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A B S T R A C T

A modified spectral-domain (SD) model is introduced in this study to address the nonlinear hydrostatic
restoring force for heaving wave energy converters (WECs) with non-uniform cross-sectional areas. Distin-
guished from previous SD models, the modified SD model collectively includes the effects of incident wave
elevation and buoy displacement, through the utilization of the multi-variate stochastic linearization method.
The proposed SD model is verified against results obtained from a corresponding nonlinear time-domain (TD)
model. Subsequently, a comprehensive comparison is carried out between the modified SD model, the other
two existing SD models and the linear frequency-domain (FD) model. The nonlinear TD model is considered as
the accuracy reference in this comparison. Various environmental and operational inputs, such as sea states,
Power Take-Off (PTO) parameters, and buoy drafts, are systematically taken into account in the comparison.
Additionally, the computational efficiency of each model is evaluated.

The results suggest that the modified SD model demonstrates significantly enhanced accuracy in cases
where hydrostatic force nonlinearity intensifies, compared to the existing SD models and the FD model.
Throughout the entire domain of the simulation cases, the maximum relative error of the modified SD model
to the nonlinear TD model is below 5 %, while it is 20 % for the FD model and approximately 15 % for the
two existing SD models. Moreover, the modeling accuracy of the FD model and existing SD models could be
strongly disturbed by the variation of the environmental and operational inputs. Comparatively, the modified
SD model is associated with much more stable accuracy. Nevertheless, the modified SD model only requires
a modest increase in computational load compared to the FD model and existing SD models and it is still
thousands of times faster than the nonlinear TD model.
1. Introduction

In the context of renewable energy, ocean wave energy stands
out as an environmentally friendly, energy-dense, and globally abun-
dant resource (Lavidas and Venugopal, 2017; Guillou et al., 2020;
Jin and Greaves, 2021). Despite its immense potential to contribute
to the ongoing energy transition, the development of wave energy
converters (WECs) currently lags behind other marine renewable en-
ergy technologies, such as offshore wind turbines (Soukissian et al.,
2023; Taveira-Pinto et al., 2020; Martinez and Iglesias, 2022). This
discrepancy primarily arises from the comparatively higher cost of
energy associated with WECs in comparison to other renewable tech-
nologies (Guo and Ringwood, 2021; Lavidas and Blok, 2021b,a; Tan
et al., 2021a). To overcome this hurdle and unlock the full potential of
wave energy, continuous refinement of WEC designs is imperative.

Over the past few decades, numerical modeling approaches have
emerged as pivotal tools in the early-stage design and optimization of
WECs (Guo and Ringwood, 2021). Offering a compelling advantage of
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reduced economic and time investments compared to experiments or
sea trials, numerical modeling serves as an effective means to unveil the
dynamic behavior and power performance of various WEC concepts. By
fostering a deeper understanding of the complex interplay between de-
sign parameters and performance outcomes, numerical representations
of WEC can pave the way for iterative advancements in pursuing more
economical and efficient wave energy conversion technologies.

Various numerical modeling approaches can be applied to model
WECs. The three most utilized modeling approaches consist of
frequency-domain (FD) modeling, time-domain (TD) modeling based
on Cummins equation, and fully nonlinear Computational Fluid Dy-
namics (CFD) modeling (Anon, 2016). These modeling approaches are
associated with different fidelity while the computational efficiency
varies significantly. For instance, CFD modeling is often utilized to
estimate the behavior of WECs in extreme wave climates, mainly
contributing to survivability evaluation rather than power performance
vailable online 2 July 2024
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estimation, focusing on short-time duration simulations (Ransley et al.,
2017). Comparatively, the power production assessment of WECs nec-
essarily involves a large number of operation conditions due to the
notable variation of wave climates. In this case, the numerical tools
with high computational efficiency, namely FD models and TD models,
are commonly applied (Pecher, 2017).

In the field of WECs, a vast number of FD models and TD models
are established relying on linear potential flow theory assuming ide-
alized fluid, as extensively reviewed in Penalba Retes et al. (2015).
Using simplified boundary conditions covering the mean free surface
and mean wetted surface of the floating structure, the hydrodynamic
coefficients can be efficiently derived through the linear potential
flow theory. These frequency-dependent coefficients could describe the
incoming wave force, radiation force, and diffraction force subjected to
the floating structure in different wave conditions. Combined with the
mass property, the hydrostatic property, and other external forces, the
obtained hydrodynamic coefficients can facilitate the construction of
the equation of motion in the frequency domain. In the FD modeling, all
responses of the analyzed system are expressed as frequency-dependent
components, and the whole system has to be fully linear (Pastor and
Liu, 2014). In mild operation regions, both the wave elevation and
the motion amplitude of the floater can be considered small. In this
case, the nonlinearity of the WEC system is far from being pronounced,
leading to adequate accuracy of FD modeling approaches (Li and Yu,
2012).

The TD modeling approach can be used to derive the time-
dependent dynamic responses of the system. This approach is for-
mulated based on the Cummins equation (Cummins et al., 1962) in
which the memory effects of radiation force are described. In principle,
with identical hydrodynamic coefficients as part of the modeling, FD
modeling and TD modeling are expected to deliver the same output, re-
gardless of numerical errors in solving the partial differential equations
in the TD models. However, the structure of the TD modeling inherently
allows for the inclusion of additional time-dependent equations of
nonlinear effects. A range of influential nonlinear effects have been
incorporated into the TD modeling and have been validated, includ-
ing nonlinear mooring force, Power Take-Off (PTO) force saturation,
end-stop mechanism, and viscous drag force (Giorgi and Ringwood,
2018b,a; Anon, 2016; Babarit et al., 2012; Tan et al., 2022c,d, 2023a).
As a consequence, TD domain modeling is widely acknowledged as
an approach associated with improved accuracy compared with the
FD modeling approach, particularly in situations with higher wave
elevations and larger floater motions. Despite providing higher fidelity
compared to FD models, the normalized computational time demanded
by the TD modeling approach appears to be substantially higher than
that of the corresponding FD models (Tan et al., 2022b). The increased
computational loads result from numerical integration schemes applied
in TD modeling to solve partial differential equations at each time
step (Ricci et al., 2008).

In recent years, the spectral-domain (SD) modeling approach has
received notable research interest, as a newly emerging alternative to
the FD or TD modeling method (Folley, 2016). SD modeling has high
computational efficiency since it is established based on the extension
of FD modeling. At the same time, SD modeling enables the incorpo-
ration of nonlinear effects by applying stochastic linearization, which
enhances the modeling accuracy in comparison to the FD modeling
approach. Hence, integrating adequate accuracy with high computa-
tional efficiency facilitates the SD modeling approach strongly to fit
scenarios requiring a substantial number of simulations, such as power
production estimation of WECs. The development of the SD modeling
approach for WECs began with a model addressing quadratic damping
and excitation force decoupling in oscillating surge WECs (Folley and
Whittaker, 2010). The established SD model was validated against
the corresponding nonlinear TD mode, and a good agreement was
observed with regard to power capture and power spectral density of
2

the responses of the WEC. Subsequent studies extended the coverage
of SD modeling to more nonlinear effects involved in wave energy
conversion. In Folley and Whittaker (2013), a SD model was developed
for an oscillating water column to include the nonlinear damping
term, and the proposed model was validated by experimental data.
In Silva (2019), Silva et al. (2020), da Silva et al. (2020), Spanos et al.
(2018), Tan et al. (2022b), the linearized representations of a range
of relevant nonlinear components were obtained and incorporated into
the SD modeling, including the end-stop mechanism, nonlinear mooring
stiffness, Coulomb damping, Morison equation, PTO force capping and
partial overlap of linear generators. In Bonfanti and Giorgi (2022),
Bonfanti and Sirigu (2023), a SD model was thoroughly developed
for a gyroscopic-type WEC, in which the nonlinear effects, including
Coulomb damping, PTO force saturation and end-stop mechanism,
were collectively incorporated. More recently, SD modeling was further
developed in Tan et al. (2023b), Tan and Laguna (2023) to represent
the entire wave-to-wire process of WECs, in which the WEC system
responses in not only the hydrodynamic phase but also the electric
phase can be modeled.

