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Abstract

A novel approach for determining the optimal lo-
cation of a sound source within an acoustic envi-
ronment is proposed. This approach involves the
application of Importance Sampling to improve the
efficiency of the existing method of acoustic ray-
tracing for finding the frequency response at vari-
ous listening locations. The results of this study do
not conclusively demonstrate the superiority of the
proposed method over existing techniques, and fur-
ther research is necessary to determine its viability.

1 Introduction
This thesis presents a more efficient methodology for identi-
fying the optimal placement of a sound source within a given
acoustic environment. The objective of this study is to de-
termine the location of the sound source that results in the
highest acoustic quality, as perceived by listeners, at pre-
determined receiver positions. Since the determination of
what constitutes ”acoustic quality” is inherently subjective,
a more objective measure, namely spectral flatness [Dub04],
is employed in this study. The measurement of spectral flat-
ness assesses the level of flatness in the frequency response. It
can be argued that a higher level of spectral flatness results in
a more favorable auditory experience, one that more closely
aligns with the artist’s intent. In this research, the highest
average spectral flatness is utilized as the primary metric for
determining the optimal acoustic quality of a given space.

In order to determine the frequency response at receiver
positions, a Room Impulse Response (RIR) must be gener-
ated from a three-dimensional model of the space under anal-
ysis. RIRs serve as a representation of the reverberant acous-
tic characteristics of a given space. They can be utilized to
replicate the reverberant effects in a simulated environment or
evaluate the acoustic qualities of a given space. The process
of creating RIRs from three-dimensional models of an acous-
tic environment is referred to as auralization [SS15; kle93;
Sch11].

This thesis presents a methodology for identifying the op-
timal placement of a sound source within a given acoustic
environment through the use of a more efficient variation
of acoustic ray-tracing, itself an auralization technique. In
acoustic ray-tracing, RIRs are generated by tracing acoustic
rays through a 3D model of a given space and simulating the
sound reflections and transmissions at each surface. The sub-
sequent detection of these rays is accomplished through the

utilization of a receiver sphere, wherein the energies of the
rays traversing it are quantified and recorded. The number
of rays necessary to adequately penetrate the receiver sphere
in complex models, such as those with a high inner volume
and a large number of triangles, rapidly increases. However,
casting a large quantity of rays can lead to significant compu-
tational expense [VS08].

This thesis proposes the integration of Importance Sam-
pling (IS) within acoustic ray-tracing. IS is a statistical tech-
nique that focuses on sampling the regions of high probability
density in order to improve the accuracy and efficiency of nu-
merical integration and estimation. IS techniques are applied
to selectively cast rays in the most useful directions, such that
most rays go through the receiver. The use of IS could enable
the reduction of computational requirements while maintain-
ing an acceptable level of accuracy in the RIRs in order to
determine the optimal sound source location.

The methodology employed in this study involves the im-
plementation of an acoustic ray-tracing simulation, similar
to the one described in [Tho17]. The simulation was then
adapted to incorporate the use of IS for determining the di-
rection of initial rays cast from the source. The efficiency
of the IS-augmented simulation is evaluated by comparing its
computational speed with that of the non-IS simulation, as
well as assessing the similarity of their spectral flatness.

In the background information section, a brief overview of
previously employed auralization methods is discussed. Sub-
sequently, a preliminary overview of the process of acous-
tic ray-tracing, its conversion to a RIR and spectral flatness
determination is provided. In the proposed methodology sec-
tion, the implementation of IS techniques are described in de-
tail. The criteria for determining the optimal paths for the rays
is discussed, as well as the methods used to construct the sam-
pling distribution. In the following section, an in-depth ex-
amination of the simulation process, implementation details,
and the parameters used in the study is discussed. The section
on responsible research addresses any ethical considerations
and adherence to the principles of F.A.I.R. research. In the
results section, the performance differences and flatness sim-
ilarities between the IS-augmented and non-IS simulations is
presented and analyzed. The study specifically investigates
the computational efficiency and the accuracy of the spec-
tral flatnesses generated under different starting parameters.
The discussion section includes an examination of the results
and proposes avenues for future research. Finally, the con-
clusion summarizes the key findings of the study and provide
insights into the potential applications and implications of the



research. The conclusion also discusses the limitations of the
study and suggest areas for future research.

