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Abstract

Machine learning can be used to classify patients in a hospital. Here, the classifier
has to minimize the cost of misclassifying the patient and minimize the costs of the tests.
Unfortunately, obtaining features may be costly, e.g., taking blood tests or doing an
x-ray scan. Furthermore, it is possible that acquiring those test results may take a few
days. To train such a classifier, several machine learning algorithms exist. Decision trees
appear as favourites since, unlike other classifiers, decision trees do not need all feature
values to classify an instance. Current approaches, however, only use heuristics to find
a local optimum. Although heuristics are relatively fast, they are not optimal and
therefore may not capture well the underlying characteristics of the given dataset. We
propose an optimal approach to train cost-sensitive decision trees while also considering
these delayed tests. Here we show, smaller trees with higher accuracy and a lower cost
can be constructed, compared to a heuristic approach. We use dynamic programming to
allow us to skip many calculations, which speeds up the programming time to seconds.

1 Introduction
Training a classifier, using machine learning, is a widely used technique to create a way of
making decisions without people having to be involved. The objective of such a classifier can
be to minimize the number of times a wrong decision is made. Another objective applied in
cost-sensitive classification is when obtaining data may come with a cost. Here the objective
is to minimize the misclassifications and the costs of testing. The prototypical example of
the problem of cost-sensitive classification is medical diagnosis[12]. There are many other use
cases, e.g, classifying software errors[4], however, the rest of the paper uses medical diagnosis
to explain the problem. Both the cost of misclassifying a patient and the cost of performing
tests must be minimized. Acquiring feature values, like blood tests or x-ray scans can come
with costs. An additional condition to the problem is to minimise the time required to obtain
those feature values.

Many studies like Davis[4], Turney[12], Freitas[6] and Breiman[3] show that decision trees
are the best suitable classifier for this application. Decision trees use step-by-step decisions
where the next test is based on the results of the previous test. This results in the classifier
not needing to do all possible tests. This is more cost-efficient than other classifiers where all
test results are needed upfront. In addition, decision trees are more interpretable as they
show exactly what decisions the classifier is based on[1], whereas other classifiers can be hard
to interpret.

Optimal decision trees are trees that globally optimize an objective for a given maximum
size [2]. So far, not many solutions considered optimal decision tree classifiers, due to their
big runtime complexity. Calculating an optimal decision tree is proven to be NP-hard [7].
However, not only have optimal trees a better accuracy. They can also be trained, having
a much smaller maximal depth which makes them even more interpretable. On top of
that, optimal trees have the property to better capture the underlying characteristics of the
dataset[2]. This is because the tree is directly optimised according to the globally defined
objective [5].

Currently, optimal trees have been studied using mixed integer programming [2] or
dynamic programming[5]. However, the mixed integer programming approach is not scalable.
The dynamic programming approach overcomes this by cashing previous calculations and
pruning using upper and lower bounds. However, they do not consider costs and delays.
Likewise, only trees dealing with costs and delays have been studied without considering
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optimal solutions [8]. This research will combine both optimal trees and cost-sensitive trees
with delays.

Combining those ideas creates a problem. When it takes time to acquire test outcomes,
it is inefficient to wait for every individual test before continuing with the subsequent tests.
Therefore, when encountering a delayed test, the approach we use immediately pays the
costs of all features that we possibly need further on. Regardles whether the results will be
used or not. An example is Figure 1, where the left tree, if node 1 is a delayed test, the costs
of features 1, 2 and 3 have to be paid. Now when classifying a patient we traverse through
the decision tree and when finding a delayed test we pay the cost of each test in that subtree.
By doing this we cannot calculate the optimal tree by independently calculating the left and
right subtree. This means the solution in Demirović’s [5] cannot be applied to calculate the
optimal tree. This research solves this problem by extending Demirović’s algorithm with a
specialized step dealing with delayed features.

TODO: sumarize results.
The research question is: Can optimal cost-sensitive decision trees, dealing with delayed

costs using dynamic programming, be trained and how does this compare to the state-of-the-
art? To answer this question the paper consist of six more sections. In section 2 we show in
further detail what research in this field is done. We elaborate on the pre-knowledge used in
this research in section 3. While in section 4 we explain the implementation of the algorithm
used in our research. In section 5 we describe how the experiments are done and what results
these experiments gave The ethics and reproducibility of the research is covered in section 6.
And lastly, we discuss all conclusions and related work in section 7.