Existing WECs differ significantly in the geometrical design. For
WECs with non-uniform cross-sectional area, the hydrostatic force ex-
erted on the WEC hull would be nonlinear with respect to the dis-
placement of the WEC. The nonlinearity of the hydrostatic force has
a notable impact on the performance of WECs (Zurkinden et al., 2014;
Ji et al., 2020; Wolgamot and Fitzgerald, 2015; Coe and Bull, 2015;
Lawson et al., 2014a). In Zurkinden et al. (2014), the dynamics of a
semi-spherical point absorber WEC were numerically and experimen-
tally investigated. The results indicated that the consideration of the
nonlinear hydrostatic behaviors in the numerical model reduces the
prediction error by up to 150%. In Ji et al. (2020), a numerical study
was performed for a two-body heaving point absorber WEC, in which
different shapes of the upper buoy were considered for identifying the
impact of the nonlinear hydrostatic force. The results of linear and
nonlinear hydrostatic representations in the numerical models were
compared, with FD and TD models being employed respectively for
linear and nonlinear ones. It concluded that the nonlinear hydrostatic
force has a considerable effect on the dynamic performance of the buoy,
and it is essential to include the effect for accurately estimating the
loads and power performance of WECs with non-uniform shaped buoys.
Additionally, the effects of the nonlinear hydrostatic force of WECs
have also been demonstrated in Wolgamot and Fitzgerald (2015), Coe
and Bull (2015), Lawson et al. (2014a), which implies the importance
of taking it into account in numerical modeling. However, the above-
mentioned studies were all using the TD modeling approach to address
the nonlinear hydrostatic behavior. In the pursuit of a more compu-
tationally efficient numerical tool, the research efforts were devoted
to incorporating the nonlinear hydrostatic effect into SD modeling.
However, limited to the single-variate stochastic linearization method,
nonlinear effects can only be addressed when they are related to one
variable. Therefore, in Gunawardane et al. (2017), Silva et al. (2020),
the SD modeling was developed to cover the nonlinear hydrostatic
force for spherical point absorber WECs, but the hydrostatic force was
simplified to be a nonlinear function only related to the displacement
of the buoy without considering the variation of wave elevation. In
a follow-up study (Tan et al., 2022a), the hydrostatic force was ex-
pressed to be a function of the relative displacement between the buoy
displacement and the wave elevation. As a result, the linearization
could be conducted by taking the relative displacement as the variable.
However, there is still a remaining cross term of the wave elevation and
the relative displacement in the expression of the hydrostatic force. To
make the single-variate stochastic linearization method applicable for
the cross term, a compromise was made by assuming that the contri-
bution resulting from the relative displacement is negligible compared
to the wave elevation. It is noted that the simplifications in these SD
models could ease the complexity of stochastic linearization of the

hydrostatic force. However, it also raises concerns about reducing the
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Fig. 1. Schematic of the spherical heaving point absorber with a bottom founded PTO
ystem.

ccuracy, particularly during significant relative movement between
he buoy and wave elevation.

To enhance accuracy, a modified SD model addressing the nonlinear
ydrostatic restoring force is presented in this study, and the bi-variate
tochastic linearization method is utilized. This marks the first applica-
ion of this method in the context of SD modeling of WECs. The primary
bjective is to achieve a more realistic representation of the nonlinear
ydrostatic restoring force compared to previously reported hydrostatic
D models relying on single-variate linearization. The WEC concept
s considered to be a generic heaving point absorber WEC. To better
emonstrate the modeling performance, a significantly non-uniform
uoy shape, namely the spherical geometry, is defined for the floater of
he WEC. Besides, the corresponding nonlinear TD model is employed
s a reference for verifying the estimation accuracy of SD modeling.
urthermore, the proposed SD model, the existing SD models, the
inear FD model, and the nonlinear TD model are compared among
ach other. Various affecting factors are considered in the comparison,
ccounting for the significant wave height, the PTO parameters, and
he buoy drafts. Both the modeling accuracy and the computational
fficiency of different models are presented in the comparison.

. WEC concept description

The WEC concept in this work is defined as a floating heaving point
bsorber, which is illustrated in Fig. 1. The geometry of the floating
uoy is considered as a sphere with a radius of 2.5 m. The mass of the
uoy is assumed to be the same as that of the displaced water by the
uoy.

In wave energy conversion, the PTO system serves as a crucial
inkage between the moving buoy and the electrical generator. It is
cknowledged that various types of PTO systems exist, differing in
perating principles, size, efficiency, etc (Prado and Polinder, 2013;
an et al., 2022d, 2021b). However, considering the scope of the work,
he PTO component in the WEC is simplified to function in a fully
inear manner. Comprehensive studies on integrating more realistic
3

representations of PTO systems into SD modeling can be found in Tan
et al. (2022b), Silva et al. (2020), Tan et al. (2023b), Tan and Laguna
(2023).

3. Numerical modeling

3.1. Time-domain modeling

In this study the WEC is assumed to oscillate in heave motion, the
numerical model is only discussed for this degree of freedom. According
to the Cummins equation (Cummins et al., 1962), the equation of
motion of a floating rigid buoy can be described in the time domain
as

[𝑚 +𝑀𝑟(∞)]�̈�(𝑡) + ∫

𝑡

−∞
𝐾𝑟𝑎𝑑 (𝑡 − 𝜏)�̇�(𝜏)𝑑𝜏 = 𝐹𝑒(𝑡) + 𝐹𝑝𝑡𝑜(𝑡) + 𝐹ℎ𝑠(𝑡) (1)

here 𝑚 and 𝑀𝑟(∞) are the body mass and the added mass evaluated
t the infinite frequency, and 𝐾𝑟𝑎𝑑 is the radiation impulse function; 𝑧,
̇ and �̈� stand for the displacement, the velocity and the acceleration of
he rigid body; 𝐹𝑒, 𝐹𝑝𝑡𝑜 and 𝐹ℎ𝑠 denote the wave excitation force, PTO
orce and hydrostatic restoring force respectively; 𝑡 stands for the time.
he convolution term in the right hand of the equation describes the
emory effect of the radiation force.

In the TD modeling, the time-averaged power absorption of the WEC
an be expressed as

𝑃 𝑎𝑏 =
1
𝑇 ∫

𝑇

𝑡=0
−𝐹𝑝𝑡𝑜(𝑡)�̇�(𝑡)𝑑𝑡 (2)

here 𝑇 represents the assessed time duration.

.2. Frequency-domain modeling

If the floating body is assumed to undergo harmonic oscillation
ubjected to regular waves and linear external forces, (1) could be
ewritten in the form of complex amplitudes in the frequency do-
ain Falnes (2003), Tan et al. (2020), Pastor and Liu (2014), as

̂𝑒(𝜔) + 𝐹ℎ𝑠,𝑙𝑖𝑛 = �̂�(𝜔)
{

−𝜔2
[

𝑚 +𝑀𝑟(𝜔)
]

+𝐾𝑝𝑡𝑜 + i𝜔
[

𝑅𝑟(𝜔) + 𝑅𝑝𝑡𝑜

]

}

(3)

here 𝜔 is the angular wave frequency; 𝐹𝑒 is the amplitude of the
xcitation force, 𝑅𝑟(𝜔) and 𝑀𝑟(𝜔) are the radiation damping coefficient
nd the added mass of the buoy. 𝐾𝑝𝑡𝑜 and 𝑅𝑝𝑡𝑜 are the PTO damping
nd stiffness coefficient, and �̂� is complex amplitude of the vertical
isplacement. 𝐹ℎ𝑠,𝑙𝑖𝑛 embodies the complex amplitude of the linear
ydrostatic restoring force.

The excitation force, radiation damping and added mass are com-
only derived by the boundary element method (Anon, 2016). The

omplex amplitude of the excitation force is expressed as

̂𝑒(𝜔) = 𝑓𝑒e
𝑖𝜙𝑓𝑒(𝜔)𝜂e𝑖𝜙𝜂 (𝜔) (4)

here 𝑓𝑒 is the excitation force coefficient which is defined as the
xcitation force amplitude normalized to the incoming wave amplitude,
is the wave amplitude at the evaluated frequency component, 𝜙𝑓𝑒 is

he phase angle between the excitation force and incoming wave force,
nd 𝜙𝜂 is the phase angle of the incoming wave with regard to the
eference point. The reference point in this paper is selected as the
eometry center of the buoy.

As the complex amplitude of the displacement is derived for each
requency component, the power spectral density of the buoy displace-
ent is calculated as

𝑧(𝜔) =
1
2
|�̂�(𝜔)|2

𝛥𝜔
(5)

The variance of the displacement is calculated as

𝜎2𝑧 =
𝑁
∑

𝑆𝑧(𝜔𝑗 )𝛥𝜔 (6)

𝑗=1
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he variance of the velocity can also be calculated following this way
s

2
�̇� =

𝑁
∑

𝑗=1

1
2
|i𝜔𝑗 �̂�(𝜔𝑗 )|

2 (7)

Subsequently, the mean absorbed power in FD modeling is derived as

𝑃 𝑎𝑏 = 𝑅𝑝𝑡𝑜𝜎
2
�̇� (8)

.3. Spectral-domain modeling

.3.1. Framework of spectral-domain modeling
The SD modeling approach is extended from the framework of the

D modeling, and the flowchart of implementing the SD modeling
s illustrated in Fig. 2. The main difference between the FD and SD
odeling approaches comes from the inclusion of the equivalent lin-

arized coefficients, 𝐾𝑒𝑞 , which are used to represent the considered
onlinear force 𝐹𝑛𝑜𝑛 in SD modeling. The coefficients are derived based
n the stochastic linearization method, which will be detailed in the
ubsequent subsection.

As explained in Tan et al. (2022b), Folley and Whittaker (2010),
he linearized coefficients in SD modeling are inherently expressed
s related to the responses’ standard deviation, which is unknown
nformation before solving the system. In this case, an iteration scheme
as to be applied in the computation, and the first guess of the standard
eviation is taken from the results of the corresponding FD model. The
teration is terminated until the defined tolerance is reached. Upon the
erived standard deviations of the WEC responses, (8) applies to the
alculation of the absorbed power in SD modeling.

.3.2. Stochastic linearization in SD modeling
A comprehensive demonstration of the stochastic linearization

ethod, an integral component of probabilistic analysis of dynamic
tructures, can be found in Roberts and Spanos (2003). As described
n Roberts and Spanos (2003), assuming a Gaussian process for a
andom system enables the stochastic linearization of nonlinearities.
his approach simplifies the analysis of nonlinear dynamic systems by
pproximating them as equivalent linear systems.