2 Background information

Previous research has employed a range of auralization tech-
niques [Tho17; Cas13; SS15; SSMS13; TWH+22; HN06;
KSS68; HH84]. The auralization techniques can be divided
in two categories: Geometric acoustics and wave-based mod-
eling [Cas13; SS15; SSMS13; Tho17]. Wave-based model-
ing utilizes the wave properties of sound to create an audi-
tory representation of a virtual environment [Cas13]. Wave-
based methods are not suitable for higher frequencies since
the wave equations used become complex, making them dif-
ficult to compute [MI86; SSMS13]. Additionally, the level
of detail obtained exceeds that which is necessary for mak-
ing accurate assessments of the room’s acoustical character-
istics [Cas13; Kut14]. Instead, geometric methods, similar
to those used in geometric optics, can be utilized. These
can be used where the dimensions of the space are signifi-
cantly larger than the wavelength of the sound waves [Kut14]
. This approach is simpler and more computationally efficient
[SS15; Cas13]. This thesis employs the technique of acoustic
ray tracing, as outlined in various literature sources [Sch11;
Kut14; SS15; KSS68]. This method is particularly beneficial
for the analysis of complex geometries, as demonstrated in
[Cas13; Bor84]. Additionally, the ability of this technique to
model diffusivity, as highlighted in [SS15], further supports
its utility in this context.

3 Acoustic ray-tracing Simulation and
Spectral Flatness Analysis

In order to identify the optimal source location for an en-
hanced auditory experience, predetermined source and re-
ceiver locations must be established. The spectral flatness
is then calculated for each distinct combination of source and
receiver locations. The source location yielding the highest
average spectral flatness across all receiver locations is deter-
mined to be the optimal location.

To calculate the spectral flatness of a given source-receiver
combination, an acoustic ray-tracing simulation is conducted.
The following sections of this chapter provide a detailed
examination of the specific methodology employed in the
acoustic ray-tracing simulation utilized in this thesis, as well
as the procedures for determining the spectral flatness follow-
ing the simulation.

Figure 1: Histogram showing the amount of energy received over
time

3.1 Acoustic ray-tracing
Acoustic ray-tracing models sound waves as sound rays
[Kut14; Sch11; Cas13]. They are emitted from a point repre-
senting the sound source location [Sch11; Cas13; SS15]. The
initial directions of these rays are generated using the method
outlined in Section 4.

Each ray is assigned an initial energy vector ~E, wherein the
magnitude of energy of several frequency bands is presented
[Tho17]. Upon initiation, the energy of each frequency band
is initialized to a value of one, in order to simulate a spherical
uniform audio source.

Upon impact with a surface, the energy vector ~E of a ray
is attenuated by ~Eoutgoing = ~Eincoming · (1 − ~S) · (1 − ~α),
similar to the methods described in [Tho17; SSMS13; Kut14;
Sch11; SS15; VM00]. In this equation, ~Eoutgoing represents
the energy vector of the outgoing ray, ~Eincoming represents
the energy vector of the incoming ray, and the vectors ~S and
~α represent the scattering and absorption coefficients, respec-
tively. The absorption coefficients are used to quantify the
amount of energy absorbed by a given surface. The scattering
coefficients, as discussed in Section 3.2, are used to quantify
the amount of energy that is not directly specularly reflected,
but rather scattered uniformly throughout space.

Following the impact with a surface, a new reflected ray is
generated with the attenuated energy vector. This process is
repeated until a predetermined maximum number of impacts
is reached.

3.2 Histograms and Energy detection
Histograms offer the capability to document the energy de-
tection over a period of time in a sequence of energy bins,



providing a representation of the energy received [Sch11;
KSS68; Kut14]. An example histogram is shown in Figure
1. For each frequency band, a separate histogram is created
to depict the energy received by that specific frequency band,
providing an analysis of the energy received at different fre-
quencies.

