of 1.06M photos) and
about 88 hours for the MediaEval ’15 dataset (1M queries on a collection of 4.6M photos).
The DVEM stage is executed after the initial visual ranking, and takes 2.4ms per query.

In this section, we report the experimental results and compare our DVEM method with
reference methods in both areas of geo-constrained and geo-unconstrained location esti-
mation. We use part of the test data (10% for San Francisco dataset and 2% for MediaEval
’15 dataset) as development partition to set the parameters of DVEM, and use the rest of
the test data to evaluate the system. Recall that the parameters are the image region size
a defined in Section 4.4.2, the frequent threshold ϑ defined in Eq. (4.3) and the image re-
gion size b defined in Section 4.4.3. The parameter δ defined in Eq. (4.2) is set empirically
to 5 based on the general observation that the initial correspondence score generated by
pairwise geometric matching [37] usually reflects a strong match when it is above 10. As
previously mentioned, the number of top-ranked images from the image retrieval system,
which are used to generate the candidate locations set G , is set to 1000. Note that we use
the same G for GVR.

4.6.1. IMPACT OF THE PARAMETERS

We start our series of experiments by evaluating the impact of a, b, ϑ on the system perfor-
mance using our development partition. We explore the parameter space with grid search,
as shown in Table 4.1. For both a and b, we considered the values 0, 30, 20 and 10 (Table 4.1,
top). Note that a = 0 means that the system assigns a different geo-distinctiveness weight
to each individual visual element, and a = 30,20,10 are regions increasing in size. Similarly,
b = 0 means that system deploys all visual elements appearing in the images of a given lo-
cation for query-location matching, and b = 30,20,10 are regions increasing in size. After
10 performance dropped dramatically, and these values were not included in the table. We
choose a = 10,b = 20 as an operating point for the San Francisco dataset and a = 0,b = 30
for the MediaEval ’15 dataset. For ϑ, we considered the values 4, 5, 6 and 7, but found little
impact (Table 4.1, bottom). We choose ϑ= 5 for the San Francisco dataset and ϑ= 6 for the
MediaEval dataset.

We notice that the performance is mainly influenced by the parameter a, which is used
to smooth the geo-distinctiveness of the visual elements in the query. The optimal val-
ues for parameter a are different on the two datasets. An investigation of the difference
revealed that it can be attributed to the difference in the respective capture conditions.
The examples in Fig. 4.8 illustrate the contrast. The queries in the San Francisco dataset
(Fig. 4.8, top) are typically zoomed-in images, taken on the street with a limited distance
between the camera and the captured object (e.g., car or building). High levels of zoom
results in the salient points that correspond to object details, e.g., a single tire on a car can
have multiple salient points assigned to it. Such a high resolution of salient points may
confuse object matching and is for this reason not productive for location estimation. For
this reason, it appears logical that a value of a that leads to a higher level of grouping of
salient points for the purposes of geo-distinctiveness assessment leads to the best perfor-
mance. In contrast, the queries in the MediaEval ’15 dataset that have the best potential to
be geo-located (Fig. 4.8, bottom) are mostly zoomed-out images capturing a scene from a
distance. The level of detail is much less than in the previous case, and the salient points
tend to already pick out object-level image areas relevant for location estimation. Aggregat-
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Figure 4.8: Illustration of the geo-distinctiveness of visual elements under different region resolutions for query
images from San Francisco dataset (top row) and MediaEval ’15 dataset (bottom row). The color changing from
black to red indicates an increase in geo-distinctiveness

ing the salient points together through image splitting like in the previous case would have
a negative effect, as it would reduce the resolution of salient points too drastically, leading
to a loss of geo-relevant information. For this reason, it is logical that the parameter value
a = 0 is the optimal one, reflecting that no image splitting should be carried out.

4.6.2. GEO-CONSTRAINED LOCATION ESTIMATION

The performance of different methods on the San Francisco Landmark dataset is illustrated
in Fig. 4.9. DVEM consistently outperforms both VisNN and GVR across the board, with the
performance gain of 3% and 4% for HR@1 with respect to the revised ground truth released
in April 2014 (Fig. 4.9.b).

