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Preface 

In this work, a MATLAB based graphical user interface (GUI) tool is built to analyze Quasi-

optical (QO) systems in reception with the Fourier Optics (FO) and Geometrical Optics (GO) 

methods. Five canonical QO components are discussed, namely parabolic reflectors, elliptical 

lenses, hemispherical lenses, hyperbolic lenses, and elliptical mirrors. The ray tracing 

technique is implemented to describe reception scenarios and visualize the phase aberrations 

in the QO systems. The FO method represents the fields focalized by a QO component on its 

focal plane as a Plane Wave Spectrum (PWS). This spectrum is calculated by using the GO 

method and can be used in spectral techniques like equivalent Floquet circuit. Moreover, the 

tool is able to use this spectrum to estimate the power delivered to an antenna placed at the 

focal plane. By obtaining this delivered power, the performance of the antenna-coupled QO 

system is analyzed, including pattern, directivity, common efficiency terms and gain. In 

addition, the performance calculated in reception is validated by CST and GRASP full-wave 

simulation software. Therefore, this GUI tool represents a GO/FO based tool that can be used 

to analyze and design antenna-coupled QO systems in reception. 

 

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of 

Science in Electrical Engineering at Delft University of Technology. 

张华盛 

Huasheng Zhang 

Delft, October 2018 
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Chapter 1: Introduction 

1.1 Background 

Systems operating in the Terahertz (THz) frequency domain are becoming more common in 

recent years in applications such as: Stand-off security monitoring [1, 2], next generation of 

communication systems [3, 4], far-infrared observatories [5, 6] and etc. In such systems, Quasi-

optical (QO) components, e.g. reflectors and lenses, are commonly employed to enlarge the 

directivity of the systems, which leads to higher angular resolution in imaging applications and 

higher signal to noise ratio in sensing applications. Due to the geometrical properties of QO 

components, they are employed to radiate highly directive beams when transmitting sources 

are placed at their foci (transmission scenarios); or focalize incoming fields on their focal 

planes and increase the sensitivity of the detectors placed at their focal planes (reception 

scenarios). Here we take a parabolic reflector as an example to better illustrate transmission 

scenarios (Fig. 1.1a) and reception scenarios (Fig. 1.1b).  

 

  

(a) (b) 

Figure 1.1: A schematic representation of a parabolic reflector: (a) In transmission scenarios. (b) In reception 

scenarios. 

 

The analysis of QO systems can be done either in transmission or reception. These analyses 

are equivalent for single-mode antennas thanks to the reciprocity theorem; whereas it is more 

convenient to analyze QO systems in reception for multi-mode antennas [7, 8]. Moreover, for 

absorber-coupled QO systems, they can only be analyzed in reception. In this work, we focus 

on the analysis in reception because it enables us to combine well-developed methods to 

analyze the coupling between QO components and antennas or absorbers. Furthermore, the 

analysis in reception allows us to have a well-defined field coming from the optics that can be 

used to synthesize the antennas and absorbers integrated with the transmitters and receivers.  
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There are several high-frequency techniques that can be used to analyze QO systems, such 

as: ray tracing, Physical Optics (PO), and Fourier Optics (FO). The ray tracing technique [9-

11] approximates high-frequency electromagnetic (EM) waves as tubes of rays propagating in 

a homogenous medium, following the laws of reflection and refraction. In such an approach, 

visualized ray propagation is presented, which is helpful for describing phase aberrations in 

QO systems. In particular, phase error terms can be included in the analysis by considering the 

path length traveled by each ray. Therefore, in this work, the ray tracing is used to describe 

reception scenarios. However, some software, such as ZEMAX [12], cannot provide amplitude 

information of EM waves. As the result, the ray tracing has a limited use to design antennas or 

absorbers coupled to QO components. Moreover, the PO method, when the high-frequency 

approximation is met, can be used to evaluate EM fields scattered by arbitrarily shaped 

surfaces. This goal is achieved by radiating the equivalent surface currents in absence of the 

surface [13, 14]. This technique is well-established and accurate; therefore in this work, it is 

employed for validation purposes. However, the PO approach is numerically cumbersome and 

time-consuming, especially for multi-component QO systems. In addition, one cannot easily 

apply the PO approach to include the coupling between detectors and QO systems. 

In order to analyze the coupling between detectors and QO systems in reception. A Fourier 

Optics approach is proposed in [7, 15] for absorber-coupled QO systems, and in [16] for 

antenna-coupled systems. In these papers, when a QO system is illuminated by a plane wave, 

the fields focalized by the QO system on its focal plane can be represented as a summation of 

plane waves, referred to as plane wave spectrum (PWS). This spectrum is calculated by using 

the Geometrical Optics (GO) technique [13]. One can link the PWS of the QO system to 

equivalent Floquet circuits to evaluate the power captured by absorbers placed at the focal 

plane, as described in [7] and [15]. Moreover, the PWS can be used to analyze the performance 

of antenna-coupled QO systems. By resorting to the antenna in reception formalism [17], one 

can use the PWS to estimate the power received by antennas, as described in [16]. Accordingly, 

compared with the ray tracing and PO approaches, FO based analysis can provide more insight 

for designing detector-coupled QO systems. However to our knowledge, no universal tools are 

developed to implement this FO method for variety of QO systems in reception. There are a 

few codes implementing the FO method [7, 15, 16], but they mainly focus on analyzing 

parabolic reflectors and elliptical lenses, which constrains design possibilities. Moreover, 

existing codes do not have user-friendly interfaces, meaning users cannot operate them easily. 

Accordingly, a MATLAB based graphical user interface (GUI) tool is built in this thesis to aid 

with analyzing QO systems in reception using the GO/FO method. 
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1.2 Solution proposed in the thesis 

This work proposes a GUI tool for analyzing QO systems in reception using the GO/FO 

methodology. To improve design possibilities, five widely used QO components are discussed, 

namely parabolic reflectors, elliptical lenses, hemispherical lenses, hyperbolic lenses, and 

elliptical mirrors. In addition, the tool takes into account the presence of a matching layer, 

which is an essential element for designing dielectric lenses. An in-house ray tracing code is 

developed to describe and visualize reception scenarios for all QO components. Users can 

apply this ray tracing to preliminarily analyze QO systems by considering phase aberrations. 

Moreover, a PO code is implemented to evaluate the fields focalized by a QO component on 

its focal plane. These focal plane fields can be used as references for later-stage validation. The 

core code is the GO/FO analysis code. It calculates the PWS of the focalized fields by using 

the fields evaluated on an equivalent FO sphere ([7, 15]) centered at the focus of a QO 

component. Furthermore, it uses the PWS to estimate the power received by an antenna placed 

at the focal plane of the QO component, by resorting to the antenna in reception formalism 

[17]. Accordingly, this GUI tool represents a GO/FO based tool that can be used to analyze 

and design antenna-coupled QO systems in reception. 
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1.3 Thesis outline 

The thesis is structured as follows. It consists of eight chapters. The second chapter describes 

the most widely used QO components analyzed in reception. First, main canonical QO 

components used in this work are introduced, including their applications and 

parameterizations. Furthermore, the ray tracing technique is discussed to describe reception 

scenarios for the QO components. In this section, incident fields are defined, and reflected and 

transmitted fields are evaluated. 

 In chapter 3, the FO analysis is explained. The field focalized by a QO component on its 

focal plane is expressed by a spectral representation with a quadratic phase term. To include 

this phase term in the spectrum, the coherent FO method is investigated.  

Chapter 4 focuses on evaluating the fields scattered by a QO component and propagating 

these fields to the corresponding FO sphere by resorting to the GO technique. These scattered 

fields are called GO fields and they are the key elements in calculating the coherent FO spectra. 

 In chapter 5, numerical examples and validation of GO fields and PWS are shown. In 

chapter 6, antenna-coupled QO systems are analyzed in reception scenarios. To do so, the 

Thevenin equivalent circuit is introduced to represent a system in reception. By calculating the 

open-circuit voltage generator in this circuit, the power delivered to the antenna can be 

evaluated. In addition, the performance of antenna-coupled QO systems is validated by CST 

and GRASP full-wave simulation software.  

In chapter 7, the developed GUI tool is described. The implementations of the ray tracing, 

the PO, and the GO/FO method are explained. The procedures to obtain coherent FO spectra 

and to analyze antenna-coupled QO systems are described. To conclude, chapter 8 summarizes 

main points discussed in the thesis, and sets goals for the future research related to the work 

done in this thesis. 
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Chapter 2: Main canonical QO components 

QO components are important in THz systems since they can enlarge the directivity of the 

systems significantly; and in this thesis, they are analyzed in reception. In this chapter, we 

mainly discuss two things: One is to introduce the QO components used in this thesis; The 

other is to describe reception scenarios for these QO components. 

In section 2.1, the most widely used QO components are discussed, namely parabolic 

reflectors, elliptical lenses, hemispherical lenses, hyperbolic lenses, and elliptical mirrors. We 

first introduce some practical applications for each QO component, and then parameterize the 

geometry of each component by defining its truncation angle, f-number, radial distance, and 

normal vector. In section 2.2, a reception scenario, where a QO component is illuminated by a 

certain incident wave, is described by using the ray tracing technique. We discuss incident 

fields used in this work, analyze their propagation in reflection and transmission problems, and 

finally show some examples of ray propagation. 

 

2.1 Canonical QO components 

In this section, we mainly introduce five canonical QO components by discussing their 

applications in subsection 2.1.1 and parameterizations in subsection 2.1.2 and 2.1.3. 

2.1.1  Applications of different QO components 

⚫ Parabolic reflector 

A parabolic reflector in reception, as shown in Fig. 2.1, can focalize incident fields at its focal 

plane and achieve highly directive beams. While in transmission, when a source with a 

spherical wave front is placed at the focus, by using Snell’s law, the reflected fields will be 

parallel to each other, which translates to highly directive far-field pattern. This high-directivity 

property makes parabolic reflectors practical in many applications: In astronomical 

observations, a parabolic reflector acts as a telescope; for instance, ALMA Radio-Telescope 

for submillimeter observations [18] and Cassini-Huygens Mission for Saturn observation [19]. 

In telecommunications, it is an important component in satellite and broadcasting 

communications. Moreover, it can be used in civilian and military security imaging systems 

[2]. However, in an on-axis configuration, it suffers from a blockage problem, which reduces 

the aperture efficiency of the system. This issue is illustrated in Fig. 2.1 where a receiver is 
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placed at the focal plane of the reflector. As it can be seen, the receiver is placed between the 

reflector and its far-field region. Therefore, the incident fields also pass the same focal plane, 

meaning this part of the fields is blocked and wasted. To mitigate this issue, Cassegrain 

telescope systems [20] and off-axis reflectors are designed. Even so the main properties of the 

focal plane fields can be understood from a symmetric reflector because most of the dual 

reflector systems can be modelled by a single paraboloid [21]. 

 

 

Figure 2.1: A schematic to illustrate wave propagation for a parabolic reflector in reception. 

 

⚫ Elliptical lens 

Integrated antennas are widely used in THz applications. However, since dielectric slabs in 

integrated chips are electrically thick in THz frequencies, antennas always suffer from surface 

waves propagating in substrates, which significantly decreases radiation efficiency [22]. A 

high-frequency solution to eliminate surface waves is to place a dielectric lens on the top of the 

antenna. In such a structure, the antenna will radiate most of its power towards the lens [23, 

24]. An elliptical surface is always preferred to be used as the dielectric lens since it can radiate 

directive beams: It can transmit parallel waves when a spherical source is placed at its lower 

focus (Fig. 2.2), which leads to directive pattern. In practice, elliptical silicon (𝜀𝑟 = 11.9) 

lenses are widely used in imaging systems. For example, for space-based observations, a kilo-

pixel imaging system is proposed in [6]. In this system, an array of elliptical silicon lenses is 

aligned to a detector array that consists of kilo-pixel antenna-coupled MKIDs (Microwave 

kinetic inductance detectors). 
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Figure 2.2: A schematic to illustrate wave propagation for an elliptical lens in transmission. 

 

⚫ Hemispherical lens 

Elliptical lenses have very good performance; however, fabricating elliptical surface in 

dielectric is complicated. Therefore, in practice, one can use an extended hemispherical lens as 

a substitution to synthesize a true elliptical lens in the case of silicon, as shown in Fig. 2.3. By 

changing the extension length 𝐿, one can approximate an elliptical surface by a hemispherical 

one with reasonable accuracy [24]. In practical applications, for instance, in a large-format 

imaging system used for cosmic observations, extended hemispherical lenses are integrated 

with antenna-coupled MKIDs [25]. 

 

Figure 2.3: Geometry of a synthesized elliptical lens from an extended hemispherical lens, compared with a true 

elliptical lens in case of silicon. 
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⚫ Hyperbolic lens 

In this thesis, we discuss a planar hyperbolic dielectric (𝜀𝑟) lens, i.e. one side is planar and the 

other side is hyperbolic, as depicted in Fig. 2.4. As it can be seen, this type of hyperbolic lens 

can focalize the parallel incident fields at its focus without any aberration. It is worth noting 

that the incident fields and the focal plane are at different sides of the hyperbolic lens. 

Therefore, there is no blockage problem and the size of the receiver is not limited by the 

blockage, which are advantages compared with a parabolic reflector. In practical applications, 

planar hyperbolic lenses can be used for high-resolution far-field imaging [26, 27] and THz 

spectroscopy systems [28]. 

 

 

Figure 2.4: A schematic to illustrate wave propagation for a planar hyperbolic lens in reception. 

 

⚫ Elliptical mirror 

An elliptical mirror has two foci, 𝐹1 and 𝐹2, as shown in Fig. 2.5. When a point source is placed 

at one of the foci, for example 𝐹2, the reflected fields will be focalized at the other focus, 𝐹1. 

Due to this property, elliptical mirrors are commonly used in illumination engineering [29, 30]: 

They are able to collect the light of a source emitted from one focus at the other focus. 

Moreover, in near-field applications, elliptical reflectors can be used in near-field 

communication systems [31] and near-field imaging systems, e.g. the detection of breast cancer 

[32] and THz imaging Radar [33]. 
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Figure 2.5: A schematic to illustrate wave propagation for an elliptical mirror. 

 

2.1.2  Parameterizing a generic surface 

Before introducing a specific QO component, here a generic surface is parameterized. To do 

so, two parameters are considered: Parameterization variables and normal vectors.  

2.1.2.1   Parameterization variables 

When defining a surface, one should perform a mapping from a 2D domain (𝑚, 𝑛) to a 3D 

domain (𝑥, 𝑦, 𝑧). This mapping can be expressed as: 

(𝑚, 𝑛) → {

𝑥 = 𝑓𝑥(𝑚, 𝑛)

𝑦 = 𝑓𝑦(𝑚, 𝑛)

𝑧 = 𝑓𝑧(𝑚, 𝑛)

 (2.1) 

In this thesis, two types of 2D domains (variables), (𝜃, 𝜙) and (𝑢, 𝑣), and one 3D domain, 

cartesian coordinate (𝑥, 𝑦, 𝑧), are used. We start with an arbitrary surface. As it can be seen in 

Fig. 2.6, 𝑄 is a point on a generic surface 𝑆 with the radial distance 𝑟(𝜃). �̂�𝑄 is the normal 

vector of 𝑆 and 𝜃0 is the subtended rim angle where we truncate the surface. 

 

Figure 2.6: Sketch of a generic surface 𝑆. 
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⚫ Parameterization using (𝜽,𝝓) variables 

In this case, the mapping in Eq. (2.1) becomes: 

(𝜃, 𝜙) → {

𝑥 = 𝑓𝑥(𝜃, 𝜙)

𝑦 = 𝑓𝑦(𝜃, 𝜙)

𝑧 = 𝑓𝑧(𝜃, 𝜙)

 (2.2) 

Therefore, the point 𝑄 can be parameterized as follows: 

{

𝑄𝑥 = 𝑟(𝜃) sin 𝜃 cos𝜙

𝑄𝑦 = 𝑟(𝜃) sin 𝜃 sin𝜙

𝑄𝑧 = 𝑟(𝜃) cos 𝜃

(2.3)  

⚫ Parameterization using (𝒖, 𝒗) variables 

The (𝜃, 𝜙) variables are easy to define; however, using them would lead to a problem that the 

surface is sampled denser at the center and less at the edge (illustrated clearly in Appendix 

A.1). This non-uniform sampling means that the fields on the surface could require a large 

number of points to converge. Therefore, we introduce another set of variables that performs 

uniform sampling, the (𝑢, 𝑣) variables, which are obtained as follows: 

{
𝑢 = sin 𝜃 cos𝜙
𝑣 = sin 𝜃 sin𝜙

(2.4) 

By using these variables, the surface can be parameterized as: 

{

𝑄𝑥 = 𝑟(𝑢, 𝑣)𝑢

𝑄𝑦 = 𝑟(𝑢, 𝑣)𝑣

𝑄𝑧 = 𝑟(𝑢, 𝑣)√1 − (𝑢2 + 𝑣2)

(2.5) 

Since (𝜃, 𝜙) and (𝑢, 𝑣) can be mutually transformed by using Eq. (2.4), in the following parts 

of this thesis, for simplicity, expressions in (𝜃, 𝜙) are reported for most cases. 

2.1.2.2   Normal vectors 

Normal vectors are important when calculating the Jacobian of a surface or applying Snell’s 

law. Therefore, a generic expression for normal vectors of a surface is discussed. After 

parameterizing the surface 𝑆, one can calculate the normal vector �̂�𝑄  at each point on the 

surface as: 

�̂�𝑄 = ±

𝜕�⃗� 

𝜕𝜃/𝑢
×

𝜕�⃗� 

𝜕𝜙/𝑣

|
𝜕�⃗� 

𝜕𝜃/𝑢
×

𝜕�⃗� 

𝜕𝜙/𝑣
|

(2.6) 

where �⃗� = 𝑄𝑥�̂� + 𝑄𝑦�̂� + 𝑄𝑧�̂�, 
𝜕�⃗� 

𝜕𝜃/𝑢
 and 

𝜕�⃗� 

𝜕𝜙/𝑣
 are partial derivatives of the surface with respect 

to (𝜃, 𝜙) or (𝑢, 𝑣), which are explicitly calculated in Appendix A.2. The sign “±” in Eq. (2.6) 
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indicates the direction of the normal vector: “+” means �̂�𝑄 points towards the +𝑧 direction, 

while “−” means the −𝑧 direction. In this thesis, the selection of the sign depends on the 

direction of the incident field. When the incident field propagates towards +𝑧 direction, the 

sign is “−”; while for – 𝑧 propagation, the sign is “+”.  

2.1.3  Parameterizing a specific QO component 

In this subsection, we consider parameterizing a QO component, with a specific truncation 

angle (derived in Appendix A.3), f-number, radial distance, and normal vector.  

⚫ Parabolic reflector 

Fig. 2.7 shows the 2D geometry (front view) of a parabolic reflector. The reflector is centered 

at its focus 𝑂, with the diameter of 𝐷𝑟 and the focal distance of 𝑓. The f-number is defined as 

𝑓#
𝑙 = 𝑓/𝐷𝑟. It is worth noting that in reception, the observation point is also located at 𝑂, i.e. 

we place a receiver at 𝑂. The radial distance, 𝑟(𝜃), can be expressed as: 

𝑟(𝜃) =
2𝑓

1 + cos 𝜃
(2.7) 

We can also calculate the normal vector of the surface, �̂�𝑟 , by using Eq. (2.6) (extended 

calculation in Appendix A.2): 

�̂�𝑟 = −√
1 − cos 𝜃

2
�̂� − √

1 + cos 𝜃

2
 �̂� (2.8) 

⚫ Elliptical lens 

An ideal elliptical lens should achieve directive patterns. To achieve this in transmission, one 

needs to ensure the fields on the lens equivalent aperture have constant phase. The resulting 

lens should have the eccentricity of 𝑒 = 1/√𝜀𝑟, where 𝜀𝑟  is the relative permittivity of the 

dielectric; and an antenna should be placed at its lower focus. This configuration is shown in 

Fig. 2.8 that we move the center of the coordinate system (observation point) to the lower focus 

of the ellipse, 𝑂2. The distance from 𝑂2 to the apex is 𝑎 + 𝑐, where 𝑎 is the semi-major axis 

and 𝑐 is the focal distance. The f-number is defined as 𝑓#
𝑟 = 𝑅𝑙/𝐷𝑙, where 𝑅𝑙 is the rim distance 

(Appendix A.3). For the surface of the lens, the radial distance, 𝑟(𝜃), can be expressed as: 

𝑟(𝜃) = 𝑎
1 − 𝑒2

1 − 𝑒 cos 𝜃
(2.9) 
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where 𝑒 = 𝑐/𝑎 = 1/√𝜀𝑟 is the eccentricity of the ellipse. The normal vector of the surface, �̂�𝑙, 

is obtained as follows: 

�̂�𝑙 =
sin 𝜃

√1 + 𝑒2 − 2𝑒 cos 𝜃
�̂� +

cos 𝜃 − 𝑒

√1 + 𝑒2 − 2𝑒 cos 𝜃
�̂� (2.10) 

 

 

Figure 2.7: 2D geometry of a parabolic reflector. 

 

Figure 2.8: 2D geometry of an elliptical lens. 

 

⚫ Hemispherical lens 

A hemispherical lens (Fig. 2.9) consists of a hemisphere with the radius of 𝑅𝑠𝑝ℎ  and an 

extended base with the length of 𝐿. The center of the hemisphere is represented by 𝑂′, while 

the center of the coordinate system (observation point) is 𝑂. The f-number is defined as 𝑓#
ℎ𝑙 =

𝑅𝑙/𝐷ℎ𝑙, where 𝑅𝑙 is the rim distance calculated in Appendix A.3. The radial distance, 𝑟(𝜃), can 

be expressed as: 

𝑟(𝜃) = 𝐿 cos 𝜃 + √𝑅𝑠𝑝ℎ
2 − 𝐿2 sin2 𝜃 (2.11) 

Since 𝑟(𝜃) has a complicated expression, the normal vector of the surface, �̂�ℎ𝑙, is calculated 

numerically by using Eq. (2.6).  

In practical design, two types of hemispherical lenses are commonly used: One is the 

configuration introduced in [24]. If the extension length is selected as 𝐿/𝑅𝑠𝑝ℎ = 0.32~0.35, 

an elliptical lens can be approximated by a hemispherical lens with reasonable accuracy. The 

other configuration is called hyperhemispherical lens [24, 34]. The extension is designed to be 

𝐿 = 𝑅𝑠𝑝ℎ/√𝜀𝑟, with which incident spherical waves can be perfectly focalized by the lens on 

its focal plane. 
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⚫ Hyperbolic lens 

In this work we discuss a planar hyperbolic lens, as shown in Fig. 2.10. An ideal hyperbolic 

lens should achieve directive patterns. To achieve this in transmission, one needs to ensure the 

fields on the lens equivalent aperture have constant phase. The resulting lens should have the 

eccentricity of 𝑒 = √𝜀𝑟, where 𝜀𝑟 is the relative permittivity of the dielectric; and an antenna 

should be placed at its lower focus. In Fig. 2.10, we move the center of the coordinate system 

to the lower focus 𝑂 and define the focal distance as 𝑓 = 𝑎 + 𝑐, where 𝑎 is the semi-major axis 

and 𝑐 is half of the distance between two foci. The f-number is defined as 𝑓#
ℎ = 𝑓/𝐷ℎ. The 

radial distance, 𝑟(𝜃), can be expressed as: 

𝑟(𝜃) = −
𝑏2/𝑎

1 − 𝑒 cos 𝜃
(2.12) 

where 𝑏 = √𝑐2 − 𝑎2  and 𝑒 = 𝑐/𝑎 = √𝜀𝑟  is the eccentricity of the hyperbola. We can also 

calculate the normal vector, �̂�ℎ: 

�̂�ℎ = −
sin 𝜃

√1 + 𝑒2 − 2𝑒 cos 𝜃
�̂� +

𝑒 − cos 𝜃

√1 + 𝑒2 − 2𝑒 cos 𝜃
�̂� (2.13) 

 

 

Figure 2.9: 2D geometry of a hemispherical lens. 

 

Figure 2.10: 2D geometry of a hyperbolic lens. 

 

⚫ Elliptical mirror 

An elliptical mirror has two foci, 𝑂1 and 𝑂2, as shown in Fig. 2.11. When a transmitter is placed 

at one focus, for example 𝑂2 , a receiver should be placed the other focus,  𝑂1 . Therefore, 

depending on where we place a receiver (observation point), the surface can be parameterized 

by 𝑟1(𝜃1) or 𝑟2(𝜃2). The radial distance, 𝑟1(𝜃1) and 𝑟2(𝜃2), can be expressed as follows: 
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{
 
 

 
 𝑟1(𝜃1) = 𝑎

1 − 𝑒2

1 + 𝑒 cos 𝜃1

𝑟2(𝜃2) = 𝑎
1 − 𝑒2

1 − 𝑒 cos 𝜃2

(2.14) 

where 𝑎 is the semi-major axis and 𝑒 = 𝑐/𝑎 is the eccentricity. It can be observed from Fig. 

2.11 that 𝑟1(𝜃1) and 𝑟2(𝜃2) are related to each other as follows: 

𝑟1(𝜃1) cos 𝜃1 + 2𝑐 = 𝑟2(𝜃2) cos 𝜃2 (2.15) 

 

 

(a) 

 

(b) 

Figure 2.11: 2D geometry of an elliptical mirror: (a) Observation at lower focus. (b) Observation at upper focus. 

 

Case 1: Observation at lower focus, 𝑶𝟐 

In this case, as shown in Fig. 2.11a, the f-number is defined as 𝑓#
𝑚 = 𝑅2𝑙/𝐷𝑚, where 𝑅2𝑙 is 

the rim distance calculated in Appendix A.3. The mirror is parameterized by the radial distance, 

𝑟2(𝜃2). By solving Eq. (2.15), one can relate 𝜃1 to 𝜃2: 

𝜃1 = cos
−1

𝐴1𝑎(1 − 𝑒
2) − 2𝑐 

2𝑐𝑒 + (1 − 𝐴1𝑒)𝑎(1 − 𝑒2)
, 𝐴1 =

cos 𝜃2
1 − 𝑒 cos 𝜃2

(2.16) 

The normal vector, �̂�𝑚, can be expressed as: 

�̂�𝑚 = −
sin 𝜃2

√1 + 𝑒2 − 2𝑒 cos 𝜃2
�̂� −

cos 𝜃2 − 𝑒

√1 + 𝑒2 − 2𝑒 cos 𝜃2
�̂� (2.17) 

Case 2: Observation at upper focus, 𝑶𝟏 

In this case, as shown in Fig. 2.11b, the f-number is defined as 𝑓#
𝑚 = (𝑎 − 𝑐)/𝐷𝑚. The 

mirror is parameterized by the radial distance, 𝑟1(𝜃1). By solving Eq. (2.15), one can relate 𝜃2 

to 𝜃1: 

𝜃2 = cos
−1

𝐴2𝑎(1 − 𝑒
2) + 2𝑐 

2𝑐𝑒 + (1 + 𝐴2𝑒)𝑎(1 − 𝑒2)
, 𝐴2 =

cos 𝜃1
1 + 𝑒 cos 𝜃1

(2.18) 
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The normal vector, �̂�𝑚, can be calculated as: 

�̂�𝑚 = −
sin 𝜃1

√1 + 𝑒2 + 2𝑒 cos 𝜃1
�̂� −

cos 𝜃1 + 𝑒

√1 + 𝑒2 + 2𝑒 cos 𝜃1
�̂� (2.19) 

2.2 Ray tracing technique 

As discussed in [13], for high-frequency scenarios, i.e. the surface of a QO component is large 

with respect to wavelength, one can approximate EM waves as tubes of rays that propagate 

from one point to another in a homogenous medium, following the laws of reflection and 

refraction. By tracing ray propagation, a reception scenario can be well described. One can 

clearly observe how incident rays are focalized by a QO component in a reflection or 

transmission problem. Therefore, ray tracing is helpful for describing phase aberrations for QO 

systems in reception. 

In this section, we introduce the ray tracing technique implemented in the tool, which 

mainly focuses on calculating directions of propagation and polarizations for incident, 

reflected, and transmitted rays. In subsection 2.2.1, we describe the incident field used in this 

work. And then in subsection 2.2.2, we discuss how we solve reflection and transmission 

problems by using Snell’s law and boundary conditions. Finally, in subsection 2.2.3, we show 

some visualized ray tracing plots generated by the ray tracing technique. 

2.2.1  Incident field 

There are two sets of sources used in the thesis: A plane wave and a point source. For an 

elliptical mirror, we use a point source (Huygens source) to generate incident fields; while for 

other QO components, since the source is at infinity, we use a plane wave as the incident field. 

2.2.1.1   Plane wave 

In Fig. 2.12, a plane wave incoming with the skew angle of (𝜃𝑠, 𝜙𝑠) impinges on a generic 

surface 𝑆. We can characterize the incident plane wave at each point 𝑄 on the surface, with the 

position vector 𝑟 (𝜃): 

�⃗� 𝑖(𝑟 ) = 𝐸0𝑒
−𝑗𝑘(�̂�𝑖⋅𝑟 )�̂�𝑖 (2.20) 

where 𝐸0 is the amplitude of the electric field, 𝑘 is the propagation constant of the medium,  �̂�𝑖 

is the propagation unit vector, and  �̂�𝑖  is the polarization of the electric field. The incident 

magnetic field can be calculated as follows: 

 �⃗⃗� 𝑖(𝑟 ) =
1

𝜁
�̂�𝑖 × �⃗� 𝑖(𝑟 ) (2.21) 
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where 𝜁 is the impedance of the medium. In the following sections, unless we address the 

calculation of magnetic fields, we only introduce electric fields and assume a plane wave 

relation described in Eq. (2.21) to calculate magnetic fields. The propagation unit vector can 

be expressed as: 

�̂�𝑖 = sin 𝜃𝑠 cos𝜙𝑠 �̂� + sin 𝜃𝑠 sin 𝜙𝑠 �̂� + cos 𝜃𝑠 �̂� (2.22) 

where (𝜃𝑠, 𝜙𝑠) is the skew angle of the incident rays. As for the polarization, �̂�𝑖, it is defined 

by using the Ludwig-III definition described in [35]: �̂�𝑖 can be either the reference polarization 

(Co-Pol.): 

�̂�𝑖,𝐶𝑜 = sin𝜙𝑠 𝜃𝑠 + cos𝜙𝑠 �̂�𝑠 (2.23) 

or the cross polarization (Cx-Pol.): 

�̂�𝑖,𝐶𝑥 = cos𝜙𝑠 𝜃𝑠 − sin𝜙𝑠 �̂�𝑠 (2.24) 

where 𝜃𝑠 and �̂�𝑠 can be expressed as: 

{
𝜃𝑠 = cos 𝜃𝑠 cos𝜙𝑠 �̂� + cos 𝜃𝑠 sin𝜙𝑠 �̂� − sin 𝜃𝑠 �̂�

�̂�𝑠 = −sin𝜙𝑠 �̂� + cos𝜙𝑠 �̂�
(2.25) 

It is worth noting that when 𝜙𝑠 = 90∘, �̂�𝑖,𝐶𝑜 = 𝜃𝑠, which is referred to as the TM polarization; 

and when 𝜙𝑠 = 0∘, �̂�𝑖,𝐶𝑜 = �̂�𝑠, which is referred to as the TE polarization. 

 

 

Figure 2.12: A plane wave incoming with the skew angle of (𝜃𝑠, 𝜙𝑠). 
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2.2.1.2   Point source 

In the case of an elliptical mirror, we want to illuminate its surface with a spherical wave. By 

emitting fields with spherical wave fronts at one focus, one can obtain reflected spherical wave 

fonts focalized at the other focus. To do so, a simple case is to adopt a point source as the 

testing source, and put it at one of the foci of the ellipse. In this thesis, we use a Huygens source 

as the point source since a symmetric far-field pattern can be achieved by this source [36]; 

whereas an elementary electric dipole has a 𝜙-related pattern. A Huygens source consists of 

two elementary dipoles, one is electric and the other is magnetic, as shown in the inset in Fig. 

2.13. The magnetic dipole, �⃗⃗� , should have the following relation with the electric dipole, 𝐽 : 

{

|�⃗⃗� | = 𝜁|𝐽 |

�⃗⃗� ⋅ 𝐽 = 0

𝐽 × �⃗⃗� = �̂�

(2.26) 

where 𝜁 is the impedance of the medium. It can also be seen in Fig. 2.13 that we define the 

angle between the electric dipole and the 𝑥 axis as the orientation angle, 𝛾. When 𝛾 = 0∘, 𝐽  is 

oriented along �̂� direction and the Huygens source is x-polarized (Co-Pol.); while when 𝛾 =

90∘, 𝐽  is oriented along �̂� direction and the Huygens source is y-polarized (Cx-Pol.).  

When we put the source at one of the foci of the ellipse (broadside incidence), the far field 

generated by the Huygens source can be described as follows: 

�⃗� 𝑖 = (𝐸𝑖
⊥�̂� + 𝐸𝑖

∥𝜃)
𝑒−𝑗𝑘𝑟

𝑟
(2.27) 

where 𝑟 is the radial distance from the focus to the surface, 𝐸𝑖
∥ is the parallel (TM) component, 

and 𝐸𝑖
⊥ is the perpendicular (TE) component. When we move the source within one focal plane 

with a distance, 𝜌 𝑠 , for instance, within the upper focal plane as depicted in Fig. 2.13, we 

calculate the far field numerically by using the far-field approximation of Green’s function. 

Here we define the skew angle of the incident rays, i.e. (𝜃𝑠, 𝜙𝑠), as follows: 

{
 
 

 
 𝜃𝑠 = tan

−1
|𝜌 𝑠|

𝑎 ± 𝑐

𝜙𝑠 = tan
−1
|𝜌 𝑠,𝑥|

|𝜌 𝑠,𝑦|

(2.28) 

where 𝜌 𝑠 = 𝜌 𝑠,𝑥 + 𝜌 𝑠,𝑦, 𝜌 𝑠,𝑥 and 𝜌 𝑠,𝑦 are the 𝑥- and 𝑦-oriented displacement, respectively. The 

sign “±” in Eq. (2.28) depends on where we put the source: “−” for the case of upper focal 

plane, while “+” for the case of lower focal plane. 
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Figure 2.13: A Huygens source placed at the upper focal plane of an elliptical mirror, with a displacement 𝜌 𝑠. 

 

2.2.2  Reflection and transmission at a flat interface 

In this subsection, we focus on representing reflected and transmitted fields at a flat interface, 

by taking propagation unit vectors, polarizations, and Fresnel reflection and transmission 

coefficients into account. First, we discuss a case that involves two mediums. Furthermore, we 

explore a case with the implementation of a matching layer. 

2.2.2.1   Without a matching layer 

To solve a reflection and transmission problem, we observe a point 𝑄 on a surface locally, as 

depicted in Fig. 2.14. Since we are in the high-frequency domain, a surface can be 

approximated as a locally infinite flat plane between two mediums, I and II, with relative 

permittivity 𝜀𝑟1 and 𝜀𝑟2, respectively.  �̂� is the normal vector at 𝑄 pointing from II to I. 

 

 

Figure 2.14: Flat interface between medium I and II, illuminated by an incident ray. 
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We can describe the scenario in Fig. 2.14 as: An incident ray arrives to a point 𝑄 with the 

propagation unit vector �̂�𝑖  and the incident angle 𝜃𝑖 . Part of this field is reflected back to 

medium I with the direction �̂�𝑟 and the reflected angle 𝜃𝑟; while part of the field is transmitted 

into medium II with the direction �̂�𝑡 and the transmitted angle 𝜃𝑡. All electric fields (�⃗� 𝑖, �⃗� 𝑟, 

and �⃗� 𝑡 ) are divided into perpendicular (TE) and parallel (TM) components, with the 

polarization unit vectors �̂�𝑖/𝑟/𝑡
⊥/∥

. 

⚫ Propagation unit vectors 

We use Snell’s law to calculate the propagation unit vectors: �̂�𝑟 and �̂�𝑡. Snell’s law is known 

as: 

{
𝜃𝑖 = 𝜃𝑟
𝑛1 sin 𝜃𝑖 = 𝑛2 sin 𝜃𝑡

(2.29) 

where 𝑛1/2 = √𝜀𝑟1/2 is the refractive index of the medium. However, with this representation, 

obtaining �̂�𝑟  and �̂�𝑡  from �̂�𝑖  is not straight forward. By considering that sin 𝜃 = �̂� × �̂�  and 

cos 𝜃 = �̂� ⋅ (±�̂�), we can represent Eq. (2.29) in a vectorial form: 

{
 

 
�̂�𝑟 = �̂�𝑖 − 2(�̂�𝑖 ⋅  �̂�) �̂�

�̂�𝑡 = √
𝜀𝑟1
𝜀𝑟2

�̂�𝑖 − [√
𝜀𝑟1
𝜀𝑟2

(�̂�𝑖 ⋅  �̂�) + √
1

𝜀𝑟2
√𝜀𝑟2 − 𝜀𝑟1(1 − (�̂�𝑖 ⋅  �̂�)2)] �̂�

(2.30) 

⚫ Polarizations 

Since we decompose the electric field into TE and TM components, we need to define their 

corresponding polarization unit vectors, �̂�𝑖/𝑟/𝑡
⊥/∥

. If we define them using the directions depicted 

in Fig. 2.14, the polarizations of the incident and the transmitted rays can be calculated by using 

the same expression: 

{
�̂�𝑖/𝑡
⊥ =

�̂�𝑖/𝑡 × �̂�

|�̂�𝑖/𝑡 × �̂�|

�̂�𝑖/𝑡
∥ = �̂�𝑖/𝑡

⊥ × �̂�𝑖/𝑡

(2.31) 

while for the reflected ray: 

{
�̂�𝑟
⊥ =

�̂�𝑟 × �̂�

|�̂�𝑟 × �̂�|

�̂�𝑟
∥ = �̂�𝑟 × �̂�𝑟

⊥

(2.32) 

And then by using Eq. (2.31) and (2.32), the incident, reflected, and transmitted fields can be 

represented by their TE and TM components: 

�⃗� 𝑖/𝑟/𝑡(𝑄) = 𝐸𝑖/𝑟/𝑡
⊥ (𝑄)�̂�𝑖/𝑟/𝑡

⊥ + 𝐸𝑖/𝑟/𝑡
∥ (𝑄)�̂�𝑖/𝑟/𝑡

∥ (2.33) 
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where  

{
𝐸𝑖/𝑟/𝑡
⊥ (𝑄) = �⃗� 𝑖/𝑟/𝑡(𝑄) ⋅ �̂�𝑖/𝑟/𝑡

⊥

𝐸𝑖/𝑟/𝑡
∥ (𝑄) = �⃗� 𝑖/𝑟/𝑡(𝑄) ⋅ �̂�𝑖/𝑟/𝑡

∥
(2.34) 

⚫ Fresnel reflection and transmission coefficients 

Fresnel transmission coefficients can be evaluated at 𝑄 by imposing boundary conditions on 

electric and magnetic fields, which is derived in Appendix B.1 and can be expressed as follows: 

 

{
 

 𝜏⊥(𝑄) =
2𝜁2 cos 𝜃𝑖

𝜁2 cos 𝜃𝑖 + 𝜁1 cos 𝜃𝑡

𝜏∥(𝑄) =
2𝜁2 cos 𝜃𝑖

𝜁1cos 𝜃𝑖 + 𝜁2 cos 𝜃𝑡

(2.35) 

where 𝜁1 = 𝜁0/√𝜀𝑟1 and 𝜁2 = 𝜁0/√𝜀𝑟2 are impedances of the medium I and II, respectively, 

and 𝜁0 = 120𝜋 is the impedance of the free space. In the case of illuminating a parabolic 

reflector or an elliptical mirror, the Fresnel reflection coefficients are calculated by considering 

a surface made by perfect electric conductor (PEC). Therefore, when the polarizations are 

defined like Eq. (2.31) and (2.32), the reflection coefficients are constant: 

𝛤⊥ = 𝛤∥ = −1 (2.36) 

⚫ Reflected and transmitted fields 

By using the Fresnel coefficients derived in Eq. (2.35) and (2.36), one can also calculate the 

reflected field �⃗� 𝑟 and the transmitted field �⃗� 𝑡. In the case of illuminating a PEC, the reflected 

field at 𝑄 can be obtained by using a compact dyadic expression as follows: 

�⃗� 𝑟(𝑄) = �⃗� 𝑖(𝑄) ⋅ �̅� (2.37) 

where �̅� is the dyadic reflection coefficient that can be calculated as below: 

�̅� = 𝛤⊥�̂�𝑟
⊥�̂�𝑖

⊥ + 𝛤∥�̂�𝑟
∥�̂�𝑖
∥ (2.38) 

For a transmission problem, the transmitted field at 𝑄 can be obtained by using the dyadic 

transmission coefficient, �̅�: 

�⃗� 𝑡(𝑄) = �⃗� 𝑖(𝑄) ⋅ �̅� (2.39) 

where �̅� is expressed as: 

�̅� = 𝜏⊥�̂�𝑡
⊥�̂�𝑖

⊥ + 𝜏∥�̂�𝑡
∥�̂�𝑖
∥ (2.40) 
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2.2.2.2   Matching layer 

A matching layer is a dielectric layer fabricated on the top of a QO component. Practically, we 

implement it on a lens to reduce the reflection coefficient. Especially for broadside incidence, 

we can design the layer in such a way to reduce the reflected power to zero. To study a matching 

layer, we start with a stratification that consists of a semi-infinite free space region at the top, 

a dielectric layer with thickness 𝑙𝑚 below the free space, and a semi-infinite dielectric slab at 

the bottom, as illustrated in Fig. 2.15a. A plane wave �⃗� 𝑖 impinges on the stratification with the 

incident angle 𝜃𝑖. It is transmitted into the matching layer with the transmitted angle 𝜃𝑡
𝑚, and 

then transmitted again into the dielectric slab with the transmitted angle 𝜃𝑡
𝑑.  

 

  

(a)                              (b) 

Figure 2.15: The stratification of a matching layer: (a) The dielectric stratification illuminated by a plane wave 

with the incident angle 𝜃𝑖. (b) The transversal equivalent transmission line model of the stratification. 

 

The goal of this work is to find the condition for no reflection and derive the transmission 

coefficients of the stratification, i.e. to calculate 𝜏⊥/∥ = |�⃗� 𝑑
⊥/∥
|/|�⃗� 𝑖

⊥/∥
|. To achieve this, one can 

represent the stratification by its transversal equivalent transmission line model, as shown in 

Fig. 2.15b. By solving the transmission line problem (derived in Appendix B.2), one can derive 

the condition for no reflection: Design a dielectric layer with 𝜀𝑚 = √𝜀𝑟 and a thickness of 𝑙𝑚 =

𝜆0

4√𝜀𝑚
. Moreover, the transmission coefficients are derived as: 

{
 
 

 
 𝜏⊥ =

𝑉𝑑+
⊥ (𝑧 = −𝑙𝑚)

𝑉0+
⊥ (𝑧 = 0)

𝜏∥ =
𝑉𝑑+
∥ (𝑧 = −𝑙𝑚)

𝑉0+
∥ (𝑧 = 0)

cos 𝜃𝑖

cos 𝜃𝑡
𝑑

(2.41) 

where 𝑉𝑑+
⊥/∥ 

 and 𝑉𝑚+
⊥/∥ 

 are progressive voltages that propagate in different layers.  
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Fig. 2.16 shows the transmission coefficients for an elliptical silicon (𝜀𝑟 = 11.9)  lens with 

the maximum truncation angle 𝜃0 ≈ 73
∘. Here we compare a lens with a matching layer to a 

lens without. It can be seen in the figure that when a matching layer is added, the transmission 

coefficients become more symmetric. Moreover, their values are almost 1  (no reflection) 

around broadside and are still good until 40∘. However, one should notice that the critical angle 

exists for both cases, meaning at around 73∘ there is no ray transmitted into the lens. 

 

Figure 2.16: Perpendicular (⊥) and parallel (∥) transmission coefficients for an elliptical silicon (𝜀𝑟 = 11.9) lens 

with the maximum truncation angle 𝜃0 ≈ 73
∘. Black lines and red lines represent the cases with and without a 

matching layer, respectively. 

 

2.2.3  Visualized ray tracing 

For each QO component, the ray tracing technique can generate the corresponding ray tracing 

plot which clearly depicts the propagation of incident, reflected and transmitted rays. Fig. 

2.17a-f show the ray tracing plots for a parabolic reflector, an elliptical lens, a hemispherical 

lens, a hyperbolic lens, and an elliptical mirror (source placed at upper or lower focus), 

respectively. Here we consider the broadside incidence. In each figure, we show incident rays, 

reflected/transmitted rays, a QO surface, and an observation plane (and dielectric extension). 
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(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Figure 2.17: Ray tracing for a (a) Parabolic reflector. (b) Elliptical lens. (c) Hemispherical lens. (d) Hyperbolic 

lens. (e) Elliptical mirror – source at upper focus. (f) Elliptical mirror – source at lower focus.  
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Chapter 3: FO Analysis 

For detector-coupled QO systems, in order to evaluate the performance of the detectors in 

reception, it has been discussed that one should study the coupling between the QO components 

and the detectors. Here we consider an imaging system that consists of a QO component, 

illuminated by a plane wave, and an array of detectors placed at its focal plane. For an absorber-

based array, e.g. Kinetic Inductance Detectors (KIDs) based on absorbers, the detectors can be 

modeled by equivalent Floquet circuits, as described in [37]. The received power is then 

derived by using the spectral plane wave expansion of the direct fields focalized by the QO 

component at its focal plane, as described in [15] for broadside incidence, and in [7] for skew 

incidence. In the case of an antenna-based array, the power captured by the antenna can be 

evaluated by resorting to the antenna in reception formalism [17, 38], which can be expressed 

as a field matching between the antenna far field and the spectrum of the incident field. This 

spectrum is referred to as the plane wave spectrum (PWS).  

To calculate the spectrum, one can resort to commercial full-wave simulators, like CST [39] 

and GRASP software [40]. For an antenna-coupled QO system, one can use the software to 

calculate the fields over an equivalent sphere centered at the focus of the QO component, i.e. 

FO sphere. These fields are derived to be proportional to the spectrum. In the case of an 

absorber-coupled QO system, the software can evaluate the direct fields, and then implements 

Fourier Transformation (FT) to derive the spectrum. These approaches are rigorous but 

numerically cumbersome and time-consuming, meaning it is not applicable for large-format 

array. Alternatively, in the optical domain, a FO method is introduced by E.Wolf in [41]. In 

our work, we apply the FO formalism to QO systems operating in the THz domain. Within its 

applicability region, one can use this FO method to calculate the PWS effectively. 

In section 3.1, we briefly discuss the PO radiation integral since the FO method is derived 

from it. Moreover, it can be used as validation on the focal plane fields. The implemented PO 

analysis based on the PO radiation integral is validated for all QO components. Next in section 

3.2, we derive the FO integral, evaluate its applicability region, define FO spheres for all QO 

components, and derive the spectral representation of focal plane fields. Finally, in section 3.3, 

we apply the FO method to calculate the PWS. Two types of spectrum are discussed. The first 

one is a full coherent FO spectrum obtained by calculating a convolution integral. And the 

second one is a linearized coherent FO spectrum evaluated by applying a linearization 

approximation. 
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3.1 PO method 

Physical Optics (PO) is a high-frequency technique used to analyze the scattering from 

arbitrarily shaped and electrically large objects. We use PO in this work due to two reasons. 

Firstly, PO radiation integral is a starting point to derive the FO method. Secondly, it is a well-

established technique which provides accurate and reliable results so it is suitable for validating 

fields on a focal plane. In subsection 3.1.1, we briefly discuss how to calculate the focal plane 

fields by using the PO radiation integral. And then in subsection 3.1.2, the relevant validation 

is provided. 

3.1.1  PO radiation integral 

Fig. 3.1a shows the schematic representation of a scattering problem in reflection. Let us 

assume that an incident wave impinges on an arbitrarily shaped object. The incident field 

interacts with the object, and the object scatters the field. In order to calculate the scattered 

field, one can use the love’s formulation of the equivalent theorem by replacing the original 

problem and the object with an equivalent problem that consists of equivalent currents 𝐽 𝑠 and 

�⃗⃗� 𝑠 over an equivalent surface surrounding the object as shown in Fig. 3.1b.  

 

  

(a) (b) 

Figure 3.1: Schematic representation of a scattering problem in reflection analyzed by using the high-frequency 

approximation: (a) Real geometry. (b) Equivalent problem. 

 

In consequence of the equivalence theorem, the scatterer is removed and these equivalent 

surface currents radiate in a medium. By using the Green’s Functions (GF) in the medium, one 

can derive the scattered fields in the following form: 

{
�⃗� 𝑠(𝑟 ) = ∬�̃�𝑚

𝑒𝑗(𝑟 − 𝑟 ′) 𝐽 𝑠(𝑟 
′)𝑑𝑟 ′ +∬�̃�𝑚

𝑒𝑚(𝑟 − 𝑟 ′) �⃗⃗� 𝑠(𝑟 
′)𝑑𝑟 ′  

�⃗⃗� 𝑠(𝑟 ) = ∬�̃�𝑚
ℎ𝑗(𝑟 − 𝑟 ′) 𝐽 𝑠(𝑟 

′)𝑑𝑟 ′ +∬�̃�𝑚
ℎ𝑚(𝑟 − 𝑟 ′) �⃗⃗� 𝑠(𝑟 

′)𝑑𝑟 ′
(3.1) 
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where �⃗� 𝑠  and �⃗⃗� 𝑠  represent the scattered fields; �̃�𝑚
𝑒𝑗

, �̃�𝑚
𝑒𝑚 , �̃�𝑚

ℎ𝑗
, and �̃�𝑚

ℎ𝑚  are GFs in the 

medium. The equivalent surface currents should satisfy the boundary conditions: 

{
 𝐽 𝑠 = �̂� × �⃗⃗� 𝑡𝑜𝑡

�⃗⃗� 𝑠 = −�̂� × �⃗� 𝑡𝑜𝑡
(3.2) 

where �⃗� 𝑡𝑜𝑡 and �⃗⃗� 𝑡𝑜𝑡 represent the total fields on the equivalent surface, and �̂� is the normal 

vector of the surface pointing towards outside from the surface.  