The energy recorded in the histogram includes both spec-
ular and scattering energies, which are subsequently adjusted
by 1/r2, where r represents the total distance traversed by the
rays from the source to reach the receiver. This approach is
necessary to account for the inverse square law, which states
that the intensity of the wave decreases in proportion to the
square of the distance from the source [Sch11].

Specular energies
To accurately record the specular energies, all rays that have
passed through the receiver sphere are identified. The ener-
gies of these rays, after being adjusted for the inverse square
law, is added to the appropriate frequency band’s histograms
at the time t = d

c , where t represents time, d represents the
total distance from the source, and c represents the speed of
sound.

Diffuse energies

Figure 2: The following image depicts the amount of diffuse energy
recorded onto the histogram, where n represents the surface’s nor-
mal, r the distance from the intersection point to the receiver, and γ
represents the angle of projection Ω from the receiver sphere on the
hemisphere. Image source: [Sch11].

The method of diffuse rain, as discussed in reference
[Sch11], is utilized to document the scattering energies emit-
ted by rays. This methodology assumes that the scattering
energies can be modeled as the propagation of a lambertian
distribution of energy emitted from the impact points from
all rays. In other words, it postulates that each intersection
point of a ray emits a hemisphere of diffusional energy over
the entire space.

The diffuse energy recorded in the histogram is based on
both the proportion of incoming ray energy that is dispersed

as diffuse energy, as determined by the scattering coefficient,
and the ratio of the area of the receiver sphere that is projected
onto the total diffuse hemisphere, as depicted in Figure 2.

The diffuse energy is only added to the histogram if a ray
from the intersection point has a direct line of sight to the
receiver. The energy added to the histogram as a result of
diffuse scattering is determined by the equation outlined in
[Sch11]. However, the values of Θ and γ, as depicted in Fig-
ure 2, are implicitly incorporated in the following equation:
~Ediffuse = ~Eincoming ·(1− rreceiver

rhemisphere
)·2(ddiffuseRay ·nsurface),

where vector ~Ediffuse represents the diffuse energy, vector
~Eincoming represents the incoming energy, rreceiver represents
the radius of the receiver sphere, and rhemisphere represents
the distance to the receiver. The dot product, ddiffuseRay ·
nsurface, represents the cosine angle between the diffuse ray
and the surface normal. Finally, the energy is added to the
histogram at the time t =

dtotal+rhemisphere

c , where dtotal rep-
resents the total distance traveled by the ray from the source
to the intersection point, and c represents the speed of sound.

3.3 Auralization

Figure 3: Frequency bands used to filter the histogram bands, where
ωi represent the frequency band edges

The histograms generated in this thesis have a sampling
rate of 44100 Hz. These histograms can be readily trans-
formed into an audio waveform file through a process of nor-
malization and alternate weighting. Each bin in the histogram
corresponds to a sample in the resultant audio file. Normal-
ization is applied to the histograms prior to conversion, as it
ensures that the overall volume level of the audio file is not



affected by the number of rays cast during the simulation.
This is done, since the focus in this thesis is on the variations
in volume across the frequency spectrum. The normalized
histograms are then transformed into samples by applying an
alternate weighting of 1 and -1 at each time-step, and then
discretizing these values onto a 16-bit signed integer.

Prior to combining the audio samples generated from the
histograms, each sample undergoes filtering utilizing both
high-pass and low-pass filters. The high-pass filter elimi-
nates all frequencies below a specified cutoff, while the low-
pass filter eliminates all frequencies above a specified cutoff.
These filters have a defined edge frequency, which marks the
crossover point between two frequency bands. The edge fre-
quencies for the histograms in this thesis are determined using
the following equation:

ωedgei = ωlowest

(
ωhighest

ωlowest

) i
Nbands

, i = 1, . . . , 9

In this equation, ωlowest and ωhighest represent the lowest
and highest frequencies of 20 Hz and 20 kHz, respectively,
and Nbands represents the number of frequency bands used,
which is in this thesis defined as 8 bands, similarly to [Tho17]
. The i-th histogram utilizes the frequency edge ωedgei for its
high-pass filter and frequency edge ωedgei+1

for its low-pass
filter. The defined frequency bands can be observed in Figure
3.