2 Related work
Cost-sensitive decision trees: Several researches, such as ICET[12], TMDP[10] and
ID3[4] show algorithms for training cost-sensitive classifiers.

ICET uses a genetic approach to hyper-tune the biases used for deciding on the trade-off
between information gain and feature costs. Subsequently, they use these biases to evaluate
trees using an induction algorithm. Although ICET does take delays into account, they
consider misclassification costs indirectly.

Tree-based Markov Decision Processes (TMDP) takes advantage of the Markov Decision
Processes (MDP) as a modelling tool. MDPs allow a classifier to choose which attribute to
measure next taking into consideration the expected future sum of costs [9]. They generate
decision trees for all subsets of features. With those decision trees, they use MDP to construct
a decision tree as the final classifier. The algorithm does show promising results in accuracy
and minimizing cost, however, with more than 10 features they consider only using MDP for
the ten most expensive features and assuming they will use the cheapest features anyways.
This is due to the exponential space complexity of constructing trees for all subsets of the
features. On top of that, they do not consider delays.

Cost-sensitive ID3 uses a greedy approach to constructing a decision tree to maximize
accuracy while minimizing the test costs. It assumes that the cost of all tests located in the
whole tree have to be paid. This greedy approach has a much lower time complexity, but the
assumption for paying all test costs gives a much lower accuracy compared to other methods.
Optimal decision trees: Several algorithms, like MIO[2] and Murtree[5] show methods
for training optimal decision trees.

Mixed integer optimization (MIO) uses mixed integer programming to calculate the
optimal decision tree. This algorithm, however, showed to lack scalability when the number
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of features increases.
Murtree uses dynamic programming to compute the optimal tree. It shows way faster

runtimes than MIO. The algorithm, however, only works for binary feature values. Section 3.2
explains how the algorithm works in further detail. Since MIO and Murtree have limitations,
they don’t solve the problem indicated in the introduction. They both are inefficient when
dealing with delayed tests.

3 Preliminaries
Our research explores the combination of two concepts. Firstly, a cost-sensitive approach in
decision trees, including a technique taking delays into account. Secondly, a method that
allows optimal decision trees to be constructed using a dynamic programming approach. We
will cover this in sections 3.1 and 3.2 respectively. In section 3.3 we will explore why dealing
with delays creates a problem for using dynamic programming to construct optimal trees.

3.1 Cost-sensitive trees with delays
Several papers, like Davis[4], Shani[9], Turney[12] and Freitas[6] study the training of decision
trees, minimising both misclassification costs and costs per feature. Costs per feature are
common in real-world applications such as training a decision tree to classify whether a
patient is sick. A test such as a blood test or an x-ray scan costs more money than asking a
patient their age. It is likely that doing the more expensive tests later in the decision tree is
cheaper. Another case to consider is when information gained from a test is low while it is
expensive. In such a case it may be wiser not to perform the test.

Another common condition that often occurs in real-life applications is delayed tests. It
can happen that performing a test or receiving its results, takes time. In the case of having
to use multiple delayed tests, it is more time efficient to do them all at once to reduce the
waiting time. So far we found only one paper including this in training the trees[12]. They
proposed that when encountering a delayed test you immediately pay the costs of all tests in
that subtree. This involves the possibility that costs are made for a test without the result
being used

The goal of training the decision tree in our research is to minimize the average cost per
data point in the dataset. To calculate the cost per data point the sum is taken of the cost of
all tests found when traversing through the tree. In the exception for a delayed test, where
the costs of all tests in the subtree are added to the total cost. Then, if the data point is
misclassified, we add the misclassification cost. When classified correctly no cost is added.

One thing to observe is that the ratio between the feature costs and the misclassification
costs has a big impact on the results of the decision trees. When having a relatively
low misclassification cost the tree will end up in fewer nodes. On the other hand, when
classification costs are relatively high, the costs of the tests will not influence the result much
and the tree will mostly be optimised based upon the least misclassifications.