In high-frequency scattering scenarios, i.e. the scatterer is large in terms of the wavelength, 

the PO approximation assumes that the incident field at each point on the object is locally a 

plane wave impinging on a flat infinite surface, in order to evaluate the surface currents locally 

at each point instead of solving full-wave integrals or differential equations. Therefore, the 

scattered field on each point of the equivalent surface can be approximated by using the 

reflection or transmission dyad; and its direction of propagation is approximated by using the 

Snell’s law. In a reflection problem, the scattered fields, (�⃗� 𝑠, �⃗⃗� 𝑠), are equal to the reflected 

fields, (�⃗� 𝑟 , �⃗⃗� 𝑟); and the total fields are the incident fields, (�⃗� 𝑖, �⃗⃗� 𝑖), plus the reflected fields, 

i.e. �⃗� 𝑡𝑜𝑡 = �⃗� 𝑖 + �⃗� 𝑟 and �⃗⃗� 𝑡𝑜𝑡 = �⃗⃗� 𝑖 + �⃗⃗� 𝑟 . Whereas in a transmission problem, the equivalent 

surface is chosen in such a way that only the transmitted fields are present outside the surface, 

meaning the total fields are equal to the transmitted fields: �⃗� 𝑡𝑜𝑡 = �⃗� 𝑡 and �⃗⃗� 𝑡𝑜𝑡 = �⃗⃗� 𝑡. Moreover, 

the GFs can be approximated by their radiating parts; therefore, Eq. (3.1) can be expressed as: 

{
𝑒 𝑓(𝑟 ) = ∫ 𝑗�⃗� ×

𝑆
�⃗⃗� 𝑠

𝑒−𝑗𝑘|�⃗⃗� −�⃗⃗� 
′|

4𝜋|𝑟 −𝑟 ′|
𝑑𝑟 ′ − 𝑗𝜔𝜇 ∫ [𝐽 𝑠 − (�̂� ⋅ 𝐽 𝑠)�̂�]𝑆

𝑒−𝑗𝑘|�⃗⃗� −�⃗⃗� 
′|

4𝜋|𝑟 −𝑟 ′|
 𝑑𝑟 ′ 

ℎ⃗ 𝑓(𝑟 ) = −
𝑗𝑘

𝜁
∫ [�⃗⃗� 𝑠 − (�̂� ⋅ �⃗⃗� 𝑠)�̂�]𝑆

𝑒−𝑗𝑘|�⃗⃗� −�⃗⃗� 
′|

4𝜋|𝑟 −𝑟 ′|
𝑑𝑟 ′ − ∫ 𝑗�⃗� ×

𝑆
𝐽 𝑠
𝑒−𝑗𝑘|�⃗⃗� −�⃗⃗� 

′|

4𝜋|𝑟 −𝑟 ′|
𝑑𝑟 ′ 

(3.3)

where 𝑒 𝑓(𝑟 ) and ℎ⃗ 𝑓(𝑟 ) represent the scattered fields at an observation position 𝑟 , 𝑟 ′ is a point 

on the equivalent surface, �̂� =
𝑟 −𝑟 ′

|𝑟 −𝑟 ′|
 , �⃗� = 𝑘�̂�, and 𝑘 is the wavenumber in the medium. Here 

we implement Eq. (3.3) in the tool to calculate the focal plane fields. 

3.1.2  Validation of the implemented PO analysis 

The PO analysis described in Eq. (3.3) is validated in this subsection to demonstrate the 

reliability of this analysis for later stages. The fields on the focal plane of a QO component are 

calculated by using the PO analysis and validated by CST [39] or GRASP [40] software. For 

large QO components, such as parabolic reflectors, elliptical mirrors and hyperbolic lenses, we 

use GRASP as the reference; while for small lenses like elliptical lenses and hemispherical 

lenses, we resort to CST.  
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In this subsection, we only consider TM-polarized incident fields and show three examples: 

an elliptical lens with a matching layer, a hemispherical lens without a matching layer, and a 

hyperbolic lens. Additional examples, including TE validation, are listed in Appendix C. Here 

we validate both amplitude and phase and show one of the main planes (𝑦 = 0). Notice that 

we plot wrapped phase from −180∘ to 180∘. 

3.1.2.1   Elliptical lens 

Here we validate an elliptical lens with a matching layer. Fig. 3.2 shows the x-component of 

the electric fields on the focal plane of an elliptical silicon lens (𝜀𝑟 = 11.9) with the diameter 

of 𝐷𝑙 = 6𝜆0  (𝑓0 = 300 GHz) and the f-number of 𝑓#
𝑙 = 0.6 . An ideal quarter-wavelength 

matching layer is added on the top of the lens, i.e. 𝜀𝑚 = √𝜀𝑟 = 3.45 and 𝑙𝑚 = 𝜆𝑚/4, where 

𝜆𝑚 = 𝜆0/√𝜀𝑚 is the wavelength in the matching layer. The lens is illuminated by a unitary 

TM polarized plane wave incoming from the broadside, i.e. 𝜃𝑠 = 0
∘, 𝜙𝑠 = 0∘. And the focal 

plane field evaluated by using the PO analysis is compared with the CST simulation. The setup 

of the simulation in CST is plotted in the inset of the figure. It can be seen in the figure that the 

amplitude is well validated, and the phase error is acceptable.  

 

  

(a) (b) 

Figure 3.2: The x-component of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 6 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6. A matching layer (𝜀𝑚 = 3.45) with the length 𝑙𝑚 = 𝜆𝑚/4 is added on 

the top of the lens. The lens is illuminated by a unitary TM polarized plane wave incident from the broadside, i.e. 

𝜃𝑠 = 0
∘, 𝜙𝑠 = 0

∘. The focal plane field calculated by using the PO analysis is compared with the CST simulation: 

(a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Inset is the configuration in CST. 
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3.1.2.2   Hemispherical lens 

Fig. 3.3 shows the x-component of the electric fields on the focal plane of a hemispherical 

silicon (𝜀𝑟 = 11.9) lens with 𝐷ℎ𝑙 = 5𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.74, 𝑅𝑠𝑝ℎ = 3𝜆0, and 𝐿 =

0.362𝑅𝑠𝑝ℎ. The lens is illuminated by a unitary TM polarized plane wave with the skew angle 

of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0∘. And the focal plane field evaluated by resorting to the PO analysis is 

compared with the CST simulation. The setup of the simulation in CST is plotted in the inset. 

As it can be seen, the PO results are in very good agreement with the CST simulation. 

 

  

(a) (b) 

Figure 3.3: The x-component of the electric fields on the focal plane of a hemispherical silicon (𝜀𝑟 = 11.9) lens 

with 𝐷ℎ𝑙 = 5 𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.74, 𝑅𝑠𝑝ℎ = 3𝜆0 , and 𝐿 = 0.362𝑅𝑠𝑝ℎ , illuminated by a unitary TM 

polarized plane wave with the skew angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0

∘. The focal plane field calculated by using the PO 

analysis is compared with the CST simulation: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. 

Inset is the configuration in CST. 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

3.1.2.3   Hyperbolic lens 

A hyperbolic plastic ( 𝜀𝑟 = 2 ) lens with 𝐷ℎ = 100𝜆0  ( 𝑓0 = 300 GHz ) and 𝑓#
ℎ = 0.6  is 

introduced here. It is illuminated by a unitary TM polarized plane wave with the skew angle of 

𝜃𝑠 = 3(𝜆𝑑/𝐷ℎ) = 1.22∘, 𝜙𝑠 = 0∘, where 𝜆𝑑 is the wavelength in the dielectric. Fig. 3.4 shows 

the x-component of the electric fields on the focal plane of the hyperbolic lens. The focal plane 

field obtained by using the PO analysis is compared with the GRASP simulation. The setup of 

the simulation in GRASP is plotted in the inset. As it can be seen in the figure, the PO results 

are in excellent agreement with the GRASP simulation. 

  

(a) (b) 

Figure 3.4: The x-component of the electric fields on the focal plane of a hyperbolic plastic (𝜀𝑟 = 2) lens with 

𝐷ℎ = 100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 0.6, illuminated by a unitary TM polarized plane wave with the skew 

angle of 𝜃𝑠 = 3(𝜆𝑑/𝐷ℎ) = 1.22
∘, 𝜙𝑠 = 0

∘. The focal plane field calculated by using the PO analysis is compared 

with the GRASP simulation: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Inset is the 

configuration in GRASP. 
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3.2 FO integral 

The FO based representation of focal plane fields can be derived by approximating the 

integrand of the PO radiation integral. One can assume an equivalent sphere centered at the 

focus of a QO component with the radius 𝑅𝐹𝑂, referred to as the FO sphere and shown in Fig. 

3.5. The electric field, �⃗� 𝐺𝑂 , and the magnetic field, �⃗⃗� 𝐺𝑂 , over the FO sphere are called 

Geometrical Optics (GO) fields in this work. These fields and the procedure to calculate them 

will be discussed in chapter 4. The equivalent surface currents  �⃗⃗� 𝐺𝑂 and  𝐽 𝐺𝑂 can be obtained 

by using the GO fields as: 

{
𝐽 𝐺𝑂 = �̂� × �⃗⃗� 𝐺𝑂

�⃗⃗� 𝐺𝑂 = �⃗� 𝐺𝑂 × �̂�
(3.4) 

where �̂� is the normal vector of the FO sphere defined as �̂� = −�̂�′. 

 

 

Figure 3.5: Schematic representation of the FO method. 

 

By applying Eq. (3.3) over the FO sphere, the electric field at the focal plane can be calculated 

as follows: 

𝑒 𝑓(𝜌 𝑓) = ∫ 𝑗�⃗� ×
𝑆𝐹𝑂

�⃗⃗� 𝐺𝑂
𝑒−𝑗𝑘|�⃗⃗� 𝑓−𝑟 

′|

4𝜋|𝜌 𝑓 − 𝑟 ′|
𝑑𝑟 ′ − 

𝑗𝜔𝜇∫ [𝐽 𝐺𝑂 − (�̂� ⋅ 𝐽 𝐺𝑂)�̂�]
𝑆𝐹𝑂

𝑒−𝑗𝑘|�⃗⃗� 𝑓−𝑟 
′|

4𝜋|𝜌 𝑓 − 𝑟 ′|
 𝑑𝑟 ′ (3.5) 
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As it is discussed in [15], Eq. (3.5) can be simplified if we introduce approximations on the 

unit vector �̂�: 

�̂� =
𝜌 𝑓 − 𝑟 

′

|𝜌 𝑓 − 𝑟 ′|
≈ −�̂�′ = �̂� (3.6) 

on the amplitude term: 

1

|𝜌 𝑓 − 𝑟 ′|
≈

1

𝑅𝐹𝑂
(3.7) 

and on the phase term: 

 |𝜌 𝑓 − 𝑟 
′| ≈ 𝑅𝐹𝑂 − 𝜌 𝑓 ⋅ �̂�

′ +
𝜌𝑓
2

2𝑅𝐹𝑂
(3.8) 

 

By substituting Eq. (3.6), (3.7) and (3.8) in Eq. (3.5): 

𝑒 𝑓(𝜌 𝑓) =
𝑗𝑘𝑒−𝑗𝑘𝑅𝐹𝑂𝑒

−𝑗𝑘
𝜌𝑓
2

2𝑅𝐹𝑂

4𝜋𝑅𝐹𝑂
∫ [�⃗� 𝐺𝑂 − (�̂� ⋅ �⃗� 𝐺𝑂)�̂�]𝑒

𝑗𝑘�⃗⃗� 𝑓⋅�̂�
′

𝑆𝐹𝑂

𝑑𝑟 ′ − 

𝑗𝑘𝜁𝑒−𝑗𝑘𝑅𝐹𝑂𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂

4𝜋𝑅𝐹𝑂
∫ (�̂� × �⃗⃗� 𝐺𝑂)
𝑆𝐹𝑂

𝑒𝑗𝑘�⃗⃗� 𝑓⋅�̂�
′
𝑑𝑟 ′ (3.9) 

Moreover, one can assume the GO magnetic field is orthogonal to the electric field with respect 

to the normal to the FO sphere, �̂�, as follows: 

�⃗⃗� 𝐺𝑂 =
1

𝜁
�̂� × �⃗� 𝐺𝑂 (3.10) 

For the FO sphere, 𝑑𝑟 ′ can be expressed as 𝑑𝑟 ′ = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙. By substituting 𝑑𝑟 ′ and 

�⃗⃗� 𝐺𝑂 in Eq. (3.9), one can represent the electric focal plane field by the electric GO field only, 

as: 

𝑒 𝑓(𝜌 𝑓) =
𝑗𝑘𝑒−𝑗𝑘𝑅𝐹𝑂𝑒

−𝑗𝑘
𝜌𝑓
2

2𝑅𝐹𝑂

4𝜋𝑅𝐹𝑂
∫ 2�⃗� 𝐺𝑂(𝜃, 𝜙)𝑒

𝑗𝑘�⃗⃗� 𝑓⋅�̂�
′

𝑆𝐹𝑂

𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙 (3.11) 

Eq. (3.11) is referred to as the FO integral, for the electric field on the focal plane. And then 

we will discuss its applicability region. 
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3.2.1  FO applicability region 

The vector, amplitude and phase approximations described in Eq. (3.6), (3.7), and (3.8) lead to 

an applicability region for the FO integral. This region is derived by imposing constraints on 

the error for each approximation: By choosing the maximum tolerable error for the vector 

approximation as 20%, the one for the amplitude as 20%, and the one for the phase as 𝜋/8. 

The diameter of the FO applicability region is then derived as [15]: 

𝐷𝑖𝑎𝑚𝐹𝑂 = 𝑓#min(0.4𝐷,√2𝑓#𝐷𝜆) (3.12) 

where 𝐷 is the diameter of a QO component and 𝑓# = 𝑅𝐹𝑂/𝐷 is defined as its f-number. From 

this expression, it is apparent that for a fixed diameter 𝐷 , the FO applicability region is 

proportional to the radius of a FO sphere, 𝑅𝐹𝑂. Therefore, to maximize this region, 𝑅𝐹𝑂 should 

be selected as large as possible. It is worth mentioning that this region is valid when the f-

number 𝑓# is relatively small; however, when 𝑓# is large, e.g. 𝑓# = 4, Eq. (3.12) is not accurate 

enough. In such a case, the condition for the phase approximation should be stricter. If we 

expand the term |𝜌 𝑓 − 𝑟 
′| to its second order, the phase approximation described in Eq. (3.8) 

becomes: 

|𝜌 𝑓 − 𝑟 
′| ≈ 𝑅𝐹𝑂 − 𝜌 𝑓 ⋅ �̂�

′ +
𝜌𝑓
2

2𝑅𝐹𝑂
[1 − (�̂�𝑓 ⋅ �̂�

′)
2
] +

𝜌𝑓
3

2𝑅𝐹𝑂
2 (�̂�𝑓 ⋅ �̂�

′) (3.13) 

By neglecting the second- and the third- order terms in Eq. (3.13) with a phase error 𝜋/8, one 

can find a new region for the phase approximation: 

4𝜌𝑓
3𝐷

𝑅𝐹𝑂
3 +

2𝜌𝑓
2𝐷

𝑅𝐹𝑂
3 − 𝜆 ≤ 0 (3.14) 

where 𝜌𝑓 = |𝜌 𝑓|. If the positive and real solution of the cubic inequality Eq. (3.14) is defined 

as 𝜌𝑝ℎ
𝐹𝑂, the FO applicability region is re-evaluated as follows: 

𝐷𝑖𝑎𝑚𝐹𝑂,𝑚𝑜𝑑 = min(0.4𝑓#𝐷, 2𝜌𝑝ℎ
𝐹𝑂) (3.15) 

Explicit derivation of this modified region is discussed in Appendix D. 

3.2.2  Parameterizing FO spheres for QO components 

Fig. 3.6 shows a FO sphere 𝑆𝐹𝑂  centered at the focus 𝑂  of a QO surface 𝑆 . Similar to 

parameterize a QO surface, a point 𝑄𝐹𝑂 on the FO sphere can be parameterized as follows in 

(𝜃, 𝜙) variable: 

{

𝑄𝐹𝑂,𝑥 = 𝑅𝐹𝑂 sin 𝜃 cos𝜙

𝑄𝐹𝑂,𝑦 = 𝑅𝐹𝑂 sin 𝜃 sin 𝜙

𝑄𝐹𝑂,𝑧 = 𝑅𝐹𝑂 cos 𝜃

(3.16) 



33 

 

And in (𝑢, 𝑣) variable: 

{

𝑄𝐹𝑂,𝑥 = 𝑅𝐹𝑂𝑢

𝑄𝐹𝑂,𝑦 = 𝑅𝐹𝑂𝑣

𝑄𝐹𝑂,𝑧 = 𝑅𝐹𝑂√1 − (𝑢2 + 𝑣2)

(3.17) 

The normal vector of the FO sphere, �̂�𝐹𝑂, can be calculated analytically as: 

�̂�𝐹𝑂 = sin 𝜃 cos𝜙 �̂� + sin 𝜃 sin𝜙 �̂� + cos 𝜃 �̂� (3.18) 

 

Figure 3.6: Sketch of a generic QO surface 𝑆 and its FO sphere 𝑆𝐹𝑂 . 

 

The radius of the FO sphere, 𝑅𝐹𝑂, can be selected arbitrarily. However, in order to maximize 

the FO applicability region, 𝑅𝐹𝑂 should be chosen as large as possible, as described in Eq. 

(3.12). For different QO components, 𝑅𝐹𝑂 is selected as follows. In the case of a parabolic 

reflector and a hyperbolic lens, as shown in Fig. 3.7 and 3.8, respectively, the radius is equal 

to the focal distance: 

𝑅𝐹𝑂 = 𝑓 (3.19) 

For an elliptical lens and a hemispherical lens, as depicted in Fig. 3.9 and 3.10, respectively, 

the radius is equal to the rim distance: 

𝑅𝐹𝑂 = 𝑅𝑙 (3.20) 

For an elliptical mirror (Fig. 3.11), the observation plane can be placed at either the lower 

focal plane or the upper focal plane. When the observation plane is the lower focal plane (Fig. 

3.11a), the radius is the same as the rim distance: 

𝑅𝐹𝑂 = 𝑅2𝑙 (3.21) 

When the observation plane is the upper focal plane (Fig. 3.11b), the radius is expressed as: 

𝑅𝐹𝑂 = 𝑎 − 𝑐 (3.22) 
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where 𝑎 is the semi-major axis and 𝑐 is the focal distance.  

It is worth noting that here the f-number is generally defined as 𝑓# = 𝑅𝐹𝑂/𝐷 for all QO 

components, which agrees with the previous definition introduced in section 2.1.3.  

 

 

Figure 3.7: 2D geometry of a parabolic reflector. 

 

Figure 3.8: 2D geometry of a hyperbolic lens 

 

Figure 3.9: 2D geometry of an elliptical lens. 

 

Figure 3.10: 2D geometry of a hemispherical lens. 

 

                                (a)                     (b) 

Figure 3.11: 2D geometry of an elliptical mirror: (a) Observation at lower focal plane. (b) Observation at 

upper focal plane. 
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3.2.3  Spectral representation 

In this subsection, the focal plane field calculated by using the FO integral,  Eq. (3.11), is 

expressed by three types of spectral representation, namely spherical, cylindrical and Cartesian 

representation. 

⚫ Spherical representation 

In Eq. ( 3.11 ), the focal plane field is expressed in spherical coordinate system. By 

considering 𝜌 𝑓 = 𝑥𝑓�̂� + 𝑦𝑓�̂� , and �̂�′ = sin 𝜃 cos𝜙 �̂� + sin 𝜃 sin𝜙 �̂� + cos 𝜃 �̂� , Eq. ( 3.11 ) 

becomes: 

𝑒 𝑓(𝜌 𝑓) =
𝑗𝑘𝑅𝐹𝑂𝑒

−𝑗𝑘𝑅𝐹𝑂𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂

2𝜋
∫ ∫ �⃗� 𝐺𝑂𝑒

𝑗𝑘𝑥𝑥𝑓 𝑒𝑗𝑘𝑦𝑦𝑓sin 𝜃 𝑑𝜃𝑑𝜙
𝜃0

0

2𝜋

0

(3.23)
 

where 𝑘𝑥 = 𝑘 sin 𝜃 cos𝜙 and 𝑘𝑦 = 𝑘 sin 𝜃 sin𝜙 are spectral parameters. 

⚫ Cylindrical representation 

Moreover, one can express Eq. (3.23) in a cylindrical representation by substituting the 

Jacobian: 
𝜕(𝜃,𝜙)

𝜕(𝑘𝜌,𝜙)
=

1

√𝑘2−𝑘𝜌
2
, where 𝑘𝜌 = 𝑘 sin 𝜃: 

𝑒 𝑓(𝜌 𝑓) =
𝑗𝑅𝐹𝑂𝑒

−𝑗𝑘𝑅𝐹𝑂𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂

2𝜋
∫ ∫ �⃗� 𝐺𝑂𝑒

𝑗𝑘𝑥𝑥𝑓𝑒𝑗𝑘𝑦𝑦𝑓
𝑘𝜌

𝑘𝑧
𝑑𝑘𝜌𝑑𝜙

𝜃0

0

2𝜋

0

(3.24)
 

where 𝑘𝑧 = √𝑘2 − 𝑘𝜌2.  

⚫ Cartesian representation 

In some cases, the Cartesian representation could be more convenient, which can be derived 

by applying the Jacobian: 
𝜕(𝑘𝜌,𝜙)

𝜕(𝑘𝑥,𝑘𝑦)
=

1

𝑘𝜌
: 

𝑒 𝑓(𝜌 𝑓) =
𝑗𝑅𝐹𝑂𝑒

−𝑗𝑘𝑅𝐹𝑂𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂

2𝜋
∫ ∫ �⃗� 𝐺𝑂𝑒

𝑗𝑘𝑥𝑥𝑓𝑒𝑗𝑘𝑦𝑦𝑓
1

𝑘𝑧
𝑑𝑘𝑥𝑑𝑘𝑦

𝜃0

0

2𝜋

0

(3.25)
 

If we combine some terms in Eq. (3.25) together and call it �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦): 

�⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) =
𝑗2𝜋𝑅𝐹𝑂𝑒

−𝑗𝑘𝑅𝐹𝑂

𝑘𝑧
�⃗� 𝐺𝑂(𝑘𝑥, 𝑘𝑦)𝑐𝑖𝑟𝑐(𝑘𝜌, 𝑘𝜌0) (3.26) 
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the Cartesian representation can be expressed as: 

𝑒 𝑓(𝜌 𝑓) =
1

4𝜋2
𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂∫ ∫ �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦)𝑒
𝑗𝑘𝑥𝑥𝑓𝑒𝑗𝑘𝑦𝑦𝑓𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

(3.27) 

In Eq. (3.26), 𝑐𝑖𝑟𝑐(𝑘𝜌, 𝑘𝜌0) is a circular region that constrains the spectrum within 𝑘𝜌 ∈

(0, 𝑘𝜌0), with 𝑘𝜌0 = 𝑘 sin 𝜃0, and �⃗� 𝐺𝑂(𝑘𝑥, 𝑘𝑦) is the GO field on the FO sphere, which will be 

explicitly discussed in chapter 4. It should be noticed that �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) represents the spectrum 

of 𝑒 𝑓(𝜌 𝑓), i.e. the PWS, if the quadratic phase term 𝑒−𝑗𝑘𝜌𝑓
2/2𝑅𝐹𝑂  is neglected. Therefore, a 

simple consideration is that if the observation point 𝜌 𝑓 is not far away from the focus, one can 

ignore the quadratic phase term and assume �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) to be the PWS.  

However, this region could be very small compared with the FO validity region. This 

means, in practice, if we consider a large focal plane array (FPA), we cannot accurately 

estimate the PWS for the detectors that are far away from the center. In fact, for an FPA, we 

only need an accurate PWS over the feed antenna aperture, meaning we can evaluate the 

quadratic phase term at the center of the aperture. This approximation could improve the 

applicability region for PWS in some extent, but still not useful for a feed that are far away 

from the center. Consequently, in most cases, the quadratic phase term cannot be neglected and 

�⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) is not the complete spectral representation of the focal plane field. To solve this 

issue, in the following section, we propose a coherent FO method to evaluate an accurate PWS 

within the entire FO applicability region. 

 

3.3 Coherent FO 

In this section, we will discuss a FO method called Coherent FO (CFO) to evaluate the PWS 

of the focal plane field. It is called CFO since the quadratic phase term is included in the 

spectrum evaluations. Two types of spectrum can be derived by using CFO: The first one is a 

full coherent FO (CFO) spectrum evaluated by calculating a convolution integral; The second 

one is a linearized CFO spectrum, evaluated locally within an applicability region that indicates 

the maximum feed aperture diameter of an antenna. 
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3.3.1  Full CFO spectrum 

It has been discussed in section 3.2.3 that the quadratic phase term in the FO integral cannot be 

neglected. If we represent it as a function: 

𝑓(𝜌 𝑓) = 𝑒
−𝑗𝑘

|�⃗⃗� 𝑓|
2

2𝑅𝐹𝑂 (3.28)
 

and represent the remaining terms in Eq. (3.27) as another function: 

𝑒 𝐹𝑂( 𝜌 𝑓) =
1

4𝜋2
∫ ∫ �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦)𝑒

𝑗𝑘𝑥𝑥𝑓𝑒𝑗𝑘𝑦𝑦𝑓𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

(3.29) 

we can express the focal plane field as follows: 

𝑒 𝑓(𝜌 𝑓) = 𝑓(𝜌 𝑓)𝑒 𝐹𝑂( 𝜌 𝑓) (3.30) 

By performing FT on Eq. (3.30) and using FT properties, one can obtain a convolution integral: 

�⃗� 𝑓(𝑘𝑥, 𝑘𝑦) = 𝐹(𝑘𝑥, 𝑘𝑦) ∗ �⃗� 𝐹𝑂(−𝑘𝑥, −𝑘𝑦) 

=∬ �⃗� 𝐹𝑂(−𝑘𝑥
′ , −𝑘𝑦

′ )
∞

−∞

𝐹(𝑘𝑥−𝑘𝑥
′ , 𝑘𝑦 − 𝑘𝑦

′ )𝑑𝑘𝑥
′ 𝑑𝑘𝑦

′ (3.31) 

where 𝐹(𝑘𝑥, 𝑘𝑦) = 𝐹𝑇{𝑓(𝜌 𝑓)} can be expressed analytically: 

𝐹(𝑘𝑥, 𝑘𝑦) = (
1

2𝜋
)
2

(
2𝜋𝑅𝐹𝑂
𝑘

) 𝑒−𝑗
𝜋
2𝑒𝑗

𝑅𝐹𝑂
2𝑘

(𝑘𝑥
2+𝑘𝑦

2) (3.32) 

By using Eq. (3.31), one can represent the field on the focal plane, 𝑒 𝑓(𝜌 𝑓), as a plane wave 

expansion: 

𝑒 𝑓(𝜌 𝑓) =
1

4𝜋2
∬ �⃗� 𝑓(−𝑘𝑥, −𝑘𝑦)

∞

−∞

𝑒𝑗𝑘𝑥𝑥𝑓𝑒𝑗𝑘𝑦𝑦𝑓𝑑𝑘𝑥𝑑𝑘𝑦 (3.33) 

and here the term �⃗� 𝑓(−𝑘𝑥, −𝑘𝑦) is the PWS of the focal plane field: 

�⃗� 𝑓(−𝑘𝑥, −𝑘𝑦) = 𝐹(−𝑘𝑥, −𝑘𝑦) ∗ �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) (3.34) 

It is worth noting that since we do not use any approximation, the applicability region for 

this coherent FO spectrum is the same as the FO validity region. Moreover, since the spectrum 

in Eq. (3.34) is calculated by using a convolution integral, it is not bounded from 0 to 𝑘𝜌0. In 

practice, it should be integrated from 0 to a large 𝑘𝜌  value, in order to reach a convergent 

condition in the numerical calculation, which is numerically cumbersome and time-consuming. 

Accordingly, we use a linearization approximation on the quadratic phase term to simplify the 

calculation of convolution. 
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3.3.2  Linearized CFO spectrum 

The derivation of the full CFO spectrum is rigorous; however, it is numerically cumbersome, 

which makes it impractical. Alternatively, we can consider a local representation of PWS since 

we only need accurate spectrum over a specific feed aperture. Here we introduce a linearization 

on the quadratic phase term to simplify the convolution integral. To start with, as is depicted 

in Fig. 3.12, one can represent an observation point 𝜌 𝑓 at the surrounding of a local system 

located at 𝑂′, i.e. 𝜌 𝑓 = 𝜌 𝑜 + 𝜌 
′, where 𝜌 ′ is a position on the focal plane in the neighborhood 

of 𝜌 𝑜. In the case of an FPA, the dashed circle represents the feed aperture of an antenna located 

at 𝑂′. 

 

 

Figure 3.12: Observation point 𝜌 𝑓 represented by a local system located at 𝜌 𝑜. The dashed circle represents the 

surrounding of 𝜌 𝑜. 

 

By substituting 𝜌 𝑓  in Eq. (3.28 ), the quadratic phase term can be represented in the 

surrounding of 𝜌 𝑜: 

𝑓(𝜌 𝑜 + 𝜌 
′) = 𝑒

−𝑗𝑘
|�⃗⃗� 𝑜|

2

2𝑅𝐹𝑂𝑒
−𝑗𝑘

�⃗⃗� 𝑜⋅�⃗⃗� 
′

𝑅𝐹𝑂 𝑒
−𝑗𝑘

|�⃗⃗� ′|
2

2𝑅𝐹𝑂 (3.35)
 

Eq. (3.35) can be approximated to a linear function, by neglecting the phase term 𝑒
−𝑗𝑘

|�⃗⃗� ′|
2

2𝑅𝐹𝑂: 

𝑓(𝜌 𝑜 + 𝜌 
′) ≈ 𝑒

−𝑗𝑘
|�⃗⃗� 𝑜|

2

2𝑅𝐹𝑂𝑒
−𝑗𝑘

�⃗⃗� 𝑜⋅�⃗⃗� 
′

𝑅𝐹𝑂 (3.36) 

If we set the tolerable error for this phase linearization approximation as 𝜋/8, the applicability 

region of Eq. (3.36) surrounding 𝜌 𝑜 can be found as: 

𝑘
|𝜌 ′|2

2𝑅𝐹𝑂
≤
𝜋

8
⇒ |𝜌 ′| ≤ √

𝑓#𝐷𝜆

8
(3.37) 

It is worth noting that in the case of an FPA, Eq. (3.37) also indicates the maximum diameter 

of a feed aperture which can be analyzed using the linearization approximation: 
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𝐷𝑓 ≤ √
𝑓#𝐷𝜆

2
(3.38) 

By neglecting the phase term, the FT of 𝑓(𝜌 𝑜 + 𝜌 
′) can be calculated as: 

𝐹(𝑘𝑥, 𝑘𝑦) = 𝑒
−𝑗𝑘

|�⃗⃗� 𝑜|
2

2𝑅𝐹𝑂𝛿(�⃗� 𝜌 − �⃗� 𝑜) (3.39) 

where �⃗� 𝜌 = 𝑘𝑥�̂� + 𝑘𝑦�̂�  and �⃗� 𝑜 =
𝑘

𝑅𝐹𝑂
𝜌 𝑜 . When we substitute 𝜌 𝑓  in Eq. ( 3.29 ), we can 

represent 𝑒 𝐹𝑂 by using 𝜌 ′: 

𝑒 𝐹𝑂( 𝜌 
′) =

1

4𝜋2
∬ �⃗� 𝐹𝑂(−𝑘𝑥, −𝑘𝑦)

∞

−∞

𝑒−𝑗𝑘𝑥(𝑥
′+𝑥𝑜)𝑒−𝑗𝑘𝑦(𝑦

′+𝑦𝑜)𝑑𝑘𝑥𝑑𝑘𝑦 (3.40) 

and the FT of 𝑒 𝐹𝑂( 𝜌 
′) is calculated as follows: 

𝐹𝑇{𝑒 𝐹𝑂( 𝜌 
′)} = �⃗� 𝐹𝑂(−𝑘𝑥, −𝑘𝑦)𝑒

−𝑗𝑘𝑥𝑥𝑜𝑒−𝑗𝑘𝑦𝑦𝑜 (3.41) 

Therefore, by using Eq. (3.39) and (3.41), one can obtain the FT of the focal plane field with a 

local representation: 

�⃗� 𝑓(𝑘𝑥, 𝑘𝑦) = 𝐹(𝑘𝑥, 𝑘𝑦) ∗ [�⃗� 𝐹𝑂(−𝑘𝑥, −𝑘𝑦)𝑒
−𝑗𝑘𝑥𝑥𝑜𝑒−𝑗𝑘𝑦𝑦𝑜] 

= 𝑒
−𝑗𝑘

|�⃗⃗� 𝑜|
2

2𝑅𝐹𝑂�⃗� 𝐹𝑂(−�⃗� 𝜌 + �⃗� 𝑜)𝑒
−𝑗(𝑘𝑥−𝑘𝑥𝑜)𝑥𝑜𝑒−𝑗(𝑘𝑦−𝑘𝑦𝑜)𝑦𝑜 (3.42) 

In Eq. (3.42), it is found that �⃗� 𝑓(𝑘𝑥, 𝑘𝑦) is a linear translation of �⃗� 𝐹𝑂 in the spectral domain. 

Moreover, the focal plane field can be represented surrounding 𝜌 𝑜 as a plane wave expansion: 

𝑒 𝑓( 𝜌 
′) =

1

4𝜋2
∬ �⃗� 𝑓(−𝑘𝑥, −𝑘𝑦)

∞

−∞

𝑒𝑗𝑘𝑥𝑥
′
𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦 (3.43) 

where �⃗� 𝑓(−𝑘𝑥, −𝑘𝑦) is the coherent FO spectrum of the focal plane field, evaluated by using 

the linearization approximation on the quadratic phase term: 

�⃗� 𝑓(−𝑘𝑥, −𝑘𝑦) = 𝑒
−𝑗𝑘

|�⃗⃗� 𝑜|
2

2𝑅𝐹𝑂�⃗� 𝐹𝑂(�⃗� 𝜌 + �⃗� 𝑜)𝑒
𝑗(�⃗� 𝜌+�⃗� 𝑜)⋅�⃗⃗� 𝑜 (3.44) 

Compared with the full CFO spectrum, this linearized spectrum is less cumbersome and 

does not exhibit a convergent issue mentioned in the convolution method, since it calculates 

the PWS locally for a feed aperture by performing a translation of the spectrum in the spectral 

domain. The applicability region for this CFO is the same as the FO validity region. However, 

the diameter of the feed aperture is limited by 𝐷𝑓 which is defined in Eq. (3.38). In this work, 

we only apply the coherent FO with the linearization approximation, and validation of this CFO 

method will be discussed in chapter 5. 
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Chapter 4: GO fields on a FO sphere 

In chapter 3, we have discussed that deriving a PWS representation of the focal plane field is 

significant when evaluating the performance of absorber- and antenna- coupled QO systems. 

Moreover, we have analyzed that PWS is proportional to the field scattered by a QO component 

on its FO sphere, which for electrically large scatterers can be approximated with the GO field. 

Therefore, in this chapter, we will extensively discuss the derivation of the GO fields for each 

QO component. 

In section 4.1, we discuss an asymptotic procedure to evaluate GO fields. It is applied here 

for general reflection and transmission problems. Next, in section 4.2, we derive analytical 

closed-form expressions for GO fields, first for a case with broadside incidence; and then for 

one with slightly off-broadside incidence. 

 

4.1 GO ray fields 

In this work, the fields scattered by a QO component and propagating to its FO sphere is 

calculated. In other words, one should describe the wave propagation in a scattering problem. 

To do so, one can resort to the Geometrical Optics (GO) technique. GO is commonly used in 

high-frequency scattering scenarios (i.e. when the scatterer is large in terms of the wavelength) 

to determine wave propagation for both incident and scattered fields, including amplitude, 

phase, and polarization [13]. In this method, EM waves can be approximated as tubes of rays 

propagating in a homogenous medium from one point to another. Moreover, under GO 

approximation the scattered ray fields follow the laws of reflection and refraction at a two-

media separation surface. 

In order to derive the GO ray expression, one can resort to the Luneberg-Kline high-

frequency expansion discussed in [13, 42, 43]. Alternatively, one can asymptotically evaluate 

the PO radiation integral, as discussed in [44, 45]. This approach is the one used in this work. 

To start with, let us a surface 𝑆 illuminated by a generic incident field, �⃗� 𝑖, as shown in Fig. 4.1. 

Similar to what is discussed in the section about PO radiation integral, the scattered field �⃗� 𝑠 

can be calculated from the radiation of the equivalent surface currents 𝐽 𝑠 and �⃗⃗� 𝑠 in absence of 

the surface: 

�⃗� 𝑠(𝑃) = 𝑗𝑘∬ [�̂� × �⃗⃗� 𝑠(𝑄) + 𝜁�̂� × �̂� × 𝐽 𝑠(𝑄) ]
𝑒−𝑗𝑘𝑟

4𝜋𝑟𝑆
𝑑𝑆 (4.1)

where 𝑃 is the observation point, 𝑄 is the integration point on the surface, 𝑄0 is a reference 
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point, 𝑟 = 𝑄𝑃⃗⃗⃗⃗  ⃗, |𝑟 | = 𝑟, and  �̂� = 𝑟 /𝑟. Here 𝑘 is the wavenumber in the homogenous medium 

where the equivalent currents radiate, and 𝜁 is the impedance of the medium. 

 

 

Figure 4.1: Field scattered by a surface 𝑆. The scattered field observed at a point 𝑃 is calculated from the radiation 

of the equivalent surface currents 𝐽 𝑠 and �⃗⃗� 𝑠 estimated at an integration point 𝑄 in the absence of the surface. 

 

In the PO radiation integral, one can identify a slowly-varying function, 𝐹 (𝑄), and a fast-

varying function, 𝑒−𝑗𝑘Φ(𝑄), as described in [44, 45]: 

�⃗� 𝑠(𝑃) = ∬ 𝐹 (𝑄) 𝑒−𝑗𝑘Φ(𝑄)

𝑆

𝑑𝑆 (4.2) 

If present, this integral is asymptotically dominated by a double stationary phase point. 

Therefore, one can asymptotically evaluate the integral in Eq. (4.2) by using the Method of 

Stationary Phase, as discussed in [44-46]. In particular, identifying the double stationary phase 

point with 𝑄0, the scattered field at 𝑃 can be evaluated by expending the integrand in Eq. (4.2) 

in the neighborhood of 𝑄0 . The asymptotic integral evaluation leads to the following 

expression: 

�⃗� 𝑠(𝑃) ≃
2𝜋𝛿𝐹 (𝑄0)𝑒

−𝑗𝑘Φ(𝑄0)

𝑗𝑘√|det{𝐻𝛷(𝑄0)}| 
(4.3) 

where 𝐻𝛷(𝑄0) is the Hessian matrix of the phase function  Φ(𝑄0), and 𝛿 can be +1, −1, or 𝑗, 

depending on the sign of the eigenvalues of 𝐻𝛷(𝑄0) [44-46]. In the following, the scattered 

field is discussed for the case of GO reflection and transmission problems. 
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4.1.1  Reflection problem 

In the case of a GO reflection problem, the reference point 𝑄0 coincides with the point of 

reflection, 𝑄𝑅. By applying Eq. (4.3) at 𝑄𝑅 where the stationary phase condition is verified 

when the observation direction �̂� coincides with the direction of the reflected ray �̂�𝑟, i.e. �̂� =

�̂�𝑟, the reflected field �⃗� 𝑟(𝑃) can be evaluated asymptotically as: 

�⃗� 𝑟(𝑃) ≃ �⃗� 𝑟(𝑄𝑅) √
𝜌1
𝑟𝜌2

𝑟

(𝜌1
𝑟 + 𝑠)(𝜌2

𝑟 + 𝑠)
 𝑒−𝑗𝑘𝑠 (4.4) 

where 𝑠 is the distance along the ray path between the reflection point 𝑄𝑅 and the observation 

point 𝑃 ; 𝜌1
𝑟  and 𝜌2

𝑟  are the principal radii of curvature of the reflected wave front at the 

reflection point 𝑄𝑅, and �⃗� 𝑟(𝑄𝑅) is the reflected field at 𝑄𝑅, which is described in Eq. (2.37). 

In this work, the incident field is reflected by a QO surface and propagates to a FO sphere, 

as depicted in Fig. 4.2. The reflection point 𝑄𝑅 is on the QO surface 𝑆 and the observation point 

𝑃  is on the FO sphere, denoted as 𝑄𝐹𝑂 . The distance along the reflected ray path is 𝑠 =

|𝑄𝑅𝑄𝐹𝑂⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|. Consequently, one can express the GO reflected field as: 

�⃗� 𝐺𝑂
𝑟 (𝑄𝐹𝑂) ≃ �⃗� 𝑟(𝑄𝑅) √

𝜌1
𝑟𝜌2

𝑟

(𝜌1
𝑟 + 𝑠)(𝜌2

𝑟 + 𝑠)
 𝑒−𝑗𝑘𝑠 (4.5) 

where 𝑠 is explicitly derived in Appendix E.1, 𝜌1
𝑟 and 𝜌2

𝑟 are calculated in Appendix E.2. 

 

 
Figure 4.2: Geometry for a reflection problem with the description of the GO propagation. 
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4.1.2  Transmission problem 

For the transmission problem, similar to the reflection case, the reference point 𝑄0 coincides 

with the point of transmission, 𝑄𝑇. By applying Eq. (4.3) at 𝑄𝑇 where the stationary phase 

condition is verified when the observation direction �̂�  coincides with the direction of the 

transmitted ray �̂�𝑡, i.e. �̂� = �̂�𝑡, the GO transmitted field observed at 𝑃 can be asymptotically 

evaluated as: 

�⃗� 𝑡(𝑃) ≃ �⃗� 𝑡(𝑄𝑇) √
𝜌1
𝑡𝜌2
𝑡

(𝜌1
𝑡 + 𝑠)(𝜌2

𝑡 + 𝑠)
 𝑒−𝑗𝑘𝑠 (4.6) 

where 𝜌1
𝑡  and 𝜌2

𝑡  are the principal radii of curvature of the transmitted wave front at the 

transmission point 𝑄𝑇, and �⃗� 𝑡(𝑄𝑇) is the transmitted field at 𝑄𝑇, which is described in Eq. 

(2.39). In this work, �⃗� 𝑡(𝑃) is the GO transmitted field on the FO sphere that can be expressed 

as: 

�⃗� 𝐺𝑂
𝑡 (𝑄𝐹𝑂) ≃ �⃗� 𝑡(𝑄𝑇) √

𝜌1
𝑡𝜌2
𝑡

(𝜌1
𝑡 + 𝑠)(𝜌2

𝑡 + 𝑠)
 𝑒−𝑗𝑘𝑠 (4.7) 

The expressions of 𝜌1
𝑡 and 𝜌2

𝑡  are discussed in Appendix E.3.  

From Eq. (4.5) and (4.7) one can see that when the GO field propagates along the ray path 

from the reference point (𝑄𝑅 , 𝑄𝑇) towards the observation point 𝑄𝐹𝑂, its amplitude tends to 

attenuate (in case of diverging wave front) or to increase (in case of converging wave front) 

with a spreading factor, √
𝜌1𝜌2

(𝜌1+𝑠)(𝜌2+𝑠)
, and its phase changes along the propagation path as, 

𝑒−𝑗𝑘𝑠. 
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4.2 Analytical GO fields 

In section 4.1, we know how to obtain GO fields by applying asymptotic evaluation; however, 

almost all characteristic parameters involved in the calculation need to be calculated 

numerically, which makes them not intuitive. For some simplified cases, it is possible to find 

analytical expressions for GO fields. In Eq. (4.5) and (4.7), we find that once we know the 

field at the reference point, the GO field can be obtained by considering the spreading factor 

and the phase variation.  

We start with the broadside incidence. In subsection 4.2.1, we will discuss how we define 

the scattered field at a reference point, calculate the spreading factor, and solve the phase 

variation, for each QO component. After that in subsection 4.2.2, we consider the case of 

slightly off-broadside incidence. In this case, the analytical GO field is the same as the 

broadside one, but with a linear and coma phase term (for elliptical mirror also a compensation 

phase term). 

4.2.1  Broadside incidence 

In this part, we derive the analytical GO field for each QO component with broadside incidence. 

For the spreading factor, one can derive it by considering power budget among incident, 

reflected and transmitted rays, which is explicitly discussed in Appendix F and can be 

expressed as follows: 

{
𝑃𝑟
⊥/∥

= 𝑃𝑖
⊥/∥
|𝛤⊥/∥|

2

𝑃𝑡
⊥/∥

= 𝑃𝑖
⊥/∥
|𝜏⊥/∥|

2 𝜁1
𝜁2

cos 𝜃𝑡
cos 𝜃𝑖

(4.8) 

where 𝑃𝑖
⊥/∥

, 𝑃𝑟
⊥/∥

, and 𝑃𝑡
⊥/∥

 are incident, reflected and transmitted power, respectively. The 

incident ray propagates in the medium I (impedance 𝜁1) and is transmitted into the medium II 

(impedance 𝜁2 ). In a reflection problem, we use a PEC as the interface, i.e. there is no 

transmission and |𝛤⊥/∥| = 1. Therefore, the incident power is equal to the reflected power, 

which agrees with the law of conservation of energy.  
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4.2.1.1   Parabolic reflector 

In the case of a parabolic reflector, a plane wave incident from broadside is shown in Fig. 4.3. 

It impinges on a point 𝑄𝑅 on the surface 𝑆 and reflected to a point 𝑄𝐹𝑂 on the FO sphere 𝑆𝐹𝑂. 

�̂�𝑖  and  �̂�𝑟  represent the incident and reflected propagation unit vectors, respectively. 𝑂 

indicates the position of the focus of the parabolic reflector, 𝑄𝑎 is a point on the focal plane of 

the reflector, 𝑓 is the focal distance, and 𝑟(𝜃) is the radial distance between the reflector focus 

and its surface. 

 

  

Figure 4.3: A parabolic reflector with broadside plane wave incidence. 

 

Here we describe the incident plane wave by neglecting its phase term: 

�⃗� 𝑖 = 𝐸0�̂�𝑖 (4.9)

where 𝐸0 is the amplitude of the plane wave and �̂�𝑖 is the Ludwig-III polarization which is 

described in section 2.2.1. For broadside incidence (𝜃𝑠 = 0∘, 𝜙𝑠 = 0
∘), the polarization can be 

simplified as below: 

{
�̂�𝑖 = �̂�: Co − Pol.
�̂�𝑖 = �̂�: Cx − Pol.

(4.10) 

At 𝑄𝑎, we decompose the incident field into perpendicular (TE) and parallel (TM) components: 

�⃗� 𝑖(𝑄𝑎) = 𝐸𝑖
⊥(𝑄𝑎)�̂�𝑖

⊥(𝑄𝑎) + 𝐸𝑖
∥(𝑄𝑎)�̂�𝑖

∥(𝑄𝑎) (4.11) 

where �̂�𝑖
⊥ and �̂�𝑖

∥ can be calculated by using the law of reflection with �̂�𝑖 = +�̂�: 

{
�̂�𝑖
⊥ =

�̂�𝑖 × �̂�

|�̂�𝑖 × �̂�|
= −�̂�

�̂�𝑖
∥ = �̂�𝑖

⊥ × �̂�𝑖 = −�̂�

(4.12) 

TE and TM electric fields are calculated as: 
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{
𝐸𝑖
⊥(𝑄𝑎) = �⃗� 𝑖 ⋅ �̂�𝑖

⊥ = −𝐸0(�̂�𝑖 ⋅ �̂�)

𝐸𝑖
∥(𝑄𝑎) = �⃗� 𝑖 ⋅ �̂�𝑖

∥ = −𝐸0(�̂�𝑖 ⋅ �̂�)
(4.13) 

At 𝑄𝐹𝑂, the reflected field on the FO sphere, �⃗� 𝐺𝑂(𝑄𝐹𝑂), can also be divided into TE and TM 

components: 

�⃗� 𝐺𝑂(𝑄𝐹𝑂) = 𝐸𝐺𝑂
⊥ (𝑄𝐹𝑂)�̂�𝑟

⊥ + 𝐸𝐺𝑂
∥ (𝑄𝐹𝑂)�̂�𝑟

∥ (4.14) 

In the following, the calculation of the amplitude, phase, and polarization of �⃗� 𝐺𝑂 is described. 