The filters selected for this thesis are described in [Ant10].
The filters which are chosen for this research from that refer-
ence, are designed to ensure an overlap that maintains a con-
stant sum, resulting in a natural sounding overlap [Tho17].

Finally, the RIR, is constructed by summing all of the pre-
viously filtered samples. This resultant sample can then be
further analyzed.

3.4 Spectral flatness analysis

Subsequently, the spectral flatness is computed from the pro-
duced RIR. The spectral flatness serves as an indicator of
the uniformity of the frequency response. The measure of
spectral flatness is characterized by the ratio of the geometric
mean to the arithmetic mean of the power spectrum, which is
obtained by squaring the absolute values of the Fast Fourier
Transform of the signal [Dub04; Coo16]. The equation for

spectral flatness is represented as:

SF =

exp(
n−1∑
i=1

xi)

1
n

n−1∑
i=1

xi

Where SF is the spectral flatness, xi are the values of the
power spectrum and n is the number of values in the power
spectrum.

4 Proposed methodology for generating initial
ray directions

(a) (b)

Figure 4: Initial ray directions depicted as points on a 3D unit sphere
and their projected points in 2D

(a) (b)

Figure 5: Distributions generated from previous ray directions (a),
Newly sampled points from gaussian distributions (b)

In this chapter, a novel method for acoustic ray-tracing that
utilizes Importance Sampling (IS) through the implementa-
tion of gaussian mixture models (GMM) [RLMS+18] is pre-
sented. Specifically, a new probabilistic method for generat-
ing initial unit rays is proposed.

A Gaussian Mixture Model (GMM) is a model that is based
on the assumption that the input data is generated from a mix-
ture of several Gaussian distributions. The data used for train-
ing the GMM distributions are initial ray directions that pass



through the receiver when traced. These distributions gener-
ated are then leveraged to generate new, more probable direc-
tions for the ray-tracing process.

Rays are initially cast uniformly over a sphere in accor-
dance with traditional methods. However, this is done with
a reduced number of rays to achieve the proposed perfor-
mance gains. The directions of rays that subsequently pass
through the receiver, after the ray-tracing process, are then
marked and projected onto a 2-dimensional plane, as depicted
in Figure 4. The projection utilizes the equidistant projection
method outlined in reference [Wei95a]. A projection is em-
ployed due to the computational difficulties associated with
generating random distributions in 3-dimensional space, as
well as the fact that a significant portion of the probability
density function would otherwise be unused, given that all
initial ray directions are unit vectors.

The projected 2-dimensional points are then used as input
for the GMM. This results in the generation of multiple dis-
tributions, each with corresponding means and covariances,
as illustrated in Figure 5a. In this thesis, 25 of such compo-
nents are generated. The GMM is then used to sample new 2-
dimensional points, which are more likely to hit the receiver,
as illustrated in Figure 5b. These points are then converted
back into 3-dimensional initial vectors using the method seen
in [Wei95a; Wei95b]. Subsequently, in order to mitigate the
potential for over-saturation of the receiver from directions
with high ray density, while also ensuring that directions with
low ray density are not overlooked, the energy cast by each
ray is adjusted through the application of the inverse prob-
ability of generating the corresponding 2-dimensional point.
After this adjustment, the acoustic ray-tracing is performed
over the newly generated directions.

5 Experimental setup and Implementation

5.1 Experimental setup

Models

In the present study, simulations are performed in a small
room, a theatre, and an industrial warehouse. The first two
environments were chosen as they are representative of typ-
ical scenarios where the determination of an optimal source
location is desired. The industrial warehouse was selected as
it represents an asymmetric structure, which is of particular
relevance to the current thesis. The models utilized in this
study can be found in the appendix section.