In some cases, it is possible that two features share a common cost. An example is when
two different blood tests are needed. Here the tests can be done on the same blood sample.
Therefore, the cost of obtaining the blood sample only has to be paid once. We call this a
discount.
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3.2 Optimal decision trees using the Murtree algorithm
Demirović [5] studied the possibilities of using dynamic programming to reduce the program-
ming time for training optimal decision trees. By using 2 properties of a decision tree it is
possible to take advantage of reusing previous calculations. The two properties as found in
the research [5] are :

Property 1: (Independence) Given a dataset D, a feature node partitions the dataset D
into its left and right subtree, such that Dleft ∩ Dright = ∅ and D = Dleft ∪ Dright

Property 2: (Overlap) Given a classification node, a set of features encountered on the
path from the root node to the classification node, and an instance, the order in which the
features are used to evaluate the instance does not change the classification result.

With property 1 we can now calculate the left and right subtree independently and
know that the optimal left subtree and the optimal right subtree together must form an
optimal tree. Now we can use property 2 to use memoization. Since the order of features
encountered does not matter, we have many repeated calculations which we can store in
memory and reuse later. Note that without property 1 memoization would be impossible,
due to dependencies of the other subtree.

Eq: (1) shows a high-level recursive overview of the Murtree algorithm taken from
(Demirović) [5]. It calculates the minimum possible misclassification, only considering binary
features. Given a dataset D, a maximal depth d and a maximal number of nodes n of the
tree, Murtree calculates the optimal tree as T (D, d, n). Furthermore, F represents the set of
possible features. For every feature, f in F we can split the dataset in D(f) and D(f) for
every instance in D including and excluding feature f respectively.

The first two lines of the equation are there just to place a natural limit on the number
of feature nodes and depth to avoid redundancy. The third line is the base case where
min{|D+|, |D−|} is the number of misclassifications. Here, |D+| and |D−| are the number of
positive and negative instances in D respectively. The fourth line is the recursive step where
for every feature the dataset will be split. Then for every possible amount of nodes, the left
and right subtrees are calculated. The minimum of these calculations is taken at the end. f
is then the optimal splitting feature for where the split was the minimum.

T ′(D, d, n) =



T ′(D, d, 2d − 1) n > 2d − 1
T ′(D, n, n) d > n
min{|D+|, |D−|} n = 0 ∨ d = 0

min{T (D(f), d− 1, n− i− 1)+ n > 0 ∧ d > 0
T (D(f), d− 1, i)

: f ∈ F , i ∈ [0, n− 1]}

(1)

To further optimise, the Murtree algorithm uses a specialized method for computing
optimal trees with depth of at most two [5]. It precomputes the data in a 2d array where
the axis are the features and the data is the number of instances having both features. This
can be used to lower the computational complexity.

3.3 Dealing with delays
The algorithm we have so far assumes that subtrees are independent. However, when splitting
on a delayed feature we say the costs of all features in the subtree must be paid, even if
instances will never use the result of that test. To explain why this violates the property of
independence we can look at the example in Figure 1.
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Figure 1: Example of a delayed case

Assume that feature 1 is a delayed feature and |D(1)| = |D(1)| = 5 e.i. feature one splits
the dataset in half. Recall that to calculate the costs of these trees we take the number of
misclassifications times the misclassification cost plus |D| times the sum of all used features.
The cost for taking the left tree would be 0 · 10 + 10 · (1 + 2 + 1) = 40. The cost of taking
the right tree would be 0 · 10 + 10 · (1 + 2) = 30. Thus, the right tree would be a better
choice. However, a dynamic programming approach would take the left subtree, since it will
only look at the trees left and right sides independently. This means the algorithm cannot
know what is optimal on the left when calculating the right. For the right side, it will think
feature 3 is a better choice than feature 2 because it does not know that if we would use
feature 2 on the right side too, we only pay the cost of feature 2 once and the total tree
would be cheaper.

4 Algorithm for cost-sensitive optimal classification trees
with delays

The basic idea of our algorithm is to recursively try every possible tree and to obtain the
optimal one. Naively doing this will lead to an infeasible computing time. Therefore, we use
optimalisations like pruning and memoization to speed up the process considerably.