The principle of stochastic linearization is to find an equivalent co-
fficient for replacing the nonlinear component in the system’s equation
4

c

f motion. In a stochastic process, the equivalent term is expected to
alance the energy or power dissipation of the corresponding nonlinear
ffect. Despite the fact that this method has been employed and demon-
trated in previous studies of the SD modeling for WECs (Folley, 2016;
olley and Whittaker, 2010), existing SD models are predominately
onstructed based on the single-variate stochastic linearization method.
his approach is highly applicable to nonlinear functions involving only
ne variable, such as the quadratic drag term (Silva et al., 2020). A
ew previous studies have considered the inclusion of nonlinear effects
nvolving multiple variables in SD modeling (Bonfanti and Sirigu,
023; Bonfanti and Giorgi, 2022). However, due to the lack of ap-
lication of the multi-variate stochastic linearization method, these
tudies essentially simplified the multi-variate cases to fit the single-
ariate stochastic linearization framework. Although these studies have
rovided significant and inspiring insights into incorporating more
omplex nonlinearities into SD modeling, they are inherently associated
ith strong limitations. For example, three compromised approaches
ere employed in Bonfanti and Sirigu (2023) to address multi-variate
onlinear functions. The first way was to neglect the correlation be-
ween variables, which directly simplifies the multi-variate scenarios.
his can be a highly strong assumption for related variables. The second
pproach was to numerically search the statistical contribution of the
onlinear effects without deriving a closed-form solution, which could
ignificantly increase the computational burden. Third, integration do-
ains were split to represent one variable by another in each specific

ntegration area, allowing the single-variate stochastic method to ap-
ly within each integration domain. This approach is limited to very
pecific nonlinear functions. Therefore, the dependence on the single-
ariate stochastic method hinders the expansion of SD modeling to
over more generic multi-variate nonlinearities in the context of WECs.
owever, in other engineering disciplines, such as control engineering,

he method of stochastic linearization has been recently proposed and
pplied to address multi-variate nonlinear functions (Brahma and Os-
areh, 2021, 2018). The proposed method is introduced in the current
ork to address the bi-variate function of the hydrostatic restoring

orce of WECs. This work could also contribute to the examination of
he applicability of the proposed method in the context of WECs. The
erivations of stochastic linearization for single-variate and bi-variate

ases are briefly outlined in the following text. Additional details are
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available in Folley and Whittaker (2010, 2013), Folley (2016) concern-
ing the linearization of single-variate nonlinearities and in Brahma and
Ossareh (2021, 2018) for multi-variate nonlinearities.

• Single-variate case
A single-variate nonlinear function 𝐹𝑛𝑜𝑛 can be expressed as

𝐹𝑛𝑜𝑛 = 𝑔(𝑢) (9)

where 𝑢 is the input variable and 𝑔 embodies a nonlinear function.
Let its linear equivalent, denoted as 𝑓𝑒(𝑢), be expressed as

𝑓𝑒(𝑢) = 𝑁𝑢 +𝑀 (10)

here, 𝑎 and 𝑏 serve as quasi-linear coefficients, while 𝑔(𝑢) repre-
sents a general nonlinear function with respect to 𝑢. The resulting
error in the linearization is given by

𝜖 = 𝑔(𝑢) −𝑁𝑢 −𝑀 (11)

Statistically, the expected value of the error squared, denoted by
⟨𝜖2⟩, is calculated as

⟨𝜖2⟩ = ⟨(𝑔(𝑢) −𝑁𝑢 −𝑀)2⟩ (12)

where ⟨⋅⟩ denotes the expected value of a function. Minimizing
the squared error requires 𝑁 and 𝑀 to satisfy the following
conditions:
𝜕
𝜕𝑁

⟨𝜖2⟩ = 0 and 𝜕
𝜕𝑀

⟨𝜖2⟩ = 0 (13)

Solving (13) yields the solutions

𝑁 = ⟨

𝜕𝑔(𝑢)
𝜕𝑢

⟩ and 𝑀 = ⟨𝑔(𝑢)⟩ (14)

The linearized equivalent function is expected to make the same
energy or power dissipation as the exact nonlinear force does
in the dynamic system. With the stochastic linearization, the ex-
pected value of the reactive energy or the power of the nonlinear
force can be expressed as

𝐽 = ⟨𝐹𝑛𝑜𝑛𝑢⟩

≈ ⟨𝑓𝑒(𝑢)𝑢⟩

= ⟨(𝑁𝑢 +𝑀)𝑢⟩

= ⟨𝑁𝑢2⟩ + ⟨𝑀⟩⟨𝑢⟩

(15)

If the variable 𝑢 adheres to a zero-mean Gaussian distribution, the
last term ⟨𝑀⟩⟨𝑢⟩ can be removed. In this sense, only 𝑁 needs to
be determined in the stochastic linearization.

• Bi-variate case
A nonlinear function 𝐹𝑛𝑜𝑛 of two variables 𝑢1 and 𝑢2 can be
expressed in a generic form as

𝐹𝑛𝑜𝑛 = 𝑓 (𝑢1, 𝑢2) (16)

in which 𝑓 (⋅) stands for a nonlinear function; and 𝑢1(𝑡), 𝑢2(𝑡)
represent the input variables to the function. The variables can be
expressed in the form of a vector as 𝐮(𝑡) = [𝑢1(𝑡) 𝑢2(𝑡)]T. Stochas-
tic linearization could give an approximation to the nonlinear
function as

𝑉 ≈ 𝐍𝐮 +𝑀 (17)

where 𝑁 represents the linearized coefficients with being a con-
stant vector 𝐍 = [𝑁1 𝑁2], and 𝑀 is a constant. If the elements in
the vector 𝑢(𝑡) are jointly Gaussian processes, as has been proved
in Brahma and Ossareh (2021, 2018), the linearized coefficients
are derived as

𝐍 = ⟨𝛁𝑓 (𝐮)⟩ (18)

where 𝛁 means the gradient operator, and it is given as

𝛁 =
[

𝜕 𝜕
]T

(19)
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𝜕𝑢1 𝜕𝑢2
.4. Representations of the hydrostatic restoring force

The focus of the present work is specifically on the hydrostatic
estoring force of heaving WECs. The hydrostatic restoring force is
efined as the balance between the hydrostatic force and the gravita-
ional force acting on the floating buoy (Giorgi and Ringwood, 2017).
epending on the modeling fidelity, the hydrostatic restoring force can
e represented in various forms. Three different representations are
epicted in Fig. 3, and they are detailed in the following text.

• Representation 1: instantaneous free surface and instantaneous wetted
surface
In the nonlinear hydrostatic restoring force model, the assump-
tions of the mean free surface and the mean wetted surface are
lifted. This condition can be illustrated in Fig. 3(a) where both the
instantaneous wave elevation and the floating buoy are displaced
from their mean positions. As detailed in Giorgi et al. (2016),
Giorgi and Ringwood (2017), the hydrostatic force is computed
by integrating static pressure over the wetted surface of the buoy.
In this way, the instantaneous hydrostatic restoring force can be
determined using

𝐹ℎ𝑠(𝑡) = −∬𝑆𝑤(𝑡)
𝑃𝑠𝑡𝐧𝑑𝑆𝑤 − 𝑚𝑔 (20)

where 𝑆𝑤(𝑡) and 𝑃𝑠𝑡 embody the wetted surface of the buoy and
static pressure at the position of interest; 𝐧 represents the normal
vector on the surface of the buoy. Applying Gaussian divergence
to the integral in (20), the instantaneous hydrostatic restoring
force 𝐹ℎ𝑠 can be rewritten as:

𝐹ℎ𝑠(𝑡) = 𝜌𝑔𝑉𝑠𝑢𝑏(𝑡) − 𝜌𝑔𝛥𝑧𝐴𝑤𝑝(𝑡) − 𝑚𝑔 (21)

here, 𝑉𝑠𝑢𝑏 and 𝐴𝑤𝑝 represent the instantaneous submerged volume
and water-plane area of the buoy, respectively. 𝜌 is the water den-
sity, and 𝑔 is the gravitational acceleration. The variables 𝑉𝑠𝑢𝑏 and
𝐴𝑤𝑝 are intricately linked to the incident wave elevation 𝜂 and the
buoy’s heaving displacement 𝑧. The term 𝛥𝑧 signifies the vertical
distance from the water-plane area 𝐴𝑤𝑝 to the reference height
𝑧 = 0. Assuming the device remains within operational bounds,
𝛥𝑧 can be replaced by the wave elevation 𝜂. The hydrostatic
restoring force can be expressed as a function of two variables—
the incident wave elevation 𝜂 and the buoy’s displacement 𝑧 as
articulated in (22).

𝐹ℎ𝑠(𝑧, 𝜂) = 𝜌𝑔𝑉𝑠𝑢𝑏(𝑧, 𝜂) − 𝜌𝑔𝜂𝐴𝑤𝑝(𝑧, 𝜂) − 𝑚𝑔 (22)

In the case of a floating spherical buoy, the volume of the dis-
placed water and the water-plane area are expressed as

𝑉𝑠𝑢𝑏(𝑧, 𝜂) = 𝜋
[

𝑑0 − (𝑧 − 𝜂)
]2[

𝑅 −
𝑑0 − (𝑧 − 𝜂)

3

]

(23)

𝐴𝑤𝑝(𝑧, 𝜂) = 𝜋
{

𝑅2 −
[

𝑑0 − (𝑧 − 𝜂) − 𝑅
]2
}

(24)

where 𝑅 is the radius of the sphere and 𝑑0 is the draft of the buoy
at the still water level.