⚫ Amplitude 

For a reflection problem, by considering the law of conservation of energy, we can relate 

the reflected power, 𝑃𝑟
⊥/∥(𝑄𝐹𝑂), to the incident power, 𝑃𝑖

⊥/∥(𝑄𝑎), as follows: 

𝑃𝑟
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑖

⊥/∥(𝑄𝑎)|𝛤
⊥/∥(𝑄𝑅)|

2
(4.15) 

where |𝛤⊥/∥(𝑄𝑅)| = 1  for a PEC (Fig. 4.3). By using this condition, one can derive the 

amplitude relation between the incident field and the GO field, i.e. the spreading factor, 𝑆𝑝𝑟𝑒𝑎𝑑. 

For a parabolic reflector, 𝑆𝑝𝑟𝑒𝑎𝑑 can be expressed as follows (Appendix G.1):  

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
=

2

1 + cos 𝜃
(4.16) 

Therefore, the amplitude of �⃗� 𝐺𝑂 is obtained: 

|𝐸𝐺𝑂
⊥/∥
| = 𝑆𝑝𝑟𝑒𝑎𝑑|𝛤

⊥/∥𝐸𝑖
⊥/∥
| (4.17) 

Notice that if we define the polarization unit vector ( �̂�𝑖
⊥/∥

 and  �̂�𝑟
⊥/∥

) by using Eq. (4.12) and 

as shown in Fig. 4.3, for a PEC, 𝛤⊥ = 𝛤∥ = −1. 

⚫ Phase 

The center of the coordinate system is defined at the focus of the parabola. Since 

|𝑄𝑅 − 𝑄𝑎| + |𝑄𝑅 − 𝑄𝐹𝑂| = 𝑓, the GO field has a constant phase on the FO sphere. Therefore, 

we can neglect this phase term in 𝐸𝐺𝑂
⊥/∥

. 

⚫ Polarization 

The polarizations of �⃗� 𝐺𝑂 are derived as follows (�̂�𝑟 = −�̂�): 

{
�̂�𝑟
⊥ =

�̂�𝑟 × �̂�

|�̂�𝑟 × �̂�|
= −�̂�

�̂�𝑟
∥ = �̂�𝑟 × �̂�𝑟

⊥ = −𝜃

(4.18) 

By substituting (4.17) and (4.18) in (4.14), we can express �⃗� 𝐺𝑂  analytically for broadside 

incidence:  

�⃗� 𝐺𝑂 = 𝑆𝑝𝑟𝑒𝑎𝑑[𝛤
∥(�̂�𝑖 ⋅ �̂�) 𝜃 + 𝛤

⊥(�̂�𝑖 ⋅ �̂�) �̂�]𝐸0 (4.19) 



47 

 

4.2.1.2   Elliptical lens 

In the case of an elliptical lens, a plane wave incident from broadside is shown in Fig. 4.4. It 

impinges on a point 𝑄𝑇 on the surface 𝑆 and transmitted to a point 𝑄𝐹𝑂 on the FO sphere 𝑆𝐹𝑂. 

�̂�𝑖 and �̂�𝑡 are incident and transmitted propagation unit vectors, respectively. 𝑂 indicates the 

position of the lower focus of the lens, 𝑄𝑎 is a point on the equivalent aperture of the lens, 𝑅𝑙 

is the rim distance, and 𝑟(𝜃) is the radial distance from the lower focus to the surface. 

 

 

Figure 4.4: An elliptical lens with broadside plane wave incidence. 

 

The incident plane wave is defined the same as Eq. (4.9). Similar to a parabolic reflector, at 

𝑄𝑎, we decompose the incident field into TE and TM components: 

�⃗� 𝑖(𝑄𝑎) = 𝐸𝑖
⊥(𝑄𝑎)(−�̂�) + 𝐸𝑖

∥(𝑄𝑎)�̂� (4.20) 

and at 𝑄𝐹𝑂 we decompose the GO field:  

�⃗� 𝐺𝑂(𝑄𝐹𝑂) = 𝐸𝐺𝑂
⊥ (𝑄𝐹𝑂)(−�̂�) + 𝐸𝐺𝑂

∥ (𝑄𝐹𝑂)�̂� (4.21) 

To calculate the amplitude, |𝐸𝐺𝑂
⊥/∥
|, we need to consider the power budget for a transmission 

problem: The transmitted power, 𝑃𝑡
⊥/∥(𝑄𝐹𝑂), is related to the incident power, 𝑃𝑖

⊥/∥(𝑄𝑎), as 

described in Eq. (4.8):  

𝑃𝑡
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑖

⊥/∥(𝑄𝑎)|𝜏
⊥/∥(𝑄𝑇)|

2 𝜁0
𝜁𝑑

cos 𝜃𝑡
cos 𝜃𝑖

(4.22) 

where 𝜁0 is the impedance in free space, 𝜁𝑑 = 𝜁0/√𝜀𝑟 is the impedance of the medium, 𝜃𝑖 and 

𝜃𝑡 are the incident and transmitted angles with respect to the normal vector of the surface (Fig. 
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4.4), respectively, which are calculated in Appendix G.6. By solving Eq. (4.22), one can derive 

the spreading factor, which is explicitly derived in Appendix G.2 for an elliptical lens: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝜏⊥/∥𝐸𝑖
⊥/∥
|
=

𝑎(1 − 𝑒2)

𝑅𝑙(1 − 𝑒 cos 𝜃)
(4.23) 

where 𝑎  is the semi-major axis, 𝑐  is the focal distance, and 𝑒 = 𝑐/𝑎  is the eccentricity. 

Therefore, the amplitude of the GO field is obtained: 

|𝐸𝐺𝑂
⊥/∥
| = 𝑆𝑝𝑟𝑒𝑎𝑑|𝜏

⊥/∥𝐸𝑖
⊥/∥
| (4.24) 

The center of the coordinate system is defined at the lower focus of the lens. Since we choose 

the eccentricity of the lens to be 𝑒 = 1/√𝜀𝑟, the GO field has a constant phase on the FO sphere. 

Therefore, we can neglect the phase term in 𝐸𝐺𝑂
⊥/∥

. By substituting Eq. (4.24) in Eq. (4.21), we 

can express �⃗� 𝐺𝑂 analytically for broadside incidence:  

�⃗� 𝐺𝑂 = 𝑆𝑝𝑟𝑒𝑎𝑑[𝜏
∥(�̂�𝑖 ⋅ �̂�) 𝜃 + 𝜏

⊥(�̂�𝑖 ⋅ �̂�) �̂�]𝐸0 (4.25) 

4.2.1.3   Hyperhemispherical lens 

We have introduced in section 2.1.3 that there are two types of hemispherical lenses. For the 

one with the extension length: 𝐿/𝑅𝑠𝑝ℎ = 0.32 − 0.35 [24], it is a good approximation of an 

elliptical silicon lens. Therefore, the GO field can be approximated by using Eq. (4.25). While 

for a hyperhemispherical lens, it is able to perfectly focalize a convergent incident wave on its 

focal plane [34]. Consequently, it is worth studying its analytical GO field for a broadside 

incidence.  

A hyperhemispherical lens with the extension length 𝐿 = 𝑅𝑠𝑝ℎ/√𝜀𝑟 is shown in Fig. 4.5. If 

the incident wave is a convergent spherical wave that converges at a virtual focus 𝑂𝑣 below the 

lens, illustrated as the blue colored rays, then geometrically the transmitted fields (green 

colored rays) will converge at the center of the base, 𝑂. It is discussed in [34] that the distance 

from the apex of the lens to the virtual focus is: 

𝐹𝑣 = 𝑅𝑠𝑝ℎ(√𝜀𝑟 + 1) (4.26) 

The incident field at 𝑄𝑇, i.e. �⃗� 𝑖(𝑄𝑇), can be expressed as: 

�⃗� 𝑖(𝑄𝑇) = [𝐸𝑖
⊥(𝑄𝑇)(−�̂�𝑣) + 𝐸𝑖

∥(𝑄𝑇)𝜃𝑣]
1

𝑟𝑣
(4.27) 

To derive the GO field, similar to an elliptical lens, we can first calculate the spreading factor 

(Appendix G.3): 
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𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝜏⊥/∥𝐸𝑖
⊥/∥
|
=
𝑟(𝜃)

𝑅𝐹𝑂
√
sin 𝜃

sin 𝜃𝑣

𝑑𝜃𝑣
𝑑𝜃

√
cos 𝜃𝑡
cos 𝜃𝑖

(4.28) 

where 𝜃𝑣 is depicted in Fig. 4.5 and 𝑑𝜃𝑣/𝑑𝜃 is calculated in Appendix G.6.  

For the phase term, we define the center of the coordinate system at the base of the lens, 𝑂. 

The field transmitted into the lens and propagating on the FO sphere has a constant phase over 

the sphere. Therefore, we can neglect the phase term in 𝐸𝐺𝑂
⊥/∥

 and express �⃗� 𝐺𝑂 analytically for 

broadside incidence as:  

�⃗� 𝐺𝑂 = 𝑆𝑝𝑟𝑒𝑎𝑑[𝜏
∥(�⃗� 𝑖 ⋅ 𝜃𝑣) 𝜃 + 𝜏

⊥(�⃗� 𝑖 ⋅ �̂�𝑣) �̂�] (4.29) 

where �̂�𝑣 = �̂�. For a hyperhemispherical lens, we just investigate the broadside incidence. The 

slightly off-broadside incidence will be studied in the future.  

 

 

Figure 4.5: A hyperhemispherical lens with broadside incidence. 

 

4.2.1.4   Hyperbolic lens 

In the case of a hyperbolic lens, incident plane wave propagates in a medium (𝜀𝑟) at broadside 

direction ( �̂�𝑖 = −�̂� ), as shown in Fig. 4.6. It impinges on 𝑄𝑇  and transmitted to 𝑄𝐹𝑂 . 𝑂 

indicates the position of the lower focus of the hyperbola, and 𝑄𝑎 is a point on the equivalent 

aperture of the hyperbolic lens. The incident plane wave is defined in Eq. (4.9), and it can be 

expressed at 𝑄𝑎 as: 
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�⃗� 𝑖(𝑄𝑎) = 𝐸𝑖
⊥(𝑄𝑎)(−�̂�) + 𝐸𝑖

∥(𝑄𝑎)�̂� (4.30) 

Moreover, the GO field can be expressed as: 

�⃗� 𝐺𝑂(𝑄𝐹𝑂) = 𝐸𝐺𝑂
⊥ (𝑄𝐹𝑂)(−�̂�) + 𝐸𝐺𝑂

∥ (𝑄𝐹𝑂)�̂� (4.31) 

For the amplitude, |𝐸𝐺𝑂
⊥/∥
|, we should consider the power budget between the incident power 

and the transmitted power: 

𝑃𝑡
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑖

⊥/∥(𝑄𝑎)|𝜏
⊥/∥(𝑄𝑇)|

2 𝜁𝑑
𝜁0

cos 𝜃𝑡
cos 𝜃𝑖

(4.32) 

By solving Eq. (4.32) we can derive the spreading factor (Appendix G.4): 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝜏⊥/∥𝐸𝑖
⊥/∥
|
=

1 − 𝑒

1 − 𝑒 cos 𝜃
(4.33) 

For the phase term, we define the center of the coordinate system at the lower focus of the 

hyperbola. Since we choose the eccentricity of the hyperbolic lens to be 𝑒 = √𝜀𝑟, the GO field 

has constant phase on the FO sphere. Therefore, we can neglect the phase term and express 

�⃗� 𝐺𝑂 analytically for broadside incidence as:  

�⃗� 𝐺𝑂 = 𝑆𝑝𝑟𝑒𝑎𝑑[𝜏
∥(�̂�𝑖 ⋅ �̂�) 𝜃 + 𝜏

⊥(�̂�𝑖 ⋅ �̂�) �̂�]𝐸0 (4.34) 

 

Figure 4.6: A hyperbolic lens with broadside plane wave incidence. 

4.2.1.5   Elliptical Mirror 

For an elliptical mirror, incident ray is a spherical wave emtted from a point source, as is shown 

in Fig. 4.7. It impinges on 𝑄𝑅 and reflected to 𝑄𝐹𝑂. Since the source can be placed at either the 

upper focus, 𝑂1, or the lower focus, 𝑂2, we discuss two different cases: 
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⚫ Case 1: Source placed at the upper focus, 𝑶𝟏 

In this case (Fig. 4.7), we can decompose the spherical incident wave at 𝑄𝑅 as follows: 

�⃗� 𝑖(𝑄𝑅) = (𝐸𝑖
⊥(𝑄𝑅)�̂�1 + 𝐸𝑖

∥(𝑄𝑅)𝜃1)
1

𝑟1
(4.35) 

Moreover, the GO field can be expressed as: 

�⃗� 𝐺𝑂(𝑄𝐹𝑂) = 𝐸𝐺𝑂
⊥ (𝑄𝐹𝑂)�̂�2 + 𝐸𝐺𝑂

∥ (𝑄𝐹𝑂)�̂�2 (4.36) 

where �̂�1 = �̂�2. Considering the law of conservation of energy and following the same steps 

described in the case of the parabolic reflector, we can express the spreading factor as follows 

(explicit derivation is listed in Appendix G.5): 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃2) =
|𝐸𝐺𝑂

⊥/∥
|

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
=
√𝑟1(𝜃1)𝑟2(𝜃2)

𝑅𝐹𝑂
√

𝑎(1 − 𝑒2)

2𝑐(𝑒 − cos 𝜃2) + 𝑎(1 − 𝑒2)
(4.37) 

where 𝑟1 and 𝑟2 are radial distances depicted in Fig. 4.7, 𝑎 is the semi-major axis, 𝑐 is the focal 

distance, and 𝑒 = 𝑐/𝑎 is the eccentricity.  

For the phase term, we define the center of the coordinate system at the lower focus of the 

ellipse. Since |𝑄𝑅 − 𝑂1| + |𝑄𝑅 − 𝑄𝐹𝑂| = 2𝑎 − 𝑅𝐹𝑂, the GO field has a constant phase on the 

FO sphere. Therefore, we can express �⃗� 𝐺𝑂 analytically for broadside incidence:  

�⃗� 𝐺𝑂 = 𝑆𝑝𝑟𝑒𝑎𝑑[𝛤
∥(�⃗� 𝑖 ⋅ 𝜃1) 𝜃2 + 𝛤

⊥(�⃗� 𝑖 ⋅ �̂�1) �̂�2] (4.38) 

 

 

Figure 4.7: An elliptical mirror with broadside incidence. Source is placed at 𝑂1. 
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⚫ Case 2: Source placed at the lower focus, 𝑶𝟐 

In this case (Fig. 4.8), the incident wave is defined as follows: 

�⃗� 𝑖(𝑄𝑅) = [𝐸𝑖
⊥(𝑄𝑅)(−�̂�2) + 𝐸𝑖

∥(𝑄𝑅)(−�̂�2)]
1

𝑟2
(4.39) 

and the GO field is: 

�⃗� 𝐺𝑂(𝑄𝐹𝑂) = 𝐸𝐺𝑂
⊥ (𝑄𝐹𝑂)(−�̂�1) + 𝐸𝐺𝑂

∥ (𝑄𝐹𝑂)(−𝜃1) (4.40) 

The spreading factor is obtained as follows: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃1) =
|𝐸𝐺𝑂

⊥/∥
|

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
=
√𝑟1(𝜃1)𝑟2(𝜃2)

𝑅𝐹𝑂
√

𝑎(1 − 𝑒2)

2𝑐(𝑒 + cos 𝜃1) + 𝑎(1 − 𝑒2)
(4.41) 

For the phase term, the center of the coordinate system is defined at the upper focus of the 

ellipse, and it is still the case that the phase of the GO field is constant. Therefore, we can 

neglect the phase term and express the GO field as follows: 

�⃗� 𝐺𝑂 = 𝑆𝑝𝑟𝑒𝑎𝑑[𝛤
∥(�⃗� 𝑖 ⋅ 𝜃2) 𝜃1 + 𝛤

⊥(�⃗� 𝑖 ⋅ �̂�2) �̂�1] (4.42) 

 

 

Figure 4.8: An elliptical mirror with broadside incidence. Source is placed at 𝑂2. 
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4.2.1.6   Comparison between GO ray fields and analytical GO fields 

Both GO ray fields and analytical GO fields have been derived in the preceding subsections. 

In this subsection, we compare these GO fields and check if the analytic GO fields are in good 

agreement with the GO ray fields. Here we use low f-number configurations because they are 

more challenging.  

The preceding analytical expressions for GO fields are derived for broadside incidence. 

Moreover, phase information is neglected since the analytical GO fields have constant phase 

on FO spheres. Therefore, here we consider broadside incidence and compare only the 

amplitude of GO fields. The amplitude is decomposed into |𝐸𝜃| and |𝐸𝜙| components and the 

relative error is calculated for comparison: 

𝜀𝜃/𝜙
𝑎𝑚𝑝 = |

|𝐸𝜃/𝜙
𝐹𝑂 | − |𝐸𝜃/𝜙

𝐺𝑂 |

|𝐸𝜃/𝜙
𝐺𝑂 |

| ⋅ 100% (4.43) 

where |𝐸𝜃/𝜙
𝐹𝑂 | and |𝐸𝜃/𝜙

𝐺𝑂 | represent the amplitude of analytical GO fields and GO ray fields, 

respectively. 

⚫ Parabolic reflector 

A parabolic reflector with the diameter of 𝐷𝑟 = 100𝜆0 (𝑓0 = 300 GHz) and the f-number 

of 𝑓#
𝑟 = 0.6 is illuminated by a unitary TM polarized plane wave incoming from the broadside.  

Fig. 4.9 shows the relative amplitude errors of |𝐸𝜃|  (Fig. 4.9a) and |𝐸𝜙|  (Fig. 4.9b) 

components. As it can be seen, the error is extremely small, meaning the analytical GO field is 

in excellent agreement with the GO ray field. 

 

  

(a) (b) 

Figure 4.9: Relative amplitude errors of the GO fields: (a) |𝐸𝜃| component. (b) |𝐸𝜙| component, for a parabolic 

reflector with 𝐷𝑟 = 100𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑟 = 0.6, illuminated by a unitary TM polarized plane wave 

incoming from the broadside. 
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⚫ Elliptical lens 

Here we consider an elliptical silicon (𝜀𝑟 = 11.9) lens applied with a matching layer. A 

quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is applied, and 

the lens has the diameter of 𝐷𝑙 = 5𝜆0  ( 𝑓0 = 300 GHz ) and the f-number of 𝑓#
𝑙 = 0.6 , 

illuminated by a unitary TE polarized plane wave in broadside. Fig. 4.10 shows the relative 

amplitude errors of |𝐸𝜃| (Fig. 4.10a) and |𝐸𝜙| (Fig. 4.10b) components. As it can be seen, the 

analytical GO field is in excellent agreement with the GO ray field. 

 

  

(a) (b) 

Figure 4.10: Relative amplitude errors of the GO fields: (a) |𝐸𝜃| component. (b) |𝐸𝜙| component, for an elliptical 

silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 = 5𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TE polarized plane 

wave incoming from the broadside. A quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 =
2.62) is applied. 

 

⚫ Hyperhemispherical lens 

A hyperhemispherical silicon (𝜀𝑟 = 11.9) lens applied with a matching layer is introduced 

here. A quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is 

applied, and the lens has 𝐷ℎ𝑙 = 5𝜆0  (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.6 , 𝑅𝑠𝑝ℎ = 2.66𝜆0 , and 𝐿 =

0.29𝑅𝑠𝑝ℎ, illuminated by a unitary x-polarized convergent wave incident from the broadside. 

Fig. 4.11 shows the relative amplitude errors and it can be seen from the figure that the 

analytical GO field is almost the same as the GO ray field. 
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(a) (b) 

Figure 4.11: Relative amplitude errors of the GO fields: (a) |𝐸𝜃|  component. (b)  |𝐸𝜙|  component, for a 

hyperhemispherical silicon (𝜀𝑟 = 11.9) lens with 𝐷ℎ𝑙 = 5𝜆0  (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.6, 𝑅𝑠𝑝ℎ = 2.66𝜆0 , and 

𝐿 = 0.29𝑅𝑠𝑝ℎ, illuminated by a unitary x-polarized convergent wave incoming from the broadside. A quarter-

wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is applied. 

 

⚫ Hyperbolic lens 

Here we consider a hyperbolic plastic (𝜀𝑟 = 2) lens with 𝐷ℎ = 100𝜆0 (𝑓0 = 300 GHz) and 

𝑓#
ℎ = 0.6, illuminated by a unitary TE polarized plane wave incoming from the broadside. Fig. 

4.12 shows the relative amplitude errors and it can be seen from the figure that the analytical 

GO field is in excellent agreement with the GO ray field. 

 

  

(a) (b) 

Figure 4.12: Relative amplitude errors of the GO fields: (a) |𝐸𝜃| component. (b) |𝐸𝜙| component, for a hyperbolic 

plastic (𝜀𝑟 = 2) lens with 𝐷ℎ = 100𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 0.6, illuminated by a unitary TE polarized plane 

wave incoming from the broadside.  
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⚫ Elliptical mirror 

For an elliptical mirror, we consider the case when a source is placed at the lower focus. 

The source is a unitary Huygens source with the electric current oriented along �̂�. The mirror 

has the diameter of 𝐷𝑚 = 100𝜆0 (𝑓0 = 300 GHz), the semi-major axis of 𝑎 = 75𝜆0, and the 

focal distance of 𝑐 = 15𝜆0, i.e. the eccentricity is 𝑒 = 0.2 and the f-number is 𝑓#
𝑚 = 0.6. Fig. 

4.13 shows the relative amplitude errors of |𝐸𝜃| (Fig. 4.13a) and |𝐸𝜙| (Fig. 4.13b) components. 

As it can be seen, the error is very small. Therefore, the analytical GO field can be assumed 

the same as the GO ray field. 

 

  

(a) (b) 

Figure 4.13:  Relative amplitude errors of the GO fields: (a) |𝐸𝜃| component. (b) |𝐸𝜙| component, for an elliptical 

mirror with 𝐷𝑚 = 100𝜆0 (𝑓0 = 300 GHz), 𝑓#
𝑚 = 0.6, and 𝑒 = 0.2, illuminated by a Huygens source placed at the 

lower focus with the electric current oriented along �̂�. 

 

⚫ Conclusion 

To conclude, for all QO components with low f-number configurations, the analytical GO 

fields are in excellent agreement with the GO ray fields for broadside incidence. Therefore, we 

can assume the analytical GO fields are accurate approximations of the GO ray fields for 

broadside incidence. 
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4.2.2  Slightly off-broadside incidence 

In this subsection, we consider the analytical GO field for a slightly off-broadside incidence. 

When an external source is incident from a direction slightly off broadside, (𝜃𝑠, 𝜙𝑠) , we 

introduce a key simplifying hypothesis to the incident field that the polarization of the incident 

field remains the same as the one in broadside case, while a progressive phase shift is added: 

�⃗� 𝑖(𝜃𝑠) ≃ �⃗� 𝑖(𝜃𝑠 = 0)e−𝑗Φ (4.44) 

where Φ is the progressive phase shift.  

The approximation in Eq. (4.44) corresponds to neglect the z-direction polarization vector 

which is proportional to tan 𝜃𝑠. If we set the vector error as 20%, meaning tan 𝜃𝑠 < 0.2, we 

can calculate the angular limitation: 𝜃𝑠 ≤ 11
∘. We have discussed in section 4.1 that the field 

on the FO sphere is evaluated by resorting to GO propagation of the incident field. Therefore, 

by implementing the approximation in Eq. (4.44 ), the analytical GO field can also be 

approximated by the one for broadside illumination (derived analytically in section 4.2.1), 

multiplied by the progressive phase shift: 

�⃗� 𝐺𝑂(𝜃𝑠) ≃ �⃗� 𝐺𝑂(𝜃𝑠 = 0)e
−𝑗Φ (4.45) 

The incident source can be a plane wave or a point source; therefore, we discuss two cases in 

the following. 

4.2.2.1   Plane wave incidence  

For a plane wave incidence, the progressive phase can be defined as follows: 

Φ𝑝𝑤 = �⃗� 𝜌,𝑠 ⋅ 𝜌 (4.46) 

where �⃗� 𝜌,𝑠 = 𝑘�̂�𝜌,𝑠 = 𝑘 sin 𝜃𝑠(cos𝜙𝑠 �̂� + sin 𝜙𝑠 �̂�) , 𝑘  is the propagation constant in the 

medium, 𝜌 = 𝑟(𝜃) sin 𝜃 �̂� , �̂� = cos𝜙 �̂� + sin 𝜙 �̂� , and 𝑟(𝜃)  is the radial distance of the 

surface 𝑆 shown in Fig. 4.14. 
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Figure 4.14: Geometry for the description of evaluating the progressive phase shift for slightly off-broadside 

plane wave incidence. 

 

By substituting Eq. (4.46) in Eq. (4.45): 

�⃗� 𝐺𝑂(�⃗� 𝜌,𝑠) ≃ �⃗� 𝐺𝑂(�⃗� 𝜌,𝑠 = 0)e−𝑗�⃗�
 𝜌,𝑠⋅�⃗⃗� (4.47) 

It can be seen in Fig. 4.14 that 𝑟(𝜃) = 𝑅𝐹𝑂 + 𝛿𝑖(𝜃), where 𝛿𝑖(𝜃) is the distance between 𝑄𝐹𝑂 

and 𝑄. Therefore, we can express the vector 𝜌  as follows: 

𝜌 = (𝑅𝐹𝑂 + 𝛿𝑖(𝜃)) sin 𝜃 �̂� (4.48) 

and calculate the term �⃗� 𝜌,𝑠 ⋅ 𝜌 : 

�⃗� 𝜌,𝑠 ⋅ 𝜌 = 𝑅𝐹𝑂
�⃗� 𝜌,𝑠

𝑘
(1 +

𝛿𝑖(𝜃)

𝑅𝐹𝑂
) ⋅ 𝑘 sin 𝜃 �̂� 

⇒ �⃗� 𝜌,𝑠 ⋅ 𝜌 = 𝜌 𝑓𝑝(1 + 𝛿𝑛(𝜃)) ⋅ �⃗� 𝜌 (4.49) 

where 𝜌 𝑓𝑝 is called flash point that is defined as:  

𝜌 𝑓𝑝 = 𝑅𝐹𝑂
�⃗� 𝜌,𝑠

𝑘
(4.50) 

and 𝛿𝑛(𝜃) is the distance defined as: 

𝛿𝑛(𝜃) =
𝛿𝑖(𝜃)

𝑅𝐹𝑂
(4.51) 

By substituting Eq. (4.49) in Eq. (4.47): 

�⃗� 𝐺𝑂(�⃗� 𝜌,𝑠) ≈ �⃗� 𝐺𝑂(�⃗� 𝜌,𝑠 = 0)e−𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝𝑒−𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝𝛿𝑛(𝜃) (4.52) 

In conclusion, for different QO components, as long as we calculate the flash point 𝜌 𝑓𝑝 and 

the distance 𝛿𝑛(𝜃) within the defined applicability region, we can approximate the analytical 

GO field by the one defined for the broadside illumination multiplied by two phase terms. The 
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first phase term in Eq. (4.52), e−𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝, indicates a linear phase shift; while the second term, 

𝑒−𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝𝛿𝑛(𝜃), represents a coma phase. To better explain 𝜌 𝑓𝑝, 𝛿𝑛(𝜃) and these phase terms, 

we take a parabolic reflector as an example: 

⚫ Parabolic reflector 

For a parabolic reflector, 𝛿𝑛(𝜃) is calculated as follows: 

𝛿𝑛(𝜃) =
𝑟(𝜃) − 𝑅𝐹𝑂

𝑅𝐹𝑂
=
1 − cos 𝜃

1 + cos 𝜃
(4.53) 

and the flash point 𝜌 𝑓𝑝 is: 

𝜌 𝑓𝑝 = 𝑅𝐹𝑂
�⃗� 𝜌,𝑠

𝑘0
= 𝑓 sin 𝜃𝑠(cos𝜙𝑠 �̂� + sin𝜙𝑠 �̂�) (4.54) 

Next, we discuss a specific reflector, with the diameter of 𝐷𝑟 = 100𝜆0 (𝑓0 = 100 GHz) and 

the f-number of 𝑓#
𝑟 = 0.6, illuminated by a unitary TM polarized plane wave with the skew 

angle of 𝜃𝑠 = 2.3
∘, 𝜙𝑠 = 0∘ . Fig. 4.15 shows the variation of linear and coma phase with 

respect to 𝜃. It can be seen that the linear phase varies linearly, while the coma phase is non-

linear and reaches maximum at the edge. 

 

Figure 4.15: Variation of linear and coma phase for a parabolic reflector with 𝐷𝑟 = 100𝜆0 (𝑓0 = 100 GHz) and 

𝑓#
𝑟 = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 = 2.3

∘, 𝜙𝑠 = 0
∘. 

 

Furthermore, if we observe the field focalized on the focal plane by the same reflector, we 

can understand these phase terms more clearly. The reflector is illuminated by two plane waves: 

broadside and 𝜃𝑠 = 2.3∘ = 4𝜆0/𝐷𝑟 , 𝜙𝑠 = 0
∘(4 beams scanning). In this case, the flash point is 

calculated as: 𝜌 𝑓𝑝 = 4𝜆0𝑓#
𝑟�̂�. As it can be seen in Fig. 4.16, the focalized fields are evaluated 

by resorting to the FO analysis with and without coma phase term, represented by the solid and 

dashed lines, respectively. Here we use the PO analysis as the reference that is marked with 

squares. 
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Figure 4.16: The x-component of the electric fields on the focal plane of a parabolic reflector with 𝐷𝑟 = 100𝜆0 

(𝑓0 = 100 GHz) and 𝑓#
𝑟 = 0.6. The reflector is illuminated by two plane waves: broadside and 𝜃𝑠 = 2.3∘, 𝜙𝑠 =

0∘. The solid lines are calculated by resorting to the FO analysis, while the squares represent the PO results. The 

dashed line is the case when the coma phase term is not included. One of the main planes (𝑦 = 0) is shown. The 

blue region is the FO applicability region. 

 

It can be clearly seen in the figure that when the linear phase term is included only, the 

focalized field is a linear translation of the broadside one from the center to the 4-beam position, 

which is exact the flash point position. However, this translation is not accurate compared with 

the PO result. When the coma phase term is included, the result becomes accurate. The side 

lobes become asymmetric and the main beam is deviated from the flash point. This observation 

shows that the linear phase term corresponds to steer the maximum of the focal plane field of 

a QO component from the center of the focal plane to the flash point position. While the coma 

phase term leads to asymmetric side lobes and deviation of the main beam, which is quantified 

by the distance 𝛿𝑛(𝜃).  

Practically, when we scan the incident field, it is useful to find the maximum skew angle 

where the coma phase term is sufficiently small and can be neglected. Within this angular 

region, the focalized field is almost a linear translation of the broadside one. We can set the 

phase error for neglecting the coma phase term as 𝜎: 

�⃗� 𝜌 ⋅ 𝜌 𝑓𝑝𝛿𝑛(𝜃) ≤ 𝜎 (4.55) 

For a reflector, we have derived in Appendix I.1 the limit of the coma phase in terms of the 

number of beams, i.e. 𝑁 = 𝜃𝑠/(𝜆/𝐷) : 

𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎 ≤

𝜎

𝜋
[2𝑓# +√4𝑓#

2 − 1]

2

(4.56) 
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⚫ Elliptical lens 

In the case of an elliptical lens, 𝛿𝑛(𝜃) is derived as: 

𝛿𝑛(𝜃) =
𝑒(cos 𝜃 − cos 𝜃0)

1 − 𝑒 cos 𝜃
(4.57) 

and the flash point is: 

𝜌 𝑓𝑝 = 𝑅𝐹𝑂
�⃗� 𝜌,𝑠

𝑘𝑑
= −𝑅𝑙

𝑘0
𝑘𝑑
sin 𝜃𝑠 (cos𝜙𝑠 �̂� + sin𝜙𝑠 �̂�) (4.58) 

Moreover, the limit of the coma phase is derived in Appendix I.2: 

𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎 ≤

𝜎

𝜋

1 − 𝑒 cos 𝜃𝑚𝑎𝑥
𝑒 sin 𝜃𝑚𝑎𝑥

1

2𝑓# cos 𝜃𝑚𝑎𝑥 −√4𝑓#
2 − 1

(4.59) 

where 𝜃𝑚𝑎𝑥 is the angle that maximizes the coma phase. 

⚫ Hyperbolic lens 

In the case of a hyperbolic lens, 𝛿𝑛(𝜃) is: 

𝛿𝑛(𝜃) =
𝑒(cos 𝜃 − 1)

1 − 𝑒 cos 𝜃
(4.60) 

and the flash point is: 

𝜌 𝑓𝑝 = 𝑅𝐹𝑂
�⃗� 𝜌,𝑠

𝑘0
= −𝑓

𝑘𝑑
𝑘0
sin 𝜃𝑠 (cos𝜙𝑠 �̂� + sin 𝜙𝑠 �̂�) (4.61) 

We can also derive the limit of the coma phase (Appendix I.3): 

𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎 ≤

𝜎

𝜋𝑒
[2𝑓#(𝑒 − 1) (2𝑓# +√4𝑓#

2 − 1 ) − 𝑒] (4.62) 

4.2.2.2   Point source incidence 

In the case of an elliptical mirror, we use a point source to generate the incident field. We can 

place a source at either the upper focal plane or the lower focal plane. 

⚫ Case 1: Source placed at the upper focal plane 

In Fig. 4.17, a source is placed at the upper focal plane with the displacement 𝜌 𝑠. In this case, 

the mirror and the FO sphere are parameterized by (𝜃2, 𝜙2), while the incident field is defined 

by (𝜃1, 𝜙1).  
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Figure 4.17: Geometry used to evaluate the progressive phase shift for an elliptical mirror with a point source 

placed at the upper focal plane. 

 

Here we assume the approximation in Eq. (4.44 ) is still applicable, and define the 

progressive phase term as Φ = Φ1. To calculate Φ1, we can express |𝑟 1
′| as: 

|𝑟 1
′| = |𝑟 1 − 𝜌 𝑠| = √(𝑟 1 − 𝜌 𝑠) ⋅ (𝑟 1 − 𝜌 𝑠) = 𝑟1√1 −

2

𝑟1
(�̂�1 ⋅ 𝜌 𝑠) +

𝜌𝑠2

𝑟1
2

(4.63) 

where 𝑟1 = |𝑟 1|, �̂�1 = 𝑟 1/𝑟1, and 𝜌𝑠 = |𝜌 𝑠|. Eq. (4.63) can be approximated by expanding the 

square root for small argument to the second order, i.e. √1 + 𝑥 ≃ 1 +
𝑥

2
−
𝑥2

8
+⋯: 

|𝑟 1
′| = 𝑟1 − �̂�1 ⋅ 𝜌 𝑠 +

𝜌𝑠
2

2𝑟1
[1 − (�̂�1 ⋅ �̂�𝑠)

2] +
𝜌𝑠
3

2𝑟1
2
(�̂�1 ⋅ �̂�𝑠) (4.64) 

where �̂�𝑠 = 𝜌 𝑠/𝜌𝑠. By using the value of |𝑟 1
′|, the incident field can be expressed as follows: 

�⃗� 𝑖 = (𝐸𝑖
⊥�̂� + 𝐸𝑖

∥𝜃)
𝑒−𝑗𝑘0|𝑟 1

′|

|𝑟 1
′|

≈
(𝐸𝑖

⊥�̂� + 𝐸𝑖
∥𝜃)

𝑟1
𝑒
−𝑗𝑘0[𝑟1−�̂�1⋅�⃗⃗� 𝑠+

𝜌𝑠
2

2𝑟1
[1−(�̂�1⋅�̂�𝑠)

2]+
𝜌𝑠
3

2𝑟1
2(�̂�1⋅�̂�𝑠)]

 

=
(𝐸𝑖

⊥�̂� + 𝐸𝑖
∥𝜃)

𝑟1
𝑒−𝑗𝑘0𝑟1𝑒

−𝑗𝑘0[−�̂�1⋅�⃗⃗� 𝑠+
𝜌𝑠
2

2𝑟1
[1−(�̂�1⋅�̂�𝑠)

2]+
𝜌𝑠
3

2𝑟1
2(�̂�1⋅�̂�𝑠)]

(4.65) 

Therefore, we can approximate �⃗� 𝑖 by the broadside illumination with a progressive phase term: 

�⃗� 𝑖 ≃ �⃗� 𝑖(𝜌 𝑠 = 0)e
−𝑗Φ1 (4.66) 

where Φ1 is expressed as below: 

Φ1 = 𝑘0 [−�̂�1 ⋅ 𝜌 𝑠 +
𝜌𝑠
2

2𝑟1
[1 − (�̂�1 ⋅ �̂�𝑠)

2] +
𝜌𝑠
3

2𝑟1
2
(�̂�1 ⋅ �̂�𝑠)] (4.67) 

Next, we can divide the phase term e−𝑗Φ1  , similar to Eq. (4.52), into linear phase term and 

coma phase term: 
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𝑒−𝑗Φ1 = 𝑒𝑗𝑘0�̂�1⋅�⃗⃗� 𝑠𝑒
−𝑗𝑘0

𝜌𝑠
2

2𝑟1
[1−(�̂�1⋅�̂�𝑠)

2]
𝑒
−𝑗𝑘0

𝜌𝑠
3

2𝑟1
2(�̂�1⋅�̂�𝑠)

(4.68)
 

Since the mirror is parameterized by 𝑟 2(𝜃2), we can represent 𝑟 1(𝜃1) as a function of 𝑟 2(𝜃2), 

and calculate �̂�1 ⋅ 𝜌 𝑠 as follows (Appendix H.1): 

�̂�1 ⋅ 𝜌 𝑠 =
𝑟2
𝑟1
�̂�2 ⋅ 𝜌 𝑠 =

𝑟2
𝑟1
sin 𝜃2 �̂� ⋅ 𝜌 𝑠 (4.69) 

By substituting Eq. (4.69) in Eq. (4.68), and defining a compensation phase term Φ𝑐𝑜𝑚𝑝1: 

𝑒−𝑗Φ1 = 𝑒
𝑗
𝑟2
𝑟1
�⃗� 𝜌⋅�⃗⃗� 𝑠𝑒−𝑗Φ𝑐𝑜𝑚𝑝1 (4.70) 

where �⃗� 𝜌 = 𝑘0 sin 𝜃2 �̂� and Φ𝑐𝑜𝑚𝑝1 = 𝑘0 [
𝜌𝑠
2

2𝑟1
[1 − (�̂�1 ⋅ �̂�𝑠)

2] +
𝜌𝑠
3

2𝑟1
2 (�̂�1 ⋅ �̂�𝑠)].  

 

Moreover, 𝑟2/𝑟1 can be expressed as follows (Appendix H.1): 

𝑟2
𝑟1
= 𝑀1(1 + Φ𝑐𝑜𝑚𝑎1(𝜃2)) (4.71) 

where 𝑀1 = 𝑅2𝑙/𝑅1𝑙, and Φ𝑐𝑜𝑚𝑎1(𝜃2) is: 

Φ𝑐𝑜𝑚𝑎1(𝜃2) = − 

𝑒2(cos 𝜃1 cos 𝜃02 − cos 𝜃2 cos 𝜃01  ) + 𝑒(cos 𝜃01 − cos 𝜃1 + cos 𝜃02 − cos 𝜃2)

(1 − 𝑒 cos 𝜃2)(1 + 𝑒 cos 𝜃01)
(4.72) 

If we define the flash point 𝜌 𝑓𝑝 as: 

𝜌 𝑓𝑝 = 𝑀1𝜌 𝑠 (4.73) 

By substituting Eq. (4.71) in Eq. (4.70), we can divide the progressive phase term into three 

terms: 

𝑒−𝑗Φ1 = 𝑒−𝑗Φ𝑐𝑜𝑚𝑝1𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝𝑒𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝Φ𝑐𝑜𝑚𝑎1 (4.74) 

The first term, 𝑒−𝑗Φ𝑐𝑜𝑚𝑝1 , is the compensation phase term, the second term, 𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝, is the 

linear phase term, and the last term, 𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝Φ𝑐𝑜𝑚𝑎1, is the coma phase term. Consequently, as 

described in Eq. (4.45), the analytical GO field can be approximated as: 

�⃗� 𝐺𝑂(𝜌 𝑠) ≈ �⃗� 𝐺𝑂(𝜌 𝑠 = 0)𝑒−𝑗Φ𝑐𝑜𝑚𝑝1𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝𝑒𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝Φ𝑐𝑜𝑚𝑎1 (4.75) 

Furthermore, Φ𝑐𝑜𝑚𝑝1 can be approximated by a constant within a specific region |𝜌𝑠| ≤ 𝜌𝑠,𝑚𝑎𝑥
𝑓

 

(Appendix H.2): 

Φcomp1 ≈ 𝑘0
𝜌𝑠
2

2𝑅1𝑙
(4.76) 

If the displacement of the source is inside this region, the GO field can be expressed as: 

�⃗� 𝐺𝑂(𝜌 𝑠) ≈ �⃗� 𝐺𝑂(𝜌 𝑠 = 0)𝑒
−𝑗𝑘0

𝜌𝑠
2

2𝑅1𝑙𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝𝑒𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝Φ𝑐𝑜𝑚𝑎1 (4.77) 
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⚫ Case 2: Source placed at lower focal plane 

In Fig. 4.18, a source is placed at the lower focal plane with the displacement 𝜌 𝑠. In this case, 

the mirror and the FO sphere are parameterized by (𝜃1, 𝜙1), while the incident field is defined 

by (𝜃2, 𝜙2).  

 

 

Figure 4.18: Geometry used to evaluate the progressive phase shift for an elliptical mirror with a point source 

placed at the lower focal plane. 

 

We define the progressive phase term as Φ = Φ2. Similar to the steps in case 1, we can 

expand |𝑟 2
′| and obtain Φ2: 

Φ2 = 𝑘0 [−�̂�2 ⋅ 𝜌 𝑠 +
𝜌𝑠
2

2𝑟2
[1 − (�̂�2 ⋅ �̂�𝑠)

2] +
𝜌𝑠
3

2𝑟2
2
(�̂�2 ⋅ �̂�𝑠)] (4.78) 

After similar derivations described in case 1, one can divide the progressive phase term into 

compensation phase term, linear phase term and coma phase term: 

𝑒−𝑗Φ2 = 𝑒−𝑗𝑘0Φ𝑐𝑜𝑚𝑝2𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝𝑒𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝Φ𝑐𝑜𝑚𝑎2 (4.79) 

where Φ𝑐𝑜𝑚𝑝2 = 𝑘0 [
𝜌𝑠
2

2𝑟2
[1 − (�̂�2 ⋅ �̂�𝑠)

2] +
𝜌𝑠
3

2𝑟2
2 (�̂�2 ⋅ �̂�𝑠)] and �⃗� 𝜌 = 𝑘0 sin 𝜃1 �̂�. The flash point 

is: 

𝜌 𝑓𝑝 = 𝑀2𝜌 𝑠,  𝑀2 =
𝑅1𝑙
𝑅2𝑙

(4.80) 

and Φ𝑐𝑜𝑚𝑎2(𝜃1) is: 

Φ𝑐𝑜𝑚𝑎2(𝜃1) = 

𝑒2(cos 𝜃1 cos 𝜃02 − cos 𝜃2 cos 𝜃01  ) + 𝑒(cos 𝜃01 − cos 𝜃1 + cos 𝜃02 − cos 𝜃2)

(1 + 𝑒 cos 𝜃1)(1 − 𝑒 cos 𝜃02)
(4.81) 
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Therefore, as described in Eq. (4.45), the analytical GO field can be approximated as: 

�⃗� 𝐺𝑂(𝜌 𝑠) ≈ �⃗� 𝐺𝑂(𝜌 𝑠 = 0)𝑒
−𝑗𝑘0Φ𝑐𝑜𝑚𝑝2𝑒𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝Φ𝑐𝑜𝑚𝑎2 (4.82) 

Moreover, Φ𝑐𝑜𝑚𝑝2 can be approximated by a constant within a specific region |𝜌𝑠| ≤ 𝜌𝑠,𝑚𝑎𝑥
𝑓

 

(Appendix H.2): 

Φcomp2 ≈
𝜌𝑠
2

2𝑅2𝑙
(4.83) 

If the displacement of the source is inside this region, the GO field can be expressed as: 

�⃗� 𝐺𝑂(𝜌 𝑠) ≈ �⃗� 𝐺𝑂(𝜌 𝑠 = 0)𝑒
−𝑗𝑘0

𝜌𝑠
2

2𝑅2𝑙𝑒𝑗�⃗�
 𝜌⋅�⃗⃗� 𝑓𝑝𝑒𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝Φ𝑐𝑜𝑚𝑎2 (4.84) 

⚫ Illustration of phase terms 

Here we show an example to better illustrate the linear, coma, and compensation phase terms. 

We consider an elliptical mirror with the diameter of 𝐷𝑚 = 100𝜆0 (𝑓0 = 300 GHz), the semi-

major axis of 𝑎 = 86𝜆0, and the focal distance of 𝑐 = 17𝜆0, i.e. the eccentricity is 𝑒 = 0.2. 

The mirror is illuminated by a unitary Huygens source placed at the upper focal plane, with the 

electric current oriented along �̂� and a displacement in x-direction, 𝑥𝑠 = 3.3𝜆0𝑓#
𝑚. In this case, 

the f-number is calculated as 𝑓#
𝑚 = 1.  

Fig. 4.19 shows the variation of linear, coma, and compensation phase with respect to 𝜃. As 

it can be seen, the linear phase varies linearly, the coma phase has a maximum around 𝜃 ≈

1

2
𝜃02 = 15∘, and the compensation phase increases slowly and behaves like a constant. In this 

case, the region where the compensation phase can be approximated as a constant is calculated 

as 𝜌𝑠,𝑚𝑎𝑥
𝑓

= 3𝜆0𝑓#
𝑚. The source displacement is 𝜌𝑠 = 3.3𝜆0𝑓#

𝑚; therefore, this approximation 

is not applicable. 

 

Figure 4.19: Variation of linear, coma, and compensation phase for an elliptical mirror with 𝐷𝑚 = 100𝜆0 (𝑓0 =
300 GHz), 𝑓#

𝑚 = 1, and 𝑒 = 0.2, illuminated by a unitary Huygens source placed at the upper focal plane, with 

the electric current oriented along �̂� and a displacement in x-direction, 𝑥𝑠 = 3.3𝜆0𝑓#
𝑚. 
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Furthermore, we can observe the field focalized on the focal plane by the same mirror and 

the same source, as shown in Fig. 4.20. As it can be seen, the fields evaluated by using the FO 

analysis are compared with the PO result. Moreover, in FO analysis, we compare the field 

calculated by using all phase terms with the one with only the linear phase term and the one 

without the compensation phase term. Here the case of broadside incidence is also shown as a 

contrast.  

By using Eq. (4.73), one can calculate the flash point as: 𝜌 𝑓𝑝 = −4. 5𝜆0𝑓#
𝑚�̂�. Therefore, 

the linear phase term translates the main beam to this flash point, shown by the dashed red line 

in Fig. 4.20a. When the coma phase term is included, the main beam deviates from the flash 

point and the side lobes become asymmetric, represented by the dashed black line. However, 

when the compensation phase term is included, the amplitude remains almost the same, shown 

by the red solid line. Therefore, we turn to the phase plot (Fig. 4.20b). It can be seen when the 

compensation phase term is neglected, the phase of the focal plane field changes obviously 

within the FO applicability region. Therefore, this phase term must be included to compensate 

the phase of the focal plane field. It is worth mentioning that the compensation phase is 

quantified by the source displacement, 𝜌 𝑠. When 𝜌 𝑠 is very small, the compensation phase can 

be approximated as a constant, or even be neglected. 

⚫ Limit of the coma phase 

For the limit of the coma phase, we introduced the term Φ𝑐𝑜𝑚𝑎 instead of 𝛿𝑛. Therefore, the 

condition in Eq. (4.55) should be modified: 

�⃗� 𝜌 ⋅ 𝜌 𝑓𝑝Φ𝑐𝑜𝑚𝑎 ≤ 𝜎 (4.85) 

It is derived in Appendix I.4 that when the observation plane is at the lower focal plane, the 

maximum number of beams is: 

𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎 ≤

𝜎

2𝜋𝑓#

1

max(sin 𝜃2Φ𝑐𝑜𝑚𝑎1(𝜃2))
(4.86) 

where the term “max(sin 𝜃2Φ𝑐𝑜𝑚𝑎1(𝜃2))” can be roughly approximated by substituting 𝜃2 =

1

2
𝜃02; or accurately evaluated by using numerical calculation. When the observation plane is at 

the upper focal plane: 

𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎 ≤

𝜎

2𝜋𝑓#

1

max(sin 𝜃1Φ𝑐𝑜𝑚𝑎2(𝜃1))
(4.87) 

where the term “max(sin 𝜃1Φ𝑐𝑜𝑚𝑎2(𝜃1))” can be roughly approximated by substituting 𝜃1 =

1

2
𝜃01, or calculated numerically. 
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(a) 

 

(b) 

Figure 4.20: The x-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
100 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 1 and the eccentricity 𝑒 = 0.2. The mirror is illuminated by a unitary Huygens 

sources placed at the upper focal plane, with the electric current oriented along �̂�  and a displacement in x-

direction, 𝑥𝑠 = 3.3𝜆0𝑓#
𝑚. The solid lines are calculated by resorting to the FO analysis, while the squares represent 

the PO results. The dashed red and black lines represent the cases when the coma and compensation phase terms 

are neglected, respectively: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. The blue region 

is the FO applicability region. 
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4.2.2.3   Comparison of coma limits 

We have derived the limits of the coma phase (coma limits) for parabolic reflectors, elliptical 

lenses, hyperbolic lenses and elliptical mirrors. It can be found that a coma limit is always a 

function of the f-number, 𝑓#. Here we compare the coma limits for different QO components.  