GVR performs even worse than VisNN with respect to the revised ground truth. This
is due to the fact that in the street-view dataset the database images are captured by the
survey vehicle, which can make multiple near-duplicate images per location. When a loca-
tion contains same visual elements of the query image, e.g., the white van in Fig. 4.5b, the
summed visual similarity of images taken in this location will heavily influence the esti-
mation. In contrast, DVEM can handle this situation since it differentiates visual elements
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Table 4.1: HR@1(%) comparison of DVEM on San Francisco (revised ground truth) and MediaEval ’15 datasets
(reval = 1km) with different a, b, and ϑ.

San Francisco MediaEval ’15

ϑ= 5 ϑ= 6
HHH

HHa
b

0 30 20 10 0 30 20 10

0 81.3 80 82.5 81.3 8.1 8.2 8.1 8

30 80 80 81.3 80 8 7.9 7.9 7.8

20 81.3 81.3 80 80 7.8 7.8 7.8 7.6

10 80 82.5 83.8 83.8 7.2 7.3 7.3 7.2

a = 10,b = 20 a = 0,b = 30

ϑ 4 5 6 7 4 5 6 7

83.8 83.8 83.8 82.5 8.1 8.1 8.2 8.1

based on their geo-distinctiveness and eliminates the influence of redundancy by match-
ing not at the image level, but rather at the level of the visual element cloud.

We note that, as 52 out of 803 (6.5%) query images do not correspond in location to any
images in the database collection. Consequently, the maximal performance that can be
reached is 93.5%. In addition, the ground truth is automatically labeled based on building
ID, which is generated by aligning images to a 3D model of the city consisting of 14k build-
ings based on the location of the camera [15]. This introduces noise into the ground truth.
We conducted a manual failure analysis on the 74 queries for which DVEM makes wrong
estimation with respect to HR@1. We found that for 9 queries, the ground-truth database
images are irrelevant, and for 32 queries, the database images located in the top-1 predicted
location are relevant, but their building ID is not included in the ground truth. This makes
the maximum performance that could be achieved by DVEM an HR@1 of 88.3%.

4.6.3. GEO-UNCONSTRAINED LOCATION ESTIMATION
Fig. 4.10 shows the performance of different methods with different evaluation radiuses
(Fig. 4.10a.) and different hit rates (Fig. 4.10b.) on the MediaEval ’15 Placing Task dataset.
This figure demonstrates that DVEM consistently outperforms both VisNN and GVR. The
gain in performance is 12% over VisNN and 5% over GVR for HR@1.

Next we turn to investigate in more detail why VisNN is outperformed by GVR, which
is in turn outperformed by our new DVEM approach. In general, GVR outperforms VisNN
because it can leverage the existence of multiple images from the true location that are visu-
ally similar to the query. GVR fails, however, when wrong locations also are associated with
multiple images that are visually similar to the query. DVEM, however, is able to maintain
robust performance in such cases. Fig. 4.11 contains an example that illustrates the differ-
ence. The query q is shown on the left. VisNN is illustrated by row (a), which contains the
top-10 images returned by VisNN. There is no correct image for the query location among
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(a) original ground truth (b) revised ground truth

Figure 4.9: HR@k performance for varying k on the SanFrancisco street view dataset. (a) performance with respect
to the original ground truth, (b) performance with respect to the revised ground truth released on April 2014.

(a) (b)

Figure 4.10: Performance on the MediaEval ’15 Placing Task dataset. (a) HR@1 with respect to different evaluation
radiuses, (b) HR@k performance for varying k and for the evaluation radius of 1km.

them. This reflects that the collection lacks a single good image-level visual match for the
query. GVR is illustrated by row (b), which contains five sets of images from the five top-
ranked candidate locations. We see the top-1 candidate location image set contains many
images similar to the query, although it is not the true location. Instead, the true location,
whose candidate location image set also contains many images, is ranked second. DVEM
is illustrated by row (c), which again contains five candidate location image sets. This time,
the correct location is ranked first. We can see that the DVEM decision avoided relying
too heavily on the distinctive floor pattern, which is common at many tourist locations,
and cause GVR to make a wrong prediction. Instead DVEM is able to leverage similarity
matches involving diverse and distributed image areas (such as the ceiling and the alcoves
in the walls), favoring this evidence over the floor, which is less geo-distinctive.
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4.6.4. COMPARISON WITH THE STATE-OF-THE-ART
In this experiment, we compare DVEM with other state-of-the-art location estimation sys-
tems regarding both the geo-constrained and geo-unconstrained case. We compare our re-
sults with the top results that have been reported by other authors on the two experimental
datasets that we use.