• Representation 2: mean free surface and instantaneous wetted surface
This representation can be illustrated by Fig. 3(b), in which the
effect of incident wave elevation is assumed to be negligible while
including the instantaneous wetted surface of the floating buoy.
In this sense, 𝜂 = 0 can be substituted into (22), resulting in a
simplified expression of the nonlinear hydrostatic restoring force
as shown in (25).

𝐹ℎ𝑠(𝑧, 0) = 𝜌𝑔𝑉𝑠𝑢𝑏(𝑧, 0) − 𝑚𝑔 (25)

This representation simplifies the expression of the nonlinear
hydrostatic restoring force to be a single-variate function purely

depending on the bouy displacement.
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Fig. 3. Representations of the hydrostatic restoring force of a heaving buoy. 𝐴𝑤𝑝 and 𝑉𝑠𝑢𝑏 denote the water-plane area and the submerged volume of the floater; 𝐺 represents the
gravity center.
• Representation 3: mean free surface and mean wetted surface
Fig. 3(c) describes the hydrostatic restoring force in a fully linear
form, in which both the waves and the buoy’s motion are consid-
ered sufficiently small. As a consequence, the assumptions of the
mean free surface and the mean wetted surface of the buoy are
made. Thus, the hydrostatic restoring force can be approximated
by a constant hydrostatic stiffness coefficient 𝐾𝑙𝑖𝑛,ℎ𝑠, expressed as

𝐹ℎ𝑠,𝑙𝑖𝑛(𝑧) = 𝐾𝑙𝑖𝑛,ℎ𝑠𝑧 (26)

where 𝐹ℎ𝑠,𝑙𝑖𝑛 represents the linear hydrostatic restoring force.

Fig. 4 visualizes the resulting hydrostatic restoring force of the
heaving spherical buoy associated with the different representations.
The buoy is excited to perform harmonic motion under regular waves,
6

in which different buoy displacement amplitudes, wave amplitudes and
phase differences are implemented. The discrepancy in the obtained
hydrostatic restoring force is evident among these representations.

3.5. Overview of existing modeling approaches

In prior studies, several modeling approaches have been used to ad-
dress the hydrostatic restoring force acting on WECs. These approaches
are elaborated in the subsequent text for comparison.

• Nonlinear hydrostatic force in TD modeling (NHF-TD)
This approach corresponds to the representation 1. The TD model-
ing of WECs is established based on the Cummins equation, which
is to be solved numerically. This structure inherently enables
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Fig. 4. The profiles of the hydrostatic restoring force of the spherical buoy correspond to different representations under regular waves and harmonic motion of the buoy.
the inclusion of nonlinear effects by adding additional time-
dependent terms. Thus, in the TD modeling approach, the ex-
pression of the nonlinear hydrostatic restoring force can be main-
tained in an exact form as given in (22). In this work, the non-
linear TD modeling is considered to be a reference for verifying
other models.

• Linear hydrostatic force in FD modeling (LHF-FD)
This approach corresponds to the representation 3. In FD model-
ing, the hydrostatic restoring force needs to be simplified to be
a linear form. As shown in (26). The linear hydrostatic restoring
stiffness is expressed as
7

𝐾𝑙𝑖𝑛,ℎ𝑠 = −𝜌𝑔𝐴𝑤𝑝(0, 0) (27)
Assuming all the other components in the system are also linear,
the equation of motion for the buoy can be expressed in FD
modeling, as depicted in (3). Therefore, the motion of the buoy
can be solved using the following expression:

�̂�(𝜔) =
𝐹𝑒(𝜔)

[

−𝜔2(𝑚 +𝑀𝑟(𝜔)) +𝐾𝑝𝑡𝑜 −𝐾ℎ𝑠,𝑙𝑖𝑛

]

+ i𝜔
[

𝑅𝑟(𝜔) + 𝑅𝑝𝑡𝑜

] (28)

This equation provides a response solution for the heaving dis-
placement of the buoy in the frequency domain, where �̂�(𝜔)
represents the complex amplitude of the heaving motion under
the regular waves of an angular frequency of 𝜔.
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• Single-variate linearization of hydrostatic force in SD modeling
(SLHF-SD)
This approach corresponds to the representation 2. Different from
conventional FD modeling which is fully linear, SD modeling
could incorporate nonlinear effects through stochastic lineariza-
tion. In several relevant studies (Silva et al., 2020; Gunawardane
et al., 2017), the SD modeling approach was developed to address
the nonlinear hydrostatic restoring force. In their models, the
influence of the buoy displacement on the calculation of the
hydrostatic force was included, but the assumption of the mean
free surface was still applied. As shown in (14), the linearized
representation of (25) for the SD modeling can be derived as

𝐾𝑒𝑞 = ⟨

𝜕𝐹ℎ𝑠(𝑧, 0)
𝜕𝑧

⟩

= ⟨−𝜌𝑔𝐴𝑤𝑝(𝑧, 0)⟩
(29)

The linearized coefficient 𝐾𝑒𝑞 can be further expressed as related
to the standard deviation of the WEC response 𝜎𝑧, and more de-
tails of the derivation are available in Appendix A. Subsequently,
𝐾𝑙𝑖𝑛,ℎ𝑠 can be replaced with 𝐾𝑒𝑞 in (3), and the motion of the buoy
is obtained as

�̂�(𝜔) =
𝐹𝑒(𝜔)

[

−𝜔2(𝑚 +𝑀𝑟(𝜔)) +𝐾𝑝𝑡𝑜 −𝐾𝑒𝑞

]

+ i𝜔
[

𝑅𝑟(𝜔) + 𝑅𝑝𝑡𝑜

] (30)

• Simplified bi-variate linearization of hydrostatic force in SD modeling
(SBLHF-SD)
This approach corresponds to the representation 1. A simpli-
fied bi-variate linearization approach was proposed in Tan et al.
(2022b) to incorporate the hydrostatic restoring force in SD mod-
eling. In this approach, both the buoy displacement and the
incident wave elevation are treated as variables in the lineariza-
tion process of the hydrostatic restoring force. However, to ease
the complexity of the linearization procedure, the correlation
between the incident wave elevation and the buoy displacement
is assumed to be negligible. This assumption will be elaborated
upon in detail in the text above Eq. (38).
In the method, a new variable, namely the relative displacement
between the incident wave elevation 𝜂 and the buoy displacement
𝑧, is introduced to express 𝑉𝑠𝑢𝑏 and 𝐴𝑤𝑝 in (22). The relative
displacement is denoted as ℎ which is defined as

ℎ(𝑡) = 𝑧(𝑡) − 𝜂(𝑡) (31)

At each wave frequency component, (31) can be expressed as

Re{ℎ̂𝑒𝑖𝜔𝑡} = Re{�̂�𝑒𝑖𝜔𝑡} − Re{�̂�𝑒𝑖𝜔𝑡}

= Re{(�̂� − �̂�)𝑒𝑖𝜔𝑡}
(32)

Therefore, the complex amplitude of the relative displacement
can be calculated as

ℎ̂(𝜔) = �̂�(𝜔) − �̂�(𝜔) (33)

Subsequently, (22) can be rewritten as a function of the relative
displacement as

𝐹ℎ𝑠(ℎ) = 𝜌𝑔𝑉𝑠𝑢𝑏(ℎ) − 𝜌𝑔𝜂𝐴𝑤𝑝(ℎ) − 𝑚𝑔 (34)

where 𝑉𝑠𝑢𝑏 and 𝐴𝑤𝑝 are the functions representing the submerged
volume and cross-sectional area. Therefore, the hydrostatic restor-
ing force can be separated into two parts. The first one 𝐹ℎ𝑠1 is
a function of ℎ, and another one 𝐹ℎ𝑠2 is a function of the wave
elevation 𝜂 and ℎ, as

𝐹ℎ𝑠1(ℎ) = 𝜌𝑔𝑉𝑠𝑢𝑏(ℎ) − 𝑚𝑔 (35)
8

𝐹ℎ𝑠2(𝜂, ℎ) = −𝜌𝑔𝜂𝐴𝑤𝑝(ℎ) (36) 𝐹
According to Folley and Whittaker (2010), the linearized coeffi-
cients of (35) can be calculated as

𝐾𝑒𝑞1 = ⟨

𝜕𝐹ℎ𝑠1(ℎ)
𝜕ℎ

⟩

= 𝜌𝑔⟨
𝜕𝑉𝑠𝑢𝑏(ℎ)

𝜕ℎ
⟩

= ⟨−𝜌𝑔𝐴𝑤𝑝(ℎ)⟩

(37)

It is seen that (36) is dependent on two variables. Assuming
an uncorrelation between the two variables could simplify the
stochastic linearization process to a single-variate case. Based on
this assumption, it can be deduced that the relative variation of
𝜂 is much larger than that of 𝐴𝑤𝑝(ℎ) in (36) in the operational
conditions of WECs. In this case, 𝜂 is assumed to play a major
role in the variation of 𝐹ℎ𝑠2, and 𝐴𝑤𝑝(ℎ) is treated as a constant
in the stochastic linearization. Consequently (36) can be rewritten
as

𝐹ℎ𝑠2(𝜂) = −𝜌𝑔𝜂𝐴𝑤𝑝(ℎ) (38)

Subsequently, the linearization of (38) is calculated as

𝐾𝑒𝑞2 = ⟨

𝜕𝐹ℎ𝑠2(𝜂)
𝜕𝜂

⟩

= ⟨−𝜌𝑔𝐴𝑤𝑝(ℎ)⟩
(39)