Here we choose the operative frequency as 𝑓0 = 300 GHz and fix the diameter as 𝐷 =

100𝜆0 . This diameter is not suitable for elliptical lenses; therefore, we compare parabolic 

reflectors, hyperbolic lenses and elliptical mirrors. For hyperbolic lenses, the relative 

permittivity is chosen as 𝜀𝑟 = 2. In the case of elliptical mirrors, the eccentricity is selected as 

𝑒 = 0.2.  

The comparison of the coma limits is shown in Fig. 4.21. As it can be seen, all coma limits 

(𝑁𝑚𝑎𝑥
𝑐𝑜𝑚𝑎) increase monotonically with respect to the f-number, 𝑓#. For a fixed 𝑓#, the elliptical 

mirror with the observation at the upper focal plane always has the highest limit; while the 

hyperbolic lens always has the lowest one. Therefore, we can conclude that elliptical mirrors 

are less sensitive to the coma phase term compared with parabolic reflectors and hyperbolic 

lenses. 

 

Figure 4.21: Comparison of coma limits for parabolic reflectors, hyperbolic lenses, and elliptical mirrors (with 

observation at upper and lower focal planes). 
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Chapter 5: Validation of GO fields and PWS 

In chapter 3, we have discussed the importance of PWS and shown that it is proportional to the 

GO fields on a FO sphere. And later in chapter 4, GO ray fields and analytical GO fields were 

derived explicitly. Finally, in this chapter, we focus on validating GO fields and their 

corresponding PWS.  

The radius of a FO sphere is chosen as large as possible since the applicability region for 

the FO approximations is proportional to this radius, as described in Eq. (3.12). As a result, the 

distance between the surface of a QO component and the FO sphere could be very small. In 

such a case, the fields on the FO sphere are numerically difficult to be evaluated by using the 

PO analysis, namely it is hard to validate GO fields directly on a FO sphere. In FO analysis, it 

is known in Eq. (3.9 ) that focal plane fields can be obtained by integrating GO fields. 

Consequently, instead of validating the fields on the FO sphere, one can validate the fields on 

the focal plane which can be calculated easily and accurately by the PO analysis. If focal plane 

fields are validated by the PO, one can assume GO fields are also validated. This assumption 

is also applicable for validating PWS. One can validate the focal plane fields evaluated by using 

the coherent FO method. If the focal plane fields are validated, the PWS is also assumed to be 

validated.  

In section 5.1, GO fields are validated. Focal plane fields calculated by using the FO 

analysis are compared with the ones evaluated by using the PO analysis. In section 5.2, first 

we show some numerical examples of PWS. We compare the full CFO spectrum with the 

linearized CFO spectrum. And then we validate the coherent FO for all QO components. 

5.1 Validating the derived GO fields 

In this section, we validate both GO ray fields (section 4.1) and analytical GO fields (section 

4.2) by validating the focal plane fields with the PO analysis. Here we use Eq. (3.9) to calculate 

focal plane fields, i.e. use both electric and magnetic GO fields. We call the focal plane fields 

calculated by using the GO ray fields “GO-FO”, and the ones evaluated by using the analytical 

GO fields “Analytical FO”.  

Three types of QO components, namely elliptical lenses, hyperbolic lenses, and elliptical 

mirrors, with TM polarized incidence are discussed here. Additional examples of the other QO 

components and TE validation are listed in Appendix J. Here we validate both amplitude and 

phase and show one of the main planes (𝑦 = 0). FO applicability regions are highlighted by 

blue regions, and phase is wrapped from −180∘ to 180∘. 
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5.1.1  Elliptical lens 

An elliptical silicon ( 𝜀𝑟 = 11.9 ) lens with 𝐷𝑙 = 5𝜆0  ( 𝑓0 = 300 GHz ) and 𝑓#
𝑙 = 0.6  is 

introduced here. A quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 =

2.62) is applied. For such a lens, two different scenarios are analyzed: One is the case with 

small skew angle; the other is the case with large skew angle. 

⚫ Case 1: Small skew angle 

In this case, the lens is illuminated by a unitary TM polarized plane wave with the skew 

angle of 𝜃𝑠 = 10
∘, 𝜙𝑠 = 0

∘, meaning analytical GO expressions are applicable. Fig. 5.1 shows 

the x-component of the electric fields on the focal plane of the lens. The focal plane fields 

evaluated by resorting to the analytical FO and the GO-FO approaches are compared with the 

one obtained using the PO. Here the 3D PO field is plotted in the inset of the figure. It can be 

seen in the figure, the agreement is within the accepted error margin inside the FO applicability 

region, for both the amplitude and phase. 

 

  

(a) (b) 

Figure 5.1: The x-components of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 5 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle 

of 𝜃𝑠 = 10∘, 𝜙𝑠 = 0
∘. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is 

applied. The focal plane fields calculated by using the analytical FO and the GO-FO approaches are compared 

with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue 

region is the FO applicability region. Inset is the 3D PO field. 

 

⚫ Case 2: Large skew angle 

In this case, the lens is illuminated by a unitary TM polarized plane wave with the skew 

angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0

∘, meaning analytical GO expressions are no longer accurate. Fig. 

5.2 shows the x-component of the electric fields on the focal plane of the lens. The focal plane 
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fields evaluated by using the analytical FO and the GO-FO approaches are compared with the 

one obtained using the PO. As it can be seen, the analytical FO approach does not match with 

the PO. While for the GO-FO approach, the agreement is very good within the FO applicability 

region. Therefore, when the skew angle is larger than 11∘, one should always apply the GO-

FO approach to ensure accuracy. 

 

  

(a) (b) 

Figure 5.2:The x-components of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 5 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle 

of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0
∘. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is 

applied. The focal plane fields calculated by using the analytical FO and the GO-FO approaches are compared 

with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue 

region is the FO applicability region. Inset is the 3D PO field. 

 

5.1.2  Hyperbolic lens 

Fig. 5.3 shows the x-component of the electric fields on the focal plane of a hyperbolic 

plastic (𝜀𝑟 = 2)  lens with 𝐷ℎ = 100𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 1. The incident field is a 

unitary TM polarized plane wave with the skew angle of 𝜃𝑠 = 3.2(𝜆𝑑/𝐷ℎ) = 1.3
∘, 𝜙𝑠 = 0∘. 

The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are 

compared with the one obtained using the PO. Here the 3D PO field is plotted in the inset of 

the figure. 

 As it can be seen in the figure, for the amplitude comparison, the analytical FO and the 

GO-FO approaches are validated by the PO within the FO applicability region. For the phase 

comparison, the analytical FO approach is still very good while the GO-FO approach performs 

some acceptable error. This is due to the fact that the interpolation operation involved in 

calculating the GO ray fields for a hyperbolic lens is not very accurate for a small f-number 

geometry. 
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(a) (b) 

Figure 5.3: The x-component of the electric fields on the focal plane of a hyperbolic plastic (𝜀𝑟 = 2) lens with 

𝐷ℎ = 100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 1, illuminated by a unitary TM polarized plane wave with the skew angle 

of 𝜃𝑠 = 3.2(𝜆𝑑/𝐷ℎ) = 1.3
∘, 𝜙𝑠 = 0

∘.The focal plane fields calculated by using the analytical FO and the GO-FO 

approaches are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes 

(𝑦 = 0) is shown. Blue region is the FO applicability region. Inset is the 3D PO field.  

 

5.1.3  Elliptical mirror 

In the case of an elliptical mirror, a source can be placed at either its upper focal plane or 

its lower focal plane. Here we consider a mirror with the diameter of 𝐷𝑚 = 100𝜆0  (𝑓0 =

300 GHz), the semi-major axis of 𝑎 = 80𝜆0 , and the focal distance of 𝑐 = 20𝜆0 , i.e. the 

eccentricity is 𝑒 = 0.25. 

⚫ Case 1: Source placed at the upper focal plane 

In this case, the f-number is calculated as 𝑓#
𝑚 = 0.95. The incident field is generated by a 

unitary Huygens source placed at the upper focal plane, with the electric current oriented along 

�̂� and a displacement in x-direction, 𝑥𝑠 = 2.2𝜆0𝑓#
𝑚. Fig. 5.4 shows the x-component of the 

electric fields on the focal plane of the mirror. The focal plane fields calculated by using the 

analytical FO and the GO-FO approaches are compared with the one obtained using the PO. It 

can be seen in the figure, the analytical FO and the GO-FO approaches are in fair agreement 

with the PO inside the FO applicability region, for both the amplitude and the phase. 
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(a) (b) 

Figure 5.4: The x-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
100 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.95 and 𝑒 = 0.25. The mirror is illuminated by a unitary Huygens source placed 

at the upper focal plane, with the electric current oriented along �̂�  and a displacement in x-direction, 𝑥𝑠 =
2.2𝜆0𝑓#

𝑚. The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are compared 

with the one obtained using PO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region 

is the FO applicability region. Inset is the 3D PO field. 

⚫ Case 2: Source placed at the lower focal plane 

In this case, the f-number is calculated as 𝑓#
𝑚 = 0.6. The unitary Huygens source is placed 

at the lower focal plane, with the electric current oriented along �̂� and a displacement in x-

direction, 𝑥𝑠 = 4.7𝜆0𝑓#
𝑚. Fig. 5.5 shows the x-component of the electric fields on the focal 

plane of the mirror. The focal plane fields evaluated by resorting to the analytical FO and the 

GO-FO approaches are compared with the one obtained using the PO. As it can be seen in the 

figure, the agreement is very good inside the FO applicability region, for both the amplitude 

and the phase. 

  

(a) (b) 

Figure 5.5: The x-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
100 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.6 and 𝑒 = 0.25. The mirror is illuminated by a unitary Huygens source placed 

at the lower focal plane, with the electric current oriented along �̂�  and a displacement in x-direction, 𝑥𝑠 =
4.7𝜆0𝑓#

𝑚. The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are compared 

with the one obtained using PO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region 

is the FO applicability region. Inset is the 3D PO field. 
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5.2 Numerical examples and validation of the coherent FO 

It has been discussed in section 3.3 that the coherent FO can evaluate the PWS of the focal 

plane field that includes also its phase property. Two types of spectra are derived. The first one 

is the full CFO spectrum that is evaluated by calculating a convolution integral. The second 

one is the linearized CFO spectrum. By using the linearization approximation on the quadratic 

phase term, the convolution is approximated by a linear shift in the spectral domain, and the 

full spectrum becomes a linearized local spectrum. 

In section 5.2.1, numerical examples of the preceding spectra are shown. In section 5.2.2, 

the coherent FO method is validated for all QO components. The focal plane fields evaluated 

by using the coherent FO are compared with the ones calculated by the FO with quadratic phase 

term, i.e. the analytical FO and GO-FO discussed in section 5.1.  

5.2.1  Numerical examples of PWS 

It has been discussed in section 3.3 that when the observation point is not far away from the 

center of the focal plane, i.e. the quadratic phase term is negligible, the PWS of the focal plane 

field is �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) which is proportional to the GO fields. However, when we observe a point 

further from the center, the quadratic phase term must be included and the PWS cannot be 

approximated by �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦). In such a case, it is derived in the coherent FO method that the 

full CFO spectrum of the focal plane field is a convolution between two spectral functions: 

�⃗� 𝑓(−𝑘𝑥, −𝑘𝑦) = 𝐹(−𝑘𝑥, −𝑘𝑦) ∗ �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) (5.1) 

where 𝐹(𝑘𝑥, 𝑘𝑦) is the FT of the quadratic phase term and �⃗� 𝐹𝑂(−𝑘𝑥 , −𝑘𝑦) is described in Eq. 

(3.26). Moreover, the convolution operation in Eq. (5.1) can be simplified by applying the 

linearization approximation on the quadratic phase term. The linearized CFO spectrum can be 

expressed as follows: 

�⃗� 𝑓(−𝑘𝑥, −𝑘𝑦) = 𝑒
−𝑗𝑘

|�⃗⃗� 𝑜|
2

2𝑅𝐹𝑂�⃗� 𝐹𝑂(�⃗� 𝜌 + �⃗� 𝑜)𝑒
𝑗(�⃗� 𝜌+�⃗� 𝑜)⋅�⃗⃗� 𝑜 (5.2) 

where 𝜌 𝑜  is the position where we introduce the linearization, �⃗� 𝜌 = 𝑘𝑥�̂� + 𝑘𝑦�̂�, and �⃗� 𝑜 =

𝑘

𝑅𝐹𝑂
𝜌 𝑜.  

To better illustrate these spectra, we take a parabolic reflector as an example. We first 

assume the quadratic phase term can be neglected; therefore, the spectrum is �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦). 

Next, we calculate the convolution integral in Eq. (5.1) to evaluate the full CFO spectrum. 

Furthermore, we apply the linearization approximation and calculate the linearized CFO 
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spectrum described in Eq. (5.2). Finally, the focal plane fields evaluated by using �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦), 

the full spectrum and the linearized spectrum are compared with the one calculated by the FO 

with quadratic phase term, i.e. the analytical FO and GO-FO described in section 5.1.  

The parabolic reflector has the diameter of 𝐷𝑟 = 500𝜆0 (𝑓0 = 300 GHz) and the f-number 

of 𝑓#
𝑟 = 4, illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 =

20(𝜆0/𝐷𝑟) = 2.3
∘, 𝜙𝑠 = 0∘.  

⚫ Spectrum of �⃗⃗� 𝑭𝑶(𝒌𝒙, 𝒌𝒚) 

When the quadratic phase term is neglected, the PWS of the focal plane field is �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦), 

as shown in Fig. 5.6. Since the rim angle of the reflector is 𝜃0, the spectrum is bounded within 

𝑘𝜌0 = 𝑘0 sin 𝜃0 . Moreover, the amplitude spectrum is divided into |�⃗� 𝐹𝑂,𝜃|  and |�⃗� 𝐹𝑂,𝜙| 

components. 

 

 

Figure 5.6: Amplitude of the spectral function �⃗� 𝐹𝑂(𝑘𝑥 , 𝑘𝑦) of a parabolic reflector with 𝐷𝑟 = 500𝜆0  (𝑓0 =

300 GHz ) and 𝑓#
𝑟 = 4 , illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 =

20(𝜆0/𝐷𝑟) = 2.3
∘, 𝜙𝑠 = 0

∘. The spectrum is bounded within 𝑘𝜌0: Left-hand side is the |�⃗� 𝐹𝑂,𝜃| component while 

the right-hand side is the |�⃗� 𝐹𝑂,𝜙| component. 

 

⚫ Full CFO spectrum 

Next, we consider convolving �⃗� 𝐹𝑂(−𝑘𝑥, −𝑘𝑦) with 𝐹(𝑘𝑥, 𝑘𝑦) and calculating the full CFO 

spectrum, �⃗� 𝑓(−𝑘𝑥, −𝑘𝑦). The amplitude spectrum is shown in Fig. 5.7 and is divided into 

|�⃗� 𝑓,𝜃| and |�⃗� 𝑓,𝜙| components. Due to the property of the convolution operation, the spectrum 

is not bounded within 𝑘𝜌0. As it can be seen, we limit the spectrum within 1.7𝑘𝜌0, since the 

spectrum outside this region is negligible. 
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Figure 5.7: Amplitude of the full spectrum �⃗� 𝑓(−𝑘𝑥 , −𝑘𝑦)  of a parabolic reflector with 𝐷𝑟 = 500𝜆0  (𝑓0 =

300 GHz ) and 𝑓#
𝑟 = 4 , illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 =

20(𝜆0/𝐷𝑟) = 2.3
∘, 𝜙𝑠 = 0

∘ . The spectrum is bounded within 1.7𝑘𝜌0 : Left-hand side is the |�⃗� 𝑓,𝜃| component 

while the right-hand side is the |�⃗� 𝑓,𝜙| component. 

 

⚫ Linearized CFO spectrum 

In this case, we apply the linearization approximation on the quadratic phase term, and 

linearize the full spectrum in the surrounding of the flash point position. The skew angle of the 

incident plane wave is 𝜃𝑠 = 20(𝜆0/𝐷𝑟) = 2.3
∘, 𝜙𝑠 = 0∘. Therefore, the linearization point is 

equal to the flash point and can be calculated as 𝜌 𝑜 = 𝜌 𝑓𝑝 ≈ 20𝜆0𝑓#
𝑟�̂�. Fig. 5.8 shows the 

amplitude of the linearized CFO spectrum, i.e. |�⃗� 𝑓(−𝑘𝑥, −𝑘𝑦)| = |�⃗� 𝐹𝑂(�⃗� 𝜌 + �⃗� 𝑜)|, with |�⃗� 𝑓,𝜃| 

and |�⃗� 𝑓,𝜙| components. It can be seen in the figure that the linearized spectrum is a linear 

translation of |�⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦)| (Fig. 5.6), with the spectral shift �⃗� 𝑥𝑜 =
𝑘0

𝑅𝐹𝑂
𝜌 𝑜. 

 

 

Figure 5.8: Amplitude of the linearized spectrum �⃗� 𝑓(−𝑘𝑥, −𝑘𝑦) of a parabolic reflector with 𝐷𝑟 = 500𝜆0 (𝑓0 =

300 GHz ) and 𝑓#
𝑟 = 4 , illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 =

20(𝜆0/𝐷𝑟) = 2.3
∘, 𝜙𝑠 = 0

∘. The spectrum is shifted with 𝑘𝑥𝑜 from the center and bounded within 𝑘𝜌0: Left-hand 

side is the |�⃗� 𝑓,𝜃| component while the right-hand side is the |�⃗� 𝑓,𝜙| component. 
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⚫ Focal plane fields 

The focal plane field can be evaluated by integrating its PWS, as described in Eq. (3.33). 

Fig. 5.9 shows the x-component of the electric fields on the focal plane of the parabolic 

reflector. The focal plane fields evaluated by using the full spectrum and the linearized 

spectrum are compared with the ones obtained using the FO with and without the quadratic 

phase term. Here for the linearized spectrum, the linearization point is chosen the same the 

flash point, i.e. 𝜌 𝑜 ≈ 20𝜆0𝑓#
𝑟�̂�.  

It can be seen in the figure that the full-spectrum coherent FO is in fair agreement with the 

analytical FO within the FO applicability region. For the linearized-spectrum coherent FO, it 

is validated within the PWS applicability region. Outside this region, the phase error becomes 

larger. Here the PWS applicability region is the region where the linearization approximation 

is applicable. While for the FO without the quadratic phase term, the amplitude is accurate but 

the phase shows a large error. Therefore, the quadratic phase term must be included when the 

observation point is far away from the focus. 

   

(a) (b) 

Figure 5.9: The x-component of the electric fields on the focal plane of a parabolic reflector with 𝐷𝑟 = 500𝜆0 

(𝑓0 = 300 GHz) and 𝑓#
𝑟 = 4, illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 =

20(𝜆0/𝐷𝑟) = 2.3
∘, 𝜙𝑠 = 0

∘. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈ 20𝜆0𝑓#
𝑟�̂�. And 

the focal plane fields calculated by using the full-spectrum and linearized-spectrum coherent FO are compared 

with the ones obtained using the FO with and without quadratic phase term: (a) Amplitude. (b) Phase. One of the 

main planes (𝑦 = 0) is shown. Blue region is the FO applicability region and the green region is the PWS 

applicability region. 

5.2.2  Validation examples of the coherent FO 

The full-spectrum coherent FO is accurate within the entire FO applicability region; however, 

the calculation of the convolution integral requires large number of points to converge, which 

is time-consuming and numerically cumbersome. Moreover, full spectrum is not always needed 

in practice. One only needs to obtain a spectrum that is locally accurate around the position of 
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a feed antenna. Therefore, in this subsection, we only validate the linearized-spectrum coherent 

FO, by validating the focal plane fields calculated by it.  

Here the spectral function �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) is evaluated by using both electric and magnetic GO 

fields as: 

�⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) =
𝑗𝜋𝑅𝐹𝑂𝑒

−𝑗𝑘𝑅𝐹𝑂

𝑘𝑧
{[�⃗� 𝐺𝑂 − (�̂� ⋅ �⃗� 𝐺𝑂)�̂�] − 𝜁(�̂� × �⃗⃗� 𝐺𝑂)}𝑐𝑖𝑟𝑐(𝑘𝜌, 𝑘𝜌0) (5.3) 

Moreover, only TM validation is introduced here. Examples of TE validation are listed in 

Appendix K.  

⚫ Elliptical lens 

Here an elliptical lens with a matching layer is considered. Fig. 5.10 shows the x-component 

of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 = 5𝜆0 

(𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6. A quarter-wavelength matching layer at 300 GHz made of 

Parylene (𝜀𝑚 = 2.62) is applied. The lens is illuminated by a unitary TM polarized plane wave 

with the skew angle of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0∘  which corresponds to a flash point 𝜌 𝑓𝑝 ≈

−1.7𝜆𝑑𝑓#
𝑙�̂�. The linearization position is chosen the as the flash point, i.e. 𝜌 𝑜 = 𝜌 𝑓𝑝. And the 

focal plane field evaluated by using the coherent FO is compared with the one obtained using 

the GO-FO. As it can be seen, the coherent FO is in very good agreement with the GO-FO, for 

both the amplitude and the phase, within the PWS applicability region. 

  

(a) (b) 

Figure 5.10: The x-component of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens 

with 𝐷𝑙 = 5 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TM polarized plane wave with the skew 

angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0∘. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) 

is applied. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈ −1.7𝜆𝑑𝑓#
𝑙�̂�. And the focal plane 

field calculated by using the coherent FO is compared with the one obtained using the GO-FO: (a) Amplitude. (b) 

Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO applicability region and green region is 

the PWS applicability region. 
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⚫ Hemispherical lens 

A hemispherical silicon (𝜀𝑟 = 11.9 ) lens with 𝐷ℎ𝑙 = 5𝜆0  (𝑓0 = 300 GHz ), 𝑓#
ℎ𝑙 = 0.6 , 

𝑅𝑠𝑝ℎ = 2.6𝜆0, and 𝐿 = 0.362𝑅𝑠𝑝ℎ is introduced here. A quarter-wavelength matching layer at 

300 GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The lens is illuminated by a unitary TM 

polarized plane wave with the skew angle of 𝜃𝑠 = 15
∘, 𝜙𝑠 = 0

∘ which corresponds to a flash 

point 𝜌 𝑓𝑝 ≈ −1.3𝜆𝑑𝑓#
ℎ𝑙�̂�. The linearization point is chosen the as the flash point. Fig. 5.11 

shows the x-component of the electric fields on the focal plane of the lens. The focal plane field 

evaluated by using the coherent FO is compared with the one obtained using the GO-FO. As it 

can be seen in the figure, the coherent FO is validated inside the PWS applicability region, for 

both the amplitude and the phase. 

 

  

(a) (b) 

Figure 5.11: The x-component of the electric fields on the focal plane of a hemispherical silicon (𝜀𝑟 = 11.9) lens 

with 𝐷ℎ𝑙 = 5 𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.6, 𝑅𝑠𝑝ℎ = 2.6𝜆0 , and 𝐿 = 0.362𝑅𝑠𝑝ℎ , illuminated by a unitary TM 

polarized plane wave with the skew angle of 𝜃𝑠 = 15
∘, 𝜙𝑠 = 0

∘. Here a quarter-wavelength matching layer at 300 

GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈
−1.3𝜆𝑑𝑓#

ℎ𝑙�̂�. And the focal plane field calculated by using the coherent FO approach is compared with the one 

obtained using the GO-FO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the 

FO applicability region and green region is the PWS applicability region. 
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⚫ Hyperbolic lens 

A hyperbolic plastic ( 𝜀𝑟 = 2 ) lens with 𝐷ℎ = 100𝜆0  (𝑓0 = 300 GHz ) and 𝑓#
ℎ = 1  is 

introduced. The incident field is a unitary TM polarized plane wave with the skew angle of 

𝜃𝑠 = 3.2(𝜆𝑑/𝐷ℎ) = 1.3∘, 𝜙𝑠 = 0
∘, i.e. the flash point is 𝜌 𝑓𝑝 ≈ −3.2𝜆0𝑓#

ℎ�̂�. The linearization 

point is chosen the as the flash point. Fig. 5.12 shows the x-component of the electric fields on 

the focal plane of the hyperbolic lens. The focal plane field calculated by using the coherent 

FO is compared with the one obtained using the analytical FO. It can be seen that the coherent 

FO is validated inside the PWS applicability region. 

 

  

(a) (b) 

Figure 5.12: The x-component of the electric fields on the focal plane of a hyperbolic plastic (𝜀𝑟 = 2) lens with 

𝐷ℎ = 100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 1, illuminated by a unitary TM polarized plane wave with the skew angle 

of 𝜃𝑠 = 3.2(𝜆𝑑/𝐷ℎ) = 1.3
∘, 𝜙𝑠 = 0

∘ . The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈
−3.2𝜆0𝑓#

ℎ�̂�. And the focal plane field calculated by using the coherent FO approach is compared with the one 

obtained using the analytical FO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region 

is the FO applicability region and green region is the PWS applicability region. 
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⚫ Elliptical mirror 

For an elliptical mirror, a source can be placed at either its upper focal plane or its lower 

focal plane. Here we consider a mirror with the diameter of 𝐷𝑚 = 100𝜆0 (𝑓0 = 300 GHz), the 

semi-major axis of 𝑎 = 80𝜆0, and the focal distance of 𝑐 = 20𝜆0, i.e. the eccentricity is 𝑒 =

0.25. 

Case 1: Source placed at the upper focal plane 

In this case, the f-number is calculated as 𝑓#
𝑚 = 0.95. The incident field is generated by a 

unitary Huygens source placed at the upper focal plane, with the electric current oriented along 

�̂� and a displacement in x-direction, 𝑥𝑠 = 2.2𝜆0𝑓#
𝑚. This displacement corresponds to a flash 

point 𝜌 𝑓𝑝 ≈ −3.2𝜆0𝑓#
𝑚�̂� and the linearization point is the same as this flash point. Fig. 5.13 

shows the x-component of the electric fields on the focal plane of the mirror, evaluated by 

using the coherent FO and compared with the analytical FO. As it can be seen, the agreement 

is within the accepted error margin inside the PWS applicability region. 

 

  

(a) (b) 

Figure 5.13: The x-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
100 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.95 and 𝑒 = 0.25. The mirror is illuminated by a unitary Huygens source placed 

at the upper focal plane, with the electric current oriented along �̂�  and a displacement in x-direction, 𝑥𝑠 =
2.2𝜆0𝑓#

𝑚. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈ −3.2𝜆0𝑓#
𝑚�̂�. And the focal plane 

field calculated by using the coherent FO is compared with the one obtained using the analytical FO: (a) 

Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO applicability region and 

green region is the PWS applicability region. 
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Case 2: Source placed at the lower focal plane 

In this case, the f-number is calculated as 𝑓#
𝑚 = 0.6. the Huygens source is placed at the 

lower focal plane, with the electric current oriented along �̂� and a displacement in x-direction, 

𝑥𝑠 = 4.7𝜆0𝑓#
𝑚 . This displacement corresponds to a flash point 𝜌 𝑓𝑝 ≈ −3.2𝜆0𝑓#

𝑚�̂�  and the 

linearization point is the same as this flash point. Fig. 5.14 shows the x-component of the 

electric fields on the focal plane of the mirror, evaluated by using the coherent FO and 

compared with the analytical FO. It can be seen that the coherent FO is in excellent agreement 

with the analytical FO inside the PWS applicability region. 

 

  

(a) (b) 

Figure 5.14: The x-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
100 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.6 and 𝑒 = 0.25. The mirror is illuminated by a unitary Huygens source placed 

at the lower focal plane, with the electric current oriented along �̂�  and a displacement in x-direction, 𝑥𝑠 =
4.7𝜆0𝑓#

𝑚. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈ −3.2𝜆0𝑓#
𝑚�̂�. And the focal plane 

field calculated by using the coherent FO is compared with the one obtained using the analytical FO: (a) 

Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO applicability region and 

green region is the PWS applicability region. 
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Chapter 6: Antenna-coupled QO systems 

An important application of this thesis is to analyze and design antenna-coupled QO systems 

in reception. As will be shown in this chapter, for such a system, one can evaluate the power 

intercepted by the antenna and coupled to its load, by resorting to the Thevenin equivalent 

circuit [47] and antenna in reception formulism [17]. 

In this chapter, we analyze the performance of an antenna placed at the focal plane of a QO 

component illuminated by a generalized incident field. The antenna is assumed to be connected 

with a single-mode transmission line. Firstly, in section 6.1, we show the Thevenin equivalent 

circuit for the system in reception. We can evaluate the open-circuit voltage generator in this 

circuit by calculating a reaction integral; or under some approximations, by performing a field 

matching integral. Next in section 6.2, we explain explicitly how to calculate the power 

delivered to the antenna load. And then in section 6.3, we introduce parameters used to analyze 

the performance of an antenna in reception, including pattern, directivity, gain, and common 

efficiency terms. Finally, in section 6.4, the performance of antenna-coupled QO components 

is validated. 

 

6.1 Thevenin equivalent circuit and open-circuit voltage 

To analyze an antenna in reception, one needs to evaluate the power delivered to the load of 

the antenna. A good start point is the Thevenin equivalent circuit described in [47]. In this 

circuit, as will be discussed in subsection 6.1.1, an equivalent voltage generator is proposed for 

a generalized incidence. Once this voltage is known, one can estimate the power delivered to 

the load. 

In order to calculate this voltage (subsection 6.1.2), a reaction integral between induction 

currents and fields in transmission is derived. Moreover, by introducing some approximations, 

one can express the voltage as a field matching between the incident GO field on a FO sphere 

and the field transmitted by the antenna. Based on this field matching integral, one can conclude 

that once these fields are conjugately matched, the power received by the antenna is 

maximized. 

6.1.1  Thevenin equivalent circuit 

We use the Thevenin equivalent circuit to estimate the power delivered to an antenna load, i.e. 

𝑃𝐿. Fig. 6.1a shows the geometry of an antenna in reception. The antenna intercepts an incident 
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field in a generic shape (�⃗� 𝑖, �⃗⃗� 𝑖) and delivers the incident power to its load through a single-

mode transmission line. (�⃗� 𝑠, �⃗⃗� 𝑠) is the field scattered by the antenna and �⃗� 𝑜𝑐 is the total field 

on the antenna gap. We select an arbitrary cross section 𝐴𝐴′  within the single-mode 

transmission line. If we separate the antenna and the load as two problems and use 

Schelkunoff’s formulation of the equivalent theorem [48] at the cross section 𝐴𝐴′, after solving 

these two equivalent problems, we are able to derive the Thevenin equivalent circuit (Fig. 6.1b) 

for the reception scenario. Once we obtain the open-circuit voltage 𝑉𝑜𝑐, we can evaluate the 

power dissipated by the load 𝑍𝐿. 

 

 
 

(a) (b) 

Figure 6.1: (a) An antenna intercepts an incident field and delivers its power to a load through a single-mode 

transmission line (b) The Thevenin equivalent circuit that models the incident field to the antenna as a voltage 

generator 𝑉𝑜𝑐 , the antenna as an impedance 𝑍𝑎, and the load connected to the antenna as 𝑍𝑙.  

6.1.2  Open-circuit voltage 

For a single-mode transmission line, the tangent components of electric and magnetic fields in 

the transmission line can be expressed as: 

{
�⃗� 0 = 𝑉0𝑒 0

�⃗⃗� 0 = 𝐼0ℎ⃗ 0
(6.1) 

where 𝑒 0 and ℎ⃗ 0 are eigen vectors that are related to each other: ℎ⃗ 0 = �̂� × 𝑒 0, 𝑉0 and 𝐼0 are 

modal amplitudes that can be obtained at a cross section 𝑆𝐶𝑆 as: 

{
 
 

 
 𝑉0 =∬ �⃗� 0 ∙ 𝑒 0𝑑𝑆

𝑆𝐶𝑆

  𝐼0 =∬ �⃗⃗� 0 ∙ ℎ⃗ 0𝑑𝑆
𝑆𝐶𝑆

(6.2) 

In the equivalent circuit, one can represent the open-circuit voltage at the cross section 𝑆𝐴𝐴′ as: 

𝑉𝑜𝑐 =∬ �⃗� 𝑜𝑐 ∙ 𝑒 0𝑑𝑆
𝑆𝐴𝐴′

(6.3) 
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Moreover, one can relate Eq. (6.3) to a transmitting antenna fed by an equivalent current 𝐽 0 =

−�̂� × �⃗⃗� 0  at 𝐴𝐴′, by choosing an appropriate normal vector, �̂� = −�̂�, and multiplying 𝐼0  at 

both sides of Eq. (6.3): 

𝑉𝑜𝑐𝐼0 =∬ �⃗� 𝑜𝑐 ∙ (𝐼0ℎ⃗ 0 × (−�̂�))𝑑𝑆
𝑆𝐴𝐴′

= −∬ �⃗� 𝑜𝑐 ∙ 𝐽 0𝑑𝑆
𝑆𝐴𝐴′

(6.4) 

Therefore, Eq. (6.4) is now a reaction integral between two sources: the open-circuit voltage 

generator 𝑉𝑜𝑐  representing the incoming field and the antenna equivalent current 𝐽 0  in 

transmission. However, in this work, another form of Eq. (6.4) is desirable since �⃗� 𝑜𝑐 and 𝐽 0 are 

not straightforward quantities. Alternatively, we can represent Eq. (6.4) by another reaction 

integral, by resorting to the induction theorem [49] and the reciprocity theorem. To begin with, 

by using the induction theorem, one can assume �⃗� 𝑜𝑐 is the field radiated by a set of currents 𝐽 𝑆𝑖 

and  �⃗⃗� 𝑆𝑖 that are induced by the incident fields, (�⃗� 𝑖, �⃗⃗� 𝑖), on an arbitrary surface 𝑆𝑖. This surface 

is referred to as the induction surface that encircles the antenna and its surroundings. In the 

case of an antenna-coupled QO component, we can choose the induction surface as the FO 

sphere, as shown in Fig. 6.2. Accordingly, the incident fields are the GO fields described in 

chapter 4, and the induction currents can be calculated as: 

{
𝐽 𝐺𝑂 = �̂� × �⃗⃗� 𝐺𝑂

�⃗⃗� 𝐺𝑂 = �⃗� 𝐺𝑂 × �̂�
(6.5) 

where �̂� = −�̂�′ is the normal vector of the FO sphere.  

 

Figure 6.2: Induction surface is chosen the same as the equivalent FO sphere for an antenna-coupled QO 

component. 
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Moreover, the open-circuit field, �⃗� 𝑜𝑐, can be obtained by radiating the induction currents in 

the presence of the open circuited antenna and its surroundings: 

�⃗� 𝑜𝑐(𝑟 ) = ∬ �̃�𝑎
𝑒𝑗(𝑟 − 𝑟 ′) 𝐽 𝐺𝑂(𝑟 

′)𝑑𝑟 ′

𝑆𝐹𝑂

+∬ �̃�𝑎
𝑒𝑚(𝑟 − 𝑟 ′) �⃗⃗� 𝐺𝑂(𝑟 

′)𝑑𝑟 ′

𝑆𝐹𝑂

(6.6) 

where �̃�𝑎
𝑒𝑗

 and �̃�𝑎
𝑒𝑚 are the Green’s functions in the presence of the open circuited antenna and 

its surroundings. One can also introduce the fields (�⃗� 𝑎
𝑇𝑥, �⃗⃗� 𝑎

𝑇𝑥) radiated by the current 𝐽 0 in 

transmission and also in the presence of the antenna and its surroundings. Therefore, now we 

have two sets of sources that radiate with the same Green’s functions: One is the induction 

currents that radiate �⃗� 𝑜𝑐 , the other is 𝐽 0  that produces (�⃗� 𝑎
𝑇𝑥, �⃗⃗� 𝑎

𝑇𝑥). We can then apply the 

reciprocity theorem on Eq. (6.4), as depicted in Fig. 6.3, and calculate the reaction between the 

fields in transmission and the induction surface currents as follows: 

𝑉𝑜𝑐 =∬ [�⃗⃗� 𝑎
𝑇𝑥 ⋅ �⃗⃗� 𝐺𝑂 − �⃗� 𝑎

𝑇𝑥 ⋅ 𝐽 𝐺𝑂]𝑑𝑆
𝑆𝐹𝑂

(6.7) 

Here a unitary current amplitude in transmission is assumed, i.e. 𝐼0 = 1.  

 

 

Figure 6.3: The reciprocity theorem between the induction surface currents (𝐽 𝐺𝑂 , �⃗⃗� 𝐺𝑂) and the equivalent current 

representing antenna in transmission 𝐽 0. 

 

Furthermore, if we assume the GO field behaves as a local plane wave and approximate the 

propagation unit vector, �̂�𝐺𝑂, as �̂�𝐺𝑂 ≈ �̂� = −�̂�′, then we can relate the magnetic GO field to 

the electric GO field as: 

�⃗⃗� 𝐺𝑂(𝑟 
′) ≈ −

1

ζ
�̂�′ × �⃗� 𝐺𝑂(𝑟 

′) (6.8) 

By substituting Eq. (6.8) in Eq. (6.7), and rewriting 𝑑𝑆 as 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙: 

𝑉𝑜𝑐 = ∫ ∫ [
1

𝜁
�⃗� 𝑎
𝑇𝑥 ⋅ �⃗� 𝐺𝑂 − 𝜁�⃗⃗� 𝑎

𝑇𝑥 ⋅ �⃗⃗� 𝐺𝑂]
𝜃0

0

𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙

2𝜋

0

(6.9) 
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In most cases, the FO sphere is in the far-field region with respect to the antenna terminal; 

therefore, one can represent the fields transmitted by the antenna by its far fields, i.e. magnetic 

and electric fields are related to each other as: 

�⃗⃗� 𝑎
𝑇𝑥(𝑟 ′) ≈

1

ζ
�̂�′ × �⃗� 𝑎

𝑇𝑥(𝑟 ′) (6.10) 

By using Eq. (6.10), one can represent Eq. (6.9) as a field matching integral between the 

incident GO field and the far field of the antenna: 

𝑉𝑜𝑐  =
2

ζ
∫ ∫ �⃗� 𝑎

𝑇𝑥 ⋅ �⃗� 𝐺𝑂

𝜃0

0

𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙

2𝜋

0

(6.11) 

Eq. (6.11) indicates that when the antenna far field is conjugately matched with the incident 

GO field, i.e. �⃗� 𝑎
𝑇𝑥 = (�⃗� 𝐺𝑂)

∗
, the maximum open-circuit voltage can be achieved. 

 

6.2 Power delivered to an antenna load 

For an antenna-coupled QO system in reception, we have derived its Thevenin equivalent 

circuit and open-circuit voltage in section 6.1. Therefore, we are able to evaluate the power 

coupled to the load as: 

𝑃𝐿 =
|𝑉𝑜𝑐|

2

8𝑅𝑎
𝒳𝑚𝑎𝑡𝑐ℎ (6.12) 

where 𝑅𝑎 is the real part of the antenna impedance, 𝑍𝑎, and 𝒳𝑚𝑎𝑡𝑐ℎ =
4𝑅𝐿𝑅𝑎

(𝑅𝐿+𝑅𝑎)2+(𝑋𝑎+𝑋𝐿)2
 is the 

efficiency of impedance matching, where 𝑍𝐿 = 𝑅𝐿 + 𝑗𝑋𝐿 is the load impedance and 𝑍𝑎 =

𝑅𝑎 + 𝑗𝑋𝑎 is the antenna impedance. Assuming an impedance matching condition for the load, 

i.e. 𝑍𝐿 = 𝑍𝑎
∗ , Eq. (6.12) can be expressed as: 

𝑃𝑙𝑜𝑎𝑑 =
|𝑉𝑜𝑐|

2

8𝑅𝑎
(6.13) 

Moreover, the antenna in transmission radiates the power, 𝑃𝑟𝑎𝑑 =
1

2
𝑅𝑎|𝐼0|

2. When a unitary 

current is impressed, i.e. 𝐼0 = 1, one can relate 𝑅𝑎 to 𝑃𝑟𝑎𝑑 as: 

𝑅𝑎 =
2𝑃𝑟𝑎𝑑
|𝐼0|2

= 2𝑃𝑟𝑎𝑑 (6.14) 

By substituting Eq. (6.14) in Eq. (6.13), the power delivered to the load can be expressed as: 

𝑃𝐿 =
|𝑉𝑜𝑐|

2

16𝑃𝑟𝑎𝑑
(6.15) 
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Moreover, 𝑃𝑟𝑎𝑑 can be interpreted as the total power radiated by the antenna on the FO sphere: 

𝑃𝑟𝑎𝑑 = ∫ ∫|�⃗⃗⃗� 𝑟𝑎𝑑 ⋅ �̂�
′|

𝜋

0

2𝜋

0

𝑅𝐹𝑂
2 sin 𝜃 𝑑𝜃𝑑𝜙 (6.16) 

where �⃗⃗⃗� 𝑟𝑎𝑑 is the time-average radiated power density: 

�⃗⃗⃗� 𝑟𝑎𝑑 =
1

2
𝑅𝑒(�⃗� 𝑎

𝑇𝑥 × �⃗⃗� 𝑎
𝑇𝑥∗) (6.17) 

By applying the expressions of 𝑉𝑜𝑐 and 𝑃𝑟𝑎𝑑, one can express the coupled power for a generic 

case as follows:  

𝑃𝐿 =
|∫ ∫ [�⃗⃗� 𝑎

𝑇𝑥 ⋅ �⃗⃗� 𝐺𝑂 − �⃗� 𝑎
𝑇𝑥 ⋅ 𝐽 𝐺𝑂]

𝜃0

0
sin 𝜃𝑑𝜃𝑑𝜙

2𝜋

0
|
2

16 ∫ ∫ |�⃗⃗⃗� 𝑟𝑎𝑑 ⋅ �̂�′|
𝜋

0

2𝜋

0
sin 𝜃 𝑑𝜃𝑑𝜙

(6.18) 

It is worth mentioning that this expression can be used also when the QO component is in the 

near field of the antenna and for very large skewed angles. 

Furthermore, if one considers the approximations described in Eq. (6.8) and (6.10), Eq. 

(6.18) can be represented as the field matching between the filed in transmission and the GO 

field: 

𝑃𝐿 =
|∫ ∫ �⃗� 𝑎

𝑇𝑥 ⋅ �⃗� 𝐺𝑂
𝜃0

0
sin 𝜃𝑑𝜃𝑑𝜙

2𝜋

0
|
2

2𝜁 ∫ ∫ |�⃗� 𝑎
𝑇𝑥|

𝜋

0

2𝜋

0

2
sin 𝜃 𝑑𝜃𝑑𝜙

(6.19) 

For the case when the QO system is illuminated by an incident field from (𝜃𝑠, 𝜙𝑠) direction, 

the power delivered to the load of the antenna is represented by 𝑃𝐿(𝜃𝑠, 𝜙𝑠). Moreover, similar 

steps can be repeated for other incident skew angles. When the field in transmission, �⃗� 𝑎
𝑇𝑥, is 

significant only within the truncation angle 𝜃0 and conjugately matched with the inward GO 

field, i.e. �⃗� 𝑎
𝑇𝑥 = (�⃗� 𝐺𝑂)

∗
, Eq. (6.19) can be simplified as follows: 

𝑃𝐿 =
1

2𝜁
∫ ∫ |�⃗� 𝑎

𝑇𝑥|
2

𝜃0

0

sin 𝜃𝑑𝜃𝑑𝜙
2𝜋

0

=
1

2𝜁
∫ ∫ |�⃗� 𝐺𝑂|

2
𝜃0

0

sin 𝜃𝑑𝜃𝑑𝜙
2𝜋

0

= 𝑃𝑖𝑛𝑤 (6.20) 

where 𝑃𝑖𝑛𝑤 is the inward incident power, i.e. the power of the GO fields crossing the FO sphere. 

As the result, a conclusion can be derived from Eq. (6.20) that once the field radiated by the 

antenna in transmission is conjugately matched with the GO field in reception, all inward 

incident power can be captured by the receiving antenna and delivered to the matched load; in 

other words, we are able to receive 100% of the inward incident power. When the fields are 

not fully matched, in order to evaluate 𝑃𝐿 efficiently, we consider two cases to calculate �⃗� 𝐺𝑂 

and �⃗� 𝑎
𝑇𝑥. 
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⚫ Case 1: Slightly off-broadside incidence and slightly off-focus antenna 

In this case, we assume the skew angle is 𝜃𝑠 ≤ 11∘. Therefore, one can evaluate the GO 

fields analytically, as described in section 4.2.2: 

�⃗� 𝐺𝑂(𝜃𝑠, 𝜙𝑠) ≃ �⃗� 𝐺𝑂(𝜃𝑠 = 0)e
−𝑗�⃗� 𝜌⋅�⃗⃗� 𝑓𝑝𝑒−𝑗Φ𝑐𝑜𝑚𝑎(𝑒−𝑗Φ𝑐𝑜𝑚𝑝) (6.21) 

where 𝑒−𝑗Φ𝑐𝑜𝑚𝑝  is the compensation phase term for the case of elliptical mirrors. One can also 

displace an antenna within the focal plane of a QO component with a distance 𝑑 𝑎 from the 

center, as shown in Fig. 6.4. For small displacements, one can approximate the far field of the 

antenna as the one of a central feed multiplied by a progressive phase term: 

�⃗� 𝑎
𝑇𝑥(𝑑 𝑎) ≃ �⃗� 𝑎

𝑇𝑥(𝑑 𝑎 = 0)𝑒
𝑗�⃗� 𝜌∙𝑑 𝑎 (6.22) 

 

 

Figure 6.4: A QO component illuminated by incident fields with the skew angle of (𝜃𝑠, 𝜙𝑠). A receiving antenna 

is placed on the focal plane of the QO component with a displacement 𝑑 𝑎 from the center. 

 

By substituting Eq. (6.21) and (6.22) in the field matching integral, Eq. (6.11), one can 

represent 𝑉𝑜𝑐 as a function of the skew angle (𝜃𝑠, 𝜙𝑠) and the displacement of the antenna 𝑑 𝑎: 

𝑉𝑜𝑐(𝜃𝑠, 𝜙𝑠 , 𝑑 𝑎)  =
2

ζ
∫ ∫ �⃗� 𝑎

𝑇𝑥(𝑑 𝑎 = 0) ⋅ �⃗� 𝐺𝑂(𝜃𝑠 = 0)
𝜃0

0

2𝜋

0

⋅ 

𝑒𝑗�⃗�
 𝜌∙𝑑 a e−𝑗�⃗�

 𝜌⋅�⃗⃗� 𝑓𝑝𝑒−𝑗Φ𝑐𝑜𝑚𝑎(𝑒−𝑗Φ𝑐𝑜𝑚𝑝)𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙 (6.23) 

In Eq. (6.23), if the skew angle is smaller than the limit of the coma phase, i.e. 𝑒−𝑗Φ𝑐𝑜𝑚𝑎 ≈

1, and the compensation phase term can be neglected for the case of elliptical mirrors, i.e. 
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𝑒−𝑗Φ𝑐𝑜𝑚𝑝 ≈ 1, then 𝑉𝑜𝑐(𝜃𝑠, 𝜙𝑠, 𝑑 𝑎) is maximum when 𝑑 a = 𝜌 𝑓𝑝. In other words, the coupled 

power 𝑃𝐿 can be maximized from a certain skew incidence if one places the antenna feed at the 

corresponding flash point position. 

⚫ Case 2: Large-angle incidence and large displacement of an antenna 

In cases when the skew angle is 𝜃𝑠 ≥ 11∘, one needs to calculate the GO ray field described in 

section 4.1. Moreover, when the displacement of the antenna, 𝑑 𝑎, is large so that one cannot 

use the approximation in Eq. (6.22), the field radiated by the antenna, �⃗� 𝑎
𝑇𝑥(𝑑 𝑎), should be 

evaluated numerically, which will be explicitly discussed in chapter 7, section 7.5.2. 

 

6.3 Performance of antenna-coupled QO systems in reception 

One can evaluate the performance of an antenna-coupled QO system in reception by analyzing 

its pattern, directivity, gain, and common efficiency terms. 