As the reference methods for geo-constrained location estimation, we use the work of
Gopalan (2015) [23], Tolias et al. (2015) [24], Arandjelović and Zisserman (2014) [25], Torii
et al. (2013) [16], Zhang et al. (2012) [26] and the initial work of Chen et al. (2011) [15].
Results are reported on the entire test set as defined with the San Francisco dataset release.
This set is identical to the sets on which these authors report their results. The results in
Fig. 4.12 demonstrate that our proposed DVEM approach outperforms the state-of-the-art
on the San Francisco dataset. For completeness, we include additional discussion of our
experimental design. The papers cited in Fig. 4.12 use a variety of tuning methods, which
are sometimes not fully specified. We assume that these tuning methods are comparable
to our choice, namely to use, 10% of the test data (Section 4.6.1). Referring back to Ta-
ble 4.1, we can see that our demonstration of the superiority of DVEM is independent of
this assumption. In the table, we see that the difference in performance for DVEM for the
best and the worst parameter settings is less than 4% absolute. If the performance of a very
poorly tuned version of DVEM falls by this amount, it still remains competitive with well-
tuned versions of the other approaches in Fig. 4.12. This assures us that the superiority of
our approach does not lie in our choice of tuning.

For geo-unconstrained location estimation, we compare our method to Li et al. [32],
and the neural network-based representation-learning approach by Kordopatis-Zilos [33].
Results are reported on the entire test set as defined by the data release made by the Media-
Eval 2015 Placing Task. The results in Fig. 4.13 show that our DVEM system redefines the
state-of-the art on the MediaEval ’15 dataset. Again, for completeness, we include ad-
ditional discussion of our experimental design. The submissions to the MediaEval 2015
Placing Task are not allowed to tune on the test data. They do, however, have access to a
leaderboard which includes 25% of the test data. In 2015, teams made a limited number
of submissions to the leader board (<= 3). Our experimental design was different in that
we tuned on 2% of the test data. However, again referring back to Table 4.1 we can see the
magnitude of the advantage that this choice gave us. The worst parameter settings yielded
performance that was lower than that of the best parameter settings by 1% absolute. If the
performance of a very poorly tuned version of DVEM falls by this amount, it would still out-
perform its competitors in Fig. 4.13. We point out that the independence of the superiority
of DVEM from the way in which the parameters are set can be considered a reflection of
an observation already made above: the choice of the critical parameter a is dependent
on how data was captured in general (i.e., zoom-in vs zoom-out) and not on the specific
composition of the dataset.

4.7. CONCLUSION
We have presented a visual-content-based approach for prediction of the geo-locations of
images, based on common sense observations about challenges presented by visual pat-
terns in image collections These observations led us to propose a highly transparent ap-
proach that represents locations using visual element clouds representing the match be-
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(a) original ground truth

(b) revised ground truth

Figure 4.12: HR@k performance for varying k on the SanFransico street view dataset. (a) performance with respect
to the original ground truth, (b) performance with respect to the revised ground truth released on April 2014.
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Figure 4.13: HR@1 performance with respect to different evaluation radiuses on the MediaEval ’15 Placing Task
dataset.

tween a query and a location, and leveraging geo-distinctiveness. Our evaluation, con-
ducted on two publicly available datasets, demonstrates that the proposed approach achi-
eves performance superior to that of state-of-the-art approaches in both geo-constrained
and geo-unconstrained location estimation.

We close with two additional observations about the value of the proposed DVEM ap-
proach moving forward. A key challenge is that the distribution of image data used for
geo-unconstrained location prediction is highly sparse over many regions. This sparsity
has led to the dominance of search-based approaches such as DVEM over classification
approaches, already mentioned above. An additional consequence, we expect, is that the
search-based framework will remain dominant, and that new, deep-learning approaches
will contribute features, as in [33], which can enhance, but will not replace, DVEM. Note
that because DVEM calculates representations over a ‘contextual’ image set, rather than
the whole collection, it is not forced to pre-define locations of a particular scale. The re-
sult is that DVEM is able to apply geo-distinctiveness to predict the location of images on a
continuous scale, limited only by the visual evidence present in the data set.
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5.1. DISCUSSION