In section 4.1 we discuss the basic concept of our method. We extend the method from
the Murtree algorithm [5] to also deal with costs and delays. Furthermore, in 4.2 we go into
more detail about what techniques are used in our method.

4.1 High-level idea
Our algorithm uses the same approach as Murtree [5], including costs. When a misclassifica-
tion occurs we add the misclassification cost. Additionally, when splitting on a feature we
add this cost. We do this as long as the features we split on are immediate. When splitting
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on a delayed test we use our special step where for every possible set of features we calculate
its optimal tree using Murtree [5]. Then we add the costs of all features in the set.

We extend the Murtree algorithm T shown in Eq (1)[5] to T ′ shown in Eq: (2). Like in T
we only consider binary features. Additionally to T , every f has its assigned cost C(f) where
if a previously used feature shares a common cost a discount is applied. Furthermore, I(f)
or I(f) return whether the feature is immediate or delayed respectively. On top of that, the
constant number mcc equals the cost per misclassification.

Eq: (2) shows a recursive function of the high-level idea. The first two lines of the equation
are the same as in T and are there just to place a natural limit on the number of feature
nodes and depth to avoid redundancy. The third line is the base case where min{|D+|, |D−|}
is the number of misclassifications, which is multiplied by the cost per misclassification
mcc. In this research, only symmetrical misclassification costs are considered. Including
asymmetrical costs is outside the scope of this research. The fourth line is the recursive call.
It takes the minimum of the evaluation function E for every possible splitting feature in F
and every possible n.

T ′(D, d, n) =


T ′(D, d, 2d − 1) n > 2d − 1
T ′(D, n, n) d > n
mcc ·min{|D+|, |D−|} n = 0 ∨ d = 0
min{E(D, d, n, f, i) n > 0 ∧ d > 0

: f ∈ F , i ∈ [0, n− 1]}

(2)

The new function E Eq: (3) is the evaluation function used in T ′ that has an indirect
recursive link, that is, both functions call each other. Its additional inputs are the splitting
feature f and the number of nodes used in the right side of the subtree n. The function
is divided into two cases, where the first case is for immediate splitting features and the
second for delayed features. The first case is almost the same as Murtree where the subtrees
are split on f and both costs are added. Now, the cost of splitting the data on f is added.
This is the number of instances times the cost of the feature: |D| · C(f). In the second case,
the costs of all features in the subtree must be paid. Therefore, we take the powerset of all
possible features that are not used so far P(F). For each subset of features in this powerset
F ′, the minimum misclassifications are calculated using the original Murtree algorithm and
multiplied by the misclassification cost mcc. Then the cost of splitting D on f ∪F ′ is added.
Lastly, the function returns the minimum cost of all subsets.

E(D, d, n, f, i) =



T ′(D(f), d− 1, n− i− 1)+ I(f)
T ′(D(f), d− 1, i) + |D| · C(f)

min{(T (D(f), d− 1, n− i− 1)+ I(f)
T (D(f), d− 1, i)) ·mcc+
|D| · (C(f) +

∑F ′

fi
C(fi) )

: F ′ ∈ P(F)}

(3)

4.2 Main algorithm description
We use the Murtree algorithm[5] and extend this to also consider costs for features and
when splitting on a delayed feature, paying the costs of all the features in the subset. This
subsection is split by first explaining how the algorithm is modified to deal with costs in
section 4.2.1. After that section 4.2.2 explains how we introduced delays.
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4.2.1 Cost-sensitive optimal trees

The Murtree algorithm only looks at calculating an optimal tree for the least number of
misclassifications. To add a cost per misclassification and costs per feature we changed the
recursive case and the base case. For the recursive case when combining the two subtrees the
cost of both subtrees is added and alse the cost for splitting the particular feature times the
size of the dataset is included. Then the best nodes’ cost is compared with the current nodes’
accuracy and if the current node is better, the current node is assigned to the best node.