• Power pattern in reception 

One can define the power pattern in reception for an antenna-coupled QO system as: 

𝐹𝑅𝑥(𝜃𝑠, 𝜙𝑠) =
𝑃𝐿(𝜃𝑠, 𝜙𝑠)

max(𝑃𝐿(𝜃𝑠, 𝜙𝑠))
(6.24) 

where 𝐹𝑅𝑥(𝜃𝑠, 𝜙𝑠)  is the pattern for one skew angle (𝜃𝑠, 𝜙𝑠) . If one wants to obtain the 

complete pattern in reception, one needs to illuminate the QO component by incident fields 

with different skew angles: 𝜃𝑠 ∈ [0, 𝜃𝑅𝑥], 𝜙𝑠 ∈ [0,2𝜋]. This pattern indicates how much power 

is coupled to a load as a function of the incident skew angle, and due to the reciprocity, it should 

be the same as the far-field pattern of the same antenna in transmission. Therefore, one can 

compare the pattern in transmission with the one in reception to validate the procedure. And 

examples of validation will be discussed in section 6.4 for each QO component. Moreover, one 

can evaluate the directivity using the pattern in reception, 𝐹𝑅𝑥(𝜃𝑠, 𝜙𝑠), as: 

𝐷𝑖𝑟
𝑅𝑥 = max(4𝜋

𝐹𝑅𝑥(𝜃𝑠, 𝜙𝑠)

𝑃𝑅𝑥(𝜃𝑠, 𝜙𝑠)
) (6.25) 

where 𝑃𝑅𝑥 is calculated by integrating the pattern in reception: 

𝑃𝑅𝑥 = ∫ ∫ 𝐹𝑅𝑥

𝜃𝑅𝑥

0

(𝜃𝑠, 𝜙𝑠) sin 𝜃𝑠𝑑𝜃𝑠𝑑𝜙𝑠

2𝜋

0

(6.26) 
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⚫ Common efficiency terms 

Besides the pattern, efficiency terms are also important parameters when analyzing the 

performance. Common efficiency terms are aperture efficiency, taper efficiency and spillover 

efficiency. The aperture efficiency of an antenna in reception can be expressed as a ratio 

between the coupled power to the load and the incident power: 

𝜂𝑎𝑝
𝑅𝑥 =

𝑃𝐿
𝑃𝑖𝑛𝑐

(6.27) 

The incident power in Eq. (6.27), i.e. 𝑃𝑖𝑛𝑐, for a plane wave incidence, can be expressed as: 

𝑃𝑖𝑛𝑐 =
|𝐸0|

2

2𝜁
𝐴𝑄𝑂 (6.28) 

where 𝐸0 is the amplitude of the plane wave, 𝜁 is the impedance of the medium, and 𝐴𝑄𝑂 is the 

area of the QO component. For a point-source incidence, 𝑃𝑖𝑛𝑐 is calculated as follows: 

𝑃𝑖𝑛𝑐 = ∫ ∫ |�⃗⃗⃗� 𝑖𝑛𝑐 ⋅ �⃗� |

𝜃0

0

2𝜋

0

𝑑𝜃𝑑𝜙 (6.29) 

where �⃗⃗⃗� 𝑖𝑛𝑐 =
1

2
𝑅𝑒(�⃗� 𝑖 × �⃗⃗� 𝑖) is the time-average radiated power density and �⃗�  is the normal 

vector of the QO component. By using the aperture efficiency, one can also obtain the gain in 

reception: 

𝐺𝑎𝑖𝑛
𝑅𝑥 = 𝐷𝑖𝑟

𝑚𝑎𝑥𝜂𝑎𝑝
𝑅𝑥 (6.30) 

where 𝐷𝑖𝑟
𝑚𝑎𝑥 =

4𝜋

𝜆2
𝐴𝑄𝑂 is the maximum theoretical directivity, which is achieved by a constant 

illumination of the QO surface in transmission. The taper efficiency in reception can be 

calculated as the ratio between the achieved directivity and the maximum theoretical 

directivity: 

𝜂𝑡
𝑅𝑥 =

𝐷𝑖𝑟
𝑅𝑥

𝐷𝑖𝑟
𝑚𝑎𝑥 

(6.31) 

Finally, the spillover efficiency in reception is the ratio between the aperture efficiency and the 

taper efficiency: 

𝜂𝑠𝑜
𝑅𝑥 = 𝜂𝑎𝑝

𝑅𝑥/𝜂𝑡
𝑅𝑥 (6.32) 
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6.4 Validation of the performance in reception 

In this section, we validate the performance of antenna-coupled QO components in reception, 

including pattern, aperture efficiency, directivity, and gain. Due to the reciprocity, one can use 

the performance in transmission as the reference to validate the performance in reception. Here 

the power delivered to an antenna load is evaluated by using Eq. (6.18). 

First in subsection 6.4.1, we introduce an approach to display pattern in reception. And then 

in subsection 6.4.2, examples of validation are shown for all QO components. 

6.4.1  Display a pattern in reception 

The power pattern in reception is a function of skew angles, i.e. 𝐹𝑅𝑥(𝜃𝑠, 𝜙𝑠), as described in 

Eq. (6.24). To describe the pattern, one can select three 2D cuts: 𝜙𝑠 = 0
∘/45∘/90∘. For each 

𝜙𝑠 cut, the pattern is a function of 𝜃𝑠, as depicted in Fig. 6.5a. However, displaying a pattern 

for a scanning scenario is not convenient in such a matter. Since the center of the coordinate 

system is located at (𝜃𝑠 = 0
∘, 𝜙𝑠 = 0

∘), 𝜙𝑠 = 0
∘/45∘/90∘ cuts may not cross the main lobe of 

the pattern, as depicted in Fig. 6.5b with the dashed lines. In such cases, we introduce a local 

system. As it can be seen in Fig. 6.5b, we move the center of the coordinate system to the main 

lobe position, i.e. (𝑢𝑐, 𝑣𝑐) , and display the pattern by using 𝑢𝑠/𝑣𝑠/𝜌𝑠  cuts, where 𝑢𝑠 =

sin 𝜃𝑠 cos𝜙𝑠, 𝑣𝑠 = sin 𝜃𝑠 sin𝜙𝑠, and 𝜌𝑠 = √2𝑢𝑠. By introducing this local system, one is able 

to display the pattern within a rectangular region that encloses the area around the main lobe. 

Moreover, in most practical cases with semi-symmetric patterns, 𝑢𝑠/𝑣𝑠/𝜌𝑠 cuts are sufficient 

to describe the whole pattern. 

 

  

(a) (b) 

Figure 6.5: Pattern in reception: (a) Pattern centered at (𝜃𝑠 = 0
∘, 𝜙𝑠 = 0

∘) , with 𝜙𝑠 = 0∘/45∘/90∘  cuts. (b) 

Pattern shifted to (𝑢𝑐, 𝑣𝑐), with 𝑢𝑠/𝑣𝑠/𝜌𝑠 cuts. 
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6.4.2  Examples of validation for all QO components 

In this subsection, all antenna-coupled QO components in reception scenarios are analyzed and 

validated. A leaky-wave slot is studied here as the receiving antenna. When it is integrated with 

a dielectric lens, as depicted in Fig. 6.6, the structure is referred to as the leaky lens antenna 

[50]. The fields radiated by the leaky-wave slot are exported from CST. While the fields 

transmitted out of the lens are calculated by using a developed PO code in transmission.  

Here we use Eq. (6.18) to evaluate the power received by an antenna. In Eq. (6.18), the 

induction currents on a FO sphere can be calculated by using the GO fields discussed in chapter 

4. The fields radiated by the antenna on the FO sphere are evaluated by using the antenna 

propagation approach, which will be discussed in the following chapter, section 7.5.2. The 

power pattern, the aperture efficiency, and the gain are described in Eq. (6.24), (6.27), and 

(6.30), respectively. For the directivity, we use an efficient way to calculate it, which will be 

discussed in section 7.5.3, Eq. (7.30). 

  

 

Figure 6.6: A schematic representation of a leaky lens antenna. 

 

6.4.2.1   Parabolic reflector 

In the case of a parabolic reflector, we place a leaky lens antenna at its focal plane as the 

receiving antenna that intercepts the fields focalized by it. Here we introduce a reflector with 

the diameter of 𝐷𝑟 = 0.125 m  and the f-number of 𝑓#
𝑟 = 1.5  (𝜃0

𝑟 = 19∘) , illuminated by 

unitary Co-Pol. and Cx-Pol. plane waves; and a leaky lens antenna that consists of an elliptical 

silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 = 1.3 mm  and 𝑓#
𝑙 = 0.526  (𝜃0

𝑙 = 72∘)  and a y-polarized 

leaky-wave slot operated at 720 GHz [51]. The leaky lens antenna is shifted from the center of 

the focal plane with the distance 𝑑 𝑎 = 17.5 mm, as depicted in Fig. 6.7. 
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Figure 6.7: Geometry of an antenna-coupled (leaky lens antenna) parabolic reflector. The reflector has the 

diameter of 𝐷𝑟 = 0.125 m and the f-number of 𝑓#
𝑟 = 1.5 (𝜃0

𝑟 = 19∘), illuminated by unitary Co-Pol. and Cx-Pol. 

plane waves. At its focal plane, the leaky lens antenna is shifted 𝑑 𝑎 = 17.5 mm from the center. The antenna 

consists of an elliptical silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 = 1.3 mm and 𝑓#
𝑙 = 0.526 (𝜃0

𝑙 = 72∘), and a y-polarized 

leaky-wave slot operated at 720 GHz.  

 

Fig. 6.8 shows the resulting pattern in reception (Rx), compared with the pattern in 

transmission (Tx). In this case, when calculating the pattern in Rx, the far fields radiated by the 

leaky lens antenna are evaluated by using the PO in transmission code. The pattern in Tx is 

obtained by importing the far-field pattern of the same leaky lens antenna into GRASP. Fig. 

6.8a to Fig. 6.8c show 𝑢𝑠 , 𝜌𝑠 , and 𝑣𝑠  planes, respectively; and Fig. 6.8d is the 3D Co-Pol. 

pattern in Rx. As it can be seen, the pattern in Rx is in excellent agreement with the pattern in 

Tx, for both the Co-pol. and the Cx-pol. components. Moreover, the aperture efficiency, the 

directivity and the gain in Rx are well validated, as shown in Table. 6.1. 

 

Frequency: 720 GHz Aperture Efficiency Directivity [dB] Gain [dB] 

Tx 29.64% 58.51 54.20 

Rx 29.40% 58.47 54.17 

Table 6.1: Performance of the antenna-coupled (leaky lens antenna) parabolic reflector, evaluated in Rx and 

compared with the one in Tx. 
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(a) (b) 

  

(c) (d) 

Figure 6.8: The pattern obtained in Rx of the antenna-coupled (leaky lens antenna) parabolic reflector, compared 

with the pattern evaluated in Tx: (a) 𝑢𝑠 plane. (b) 𝜌𝑠 plane. (c) 𝑣𝑠 plane. (d) 3D Co-Pol. pattern in Rx.  

 

6.4.2.2   Elliptical lens 

In the case of an elliptical lens, we analyze two types of leaky lens antennas. In the first case, 

a feed is placed close to the lens base, i.e. with an electrically small air gap ℎ (Fig. 6.9a). In the 

second case, a feed is placed 𝜆/2 away from the lens base (Fig. 6.9b), which is referred to as 

the resonant leaky lens antenna [52]. The difference between these two lenses is that the first 

lens is in the far-field region of the feed while the second lens is in the near-field region. The 

feed can be shifted with a distance 𝑑 𝑎 from the broadside position, as shown in Fig. 6.9. 
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                          (a)                                               (b) 

Figure 6.9: Antenna-coupled elliptical lenses: (a) leaky lens antenna. (b) Resonant leaky lens antenna. 

 

⚫ Case 1: Leaky lens antenna 

In this case, we place a leaky-wave slot below an elliptical lens as the receiving antenna that 

intercepts the fields focalized by the lens. The lens is made of silicon (𝜀𝑟 = 11.9), with 𝐷𝑙 =

5 mm and 𝑓#
𝑙 = 0.526 (𝜃0

𝑙 = 72∘), illuminated by unitary Co-Pol. and Cx-Pol. plane waves. 

Here a quarter-wavelength matching layer at 480 GHz made of Parylene (𝜀𝑚 = 2.62) is 

applied. The feed antenna is y-polarized and operated at 720 GHz, shifted from the broadside 

position with the distance 𝑑 𝑎 = 0.11 mm . Fig. 6.10 shows the pattern obtained in Rx, 

compared with the pattern in Tx. In this case, the FO sphere is in the far-field region of the 

antenna. When calculating the pattern in Rx, the antenna far fields are exported from CST and 

are calculated on the FO sphere by using the antenna propagation approach. The pattern in Tx 

is the far field transmitted out of the lens, which is evaluated by using the PO in transmission 

code. Fig. 6.10a to Fig. 6.10c show 𝑢𝑠, 𝜌𝑠, and 𝑣𝑠 planes, respectively; and Fig. 6.10d is the 

3D Co-Pol. pattern in Rx. As it can be seen, the pattern in Rx is in good agreement with the 

pattern in Tx, for both the Co-pol. and the Cx-pol. components. Moreover, the aperture 

efficiency, the directivity and the gain in Rx are validated, as shown in Table. 6.2. 

 

Frequency: 720 GHz Aperture Efficiency Directivity [dB] Gain [dB] 

Tx 33.55% 27.56 26.78 

Rx 34.56% 27.69 26.91 

Table 6.2: Performance of the leaky lens antenna evaluated in Rx and compared with the one in Tx. 
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(a) (b) 

 
 

(c) (d) 

Figure 6.10: The pattern obtained in Rx of a leaky lens antenna, compared with the pattern evaluated in Tx: (a) 

𝑢𝑠 plane. (b) 𝜌𝑠 plane. (c) 𝑣𝑠 plane. (d) 3D Co-Pol. pattern in Rx. The elliptical lens is made of silicon (𝜀𝑟 = 11.9), 

with 𝐷𝑙 = 5 mm and 𝑓#
𝑙 = 0.526 (𝜃0

𝑙 = 72∘), illuminated by unitary Co-Pol. and Cx-Pol. plane waves. Here a 

quarter-wavelength matching layer at 480 GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The feed antenna is y-

polarized and operated at 720 GHz, shifted from the broadside position with the distance 𝑑 𝑎 = 0.11 mm.  

 

⚫ Case 2: Resonant leaky lens antenna 

In this case, an elliptical silicon (𝜀𝑟 = 11.9) lens has the diameter of 𝐷𝑙 = 2.78 mm and the f-

number of 𝑓#
𝑙 = 1.54 (𝜃0

𝑙 = 19∘), illuminated by unitary Co-Pol. and Cx-Pol. plane waves. 

The feed antenna is x-polarized and operated at 540 GHz, shifted from the broadside position 

with the distance 𝑑 𝑎 = 0.375 mm. Fig. 6.11 shows the pattern obtained in Rx, compared with 

the pattern in Tx. In this case, the FO sphere is in the near-field region of the antenna. When 

calculating the pattern in Rx, the antenna near fields are exported from CST and are calculated 

on the FO sphere by using the antenna propagation approach. The pattern in Tx is the far field 

transmitted out of the lens, which is evaluated by CST simulation. Fig. 6.11a to Fig. 6.11c show 
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𝑢𝑠, 𝜌𝑠, and 𝑣𝑠 planes, respectively; and Fig. 6.11d is the 3D Co-pol. pattern in Rx. It can be 

seen that the pattern in Rx is in fair agreement with the pattern in Tx, for both the Co-pol. and 

the Cx-pol. components. Moreover, the aperture efficiency, the directivity and the gain in Rx 

are validated, as shown in Table. 6.3. 

 

Frequency: 540 GHz Aperture Efficiency Directivity [dB] Gain [dB] 

Tx 41.00% 22.70 20.05 

Rx 45.25% 22.86 20.48 

Table 6.3: Performance of the resonant leaky lens antenna, evaluated in Rx and compared with the one in Tx. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.11: The pattern obtained in Rx of a resonant leaky lens antenna, compared with the pattern evaluated in 

Tx: (a) 𝑢𝑠 plane. (b) 𝜌𝑠 plane. (c) 𝑣𝑠 plane. (d) 3D Co-Pol. pattern in Rx. The elliptical lens is made of silicon 

(𝜀𝑟 = 11.9), with 𝐷𝑙 = 2.78 mm and 𝑓#
𝑙 = 1.54 (𝜃0

𝑙 = 19∘), illuminated by unitary Co-Pol. and Cx-Pol. plane 

waves. The feed antenna is x-polarized and operated at 540 GHz, shifted from the broadside position with the 

distance 𝑑 𝑎 = 0.375 mm. 
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6.4.2.3   Hemispherical lens 

In this case of a hemispherical lens, we place a leaky-wave slot below the lens as the receiving 

antenna that intercepts the fields focalized by the lens. Here we consider a hemispherical silicon 

(𝜀𝑟 = 11.9 ) lens with 𝐷ℎ𝑙 = 5 mm , 𝑓#
ℎ𝑙 = 0.526  (𝜃0

ℎ𝑙 = 56∘) , 𝑅𝑠𝑝ℎ = 2.6 mm , and 𝐿 =

0.362𝑅𝑠𝑝ℎ, illuminated by unitary Co-Pol. and Cx-Pol. plane waves. A quarter-wavelength 

matching layer at 480 GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The feed antenna is y-

polarized and operated at 720 GHz, shifted from the broadside position with the distance 𝑑 𝑎 =

0.14 mm, as depicted in Fig. 6.12. 

 

 

Figure 6.12: Geometry of a leaky hemispherical lens antenna. The hemispherical lens is made of silicon (𝜀𝑟 =
11.9), with 𝐷ℎ𝑙 = 5 mm, 𝑓#

ℎ𝑙 = 0.526 (𝜃0
ℎ𝑙 = 56∘), 𝑅𝑠𝑝ℎ = 2.6 mm, and 𝐿 = 0.362𝑅𝑠𝑝ℎ, illuminated by unitary 

Co-Pol. and Cx-Pol. plane waves. Here a quarter-wavelength matching layer at 480 GHz made of Parylene (𝜀𝑚 =
2.62) is applied. The feed antenna is y-polarized and operated at 720 GHz, shifted from the broadside position 

with the distance 𝑑 𝑎 = 0.14 mm. 

 

Fig. 6.13 shows the pattern obtained in Rx, compared with the pattern in Tx. In this case, 

the antenna far fields are exported from CST and are calculated on the FO sphere by using the 

antenna propagation approach. The pattern in Tx is the far field transmitted out of the lens, 

which is evaluated by using the PO in transmission code. Fig. 6.13a to Fig. 6.13c show 𝑢𝑠, 𝜌𝑠, 

and 𝑣𝑠 planes, respectively; and Fig. 6.13d is the 3D Co-pol. pattern in Rx. As it can be seen, 

the pattern in Rx is in good agreement with the pattern in Tx, for both the Co-pol. and the Cx-

pol. components. Moreover, the aperture efficiency, directivity and gain in Rx are validated, as 

shown in Table. 6.4. 
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Frequency: 720 GHz Aperture Efficiency Directivity [dB] Gain [dB] 

Tx 39.57% 28.37 27.50 

Rx 40.83% 28.51 27.64 

Table 6.4: Performance of the leaky lens antenna evaluated in Rx and compared with the one in Tx. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6.13: The pattern obtained in Rx of the leaky hemispherical lens antenna, compared with the pattern 

evaluated in Tx: (a) 𝑢𝑠 plane. (b) 𝜌𝑠 plane. (c) 𝑣𝑠 plane. (d) 3D Co-Pol. pattern in Rx.  
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6.4.2.4   Hyperbolic lens 

In the case of a hyperbolic lens, we place a leaky lens antenna at its focal plane as the receiving 

antenna that intercepts the fields focalized by it. Here we consider a hyperbolic plastic (𝜀𝑟 =

2) lens with 𝐷ℎ = 0.125 m and 𝑓#
ℎ = 2 (𝜃0

ℎ = 13∘), illuminated by unitary Co-Pol. and Cx-

Pol. plane wave. The leaky lens antenna consists of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 1.3 mm and  𝑓#
𝑙 = 0.526 (𝜃0

𝑙 = 72∘), and a y-polarized leaky-wave slot operated at 720 

GHz. It is shifted from the center of the focal plane with the distance 𝑑 𝑎 = 20 mm, as depicted 

in Fig. 6.14. 

 

 

Figure 6.14: Geometry of an antenna-coupled (leaky lens antenna) hyperbolic lens. The hyperbolic plastic (𝜀𝑟 =
2) lens has the diameter of 𝐷ℎ = 0.125 m and the f-number of 𝑓#

ℎ = 2 (𝜃0
ℎ = 13∘), illuminated by unitary Co-

Pol. and Cx-Pol. plane waves. At its focal plane, the leaky lens antenna is shifted 𝑑 𝑎 = 20 mm from the center. 

It consists of an elliptical silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 = 1.3 mm  and 𝑓#
𝑙 = 0.526  (𝜃0

𝑙 = 72∘ ), and a y-

polarized leaky-wave slot operated at 720 GHz. 

 

 Fig. 6.15 shows the pattern in Rx, compared with the pattern in Tx. In this case, when 

calculating the pattern in Rx, the far fields radiated by the leaky lens antenna are evaluated by 

using the PO in transmission code. The pattern in Tx is also obtained using the PO in 

transmission code since GRASP cannot evaluate the fields in a dielectric. Fig. 6.15a to Fig. 

6.15c show 𝑢𝑠, 𝜌𝑠, and 𝑣𝑠 planes, respectively; and Fig. 6.15d is the 3D Co-pol. pattern in Rx. 

As it can be seen, the pattern in Rx is in great agreement with the pattern in Tx, for both the 

Co-pol. and the Cx-pol. components. Moreover, the aperture efficiency, the directivity and the 

gain in Rx are validated, as shown in Table. 6.5. 

 



102 

 

Frequency: 720 GHz Aperture Efficiency Directivity [dB] Gain [dB] 

Tx 13.37% 59.85 53.76 

Rx 12.70% 59.67 53.53 

Table 6.5: Performance of the antenna-coupled (leaky lens antenna) hyperbolic lens, evaluated in Rx and 

compared with the one in Tx. 

  

(a) (b) 

  

(c) (d) 

Figure 6.15: The pattern obtained in Rx of the antenna-coupled (leaky lens antenna) hyperbolic lens, compared 

with the pattern evaluated in Tx: (a) 𝑢𝑠 plane. (b) 𝜌𝑠 plane. (c) 𝑣𝑠 plane. (d) 3D Co-Pol. pattern in Rx.  
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6.4.2.5   Elliptical Mirror 

For an elliptical mirror, incident fields are emitted by a Huygens source placed at one of its 

focal planes; while a feed antenna is placed at the other focal plane where the reflected fields 

are focalized. Here we consider a mirror with the diameter of 𝐷𝑚 = 0.125 m, the semi-major 

axis of 𝑎 = 0.3125 m, and the focal distance of 𝑐 = 0.0625 m, i.e. the eccentricity is 𝑒 = 0.2. 

⚫ Case 1: Antenna placed at the upper focal plane 

In this case, the f-number is calculated as 𝑓#
𝑚 = 2 (𝜃0

𝑚 = 14.4∘). The incident fields are 

generated by unitary Co-Pol. and Cx-Pol. Huygens sources placed at the lower focal plane. A 

leaky lens antenna is placed at the upper focal plane as the receiving antenna that intercepts the 

fields focalized by the mirror. It consists of an elliptical silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 =

1.3 mm and 𝑓#
𝑙 = 0.526 (𝜃0

𝑙 = 72∘), and a y-polarized leaky-wave slot operated at 720 GHz. 

The leaky lens antenna is shifted from the center of the focal plane with the distance 𝑑 𝑎 =

20 mm, as depicted in Fig. 6.16. 

 

 

Figure 6.16: Geometry of an antenna-coupled (leaky lens antenna) elliptical mirror. The mirror has the diameter 

of 𝐷𝑚 = 0.125 m, the f-number of 𝑓#
𝑚 = 2 (𝜃0

𝑚 = 14.4∘), and the eccentricity of 𝑒 = 0.2, illuminated by unitary 

Co-Pol. and Cx-Pol. Huygens sources placed at the lower focal plane. At its upper focal plane, the leaky lens 

antenna is shifted 𝑑 𝑎 = 20 mm from the center. It consists of an elliptical silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 =
1.3 mm and 𝑓#

𝑙 = 0.526 (𝜃0
𝑙 = 72∘), and a y-polarized leaky-wave slot operated at 720 GHz.  

 

Fig. 6.17 shows the pattern obtained in Rx, compared with the pattern in Tx. In this case, 

when calculating the pattern in Rx, the far fields radiated by the leaky lens antenna are 

evaluated by using the PO in transmission code. The pattern in Tx is obtained by importing the 

far-field pattern of the same leaky lens antenna into GRASP. Fig. 6.17a to Fig. 6.17c show 𝑢𝑠, 
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𝜌𝑠, and 𝑣𝑠 planes, respectively; and Fig. 6.17d is the 3D Co-pol. pattern in Rx. It can be seen 

that the pattern in Rx is well validated, for both the Co-pol. and the Cx-pol. components. 

Moreover, the aperture efficiency, the directivity and the gain in Rx are in great agreement with 

the ones in Tx, as shown in Table. 6.6. 

 

Frequency: 720 GHz Aperture Efficiency Directivity [dB] Gain [dB] 

Tx 24.45% 58.96 53.37 

Rx 24.23% 58.92 53.33 

Table 6.6: Performance of the antenna-coupled elliptical mirror (leaky lens antenna placed at the upper focal 

plane), evaluated in Rx and compared with the one in Tx. 

 

  

(a) (b) 

 
 

(c) (d) 

Figure 6.17: The pattern obtained in Rx of the antenna-coupled elliptical mirror (leaky lens antenna placed at the 

upper focal plane), compared with the pattern evaluated in Tx: (a) 𝑢𝑠 plane. (b) 𝜌𝑠 plane. (c) 𝑣𝑠 plane. (d) 3D Co-
Pol. pattern in Rx.   
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⚫ Case 2: Antenna placed at the lower focal plane 

In this case, the f-number is calculated as 𝑓#
𝑚 = 3 (𝜃0

𝑚 = 9.6∘). The incident fields are 

generated by unitary Co-Pol. and Cx-Pol. Huygens sources placed at the upper focal plane. The 

same leaky lens antenna described in case 1 is now placed at the lower focal plane as the 

receiving antenna. It is shifted from the center of the focal plane with the distance 𝑑 𝑎 =

33.75 mm, as depicted in Fig. 6.18. 

 

 

Figure 6.18: Geometry of an antenna-coupled (leaky lens antenna) elliptical mirror. The mirror has the diameter 

of 𝐷𝑚 = 0.125 m, the f-number of 𝑓#
𝑚 = 3 (𝜃0

𝑚 = 9.6∘), and the eccentricity of 𝑒 = 0.2, illuminated by unitary 

Co-Pol. and Cx-Pol. Huygens sources placed at the upper focal plane. At its lower focal plane, the leaky lens 

antenna is shifted 𝑑 𝑎 = 33.75 mm from the center. It consists of an elliptical silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 =
1.3 mm and 𝑓#

𝑙 = 0.526 (𝜃0
𝑙 = 72∘), and a y-polarized leaky-wave slot operated at 720 GHz.  

 

Fig. 6.19 shows the pattern obtained in Rx, compared with the pattern in Tx. Fig. 6.19a to 

Fig. 6.19c show 𝑢𝑠, 𝜌𝑠, and 𝑣𝑠 planes, respectively; and Fig. 6.19d is the 3D Co-pol. pattern in 

Rx. It can be seen that the pattern in Rx is well validated. Moreover, the aperture efficiency, 

the directivity and the gain in Rx are also validated, as shown in Table. 6.7. 

 

Frequency: 720 GHz Aperture Efficiency Directivity [dB] Gain [dB] 

Tx 12.16% 58.68 50.33 

Rx 11.98% 58.62 50.27 

Table 6.7: Performance of the antenna-coupled elliptical mirror (leaky lens antenna placed at the lower focal 

plane), evaluated in Rx and compared with the one in Tx. 
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(a) (b) 

 
 

(c) (d) 

Figure 6.19: The pattern obtained in Rx of the antenna-coupled elliptical mirror (leaky lens antenna placed at the 

lower focal plane), compared with the pattern evaluated in Tx: (a) 𝑢𝑠 plane. (b) 𝜌𝑠 plane. (c) 𝑣𝑠 plane. (d) 3D Co-
Pol. pattern in Rx.  
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Chapter 7: Designed GUI Tool 

FO method is a powerful tool to represent the focalized field by a PWS at the focal plane of a 

QO component in reception. By using the PWS, one can analyze the performance of detector-

coupled QO systems. However to our knowledge, no universal tools are developed to 

implement this FO method for variety of QO components in reception. There are a few codes 

implementing the FO method [7, 15, 16], but they are limited in applicability. First, existing 

codes do not include variety of QO components. They mainly focus on analyzing parabolic 

reflectors and elliptical lenses. Moreover, they are not built with user-friendly interfaces, which 

means one cannot operate them easily. Accordingly, in this thesis, a MATLAB based GUI tool 

is built to analyze the antenna-coupled QO systems in reception by using the FO method. The 

tool includes five canonical QO components to improve design possibilities. Also, the user 

interface is informative so users do not need to know the details of FO methodology. In 

addition, the tool takes into account the presence of a matching layer, which is an essential 

element for designing dielectric lenses. 

In this chapter, we will show the interface of the tool and explain how it implements the 

methods described from chapter 2 to chapter 6 to analyze antenna-coupled QO systems in 

reception. The GUI tool is divided into two sub-GUIs and the interface of the main GUI is 

shown in Fig. 7.1. This main GUI is introduced from section 7.1 to 7.4. First in section 7.1, we 

briefly introduce how it defines the main QO components and implements the ray tracing 

technique. Next in section 7.2, we discuss how it implements the coherent method. And then 

in section 7.3, we explain how the GUI calculates GO fields on a FO sphere. Finally, in section 

7.4, numerical examples of GO fields and focal plane fields evaluated by the GUI are shown. 

In section 7.5, the second GUI is introduced. It is used to analyze the performance of antenna-

coupled QO systems. Conclusion is in section 7.6. 
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Figure 7.1: Layout of the main GUI tool. 

 

7.1 Main QO components and ray tracing 

⚫ Define a QO surface 

In chapter 2, five widely used QO components are parameterized, namely parabolic reflectors, 

elliptical lenses, hemispherical lenses, hyperbolic lenses, and elliptical mirrors. And in this 

section, we mainly discuss how to define them in the main GUI. Fig. 7.2 shows the interface 

used to define QO components. One can choose a QO surface from the “Library” and define it 

by inputting necessary parameters. As it can be seen in the figure, here we define an elliptical 

silicon (𝜀𝑟 = 11.9) lens with a matching layer. The corresponding 2D geometry is plotted in 

the inset to visualize the surface. 
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Figure 7.2: Interface used to define QO components 

 

⚫ Ray tracing 

An in-house ray tracing code is developed to describe and visualize reception scenarios for all 

QO components. Here we take the preceding elliptical silicon lens as an example. The lens has 

the diameter of 𝐷𝑙 = 5 mm and the f-number of 𝑓#
𝑙 = 0.6. A quarter-wavelength matching 

layer at 480 GHz made of Parylene (𝜀𝑚 = 2.62) is applied.  

To start a ray tracing, one needs to define incident fields: A unitary TM polarized plane 

wave operated at 720 GHz with the skew angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0∘ is defined, as shown in 

Fig. 7.3a. Meanwhile, an observation plane should be chosen. And then the ray tracing of this 

scenario is plotted in Fig. 7.3b. It can be seen in the figure that the ray tracing includes six basic 

components: The incident and transmitted rays follow Snell’s law described in Eq. (2.30). The 

FO sphere is chosen as large as possible and is defined in section 3.2.2. The lens surface 

(section 2.1.3) is half transparent and the dielectric slab is from the edge of the surface to the 

focal plane. Moreover, the observation plane is a 4 mm by 4 mm square centered at the focal 

plane. In this work, it is approximated that the thin matching layer does not change the ray path. 

Therefore, the layer is not shown. By using this ray tracing tool, one is able to preliminarily 

analyze QO systems by minimizing phase aberrations associated to different path lengths. 
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(a) (b) 

Figure 7.3: Ray tracing tool: (a) Interface used to set up ray tracing. (b) Ray tracing plot for the elliptical silicon 

lens illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0
∘. 

 

7.2 Coherent FO 

In the section of the FO integral, section 3.2, we mentioned that the focal plane electric field 

can be evaluated by using both the GO electric and magnetic fields, �⃗� 𝐺𝑂 and �⃗⃗� 𝐺𝑂, as described 

in Eq. (3.9); or using only the GO electric field, �⃗� 𝐺𝑂, as describe in Eq. (3.11), which depends 

on the incident skew angle. When the skew angle is relatively small, e.g. 𝜃𝑠 ≤ 11
∘, one can 

assume �⃗� 𝐺𝑂 and �⃗⃗� 𝐺𝑂 are tangent to the FO sphere. In this case, one can use either �⃗� 𝐺𝑂 or �⃗⃗� 𝐺𝑂 

to evaluate the focal plane fields. While for large skew angles, the tangential condition is not 

applicable. Therefore, one needs both �⃗� 𝐺𝑂 and �⃗⃗� 𝐺𝑂. This is the same case when evaluating the 

coherent FO spectra. 

In the tool, there are two options to calculate coherent FO spectra. In the first option, the 

tool uses both GO electric and magnetic fields, �⃗� 𝐺𝑂 and �⃗⃗� 𝐺𝑂. While in the second option, only 

one of the GO fields is used, either �⃗� 𝐺𝑂  or �⃗⃗� 𝐺𝑂 . In the following, we will explain what is 

implemented in the tool for these two options. 

⚫ Option 1: Using both �⃗⃗� 𝑮𝑶 and �⃗⃗⃗� 𝑮𝑶 

In this case, the focal plane electric field can be expressed as follows: 

𝑒 𝑓
𝐸&𝐻(𝜌 𝑓) =

𝑗𝑘𝑒−𝑗𝑘𝑅𝐹𝑂𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂

4𝜋𝑅𝐹𝑂
⋅ 

∫ {[�⃗� 𝐺𝑂 − (�̂� ⋅ �⃗� 𝐺𝑂)�̂�] − 𝜁(�̂� × �⃗⃗� 𝐺𝑂)}
𝑆𝐹𝑂

𝑒𝑗𝑘�⃗⃗� 𝑓⋅�̂�
′
𝑑𝑟 ′ (7.1) 



111 

 

where 𝜌 𝑓 is a point on the observation plane, 𝑅𝐹𝑂 is the radius of a FO sphere, �̂� is the normal 

vector of the FO sphere, and 𝑟 ′ is a point on the FO sphere. Moreover, the magnetic field can 

be calculated as: 

ℎ⃗ 𝑓
𝐸&𝐻(𝜌 𝑓) =

𝑗𝑘𝑒−𝑗𝑘𝑅𝐹𝑂𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂

4𝜋𝑅𝐹𝑂
⋅ 

∫ {[�⃗⃗� 𝐺𝑂 − (�̂� ⋅ �⃗⃗� 𝐺𝑂)�̂�] +
1

𝜁
(�̂� × �⃗� 𝐺𝑂)}

𝑆𝐹𝑂

𝑒𝑗𝑘�⃗⃗� 𝑓⋅�̂�
′
𝑑𝑟 ′ (7.2) 

In Eq. (7.1) and (7.2), since we do not apply any approximation on GO fields, the focal 

plane fields are calculated accurately within the FO applicability region. Furthermore, the 

electric field 𝑒 𝑓
𝐸&𝐻 can be expressed by its Cartesian spectral representation, as discussed in 

section 3.2.3. In this representation, the electric spectral function �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) can be expressed 

as: 

�⃗� 𝐹𝑂
𝐸&𝐻(𝑘𝑥, 𝑘𝑦) =

𝑗𝜋𝑅𝐹𝑂𝑒
−𝑗𝑘𝑅𝐹𝑂

𝑘𝑧
{[�⃗� 𝐺𝑂 − (�̂� ⋅ �⃗� 𝐺𝑂)�̂�] − 𝜁(�̂� × �⃗⃗� 𝐺𝑂)}𝑐𝑖𝑟𝑐(𝑘𝜌, 𝑘𝜌0) (7.3) 

where 𝑘𝜌 = 𝑘 sin 𝜃 and 𝑘𝑧 = √𝑘2 − 𝑘𝜌2. While for the magnetic one: 

�⃗⃗� 𝐹𝑂
𝐸&𝐻(𝑘𝑥, 𝑘𝑦) =

𝑗𝜋𝑅𝐹𝑂𝑒
−𝑗𝑘𝑅𝐹𝑂

𝑘𝑧
{[�⃗⃗� 𝐺𝑂 − (�̂� ⋅ �⃗⃗� 𝐺𝑂)�̂�] +

1

𝜁
(�̂� × �⃗� 𝐺𝑂)} 𝑐𝑖𝑟𝑐(𝑘𝜌, 𝑘𝜌0) (7.4) 

Therefore, the linearized coherent FO spectrum described in section 3.3.2 can be evaluated by 

using �⃗� 𝐹𝑂
𝐸&𝐻(𝑘𝑥, 𝑘𝑦) as: 

�⃗� 𝑓
𝐸&𝐻(−𝑘𝑥, −𝑘𝑦) = 𝑒

−𝑗𝑘
|�⃗⃗� 𝑜|

2

2𝑅𝐹𝑂�⃗� 𝐹𝑂
𝐸&𝐻(�⃗� 𝜌 + �⃗� 𝑜)𝑒

𝑗(�⃗� 𝜌+�⃗� 𝑜)⋅�⃗⃗� 𝑜 (7.5) 

where 𝜌 𝑜 is the point where we introduce the linearization and �⃗� 𝑜 =
𝑘

𝑅𝐹𝑂
𝜌 𝑜 . Moreover, the 

magnetic spectrum is: 

�⃗⃗� 𝑓
𝐸&𝐻(−𝑘𝑥, −𝑘𝑦) = 𝑒

−𝑗𝑘
|�⃗⃗� 𝑜|

2

2𝑅𝐹𝑂�⃗⃗� 𝐹𝑂
𝐸&𝐻(�⃗� 𝜌 + �⃗� 𝑜)𝑒

𝑗(�⃗� 𝜌+�⃗� 𝑜)⋅�⃗⃗� 𝑜 (7.6) 

These electric and magnetic spectra can be exported by the tool and used in spectral 

techniques such as equivalent Floquet circuits. To validate these spectra, we have mentioned 

in chapter 5 that we indirectly validate the focal plane fields calculated by using these spectra: 

{
 
 

 
 𝑒 𝑓

𝐸&𝐻(𝜌 ′) =
1

4𝜋2
∫ ∫ �⃗� 𝑓

𝐸&𝐻(−𝑘𝑥, −𝑘𝑦)𝑒
𝑗𝑘𝑥𝑥

′
𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

ℎ⃗ 𝑓
𝐸&𝐻(𝜌 ′) =

1

4𝜋2
∫ ∫ �⃗⃗� 𝑓

𝐸&𝐻(−𝑘𝑥, −𝑘𝑦)𝑒
𝑗𝑘𝑥𝑥

′
𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

(7.7) 

where 𝜌 ′ is the point surrounding around 𝜌 𝑜.  



112 

 

⚫ Option 2: Using either �⃗⃗� 𝑮𝑶 or �⃗⃗⃗� 𝑮𝑶 

In this case, we assume the GO magnetic field is orthogonal to the electric field with respect 

to the normal to the FO sphere, �̂�, as follows: 

�⃗⃗� 𝐺𝑂 =
1

𝜁
�̂� × �⃗� 𝐺𝑂 (7.8) 

By using Eq. (7.8), the focal plane fields described in Eq. (7.1) and (7.2) can be simplified as: 

{
  
 

  
 
𝑒 𝑓
𝐸/𝐻

(𝜌 𝑓) ≃
𝑗𝑘𝑒−𝑗𝑘𝑅𝐹𝑂𝑒

−𝑗𝑘
𝜌𝑓
2

2𝑅𝐹𝑂

4𝜋𝑅𝐹𝑂
∫ 2�⃗� 𝐺𝑂(𝜃, 𝜙)𝑒

𝑗𝑘�⃗⃗� 𝑓⋅�̂�
′

𝑆𝐹𝑂

𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙

ℎ⃗ 𝑓
𝐸/𝐻

(𝜌 𝑓) ≃
𝑗𝑘𝑒−𝑗𝑘𝑅𝐹𝑂𝑒

−𝑗𝑘
𝜌𝑓
2

2𝑅𝐹𝑂

4𝜋𝑅𝐹𝑂
∫ 2�⃗⃗� 𝐺𝑂(𝜃, 𝜙)𝑒

𝑗𝑘�⃗⃗� 𝑓⋅�̂�
′

𝑆𝐹𝑂

𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙

(7.9) 

Moreover, the spectral functions �⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) and �⃗⃗� 𝐹𝑂(𝑘𝑥, 𝑘𝑦) can be approximated as: 

{
 
 

 
 �⃗� 𝐹𝑂

𝐸/𝐻
(𝑘𝑥, 𝑘𝑦) ≃

𝑗2𝜋𝑅𝐹𝑂𝑒
−𝑗𝑘𝑅𝐹𝑂

𝑘𝑧
�⃗� 𝐺𝑂(𝑘𝑥, 𝑘𝑦)𝑐𝑖𝑟𝑐(𝑘𝜌, 𝑘𝜌0)

�⃗⃗� 𝐹𝑂
𝐸/𝐻

(𝑘𝑥, 𝑘𝑦) ≃
𝑗2𝜋𝑅𝐹𝑂𝑒

−𝑗𝑘𝑅𝐹𝑂

𝑘𝑧
𝐻𝐺𝑂(𝑘𝑥, 𝑘𝑦)𝑐𝑖𝑟𝑐(𝑘𝜌, 𝑘𝜌0)

(7.10) 

Furthermore, the linearized coherent FO spectra can be expressed as: 

{
�⃗� 𝑓
𝐸/𝐻

(−𝑘𝑥, −𝑘𝑦) = 𝑒
−𝑗𝑘

|�⃗⃗� 𝑜|
2

2𝑅𝐹𝑂�⃗� 𝐹𝑂
𝐸/𝐻

(�⃗� 𝜌 + �⃗� 𝑜)𝑒
𝑗(�⃗� 𝜌+�⃗� 𝑜)⋅�⃗⃗� 𝑜

�⃗⃗� 𝑓
𝐸/𝐻

(−𝑘𝑥, −𝑘𝑦) = 𝑒
−𝑗𝑘

|�⃗⃗� 𝑜|
2

2𝑅𝐹𝑂�⃗⃗� 𝐹𝑂
𝐸/𝐻

(�⃗� 𝜌 + �⃗� 𝑜)𝑒
𝑗(�⃗� 𝜌+�⃗� 𝑜)⋅�⃗⃗� 𝑜

(7.11) 

Similar to the option 1, these spectra can be exported by the tool and are validated by 

validating their corresponding focal plane fields: 

{
 
 

 
 𝑒 𝑓

𝐸/𝐻(𝜌 ′) =
1

4𝜋2
∫ ∫ �⃗� 𝑓

𝐸/𝐻
(−𝑘𝑥, −𝑘𝑦)𝑒

𝑗𝑘𝑥𝑥
′
𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

ℎ⃗ 𝑓
𝐸/𝐻(𝜌 ′) =

1

4𝜋2
∫ ∫ �⃗⃗� 𝑓

𝐸/𝐻
(−𝑘𝑥, −𝑘𝑦)𝑒

𝑗𝑘𝑥𝑥
′
𝑒𝑗𝑘𝑦𝑦

′
𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

(7.12) 
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7.3 Calculation of GO fields 

The coherent FO spectra are related to the GO fields and we have introduced GO ray fields and 

analytical GO fields in chapter 4. In this section, we will discuss how the GUI calculates these 

GO fields. 

⚫ Analytical GO fields 

When the incident skew angle 𝜃𝑠 is less than 11∘, the GO electric field on a FO sphere can 

be expressed as: 

�⃗� 𝐺𝑂(𝜃𝑠, 𝜙𝑠) ≃ �⃗� 𝐺𝑂(𝜃𝑠 = 0)e
−𝑗�⃗� 𝜌⋅�⃗⃗� 𝑓𝑝𝑒−𝑗Φ𝑐𝑜𝑚𝑎(𝑒−𝑗Φ𝑐𝑜𝑚𝑝) (7.13) 

where 𝑒−𝑗Φ𝑐𝑜𝑚𝑝  is the compensation phase term for the case of elliptical mirrors. Since the 

skew angle is small, one can use the relation described in Eq. (7.8) to calculate the GO magnetic 

field �⃗⃗� 𝐺𝑂(𝜃𝑠, 𝜙𝑠). 

⚫ GO ray fields 

When the skew angle is 𝜃𝑠 > 11
∘, analytical GO fields are not applicable. In such a case, 

the tool calculates the GO ray fields. The GO electric field can be evaluated by using the 

spreading factor 𝑆𝑟𝑒𝑎𝑑(𝜃) and the distance along the ray path 𝑠(𝜃, 𝜙) as: 

�⃗� 𝐺𝑂(𝜃
′, 𝜙′) = �⃗� 𝑟/𝑡(𝜃, 𝜙) ⋅ 𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) ⋅ 𝑒

−𝑗𝑘𝑠(𝜃,𝜙) (7.14) 

where �⃗� 𝑟/𝑡 is the reflected or transmitted field discussed in section 2.2.2.1, and (𝜃′, 𝜙′) are 

non-uniform parameterization variables in GO propagation which are shown in Fig. 7.4 for a 

reflection case. The explicit explanation of (𝜃′, 𝜙′) is described in Appendix E.1. Moreover, 

the GO magnetic field is related to �⃗� 𝐺𝑂 as: 

�⃗⃗� 𝐺𝑂(𝜃
′, 𝜙′) =

1

𝜂
 �̂�𝑟/𝑡 × �⃗� 𝐺𝑂(𝜃

′, 𝜙′) (7.15) 

where �̂�𝑟/𝑡 is the reflected or transmitted propagation unit vector. It is worth noting that the GO 

fields, �⃗� 𝐺𝑂(𝜃
′, 𝜙′) and �⃗⃗� 𝐺𝑂(𝜃

′, 𝜙′), are non-uniformly distributed on a FO sphere. Therefore, 

one should numerically interpolate the non-uniform fields 𝐸/𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝐺𝑂(𝜃

′, 𝜙′) to the uniform ones 

𝐸/𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝐺𝑂(𝜃, 𝜙). In such an interpolation procedure, numerical errors can occur. 
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Figure 7.4: GO propagation in a reflection problem. 

 

7.4 Numerical examples of GO fields and focal plane fields 

In this section, we will first introduce some configurations in the main GUI, and then show 

some numerical examples of GO fields and focal plane fields calculated by the GUI. 

7.4.1  Configurations in the GUI 

Fig. 7.5 shows the configurations set in the GUI for calculating GO and focal plane fields. In 

Fig. 7.5a, there are three approaches to calculate focal plane fields. “PO” is used as validation. 

It calculates focal plane fields by using the PO radiation integral. 

In the FO method, “Analytical FO” means that GO fields are calculated analytically by 

using Eq. (7.13). While “GO-FO” uses the GO ray fields described in Eq. (7.14). By using the 

GO fields, one can calculate the focal plane fields in the presence of the quadratic phase term, 

i.e. “None” option. In this option, the GUI implements Eq. (7.1), (7.2) or Eq.(7.9), depending 

on the selection of GO electric and magnetic fields. Moreover, one can evaluate the linearized 

coherent FO spectrum at a point (𝑥𝑜 , 𝑦𝑜), i.e. “CFO” option; and then calculate the focal plane 

fields by integrating the PWS, as described in Eq. (7.7) or (7.12). 

Next in Fig. 7.5b, one should define an observation grid, and choose components of the 

focal plane fields, i.e. “𝐸𝑥,𝑦,𝑧” and “𝐻𝑥,𝑦,𝑧”. Finally, in Fig. 7.5c, one can decide to use both 

GO electric and magnetic fields or just one of them, with (𝑢, 𝑣) or (𝜃, 𝜙) parameterization. 
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(a) (b) 

 

 

(c)  

Figure 7.5: Configurations in the GUI: (a) Calculation methods. (b) Observation grid and components of fields. 

(c) Selection of GO fields and parameterization variables. 

 

7.4.2  GO fields and focal plane fields calculated by the GUI 

Here we take an elliptical silicon (𝜀𝑟 = 11.9) lens as an example. The lens has the diameter of 

𝐷𝑙 = 5 mm and the f-number of 𝑓#
𝑙 = 0.6. A quarter-wavelength matching layer at 480 GHz 

made of Parylene (𝜀𝑚 = 2.62) is applied. And the incident field is a unitary TM polarized plane 

wave operated at 720 GHz with the skew angle of 𝜃𝑠 = 10
∘, 𝜙𝑠 = 0∘.  

In this case, Fig. 7.6 shows the GO ray fields on the FO sphere. GO electric field (Fig. 7.6a) 

is divided into 𝐸𝜃 and 𝐸𝜙 components, and GO magnetic field (Fig. 7.6b) is divided into 𝐻𝜃 

and 𝐻𝜙 components. As it can be seen, both amplitude and phase are shown.  

By using the GO electric and magnetic fields, the focal plane fields are evaluated and plotted 

in Fig. 7.7. Here the incident plane wave is TM polarized. Therefore, we only show the 

dominant component, 𝐸𝑥. Moreover, the 3D coherent FO field is plotted in the inset. In Fig. 

7.7, we use the PO analysis as the reference, and compare the analytical FO, GO-FO, and 

coherent FO, for both the amplitude and the phase. It should be mentioned that the GUI can 

only use one approach at a time. Here we put all approaches together for comparison purpose. 
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(a) (b) 

Figure 7.6: GO ray fields calculated by the GUI: (a) GO electric field. (b) GO magnetic field. 

 

 

Figure 7.7: Focal plane fields evaluated by the GUI. 

 

7.5 Antenna-coupled QO systems 

A second GUI is built to analyze antenna-coupled QO systems, as shown in Fig. 7.8. As it can 

be seen, there are three areas, namely “Incident fields”, “Feed antenna”, and “Calculation & 

Performance”. In this section, we will discuss these areas and explain how the GUI calculates 

the power delivered to the load of an antenna. In subsection 7.5.1, incident fields used in this 

GUI are discussed. Next in subsection 7.5.2, the procedure to obtain the fields radiated by an 

antenna is explained. Finally, in subsection 7.5.3, the reaction integral and the calculation of 

common efficiency terms used in the GUI are listed.  
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Figure 7.8: Layout of the second GUI for analyzing antenna-coupled QO systems, which is divided into three 

areas. 