T HE objectives of the research reported in this thesis were to develop a scalable visual
content-based location estimation system for images, to investigate the possibilities to

improve its accuracy and reliability to a substantial extent, and to achieve this in both the
geo-constrained and geo-unconstrained scenario. We pursued these objectives from dif-
ferent perspectives ranging from high level framework design to optimization of specific
components of the system. We organized these perspectives as the three main chapters
in this thesis. While Chapter 2 introduced a generic framework for visual content-based
location estimation, Chapter 3 and Chapter 4 focused on the development of two key com-
ponents within the framework. Specifically, Chapter 3 covered geometric verification for
finding reliable candidates for relevant geo-annotated images in the collection, and Chap-
ter 4 covered geo-distinctive visual element discovery and matching for selecting the candi-
date location that most likely corresponds to the visual scene depicted in the query image.
In this section, we reflect on the algorithmic solutions that we developed and the results
that we obtained.

Our research can be considered to have been motivated by two underlying questions:

• How to approach the design of a general framework for automatically estimating the
location of a visual scene depicted in an image?

• How to make such a framework capable of estimating locations at a global scale, i.e.,
when the target location is not constrained to a set of predefined locations typically
characterized by specific visual scene elements?

Following the rationale given in Section 1.4, we focused on a search-based framework
for location estimation, in which the target image serves as a query to be matched with
the geo-annotated images in the available large-scale collection. Then, based on the visual
matching between the query and collection images, information is derived about the most
likely location present in the image collection that may resemble the visual scene of the
query image. For this method to work adequately, both scalability and robustness need to
be considered with great care. Scalability implies that the location estimation of any given
query image can be carried out quickly, independently, of the complexity of the depicted
scene and the size of the reference collection of geo-annotated images. Robustness is re-
lated to the ability of the system to handle the absence of a one-to-one relation between
the location and the visual properties of an image. Two images taken at the same location
can be visually completely different, while visually similar images can be found that were
taken at different locations. In order to neutralize the robustness concern, we developed,
in Chapter 2, a geo-visual ranking method that incorporates the fact that, compared to the
images from the wrong location, more images from the true location will likely contain
more elements of the visual content of the query image. Note that the geo-visual ranking
method can also be seen as a simplified graph that explores the first order neighborhood re-
lation in terms of geo-location and visual content. This method is preferred over exploring
a full graph, which is usually time consuming on large scale image dataset. The evaluation
carried out on a publicly available dataset containing 8.8M images demonstrates that the
devised geo-visual ranking approach achieves sound performance for geo-location estima-
tion and significantly outperforms the state-of-the-art in its approach category.
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The results presented in Chapter 2 indicate that the proposed geo-visual ranking frame-
work is conceptually suitable as a solution for geo-unconstrained location estimation. How-
ever, in order to elevate its robustness to an acceptable level, deeper investigation was
needed regarding ways of representing images for visual matching and of assessing the
quality of the match. Already in Chapter 2, it was shown that local features for image repre-
sentation are more suitable than global features, which led us to consider the search-based
geo-location estimation problem to be related to an object-based image retrieval problem.
However, what remained open was the question of how to improve the efficiency and re-
liability of the object-based image retrieval system in the context of a large-scale image
collection. This question was addressed in Chapter 3, in which we focused on spatial ver-
ification as being the key component for achieving high precision in an object-based im-
age retrieval system. Spatial verification is used to re-rank the initial ranked list of images
visually matching the query. The re-ranking is based on geometric constraints that are de-
ployed to assess the validity of matches between the corresponding objects in two images.
We found that the high number of outliers in the initial correspondences generated by bag-
of-features and errors in the scale, rotation and position of the detected features hinder the
fit of a specific transformation model (e.g., RANSAC-based mode fitting). As an alterna-
tive, we devised a model-free method which implicitly verifies the correspondences with
respect to their consistency in the geometric transformation space. The devised method
uses global scale and rotation relations to enforce the local consistency of geometric re-
lations derived from the locations of pairwise correspondences. In this way, it encodes
not only the scale and rotation information derived from the local points, but also their
locations. By mapping locations of points to pairwise rotation and scale, the approach is
more tolerant to detection noise. At the same time, using a number of filtering steps, the
devised method significantly reduces the number of correspondences that must be consid-
ered, which makes it possible to maintain high image matching reliability at a substantially
reduced computational cost. The experimental results on three publicly available datasets
indicate that the proposed method makes the spatial verification more tractable in case of
a large image collection, but also more reliable, which leads to an overall significant im-
provement of the object retrieval performance compared to state-of-the-art methods.