Simulations
In Section 7, an assessment of the effectiveness of the pro-
posed method is conducted by comparing a simulation with
a relatively high number of rays cast to several simulations
with lower ray counts, either employing IS or not. The com-
parison is performed using simulations consider specular en-
ergies, diffuse energies, and both. Subsequently, a compari-
son between the computational performance in terms of the
number of rays cast. The number of rays used for the high-
number simulation is 100,000,000 and is called the baseline
simulation.

Consistent absorption and scattering coefficients were em-
ployed across all tests. Further investigations are required to
evaluate the impact of varying coefficients on the results.

Error metric
The spectral flatness of each generated RIR is calculated and
smoothed using a Hann window of 1000 in order to assess
the overall frequency spectrum, as opposed to any potential
noise. The absolute difference between the flatness of the
high ray count simulation and the flatness of each correspond-
ing simulation is then computed, serving as an error metric for
the simulation.

5.2 Implementation
The implementation of the system is divided into two phases:
ray-tracing and auralization. The ray-tracing component,
which involves reflections and energy recording, was imple-
mented in C++ for performance optimization. Each ray was
evaluated in parallel and the maximum number of reflections
was set to 5. Following the creation of a histogram, the anal-
ysis, including the generation of the power spectrum and the
calculation of the error metric, was performed using Python.

The Gaussian Mixture Model was implemented using the
scikit-learn library [PVG+11]. The C++ implementation was
integrated with the Python direction generation module to ap-
ply IS.

All simulations were conducted on a MacBook Pro
equipped with an M1 Pro chip and 32GB of RAM.

6 Responsible Research
The ethical considerations of this study are limited, as it pri-
marily involves physical data from audio and simulations,
rather than personal or sensitive information. However, when
applying the results to real-world scenarios, such as predict-
ing speaker locations in private homes, it is important to con-
sider privacy and data protection. Additionally, the use of re-
sources for such purposes should be evaluated in light of en-



vironmental impact and alternative areas where the resources
may be better utilized. Finally, it is recommended that users
approach the results of this study with caution and critically
evaluate the validity and accuracy of the models. The code
used in this study is available online to promote transparency
and reproducibility.

7 Results

Rays Specular Diffuse All
No IS IS No IS IS No IS IS

1,000,000 5.4 19.2 3.8 148.8 1.8 64.7
100,000 12.8 0.8 64.0 149.8 51.6 39.0
50,000 25.2 5.8 78.6 156.2 64.1 42.9
10,000 63.4 45.1 87.0 58.1 96.8 20.9

(a) Room model comparison
Rays Specular Diffuse All

No IS IS No IS IS No IS IS
1,000,000 4.0 2.8 12.3 177.0 99.3 218.0
100,000 40.2 178.8 83.7 290.3 243.8 315.0
50,000 47.6 47.8 79.2 276.1 250.5 218.2
10,000 47.7 109.4 62.0 92.2 228.3 232.6

(b) Theater model comparison
Rays Specular Diffuse All

No IS IS No IS IS No IS IS
1,000,000 10.9 30.6 163.0 138.4 24.4 16.3
100,000 76.1 170.9 195.6 189.2 169.1 76.2
50,000 171.5 41.9 152.5 199.0 243.0 16.9
10,000 317.7 247.5 174.2 194.8 303.3 136.7

(c) Warehouse model comparison

Table 1: Comparing the absolute difference in spectral flatness
against a simulation with high ray count for both Importance Sam-
pling (IS) and No Importance Sampling (No IS) (x1000)

In Table 1 the errors are presented in relation to the high-
ray-count simulation of 100,000,000 rays. It is observed that,
in the majority of instances where IS is not applied, the error
decreases as the number of rays increases, as expected.

It is noteworthy that the results of the IS simulation indicate
that, for some models, there is an optimal range where the
simulation results are significantly closer to the baseline than
those obtained from non-IS. However, this is not always the
simulation that utilizes the highest number of rays. This is
most evident in the specular only energy power spectrum of
the room model, shown in Figure 6a, where the IS simulation
outperforms the non-IS simulation by a substantial margin at
100,000 rays.