These two linearized coefficients can be obtained following the
derivation given in Appendix B, and then (3) is rewritten as

𝐹𝑒 + 𝐹ℎ𝑠 = �̂�
{

[

−𝜔2(𝑚 +𝑀𝑟(𝜔)) +𝐾𝑝𝑡𝑜

]

+ i𝜔
[

𝑅𝑟(𝜔) + 𝑅𝑝𝑡𝑜

]

}

(40)

The complex amplitude of the hydrostatic restoring force is ex-
pressed as

𝐹ℎ𝑠 = 𝐹ℎ𝑠1 + 𝐹ℎ𝑠2

= 𝐾𝑒𝑞1(�̂� − �̂�) +𝐾𝑒𝑞2�̂�
(41)

Subsequently, the motion of the buoy can be solved as

�̂�(𝜔) =
𝐹𝑒 − (𝐾𝑒𝑞1 −𝐾𝑒𝑞2)�̂�

[

−𝜔2(𝑚 +𝑀𝑟(𝜔)) +𝐾𝑝𝑡𝑜 −𝐾𝑒𝑞1

]

+ i𝜔
[

𝑅𝑟(𝜔) + 𝑅𝑝𝑡𝑜

]

=
𝐹𝑒

[

−𝜔2(𝑚 +𝑀𝑟(𝜔)) +𝐾𝑝𝑡𝑜 −𝐾𝑒𝑞1

]

+ i𝜔
[

𝑅𝑟(𝜔) + 𝑅𝑝𝑡𝑜

]

(42)

3.6. Modified SD model: Bi-variate linearization of hydrostatic force
(BLHF-SD)

This approach also aligns with representation 1 in Fig. 3, while the
simplification present in the SBLHF-SD model is not necessary here. To
avoid the simplification in the SBLHF-SD model, the above-mentioned
bi-variate stochastic linearization method is applied to address the
nonlinear function (22). As the nonlinear function (22) is related to
two variables 𝜂 and 𝑧, the vector of the linearized coefficients for the
hydrostatic restoring force can be derived according to (18) as

⎡

⎢

⎢

⎣

𝐾𝑒𝑞,𝜂

𝐾𝑒𝑞,𝑧

⎤

⎥

⎥

⎦

=

⟨⎡

⎢

⎢

⎢

⎣

𝜕𝐹ℎ𝑠(𝑧,𝜂)
𝜕𝜂

𝜕𝐹ℎ𝑠(𝑧,𝜂)
𝜕𝑧

⎤

⎥

⎥

⎥

⎦

⟩

(43)

here 𝐾𝑒𝑞,𝜂 and 𝐾𝑒𝑞,𝑧 are the linearized coefficients respective to the
ariables 𝜂 and 𝑧. Following the derivation provided in Appendix C,
𝑒𝑞,𝜂 and 𝐾𝑒𝑞,𝑧 can be expressed as related to the standard deviations
f the WEC response and the wave elevation. Then, the hydrostatic
estoring force in the modified SD model can be represented as

̂ = 𝐾 �̂� +𝐾 �̂� (44)
ℎ𝑠 𝑒𝑞,𝜂 𝑒𝑞,𝑧
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Substituting (44) into (3) gives the solution to the motion response of
the WEC system as

�̂�(𝜔) =
𝐹𝑒 +𝐾𝑒𝑞,𝜂 �̂�

[

−𝜔2(𝑚 +𝑀𝑟(𝜔)) +𝐾𝑝𝑡𝑜 −𝐾𝑒𝑞,𝑧

]

+ i𝜔
[

𝑅𝑟(𝜔) + 𝑅𝑝𝑡𝑜

] (45)

4. Implementation of simulation

This study utilizes a representation of irregular waves formulated
through the superposition of 500 individual harmonic wave compo-
nents. The angular frequencies of these wave components are evenly
distributed in the range from 0.05𝜋 to 4𝜋 rad/s. To mimic the stochastic
characteristics of ocean waves, a random phase assumption is applied
to these wave components. Additionally, the irregular wave states
are modeled using the JONSWAP spectrum, with a peakedness factor
set at 3.3. Theoretically, the modeling approaches discussed in this
paper could also apply to other types of wave spectra and spectrum
parameters (Folley, 2016; Folley and Whittaker, 2013).

The same set of hydrodynamic coefficients of the spherical floater
is used for the construction of FD, SD, and TD modeling. These coeffi-
cients, namely 𝑀𝑟(𝜔), 𝑅𝑟(𝜔) and 𝑓𝑒(𝜔), are computed by an open-source
boundary element method software Nemoh (Penalba et al., 2017).
For TD modeling, a state-space approximation is used in this work to
replace the convolution term shown in (1) since it is significantly com-
putationally demanding. The frequency-domain identification method
developed in Pérez and Fossen (2008) is applied to derive the state-
space parameters. The ODE 45 solver embodied in MATLAB is used to
solve the partial differential equation in TD modeling. The displace-
ment and the velocity of the WEC are defined as zero in the initial
condition. The simulation time duration and time step are defined as
100 times and 0.01 times the considered peak period 𝑇𝑝, respectively.
To mitigate strong transient flow occurring at the initial simulation
time, a ramp function is utilized in each TD simulation to avoid the
drastic initial transient flow, and the ramp period lasts for the first 25
𝑇𝑝 (Lawson et al., 2014). Notably, the ramp time is excluded from the
power performance analysis of the WEC. As the random phase assump-
tion inevitably brings random errors, each simulation is repeatedly
executed 30 times in TD modeling, with updating the random phase set
every time, to obtain mean values. The framework of the applied TD
model has been verified in previous work (Tan et al., 2022c, 2023b,a).

In the SD simulation, an iterative process has to be employed to
solve the responses of the WEC. A convergence tolerance of 0.1% is
defined in this process (Silva et al., 2020; Folley and Whittaker, 2013),
ensuring accuracy and stability in the SD simulation results. Through-
out the iterative process in this study, the standard deviation of the
WEC displacement, as computed by FD modeling, serves as the initial
guess of the standard deviation of the displacement. Subsequently,
the revised responses, obtained through the equation of motion, are
updated in each iteration, enabling the calculation of a new value for
the standard deviation of the displacement 𝜎+𝑧 . Following this, a refined
approximation of 𝜎𝑧 is derived as a weighted sum of the previous
estimate 𝜎−𝑧 and the renewed estimate 𝜎+𝑧 , expressed by:

𝜎𝑧 = 𝜅𝜎+𝑧 + (1 − 𝜅)𝜎−𝑧 (46)

Here, 𝜅 represents the weighting factor. The refined approximation
𝜎𝑢 is then utilized to formulate an updated value of the equivalent
linearized coefficient for the subsequent iteration. This iterative process
continues until the difference between the previous and iterative values
converges within a specified range. Convergence is verified for all
9

simulation cases presented in this work.
Fig. 5. The power spectral density of the displacement of the WEC (𝐻𝑠 = 2.5 m, 𝑇𝑝 =
8.0 s and 𝐵𝑝𝑡𝑜 = 150 kNs∕m). The shaded area is used to represent the standard deviation
of the TD modeling results.

5. Results and discussion

5.1. Verification of BLHF-SD model

As a newly proposed numerical model, it is first essential to demon-
strate the correctness of the BLHF-SD model. In this section, the ver-
ification of the BLHF-SD model is presented. The NHF-TD model is
considered the verification reference here since it is inherently as-
sociated with higher modeling fidelity than the FD and SD models.
Throughout the simulation, the buoy draft is considered 2.5 m which
implies the semi-submerged sphere unless it is particularly specified.

Fig. 5 illustrates the comparison between the power spectral densi-
ties of displacement estimated by the NHF-TD model and those by the
BLHF-SD model. Notably, the BLHF-SD model exhibits good agreement
with the NHF-TD model across the entire range of evaluated frequency
components. Only slight deviations can be observed in regions near the
peak frequency of the wave state. This discrepancy can be attributed
to higher wave amplitude components intensifying the nonlinearity of
the hydrostatic restoring force. Fig. 6 shows the values of the standard
deviation of the displacement estimated by the NHF-TD model and the
BLHF-SD model, in which various sea states and several parameters
of the PTO damping are taken into account. It is seen that these two
models return highly close results of the standard deviation of the
displacement over a variety of sea states. The difference between the
results of the two models tends to increase with the significant wave
height, while it is still at a low level of below 4.5% at a relatively
powerful significant wave height, namely 4 m. Therefore, it is believed
that the proposed BLHF-SD model is correctly implemented, and it
demonstrates adequate accuracy in incorporating the effect of the
nonlinear hydrostatic restoring force.

5.2. Modeling comparison

In this subsection, a comprehensive comparative analysis of model-
ing approaches addressing the hydrostatic restoring force is conducted.
The analyzed models include the NHF-TD model, the LHF-FD model,
the SLHF-SD model, the SBLHF-SD model, and the proposed BLHF-
SD model. Various factors affecting the nonlinearity of the hydrostatic
restoring force are considered for a thorough comparison. These fac-
tors encompass sea states, PTO control parameters, and buoy drafts.
The relevance of modeling accuracy of different numerical models to
these factors is demonstrated accordingly. A normalized power capture
factor, namely the capture width ratio (CWR), is used to compare
the accuracy of different models on the power estimate. The CWR is
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Fig. 6. The standard deviation of the displacement of the WEC with considering different simulation inputs.
efined by the absorbed power divided by the wave power transport per
nit of wavefront and the characteristic length of the device (Pecher,
017). Moreover, the computational efficiency of these models is also
uantified for comparison.