With the improved object-based image retrieval system devised in Chapter 3, we moved
forward towards our overall goal in this thesis, that is, to develop a scalable visual content-
based location estimation system for images. Because it is common for the query image
to capture a scene comprising multiple objects, and each of them can be found in some
locations, we faced a new challenge that was investigated in Chapter 4, namely how to dif-
ferentiate between the objects contained in the query image that are useful or not useful to
the geo-location estimation problem and how to combine the different location clues from
the relevant objects, possibly collected over several images from the collection, to make the
final location estimation. In order to address this challenge, we investigated the geograph-
ical (geo-)distinctiveness of the visual elements contained in the query image, and devel-
oped a geo-distinctive visual element matching method as a component of the location
ranking step of our general search-based location estimation framework from Chapter 2.
We approached this by following two main principles. First, we searched for ways in which
geo-distinctiveness of visual elements can be modeled reliably and computed efficiently
to be taken into account in the assessment of the match between two images. Second, we
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searched for a comprehensive visual representation for each location with respect to the
query image by aggregating the visual evidence (the matched visual elements) from the
images taken at the same location. In the end, we searched for a model to combine the
geo-distinctiveness with aggregated visual evidence to significantly improve the location
estimation. The resulting location estimation system exploits geo-distinctiveness of visual
elements found in the query image and further strengthens the support for finding the true
location by devising an aggregated visual representation of a location that combines all
visual elements from the query found in the images of that location. The evaluation con-
ducted on two publicly available datasets demonstrates that the proposed approach rede-
fines the state-of-the-art in both geo-constrained and geo-unconstrained location estima-
tion. The superiority of the proposed approach compared to the state-of-the-art solutions
becomes evident in a context in which a large number of common visual elements appear-
ing at multiple locations and a high degree of visual duplication among photos taken in the
same location bias the location estimation. The proposed approach handles this aspect
by differentiating the visual elements based on their geo-distinctiveness and conducting
visual matching per location to remove the redundancy and aggregate the visual evidence
from multiple view angles.

5.2. DIRECTIONS FOR FUTURE RESEARCH
Based on the findings presented in this thesis, we would like to make the following recom-
mendations for future work which we think are substantial and promising for large scale
image retrieval and geo-location estimation.

1. Encoding pairwise geometric relations into visual representations

In Chapter 3, we presented a geometric verification method for large-scale object retrieval.
This method exploits the geometric relations between matched salient points in order to
improve the initial ranked list of images generated solely on the basis of the appearance of
their salient points without geometric constraints. In order to improve the overall robust-
ness and speed up the retrieval process, one could consider encoding the pairwise geomet-
ric relation together with the typical TF-IDF weighted BOF visual representation already in
the initial ranking step. While there have been initial efforts in the direction of encoding
geometric information into the visual representation [1, 2], the improvements gained from
these efforts were rather limited, mainly due to the encoded geometric information being
too weak. In contrast, as pairwise geometric relations were shown to be more effective for
geometric verification, incorporating these relations into the initial ranking step could be
more effective. The challenge related to this is how to encode the geometric information
into the visual representation in the way that pairwise geometric relations can be exploited.

2. Incorporating pixel-level object class knowledge into object retrieval

Building on recent breakthroughs in semantic segmentation and fine-grained localization
using deep learning techniques, attempts have been made to simultaneously detect and
segment objects contained in an image [3, 4], from which the pixel-level object class knowl-
edge is available. This knowledge can then serve as the context information in object re-
trieval and provide guidance for making geometric constraints when building correspon-
dences between images. For example, salient points could be marked with the class labels
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based on their position in the image, and one geometric constraint could be that two salient
points from two different classes should not match each other. We believe that it would be
promising to investigate the ways to incorporate pixel-level object class knowledge into
object retrieval, and then specifically within the application domain of location estima-
tion. The challenge in this direction is how to master the pixel-level object class knowledge
which usually contains noise as a result of the immature semantic segmentation, and max-
imize its contribution to object retrieval.

