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Optimum seismic acquisition geometry design with the help of artificial intelligence 
G. Blacquiere* and S. Nakayama, Delft University of Technology 
 
Summary 
 
Acquisition geometry design aims at finding the most 
affordable acquisition geometry that satisfies the objectives 
of the seismic survey.  The parameters of an acquisition 
geometry can be specified in terms of the number of sources 
and detectors, their location, the blending parameters and the 
DSA (dispersed source array) parameters. In our acquisition 
geometry design, we include the effects of the (expected) 
subsurface, i.e., we assume the subsurface to be known. 
Consequently, the ideal data set – carpet shooting and carpet 
detection – can be modeled. A practical data set can be 
considered to be a subset of this ideal one. Acquisition 
design comes down to determining the optimum subset. 
Following compressive sensing, this subset is sparse and 
irregular. As a quality measure, we apply decompression 
(deblending and interpolation) to the subset, which leads to 
an estimate of the ideal data set, and then compare this 
estimate with the known ideal data set. The difference is the 
residue that should satisfy a predefined quality criterion. 
This procedure is the inner loop of a genetic algorithm. A 
CNN (convolutional neural network) is trained to improve 
the efficiency of the genetic algorithm by enhancing the 
effectiveness of each next generation. Furthermore, the 
solution space is limited to reduce the amount of 
computations needed. Finally, in this application it is 
acceptable to end up in a local minimum. The latter 
corresponds to an acquisition geometry that fully satisfies 
the quality and economic criteria (although some acquisition 
geometry may exist that provides even better results). Our 
design method leads to results that are better than those 
obtained with randomized acquisition geometries. 
 
Introduction 
 
Acquisition geometry design aims at finding the optimum 
acquisition geometry – in terms of efficiency, economics, 
safety, etc. – that satisfies the objective regarding the seismic 
image – in terms of image resolution, accuracy of reflectivity 
information, signal-to-noise ratio, etc. 
Obviously, one way to achieve an improved efficiency and 
better economics is to collect less data, i.e., to sample 
sources and detectors sparsely, e.g., by deploying 
compressive sensing (Herrmann et al., 2011; Mosher et al., 
2014, Allegar et al., 2017). In compressive sensing the 
spatial sampling of the sources and detectors is irregular to 
improve the results of sparse data reconstruction (Campman, 
2017). 
A special case of compressive sensing, which further 
improves the efficiency as well as the data quality, is 
blending, also called simultaneous source acquisition 
(Beasley, 2008; Berkhout, 2008).  
A technology aiming at an improved data quality, in 
particular with regard to the (ultra) low frequencies (Ten 

Kroode et al., 2013) is the DSA concept introduced by 
Berkhout (2012). In this concept there are various dedicated 
source types, each transmitting a narrow part of the 
spectrum, together producing the full temporal bandwidth. 
In this paper, the design of a geometry for a blended, 
irregularly-sampled, DSA acquisition is discussed. 
 
Theory 
 
The Earth transfer function described by matrix X can be 
considered to be the ideal seismic data set with unit sources 
and unit detectors everywhere, i.e., ‘dense carpet shooting’ 
and ‘dense carpet detection’, where the size of the ‘carpet’, 
i.e., the aperture, is considered sufficiently large for the 
purpose. In the monochromatic case, each column of X 
contains the response due to one source being recorded by 
all detectors. If multiple frequencies are involved, each 
frequency component has its own unique X. In the practice 
of seismic data acquisition, X is never measured because 
sources and detectors are not everywhere, and they are not 
ideal: they do have a certain temporal and spatial frequency 
response (sensitivity, directivity). Instead, data matrix P is 
acquired. In the case of a stationary acquisition geometry, 
the relation between the measured data P and the Earth 
transfer matrix X is given by: 
   (1) 
where, matrices D and S are the detector and source matrix, 
respectively (Berkhout, 1983). They contain the mentioned 
detector and source properties, as well as their locations. The 
depth levels of the detectors and sources are given by zd and 
zs, respectively. The size of P is nd by ns, being the number 
of detectors and sources, respectively. In the case of a non-
stationary acquisition geometry, P can be found by simply 
setting the traces that have not been acquired to zero. In other 
words, the actual acquisition geometry can be found from 
the ideal acquisition geometry by applying a mask 
corresponding to the traces that have been actually acquired: 
  (2) 

where MDS is the mask, representing a non-linear operator 
that clears the traces from X that were not acquired by the 
current acquisition geometry and leaves the ones that were 
acquired, see the example in Figure 1.  
 