.2.1. Relevance to the sea state
The values of the CWR of the WEC under different significant

ave heights are estimated using various models and compared in
ig. 7(a). Additionally, the relative errors of these models with respect
o the NHF-TD model are illustrated in Fig. 7(b). It is evident that
he differences among these five models are negligible under low
ignificant wave heights, but become more pronounced with increasing
ignificant wave height. Specifically, the LHF-FD model, the SLHF-
D model, and the SBLHF-SD model tend to underestimate the power
bsorption given the implemented peak period and PTO setting, while
he proposed BLHF-SD model results in a slight overestimation. As
epicted in Fig. 7(b), modeling accuracy exhibits a clear dependence on
ignificant wave height. For instance, the LHF-FD model demonstrates
alidity only under strictly mild waves, with its relative error exceeding
0% at significant wave heights of 2.5 m. Conversely, the SLHF-SD
odel and the SBLHF-SD model yield much lower relative errors,
overing around 10% even as the significant wave height increases
o 4 m, where the LHF-FD model reaches a relative error of 20%. In
omparison, the BLHF-SD model displays significantly better accuracy
han the FD model and the other two previously reported SD models.
lthough its accuracy is also compromised by increasing significant
ave height, it remains below 5% even at significant wave heights as
igh as 4 m.

The variation of the estimated CWR to the peak period of sea states
s presented in Fig. 8. It is seen that the results of the FD model and
he two previously reported SD models noticeably deviate from those of
he NHF-FD model at low peak periods. Particularly, the relative errors
f the LHF-SD model, the SLHF-SD model and the SBLHF-SD model
10

re larger than 10% at the peak period of 6 s. The reason is that the
nonlinearity of the hydrostatic restoring force is more pronounced at
low peak periods. This can be further demonstrated by Fig. 9 where
the standard deviation of the relative displacement between the buoy
and the wave elevation, calculated by the NFL-TD model as the accurate
reference, is shown. As observed, the low peak periods correspond to
larger relative displacement leading to increased nonlinearity of the
hydrostatic restoring force. Besides, depicted in Fig. 9, the relative
displacement is limited in long peak periods, resulting in the reduced
nonlinearity of the hydrostatic restoring force. Consequently, as shown
in Fig. 8, all assessed FD and SD models present good accuracy, with
a relative error of less than 5% to the NHF-TD model when the peak
period is longer than 10 s. However, it is noteworthy that the relative
error of the SBLHF-SD model suggests a tendency to slightly increase
from the peak period going beyond 10 s. This results from the applied
mean free surface assumption in which the buoy displacement is simply
treated as the relative displacement between the buoy and the wave
elevation. However, as depicted in Fig. 9, the buoy displacement in
long peak periods is remarkably larger than the relative displacement,
which makes the SLHF-SD model overestimate the nonlinearity of the
hydrostatic restoring force. Comparably, the proposed BLHF-SD model
yields results that closely align with those of the NHF-TD model, with a
relative error consistently below 3% across all considered peak periods.

5.2.2. Relevance to the PTO parameters
Reactive and passive control stand out as the two primary types of

control strategies employed in PTO systems within WECs. In reactive
control, both the PTO stiffness and the PTO damping coefficients can
be varied to tune the device, and the incorporation of negative stiffness
is also feasible. Comparatively, passive control involves the imposi-
tion of only the PTO resistance load (damping force). In this work,
the relevance of the modeling accuracy to the variation of the PTO
damping coefficient and the PTO stiffness coefficient is demonstrated
respectively. Throughout each simulation case, the values of the PTO

damping and stiffness are initially defined and these values remain
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Fig. 7. Comparison of capture width ratio predicted by models along different significant wave heights, 𝑇𝑝 = 8.0 s and 𝐵𝑝𝑡𝑜 = 150 kNs∕m.
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onsistent for the entire duration of each sea state in our simulation
ases. It is important to note that real-time control strategies can enable
nstantaneous adjustment of PTO parameters (Ringwood and Bacelli,
014), while it is not considered here given the scope of this work.

The CWR values of the WEC with various PTO damping coefficients
re calculated by different models, as depicted in Fig. 10. It can be
een that the modeling accuracy suggests a strong sensitivity to the
TO damping coefficient. The LHF-FD and SBLHF-SD models’ accuracy
eclines with the increase of the PTO damping. They both result in
he underestimation of the CWR. The relative error of the SBLHF-SD
odel and the LHF-FD model reaches around 15% and 17% when

he PTO damping is 300 kNs∕m. Comparatively, the SLHF-SD model
verestimates the CWR at small PTO damping values, while it leads
o underestimation when the PTO damping coefficient becomes larger.
esides, the accuracy of the SLHF-SD model appears low in conditions
ith small PTO damping values. For instance, the relative error of

he SLHF-SD model to the NHF-TD model is even around 19%. It
s observed that the relative error of the SLHF-SD model shows a
endency to first decrease with the PTO damping until the PTO damping
oefficient reaches approximately 100 kNs∕m, then its relative error
11

ncreases to over 16% at the PTO damping of 300 kNs∕m. This can be o
xplained in such a way that the buoy has relatively less resistance to
ove, subjected to wave excitation force, with a smaller PTO damping

oefficient. In this way, as the buoy dimension of the WEC can be
onsidered small compared to the wavelength given the implemented
ea state, the buoy motion tends to follow the wave elevation, which
mplies a small relative displacement. However, in the SLHF-SD model,
he incident wave elevation is neglected, and the buoy motion is
implified as the relative displacement, exaggerating the relative dis-
lacement in conditions with small PTO damping coefficients. When
he PTO damping is sufficiently large, the SLHF-SD model tends to
redict similar results as the LHF-FD model does. This is because the
onlinear hydrostatic effect in the SLHF-SD model is simplified to be
nly related to the buoy displacement which is, however, negligible due
o the large PTO damping coefficients. In this case, the nonlinearity of
he hydrostatic restoring force, reflected by the SLHF-SD model, tends
o be limited. In comparison, the proposed BLHF-SD model consistently
rovides close results with the NHF-TD model, in which the relative
rror is lower than 3% throughout the entire range of considered PTO
amping coefficients.

Fig. 11 depicts CWR estimated different models, in which a variety

f PTO stiffness coefficients are implemented. It indicates that the
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Fig. 8. Comparison of capture width ratio predicted by models along different peak periods, 𝐻𝑠 = 2 m and 𝐵𝑝𝑡𝑜 = 150 kNs∕m.
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Fig. 9. The standard deviation of the relative displacement between the buoy and the
wave elevation and the standard deviation of the buoy displacement, predicted by the
NHF-TD model in the conditions of 𝐻𝑠 = 2 m and 𝐵𝑝𝑡𝑜 = 150 kNs∕m.
12

a

PTO stiffness could hardly affect the accuracy of the proposed BLHF-
SD model, and the relative error is strictly within 3% throughout the
PTO stiffness ranging from −60 kN∕m to 60 kN∕m. The LHF-FD model
nderestimates the CWR, and the discrepancy to the NHF-TD model is
he largest among the models. For instance, its relative error is over
2% when the PTO stiffness is −60 kN∕m. In addition, the SBLHF-SD
odel and the SLHF-SD model suggest better accuracy than the LHF-FD
odel, and their largest relative errors are identified as 7% and 9% in

his case.

.2.3. Relevance to the buoy draft
The buoy draft in the equilibrium position is an important param-

ter in the design and optimization of WECs since it is directly related
o the dynamic property and power performance (Tan et al., 2020,
022c, 2023a). For buoy geometries with non-uniform cross-sectional
reas in the heaving direction, the draft variation is expected to alter
he significance of the nonlinear hydrostatic restoring force. To identify
he influence of the buoy draft on the accuracy of various models,
he estimated CWR values and the corresponding discrepancy relative
o the NHF-TD model are calculated for the spherical buoy with five
ifferent drafts, as presented in Fig. 12. It is shown in the figure that the

ccuracy of the LHF-FD model, the SLHF-SD model and the SBLHF-SD
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Fig. 10. Comparison of capture width ratio predicted by models along different PTO damping coefficients, 𝑇𝑝 = 8.0 s and 𝐻𝑠 = 2.5 m.
odel decreases with the increase of the buoy draft. Specifically, the
elative error of the LHF-FD model is increased from around 10% at the
uoy draft of 2.5 m to 16% at the buoy draft of 3.5 m. Although the
wo previously proposed SD models, namely the SLHF-SD model and
he SBLHF-SD model, demonstrate better modeling accuracy than the
HF-FD model, their relative errors to the BHF-TD model still reach
pproximately 13% and 12%. However, the accuracy of the BLHF-
D model does not appear strong correlation to the change of the
uoy draft, and the relative errors are limited to 3% with a minor
verestimation of the CWR.

.3. Computational efficiency

Table 1 provides an evaluation of the computational efficiencies of
arious models. To ensure a fair comparison, all models are configured
o simulate the WEC under identical operational conditions. Further-
ore, all simulations are executed on the same machine, featuring

n Intel i7/2.80 GHz processor. It is important to note that only
single-run computational time of the NHF-TD model is presented.
owever, for performance estimation, multiple runs and the averaging
f results are essential to mitigate random errors. While one might
rgue that extending the simulation period could serve as an alternative
13
Table 1
Computational efficiency of different modeling approaches
(𝐻𝑠 = 2.5 m, 𝑇𝑝 = 10 s and 𝐵𝑝𝑡𝑜 = 100 kNs∕m.)