In general, it appears that all IS simulations are signifi-
cantly deviant in terms of diffuse energy values. This high-
lights the need for further refinement in the simulation tech-
niques and modeling approach in order to accurately predict

(a) Specular only energy comparison in the room model

(b) Specular and Diffuse energy comparison in the warehouse model

Figure 6: A comparison of the power spectra between a high-ray-
count simulation without importance sampling, the baseline, and
simulations with varying ray counts, both with and without impor-
tance sampling, recording both specular and diffusion energies

diffuse energy in these scenarios.
The examination of both specular and diffuse energies, as

depicted in Figure 6b for the warehouse model, reveals that
the IS simulation with 50,000 rays, generally follows the
same patterns as the baseline. The deviation might be due
to an improper adjustment of probabilities. It is worth not-
ing that without any probability adjustment, the power spec-
tra would be completely misaligned. Further investigation
is necessary to determine the optimal probability adjustment
strategy for IS.

The examination of Table 2 reveals that the use of IS re-
sults in a significantly slower performance in casting the same
number of rays. Therefore, a substantial improvement in
quality is necessary for its practical usage. Although there
is potential for a significant increase in quality, currently it
remains a slower method compared to non-IS.

8 Discussion and Future work
The proposed method may not yield expected results due to
several factors. Firstly, it could be that the probability at-
tenuation is incorrect and alternative balancing methods are
necessary. Secondly, it may be that the distributions within



Rays Specular Diffuse All
No IS IS No IS IS No IS IS

1,000,000 999 25950 948 8931 1328 9421
100,000 337 1993 313 1934 467 2115
50,000 283 1481 311 1931 458 2080
10,000 244 1018 254 1093 388 1231
1,000 241 885 246 905 377 1036

(a) Room model performance (ms)
Rays Specular Diffuse All

No IS IS No IS IS No IS IS
1,000,000 14859 39417 31792 49981 32205 50503
100,000 1698 6291 3147 6458 3321 6645
50,000 953 2497 1741 3440 1898 3605
10,000 402 1461 570 1381 715 1520
1,000 265 970 302 930 430 1060

(b) Theater model performance (ms)
Rays Specular Diffuse All

No IS IS No IS IS No IS IS
1,000,000 30128 72952 66808 107781 67198 108241
100,000 3154 8513 7236 11303 7404 11475
50,000 1841 5026 3344 6085 3494 6242
10,000 551 2100 974 1844 1141 1985
1,000 286 901 327 1066 459 1198

(c) Warehouse model performance (ms)

Table 2: Duration of Simulation Completion in Milliseconds

the Gaussian Mixture Model (GMM) were too stringent, and
a more relaxed and randomized approach with a differing
number of components should be explored in future research.
Thirdly, capturing diffuse rain energies may be inherently
challenging as the diffuse rain requires random intersections
points scattered throughout the model, which the IS method
may miss. Further research is needed to determine if these
limitations prevent the IS method from being applicable.

Additionally, the method of comparing to a high-ray simu-
lation is not the optimal approach for evaluating performance.
Future research could consider comparing the IS method to
the real-world frequency response of a given room, using var-
ious coefficients and models for a more accurate assessment.

The determination of the optimal source location in this
study was restricted by the computational requirements asso-
ciated with utilizing such a high-ray simulation to examine a
sufficient number of source-receiver combinations. The time
required to accurately determine the optimal location was a
constraint in this study. Nevertheless, a comprehensive analy-
sis was performed with the resources available and important
findings were still obtained.

9 Conclusion
In conclusion, it is currently unclear whether Importance
Sampling (IS) is a suitable method for determining the opti-

mal speaker location in a given environment. Further research
is necessary to determine and proof the correct method of en-
ergy attenuation. At present, the limitations and performance
degradation of IS in comparison to established acoustic ray-
tracing methods result in inferior performance of IS for locat-
ing sound sources.
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Figure 7: Room model



Figure 8: Theater model



Figure 9: Warehouse model
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