 
Figure 1:  Acquired data set P is a subset of ideal data set X 

P(zd ;zs ) = D(zd )X(zd , zs )S(zs ),

P(zd ;zs ) =MDS X(zd , zs )⎡⎣ ⎤⎦ ,
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In addition, it contains the directivity and sensitivity 
properties of the sources and detectors for the particular 
frequency. Equation (2) indicates that P is a subset of X. 
From this theory it is clear that the ultimate acquisition 
geometry would be such that P = X. In that case, the 
information from the subsurface contained in P is the 
maximum we could ever get from the seismic method. 
However, this acquisition geometry would be extremely 
expensive and inefficient. Therefore, in practice, the number 
of non-zero elements in P is small compared to X.  
Obviously, the question is: is it still possible to retrieve all 
the required subsurface information from P. 
To answer this question, one could try to obtain an estimate 
<X> of X from P. To get such an estimate, one would need 
to create the traces-that-were-never-measured by 
interpolation and/or regularization (data reconstruction). 
Note that this decompression step can be realized by using 
technologies developed in compressive sensing. 
Today, the benefits of blended acquisition (also called 
simultaneous-source acquisition) have been recognized in 
the industry (Abma et al., 2015; Nakayama et al., 2018). 
Blending increases the efficiency of the acquisition and data 
quality, while reducing the cost and HSE exposure. Blending 
can be formulated as:  
   (3) 

where G(zs) is the blending matrix, containing the sources to 
be blended and their blending codes, e.g., time dithers, or 
any amplitude and/or phase encoding. In the case of blended 
acquisition, we have to estimate <X> from P', which means 
that, apart from interpolation and/or regularization, 
deblending must be performed as well. 
As equation (3) is in the frequency domain, it is suited to 
represent DSA acquisition without modifications. 
 
Acquisition design can now be defined as follows: find the 
MDS and G(zs) that lead to a ‘good’ <X> obtained from P'. 
A ‘good’ <X> means that the residue – being the difference 
between <X> and X – is smaller than a certain predefined 
maximum while the economic and efficiency requirements 
have been met. To compute the residue, X must be known. 
It comes down to having prior knowledge about the 
subsurface. E.g., this knowledge can be available from 
previous acquisitions. The ideal data represented by X can 
then be obtained by modeling, e.g., by finite-difference of 
finite-element modeling. 
A flow-chart of the iterative algorithm for acquisition 
geometry design is shown in Figure 1. Although the 
algorithm structure is quite simple, there are some issues that 
need to be addressed. The first is the large number of 
possible acquisition geometries. There are many options for 
the spatial (x,y) location of each source and detector. 

 
Figure 2:  Flow-chart for optimum acquisition design 
 
This is also the case for the activation time of each source 
(or, more generally, its blending code). These properties 
make the solution space huge. The second issue is related to 
the computation of the estimate <X> from P', which 
corresponds to a deblending and interpolation/regularization 
procedure. This decompression step is computationally 
intensive and since it is part of the inner loop of the iterative 
algorithm, it makes the method rather expensive. 
 