Numerical model Computational time (s)

NHF-TD 5.73 (single run)
LHF-FD 1.02 ⋅ 10−3

SLHF-SD 2.92 ⋅ 10−3

SBLHF-SD 3.22 ⋅ 10−3

BLHF-SD 4.07 ⋅ 10−3

to running the NHF-TD model multiple times, it is anticipated that the
computational time would significantly increase compared to a single-
run simulation. Although further discussion on the simulation duration
of TD modeling is beyond the scope of this work, additional details on
this topic can be found in Anon (2016).

Table 1 indicates that the computational time of the LHF-FD model,
the SLHF-SD model, the SBLHF-SD model and the BLHF-SD model
increases by sequence, but they all both fall within the same order of
magnitude. Notably, the computational time for the TD simulation is
markedly higher, with a duration of 5.73 s, over 1000 times that of the
proposed BLHF-SD model.
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Fig. 11. Comparison of capture width ratio predicted by models along different PTO damping, 𝑇𝑝 = 10.0 s and 𝐻𝑠 = 3 m. The PTO damping coefficient is 150 kNs∕m.
5.4. Discussion

In this work, a modified SD model is proposed to incorporate
the nonlinear hydrostatic force of heaving WECs. Adequate accuracy
and computational efficiency are observed by comparing the proposed
model with the previously developed SD models and the nonlinear TD
model. However, it should be noted that the modified SD model is
inherently associated with a few limitations which are clarified below.

First, the nonlinear hydrostatic force is the only nonlinear effect
considered in this work. This is done deliberately to isolate the influ-
ence of other nonlinear sources and better examine the applicability
of the modified SD model to this specific nonlinearity. It is thought
fair given the purpose of this study, but it should be realized that
all results and conclusions are therefore based on the precondition.
The implications should be perceived from two aspects. On the one
hand, the accuracy of the entire SD modeling approach is expected
to decrease with the addition of other sources of nonlinearities. This
is because SD modeling is based on the Gaussian assumption, and
additional nonlinear effects would inevitably reduce the validity of
the Gaussian process in the WEC system, as elaborated in relevant
studies (Folley and Whittaker, 2010; Silva et al., 2020). On the other
14

hand, some types of nonlinear effects can become pronounced under
particular circumstances, resulting in significant changes in the overall
dynamic behavior of the WEC system. Accordingly, the performance of
the modified SD model is expected to differ. For instance, in this work,
only an ideal PTO model is implemented. However, in realistic PTO
systems, the PTO force or torque could frequently saturate in relatively
intense waves, depending on the PTO design. The saturation effect
can be interpreted as a reduction in the actual PTO force or torque
supplied to the whole system, which tends to amplify the WEC motion.
Consequently, even in the identical sea states considered in this study,
the intensity of the nonlinear hydrostatic force would inevitably be
altered, as it is strongly related to the WEC motion. More generally,
similar consequences could arise from various other nonlinear effects
in the WEC system, such as nonlinear mooring force, Morison drag
term, and Coulomb friction. For those interested in including other
nonlinear effects in WECs, detailed information can be found in Folley
and Whittaker (2010), Bonfanti and Sirigu (2023), Tan et al. (2022b),
Folley and Whittaker (2013), da Silva et al. (2020), Silva et al. (2020).
Moreover, the impact of PTO saturation and other nonlinear effects on
the accuracy of SD modeling depends on various factors, such as sea
states, PTO design, and WEC geometry. It is important to systematically
investigate these aspects concerning the performance of SD modeling
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Fig. 12. Comparison of capture width ratio predicted by models along different buoy drafts, 𝐵𝑝𝑡𝑜 = 150 kNs∕m, 𝑇𝑝 = 10.0 s and 𝐻𝑠 = 3 m.
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n future work. Nevertheless, extending the discussion further in this
irection would deviate from the scope of the current work.

Secondly, the displacement of the WEC is not constrained in the
imulations conducted in this work. This implies an assumption that
he WEC motion amplitude will not reach unrealistically high levels.
he fairness of the assumption is considered acceptable because the
tudy primarily focuses on mild and moderate wave conditions, where
D modeling approach is expected to be highly applicable. However, in
ore powerful sea states, the motion of the WEC could be significantly

reater without displacement limits, making it more likely that the WEC
ould become fully submerged or leave the water. These phenomena
everely challenge the validity of even the nonlinear representation of
he hydrostatic force, which thus weakens the reliability of the pro-
osed BLHF-SD model. Fig. 13 shows the time-dependent displacement
f the WEC considered in this work, providing insight into the displace-
ent levels relevant to this study. The significant wave height is set to 4
, the highest value considered in all the simulation cases, and the peak
eriod and PTO damping are defined corresponding to the simulations
upporting Fig. 7. Considering the buoy radius as a reference level, it
an be seen from Fig. 13 that the WEC motion does not exceed the limit
n this particular case. However, this could occur when sea states tend
o become more powerful. For more practical applications, such as WEC
15
esign or optimization, it is highly recommended to incorporate an
nd-stop mechanism in SD modeling, as detailed in Bonfanti and Sirigu
2023), Silva et al. (2020), or to examine the range of displacement
chieved by the specific WEC being evaluated to ensure a more realistic
utcome.

Thirdly, the numerical models discussed in this study, including
he FD models, existing SD models, the BLHF-SD model, and the
erification reference NHF-TD model, are all formulated based on
inear potential flow theory. This theoretical framework simplifies the
luid to be inviscid, irrotational, and incompressible, thereby neglect-
ng vorticity and viscosity (Falnes, 2003). Consequently, the theory
ssumes small WEC motions and limited wave steepness. It is known
hat the method can be extended to cover weakly nonlinear behaviors
y including appropriate corrections. For instance, adding nonlinear
pproximation terms to the Cummins equation or linearized terms to
D modeling can address effects such as viscous drag and nonlinear
achinery forces (Babarit et al., 2012; Giorgi and Ringwood, 2017;
enalba and Ringwood, 2016; Folley and Whittaker, 2010; da Silva
t al., 2020). However, in extreme sea states, the assumptions of small
EC motion and limited wave steepness tend be severely violated,

esulting from significant nonlinear effects such as slamming, wave
vertopping, and breaking waves (Fievez and Rafiee, 2015; Shahroozi
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Fig. 13. The time-dependent displacement of the WEC, predicted by the NHF-TD model
n the conditions of 𝑇𝑝 = 8 s, 𝐻𝑠 = 4 m and 𝐵𝑝𝑡𝑜 = 150 kNs∕m.

et al., 2022; Tagliafierro et al., 2022). Besides, the increased intensity
of these nonlinear effects in extreme events challenges the validity of
the Gaussian assumption for both ocean waves and WEC systems, thus
weakening the fundamental assumption of stochastic linearization in
SD modeling (Folley and Whittaker, 2010). In such scenarios, higher-
fidelity approaches become more reasonable than the SD modeling
approach. But it should be realized that the majority of energy produc-
tion by WECs relies on mild and moderate sea states (Lavidas and Blok,
2021b; Babarit et al., 2012), where the proposed BLHF-SD model has
suggested satisfactory reliability. Nevertheless, it is of importance to
examine the accuracy of the SD modeling when different WEC parame-
ters or operation conditions are implemented. This could contribute to
a better perception of the model’s applicability and limitations.

6. Conclusion

In this paper, a modified SD model incorporating the nonlinear
hydrostatic restoring force is proposed for heaving WECs. Particularly,
for better accuracy, the influence of the buoy displacement and the
incident wave elevation on the hydrostatic restoring force are collec-
tively considered in the SD model. This is achieved by utilizing the
multi-variate stochastic linearization method, and this method is used
in the context of SD modeling of WECs for the first time. Using a
heaving spherical point absorber as the WEC concept, the proposed
BLHF-SD model is verified against the results of the NHF-TD model.
Furthermore, an extensive comparison between the proposed BLHF-
SD model, previously reported SD models, the LHF-FD model and
the NHF-TD model is performed with considering various operation
conditions.

First, this work demonstrates the applicability of the multi-variate
stochastic linearization method to the construction of SD modeling
in WECs. This could facilitate pushing the boundary of SD modeling
to include the multi-variate nonlinear effects given the fact that the
SD modeling approach is currently highly limited to single-variate
stochastic linearization.

Secondly, the modified SD model, namely the BLHF-SD model,
exhibits a strong alignment with the NHF-TD model in predicting the
power spectral density of the response across a range of frequency
components. When considering the standard deviation of the displace-
ment, the difference between the predicted results of the two models
appears to be negligible under mild wave conditions. The relative error
of the BLHF-SD model compared to the NHF-TD model remains highly
constrained, particularly below 4%, even in relatively intense wave
16

states with a significant wave height of 4 m.
Thirdly, in comparison to the SLHF-SD model, the SBLHF-SD model,
and the LHF-FD model, the modified BLHF-SD model exhibits enhanced
accuracy in estimating the power performance of WECs due to its
incorporation of both buoy displacement and incident wave elevation.
Within the considered cases in the work, the largest relative error of
the proposed BLHF-SD model to the NHF-TD model is only around 5%
occurring at a noticeable significant wave height of 4 m. However, the
maximum relative error is identified as 20%, 16% and 15% for the
LHF-FD model, SLHF-SD model and the SBLHF-SD model. Meanwhile,
the modified SBLHF-SD model in this context requires only marginally
longer computational time than other SD models, yet remains over one
thousand times faster than the NHF-TD model.