 

7.5.1  Incident fields 

Two types of incident fields are discussed in section 2.2.1: A plane wave and a Huygens source. 

For a plane wave incidence, we define the polarization of the plane wave by using the Ludwig-

III definition, as described in Eq. (2.23) and (2.24). In the second GUI, we relate the reference 

polarization (Co-Pol.) to the antenna polarization as: 

{
�̂�𝑖,𝐶𝑜 = cos𝜙𝑠 𝜃𝑠 − sin𝜙𝑠 �̂�𝑠: 𝑥 −  pol.  Antenna

�̂�𝑖,𝐶𝑜 = sin𝜙𝑠 𝜃𝑠 + cos𝜙𝑠 �̂�𝑠: 𝑦 −  pol.  Antenna
(7.16) 

 

For a Huygens source, the electric dipole can be x- or y- polarized, which depends on the 

orientation angle 𝛾: 

{
 𝛾 = 0∘  ∶ �̂�𝑖,𝐶𝑜 = �̂�: 𝑥 −  pol.  Antenna

 𝛾 = 90∘: �̂�𝑖,𝐶𝑜 = �̂�: 𝑦 −  pol.  Antenna
(7.17) 

Moreover, the incident fields incoming from different skew angles can be defined by two sets 

of variables: (𝜃𝑠, 𝜙𝑠) and (𝑢𝑠, 𝑣𝑠), which are related to each other as: 

𝜃𝑠 = asin√𝑢𝑠2 + 𝑣𝑠2 ,  𝜙𝑠 = atan
𝑣𝑠
𝑢𝑠

(7.18) 

It has been mentioned in section 6.4.1 that (𝑢𝑠, 𝑣𝑠) variables are preferred to display a pattern. 

One can define a rectangular 𝑢𝑠-𝑣𝑠 grid and display the pattern conveniently.  
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7.5.2  Fields radiated by an antenna 

In order to calculate the reaction integral for open-circuit voltage, one needs to evaluate two 

sets of sources: GO fields on a FO sphere and the fields radiated by a feed antenna. The GO 

fields have been discussed. In this subsection, we mainly focus on evaluating the fields radiated 

by the antenna. 

⚫ Antenna propagation 

The tool is able to load the fields radiated by an antenna from external files like CST-GRASP 

cuts or MATLAB matrices. In such files, the fields are always assumed to be broadside 

radiated, meaning the feed antenna is placed at the center of the reference system, as depicted 

in Fig. 7.9. Here we assume a far-field (FF) radiation and the radiated fields are recorded on an 

FF sphere 𝑆𝐹𝐹 with the radius of 𝑅𝐹𝐹. Therefore, the electric field radiated by the antenna on 

𝑆𝐹𝐹 can be expressed as a spherical wave: 

�⃗� 𝑎
𝑇𝑥(𝜃𝐹𝐹 , 𝜙𝐹𝐹) = (𝐸𝑎

𝑇𝑥,⊥�̂�𝐹𝐹 + 𝐸𝑎
𝑇𝑥,∥𝜃𝐹𝐹) ⋅

𝑒−𝑗𝑘𝑅𝐹𝐹

𝑅𝐹𝐹
(7.19) 

where 𝐸𝑎
𝑇𝑥,⊥

 and 𝐸𝑎
𝑇𝑥,∥

 are TE and TM components of the radiated field, respectively. 

Moreover, the magnetic field is related to the electric field as: 

�⃗⃗� 𝑎
𝑇𝑥 =

1

𝜁
�̂�𝑖,𝐹𝐹 × �⃗� 𝑎

𝑇𝑥 (7.20) 

To calculate the reaction integral, the radiated fields on a FO sphere are needed. Therefore, 

one should evaluate the fields captured by the FO sphere, i.e. �⃗� 𝑎
𝑇𝑥(𝜃𝐹𝑂 , 𝜙𝐹𝑂), which can be 

calculated by back/forward propagating �⃗� 𝑎
𝑇𝑥(𝜃𝐹𝐹 , 𝜙𝐹𝐹) as: 

�⃗� 𝑎
𝑇𝑥(𝜃𝐹𝑂 , 𝜙𝐹𝑂) = �⃗� 𝑎

𝑇𝑥(𝜃𝐹𝐹 , 𝜙𝐹𝐹) ⋅ 𝑅𝐹𝐹 ⋅ 𝑒
𝑗𝑘𝑅𝐹𝐹 ⋅

𝑒−𝑗𝑘𝑅𝐹𝑂

𝑅𝐹𝑂
(7.21) 

It should be noticed that since (𝜃𝐹𝐹 , 𝜙𝐹𝐹) and (𝜃𝐹𝑂 , 𝜙𝐹𝑂) are two sets of variables, one 

should use interpolation to numerically transform (𝜃𝐹𝐹 , 𝜙𝐹𝐹) to (𝜃𝐹𝑂 , 𝜙𝐹𝑂). The same step can 

also be done for the magnetic field. 
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Figure 7.9: A schematic representation of broadside radiation for a central feed. 

 

Next, we consider shifting the antenna within the focal plane of the QO component, with a 

distance 𝑑 𝑎 = 𝑑𝑥�̂� + 𝑑𝑦�̂�, as depicted in Fig. 7.10. In this case, the reference system is located 

at the center of the focal plane, 𝑂. The FO sphere in this system is parameterized by the uniform 

variables (𝜃𝐹𝑂 , 𝜙𝐹𝑂), and a point on it is denoted by 𝑄𝐹𝑂(𝑥, 𝑦, 𝑧).  

And then we introduce a local system centered at the antenna position, 𝑂′. In this system, 

the FO sphere is parameterized by the non-uniform variables (𝜃𝐹𝑂
′ , 𝜙𝐹𝑂

′ ). To calculate them, 

we first use the Cartesian variables (𝑥′, 𝑦′, 𝑧′) to represent the point on the FO sphere, i.e. 

𝑄𝐹𝑂
′ (𝑥′, 𝑦′, 𝑧′): 

{

𝑄𝐹𝑂,𝑥′
′ = 𝑄𝐹𝑂,𝑥 − 𝑑𝑥

𝑄𝐹𝑂,𝑦′
′ = 𝑄𝐹𝑂,𝑦 − 𝑑𝑦

𝑄𝐹𝑂,𝑧′
′ = 𝑄𝐹𝑂,𝑧

(7.22) 

The radius of the FO sphere then becomes asymmetric, i.e. 𝑅𝐹𝑂
′ = |𝑄𝐹𝑂

′ (𝑥′, 𝑦′, 𝑧′)|. By using 

𝑄𝐹𝑂
′  and 𝑅𝐹𝑂

′ , the non-uniform variables (𝜃𝐹𝑂
′ , 𝜙𝐹𝑂

′ ) can be calculated as: 

{
 
 

 
 𝜃𝐹𝑂

′ = cos−1
𝑄𝐹𝑂,𝑧′ 
′

𝑅𝐹𝑂
′

𝜙𝐹𝑂
′ = tan−1

𝑄𝐹𝑂,𝑦′ 
′

𝑄𝐹𝑂,𝑥′ 
′

(7.23) 

Finally, we discuss the fields radiated by the shifted antenna. As mentioned in the central 

feed case, we only need the fields illuminating the FO sphere, shown as the blue region in Fig. 

7.10. Therefore, by interpolating the broadside field �⃗� 𝑎
𝑇𝑥(𝜃𝐹𝐹 , 𝜙𝐹𝐹) into the off-broadside one 

�⃗� 𝑎
𝑇𝑥(𝜃𝐹𝑂

′ , 𝜙𝐹𝑂
′ ) and considering the back/forward propagation: 
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�⃗� 𝑎
𝑇𝑥(𝜃𝐹𝑂 , 𝜙𝐹𝑂) = [�⃗� 𝑎

𝑇𝑥(𝜃𝐹𝑂
′ , 𝜙𝐹𝑂

′ ) ⋅ 𝑅𝐹𝐹 ⋅ 𝑒
𝑗𝑘𝑅𝐹𝐹] ⋅

𝑒−𝑗𝑘𝑅𝐹𝑂
′

𝑅𝐹𝑂
′ (7.24) 

The same steps can also be done to derive the magnetic field �⃗⃗� 𝑎
𝑇𝑥(𝜃𝐹𝑂 , 𝜙𝐹𝑂). 

It is worth mentioning that Eq. (7.24) is derived under the assumption that the FO sphere is 

in the far-field region of the antenna. Consequently, this method is not applicable when the FO 

sphere is in the near-field region. In such cases, the tool can either directly import the off-

broadside near fields on the FO sphere, or still use Eq. (7.24) with a reduction in the accuracy. 

 

 

Figure 7.10: A schematic representation of off-broadside radiation for a displaced feed. 

 

⚫ Examples of fields radiated by an antenna 

In the second GUI, there is an area used to load fields radiated by an antenna, as shown in 

Fig 7.11a. One can define a uniform aperture by inputting the diameter and the amplitude of 

the aperture. Also, one can import the fields from external files, like CST-GRASP cuts or 

MATLAB matrices. The polarization of the antenna is “𝑥” or “𝑦”, which decides the reference 

polarization (Co-Pol.) of the primary field: 

{
�̂�𝑎,𝑐𝑜
𝑇𝑥 = cos(𝜙𝐹𝐹) 𝜃𝐹𝐹 − sin(𝜙𝐹𝐹) �̂�𝐹𝐹:  𝑥 −  pol.  Antenna

�̂�𝑎,𝑐𝑜
𝑇𝑥 = sin(𝜙𝐹𝐹) 𝜃𝐹𝐹 + cos(𝜙𝐹𝐹) �̂�𝐹𝐹:  𝑦 − pol.  Antenna

(7.25)

and the displacement of the antenna is 𝑑 𝑎 = 𝑑𝑥�̂� + 𝑑𝑦�̂�. After loading the fields radiated by 

the antenna, one can plot them in an external window, Fig 7.11b. In this window, one can plot 

the EM fields on a far-field sphere, as described in Eq. (7.19); or the fields on a FO sphere, as 

described in Eq. (7.24).  
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(a) (b) 

Figure 7.11: Screenshots of the second GUI: (a) Area used to define an antenna. (b) External window used 

to plot fields radiated by the defined antenna. 

 

Here we take an elliptical silicon (𝜀𝑟 = 11.9) lens as an example to show the loaded primary 

fields inside the lens. The lens has the diameter of 𝐷𝑙 = 5 mm and the f-number of 𝑓𝑙
𝑙 = 0.6. 

A quarter-wavelength matching layer at 480 GHz made of Parylene (𝜀𝑚 = 2.62) is applied. 

The antenna is a y-polarized leaky-wave antenna operated at 720 GHz [51], with a 

displacement 𝑑𝑥 = −0.15 mm. Fig. 7.12 shows the Co-Pol. component of the primary electric 

fields, evaluated on a FF sphere with the radius of 𝑅𝐹𝐹 = 1 m (Fig. 7.12a) and on the FO sphere 

of the lens (Fig. 7.12b). As it can be seen in Fig. 7.12a, the antenna radiates most of the field 

within the rim angle subtended by the lens. Moreover, in Fig. 7.12b, the main beam position 

moves due to the displacement of the antenna. 

  

(a) (b) 

Figure 7.12: Co-Pol. component of the primary electric fields evaluated on: (a) A FF sphere with the radius 

of 𝑅𝐹𝐹 = 1 m. (b) The FO sphere of the lens. The black circle is the boundary of the lens. 
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7.5.3  Power delivered to an antenna load and common efficiency terms 

⚫ Power delivered to an antenna load 

It has been discussed in chapter 6 that for an antenna-coupled QO system, the open-circuit 

voltage of the antenna can be evaluated by calculating the reaction between the fields in 

transmission and the induction currents on a FO sphere: 

𝑉𝑜𝑐(𝜃𝑠, 𝜙𝑠) = ∬ [�⃗⃗� 𝑎
𝑇𝑥 ⋅ �⃗⃗� 𝐺𝑂 − �⃗� 𝑎

𝑇𝑥 ⋅ 𝐽 𝐺𝑂]𝑑𝑆
𝑆𝐹𝑂

(7.26) 

where 𝐽 𝐺𝑂 = �̂� × �⃗⃗� 𝐺𝑂, �⃗⃗� 𝐺𝑂 = �⃗� 𝐺𝑂 × �̂�, and �̂� is the normal vector of the FO sphere. It is worth 

noting that Eq. (7.26) does not apply any approximation; therefore, it can be used also when 

the QO system is in the near field of the antenna and for very large skewed angles. In the GUI, 

Eq. (7.26) is implemented due to its generality. Moreover, the power delivered to the load of 

the antenna is evaluated as follows: 

𝑃𝐿(𝜃𝑠, 𝜙𝑠) =
|∫ ∫ [�⃗⃗� 𝑎

𝑇𝑥 ⋅ �⃗⃗� 𝐺𝑂 − �⃗� 𝑎
𝑇𝑥 ⋅ 𝐽 𝐺𝑂]

𝜃0

0
sin 𝜃𝑑𝜃𝑑𝜙

2𝜋

0
|
2

16∫ ∫ |�⃗⃗⃗� 𝑟𝑎𝑑 ⋅ �̂�|
𝜋

0

2𝜋

0
sin 𝜃 𝑑𝜃𝑑𝜙

(7.27) 

where 𝜃0  is the rim angle of the QO surface, and �⃗⃗⃗� 𝑟𝑎𝑑 =
1

2
𝑅𝑒(�⃗� 𝑎

𝑇𝑥 × �⃗⃗� 𝑎
𝑇𝑥∗)  is the time-

average radiated power density.  

⚫ Common efficiency terms 

In Eq. (6.31), the taper efficiency 𝜂𝑡
𝑅𝑥 is calculated by using the directivity 𝐷𝑖𝑟

𝑅𝑥. However, 

𝐷𝑖𝑟
𝑅𝑥 can be obtained only when the complete pattern is evaluated, which is time-consuming. 

Therefore, in the second GUI, we use another way to efficiently calculate 𝜂𝑡
𝑅𝑥 and 𝐷𝑖𝑟

𝑅𝑥. In the 

GUI, the aperture efficiency in reception is calculated as: 

𝜂𝑎𝑝
𝑅𝑥 =

𝑃𝐿
𝑃𝑖𝑛𝑐

(7.28) 

where 𝑃𝐿  is the power delivered to an antenna load and 𝑃𝑖𝑛𝑐  is the incident power. For the 

spillover efficiency in reception, 𝜂𝑠𝑜
𝑅𝑥, due to the reciprocity, we can assume it is the same as 

the one in transmission, i.e 𝜂𝑠𝑜
𝑅𝑥 = 𝜂𝑠𝑜

𝑇𝑥 . Therefore, the taper efficiency in reception can be 

evaluated efficiently as: 

𝜂𝑡
𝑅𝑥 = 𝜂𝑎𝑝

𝑅𝑥/𝜂𝑠𝑜
𝑇𝑥 (7.29) 

Furthermore, the directivity in reception can also be obtained efficiently as: 

𝐷𝑖𝑟
𝑅𝑥 = 𝐷𝑖𝑟𝑚𝑎𝑥 ⋅ 𝜂𝑡

𝑅𝑥 (7.30) 

where 𝐷𝑖𝑟
𝑚𝑎𝑥 is the maximum theoretical directivity. 
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⚫ Performance in reception evaluated by the GUI 

Here we use the GUI to evaluate the performance of the leaky lens antenna introduced in 

subsection 7.5.2. Fig. 7.13 shows the performance of the leaky lens antenna evaluated by the 

GUI. The common efficiency terms, the directivity, and the gain are shown in Fig. 7.13a, 

marked by the red dashed box. The Co-Pol. power pattern is plotted in (𝑢𝑠, 𝑣𝑠) with 3D (Fig. 

7.13b) and 𝑢𝑠 cut (Fig. 7.13c). Moreover, there is an option to plot the phase of the open-circuit 

voltage, i.e. ∠𝑉𝑜𝑐, as shown in Fig. 7.13d. In addition, one can plot the integrand of the reaction 

integral described in Eq. (7.26), i.e. �⃗⃗� 𝑎
𝑇𝑥 ⋅ �⃗⃗� 𝐺𝑂 − �⃗� 𝑎

𝑇𝑥 ⋅ 𝐽 𝐺𝑂. This can be done for a specific 

incident skew angle; and in Fig. 7.13e, we choose 𝜃𝑠 = 10∘, 𝜙𝑠 = 0∘. 
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(a) (b) 

    

(c) (d) 

 

 

(e)  

Figure 7.13: The performance of the leaky lens antenna evaluated by the GUI: (a) Common efficiency terms, 

directivity, and gain. (b) 3D power pattern (Co-Pol.). (c) 𝑢𝑠 cut of the pattern. (d) Phase of 𝑉𝑜𝑐 . (e) Integrand of 

the reaction integral for the incident skew angle 𝜃𝑠 = 10∘, 𝜙𝑠 = 0
∘. 
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In the GUI, it is also possible to analyze the case of multiple frequencies. For the same leaky 

lens antenna, we choose three frequency points: 𝑓 = 0.24, 0.48, 0.72 THz. In this case, one can 

select a specific frequency in the frequency list to plot the pattern, as shown in Fig. 7.14a. 

Moreover, the efficiency terms, the directivity, and the gain are functions of frequency, as 

shown in Fig. 7.14b for the aperture efficiency.  

 

  

(a) (b) 

Figure 7.14: The leaky lens antenna with three frequency points, 𝑓 = 0.24, 0.48, 0.72 THz: (a) Frequency 

list. (b) Aperture efficiency. 

 

7.6 Conclusion 

To conclude, this GUI tool represents a GO/FO based tool that can be used to analyze and 

design QO systems in reception. It has the following outputs: 

(1) Five commonly used QO components are included to improve design possibilities. Their 

2D geometries can be plotted and exported. 

(2) To preliminarily analyze QO systems, a ray tracing code is developed to visualize ray 

propagation. For all QO components, ray tracing figures can be plotted. 

(3) The coherent FO method is implemented and validated. The tool can evaluate and export 

coherent FO spectra. Moreover, the focal plane fields calculated by using these spectra can 

be plotted and exported. 

(4) The tool is able to load and plot fields radiated by an antenna. Moreover, by calculating 

the reaction integral, the tool outputs key parameters used to evaluate the performance of 

antenna-coupled QO systems in reception, including pattern, common efficiency terms, 

directivity and gain.  
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Chapter 8: Conclusion 

8.1 Summary and conclusion 

In this thesis we discussed a GUI tool for analyzing antenna-coupled QO systems in reception 

using the FO methodology. This work fulfills the need for a universal tool which implements 

the FO method for variety of QO components. The current available FO based codes are limited 

in applicability. The existing codes mainly focus on analyzing parabolic reflectors and elliptical 

lenses, which leads to small design possibilities. Moreover, their interfaces were not developed 

with the goal to be user-friendly for designing purposes. The proposed tool solves these 

constrains. The tool provides five widely used QO components to improve design possibilities. 

Also, the graphical user interface is informative. Users can easily operate the tool without 

extensive knowledge about the FO methodology. In addition, the possibility for designing 

matching layers is included for dielectric lenses, which is essential in practical dielectric lens 

designs. 

The GUI tool is mainly based on evaluating the GO fields on a FO sphere. Besides 

evaluating the GO ray fields, analytical GO fields are also derived to increase the speed of the 

tool. Once GO fields are obtained, coherent FO spectra can also be evaluated. Moreover, for 

an antenna-coupled QO system in reception, the reaction between the GO fields and the fields 

radiated by the antenna leads to the power delivered to the antenna. This FO analysis in 

reception is convenient when analyzing multi-mode antenna configurations. More importantly, 

it provides insight in synthesizing antennas. In addition, the tool is tested and validated by using 

CST and GRASP full-wave simulation software. Therefore, it can be concluded that this tool 

represents a GO/FO based tool that can be used for analyzing and designing antenna-coupled 

QO systems in reception.  

In chapter 2 we discussed the most widely used QO components in reception scenarios. 

Five canonical QO components were included. We explained the applications of each one in 

THz systems. These components are then parameterized by defining truncation angle, f-

number, radial distance, and normal vector. Moreover, we discussed the ray tracing technique 

that can be used to describe reception scenarios for the QO components. In the ray tracing, 

incident rays were defined; and by using the laws of reflection and refraction, the reflected and 

transmitted rays were evaluated. In addition, in order to reduce the reflection coefficient for 

dielectric lenses, the case of adding a matching layer was investigated. 
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In the third chapter, we applied the FO method to derive the PWS of the direct field 

focalized by a QO component. To start with, the PO analysis was introduced. It was 

implemented as validation on focal plane fields. More importantly, by using the FO 

approximations, the PO radiation integral was approximated by the FO integral where the focal 

plane field was evaluated by integrating the fields on a FO sphere, referred to as the GO fields. 

Moreover, the applicability region for those approximations was discussed. To maximize this 

region, the radius of the FO sphere was chosen as large as possible for each QO component.  

When the FO integral was written as a spectral representation, we found the focal plane 

field could be represented by a spectral function with a quadratic phase term. It was explained 

that this phase term cannot be neglected when the observation was far away from the focus. In 

such a case, we discussed a coherent FO method to include this phase term in the spectrum of 

the focal plane field. We showed that by applying FT on this quadratic phase term, the full 

coherent FO spectrum could be evaluated by calculating a convolution integral. Furthermore, 

we introduced a linearization approximation on the quadratic phase term to simplify this 

convolution operation. As a result, the convolution was approximated by a linear shift in the 

spectral domain, and the full spectrum became a linearized local spectrum.  

Chapter 4 focuses on evaluating the fields scattered by a QO component and propagating 

these fields to the corresponding FO sphere by resorting to the GO technique. Under GO 

approximation, EM waves can be approximated as tubes of rays propagating in a homogenous 

medium from one point to another. Moreover, the scattered ray fields follow the laws of 

reflection and refraction at a two-media separation surface. In order to derive the GO ray 

expression, we discussed an asymptotic evaluation on the PO radiation integral. By applying 

the Method of Stationary Phase for reflection and transmission problems, the GO reflected and 

transmitted fields were derived, respectively. 

Subsequently, we showed that it was possible to find analytical expressions for GO ray 

fields with broadside incidence on QO components. Analytical GO fields were investigated for 

all QO components, by deriving spreading factor, phase variation, and polarization 

information. At the end of this section, we checked that analytical GO fields were in excellent 

agreement with the GO ray fields. Furthermore, we explored the case of slightly off-broadside 

incidence. In this case, analytical GO fields could be approximated by the ones for broadside 

illumination multiplied by the linear and coma phase terms, for plane wave incidence; while 

linear, coma, and compensation phase terms, for point source incidence. Moreover, the limits 

of the coma phase, where the coma phase term could be neglected, were found and compared 

for all QO components.  
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In chapter 5 numerical examples and validation of GO fields and PWS were shown. The 

validation was done indirectly by validating the focal plane fields. First the focal plane fields 

evaluated by using the GO ray fields and the analytical GO fields were compared with the ones 

obtained using the PO analysis. It was shown that the agreement was very good. Furthermore, 

numerical examples of PWS were shown to better illustrate the coherent FO method. The full 

CFO spectrum was compared with the linearized CFO spectrum. Both spectra were accurate 

but we chose to use the linearized CFO spectrum since it was numerically efficient. Finally, 

the focal plane fields calculated by using the linearized CFO spectra were validated for all QO 

components. 

In chapter 6 antenna-coupled QO systems were analyzed in reception scenarios. To do so, 

first the Thevenin equivalent circuit was introduced to represent a system in reception. The 

open-circuit voltage generator in this circuit was evaluated by calculating the reaction between 

the fields in transmission and the induction currents on a FO sphere. In the subsequent section, 

we explained the calculation of the power delivered to an antenna load. The next section 

discussed the parameters used to evaluate the performance of the systems in reception, 

including pattern, directivity, gain, and common efficiency terms. Finally, we validated the 

performance of antenna-coupled QO components in reception. The performance in 

transmission obtained from CST and GRASP was used as the reference, and the results 

corresponding to all QO components were validated.  

In chapter 7 we described the interface of the developed tool and explained the 

implementations in it. The GUI tool was divided into two sub-GUIs. In the main GUI, first we 

described the procedures to define the main QO components and to start a ray tracing analysis. 

In the next section, we explained the implementation of the coherent FO method in the GUI. 

The GUI provided two options to evaluate the coherent FO spectra, namely using both GO 

electric and magnetic fields or using only one of them. Next, the calculation of GO fields used 

in the GUI was discussed. In addition, numerical examples of GO fields and focal plane fields 

calculated by the GUI were shown.  

Subsequently, the second GUI was introduced. This GUI was used to analyze the 

performance of antenna-coupled QO systems in reception. It could load the fields radiated by 

an antenna from external files. In order to evaluate the radiated fields intercepted by a FO 

sphere, antenna propagation approach was discussed. Moreover, the reaction integral and the 

calculation of common efficiency terms used in the GUI were shown. Finally, we concluded 

the outputs of the entire GUI tool built in this thesis. 
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8.2 Future work 

The developed GUI tool is validated and proved to work accurately in analyzing antenna-

coupled QO systems in reception. However, when analyzing lenses, the execution speed of the 

tool is relatively low. This is due to the fact that the interpolation procedure involved in 

calculating the GO ray fields is relatively slow. To solve this issue, a fast interpolation routine 

could be developed in MATLAB specially for this problem; or a parallel computation code 

could be implemented. Moreover, we have shown that the accuracy of the GO ray fields for 

hyperbolic lenses decreases for small f-number cases. Therefore, current calculation could be 

improved. In addition, when deriving the analytical GO fields for hyperhemispherical lenses, 

we only consider the broadside incidence. In the future, slightly off-broadside case could also 

be investigated. Furthermore, the GUI could be extended to evaluate the performance of 

absorber-coupled QO systems. 

For the GUI itself, the robustness of the code could be improved by following more 

extensive tests. There could be bugs needed to be fixed. Also, the GUI could be improved 

according to the suggestions from users. Finally, the GUI could be packed as a software, which 

is more convenient to users. 
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Appendix A Parameterizing a QO component 

In this appendix, we will explain more explicitly how we parameterize each QO component. 

We start with explaining the importance of introducing the (𝑢, 𝑣) variable. Furthermore, a 

more extensive derivation of normal vectors is discussed. Finally, we calculate truncation angle 

for each QO component. 

A.1 Comparison between (𝜽,𝝓) and (𝒖, 𝒗) variables 

Fig. A.1 shows the top view of a parabolic surface sampled by both (𝜃, 𝜙) and (𝑢, 𝑣) variables, 

with 15 × 15  sampling points. It can be seen that the (𝜃, 𝜙) variable samples the surface 

denser around the center and less at the edge; while the (𝑢, 𝑣) variable samples the surface 

uniformly, which means for the same number of sampling points, the (𝑢, 𝑣) variable can lead 

to better convergence than the (𝜃, 𝜙) one. 

 

 
Figure A.1: Top view of a parabolic surface sampled by both (𝜃, 𝜙) and (𝑢, 𝑣) variables with 15 × 15 points. 
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A.2 Derivation of normal vectors for a generic surface 

In Eq. (2.6), we calculate the normal vector of a surface by using a generic expression. In this 

section, we will expand Eq. (2.6) by calculating the partial derivatives: 
𝜕�⃗� 

𝜕𝜃/𝑢
 and 

𝜕�⃗� 

𝜕𝜙/𝑣
. 

⚫ (𝜽,𝝓) variable 

For the (𝜃, 𝜙) variable, the partial derivatives are calculated as follows: 

{
 
 

 
 𝜕�⃗� 

𝜕𝜃
=
𝜕𝑄𝑥
𝜕𝜃

�̂� +
𝜕𝑄𝑦

𝜕𝜃
�̂� +

𝜕𝑄𝑧
𝜕𝜃

�̂� 

𝜕�⃗� 

𝜕𝜙
=
𝜕𝑄𝑥
𝜕𝜙

�̂� +
𝜕𝑄𝑦

𝜕𝜙
�̂� +

𝜕𝑄𝑧
𝜕𝜙

�̂�

(A.1) 

Each 𝜃-related derivative can be expressed as: 

{
 
 

 
 
𝜕𝑄𝑥
𝜕𝜃

=
𝜕𝑟(𝜃)

𝜕𝜃
sin 𝜃 cos𝜙 + 𝑟(𝜃) cos 𝜃 cos𝜙

𝜕𝑄𝑦

𝜕𝜃
=
𝜕𝑟(𝜃)

𝜕𝜃
sin 𝜃 sin𝜙 + 𝑟(𝜃) cos 𝜃 sin𝜙

𝜕𝑄𝑧
𝜕𝜃

=
𝜕𝑟(𝜃)

𝜕𝜃
cos 𝜃 − 𝑟(𝜃) sin 𝜃

(A.2) 

where 
𝜕𝑟(𝜃)

𝜕𝜃
 depends on the radial distance of a specific surface. While each 𝜙 -related 

derivative can be calculated as: 

{
  
 

  
 
𝜕𝑄𝑥
𝜕𝜙

= −𝑟(𝜃) sin 𝜃 sin𝜙

𝜕𝑄𝑦

𝜕𝜙
= 𝑟(𝜃) sin 𝜃 cos𝜙

𝜕𝑄𝑧
𝜕𝜙

= 0

(A.3) 

Furthermore, if we define |�⃗� 𝑄(𝜃, 𝜙)| = |
𝜕�⃗� 

𝜕𝜃
×
𝜕�⃗� 

𝜕𝜙
|, then for any scalar field 𝑓(𝜃, 𝜙), a surface 

integral becomes: 

∬𝑓(𝜃, 𝜙)

𝑆

𝑑𝑆 = ∫ ∫ 𝑓(𝜃, 𝜙) |
𝜕�⃗� 

𝜕𝜃
×
𝜕�⃗� 

𝜕𝜙
| 𝑑𝜃𝑑𝜙

𝜃0

0

2𝜋

0

(A.4) 

where 𝜃0 is the truncation angle. 
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⚫ (𝒖, 𝒗) variable 

For the (𝑢, 𝑣) variable, the partial derivatives are expressed as follows: 

{
 
 

 
 𝜕�⃗� 

𝜕𝑢
=
𝜕𝑄𝑥
𝜕𝑢

�̂� +
𝜕𝑄𝑦

𝜕𝑢
�̂� +

𝜕𝑄𝑧
𝜕𝑢

�̂� 

𝜕�⃗� 

𝜕𝑣
=
𝜕𝑄𝑥
𝜕𝑣

�̂� +
𝜕𝑄𝑦

𝜕𝑣
�̂� +

𝜕𝑄𝑧
𝜕𝑣

�̂�

(A.5) 

Each 𝑢-related derivative can be calculated as: 

{
  
 

  
 
𝜕𝑄𝑥
𝜕𝑢

=
𝜕𝑟(𝑢, 𝑣)

𝜕𝑢
𝑢 + 𝑟(𝑢, 𝑣)

𝜕𝑄𝑦

𝜕𝑢
=
𝜕𝑟(𝑢, 𝑣)

𝜕𝑢
𝑣

𝜕𝑄𝑧
𝜕𝑢

=
𝜕𝑟(𝑢, 𝑣)

𝜕𝑢
√1 − (𝑢2 + 𝑣2) −

𝑟(𝑢, 𝑣)𝑢

√1 − (𝑢2 + 𝑣2)

(A.6) 

While each 𝑣-related derivative can be obtained as: 

{
  
 

  
 
𝜕𝑄𝑥
𝜕𝑣

=
𝜕𝑟(𝑢, 𝑣)

𝜕𝑣
𝑢

𝜕𝑄𝑦

𝜕𝑣
=
𝜕𝑟(𝑢, 𝑣)

𝜕𝑣
𝑣 + 𝑟(𝑢, 𝑣)

𝜕𝑄𝑧
𝜕𝑣

=
𝜕𝑟(𝑢, 𝑣)

𝜕𝑣
√1 − (𝑢2 + 𝑣2) −

𝑟(𝑢, 𝑣)𝑣

√1 − (𝑢2 + 𝑣2)

(A.7) 

If we define |�⃗� 𝑄(𝑢, 𝑣)| = |
𝜕�⃗� 

𝜕𝑢
×
𝜕�⃗� 

𝜕𝑣
| , then for any scalar field 𝑓(𝑢, 𝑣) , a surface integral 

becomes: 

∬𝑓(𝑢, 𝑣)

𝑆

𝑑𝑆 = ∫ ∫ 𝑓(𝑢, 𝑣)

sin𝜃0

−sin𝜃0

sin𝜃0

−sin𝜃0

|
𝜕�⃗� 

𝜕𝑢
×
𝜕�⃗� 

𝜕𝑣
| 𝑑𝑢𝑑𝑣 (A.8) 
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A.3 Truncation angle of a QO component 

Here we discuss how to calculate the truncation angle, i.e. the subtended rim angle, for each 

QO component. 

⚫ Parabolic reflector 

A parabolic reflector is shown in Fig. A.2, with the diameter 𝐷𝑟, the focal distance 𝑓, and the 

truncation angle 𝜃0. The parabolic surface is defined by the parabola equation: 

𝑧 = 𝑓 −
𝜌2

4𝑓
(A.9) 

where 𝜌 = √𝑥2 + 𝑦2. The lowest point of the surface, 𝑧𝑚𝑖𝑛, can be calculated by substituting 

𝜌 = 𝐷𝑟/2 in Eq. (A.9): 

𝑧𝑚𝑖𝑛 = 𝑓 −
𝐷𝑟
2

16𝑓
(A.10) 

 

By using 𝐷𝑟 and 𝑧𝑚𝑖𝑛, one can obtain the truncation angle as follows: 

𝜃0 = tan−1 (
𝐷𝑟
2𝑧𝑚𝑖𝑛

) = 2 tan−1 (
𝐷

4𝑓
) (A.11) 

⚫ Elliptical lens 

Fig. A.3 shows the 2D geometry of an elliptical lens (diameter 𝐷𝑙). Here we highlight the foci 

of the ellipse with the red solid dots, i.e. 𝑂1 and 𝑂2, and represent the center of the ellipse by 

the red dashed dot. The lens is defined by the ellipse equation as: 

(
𝑧 − 𝑐

𝑎
)
2

+ (
𝜌

𝑏
)
2

= 1 (A.12) 

By substituting 𝜌 = 𝐷𝑙/2 in Eq. (A.12), one can obtain 𝑧𝑚𝑖𝑛 : 

𝑧𝑚𝑖𝑛 = 𝑎√1 − (
𝐷𝑙
2𝑏
)
2

+ 𝑐 (A.13) 

And then one can calculate 𝜃0 as: 

𝜃0 = tan−1 (
𝐷𝑙

2𝑧𝑚𝑖𝑛
) (A.14) 

Moreover, the rim distance, 𝑅𝑙, can be derived by using 𝜃0: 

𝑅𝑙 =
𝐷𝑙

2 sin 𝜃0
(A.15) 
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Figure A.2: 2D geometry of a parabolic reflector. 

 

Figure A.3: 2D geometry of an elliptical lens. 

 

⚫ Hemispherical lens 

Fig. A.4 shows the 2D geometry of a hemispherical lens which consists of a hemisphere (radius 

𝑅𝑠𝑝ℎ) and an extended base (length 𝐿). The center of the hemisphere is represented by the red 

dashed dot, 𝑂′. One can define the hemisphere by using the sphere equation: 

(𝑧 − 𝐿)2 + 𝜌2 = 𝑅𝑠𝑝ℎ
2 (A.16) 

The truncation angle 𝜃0 is calculated as follows: 

𝜃0 = tan
−1 [

𝐷ℎ𝑙
2(ℎ + 𝐿)

] (A.17) 

where ℎ = √𝑅𝑠𝑝ℎ
2 − (𝐷ℎ𝑙/2)2 . And the rim distance, 𝑅𝑙, is expressed as: 

𝑅𝑙 =
𝐷ℎ𝑙

2 sin 𝜃0
(A.18) 

⚫ Hyperbolic lens 

In the case of a hyperbolic lens, as shown in Fig. A.5, the center of the hyperbola is represented 

by the red dashed dot while the focus is represented by the red solid dot, 𝑂. The hyperbolic 

lens can be defined by using the hyperbola equation:  

(
𝑧 − 𝑐

𝑎
)
2

− (
𝜌

𝑏
)
2

= 1 (A.19) 

By substituting 𝜌 = 𝐷ℎ/2 in Eq. (A.19), one can obtain the highest point of the hyperbola, 

𝑧𝑚𝑎𝑥: 

𝑧𝑚𝑎𝑥 = 𝑎√1 + (
𝐷ℎ
2𝑏
)
2

+ 𝑐 (A.20) 
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The truncation angle 𝜃0 can then be calculated as follows: 

𝜃0 = tan
−1 (

𝐷ℎ
2𝑧𝑚𝑎𝑥

) (A.21) 

 

Figure A.4: 2D geometry of a hemispherical lens. 

 

Figure A.5: 2D geometry of a hyperbolic lens. 

 

⚫ Elliptical mirror 

In the case of an elliptical mirror, as shown in Fig. A.6, the truncation angle can be selected as 

𝜃01 or 𝜃02, which depends on where we place the observation plane. 

 

 

(a) 

 

(b) 

Figure A.6: 2D geometry of an elliptical mirror. (a) Observation at lower focal plane. (b) Observation at upper 

focal plane. 

 

Case 1: Observation at lower focal plane 

In this case, as shown in Fig. A.6a, the mirror is parameterized by the radial distance, 𝑟2, 

with the variable (𝜃2, 𝜙2) or (𝑢2, 𝑣2). The lowest point of the ellipse, 𝑧𝑚𝑖𝑛, is calculated by 

using the ellipse equation in Eq. (A.12): 
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𝑧𝑚𝑖𝑛 = 𝑎√1 − (
𝐷𝑚
2𝑏
)
2

+ 𝑐 (A.22) 

We define the truncation angle as 𝜃02. By using 𝑧𝑚𝑖𝑛, one can obtain 𝜃02 directly: 

𝜃02 = tan
−1 (

𝐷𝑚
2𝑧𝑚𝑖𝑛

) (A.23) 

Moreover, one can calculate the rim distance, 𝑅2𝑙: 

𝑅2𝑙 =
𝐷𝑚

2 sin 𝜃02
(A.24) 

The second rim angle, 𝜃01, can be derived by using 𝜃02 and 𝑅2𝑙: 

𝜃01 = tan
−1 [

𝐷𝑚
2(𝑅2𝑙 cos 𝜃02 − 2𝑐)

] (A.25) 

And the second rim distance 𝑅1𝑙 can be expressed as: 

𝑅1𝑙 =
𝐷𝑚

2 sin 𝜃01
(A.26) 

Case 2: Observation at upper focal plane 

In this case, as shown in Fig. A.6b, the mirror is parameterized by the radial distance, 𝑟1, 

with the variable (𝜃1, 𝜙1) or (𝑢1, 𝑣1).The lowest point of the ellipse, 𝑧𝑚𝑖𝑛, is calculated as: 

𝑧𝑚𝑖𝑛 = 𝑎√1 − (
𝐷𝑚
2𝑏
)
2

− 𝑐 (A.27) 

We define the truncation angle as 𝜃01 which can be calculated as follows: 

𝜃01 = tan
−1 (

𝐷𝑚
2𝑧𝑚𝑖𝑛

) (A.28) 

𝑅1𝑙 and 𝑅2𝑙 are derived in Eq. (A.26) and Eq. (A.24), respectively. And in Eq. (A.24), 𝜃02 is 

obtained as follows: 

𝜃02 = tan
−1 [

𝐷𝑚
2(𝑅1𝑙 cos 𝜃01 + 2𝑐)

] (A.29) 
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Appendix B Fresnel reflection and transmission coefficients 

In this appendix, we will derive Fresnel reflection and transmission coefficients explicitly for 

a surface with and without a matching layer, respectively. 

B.1 Surface without a matching layer 

When a flat interface is illuminated by an incident ray, as shown in Fig. B.1, the Fresnel 

transmission coefficients can be derived by imposing boundary conditions on electric and 

magnetic fields: 

{
�̂� × (�⃗� 1 − �⃗� 2)|𝑄 = 0

�̂� × (�⃗⃗� 1 − �⃗⃗� 2)|𝑄 = 0
⇒
�̂� × (�⃗� 𝑖 + �⃗� 𝑟 − �⃗� 𝑡)|𝑄 = 0

�̂� × (�⃗⃗� 𝑖 + �⃗⃗� 𝑟 − �⃗⃗� 𝑡)|𝑄 = 0
 (B.1) 

By solving the boundary conditions for both TE and TM components, one can obtain the 

transmission coefficients: 

{
 

 𝜏⊥(𝑄) =
2𝜁2 cos 𝜃𝑖

𝜁2 cos 𝜃𝑖 + 𝜁1 cos 𝜃𝑡

𝜏∥(𝑄) =
2𝜁2 cos 𝜃𝑖

𝜁1cos 𝜃𝑖 + 𝜁2 cos 𝜃𝑡

(B.2) 

and the reflection coefficients: 

{
 

 𝛤⊥(𝑄) =
𝜁2 cos 𝜃𝑖 − 𝜁1 cos 𝜃𝑡
𝜁2 cos 𝜃𝑖 + 𝜁1 cos 𝜃𝑡

𝛤∥(𝑄) =
𝜁1 cos 𝜃𝑖 − 𝜁2 cos 𝜃𝑡
𝜁1 cos 𝜃𝑖 + 𝜁2 cos 𝜃𝑡

(B.3) 

where cos 𝜃𝑖 and cos 𝜃𝑡  are derived as: 

{
cos 𝜃𝑖 = −(�̂�𝑖 ⋅ �̂�) = cos 𝜃𝑟 

cos 𝜃𝑡 = −(�̂�𝑡 ⋅ �̂�)
(B.4) 

Moreover, one can derive a useful relation by using the preceding coefficients: 

1 − |𝛤⊥/∥|
2
= |𝜏⊥/∥|

2 𝜁1
𝜁2

cos 𝜃𝑡
cos 𝜃𝑖

(B.5) 

In the case of illuminating a PEC, there is no field transmitted into the PEC, i.e. 𝜏⊥/∥ = 0. 

Therefore, Eq. (B.5) can be simplified: 

|𝛤⊥/∥| = 1 (B.6) 
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Figure B.1: Flat interface between medium I and II, illuminated by an incident ray. 

 

B.2 Surface with a matching layer 

We have introduced in section 2.2.2 that when a surface is fabricated with a matching layer, 

the transmission coefficients can be obtained by solving the equivalent transmission line 

representation, as shown in Fig. B.2.  

 

 

Figure. B.2: The transversal equivalent transmission line model of a dielectric stratification. 

 

First, one needs to define the characteristic parameters of the transmission line for TE and 

TM components. The incident voltages can be represented by the incident fields as: 

{
𝑉0+
⊥ = 𝐸𝑖

⊥

𝑉0+
∥ = 𝐸𝑖

∥ cos 𝜃𝑖
(B.7) 

Moreover, the propagation constants in 𝑧-direction are: 

𝑘𝑧𝑖 = −𝑗√(𝑘𝜌𝑖)
2
− (𝑘𝑖)2, 𝑖 = 0,𝑚, 𝑑 (B.8) 
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where 𝑘𝑚 = 𝑘0√𝜀𝑚  and 𝑘𝑑 = 𝑘0√𝜀𝑑  are the wave numbers in the matching layer and the 

dielectric slab, respectively. 𝑘𝜌0 = 𝑘0 sin 𝜃𝑖 , 𝑘𝜌𝑚 = 𝑘𝑚 sin 𝜃𝑡
𝑚 , and 𝑘𝜌𝑑 = 𝑘𝑑 sin 𝜃𝑡

𝑑  are the 

projections of the wave numbers in 𝜌-direction for air, the matching layer and the dielectric 

slab, respectively. By using Snell’s law, one can obtain the transmitted angles: 𝜃𝑡
𝑚 =

sin−1(sin(𝜃𝑖) /√𝜀𝑚)  and 𝜃𝑡
𝑑 = sin−1(sin(𝜃𝑖) /√𝜀𝑑) . The characteristic impedances of 

different layers are: 

{
 

 𝑍𝑖
⊥ = 𝜁𝑖

𝑘𝑖
𝑘𝑧𝑖

𝑍𝑖
∥ = 𝜁𝑖

𝑘𝑧𝑖
𝑘𝑖

, 𝑖 = 0,𝑚, 𝑑 (B.9) 

where 𝜁𝑚 = 𝜁0/√𝜀𝑚 , and 𝜁𝑑 = 𝜁0/√𝜀𝑑  are the impedances of the matching layer and the 

dielectric slab, respectively. Next, one is able to calculate the reflection and transmission 

coefficients for voltages at 𝑧 = 0 and 𝑧 = −𝑙𝑚: 

{
 
 
 
 
 

 
 
 
 
 Γ1

⊥/∥
=
𝑉0−
⊥/∥(𝑧 = 0)

𝑉0+
⊥/∥(𝑧 = 0)

=
𝑍1
⊥/∥

− 𝑍0
⊥/∥

𝑍1
⊥/∥

+ 𝑍0
⊥/∥

Γ2
⊥/∥

=
𝑉𝑚−
⊥/∥(𝑧 = −𝑙𝑚)

𝑉𝑚+
⊥/∥(𝑧 = −𝑙𝑚)

=
𝑍2
⊥/∥

− 𝑍𝑚
⊥/∥

𝑍2
⊥/∥

+ 𝑍𝑚
⊥/∥

τ1
⊥/∥

=
𝑉𝑚
⊥/∥(𝑧 = 0)

𝑉0+
⊥/∥(𝑧 = 0)

=
2𝑍1
⊥/∥

𝑍1
⊥/∥

+ 𝑍0
⊥/∥

τ2
⊥/∥

=
𝑉𝑑+
⊥/∥(𝑧 = −𝑙𝑚)

𝑉𝑚+
⊥/∥(𝑧 = −𝑙𝑚)

=
2𝑍2
⊥/∥

𝑍2
⊥/∥

+ 𝑍𝑚
⊥/∥

(B.10) 

where 𝑍1
⊥/∥

 and 𝑍2
⊥/∥

 are input impedances seen from 𝑧 = 0 and 𝑧 = −𝑙𝑚, respectively: 

{

𝑍2
⊥/∥

= 𝑍𝑑
⊥/∥

𝑍1
⊥/∥

= 𝑍𝑚
⊥/∥ 𝑍2

⊥/∥
+ 𝑗𝑍𝑚

⊥/∥
tan(𝑘𝑧𝑚𝑙𝑚)

𝑍𝑚
⊥/∥

+ 𝑗𝑍2
⊥/∥

tan(𝑘𝑧𝑚𝑙𝑚)

(B.11) 

From Eq. (B.10), one can find the condition for zero reflection: 

Γ1
⊥/∥

= 0 ⇒ 𝑍1
⊥/∥

= 𝑍0
⊥/∥

⇒ {
𝜀𝑚 = √𝜀𝑟

𝑙𝑚 =
𝜆𝑚
4

(B.12) 

Moreover, by using Eq. (B.10), one can calculate the progressive voltage in the matching layer: 

𝑉𝑚
⊥/∥ 

(𝑧 = 0) = 𝑉𝑚+
⊥/∥ 

(𝑧 = 0) + 𝑉𝑚−
⊥/∥ 

(𝑧 = 0) = τ1
⊥/∥
𝑉0+
⊥/∥ 

(𝑧 = 0) 

⇒ 𝑉𝑚+
⊥/∥(𝑧 = 0) =

τ1
⊥/∥
𝑉0+
⊥/∥(𝑧 = 0)

[1 + Γ2
⊥/∥
𝑒−2𝑗𝑘𝑧𝑚𝑙𝑚]

(B.13) 
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and the voltage in the dielectric slab: 

𝑉𝑑+
⊥/∥(𝑧 = −𝑙𝑚) = τ2

⊥/∥
𝑉𝑚+
⊥/∥(𝑧 = −𝑙𝑚) =

τ1
⊥/∥
τ2
⊥/∥
𝑉0+
⊥/∥(𝑧 = 0)𝑒−𝑗𝑘𝑧𝑚𝑙𝑚

[1 + Γ2
⊥/∥
𝑒−2𝑗𝑘𝑧𝑚𝑙𝑚]

(B.14) 

Finally, by using Eq. (B.14), one can obtain the transmission coefficients of the stratification: 

{
 
 

 
 𝜏⊥ =

𝐸𝑑
⊥

𝐸𝑖
⊥ =

𝑉𝑑+
⊥ (𝑧 = −𝑙𝑚)

𝑉0+
⊥ (𝑧 = 0)

𝜏∥ =
𝐸𝑑
∥

𝐸𝑖
∥ =

𝑉𝑑+
∥ (𝑧 = −𝑙𝑚)

𝑉0+
∥ (𝑧 = 0)

cos 𝜃𝑖

cos 𝜃𝑡
𝑑

(B.15) 

Appendix C Additional validation of the implemented PO analysis 

In this appendix, additional validation of the implemented PO analysis is introduced. 

C.1 Parabolic reflector 

Fig. C.1 shows the x-component of the electric fields on the focal plane of a parabolic reflector 

with the diameter of 𝐷𝑟 = 100𝜆0 (𝑓0 = 300 GHz) and the f-number of 𝑓#
𝑟 = 0.6. The reflector 

is illuminated by a unitary TM polarized plane wave with the skew angle of 𝜃𝑠 =

5(𝜆0/𝐷𝑟) = 2.86∘, 𝜙𝑠 = 0∘. The focal plane field evaluated by resorting to the PO analysis is 

compared with the GRASP simulation. The setup of the simulation in GRASP is plotted in the 

inset. It can be seen in the figure that the PO results are well validated for both the amplitude 

and the phase. 