To address these issues, the following approach is proposed.   
(1) A genetic algorithm is used to update the parameters at 
each iteration. To reduce the size of the solution space, a bio-
inspired technique called Repeated Encoding Sequence was 
applied (Nakayama et al., 2018). A consequence of limiting 
the solution space is that the obtained solution -most likely- 
will not be the global minimum. Fortunately, unlike in many 
other optimization schemes, a ‘good’ local minimum is fully 
acceptable in the case of acquisition geometry design, i.e., 
‘good’ in terms of a sufficiently small residue. The fact that 
a better geometry may exist with an even smaller residue (or 
‘cheaper’ but with the same residue) doesn’t reduce the 
applicability of the local-minimum solution. 
(2) To increase the efficiency of the computation of <X>, 
artificial intelligence is used. A convolutional neural 
network (CNN) has been developed that helps the genetic 
algorithm to create an effective next generation of possible 
solutions.  The network is trained to predict whether or not a 
particular parent candidate will be sufficiently ‘fit for 
survival’, i.e., whether or not the residue will be sufficiently 
small. Only a candidate that has been classified as ‘fit’ is 
allowed to become a parent of the next generation. If not, the 
genetic algorithms creates an alternative candidate, which 
will undergo the same procedure. The ‘update acquisition 
geometry’ module is shown in more detail in Figure 2. 
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Figure 3:  Flow-chart for the module ‘update acquisition geometry’ 
module with the convolutionan neural network, see Figure 2. 
 
The efficiency increase is obtained because the candidate 
parents of the next generation have already been classified 
to be ‘fit’ in a computationally affordable way by the CNN. 
They are high potentials. It means that no expensive 
computation time is wasted in estimating <X> from 
acquisition geometries that are likely to give high residues. 
This leads to fewer iterations. The structure of the CNN 
classifier used in our work is given in  
Figure 4. 
 

 
Figure 4:  The structure of the convolutional neural network used to 
classify candidate parents of the next generation, see also Figure 3. 
Conv(n,m) stands for convolution with an n-by-m coefficient filter, 
ReLu stands for rectified linear unit, FC stands for fully connected. 
 
The ‘Conv’ layers connect neighboring elements of a 
member of the current layer to each other. The ‘ReLU’ 
layers provide the required non-linearity to the network by 

their thresholding property: they pass positive values while 
clearing negative ones. The result after several of such layers 
are high-level features. Finally, the ‘FC’ layer combines 
these features in a non-linear way to do the classification, 
while the ‘Softmax’ layer provides the probability 
distribution of the final classification. For more information 
on CNN’s the reader is referred to the literature. Examples 
of the use of CNNs for seismic applications are Waldeland 
and Solberg (2017) and Wang et al. (2018). 
 
Example 
 
In this example a 2D irregular acquisition geometry is 
designed, based on the Marmousi subsurface model. First the 
ideal data set X was computed using finite-difference 
modeling. The spatial source and detector intervals were 
chosen to be 10 m to avoid spatial aliasing. 
Then some choices regarding the geometry to be designed 
were made. It was decided to reduce the number of detectors 
by 20% to reduce cost. The acquisition follows the DSA 
concept by deploying four source types: ultralow-, low-, 
mid- and high-frequency sources, their share of the total 
number of sources being 1/15, 2/15, 4/15 and 8/15, respectively. 
The total number of sources remained the same. The spatial 
distribution of the detectors and the sources of the various 
types is irregular. The acquisition geometry is stationary. 
 

 
Figure 5:  In a) a shot record from P' is shown (DSA acquisition, 
blending fold of 2, 20% detector reduction). In b) the corresponding 
record of <X> , which now contains the full bandwidth, is shown. 
 
An example of a blended shot record of P' according to the 
acquisition geometry obtained via the design procedure as 
outlined, is shown in Figure 5a. It contains the response of a 
low-frequency source and of a high-frequency source. No 
other source types were deployed at this particular lateral 
location. It also shows the 20% reduction in detectors. The 
record of <X> at a shot location corresponding to the 
location of the low-frequency source in Figure 5a, is shown 
in Figure 5b. It was obtained from data matrix P' after 
deblending and interpolation and it contains the full seismic 
bandwidth. 
The number of iterations was limited to 800. The result 
shown in Figure 5b was compared with the mean result 
obtained from 800 random realizations of the acquisition 
parameters, representing an arbitrary irregular acquisition 
geometry. Furthermore, the result was compared with the 
best result of these 800 random realizations, representing a 
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‘lucky shot’. The objective function value, i.e., the value of 
the residue || X - <X> ||F (where subscript F refers to the 
Frobenius norm) of this comparison is shown in Figure 6. 

 
Figure 6:  Objective function value versus realization number (for 
the random acquisition geometries) or residue eveluation number 
(for the optimization method). 
 