For the base case (max depth is smaller or equal to 2) the Murtree algorithm uses its
specialised algorithm. Here, updating the best subtrees will be calculated by multiplying the
misclassification score (MS) with the misclassification cost and adding the cost of using the
child feature. This is the cost of the feature times the number of instances reaching that
child node. Then in the end the cost for splitting on the parrent feature is the cost of the left
plus the cost of the right plus the cost of using the parrent feature. The best tree is then the
tree where the total cost is the lowest. This is illustrated in Algorithm 1. Here Algorithm
1 is part of Murtree [5], where lines 2 to 11 are for immediate features and are almost the
same as in Murtree. Only calculating the penalty is different. A further explanation to lines
12 to 25 is given in section 4.2.2

Lastly, the Murtree algorithm uses an extra optimization described in Section 4.4 of the
paper[5]. It uses a lower bounding technique that is unusable since we have introduced costs
per feature. This technique is therefore not included.

4.2.2 dealing with delays

To solve the problem when introducing delays, we introduce a special step in the method
used in our final algorithm. When encountering a delayed test, we create a powerset of all
possible leftover features. Then the original Murtree algorithm is used for every possible
subset of features. This algorithm uses its own fresh cache. To then calculate the cost we
use the returned value from Murtree as the number of misclassifications. This step is shown
in Algorithm 2.

Lastly, where Algorithm 1 shows the base case for depth of max two, a special step is
needed for when the root feature is delayed. Lines 12 to 25 deal whit this case and calculates
the best tree for every combination of subtrees.

5 Experimental Setup and Results
In this section our algorithm is evaluated. To start off, a comparison is made for its average
costs and accuracy against the state-of-the-art, using several datasets. Additionally, the
scalability of the algorithm by testing its run-time against different numbers of features and
instances is evaluated.

We use the extended version of the Murtree[5] algorithm described in section 4. In the
experiments the maximal depth of the tree is 4 and the maximal number of nodes is 15. We
use most settings where Murtree performed best. The cache uses the dataset variant and the
features are dynamically picked in order. However, when the original Murtree algorithm for
the delayed case is applied the cache uses the branch variant to minimise the initialization.
We do use incremental frequency computation with the exclusion of similarity-based lower
bounds. Only when we are executing the delayed step we do use a similarity-based lower
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Algorithm 1: Specialised algorithm for computing optimal classification trees of
depth two with three nodes extended from Murtree [5]
/* We loop over every combination of two features. fi as root feature and fj as child

feature */
1 for fi ∈ F do
2 if I(fi) then

// We can only calculate left and right subtree independently when fi is
immediate

3 for fj ∈ F s.t. i ̸= j do
/* We calculate the penalty and if the penalty is lower we update

BestLeft(fi). Here CS e.i. the number of misclassifications, is
calculated the same way as in Murtree */

4 MSleft ← CS(fi, fj) + CS(fi, fj)

5 Penaltyleft ←MSleft ∗mcc+ C(fj) · |D(fi)|
6 if BestLeft(fi).penalty > Penaltyleft then
7 BestLeft(fi).misclassifications←MSleft

8 BestLeft(fi).penalty ← Penaltyleft
9 end

10 the same is done for the right subtree
11 end
12 else

/* We calculate the penalty for all combinations of the left and right tree
when fi is delayed */

13 for fleft ∈ F s.t. i ̸= left do
14 for fright ∈ F s.t. i ̸= right do
15 MSleft ← CS(fi, fleft) + CS(fi, fleft)

16 MSright ← CS(fi, fright) + CS(fi, fright)
17 Penalty ← (MSleft+MSright)∗mcc+(C(fi)+C(fleft)+C(fright)) · |D|
18 if BestDelayed(fi).penalty > Penalty then
19 BestDelayed(fi).misclassifications← (MSleft +MSright)
20 BestDelayed(fi).penalty ← Penalty

21 end
22 end
23 end
24 end
25 end

// Now we take the best root feature
26 for fi ∈ F do
27 if I(fi) then
28 Best_tree←

min{best_tree,BestLeft(fi).penalty +BestRight(fi).penaty + C(fi) · |D|}
29 else
30 Best_tree← min{best_tree,BestDelayed(fi).penalty}
31 end
32 end
33 return best_tree
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Algorithm 2: SolveSubtreeDelayedCase(D,B, C, d, n, UB, f, best), the special step
for delayed features
input :Dataset D, branch of the subtree B, feature costs C, depth d, number of

feature nodes n, upper bound on the costs UB, the delayed feature we are
splitting on f and the best node sofar in this branch best

output :Optimal classification tree within the input specification that minimises the
costs on D.