3. Learning visual representations for object retrieval

Thanks to the recent breakthrough in deep learning and image recognition, learned vi-
sual representations from Convolutional Neural Networks (CNNs) is becoming a success-
ful alternative to hand-crafted descriptors in the context of image classification and object
detection. On the other hand, in object-based image retrieval, the current approaches ex-
ploiting CNN learned features [5, 6] still struggles to outperform the start-of-the-art which
relies on precise image region matching using hand-crafted descriptors. It is for this reason
that we rely on conventional descriptors to build our current system. However, along with
the progress of research in learning visual representations, we expect a success of learned
visual representations in object retrieval. The reason is that such learned features (typically
multilayer) not only include low-level descriptions on local, small image regions, e.g., cor-
ners, but also high-level abstraction about the global image content, which is usually hard
to for a human observer to design. As visual representations are building blocks in our sys-
tem, we expect an additional boost from every advance in visual representation. Future
research in this direction could be conducted in several ways: investigating the contribu-
tions of the different level image representations learned from CNN, adapting the network
structure, and customizing the learning targets of the network, all in the context of object
retrieval.

4. Coverage versus Scalability

Our choice for a search-based approach to location estimation requires that there is at least
one image in the geo-tagged image collection that is taken at the query’s location and that
has sufficient overlap with the query in terms of its visual content. As discussed in the
experimental results section of Chapter 2, about 80% of queries do not meet this require-
ment in the case of social image collections. In other words, for 80% of queries there is
no collocated visual counterpart in the collection of geo-annotated images. Therefore, in
order to create context for the presented framework to work to the best of its ability, the
coverage of the collection of geo-annotated images serving as references needs to be im-
proved. A straightforward way to handle this issue is to add as many images per location as
possible. This strategy will, however, make the size of the image collection grow even fur-
ther and introduce new challenges related to the scalability of the approach. Alternatively,
future research in this direction could aim at generating compact but comprehensive vi-
sual representations of locations based on the available images, which would speed up the
computation of matching with the query. Note that this idea of generating a compact but
comprehensive visual representation of location is different from the current model-based
approaches discussed in Section 1.4. Model-based approaches aggregate all images in one
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location into one class, and try to learn a discriminative visual representation for this lo-
cation. However, this way of learning visual representations tends to focus on frequently
occurring visual scenes, and thus the visual representation can hardly be comprehensive.

5. Generating confidence scores for location estimation

The uncertainty of the presence of collocated visual counterparts of the query in the geo-
annotated reference collection may also call for research on models that could generate
a confidence score indicating to which extent submitting a particular query image to the
system is likely to result in a successful location estimation. This confidence score can
be interpreted as the probability that an estimated location falls in a certain geographical
radius of the ground truth, or the score can be interpreted as the error in distance of the
location estimated [7]. To this end, it would be useful to investigate how to estimate the
confidence/difficulty for a given query with respect to the background image collection
used. As this application level problem is related to the research topic of query performance
prediction in the classical information retrieval [8, 9], further research tackling this problem
can get started by investigating how to extend the existing knowledge and best practices in
query performance prediction to the particular application context of location estimation.

6. Location-oriented evaluation metrics

In this thesis, we solely focus on the geo-graphical characteristic of one location which is
the geo-coordinates without further linking it with other socially or politically determined
territorial entity, e.g., street, city, country. Depending on the application scenario, users
may care more about whether the location estimation falls in the correct street or city,
rather than within a certain distance radius. In this case, this user need should be reflected
in the evaluation metrics used to measure the performance of a geo-location estimation
algorithm. In the MediaEval Placing Task 2015 [10], a new evaluation metrics was intro-
duced, which measures performance based on whether the estimation falls in the same
entity with the true location, the entity can be street, city, state, and country. Note that
solely rely on location entity can be problematic on the boundary of the entity. For exam-
ple, suppose estimation error in distance is 1km, and query’s location is at the border of
one city, the prediction is only 1km away from the true location, but it falls in the bound-
ary of another city. So the geographic distance is small, but the distance in terms of entity
is large. Again, depending on the application scenario, a proper location-oriented evalua-
tion metrics needs to be defined which should include distance-based and/or entity-based
measurement.

5.3. CONCLUSION
In this chapter, we have discussed the algorithmic solutions developed in this thesis, our
general findings, and the challenges and opportunities that we think are substantial and
promising for future research. With the continued development in geo-aware social media,
we expect that there will be more research effort dedicated to tackle these challenges and
make significant progress in large-scale image retrieval and geo-location estimation.
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