The residue of the mean of 800 realizations for this 
Marmousi model is 19.2, the best result of 800 realizations 
is 17.6, whereas the residue of the optimized geometry after 
800 evaluations (16 iterations, 50 members per generation) 
is as low as 14.8. This example clearly demonstrates that 
designing the irregularity is superior to an arbitrary random 
acquisition design. This finding corresponds well with the 
conclusion drawn by Campman et al. (2017) who state that 
sparse, irregular geometries can be optimized for 
reconstruction. 
An example of an optimized acquisition geometry is given 
in Figure 7. terms of the locations of the detectors (shown in 
Figure 7a), and the locations, activation times as well as 
source types involved (shown in Figure 7b). 
 

 
Figure 7:  Example of acquisition design. In a) the detector locations 
are shown. In b) the source locations, source activation times, and 
source types are shown (from smallest to largest dots: red - high 
frequency, green - mid frequency, blue - low frequency, yellow - 
ultralow frequency). 

Concluding remarks 
 
In acquisition design, the aim is to find the most affordable 
acquisition geometry that answers the questions related to 
the subsurface geology. To that end, the acquisition 
geometry must be optimized in terms of the number of 
sources and detectors, their location, the blending 
parameters and the DSA parameters. In our acquisition 
geometry design, we assume the subsurface to be known. 
Consequently, the ideal data set – carpet shooting and carpet 
detection – is known as well. A practical candidate 
acquisition geometry is characterized by sparsely and 
irregularly sampled sources and detectors. As a quality 
measure, we first estimate the ideal data from data modeled 
according to a candidate acquisition geometry, by 
interpolation and deblending, and then compare this estimate 
with the known ideal data set. The difference is the residue 
that should satisfy a predefined criterion. This procedure is 
the inner loop of a genetic algorithm and the total number of 
possible acquisition geometries is huge. Therefore, 
computational efficiency is very important. To improve the 
efficiency of the genetic algorithm, a convolutional neural 
network is trained to enhance the effectiveness of each next 
generation. Furthermore, the solution space is limited to 
reduce the required number of computations. Fortunately, in 
this application it is acceptable to end up in a local minimum. 
The latter corresponds to an acquisition geometry that fully 
satisfies the criteria with respect to quality and economy, 
although some acquisition geometry may exist that provides 
even better results. 
The results obtained by optimizing a sparse, irregular 
acquisition geometry are considerably better than the results 
obtained with randomized sparse, irregular acquisition 
geometries. 
Instead of computing the residue || X - <X> ||F, with the aim 
of reconstructing the ideal data set, one could alternatively 
replace this by the residue || Pgood - <Pgood> ||F, where Pgood is 
a data set that is sufficiently well sampled for the purpose. 
E.g., this could be a ‘trusted’ traditional survey design, see 
also Mosher et al. (2014). Using Pgood rather than X relaxes 
the requirements, which in turn is expected to result in a 
more efficient acquisition geometry. 
Finally, a further improvement in the computational 
efficiency of the method is expected by exploiting the fact 
that X (or Pgood) is known in this particular application, e.g., 
one could use this information to define a smart starting 
model in the decompression step. 
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Fig. 5.4 Acquisition scenarios used in this study. (a) Plots showing spatial sampling of detectors (top)

and that of sources as well as activation times (bottom). (b) A blended shot record from the

standard case where two sources employ the same signature with a regular detector interval.

(c) Plots showing spatial sampling of detectors (top) and three types of DSA source units

(indicated by different colors and marker sizes) as well as source activation times (bottom).

Blue, green and red circle markers correspond to DSA source type 1, 2 and 3 respectively.

(d) A blended shot record from the DSA case where two sources employ different bandwidths

and activation times with an irregular detector interval.

tifacts, leading to some jitter on the three horizontal reflectors. The lateral velocity variation,
particularly beneath the high-velocity lens, adversely affects the kinematics of wave propaga-
tion. This explains the undesired structural undulations on the three reflectors. As compared
to P50, some improvements are observable in P1 (Figures ??e-f). However, it still is hard to
find a justifiable rationale for the applied DSA scheme as compared to the standard one in

a) 

b) 