// Compute allowed number of nodes for child subtrees
1 nmax ← min{2d−1 − 1, n− 1}
2 nmin ← (n− 1− nmax)

// We create a loop for every possible subset of the leftover features.
3 featuresLeftToCheck ← getFeaturesLeftToCheck(D,F)
4 powersetFeatures← powerset(featuresLeftToCheck)
5 for featureSubset ∈ powersetFeatures do
6 costForSplitting ← (C(f) + sum{C(fi) for every fi in featureSubset}) · |D|

// if the cost for splitting is bigger than the upper bound we can skip this subset
of features

7 if min{best− 1, UB} < costForSplitting then
8 continue
9 end

10 for nL ∈ [nmin, nmax] do
11 nR ← n− 1− nL

// Impose an upper bound UB′, that ensures that a feasible tree will have
fewer misclassifications than allowed

12 UB′ ← (min{best− 1, UB} − costForSplitting)/mcc

13 subtreeL ← T (D(f),B, C, d, nL, UB′, featureSubset)
14 UB′ ← UB′ − subtreeL

// If ub′ is smaller then zero it means that subtreeL must have been too
expensive

15 if UB′ ≤ 0 then
16 continue
17 end
18 subtreeR ← T (D(f),B, C, d, nR, UB′, featureSubset)
19 current← subtreeL + subtreeR + costForSplitting
20 if current < best then
21 best← current
22 end
23 end
24 end
25 return best
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Figure 2: Diabetes Figure 3: Heart

Figure 4: Hepatitis

bound for each individual subset of features. The code is written in C++ and compiled
using GCC.

The results are compared with TMDP [9]. Even though this algorithm does not consider
delayed, the method shows The code used is open source and written in C# [11]. We consider,
for datasets heart and hepatitis, only subsets over the 10 most costly features together with
all cheaper features together.

The evaluation of the model is rewritten to also consider delayed tests. All experiments
are run on a Windows computer with an I7 core, with 16GB of RAM.

The datasets used, are the same as the ones used in TMDP and can also be found on their
GitHub [11]. To use them for our own algorithm the features of the datasets are binarized.
This is done by adding a feature for every possible value of the features with more than two
unique values. A discount is then added to make using multiple features created from one
feature have the same cost as using the original feature. The training/test split is like in
TMDP a 80/20% split. We take 9 different splits and both algorithms run on these same
splits.

Figure 2, 3, 4 show both methods’ accuracy for different values for the misclassification
cost. In all datasets, our algorithm scores better on accuracy compared to TMDP. Figure 5,
6, 7 show the average cost per instance divided by the misclassification cost. The objective of
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Figure 5: Diabetes Figure 6: Heart

Figure 7: Hepatitis

this research is to minimize these values. The TMDP results have a bigger variance compared
to our algorithm since the algorithm does not consider delays. Therefore, delayed tests can
appear anywhere in the tree which influences the cost. Our algorithm does a better job of
minimizing costs.

The runtime of the algorithm scales exponentionally on the number of feature and on
the maximum number of nodes and depth. The misclassification cost and the ratio between
delayed and immidiate features influence the runtime, but this is negligible. Here, the runtime
may differ around 10%. Figure 8 shows the runtime for different number of features. The
hepatitis dataset was used for this figure.

6 Responsible research and reproducibility
To cover all ethical issues that may arise using this optimal cost-sensitive classifier are
described in section 6.1. The legal use of all data and information is clarified is also covered
in the same section. We cover the reproducibility of the research in section 6.2.
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Figure 8: Scalability on the number of features

6.1 Ethics
Applying the methods described for real-world cases e.g. for patient diagnosis, the following
few ethical remarks should be considered. Firstly, wrongly classifying could cause a big
impact on people’s lifes. Therfore, in our opinion for critical cases, there should always be a
human expert double-checking the decisions made by these classifiers. Secondly, the cost of
misclassifying an instance has a huge impact on how the decision tree is trained. Choosing a
bad misclassification cost may result in a undesirable classifier. Lastly, the trained classifier
dependents highly on the training data. This makes it important that there are no biases in
the data. Furthermore when there is a drift in the data itself, the trained classifier should be
reevaluated or retrained.