Finally, the variability in operational conditions significantly im-
pacts the modeling accuracy of the SLHF-SD model, the SBLHF-SD
model, and the LHF-FD model. These models experience a notable
decline in accuracy under conditions associated with increased nonlin-
earity of the hydrostatic restoring force. Specifically, high significant
wave heights and short peak periods as wave states, large PTO damping
and negative PTO stiffness as PTO parameters, and large buoy drafts
lead to reduced accuracy in their modeling results. For instance, within
the same wave state, a change in only the PTO damping coefficient
could elevate the relative error of the SLHF-SD model, the SBLHF-
SD model, and the LHF-FD model from below 3% to over 15%. In
contrast, the BLHF-SD model displays minor sensitivity to these factors,
exhibiting more stable modeling accuracy associated with a relative
error consistently less than 5% throughout the assessed conditions.
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ppendix A. Derivation of the linearized coefficient in the SLHF-
D model

In the SLHF-SD model, the hydrostatic restoring force 𝐹ℎ𝑠 of the
pherical buoy is simplified as

ℎ𝑠(𝑧, 0) = 𝜌𝑔𝑉𝑠𝑢𝑏(𝑧, 0) − 𝑚𝑔 (A.1)

hen, the linearized coefficient is calculated as

𝑒𝑞 = ∫

∞

−∞

𝜕𝐹ℎ𝑠(𝑧, 0)
𝜕𝑧

𝑝(𝑧)d𝑧

=
∞
−𝐴𝑤𝑝(𝑧, 0)𝑝(𝑧)d𝑧

(A.2)
∫−∞
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Fig. D.14. The amplitude of the vertical excitation force coefficient of the
semi-submerged spherical buoy.

Fig. D.15. The added mass and radiation damping of the semi-submerged spherical
buoy in the heaving direction.

where 𝑝(𝑧) is the probability density function. Given the Gaussian
process, it is expressed as

𝑝(𝑧) = 1

𝜎𝑧
√

2𝜋
exp(− 𝑧2

2𝜎2𝑧
) (A.3)

Substituting (A.3) into (A.2) gives

𝐾𝑒𝑞 = 𝜋𝜌𝑔(𝜎2𝑧 − 2𝑑0𝑅 + 𝑑20 ) (A.4)

Appendix B. Derivation of linearized coefficients in the SBLHF-SD
model

In the SBLHF-SD model, the hydrostatic restoring force 𝐹ℎ𝑠 of the
pherical buoy is expressed as

ℎ𝑠(ℎ) = 𝜌𝑔𝑉𝑠𝑢𝑏(ℎ) − 𝜌𝑔𝜂𝐴𝑤𝑝(ℎ) − 𝑚𝑔 (B.1)

t is divided into two parts as

ℎ𝑠1(ℎ) = 𝜌𝑔𝑉𝑠𝑢𝑏(ℎ) − 𝑚𝑔 (B.2)

(𝜂, ℎ) = −𝜌𝑔𝜂𝐴 (ℎ) (B.3)
17

ℎ𝑠2 𝑤𝑝 𝐾
The linearized coefficient of (B.2) is calculated as

𝑒𝑞1 = ⟨

𝜕𝐹ℎ𝑠1(ℎ)
𝜕ℎ

⟩

= 𝜌𝑔⟨
𝜕𝑉𝑠𝑢𝑏(ℎ)

𝜕ℎ
⟩

= ⟨−𝜌𝑔𝐴𝑤𝑝(ℎ)⟩

(B.4)

With the assumption that 𝜂 is the dominating variable in (B.3) and it
is uncorrelated with ℎ, as detailed in the text above (38). The linearized
coefficient of (B.3) is then derived as

𝐾𝑒𝑞2 = ⟨

𝜕𝐹ℎ𝑠2(𝜂)
𝜕𝜂

⟩

= ⟨−𝜌𝑔𝐴𝑤𝑝(ℎ)⟩
(B.5)

Comparing (B.4) and (B.5), it can be seen that 𝐾𝑒𝑞1 is equal to 𝐾𝑒𝑞2.
It is fair to assume that the relative displacement ℎ also follows the
Gaussian distribution and its probability density function is given as

𝑝(ℎ) = 1

𝜎ℎ
√

2𝜋
exp(− ℎ2

2𝜎2ℎ
) (B.6)

Then the solutions of the two expected values can be calculated as

𝐾𝑒𝑞1 = 𝐾𝑒𝑞2 = ∫

∞

−∞

𝜕𝐹ℎ𝑠1(ℎ)
𝜕ℎ

𝑝(ℎ)dℎ

= 𝜋𝜌𝑔(𝜎2ℎ − 2𝑑0𝑅 + 𝑑20 )
(B.7)

Appendix C. Derivation of linearized coefficients in the BLHF-SD
model

In the BLHF-SD model, the hydrostatic restoring force is expressed
as

𝐹ℎ𝑠(𝑧, 𝜂) = 𝜌𝑔𝑉𝑠𝑢𝑏(𝑧, 𝜂) − 𝜌𝑔𝜂𝐴𝑤𝑝(𝑧, 𝜂) − 𝑚𝑔 (C.1)

Applying the multi-variate stochastic linearization method to (C.1)
ives the vector of the linearized coefficients as

⎡

⎢

⎢

⎣

𝐾𝑒𝑞,𝜂

𝐾𝑒𝑞,𝑧

⎤

⎥

⎥

⎦

=

⟨⎡

⎢

⎢

⎢

⎣

𝜕𝐹ℎ𝑠(𝑧,𝜂)
𝜕𝜂

𝜕𝐹ℎ𝑠(𝑧,𝜂)
𝜕𝑧

⎤

⎥

⎥

⎥

⎦

⟩

(C.2)

here the linearized coefficients 𝐾𝑒𝑞,𝜂 and 𝐾𝑒𝑞,𝑧 are calculated as

𝑒𝑞,𝜂 = ∫

∞

−∞ ∫

∞

−∞

𝜕𝐹ℎ𝑠(𝑧, 𝜂)
𝜕𝜂

𝑝(𝑧, 𝜂)d𝑧d𝜂 (C.3)

𝑒𝑞,𝑧 = ∫

∞

−∞ ∫

∞

−∞

𝜕𝐹ℎ𝑠(𝑧, 𝜂)
𝜕𝑧

𝑝(𝑧, 𝜂)d𝑧d𝜂 (C.4)

here 𝑝(𝑧, 𝜂) embodies the probability density function of the variables
, 𝜂. Assuming a joint Gaussian distribution of the two variables, the
robability density function is expressed as

(𝑧, 𝜂) = 1
2𝜋𝜎𝑧𝜎𝜂

√

1 − 𝛾2
⋅

exp

(

− 1
2
[

1 − 𝛾2
]

[

(

𝑧 − 𝜇𝑧

𝜎𝑧

)2

− 2𝜌
(

𝑧 − 𝜇𝑧

𝜎𝑧

)( 𝜂 − 𝜇𝜂

𝜎𝜂

)

+
( 𝜂 − 𝜇𝜂

𝜎𝜂

)2
])

(C.5)

here 𝛾𝑧,𝜂 is the correlation between the two variables; where 𝜇𝑧 and 𝜇𝜂
re the mean values of 𝑧 and 𝜂 respectively. It is reasonable to assume
hat the wave elevation and the displacement of the buoy satisfy the
ero-mean Gaussian distribution, which gives

𝜇𝑧 = ⟨𝑧(𝑡)⟩ = 0

𝜂 = ⟨𝜂(𝑡)⟩ = 0
(C.6)

ubstituting (C.1) and (C.5) into (C.3) and (C.4) gives

𝑒𝑞,𝜂 = 2𝜋𝜌𝑔𝜎2𝜂 − 2𝜋𝜌𝑔cov(𝑧, 𝜂) (C.7)

= 𝜋𝜌𝑔𝜎2 − 𝜋𝜌𝑔𝜎2 + 𝜋𝜌𝑔d2 − 2𝜋𝜌𝑔Rd (C.8)
𝑒𝑞,𝑧 𝑧 𝜂 0 0
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where cov(𝑧, 𝜂) stands for the covariance of 𝑧 and 𝜂; where 𝜎𝜂 can be
elated to the significant wave height as

2
𝜂 =

𝐻2
𝑠

16
(C.9)

ccording to Hartmann (2016), the covariance can be calculated in the
requency domain as

ov(𝑧, 𝜂) =
𝑁
∑

𝑗=1
Re{�̂�𝑧,𝜂(𝜔𝑗 )}𝛥𝜔 (C.10)

here 𝜎𝑧,𝜂 represents the cross-spectrum of variables 𝑧 and 𝜂, and
�̂�(𝜔𝑗 ) stands for the power spectral density of the incident wave ele-
ation. As demonstrated in Hartmann (2016), the cross-spectrum can
e calculated as

�̂�𝑧,𝜂(𝜔𝑗 ) =
�̂�(𝜔𝑗 )
�̂�(𝜔𝑗 )

𝑆�̂�(𝜔𝑗 ) (C.11)

here superscription ∗ embodies the complex conjugate of the value.
he correlation can then be given as

𝑧,𝜂 =
cov(𝑧, 𝜂)
𝜎𝑧𝜎𝜂

(C.12)

ppendix D. Hydrodynamic coefficients

As inputs to the FD, SD and TD models, the hydrodynamic coeffi-
ients of the WEC calculated by Nemoh are presented in Figs. D.14 and
.15.
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