 

  

(a) (b) 

Figure C.1: The x-component of the electric fields on the focal plane of a parabolic reflector with 𝐷𝑟 =
100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#

𝑟 = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle of 

𝜃𝑠 = 5(𝜆0/𝐷𝑟) = 2.86
∘, 𝜙𝑠 = 0

∘. The focal plane field calculated by using the PO analysis is compared with the 

GRASP simulation: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Inset is the configuration 

in GRASP. 
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C.2 Elliptical lens 

⚫ TM polarized plane wave 

Here we validate an elliptical lens without a matching layer. Fig. C.2 shows the x-component 

of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 = 5𝜆0 

(𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6. The lens is illuminated by a unitary TM polarized plane wave 

with the skew angle of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0∘. And the focal plane field calculated by using the PO 

analysis is compared with the CST simulation. The setup of the simulation in CST is plotted in 

the inset. As it can be seen in the figure, the PO analysis is in fair agreement with the CST 

simulation, for both the amplitude and the phase.  

 

  

(a) (b) 

Figure C.2: The x-component of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 5 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle 

of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0
∘ . The focal plane field calculated by using the PO analysis is compared with the CST 

simulation: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Inset is the configuration in CST. 

 

⚫ TE polarized plane wave 

For the same elliptical lens, when the plane wave is TE polarized with the skew angle of 𝜃𝑠 =

20∘, 𝜙𝑠 = 0
∘, the y-component of the electric field on the focal plane is shown in Fig. C.3. As 

it can be seen, the PO analysis is in fair agreement with the CST simulation. 
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(a) (b) 

Figure C.3: The y-component of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 5 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle 

of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0
∘ . The focal plane field calculated by using the PO analysis is compared with the CST 

simulation: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Inset is the configuration in CST. 

C.3 Hemispherical lens 

Fig. C.4 shows the y-component of the electric fields on the focal plane of a hemispherical 

silicon (𝜀𝑟 = 11.9) lens with 𝐷ℎ𝑙 = 5𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.74, 𝑅𝑠𝑝ℎ = 3𝜆0, and 𝐿 =

0.362𝑅𝑠𝑝ℎ. The lens is illuminated by a unitary TE polarized plane wave with the skew angle 

of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0∘. The focal plane field evaluated by using the PO analysis is compared 

with the CST simulation. As it can be seen, the PO results are validated for both the amplitude 

and the phase. 

  

(a) (b) 

Figure C.4: The y-component of the electric fields on the focal plane of a hemispherical silicon (𝜀𝑟 = 11.9) lens 

with 𝐷ℎ𝑙 = 5 𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.74, 𝑅𝑠𝑝ℎ = 3𝜆0 , and 𝐿 = 0.362𝑅𝑠𝑝ℎ , illuminated by a unitary TE 

polarized plane wave with the skew angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0

∘. The focal plane field calculated by using the PO 

analysis is compared with the CST simulation: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. 

Inset is the configuration in CST. 
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C.4 Elliptical mirror 

In the case of an elliptical mirror, a source can be placed at either its upper focal plane or its 

lower focal plane. Here we consider a mirror with the diameter of 𝐷𝑚 = 500𝜆0  (𝑓0 =

300 GHz), the semi-major axis of 𝑎 = 278𝜆0, and the focal distance of 𝑐 = 55.6𝜆0, i.e. the 

eccentricity is 𝑒 = 0.2. 

Case 1: Source placed at the upper focal plane 

In this case, the f-number is calculated as 𝑓#
𝑚 = 0.6. A unitary Huygens source is placed at the 

upper focal plane, with the electric current oriented along �̂� and a displacement in y-direction, 

𝑦𝑠 = 4𝜆0𝑓#
𝑚. Fig. C.5 shows the y-component of the electric fields on the focal plane of the 

mirror. The focal plane field obtained by using the PO analysis is compared with the GRASP 

simulation. As it can be seen, the PO code is well validated. 

  

(a) (b) 

Figure C.5: The y-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
500 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.6 and 𝑒 = 0.2. The mirror is illuminated by a unitary Huygens source placed at 

the upper focal plane, with the electric current oriented along �̂� and a displacement in y-direction, 𝑦𝑠 = 4𝜆0𝑓#
𝑚. 

The focal plane field evaluated by using the PO analysis is compared with the GRASP simulation: (a) Amplitude. 

(b) Phase. One of the main planes (𝑥 = 0) is shown. Inset is the configuration in GRASP. 
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Case 2: Source placed at the lower focal plane 

In this case, the f-number is obtained as 𝑓#
𝑚 = 0.44. The Huygens source is placed at the lower 

focal plane, with the electric current oriented along �̂� and a displacement in x-direction, 𝑥𝑠 =

10𝜆0𝑓#
𝑚. Fig. C.6 shows the x-component of the electric fields on the focal plane of the mirror. 

The focal plane field obtained by using the PO analysis is compared with the GRASP 

simulation. It can be seen that the PO code is in excellent agreement with the GRASP 

simulation. 

 

  

(a) (b) 

Figure C.6: The x-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
500 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.44 and 𝑒 = 0.2. The mirror is illuminated by a unitary Huygens source placed 

at the lower focal plane, with the electric current oriented along �̂�  and a displacement in x-direction, 𝑥𝑠 =
10𝜆0𝑓#

𝑚. The focal plane field evaluated by using the PO analysis is compared with the GRASP simulation: (a) 

Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Inset is the configuration in GRASP. 
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Appendix D Re-evaluate the phase approximation for the FO 

applicability region 

In Eq. (3.8), the condition for the FO phase approximation is determined by neglecting the 

phase term 𝑒
−𝑗𝑘

𝜌𝑓
2

2𝑅𝐹𝑂  when setting a phase error of 𝜋/8 . This condition is valid for QO 

components with relatively small 𝑓# but not for cases with large 𝑓#. Therefore, here we discuss 

a more general condition for the phase approximation. The term |𝜌 𝑓 − 𝑟 
′|, can be expanded as 

follows: 

|𝜌 𝑓 − 𝑟 
′| = √(𝜌 𝑓 − 𝑟 ′) ⋅ (𝜌 𝑓 − 𝑟 ′) = 𝑅𝐹𝑂√1 −

2

𝑅𝐹𝑂
(𝜌 𝑓 ⋅ �̂�′) +

𝜌𝑓
2

𝑅𝐹𝑂
2

(D.1) 

where 𝑅𝐹𝑂 = |𝑟 
′| and 𝜌𝑓 = |𝜌 𝑓|. Eq. (D.1) can be approximated by expanding the square root 

for small argument to the second order (√1 + 𝑥 ≃ 1 +
𝑥

2
−
𝑥2

8
+⋯): 

|𝜌 𝑓 − 𝑟 
′| ≈ 𝑅𝐹𝑂 − 𝜌 𝑓 ⋅ �̂�

′ +
𝜌𝑓
2

2𝑅𝐹𝑂
[1 − (�̂�𝑓 ⋅ �̂�

′)
2
] +

𝜌𝑓
3

2𝑅𝐹𝑂
2 (�̂�𝑓 ⋅ �̂�

′) (D.2) 

In Eq. (D.2), the terms with order four and higher, with respect to 𝜌𝑓, are neglected. To obtain 

the phase approximation, one must neglect the second- and the third- order terms in Eq. (D.2) 

with a phase error 𝜎𝑝ℎ: 

−𝑘 (−
𝜌𝑓
2

2𝑅𝐹𝑂
(�̂�𝑓 ⋅ �̂�

′)
2
+

𝜌𝑓
3

2𝑅𝐹𝑂
2 (�̂�𝑓 ⋅ �̂�

′)) ≤ 𝜎𝑝ℎ (D.3) 

In practice, we choose 𝜎𝑝ℎ = 𝜋/8 . The worst case in Eq. (D.3) happens when �̂�𝑓 ⋅ �̂�
′ =

−sin 𝜃0 ≈ −1/2𝑓#. By using this, Eq. (D.3) can be expressed as below: 

4𝜌𝑓
3𝐷

𝑅𝐹𝑂
3 +

2𝜌𝑓
2𝐷

𝑅𝐹𝑂
3 − 𝜆 ≤ 0 (D.4) 

By solving the cubic equation of Eq. (D.4) and taking the positive and real solution, 𝜌𝑝ℎ
𝐹𝑂, the 

new condition for the phase approximation can be expressed as follows: 

𝜌𝑓 ≤ 𝜌𝑝ℎ
𝐹𝑂 (D.5) 
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Appendix E Characteristic parameters used in GO ray fields 

In this appendix, we will discuss the characteristic parameters mentioned in section 4.1. First, 

we consider evaluating the distance along the ray path, and then the principal radii of curvature 

for reflected and transmitted rays, respectively. Finally, we describe a specific surface of 

revolution, by deriving its principal directions and principal radii of curvature analytically. 

E.1 Distance along the ray path 

In the GO method, one key parameter related to represent the scattered fields is the distance 

propagated along the ray path, 𝑠. In Fig. E.1, we use a reflection problem as an example to 

show how we define this distance.  

 

 

Figure E.1: Geometry for a reflection problem with the description of the distance along the ray path. 

 

It can be observed in the figure that the reflected ray propagates from 𝑄𝑅(𝜃, 𝜙)  to 

𝑄𝐹𝑂(𝜃
′, 𝜙′). The distance 𝑠 can be calculated by solving the following equations in (𝜃, 𝜙) 

variable: 

{

𝑄𝑥 + 𝑠𝑘𝑟,𝑥 = 𝑅𝐹𝑂 sin 𝜃
′ cos𝜙′

𝑄𝑦 + 𝑠𝑘𝑟,𝑦 = 𝑅𝐹𝑂 sin 𝜃
′ sin𝜙′

𝑄𝑧 + 𝑠𝑘𝑟,𝑧 = 𝑅𝐹𝑂 cos 𝜃
′

(E.1) 

or in (𝑢, 𝑣) variable: 

{

𝑄𝑥 + 𝑠𝑘𝑟,𝑥 = 𝑅𝐹𝑂𝑢′

𝑄𝑦 + 𝑠𝑘𝑟,𝑦 = 𝑅𝐹𝑂𝑣′

𝑄𝑧 + 𝑠𝑘𝑟,𝑧 = 𝑅𝐹𝑂√1 − (𝑢′2 + 𝑣′2)

(E.2) 
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where 𝑄𝑅 = (𝑄𝑥, 𝑄𝑦 , 𝑄𝑧)  is a point on the surface 𝑆 , �̂�𝑟 = 𝑘𝑟,𝑥�̂� + 𝑘𝑟,𝑦�̂� + 𝑘𝑟,𝑧�̂�  is the 

propagation unit vector of the reflected ray, and (𝜃′, 𝜙′) and (𝑢′, 𝑣′) are non-uniform variables 

that parameterize a point on the FO sphere that is hit by the reflected ray. By solving Eq. (E.1) 

or (E.2), the distance 𝑠 can be expressed as: 

𝑠 =
−𝑏 − √𝑏2 − 4𝑐

2
(E.3) 

where 𝑏 = 2𝑄𝑥𝑘𝑟/𝑡,𝑥 + 2𝑄𝑦𝑘𝑟/𝑡,𝑦 + 2𝑄𝑧𝑘𝑟/𝑡,𝑧  , and 𝑐 = 𝑄𝑥
2 + 𝑄𝑦

2 + 𝑄𝑧
2 − 𝑅𝐹𝑂

2 . After 

obtaining 𝑠, one can also calculate the non-uniform variables, (𝜃′, 𝜙′), by solving Eq. (E.1): 

{
 
 

 
 𝜃′ = cos−1 (

𝑄𝑧 + 𝑠𝑘𝑟,𝑧
𝑅𝐹𝑂

)

𝜙′ = tan−1 (
𝑄𝑦 + 𝑠𝑘𝑟,𝑦

𝑄𝑥 + 𝑠𝑘𝑟,𝑥
)

(E.4) 

while (𝑢′, 𝑣′) are derived by solving Eq. (E.2): 

{
 
 

 
 𝑢′ =

𝑄𝑥 + 𝑠𝑘𝑟,𝑥
𝑅𝐹𝑂

𝑣′ =
𝑄𝑦 + 𝑠𝑘𝑟,𝑦

𝑅𝐹𝑂

(E.5) 

The preceding derivations are also applicable for a transmission problem but with a single 

change: one should replace the reflected propagation unit vector �̂�𝑟 by the transmitted one: �̂�𝑡 =

𝑘𝑡,𝑥�̂� + 𝑘𝑡,𝑦�̂� + 𝑘𝑡,𝑧�̂�. 

E.2 Principal radii of curvature of a reflected wave front in a reflection 

problem 

Fig. E.2 shows a scenario that an incident ray impinges on a surface 𝑆 at 𝑄𝑅 and reflected. In 

the figure,  �̂�1  and  �̂�2  are the unit vectors in the principal directions of 𝑆  at 𝑄𝑅  with the 

principal radii of curvature 𝑅1 and 𝑅2, respectively. �̂�1
𝑖   and  �̂�2

𝑖  are the principal directions of 

the incident wave front at 𝑄𝑅 with the principal radii of curvature 𝜌1
𝑖  and 𝜌2

𝑖 . While �̂�1
𝑟  and  �̂�2

𝑟 

are the principal directions of the reflected wave front at 𝑄𝑅 with the principal radii of curvature 

𝜌1
𝑟 and 𝜌2

𝑟. Notice that �̂�1
𝑟 and �̂�2

𝑟 do not point towards the principal directions of the reflected 

wave front. They are unit vectors perpendicular to �̂�𝑟, which can be calculated by Snell’s law: 

�̂�1,2
𝑟 = �̂�1,2

𝑖 − 2(�̂� ⋅ �̂�1,2
𝑖 )�̂� (E.6) 

where �̂� is the normal vector of the surface. 
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Figure E.2: Geometry for a reflection problem with the description of the curved surface 𝑆, incident ray and 

reflected ray. 

 

⚫ Principal radii of curvature of the incident wave front 

We have introduced two types of incident waves in this thesis: a plane wave and a spherical 

wave. For a plane wave incidence, the incident wave front is planar, so the principal radii of 

curvature are: 𝜌1
𝑖 = 𝜌2

𝑖 = ∞. For a spherical wave, the wave front is spherical; therefore, the 

principal radii of curvature are: 𝜌1
𝑖 = 𝜌2

𝑖 = 𝑟, where 𝑟 is the radial distance from the source to 

the surface. As for the principal directions of the incident wave front, �̂�1
𝑖   and  �̂�2

𝑖  can be 

defined arbitrarily, as long as they keep the following relation: 

�̂�1
𝑖 ⊥ �̂�𝑖, �̂�2

𝑖 ⊥ �̂�𝑖, �̂�2
𝑖 ⊥ �̂�1

𝑖 (E.7) 

⚫ Principal radii of curvature of the reflected wave front  

To calculate GO fields, one also needs to calculate the principal radii of curvature of the 

reflected wave front, 𝜌1
𝑟  and 𝜌2

𝑟 . First, we introduce a curvature matrix 𝑄𝑟 for the reflected 

wave front, as described in [43]: 

𝑄𝑟 = [
𝑄11
𝑟 𝑄12

𝑟

𝑄12
𝑟 𝑄22

𝑟 ] (E.8) 

whose entries are calculated as follows: 

{
 
 
 

 
 
 𝑄11

𝑟 =
1

𝜌1
𝑖 +

2cos𝜃𝑖
|Θ|2

[
(Θ22)2

𝑅1
+
(Θ21)2

𝑅2
]

𝑄12
𝑟 = −

2cos𝜃𝑖
|Θ|2

[
Θ22Θ12 

𝑅1
+
Θ11Θ21
𝑅2

]

𝑄22
𝑟 =

1

𝜌2
𝑖 +

2cos𝜃𝑖
|Θ|2

[
(Θ12)2

𝑅1
+
(Θ11)2

𝑅2
]

(E.9) 
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where Θ is also a matrix that can be expressed as: 

Θ = [
Θ11 Θ12
Θ21 Θ22

] = [
�̂�1
𝑖
⋅ �̂�1 �̂�1

𝑖
⋅ �̂�2

�̂�2
𝑖
⋅ �̂�1 �̂�2

𝑖
⋅ �̂�2

] (E.10) 

And |Θ| is the determinant of Θ: 

|Θ| = (�̂�1
𝑖 ⋅ �̂�1)(�̂�2

𝑖 ⋅ �̂�2) − (�̂�1
𝑖 ⋅ �̂�2)(�̂�2

𝑖 ⋅ �̂�1) (E.11) 

By using the curvature matrix 𝑄𝑟, one could obtain 𝜌1
𝑟 and 𝜌2

𝑟: 

{
 
 

 
 1

𝜌1
𝑟 =

1

2
{𝑄11

𝑟 +𝑄22
𝑟 + [(𝑄11

𝑟 − 𝑄22
𝑟 )2 + 4(𝑄12

𝑟 )2]
1
2}

1

𝜌2
𝑟 =

1

2
{𝑄11

𝑟 +𝑄22
𝑟 − [(𝑄11

𝑟 − 𝑄22
𝑟 )2 + 4(𝑄12

𝑟 )2]
1
2}

(E.12) 

Notice that �̂�1, �̂�2, 𝑅1 and 𝑅2 are derived for a specific surface of revolution in Appendix 

E.4. As for the principal directions of the reflected wave front, �̂�1
𝑟  and  �̂�2

𝑟, they are not used 

in this work, but they are useful information when we use a cascade system like multiple 

reflectors. �̂�1
𝑟  and  �̂�2

𝑟 can be calculated by using �̂�1
𝑟  and  �̂�2

𝑟 as below: 

{
�̂�1
𝑟 =

[(𝑄22
𝑟 − 1/𝜌1

𝑟) �̂�1
𝑟 − 𝑄12

𝑟 �̂�2
𝑟]

√(𝑄22
𝑟 − 1/𝜌1

𝑟)2 + (𝑄12
𝑟 )2 

�̂�2
𝑟 = −�̂�𝑟 × �̂�1

𝑟

(E.13) 
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E.3 Principal radii of curvature of a transmitted wave front in a transmission 

problem 

Fig. E.3 describes a scenario that an incident ray propagating in medium I impinges on a surface 

𝑆 at 𝑄𝑇, and transmitted into medium II. The first and second mediums have the refraction 

indexes of 𝑛𝑖 = √𝜀𝑟1 and 𝑛𝑡 = √𝜀𝑟2, respectively. In the figure,  �̂�1 �̂�2, 𝑅1, 𝑅2, �̂�1
𝑖 , and �̂�2

𝑖  are 

already introduced in Appendix E.2. �̂�1
𝑡 and �̂�2

𝑡 are the principal directions of the transmitted 

wave front at 𝑄𝑇 with the principal radii of curvature 𝜌1
𝑡 and 𝜌2

𝑡 .  

 

 

Figure E.3: Geometry for a transmission problem with the description of the curved surface 𝑆, incident ray and 

transmitted ray. 

 

In the asymptotic procedure, when deriving the determinant of the Hessian matrix, i.e. 

det{𝐻𝛷(𝑄𝑇)}, one can define two terms to make its expression compact, namely 𝜌𝑠
𝑡 =

1

𝜌1
𝑡 +

1

𝜌2
𝑡  

and 𝜌𝑚
𝑡 =

1

𝜌1
𝑡𝜌2

𝑡. The final expressions of 𝜌𝑠
𝑡 and 𝜌𝑚

𝑡  are shown as below: 

𝜌𝑠
𝑡 =

1

(𝑛𝑡 cos 𝜃𝑡)2
[
1

𝜌1
𝑖
 

1

𝜌1
𝑖
{
𝑛𝑖
𝑛𝑡
(𝑛𝑡

2 [1 − (�̂�1
𝑖 ⋅ �̂�)

2
] − 𝑛𝑖

2[(�̂�𝑖 ⋅ �̂�2)(�̂�1
𝑖 ⋅ �̂�1) + (�̂�𝑖 ⋅ �̂�1)(�̂�1

𝑖 ⋅ �̂�2)]
2
)} + 

1

𝜌2
𝑖
{
𝑛𝑖
𝑛𝑡
(𝑛𝑡

2 [1 − (�̂�2
𝑖 ⋅ �̂�)

2
] − 𝑛𝑖

2[(�̂�𝑖 ⋅ �̂�2)(�̂�2
𝑖 ⋅ �̂�1) + (�̂�𝑖 ⋅ �̂�1)(�̂�2

𝑖 ⋅ �̂�2)]
2
)} − 

1

𝑅1
{
1

𝑛𝑡
([𝑛𝑖(�̂�𝑖 ⋅ �̂�) + 𝑛𝑡 cos 𝜃𝑡] [(𝑛𝑡)

2 − (𝑛𝑖)
2(�̂�𝑖 ⋅ �̂�2)

2
])} − 

1

𝑅2
{
1

𝑛𝑡
([𝑛𝑖(�̂�𝑖 ⋅ �̂�) + 𝑛𝑡 cos 𝜃𝑡] [(𝑛𝑡)

2 − (𝑛𝑖)
2(�̂�𝑖 ⋅ �̂�1)

2
])}

1

𝜌1
𝑖

1

𝜌1
𝑖

1

𝜌1
𝑖

1

𝜌1
𝑖

1

𝜌1
𝑖
𝑠𝑠𝑠𝑠𝑠] (E.14) 
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𝜌𝑚
𝑡 =

1

(𝑛𝑡 cos 𝜃𝑡)2
[
(𝑛𝑖)

2

𝜌1
𝑖𝜌2
𝑖
(�̂�𝑖 ⋅ �̂�)

2 − 

𝑛𝑖

𝑅1𝜌1
𝑖
([𝑛𝑖(�̂�𝑖 ⋅ �̂�) + 𝑛𝑡 cos 𝜃𝑡](�̂�1

𝑖 ⋅ �̂�2)
2
) − 

𝑛𝑖

𝑅2𝜌1
𝑖
([𝑛𝑖(�̂�𝑖 ⋅ �̂�) + 𝑛𝑡 cos 𝜃𝑡](�̂�1

𝑖 ⋅ �̂�1)
2
) − 

𝑛𝑖

𝑅1𝜌2
𝑖
([𝑛𝑖(�̂�𝑖 ⋅ �̂�) + 𝑛𝑡 cos 𝜃𝑡](�̂�2

𝑖 ⋅ �̂�2)
2
) − 

𝑛𝑖

𝑅2𝜌2
𝑖
([𝑛𝑖(�̂�𝑖 ⋅ �̂�) + 𝑛𝑡 cos 𝜃𝑡](�̂�2

𝑖 ⋅ �̂�1)
2
)+

1

𝑅1𝑅2
(𝑛𝑖(�̂�𝑖 ⋅ �̂�) + 𝑛𝑡 cos 𝜃𝑡)

2𝑠𝑠𝑠] (E.15) 

Furthermore, by using 𝜌𝑠
𝑡  and 𝜌𝑚

𝑡 , one can obtain the principal radii of curvature of the 

transmitted wave front, i.e. 𝜌1
𝑡 and 𝜌2

𝑡 , as: 

{
 
 

 
 𝜌1

𝑡 =
𝜌𝑠
𝑡 − √(𝜌𝑠

𝑡)2 − 4𝜌𝑚
𝑡

2𝜌𝑚
𝑡

𝜌2
𝑡 =

2

𝜌𝑠
𝑡 − √(𝜌𝑠

𝑡)2 − 4𝜌𝑚
𝑡

(E.16) 

As for the principal directions of the transmitted wave front, i.e. �̂�1
𝑡  and  �̂�2

𝑡, they are not 

studied in the thesis, but they are useful information when one would like to analyze cascade 

transmitting systems such as a free-standing hyperbolic lens.  

 

E.4 Principal directions and principal radii of curvature of a specific surface 

of revolution 

An arbitrary surface of revolution can be represented by [13]: 

𝑧 = 𝑔(𝑢), 𝑢 =
𝑥2 + 𝑦2

2
(E.17) 

If we define a signed parameter 𝐾 as follows: 

𝐾 = ±√1 + 2𝑢 [
𝑑𝑔(𝑢)

𝑑𝑢
]

2

(E.18) 

where the sign “±” depends on the concavity of the surface, the principal radii of curvature can 

be found as: 

{
 
 

 
 1

𝑅1
=
1

𝐾

𝑑𝑔(𝑢)

𝑑𝑢

1

𝑅2
=
1

𝐾3
[
𝑑𝑔(𝑢)

𝑑𝑢
+ 2𝑢

𝑑2𝑔(𝑢)

𝑑𝑢2
]

(E.19) 
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And the principal directions of the surface, �̂�1 and �̂�2, can be determined as: 

{
 
 

 
 �̂�1 =

𝑦

√𝑥2 + 𝑦2
�̂� −

𝑥

√𝑥2 + 𝑦2
�̂�

�̂�2 =
𝑥

𝐾√𝑥2 + 𝑦2
�̂� +

𝑦

𝐾√𝑥2 + 𝑦2
�̂� +

√𝑥2 + 𝑦2

𝑅1
�̂�

(E.20) 

⚫ Parabolic reflector 

For a parabolic reflector (parabola of revolution), the surface is expressed as: 

𝑧 = 𝑓 −
𝑥2 + 𝑦2

4𝑓
= 𝑓 −

𝑢

2𝑓
(E.21) 

and the derivatives in Eq. (E.19) are calculated as: 

{
 

 
𝑑𝑧

𝑑𝑢
= −

1

2𝑓

d2𝑧

𝑑𝑢2
= 0

(E.22) 

𝐾 is determined to be positive: 

𝐾 = +√1 +
𝑢

2𝑓2
(E.23) 

Therefore, the principal radii of curvature are found as: 

{
 
 

 
 𝑅1 = −2𝑓 (1 +

𝑢

2𝑓2
)

1
2

𝑅2 = −2𝑓 (1 +
𝑢

2𝑓2
)

3
2

(E.24) 

Meanwhile, the principal directions can be obtained by substituting 𝐾 and 𝑅1 in Eq. (E.20). 

⚫ Elliptical lens and mirror 

For elliptical lenses and mirrors (ellipse of revolution), their surfaces can be expressed as: 

(
𝑧 ± 𝑐

𝑎
)
2

+
𝑥2 + 𝑦2

𝑏2
= 1 ⇒ 𝑧 = 𝑐 ± 𝑎√1 −

2𝑢

𝑏2
(E.25) 

The derivatives of 𝑧 are calculated as: 

{
 
 

 
 𝑑𝑧

𝑑𝑢
= −

𝑎

𝑏2
(1 −

2𝑢

𝑏2
)
−
1
2

d2𝑧

𝑑𝑢2
= −

𝑎

𝑏4
(1 −

2𝑢

𝑏2
)
−
3
2

(E.26) 
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For a lens, 𝐾 is determined to be negative: 

𝐾𝑙𝑒𝑛𝑠 = −√1 +
𝑎2

𝑏2
2𝑢

𝑏2 − 2𝑢
(E.27) 

and the principal radii of curvature are found as: 

{
𝑅1,𝑙𝑒𝑛𝑠 =

1

𝑎
(2𝑢𝑐2 + 𝑏4)

1
2

𝑅2,𝑙𝑒𝑛𝑠 =
1

𝑎𝑏4
(2𝑢𝑐2 + 𝑏4)

3
2 

(E.28) 

While for a mirror, 𝐾 is positive: 

𝐾𝑚𝑖𝑟𝑟𝑜𝑟 = √1 +
𝑎2

𝑏2
2𝑢

𝑏2 − 2𝑢
(E.29) 

Moreover, the principal radii of curvature are found as: 

{
𝑅1,𝑚𝑖𝑟𝑟𝑜𝑟 = −

1

𝑎
(2𝑢𝑐2 + 𝑏4)

1
2

𝑅2,𝑚𝑖𝑟𝑟𝑜𝑟 = −
1

𝑎𝑏4
(2𝑢𝑐2 + 𝑏4)

3
2 

(E.30) 

⚫ Hemispherical lens 

In the case of a hemispherical lens (hemisphere of revolution), the surface is expressed as: 

(𝑧 − 𝐿)2 + 𝑥2 + 𝑦2 = 𝑅𝑠𝑝ℎ
2 ⇒ 𝑧 = 𝐿 + √𝑅𝑠𝑝ℎ

2 − 2𝑢 (E.31) 

And the derivatives of 𝑧 are calculated as: 

{

𝑑𝑧

𝑑𝑢
= −(𝑅2 − 2𝑢)−

1
2

d2𝑧

𝑑𝑢2
= −(𝑅2 − 2𝑢)−

3
2

(E.32) 

𝐾 is determined to be negative: 

𝐾 = −√1 +
2𝑢

𝑅𝑠𝑝ℎ
2 − 2𝑢

(E.33) 

Consequently, the principal radii of curvature are found as: 

𝑅1 = 𝑅2 = 𝑅𝑠𝑝ℎ (E.34) 
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⚫ Hyperbolic lens 

For a hyperbolic lens (hyperbola of revolution), the surface is expressed as: 

(
𝑧 − 𝑐

𝑎
)
2

−
𝑥2 + 𝑦2

𝑏2
= 1 ⇒ 𝑧 = 𝑐 + 𝑎√1 +

2𝑢

𝑏2
(E.35) 

And the derivatives of 𝑧 are calculated as: 

{
 
 

 
 𝑑𝑧

𝑑𝑢
=
𝑎

𝑏2
(1 +

2𝑢

𝑏2
)
−
1
2

d2𝑧

𝑑𝑢2
= −

𝑎

𝑏4
(1 +

2𝑢

𝑏2
)
−
3
2

(E.36) 

𝐾 is determined to be negative: 

𝐾 = −√1 + 2𝑢 [
𝑑𝑔(𝑢)

𝑑𝑢
]

2

(E.37) 

Therefore, the principal radii of curvature are found as: 

{
𝑅1 = −

1

𝑎
(2𝑢𝑐2 + 𝑏4)

1
2

𝑅2 = −
1

𝑎𝑏4
(2𝑢𝑐2 + 𝑏4)

3
2 

(E.38) 
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Appendix F Power budget 

In order to obtain the spreading factor, one can consider a power budget equation for each tube 

of rays. In other words, taking the law of conservation of energy in mind, the power incident 

on a medium should be equal to the power reflected plus the power transmitted from the 

interface. Fig. F.1 describes a case that an incident ray impinges on a point 𝑄 at surface 𝑆. Part 

of the incident field is reflected back to the medium I (𝜀𝑟1), while part of the field is transmitted 

into the medium II (𝜀𝑟2).  

 

Figure F.1: Geometry for the description of power budget. 

 

Firstly, we decompose the incident, reflected, and transmitted electric fields at 𝑄 into TE 

and TM components: 

�⃗� 𝑖,𝑟,𝑡(𝑄) = 𝐸𝑖,𝑟,𝑡
⊥ (𝑄)�̂�𝑖,𝑟,𝑡

⊥ (𝑄) + 𝐸𝑖,𝑟,𝑡
∥ (𝑄)�̂�𝑖,𝑟,𝑡

∥ (𝑄) (F.1)  

At each point 𝑄, if we model each incident ray as a local plane wave, we can estimate the 

incident power crossing an infinitesimal area 𝑑𝐴 centered at 𝑄: 

𝑃𝑖
⊥/∥(𝑄) =

|𝐸𝑖
⊥/∥(𝑄)|

2

2𝜁1
𝑑𝐴 cos 𝜃𝑖 (F.2) 

Same steps can also be performed for the reflected ray: 

𝑃𝑟
⊥/∥(𝑄) =

|𝐸𝑟
⊥/∥(𝑄)|

2

2𝜁1
𝑑𝐴 cos 𝜃𝑟 =

|𝛤⊥/∥(𝑄)𝐸𝑖
⊥/∥(𝑄)|

2

2𝜁1
𝑑𝐴 cos 𝜃𝑖 (F.3) 

and for the transmitted ray: 

𝑃𝑡
⊥/∥(𝑄) =

|𝐸𝑡
⊥/∥(𝑄)|

2

2𝜁2
𝑑𝐴 cos 𝜃𝑡 =

|𝜏⊥/∥(𝑄)𝐸𝑖
⊥/∥(𝑄)|

2

2𝜁2
𝑑𝐴 cos 𝜃𝑡 (F.4) 
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If we substitute Eq. (F.2) in Eq. (F.3), we can represent the reflected power by the incident 

power: 

𝑃𝑟
⊥/∥

= 𝑃𝑖
⊥/∥
|𝛤⊥/∥|

2
(F.5) 

Moreover, if we substitute Eq. (F.2) in Eq. (F.4), we can relate the transmitted power to the 

incident power: 

𝑃𝑡
⊥/∥

= 𝑃𝑖
⊥/∥
|𝜏⊥/∥|

2 𝜁1
𝜁2

cos 𝜃𝑡
cos 𝜃𝑖

(F.6) 

Furthermore, when we consider the relation between the incident power and the reflected 

power, we can derive the following expression: 

𝑃𝑖
⊥/∥

− 𝑃𝑟
⊥/∥

=
|𝐸𝑖

⊥/∥
|
2
(1 − |𝛤⊥/∥|

2
)

2𝜁1
𝑑𝐴 cos 𝜃𝑖 =

|𝜏⊥/∥𝐸𝑖
⊥/∥
|
2

2𝜁2
𝑑𝐴 cos 𝜃𝑡 = 𝑃𝑡

⊥/∥ (F.7) 

It can be seen that Eq. (F.7) agrees with the law of conservation of energy. In the case of an 

interface between a PEC and air, there is no transmitted wave into the PEC, i.e. 𝜏⊥/∥ = 0, the 

reflected power is equal to the incident power: 

𝑃𝑟
⊥/∥

= 𝑃𝑖
⊥/∥ (F.8) 
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Appendix G Spreading factor 

Spreading factors for all QO components are derived extensively in this appendix from section 

G.1 to G.5; and in section G.6 we describe some auxiliary derivations used when deriving 

spreading factors. 

G.1 Parabolic reflector 

In Fig. G.1, the incident ray is reflected at 𝑄𝑅 and propagates to 𝑄𝐹𝑂. 𝑑𝐴𝑎 = 𝜌𝑑𝜌𝑑𝜙 is the 

infinitesimal aperture area centered at 𝑄𝑎, 𝑑𝐴𝑅 = 𝑟
2 sin 𝜃 𝑑𝜃𝑑𝜙 is the area centered at 𝑄𝑅, and 

𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙 is the area centered at 𝑄𝐹𝑂. 

 

 

Figure G.1: A parabolic reflector as a reflecting surface. 

 

The power within the incident ray tube should remain the same when propagating, also for 

the reflected ray tube: 

{
𝑃𝑖
⊥/∥(𝑄𝑎) = 𝑃𝑖

⊥/∥(𝑄𝑅)

𝑃𝐺𝑂
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑟

⊥/∥(𝑄𝑅)
(G.1) 

Considering the power budget introduced in Eq. (F.5 ), the incident power 𝑃𝑖
⊥/∥

 and the 

reflected power 𝑃𝑟
⊥/∥

 are related by the reflection coefficient 𝛤⊥/∥ at 𝑄𝑅. By substituting Eq. 

(G.1) in Eq. (F.5) one can obtain:  

𝑃𝐺𝑂
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑖

⊥/∥(𝑄𝑎)|𝛤
⊥/∥(𝑄𝑅)|

2
(G.2) 

where 𝑃𝑖
⊥/∥(𝑄𝑎) and 𝑃𝐺𝑂

⊥/∥(𝑄𝐹𝑂) can be can be expressed as below: 
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{
 
 

 
 
𝑃𝑖
⊥/∥(𝑄𝑎) =

|𝐸𝑖
⊥/∥(𝑄𝑎)|

2

2𝜁0
𝑑𝐴𝑎

𝑃𝐺𝑂
⊥/∥(𝑄𝐹𝑂) =

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2

2𝜁0
𝑑𝐴𝐹𝑂

(G.3) 

By substituting Eq. (G.3) in Eq. (G.2), we have the following relation: 

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2

2𝜁0
𝑑𝐴𝐹𝑂 =

|𝛤⊥/∥(𝑄𝑅)𝐸𝑖
⊥/∥(𝑄𝑎)|

2

2𝜁0
𝑑𝐴𝑎 (G.4) 

where 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙, 𝑑𝐴𝑎 = 𝜌𝑑𝜌𝑑𝜙, and 𝜌 = 𝑟sin 𝜃. Eq. (G.4) can be simplified: 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝛤⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟

𝑅𝐹𝑂
2

𝑑𝜌

𝑑𝜃
(G.5) 

where 𝑑𝜌/𝑑𝜃 can be calculated as follows: 

𝑑𝜌(𝜃)

𝑑𝜃
=
𝑑𝑟(𝜃)

𝑑𝜃
sin 𝜃 + 𝑟(𝜃) cos 𝜃 =

2𝑓

1 + cos 𝜃
= 𝑟(𝜃) (G.6) 

By substituting Eq. (G.6) in Eq. (G.5): 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝛤⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟2

𝑅𝐹𝑂
2 ⇒ |𝐸𝐺𝑂

⊥/∥
| = |𝛤⊥/∥𝐸𝑖

⊥/∥
|
𝑟

𝑅𝐹𝑂
(G.7) 

Consequently, the spreading factor can be expressed as below: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
=
𝑟(𝜃)

𝑅𝐹𝑂
=

2

1 + cos 𝜃
(G.8) 
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G.2 Elliptical lens 

Fig. G.2 shows an elliptical lens as a transmitting surface. The incident ray is transmitted at 𝑄𝑇 

and propagates to 𝑄𝐹𝑂 . 𝑑𝐴𝑎 = 𝜌𝑑𝜌𝑑𝜙  is the aperture area centered at 𝑄𝑎 , 𝑑𝐴𝑇 =

𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙 is the area centered at 𝑄𝑇, and 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙 is the area centered at 

𝑄𝐹𝑂. 

 

Figure G.2: An elliptical lens as a transmitting surface. 

 

The power within the incident ray tube should remain the same when propagating, also for 

the transmitted ray tube: 

{
𝑃𝑖
⊥/∥(𝑄𝑎) = 𝑃𝑖

⊥/∥(𝑄𝑇)

𝑃𝐺𝑂
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑡

⊥/∥(𝑄𝑇)
(G.9) 

Considering the power budget introduced in Eq. (F.6 ), the incident power 𝑃𝑖
⊥/∥

 and the 

transmitted power 𝑃𝑡
⊥/∥

 are related by the transmission coefficient 𝜏⊥/∥ at 𝑄𝑇. By substituting 

Eq. (G.9) in Eq. (F.6) one can obtain:  

𝑃𝐺𝑂
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑖

⊥/∥(𝑄𝑎)|𝜏
⊥/∥(𝑄𝑇)|

2 𝜁0
𝜁𝑑

cos 𝜃𝑡
cos 𝜃𝑖

(G.10) 

where 𝑃𝑖
⊥/∥(𝑄𝑎) is expressed in Eq. (G.3) and 𝑃𝐺𝑂

⊥/∥(𝑄𝐹𝑂) is: 

𝑃𝐺𝑂
⊥/∥(𝑄𝐹𝑂) =

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2

2𝜁𝑑
𝑑𝐴𝐹𝑂 (G.11) 

By substituting Eq. (G.3) and (G.11) in Eq. (G.10), one can obtain: 

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2

2𝜁𝑑
𝑑𝐴𝐹𝑂 =

|𝐸𝑖
⊥/∥(𝑄𝑎)|

2

2𝜁0
𝑑𝐴𝑎|𝜏

⊥/∥(𝑄𝑇)|
2 𝜁0
𝜁𝑑

cos 𝜃𝑡
cos 𝜃𝑖

(G.12) 
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where 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙, 𝑑𝐴𝑎 = 𝜌𝑑𝜌𝑑𝜙, and 𝜌 = 𝑟𝑠𝑖𝑛 𝜃. Eq. (G.12) can be simplified: 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝜏⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟

𝑅𝐹𝑂
2

𝑑𝜌

𝑑𝜃

cos 𝜃𝑡
cos 𝜃𝑖

(G.13) 

where 𝑑𝜌/𝑑𝜃 can be calculated as follows: 

𝑑𝜌(𝜃)

𝑑𝜃
=
𝑑𝑟(𝜃)

𝑑𝜃
sin 𝜃 + 𝑟(𝜃) cos 𝜃 = 𝑟(𝜃)

cos 𝜃 − 𝑒

1 − 𝑒 cos 𝜃
(G.14) 

and cos 𝜃𝑡 / cos 𝜃𝑖 is derived in Appendix G.6 as: 

cos 𝜃𝑡
cos 𝜃𝑖

=
1 − 𝑒 cos 𝜃

cos 𝜃 − 𝑒
(G.15) 

By substituting Eq. (G.14) and (G.15) in Eq. (G.13): 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝜏⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟2

𝑅𝐹𝑂
2 ⇒ |𝐸𝐺𝑂

⊥/∥
| = |𝜏⊥/∥𝐸𝑖

⊥/∥
|
𝑟

𝑅𝐹𝑂
(G.16) 

Therefore, the spreading factor is obtained as: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝜏⊥/∥𝐸𝑖
⊥/∥
|
=
𝑟(𝜃)

𝑅𝐹𝑂
=

𝑎(1 − 𝑒2)

𝑅𝑙(1 − 𝑒 cos 𝜃)
(G.17) 

G.3 Hyperhemispherical lens 

In the case of a hyperhemispherical, as shown in Fig. G.3, the incident wave converges at the 

virtual point 𝑂𝑣 , and the transmitted field converges at the center of the lens base, 𝑂. The 

incident field is transmitted at 𝑄𝑇 and propagates to 𝑄𝐹𝑂. 𝑑𝐴𝑇 = 𝑟𝑣
2 sin 𝜃𝑣 𝑑𝜃𝑣𝑑𝜙𝑣 is the area 

centered at 𝑄𝑇, and 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙 is the area centered at 𝑄𝐹𝑂. 

 

 

Figure G.3: A hyperhemispherical lens as a transmitting surface. 
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Similar to an elliptical lens, considering the power budget we can obtain the following relation: 

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2

2𝜁𝑑
𝑑𝐴𝐹𝑂 =

|𝐸𝑖
⊥/∥(𝑄𝑇)|

2

2𝜁0
𝑑𝐴𝑇|𝜏

⊥/∥(𝑄𝑇)|
2 𝜁0
𝜁𝑑

cos 𝜃𝑡
cos 𝜃𝑖

(G.18) 

where 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙 , 𝑑𝐴𝑇 = 𝑟𝑣

2 sin 𝜃𝑣 𝑑𝜃𝑣𝑑𝜙𝑣  and 𝜙𝑣 = 𝜙 . Eq. ( G.18 ) can be 

simplified: 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝜏⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟𝑣

2

𝑅𝐹𝑂
2

sin 𝜃𝑣
sin 𝜃

𝑑𝜃𝑣
𝑑𝜃

cos 𝜃𝑡
cos 𝜃𝑖

(G.19) 

It can be observed in Fig G.3 that the radial distance 𝑟𝑣(𝜃𝑣) is related to 𝑟(𝜃): 

𝑟𝑣(𝜃𝑣) = 𝑟(𝜃)
sin 𝜃

sin 𝜃𝑣
(G.20) 

By substituting Eq. (G.20) in Eq. (G.19): 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝜏⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟2

𝑅𝐹𝑂
2

sin 𝜃

sin 𝜃𝑣

𝑑𝜃𝑣
𝑑𝜃

cos 𝜃𝑡
cos 𝜃𝑖

 

⇒ |𝐸𝐺𝑂
⊥/∥
| = |𝜏⊥/∥𝐸𝑖

⊥/∥
|
𝑟

𝑅𝐹𝑂
√
sin 𝜃

sin 𝜃𝑣

𝑑𝜃𝑣
𝑑𝜃

cos 𝜃𝑡
cos 𝜃𝑖

(G.21) 

Therefore, the spreading factor is expressed as: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝜏⊥/∥𝐸𝑖
⊥/∥
|
=
𝑟(𝜃)

𝑅𝐹𝑂
√
sin 𝜃

sin 𝜃𝑣

𝑑𝜃𝑣
𝑑𝜃

√
cos 𝜃𝑡
cos 𝜃𝑖

(G.22) 

Since 𝑑𝜃𝑣/𝑑𝜃, cos 𝜃𝑖, and cos 𝜃𝑡 are too redundant to be expressed analytically, we calculate 

these terms numerically. 
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G.4 Hyperbolic lens 

Fig. G.4 shows a hyperbolic lens as a transmitting surface. The incident field is a plane wave 

propagating in the dielectric medium (𝜀𝑟). It is transmitted at 𝑄𝑇 and propagates to 𝑄𝐹𝑂. 𝑑𝐴𝑎 =

𝜌𝑑𝜌𝑑𝜙 is the aperture area centered at 𝑄𝑎, 𝑑𝐴𝑇 = 𝑟
2 sin 𝜃 𝑑𝜃𝑑𝜙 is the area centered at 𝑄𝑇, 

and 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙 is the area centered at 𝑄𝐹𝑂. 

 

 

Figure G.4: A hyperbolic lens as a transmitting surface. 

 

Similar to an elliptical lens, the power budget for a hyperbolic lens can be described as follows:  

𝑃𝐺𝑂
⊥/∥(𝑄𝐹𝑂) = 𝑃𝑖

⊥/∥(𝑄𝑎)|𝜏
⊥/∥(𝑄𝑇)|

2 𝜁𝑑
𝜁0

cos 𝜃𝑡
cos 𝜃𝑖

 

⇒ 
|𝐸𝐺𝑂

⊥/∥(𝑄𝐹𝑂)|
2

2𝜁0
𝑑𝐴𝐹𝑂 =

|𝐸𝑖
⊥/∥(𝑄𝑎)|

2

2𝜁𝑑
𝑑𝐴𝑎|𝜏

⊥/∥(𝑄𝑇)|
2 𝜁𝑑
𝜁0

cos 𝜃𝑡
cos 𝜃𝑖

(G.23) 

where 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃𝑑𝜃𝑑𝜙, 𝑑𝐴𝑎 = 𝜌𝑑𝜌𝑑𝜙, and 𝜌 = 𝑟sin 𝜃. Eq. (G.23) can be simplified: 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝜏⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟

𝑅𝐹𝑂
2

𝑑𝜌

𝑑𝜃

cos 𝜃𝑡
cos 𝜃𝑖

(G.24) 

where 𝑑𝜌/𝑑𝜃  and cos 𝜃𝑡 / cos 𝜃𝑖  are described in Eq. (G.14) and (G.15), respectively. By 

substituting 𝑑𝜌/𝑑𝜃 and cos 𝜃𝑡 / cos 𝜃𝑖 in Eq. (G.24): 

|𝐸𝐺𝑂
⊥/∥
|
2
= |𝜏⊥/∥𝐸𝑖

⊥/∥
|
2 𝑟2

𝑅𝐹𝑂
2 ⇒ |𝐸𝐺𝑂

⊥/∥
| = |𝜏⊥/∥𝐸𝑖

⊥/∥
|
𝑟

𝑅𝐹𝑂
(G.25) 

Therefore, the spreading factor is obtained as follows: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃) =
|𝐸𝐺𝑂

⊥/∥
|

|𝜏⊥/∥𝐸𝑖
⊥/∥
|
=
𝑟(𝜃)

𝑅𝐹𝑂
=

1 − 𝑒

1 − 𝑒 cos 𝜃
(G.26) 
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G.5 Elliptical mirror 

In the case of an elliptical mirror, incident field is emitted from a point source that can be placed 

at either the upper focus or the lower focus. 

 

 

Figure G.5: An elliptical mirror as a reflecting surface. Left: source placed at the upper focus, 𝑂1; Right: 

source placed at the lower focus, 𝑂2. 

 

As it can be seen in Fig. G.5, the incident field is reflected at 𝑄𝑅 and propagates to 𝑄𝐹𝑂. 