The related research is cited and all datasets are referred to and open source. Additionally,
the code used for the experiments is open-source and cited.

6.2 Reproducibility
All considerations and decisions made are explained to assure full reproducibility. The way
the algorithm is extended from Murtree [5] is elaborated on and all code will be made
available. Furthermore, all experiments are explained in detail including all variables. The
code to the TMDP algorithm is cited and all alternations explained. The data used is open
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source and we explain what changes are made in this research.

7 Conclusions and future work
In this research, we show a method to train optimal cost-sensitive decision trees also
incorporating an approach to deal with delayed tests. We explain how dynamic programming
is used to reduce the runtime considerably. Explanation is given on how we handle delayed
features and how these are implemented. Our algorithm was tested against the state-of-the-art
and showed a considerable decrease in cost with still a feasible run-time.

Some limitations to this research have to be considered. When we refer to a tree as
an optimal tree we imply that trees are only optimal given the features are binarized and
the tree has a certain maximum depth. When the data has continuous features we do lose
information when binarizing them making them suboptimal. Furthermore, it is possible that
a bigger depth is necessary to get an optimal tree.

Multiple elements can be valuable for future researched. Firstly, in our research we only
look at symmetrical misclassification costs, while in real-world cases false positives may be
more costly than false negatives or the other way around. Secondly, we currently assume
that when doing a delayed feature we have to pay the cost of all features in the subtree. It is
also possible to perform only all cheap tests of the subtree but leave out the most expensive
tests, implying that the expensive test are only conducted after the outcome of the delayed
feature. Thirdly, in our implementation, performing the delayed step, we could reuse the
cache of other subsets to give upper or lower bounds depending on the subset of features. We
believe this could improve the runtime considerably. Fourthly, extending the similarity-based
lower bound to also be cost-sensitive is out of the scope of this project. This can also lead to
a faster runtime. Lastly, the experiments only used datasets with two labels. It would be
possible to extend this to multi-label datasets.

References
[1] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement

learning via policy extraction. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

[2] Dunn Bertsimas and Jack Dimitris. Optimal classification trees. 106:1039–1082, 2017.

[3] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classifi-
cation and regression trees. Wadsworth and Brooks, Monterey, CA, 2017.

[4] Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach, Hany E. Ramadan, and Emmett
Witchel. Cost-sensitive decision tree learning for forensic classification. In Machine
Learning: ECML 2006, pages 622–629. Springer Berlin Heidelberg, 2006.

[5] Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christo-
pher Leckie, Kotagiri Ramamohanarao, and Peter J. Stuckey. Murtree: Optimal decision
trees via dynamic programming and search. Journal of Machine Learning Research,
23(26):1–47, 2022.

14



[6] Alberto Freitas, Altamiro Costa-Pereira, and Pavel Brazdil. Cost-sensitive decision trees
applied to medical data. In Data Warehousing and Knowledge Discovery, pages 303–312.
Springer Berlin Heidelberg, 2007.

[7] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is
np-complete. Information Processing Letters, 5(1):15–17, 1976.

[8] Susan Lomax and Sunil Vadera. A survey of cost-sensitive decision tree induction
algorithms. ACM Comput. Surv., 45(2), mar 2013.

[9] Shlomi Maliah and Guy Shani. Mdp-based cost sensitive classification using decision
trees. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[10] Shlomi Maliah and Guy Shani. Using pomdps for learning cost sensitive decision trees.
Artificial Intelligence, 292:103400, 2021.

[11] Guy Shani. Implementation for cost sensitive classification, based on an mdp formaliza-
tion of the problem. https://github.com/shanigu/CostSensitive, 2022.

[12] Peter D. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic
decision tree induction algorithm. 2(1):369–409, apr 1995.

15

https://github.com/shanigu/CostSensitive

	Introduction
	Related work
	Preliminaries
	Cost-sensitive trees with delays
	Optimal decision trees using the Murtree algorithm
	Dealing with delays

	Algorithm for cost-sensitive optimal classification trees with delays
	High-level idea
	Main algorithm description
	Cost-sensitive optimal trees
	dealing with delays


	Experimental Setup and Results
	Responsible research and reproducibility
	Ethics
	Reproducibility

	Conclusions and future work