𝑑𝐴𝑅 is the area centered at 𝑄𝑅, and 𝑑𝐴𝐹𝑂 is the area centered at 𝑄𝐹𝑂. Similar to a parabolic 

reflector, by considering the power budget between the incident power and the reflected power, 

one can derive the following relation: 

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2

2𝜁0
𝑑𝐴𝐹𝑂 =

|𝛤⊥/∥(𝑄𝑅)𝐸𝑖
⊥/∥(𝑄𝑅)|

2

2𝜁0
𝑑𝐴𝑅 (G.27) 

⚫ Case1: Source placed at the upper focus, 𝑶𝟏 

In this case, the area 𝑑𝐴𝑅 is parameterized by 𝑟1(𝜃1): 𝑑𝐴𝑅 = 𝑟1 sin 𝜃1 𝑑𝜃1𝑑𝜙1, while 𝑑𝐴𝐹𝑂 

is parameterized by (𝜃2, 𝜙2): 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃2𝑑𝜃2𝑑𝜙2 , where 𝜙1 = 𝜙2 . By substituting 

𝑑𝐴𝐹𝑂 and 𝑑𝐴𝑅 in Eq. (G.27): 

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2
𝑅𝐹𝑂
2 sin 𝜃2𝑑𝜃2𝑑𝜙2 = |𝛤⊥/∥(𝑄𝑅)𝐸𝑖

⊥/∥(𝑄𝑅)|
2
𝑟1
2 sin 𝜃1 𝑑𝜃1𝑑𝜙1 

⇒
|𝐸𝐺𝑂

⊥/∥
|
2

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
2 =

𝑟1
2

𝑅𝐹𝑂
2

sin 𝜃1
sin 𝜃2

𝑑𝜃1
𝑑𝜃2

(G.28) 

By using the relation between 𝜃1 and 𝜃2, one can calculate the following term: 

sin 𝜃1
sin 𝜃2

𝑑𝜃1
𝑑𝜃2

=
𝑟2
2

𝑟1

1

2𝑐𝑒 + (1 − 𝐴𝑒)𝑎(1 − 𝑒2)
(G.29) 
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and by substituting Eq. (G.29) in Eq. (G.28): 

|𝐸𝐺𝑂
⊥/∥
|
2

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
2 =

𝑟1𝑟2
2

𝑅𝐹𝑂
2

1

2𝑐𝑒 + (1 − 𝐴𝑒)𝑎(1 − 𝑒2)
(G.30) 

Consequently, the spreading factor can be expressed as: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃2) =
|𝐸𝐺𝑂

⊥/∥
|

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
=
√𝑟1(𝜃1)𝑟2(𝜃2)

𝑅𝐹𝑂
√

𝑎(1 − 𝑒2)

2𝑐(𝑒 − cos 𝜃2) + 𝑎(1 − 𝑒2)
(G.31) 

⚫ Case2: Source placed at the lower focus, 𝑶𝟐 

In this case, the area 𝑑𝐴𝑅  is parameterized by 𝑟2(𝜃2) : 𝑑𝐴𝑅 = 𝑟2 sin 𝜃2 𝑑𝜃2𝑑𝜙2 , while 

𝑑𝐴𝐹𝑂  is parameterized by (𝜃1, 𝜙1) : 𝑑𝐴𝐹𝑂 = 𝑅𝐹𝑂
2 sin 𝜃1𝑑𝜃1𝑑𝜙1 . By substituting 𝑑𝐴𝐹𝑂  and 

𝑑𝐴𝑅 in Eq. (G.27): 

|𝐸𝐺𝑂
⊥/∥(𝑄𝐹𝑂)|

2
𝑅𝐹𝑂
2 sin 𝜃1𝑑𝜃1𝑑𝜙1 = |𝛤⊥/∥(𝑄𝑅)𝐸𝑖

⊥/∥(𝑄𝑅)|
2
𝑟2
2 sin 𝜃2 𝑑𝜃2𝑑𝜙2 

⇒
|𝐸𝐺𝑂

⊥/∥
|
2

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
2 =

𝑟2
2

𝑅𝐹𝑂
2

sin 𝜃2
sin 𝜃1

𝑑𝜃2
𝑑𝜃1

(G.32) 

By using the relation between 𝜃2 and 𝜃1, one can calculate the following term: 

sin 𝜃2
sin 𝜃1

𝑑𝜃2
𝑑𝜃1

=
𝑟1
2

𝑟2

1

2𝑐𝑒 + (1 + 𝐴𝑒)𝑎(1 − 𝑒2)
(G.33) 

By substituting Eq. (G.33) in Eq. (G.32): 

|𝐸𝐺𝑂
⊥/∥
|
2

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
2 =

𝑟2𝑟1
2

𝑅𝐹𝑂
2

1

2𝑐𝑒 + (1 + 𝐴𝑒)𝑎(1 − 𝑒2)
(G.34) 

Therefore, the spreading factor can be expressed as: 

𝑆𝑝𝑟𝑒𝑎𝑑(𝜃1) =
|𝐸𝐺𝑂

⊥/∥
|

|𝛤⊥/∥𝐸𝑖
⊥/∥
|
=
√𝑟1(𝜃1)𝑟2(𝜃2)

𝑅𝐹𝑂
√

𝑎(1 − 𝑒2)

2𝑐(𝑒 + cos 𝜃1) + 𝑎(1 − 𝑒2)
(G.35) 
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G.6 Auxiliary derivations 

In this section, we mainly discuss some auxiliary derivations used when calculating spreading 

factors. 

⚫ Parabolic reflector 

The incident propagation unit vector for a parabolic reflector is �̂�𝑖 = �̂� , therefore, the 

incident and reflected angle can be calculated as follows: 

cos 𝜃𝑟 = cos 𝜃𝑖 = −(�̂�𝑖 ⋅ �̂�) = √
1 + cos 𝜃

2
(G.36) 

⚫ Elliptical lens 

The incident and transmitted propagation unit vectors for an elliptical lens are �̂�𝑖 = −�̂� and 

�̂�𝑡 = −�̂� = −(sin𝜃 �̂� + cos 𝜃 �̂�), respectively, therefore, the incident and transmitted angle 

can be calculated as follows: 

{
 
 

 
 cos 𝜃𝑖 = −(�̂�𝑖 ⋅ �̂�) =

cos 𝜃 − 𝑒

√1 + 𝑒2 − 2𝑒 cos 𝜃

cos 𝜃𝑡 = −(�̂�𝑡 ⋅ �̂�) =
1 − 𝑒 cos 𝜃

√1 + 𝑒2 − 2𝑒 cos 𝜃

⇒
cos 𝜃𝑡
cos 𝜃𝑖

=
1 − 𝑒 cos 𝜃

cos 𝜃 − 𝑒
(G.37) 

⚫ Hyperhemispherical lens 

By observing Fig. G.3, one can derive the angle 𝜃𝑣 from 𝜃: 

𝜃𝑣 = tan
−1

𝑟(𝜃) sin 𝜃

𝑟(𝜃) cos 𝜃 + 𝑑
(G.38) 

where 𝑟(𝜃) = 𝐿 cos 𝜃 + √𝑅𝑠𝑝ℎ
2 − 𝐿2(sin 𝜃)2 , 𝑑 = 𝐹𝑣 − 𝑅𝑠𝑝ℎ − 𝐿 , and𝐹𝑣 = 𝑅𝑠𝑝ℎ(√𝜀𝑟 + 1) . 

The derivative of 𝜃𝑣 with respect to 𝜃 is: 

𝑑𝜃𝑣
𝑑𝜃

=
𝑟2 +

𝑑𝑟
𝑑𝜃
sin 𝜃 𝑑 + 𝑟 cos 𝜃 𝑑

(𝑟 cos 𝜃 + 𝑑)2 + (𝑟 sin 𝜃)2
(G.39) 

where 𝑑𝑟/𝑑𝜃 is expressed as follows: 

𝑑𝑟

𝑑𝜃
= −𝐿 sin 𝜃 − 𝐿2 sin 𝜃 cos 𝜃 [𝑅𝑠𝑝ℎ

2 − 𝐿2 sin2 𝜃]
−0.5

(G.40) 

Moreover, one can calculate the incident and transmitted angles numerically by using �̂�𝑖 = −�̂�𝑣 

(where �̂�𝑣 = (𝑑𝑧 + 𝑟 )/𝑟𝑣) and �̂�𝑡 = −�̂�: 

{
cos 𝜃𝑖 = −(�̂�𝑖 ⋅ �̂�)

cos 𝜃𝑡 = −(�̂�𝑡 ⋅ �̂�)
(G.41) 
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Appendix H Auxiliary derivations for an elliptical mirror 

In section 4.2.2.2, we skip some steps when we simplify the linear phase and the compensation 

phase for an elliptical mirror. Therefore, in this appendix, we mainly discuss some 

simplifications used for an elliptical mirror with slightly off-broadside incidence. 

H.1 Simplification of terms in the linear phase 

When we calculate the linear phase term, there involve some simplifications for dot product. 

⚫ Case 1: Source placed at the upper focal plane 

In this case the mirror is parameterized by 𝑟 2(𝜃2), and 𝑟 1(𝜃1) can be represented by using 

𝑟 2(𝜃2) as: 

𝑟 1 = 𝑟 2 − 2𝑐�̂� ⇒ �̂�1 =
𝑟2
𝑟1
�̂�2 −

2𝑐

𝑟1
�̂�   

⇒ �̂�1 ⋅ 𝜌 𝑠 = (
𝑟2
𝑟1
�̂�2 −

2𝑐

𝑟1
�̂�) ⋅ 𝜌 𝑠 =

𝑟2
𝑟1
�̂�2 ⋅ 𝜌 𝑠 (H.1) 

If we define 𝑟1(𝜃1) and 𝑟2(𝜃2) by using 𝑅1𝑙 and 𝑅2𝑙, respectively, 

{
 
 

 
 𝑟1(𝜃1) = 𝑎

1 − 𝑒2

1 + 𝑒 cos 𝜃1
= 𝑅1𝑙

1 + 𝑒 cos 𝜃01
1 + 𝑒 cos 𝜃1

𝑟2(𝜃2) = 𝑎
1 − 𝑒2

1 − 𝑒 cos 𝜃2
= 𝑅2𝑙

1 − 𝑒 cos 𝜃02
1 − 𝑒 cos 𝜃2

(H.2) 

then the ratio 𝑟2(𝜃2)/𝑟1(𝜃1) can be expressed as follows: 

𝑟2(𝜃2)

𝑟1(𝜃1)
=
𝑅2𝑙
𝑅1𝑙

1 − 𝑒 cos 𝜃02
1 + 𝑒 cos 𝜃01

1 + 𝑒 cos 𝜃1
1 − 𝑒 cos 𝜃2

= 𝑀1(1 + Φ𝑐𝑜𝑚𝑎1(𝜃2)) (H.3) 

where 𝑀1 = 𝑅2𝑙/𝑅1𝑙 and Φ𝑐𝑜𝑚𝑎1(𝜃2) is: 

Φ𝑐𝑜𝑚𝑎1(𝜃2) = − 

𝑒2(cos 𝜃1 cos 𝜃02 − cos 𝜃2 cos 𝜃01  ) + 𝑒(cos 𝜃01 − cos 𝜃1 + cos 𝜃02 − cos 𝜃2)

(1 − 𝑒 cos 𝜃2)(1 + 𝑒 cos 𝜃01)
(H.4) 

⚫ Case 2: Source placed at the lower focal plane 

In this case the mirror is parameterized by 𝑟 1(𝜃1), and 𝑟 2(𝜃2) can be represented by using 

𝑟 1(𝜃1) as: 

𝑟 2 = 𝑟 1 + 2𝑐�̂� ⇒ �̂�2 =
𝑟1
𝑟2
�̂�1 +

2𝑐

𝑟2
�̂�  

⇒ �̂�2 ⋅ 𝜌 𝑠 = (
𝑟1
𝑟2
�̂�1 +

2𝑐

𝑟2
�̂�) ⋅ 𝜌 𝑠 =

𝑟1
𝑟2
�̂�1 ⋅ 𝜌 𝑠 (H.5) 
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𝑟1(𝜃1)/𝑟2(𝜃2) can be calculated by using Eq. (H.2): 

𝑟1(𝜃1)

𝑟2(𝜃2)
=
𝑅1𝑙
𝑅2𝑙

1 + 𝑒 cos 𝜃01
1 − 𝑒 cos 𝜃02

1 − 𝑒 cos 𝜃2
1 + 𝑒 cos 𝜃1

= 𝑀2(1 + Φ𝑐𝑜𝑚𝑎2(𝜃1)) (H.6) 

where 𝑀2 = 𝑅1𝑙/𝑅2𝑙, and Φ𝑐𝑜𝑚𝑎2(𝜃1) is: 

Φ𝑐𝑜𝑚𝑎2(𝜃1) = 

𝑒2(cos 𝜃1 cos 𝜃02 − cos 𝜃2 cos 𝜃01  ) + 𝑒(cos 𝜃01 − cos 𝜃1 + cos 𝜃02 − cos 𝜃2)

(1 + 𝑒 cos 𝜃1)(1 − 𝑒 cos 𝜃02)
(H.7) 

H.2 Simplification of compensation phase term 

The compensation phase term is complex and redundant to be implemented; therefore, here we 

will find a specific region where this phase can be simplified. 

⚫ Case 1: Source placed at the upper focal plane 

In this case, the compensation phase term is expressed as follows: 

Φcomp1(𝜃2) = 𝑘0 [
𝜌𝑠
2

2𝑟1
−
𝜌𝑠
2

2𝑟1
(�̂�1 ⋅ �̂�𝑠)

2 +
𝜌𝑠
3

2𝑟1
2
(�̂�1 ⋅ �̂�𝑠)] (H.8) 

Here we found 
𝜌𝑠
2

2𝑟1
 varies slowly with respect to 𝜃2, while −

𝜌𝑠
2

2𝑟1
(�̂�1 ⋅ �̂�𝑠)

2 +
𝜌𝑠
3

2𝑟1
2 (�̂�1 ⋅ �̂�𝑠) varies 

fast. Therefore, we can define a slow-varying term Φ𝑠𝑙𝑜𝑤 = 𝑘0
𝜌𝑠
2

2𝑟1
, and a fast-varying term 

Φ𝑓𝑎𝑠𝑡 = 𝑘0 [−
𝜌𝑠
2

2𝑟1
(�̂�1 ⋅ �̂�𝑠)

2 +
𝜌𝑠
3

2𝑟1
2 (�̂�1 ⋅ �̂�𝑠)]. Then Eq. (H.8) can be expressed as: 

Φcomp1 = Φ𝑠𝑙𝑜𝑤 +Φ𝑓𝑎𝑠𝑡 (H.9) 

If we neglect Φ𝑓𝑎𝑠𝑡 for a specific phase error 𝜎𝑝ℎ,𝑓, we have the following condition: 

−𝑘0 (−
𝜌𝑠
2

2𝑟1
(�̂�1 ⋅ �̂�𝑠)

2 +
𝜌𝑠
3

2𝑟1
2
(�̂�1 ⋅ �̂�𝑠)) ≤ 𝜎𝑝ℎ,𝑓 (H.10) 

The worst case in Eq. (H.10) happens when �̂�1 ⋅ �̂�𝑠 = −sin 𝜃01, which makes 𝑟1 = 𝑅1𝑙. By 

considering the worst case, Eq. (H.10) can be simplified as: 

sin 𝜃01

2𝑅1𝑙
2 𝜌𝑠

3 +
(sin 𝜃01)

2 

2𝑅1𝑙
𝜌𝑠
2 −

𝜎𝑝ℎ,𝑓

𝑘0
≤ 0 (H.11) 

By solving the cubic equation, 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 , with parameters:  𝑎 =
sin𝜃01

2𝑅1𝑙
2 , 𝑏 =

(sin𝜃01)
2

 

2𝑅1𝑙
, 𝑐 = 0, 𝑑 = −

𝜎𝑝ℎ,𝑓
𝑘0

, we can obtain the applicability region of Eq. (H.11). If we define the 

positive and real solution of the cubic equation as 𝑥1 = 𝜌𝑠,𝑚𝑎𝑥
𝑓

, the region can be expressed as: 

|𝜌𝑠| ≤ 𝜌𝑠,𝑚𝑎𝑥
𝑓 (H.12) 
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Within this region, the fast-varying term Φ𝑓𝑎𝑠𝑡 can be neglected and the compensation phase 

can be simplified: 

Φcomp1 ≈ Φ𝑠𝑙𝑜𝑤 = 𝑘0
𝜌𝑠
2

2𝑟1
(H.13) 

Furthermore, we can represent the slow-varying term Φ𝑠𝑙𝑜𝑤 by a constant phase: 

Φ𝑠𝑙𝑜𝑤 ≈ 𝑘0
𝜌𝑠
2

2𝑅1𝑙
(H.14) 

and set the phase error as 𝜎𝑝ℎ,𝑠: 

−𝑘0
𝜌𝑠
2

2𝑅1𝑙
− (−𝑘0

𝜌𝑠
2

2𝑟1
) ≤ 𝜎𝑝ℎ,𝑠 

⇒ 𝜌𝑠
2 (
1

𝑟1
−
1

𝑅1𝑙
) ≤

2𝜎𝑝ℎ,𝑠

𝑘0
(H.15) 

The worst case happens when 𝜃2 = 0, i.e. 𝑟1 = 𝑎 − 𝑐, meaning Eq. (H.15) can be expressed 

as: 

|𝜌𝑠| ≤ √
2𝜎𝑝ℎ,𝑠

𝑘0
√
𝑅1𝑙(𝑎 − 𝑐)

𝑅1𝑙 − (𝑎 − 𝑐)
= 𝜌𝑠,𝑚𝑎𝑥

𝑠 (H.16) 

In practice, when the f-number is large, we can always assume 𝜌𝑠,𝑚𝑎𝑥
𝑓

≤ 𝜌𝑠,𝑚𝑎𝑥
𝑠 , meaning 

we can always approximate the compensation phase as a constant within |𝜌𝑠| ≤ 𝜌𝑠,𝑚𝑎𝑥
𝑓

: 

Φcomp1 ≈
𝜌𝑠
2

2𝑅1𝑙
(H.17) 

⚫ Case 2: Source placed at the lower focal plane 

In this case, the compensation phase term is expressed as: 

Φcomp2(𝜃1) = 𝑘0 [
𝜌𝑠
2

2𝑟2
−
𝜌𝑠
2

2𝑟2
(�̂�2 ⋅ �̂�𝑠)

2 +
𝜌𝑠
3

2𝑟2
2
(�̂�2 ⋅ �̂�𝑠)] (H.18) 

If we neglect the fast-varying term Φ𝑓𝑎𝑠𝑡 = 𝑘0 [−
𝜌𝑠
2

2𝑟2
(�̂�2 ⋅ �̂�𝑠)

2 +
𝜌𝑠
3

2𝑟2
2 (�̂�2 ⋅ �̂�𝑠)] for a specific 

phase error 𝜎𝑝ℎ,𝑓, we have the following condition: 

−𝑘0 (−
𝜌𝑠
2

2𝑟2
(�̂�2 ⋅ �̂�𝑠)

2 +
𝜌𝑠
3

2𝑟2
2
(�̂�2 ⋅ �̂�𝑠)) ≤ 𝜎𝑝ℎ,𝑓 (H.19) 

The worst case in Eq. (H.19) happens when �̂�2 ⋅ �̂�𝑠 = −sin 𝜃02, which makes 𝑟2 = 𝑅2𝑙. By 

considering the worst case, Eq. (H.19) can be simplified as: 

sin 𝜃02

2𝑅2𝑙
2 𝜌𝑠

3 +
(sin 𝜃02)

2 

2𝑅2𝑙
𝜌𝑠
2 −

𝜎𝑝ℎ

𝑘0
≤ 0 (H.20) 
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By solving the cubic equation, 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 , with parameters:  𝑎 =
sin𝜃02

2𝑅2𝑙
2 , 𝑏 =

(sin𝜃02)
2

 

2𝑅2𝑙
, 𝑐 = 0, 𝑑 = −

𝜎𝑝ℎ
𝑘0

, we can obtain the applicability region of Eq. (H.20): |𝜌𝑠| ≤ 𝜌𝑠,𝑚𝑎𝑥
𝑓

, 

where 𝜌𝑠,𝑚𝑎𝑥
𝑓

 is the positive and real solution of the cubic equation. Within this region, the fast-

varying term Φ𝑓𝑎𝑠𝑡 can be neglected and the compensation phase can be simplified as: 

Φcomp2 ≈ Φ𝑠𝑙𝑜𝑤 = 𝑘0
𝜌𝑠
2

2𝑟2
(H.21) 

Furthermore, we can represent the slow-varying term Φ𝑠𝑙𝑜𝑤 by a constant phase: 

Φ𝑠𝑙𝑜𝑤 ≈ 𝑘0
𝜌𝑠
2

2𝑅2𝑙
(H.22) 

and set the phase error as 𝜎𝑝ℎ,𝑠: 

−𝑘0
𝜌𝑠
2

2𝑟2
− (−𝑘0

𝜌𝑠
2

2𝑅2𝑙
) ≤ 𝜎𝑝ℎ,𝑠 

⇒ 𝜌𝑠
2 (

1

𝑅2𝑙
−
1

𝑟2
) ≤

2𝜎𝑝ℎ,𝑠

𝑘0
(H.23) 

The worst case happens when 𝜃1 = 0, i.e. 𝑟2 = 𝑎 + 𝑐, meaning Eq. (H.23) can be expressed 

as: 

|𝜌𝑠𝑟𝑐| ≤ √
2𝜎𝑝ℎ,𝑠

𝑘0
√
𝑅2𝑙(𝑎 + 𝑐)

(𝑎 + 𝑐) − 𝑅2𝑙
= 𝜌𝑠𝑟𝑐,𝑚𝑎𝑥

𝑠 (H.24) 

In practice, when the f-number is large, we can always assume 𝜌𝑠,𝑚𝑎𝑥
𝑓

≤ 𝜌𝑠,𝑚𝑎𝑥
𝑠 , meaning 

we can always approximate the compensation phase as a constant within |𝜌𝑠| ≤ 𝜌𝑠,𝑚𝑎𝑥
𝑓

: 

Φcomp2 ≈
𝜌𝑠
2

2𝑅2𝑙
(H.25) 
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Appendix I Limit of the coma phase 

We define the limit of the coma phase as the maximum number of scanned beams where the 

focalized field is almost a linear translation of the broadside one, i.e., coma phase term can be 

neglected. The condition set for this limit is that the coma phase term should be less than 𝜎: 

�⃗� 𝜌 ⋅ 𝜌 𝑓𝑝𝛿𝑛(𝜃) ≤ 𝜎 (I.1) 

I.1 Parabolic reflector 

For a parabolic reflector, �⃗� 𝜌 = 𝑘0 sin 𝜃 �̂�,  𝜌 𝑓𝑝 = 𝑁𝜆0𝑓#�̂�𝑓𝑝. By substituting the expression 

of 𝛿𝑛 in Eq. (I.1): 

2𝜋

𝜆0
sin 𝜃 𝑁𝜆0𝑓#(�̂� ⋅ �̂�𝑓𝑝)

1 − cos 𝜃

1 + cos 𝜃
≤ 𝜎 

⇒ 𝑁(�̂� ⋅ �̂�𝑓𝑝)
sin 𝜃 (1 − cos 𝜃)

1 + cos 𝜃
≤

𝜎

2𝜋𝑓#
(I.2) 

If we define a function 𝑓(𝜃) as: 

𝑓(𝜃) =
sin 𝜃 (1 − cos 𝜃)

1 + cos 𝜃
(I.3) 

We can find 𝑓(𝜃) is a monotonically increasing function within 𝜃 ∈ [0, 𝜃0]. Therefore, the 

worst case in Eq. (I.2) is when �̂� ⋅ �̂�𝑓𝑝 = 1 and 𝜃 = 𝜃0: 

𝑁 ≤
𝜎

2𝜋𝑓#

1 + cos 𝜃0
sin 𝜃0 (1 − cos 𝜃0)

(I.4) 

Moreover, when 𝑓# is large, sin 𝜃0 can be approximated by: 

sin 𝜃0 ≈
1

2𝑓#
⇒ cos𝜃0 ≈

√4𝑓#
2 − 1

2𝑓#
(I.5) 

In this case, Eq. (I.4) is related to 𝑓# as follows: 

𝑁 ≤
𝜎

𝜋
[2𝑓# +√4𝑓#

2 − 1]

2

(I.6) 
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I.2 Elliptical lens 

For an elliptical lens, �⃗� 𝜌 = 𝑘𝑑 sin 𝜃 �̂�,  𝜌 𝑓𝑝 = 𝑁𝜆𝑑𝑓#�̂�𝑓𝑝. By substituting the expression of 𝛿𝑛 

in Eq. (I.1): 

2𝜋

𝜆𝑑
sin 𝜃 𝑁𝜆𝑑𝑓#(�̂� ⋅ �̂�𝑓𝑝)

𝑒(cos 𝜃 − cos 𝜃0)

1 − 𝑒 cos 𝜃
≤ 𝜎 

⇒ 𝑁(�̂� ⋅ �̂�𝑓𝑝)
sin 𝜃 (cos 𝜃 − cos 𝜃0)

1 − 𝑒 cos 𝜃
≤

𝜎

2𝜋𝑓#𝑒
(I.7) 

If we define a function 𝑓(𝜃) as: 

𝑓(𝜃) =
sin 𝜃 (cos 𝜃 − cos 𝜃0)

1 − 𝑒 cos 𝜃
(I.8) 

we should find the value for 𝜃 ∈ [0, 𝜃0] that maximizes 𝑓(𝜃). To do so we calculate the 

derivative of 𝑓(𝜃) with respect to 𝜃: 

𝜕𝑓(𝜃)

𝜕𝜃
=

−𝑒 sin2 𝜃

(1 − 𝑒 cos 𝜃)2
[cos 𝜃 − cos 𝜃0] +

cos 2𝜃 − cos 𝜃 cos 𝜃0
1 − 𝑒 cos 𝜃

= 0 

⇒ −𝑒cos3 𝜃 + 2 cos2 𝜃 − cos 𝜃 cos 𝜃0 + 𝑒 cos 𝜃0 − 1 = 0 (I.9) 

We should solve the cubic equation, 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, with parameters: 𝑎 = −𝑒,𝑏 =

2, 𝑐 = −𝑐𝑜𝑠𝜃0 , 𝑑 = 𝑒𝑐𝑜𝑠𝜃0−1, to find the angle 𝜃𝑚𝑎𝑥 that maximize 𝑓(𝜃): 

𝜃𝑚𝑎𝑥 = cos−1 𝑥2 (I.10) 

where 𝑥2 = −
1

3𝑎
(𝑏 + 𝐶2 +

Δ0

𝐶2
) , Δ0 = 𝑏

2 − 3𝑎𝑐 , 𝐶2 = (−
1

2
+ 𝑗

1

2
√3)

√Δ1−√Δ1
2−4Δ0

3

2

3

 , and 

Δ1 = 2𝑏3 − 9𝑎𝑏𝑐 + 27𝑎2𝑑. For an elliptical lens, sin 𝜃0 can be calculated accurately as: 

sin 𝜃0 =
1

2𝑓#
⇒ cos𝜃0 =

√4𝑓#
2 − 1

2𝑓#
(I.11) 

Therefore, the worst case in Eq. (I.7) happens when �̂� ⋅ �̂�𝑓𝑝 = 1 and 𝜃 = 𝜃𝑚𝑎𝑥: 

𝑁 ≤
𝜎

2𝜋𝑓#𝑒

1 − 𝑒 cos 𝜃𝑚𝑎𝑥
sin 𝜃𝑚𝑎𝑥 (cos 𝜃𝑚𝑎𝑥 − cos 𝜃0)

 

⇒ 𝑁 ≤
𝜎

𝜋

1 − 𝑒 cos 𝜃𝑚𝑎𝑥
𝑒 sin 𝜃𝑚𝑎𝑥

1

2𝑓# cos 𝜃𝑚𝑎𝑥 −√4𝑓#
2 − 1

(I.12) 
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I.3 Hyperbolic lens 

In the case of a hyperbolic lens, �⃗� 𝜌 = 𝑘0 sin 𝜃 �̂� ,  𝜌 𝑓𝑝 = 𝑁𝜆0𝑓#�̂�𝑓𝑝 . By substituting the 

expression of 𝛿𝑛 in Eq. (I.1): 

2𝜋

𝜆0
sin 𝜃 𝑁𝜆0𝑓#(�̂� ⋅ �̂�𝑓𝑝)

𝑒(cos 𝜃 − 1)

1 − 𝑒 cos 𝜃
≤ 𝜎 

⇒ 𝑁(�̂� ⋅ �̂�𝑓𝑝)
sin 𝜃 (cos 𝜃 − 1)

1 − 𝑒 cos 𝜃
≤

𝜎

2𝜋𝑓#𝑒
(I.13) 

If we define a function 𝑓(𝜃) as: 

𝑓(𝜃) =
sin 𝜃 (cos 𝜃 − 1)

1 − 𝑒 cos 𝜃
(I.14) 

We can find 𝑓(𝜃) is a monotonically increasing function within 𝜃 ∈ [0, 𝜃0]. Therefore, the 

worst case in Eq. (I.13) is when �̂� ⋅ �̂�𝑓𝑝 = 1 and 𝜃 = 𝜃0: 

𝑁 ≤
𝜎

2𝜋𝑓#𝑒

1 − 𝑒 cos 𝜃0
sin 𝜃0 (cos 𝜃0 − 1)

(I.15) 

Moreover, when 𝑓# is large, sin 𝜃0 can be approximated by using Eq. (I.5). In such a case, Eq. 

(I.15) is related to 𝑓# as: 

𝑁 ≤
𝜎

𝜋𝑒
[2𝑓#(𝑒 − 1) (2𝑓# +√4𝑓#

2 − 1 ) − 𝑒] (I.16) 

 

I.4 Elliptical mirror 

For an elliptical mirror, we introduced the term Φ𝑐𝑜𝑚𝑎 instead of 𝛿𝑛; therefore, the condition 

should be modified: 

�⃗� 𝜌 ⋅ 𝜌 𝑓𝑝Φ𝑐𝑜𝑚𝑎 ≤ 𝜎 (I.17) 

⚫ Case1: Observation at lower focal plane 

In this case, �⃗� 𝜌 = 𝑘0 sin 𝜃2 �̂�,  𝜌 𝑓𝑝 = 𝑁𝜆0𝑓#�̂�𝑓𝑝, and Φ𝑐𝑜𝑚𝑎 = Φ𝑐𝑜𝑚𝑎1(𝜃2). Eq. (I.17) can 

be expressed as: 

2𝜋

𝜆0
sin 𝜃2𝑁𝜆0𝑓#(�̂� ⋅ �̂�𝑓𝑝)Φ𝑐𝑜𝑚𝑎1(𝜃2) ≤ 𝜎 

⇒ 𝑁(�̂� ⋅ �̂�𝑓𝑝) sin 𝜃2Φ𝑐𝑜𝑚𝑎1(𝜃2) ≤
𝜎

2𝜋𝑓#
(I.18) 

We can define a function 𝑓(𝜃2) as: 

𝑓(𝜃2) = sin 𝜃2Φ𝑐𝑜𝑚𝑎1(𝜃2) (I.19) 
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The worst case in Eq. (I.18) happens when �̂� ⋅ �̂�𝑓𝑝 = 1 and 𝑓(𝜃2) = 𝑓(𝜃2)𝑚𝑎𝑥 . However, 

𝑓(𝜃2) is too complex that we cannot derive an analytical 𝜃2 that maximizes 𝑓(𝜃2). Therefore, 

we use two ways to calculate 𝑁. The first approach is that we calculate 𝑓(𝜃2)𝑚𝑎𝑥 numerically, 

and substitute it in Eq. (I.18): 

𝑁 ≤
𝜎

2𝜋𝑓#

1

𝑓(𝜃2)𝑚𝑎𝑥
(I.20) 

The second approach is that we roughly assume 𝜃2 =
1

2
𝜃02 maximizes 𝑓(𝜃2): 

𝑁 ≤
𝜎

2𝜋𝑓#

1

Φ𝑐𝑜𝑚𝑎1 (
1
2 𝜃02) sin

1
2 𝜃02

(I.21) 

⚫ Case 2: Observation at upper focal plane 

In this case, �⃗� 𝜌 = 𝑘0 sin 𝜃1 �̂�,  𝜌 𝑓𝑝 = 𝑁𝜆0𝑓#�̂�𝑓𝑝, and Φ𝑐𝑜𝑚𝑎 = Φ𝑐𝑜𝑚𝑎2(𝜃1). Eq. (I.17) can 

be expressed as: 

2𝜋

𝜆0
sin 𝜃1𝑁𝜆0𝑓#(�̂� ⋅ �̂�𝑓𝑝)Φ𝑐𝑜𝑚𝑎2(𝜃1) ≤ 𝜎 

⇒ 𝑁(�̂� ⋅ �̂�𝑓𝑝) sin 𝜃1Φ𝑐𝑜𝑚𝑎2(𝜃1) ≤
𝜎

2𝜋𝑓#
(I.22) 

We can define a function 𝑓(𝜃1) as: 

𝑓(𝜃1) = sin 𝜃1Φ𝑐𝑜𝑚𝑎2(𝜃1) (I.23) 

The worst case in Eq. (I.22) happens when �̂� ⋅ �̂�𝑓𝑝 = 1 and 𝑓(𝜃1) = 𝑓(𝜃1)𝑚𝑎𝑥 . When we 

calculate 𝑓(𝜃1)𝑚𝑎𝑥 numerically, and substitute it in Eq. (I.22): 

𝑁 ≤
𝜎

2𝜋𝑓#

1

𝑓(𝜃1)𝑚𝑎𝑥
(I.24) 

When we roughly assume that 𝜃1 =
1

2
𝜃01 maximizes 𝑓(𝜃1): 

𝑁 ≤
𝜎

2𝜋𝑓#

1

Φ𝑐𝑜𝑚𝑎2 (
1
2 𝜃01) sin

1
2 𝜃01

(I.25) 
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Appendix J Additional validation of the derived GO fields 

J.1 Parabolic reflector 

⚫ TM polarized plane wave 

Fig. J.1 shows the x-component of the electric fields on the focal plane of a parabolic 

reflector with 𝐷𝑟 = 100𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑟 = 0.6. The reflector is illuminated by a 

unitary TM polarized plane wave with the skew angle of 𝜃𝑠 = 2.6(𝜆0/𝐷𝑟) = 1.5
∘, 𝜙𝑠 = 0∘. 

And the focal plane fields evaluated by using the analytical FO and the GO-FO approaches are 

compared with the one obtained using the PO. Here the 3D PO field is plotted in the inset of 

the figure. As it can be seen in the figure, the agreement is within the accepted error margin 

inside the FO applicability region, for both the amplitude and the phase. 

 

  

(a) (b) 

Figure J.1: The x-component of the electrics field on the focal plane of a parabolic reflector with 𝐷𝑟 =
100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#

𝑟 = 0.6, illuminated by a unitary TM polarized plane wave with the skew angle of 

𝜃𝑠 = 2.6(𝜆0/𝐷𝑟) = 1.5∘, 𝜙𝑠 = 0∘. The focal plane fields calculated by using the analytical FO and the GO-FO 

approaches are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes 

(𝑦 = 0) is shown. Blue region is the FO applicability region. Inset is the 3D PO field. 
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⚫ TE polarized plane wave 

For the same reflector, when the plane wave is TE polarized with the skew angle of 𝜃𝑠 =

3.5(𝜆0/𝐷𝑟) = 2∘, 𝜙𝑠 = 0
∘, the y-component of the electric field on the focal plane is shown in 

Fig. J.2. As it can be seen, the analytical FO and the GO-FO approaches are validated within 

the FO applicability region. 

 

  

(a) (b) 

Figure J.2: The y-component of the electrics field on the focal plane of a parabolic reflector with 𝐷𝑟 =
100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#

𝑟 = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle of 

𝜃𝑠 = 3.5(𝜆0/𝐷𝑟) = 2∘, 𝜙𝑠 = 0
∘. The focal plane fields calculated by using the analytical FO and the GO-FO 

approaches are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes 

(𝒚 = 𝟎) is shown. Blue region is the FO applicability region. Inset is the 3D PO field. 

 

J.2 Elliptical lens 

An elliptical silicon (𝜀𝑟 = 11.9 ) lens with 𝐷𝑙 = 5𝜆0  (𝑓0 = 300 GHz ) and 𝑓#
𝑙 = 0.6  is 

introduced here. A quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 =

2.62) is applied. The lens is illuminated by a unitary TE polarized plane wave with the skew 

angle of 𝜃𝑠 = 16
∘, 𝜙𝑠 = 0

∘. Fig. J.3 shows the y-component of the electric fields on the focal 

plane of the lens. The focal plane field evaluated by using the GO-FO approach is compared 

with the one obtained using the PO. It can be seen in the figure that the agreement is within the 

accepted error margin inside the FO applicability region. 
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(a) (b) 

Figure J.3: The y-components of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 5 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle 

of 𝜃𝑠 = 16∘, 𝜙𝑠 = 0
∘. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is 

applied. The focal plane field calculated by using the GO-FO approach is compared with the one obtained using 

the PO: (a) Amplitude. (b) Phase. One of the main planes (𝒚 = 𝟎) is shown. Blue region is the FO applicability 

region. Inset is the 3D PO field. 

 

J.3 Hemispherical lens 

⚫ TM polarized plane wave 

Fig. J.4 shows the x-component of the electric fields on the focal plane of a hemispherical 

silicon (𝜀𝑟 = 11.9) lens with 𝐷ℎ𝑙 = 5𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.6, 𝑅𝑠𝑝ℎ = 2.6𝜆0, and 𝐿 =

0.362𝑅𝑠𝑝ℎ. A quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) 

is applied. The lens is illuminated by a unitary TM polarized plane wave with the skew angle 

of 𝜃𝑠 = 15∘, 𝜙𝑠 = 0∘. And the focal plane fields calculated by using the GO-FO is compared 

with the one obtained using the PO. It can be seen in the figure that the GO-FO approach is 

validated by the PO within the FO applicability region. 
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(a) (b) 

Figure J.4: The x-component of the electric fields on the focal plane of a hemispherical silicon (𝜀𝑟 = 11.9) lens 

with 𝐷ℎ𝑙 = 5 𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.6, 𝑅𝑠𝑝ℎ = 2.6𝜆0 , and 𝐿 = 0.362𝑅𝑠𝑝ℎ , illuminated by a unitary TM 

polarized plane wave with the skew angle of 𝜃𝑠 = 15
∘, 𝜙𝑠 = 0

∘. Here a quarter-wavelength matching layer at 300 

GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The focal field calculated by using the GO-FO approach is 

compared with the PO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO 

applicability region. Inset is the 3D PO field. 

 

⚫ TE polarized plane wave 

For the same hemispherical lens, when the plane wave is TE polarized with the skew angle 

of 𝜃𝑠 = 20∘, 𝜙𝑠 = 0∘, the y-component of the electric field on the focal plane is shown in Fig. 

J.5. As it can be seen, the GO-FO approach is validated within the FO applicability region. 

 

  

(a) (b) 

Figure J.5: The y-component of the electric fields on the focal plane of a hemispherical silicon (𝜀𝑟 = 11.9) lens 

with 𝐷ℎ𝑙 = 5 𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.6, 𝑅𝑠𝑝ℎ = 2.6𝜆0 , and 𝐿 = 0.362𝑅𝑠𝑝ℎ , illuminated by a unitary TE 

polarized plane wave with the skew angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0

∘. Here a quarter-wavelength matching layer at 300 

GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The focal field calculated by using the GO-FO is compared with 

the PO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO applicability 

region. Inset is the 3D PO field. 
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J.4 Hyperbolic lens 

Fig. J.6 shows the y-component of the electric fields on the focal plane of a hyperbolic 

plastic (𝜀𝑟 = 2) lens with 𝐷ℎ = 100𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 1. The incident field is a 

unitary TE polarized plane wave with the skew angle of 𝜃𝑠 = 3.7(𝜆𝑑/𝐷ℎ) = 1.5
∘, 𝜙𝑠 = 0∘. 

The focal plane fields evaluated by using the analytical FO and the GO-FO are compared with 

the one obtained using the PO. As it can be seen in the figure, for the amplitude comparison, 

the analytical FO and the GO-FO are validated by the PO within the FO applicability region. 

For the phase comparison, the analytical FO is still very good while the GO-FO shows some 

acceptable error. This is due to the fact that the interpolation operation involved in calculating 

the GO ray fields for a hyperbolic lens is not very accurate for a small f-number geometry. 

 

  

(a) (b) 

Figure J.6: The y-component of the electric fields on the focal plane of a hyperbolic plastic (𝜀𝑟 = 2)  lens with 

𝐷ℎ = 100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 1, illuminated by a unitary TE polarized plane wave with the skew angle 

of 𝜃𝑠 = 3.7(𝜆𝑑/𝐷ℎ) = 1.5
∘, 𝜙𝑠 = 0

∘.The focal plane fields calculated by using the analytical FO and the GO-FO 

are compared with the one obtained using the PO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is 

shown. Blue region is the FO applicability region. Inset is the 3D PO field. 
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J.5 Elliptical Mirror 

Here we consider a mirror with the diameter of 𝐷𝑚 = 100𝜆0 (𝑓0 = 300 GHz), the semi-

major axis of 𝑎 = 80𝜆0, and the focal distance of 𝑐 = 20𝜆0, i.e. the eccentricity is 𝑒 = 0.25. 

A unitary Huygens source is placed at the lower focal plane, with the electric current oriented 

along �̂�  and a displacement in x-direction, 𝑥𝑠 = 6.6𝜆0𝑓#
𝑚 . In this case, the f-number is 

calculated as 𝑓#
𝑚 = 0.6. Fig. J.7 shows the y-component of the electric fields on the focal plane 

of the mirror. The focal plane fields evaluated by using the analytical FO and the GO-FO 

approaches are compared with the one obtained using the PO. As it can be seen in the figure, 

the agreement is within the accepted error margin inside the FO applicability region, for both 

the amplitude and the phase. 

 

  

(a) (b) 

Figure J.7: The y-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
100 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.6 and 𝑒 = 0.25. The mirror is illuminated by a unitary Huygens source placed 

at the lower focal plane, with the electric current oriented along �̂�  and a displacement in x-direction, 𝑥𝑠 =
6.6𝜆0𝑓#

𝑚. The focal plane fields evaluated by using the analytical FO and the GO-FO approaches are compared 

with the one obtained using PO: (a) Amplitude. (b) Phase. One of the main planes (𝒚 = 𝟎) is shown. Blue region 

is the FO applicability region. Inset is the 3D PO field. 
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Appendix K TE validation of the coherent FO 

K.1 Parabolic reflector 

A parabolic reflector with the diameter of 𝐷𝑟 = 500𝜆0 (𝑓0 = 300 GHz) and the f-number 

of 𝑓#
𝑟 = 4 is introduced. The incident field is a unitary TE polarized plane wave with the skew 

angle of 𝜃𝑠 = 24.4(𝜆0/𝐷𝑟) = 2.8
∘, 𝜙𝑠 = 0∘ , i.e. the flash point is 𝜌 𝑓𝑝 ≈ 24.4𝜆0𝑓#

𝑟�̂� . The 

linearization point is chosen the as the flash point. Fig. K.1 shows the y-component of the 

electric fields on the focal plane of the hyperbolic lens. The focal plane field calculated by 

using the coherent FO is compared with the one obtained using the analytical FO. It can be 

seen that the coherent FO is validated inside the PWS applicability region, for both the 

amplitude and the phase. 

 

  

(a) (b) 

Figure K.1: The y-component of the electric fields on the focal plane of a parabolic reflector with 𝐷𝑟 = 500𝜆0 

(𝑓0 = 300 GHz) and 𝑓#
𝑟 = 4, illuminated by a unitary TE polarized plane wave with the skew angle of 𝜃𝑠 =

24.4(𝜆0/𝐷𝑟) = 2.8
∘, 𝜙𝑠 = 0

∘. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈ 24.4𝜆0𝑓#
𝑟�̂�. 

And the focal plane field calculated by using the coherent FO is compared with the one obtained using the 

analytical FO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO 

applicability region and green region is the PWS applicability region. 
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K.2 Elliptical lens 

Fig. K.2 shows the y-component of the electric fields on the focal plane of an elliptical 

silicon (𝜀𝑟 = 11.9) lens with 𝐷𝑙 = 5𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6. A quarter-wavelength 

matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The lens is illuminated 

by a unitary TE polarized plane wave with the skew angle of 𝜃𝑠 = 16
∘, 𝜙𝑠 = 0

∘, i.e. 𝜌 𝑓𝑝 ≈

−1.4𝜆𝑑𝑓#
𝑙�̂�. The linearization point is chosen the as the flash point. And the focal plane field 

evaluated by using the coherent FO is compared with the one obtained using the GO-FO. As it 

can be seen, the coherent FO is in excellent agreement with the GO-FO, for both the amplitude 

and the phase, within the PWS applicability region. 

 

  

(a) (b) 

Figure K.2: The y-component of the electric fields on the focal plane of an elliptical silicon (𝜀𝑟 = 11.9) lens with 

𝐷𝑙 = 5 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
𝑙 = 0.6, illuminated by a unitary TE polarized plane wave with the skew angle 

of 𝜃𝑠 = 16∘, 𝜙𝑠 = 0
∘. Here a quarter-wavelength matching layer at 300 GHz made of Parylene (𝜀𝑚 = 2.62) is 

applied. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈ −1.4𝜆𝑑𝑓#
𝑙�̂�. And the focal plane field 

calculated by using the coherent FO is compared with the one obtained using the GO-FO: (a) Amplitude. (b) 

Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO applicability region and green region is 

the PWS applicability region. 
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K.3 Hemispherical lens 

A hemispherical silicon (𝜀𝑟 = 11.9 ) lens with 𝐷ℎ𝑙 = 5𝜆0  (𝑓0 = 300 GHz ), 𝑓#
ℎ𝑙 = 0.6 , 

𝑅𝑠𝑝ℎ = 2.6𝜆0, and 𝐿 = 0.362𝑅𝑠𝑝ℎ is introduced here. A quarter-wavelength matching layer at 

300 GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The lens is illuminated by a unitary TE 

polarized plane wave with the skew angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0

∘, i.e. 𝜌 𝑓𝑝 ≈ −1.75𝜆𝑑𝑓#
ℎ𝑙�̂�. The 

linearization point is chosen the as the flash point. Fig. K.3 shows the y-component of the 

electric fields on the focal plane of the lens. The focal plane field evaluated by using the 

coherent FO is compared with the one obtained using the GO-FO. As it can be seen in the 

figure, the coherent FO is validated inside the PWS applicability region. 

 

  

(a) (b) 

Figure K.3: The y-component of the electric fields on the focal plane of a hemispherical silicon (𝜀𝑟 = 11.9) lens 

with 𝐷ℎ𝑙 = 5 𝜆0 (𝑓0 = 300 GHz), 𝑓#
ℎ𝑙 = 0.6, 𝑅𝑠𝑝ℎ = 2.6𝜆0 , and 𝐿 = 0.362𝑅𝑠𝑝ℎ , illuminated by a unitary TE 

polarized plane wave with the skew angle of 𝜃𝑠 = 20
∘, 𝜙𝑠 = 0

∘. Here a quarter-wavelength matching layer at 300 

GHz made of Parylene (𝜀𝑚 = 2.62) is applied. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈
−1.75𝜆𝑑𝑓#

ℎ𝑙�̂�. And the focal plane field calculated by using the coherent FO is compared with the one obtained 

using the GO-FO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO 

applicability region and green region is the PWS applicability region. 
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K.4 Hyperbolic lens 

A hyperbolic plastic ( 𝜀𝑟 = 2 ) lens with 𝐷ℎ = 100𝜆0  (𝑓0 = 300 GHz ) and 𝑓#
ℎ = 1  is 

introduced. The incident field is a unitary TE polarized plane wave with the skew angle of 𝜃𝑠 =

3.7(𝜆𝑑/𝐷ℎ) = 1.5
∘, 𝜙𝑠 = 0∘, i.e. 𝜌 𝑓𝑝 ≈ −3.7𝜆0𝑓#

ℎ�̂�. The linearization point is chosen the as 

the flash point. Fig. K.4 shows the y-component of the electric fields on the focal plane of the 

hyperbolic lens. The focal plane field calculated by using the coherent FO is compared with 

the one obtained using the analytical FO. It can be seen that the coherent FO is validated inside 

the PWS applicability region. 

 

  

(a) (b) 

Figure K.4: The y-component of the electric fields on the focal plane of a hyperbolic plastic (𝜀𝑟 = 2) lens 

with 𝐷ℎ = 100 𝜆0 (𝑓0 = 300 GHz) and 𝑓#
ℎ = 1, illuminated by a unitary TE polarized plane wave with the 

skew angle of 𝜃𝑠 = 3.7(𝜆𝑑/𝐷ℎ) = 1.5
∘, 𝜙𝑠 = 0

∘. The linearization point is chosen the same the flash point, 

i.e. 𝜌 𝑜 ≈ −3.7𝜆0𝑓#
ℎ�̂�. And the focal plane field calculated by using the coherent FO is compared with the 

one obtained using the analytical FO: (a) Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. 

Blue region is the FO applicability region and green region is the PWS applicability region. 
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K.5 Elliptical Mirror 

Here we consider a mirror with the diameter of 𝐷𝑚 = 100𝜆0 (𝑓0 = 300 GHz), the semi-

major axis of 𝑎 = 80𝜆0, and the focal distance of 𝑐 = 20𝜆0, i.e. the eccentricity is 𝑒 = 0.25. 

A unitary Huygens source is placed at the lower focal plane (𝑓#
𝑚 = 0.6), with the electric 

current oriented along �̂� and a displacement in x-direction, 𝑥𝑠 = 6.6𝜆0𝑓#
𝑚. This displacement 

corresponds to a flash point 𝜌 𝑓𝑝 ≈ −4.5𝜆0𝑓#
𝑚�̂�, and the linearization point is the same as this 

flash point. Fig. K.5 shows the y-component of the electric fields on the focal plane of the 

mirror, evaluated by using the coherent FO and compared with the analytical FO. It can be seen 

that the coherent FO is validated within the PWS applicability region. 

 

  

(a) (b) 

Figure K.5: The y-component of the electric fields on the focal plane of an elliptical mirror with 𝐷𝑚 =
100 𝜆0 (𝑓0 = 300 GHz), 𝑓#

𝑚 = 0.6 and 𝑒 = 0.25. The mirror is illuminated by a unitary Huygens source placed 

at the lower focal plane, with the electric current oriented along �̂�  and a displacement in x-direction, 𝑥𝑠 =
6.6𝜆0𝑓#

𝑚. The linearization point is chosen the same the flash point, i.e. 𝜌 𝑜 ≈ −4.5𝜆0𝑓#
𝑚�̂�. And the focal plane 

field calculated by using the coherent FO is compared with the one obtained using the analytical FO: (a) 

Amplitude. (b) Phase. One of the main planes (𝑦 = 0) is shown. Blue region is the FO applicability region and 

green region is the PWS applicability region. 
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