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Summary
Illicit supply chain networks are not well mapped. Regulators do not know how goods flow from supplier
to retailer. There is uncertainty about whom is involved, where goods originate from, and what quanti-
ties are being shipped. Simulation models are effective tools to find measures against the distribution
of illicit goods such as personal protective equipment. However, simulation models often solely han-
dle uncertainty through the variation of parameters. Structural uncertainty, which is uncertainty in the
structure of the model, is often neglected. This study focuses on accounting efficaciously for structural
uncertainty in supply chain simulation models using model-driven exploratory modelling.

Model composability, which is a specific form of model driven exploratory modelling, is used in this
study. The methodology is applied to a supply chain of illicit personal protective equipment. Using a
model composer, many plausible models are generated of this supply chain. A model composer works
by coupling model components in different configurations, while complying to preset constraints. Model
components are submodels of a supply chain actors, for example, a retailer. Constraints help to restrict
the way the model components can be coupled, making sure that every model generated by the model
composer is plausible.

A ground truth is established to test the model composer on its efficacy to account for structural un-
certainty. A ground truth is a simulation model of an illicit supply chain that functions as a benchmark.
Five sets of 100 models are generated by the model composer to estimate the ground truth. Each set
of models is generated with a different set of constraints. A constraint set consists of elements such
as the maximum number of suppliers, the locations of supply chain actors, and the maximum number
of customers of a supplier. These sets reflect different perspectives on an illicit supply chain.

Results show that structural uncertainty can result in significantly different simulation outcomes. The
time in system, the production time, and the international transport time depend the most on changes
in the constraints of the model composer. The time in system, the production time, and the interna-
tional transport time of the models generated by the model composer are significantly different from
the ground truth. The distributions of these outcomes have a different shape and have a wider range of
possible values. Therefore, this study shows that model composability, a specific form of model-driven
exploratory modelling, is efficacious in accounting for structural uncertainty in supply chain simulation
models.

In the future, the methodology shown in this study can be used to model structural uncertainty in other
fields such as water pipes networks, gas pipes networks, and telecom networks. Furthermore, the
methodology can be used to identify robust measures to tackle the problem of illicit supply chains.
Another recommendation is to use model composability for the individual components of the model.
For example, a component such as a retailer can be build from several components: a cash register,
a shelf, and a distribution area.
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1
Introduction

This chapter introduces the core concepts and outlines the research approach used in this thesis. First,
1.1 introduces the problem of illicit supply chains. In this section the relevance of providing better insight
in such supply chains is outlined. Second, in section 1.2 the role of structural uncertainty in supply chain
simulation models is covered. Within this section the research gap, and the research goals are stated.
Finally, the structure of this thesis is presented in section 1.3.

1.1. Problem formulation
Supply chains are the backbone of our global world economy. Every year, close to a billion contain-
ers are transported through ports worldwide (UNCTADstat, n.d.). Besides, about 2000 million tons of
crude oil are transported overseas (Statista, 2021). The vast majority of these supply chains are legal,
nonetheless some are illicit. The Organisation for Economic Co-operation and Development estimates
that a total of 250 billion USD of counterfeit or pirated goods were traded in 2007 (OECD, 2009).

Illicit supply chains are groups of multiple organizations engaging in the distribution of goods, while
participating in one or more illegitimate activities such as sourcing, procurement, production, logistics or
distribution (Basu, 2013, 2014). The prevalence of such illicit supply chains has a number of negative
social economic effects (Basu, 2014; Jabarzare et al., 2020). The illegitimate activities may have
effects on public health, security, the economy, and government income. Products distributed in illicit
supply chains range from drugs, illegal weapons, wildlife (for instance ivory), illicit tobacco and illegally
produced goods (Basu, 2013). Regulators aim to disrupt such supply chains, because of the negative
social economic effects the prevalence of these supply chains have. However, disrupting illicit supply
chains proves to be a challenge, and depends on the product being distributed.

A literature study by Staake et al. (2009), revealed that few is known, both in practice and in theory,
about the structure of illicit supply chains. Studies focus on the legal aspects (Jiao et al., 2021) of an
illicit supply chain, or the transaction costs between supply chain actors (Basu, 2014). Others focus
on how to interdict illicit supply chains, using network models (Jabarzare et al., 2020). To the authors
best knowledge, simulation is not leveraged as a method to better map the structure of an illicit supply
chain. Mapping the structure of an illicit supply chain is relevant, as it will ultimately help regulators and
governments disrupt illicit supply chains.

Although an uncertain supply chain configuration is most relevant when it comes to illicit supply chains,
legal supply chains sometimes also have an uncertain configuration. For example, in supply chains
of cacao and coffee the supply chain structure is frequently undocumented. In these types of supply
chains, companies participate without proper IT abilities, such as cacao or coffee farmers. Therefore,
mapping the supply chain structure is relevant in both illicit and legal supply chains. This study aims to
use simulation to provide better insights in the supply chain structure.

1



1.2. Scientific relevance 2

1.2. Scientific relevance
The use of simulation in the field of supply chains is not unique and new. Often, simulation models
are used to boost a supply chains’ efficiency. In many cases, simulation models are used to design a
supply chain system to function as optimal as possible. Simulation models are used to determine the
optimal configuration of assets such as production sites, distribution centres, and stores (Bittante et al.,
2018; Fumarola et al., 2010; Gargalo et al., 2017).

Current supply chain simulation models fail to model a partly unknown supply chain configuration. The
partly unknown supply chain configuration, causes uncertainty in the structure of the simulation model.
This type of uncertainty, is known as structural uncertainty. In many supply chain simulation models,
the structure of the simulation model is assumed to be fixed and known. In fact, most knowledge driven
models are presented as reality, rather than an array of hypothesis of how the system might work or as
the actors view the system (Keller & Hu, 2019).

Assuming a single model structure to be correct, when in fact it is not, can be problematic. This can be
problematic, because researchers and companies come to a different conclusion when they study the
same system with a different model. Li et al. (2017), Refsgaard et al. (2006), and Vautard et al. (2013)
show that researchers construct different models, even when the question they try to answer, and the
data they use, is the same. For example, Li et al. (2017) compare 37 published models on the spread
of Ebola. Leveraging the ensemble of models, they try to deduce which measure is most effective
against the spread of Ebola. They found that depending on which model structure the model had, the
recommended measure was different. Besides that, Refsgaard et al. (2006) provide another example
in the context of pollution. They compare five models of aquifer vulnerability towards nitrogen pollution.
The models were used to identify specific vulnerable areas. The estimated vulnerability differed per
model, despite the fact that the same spatial resolution and observational data were used. Furthermore,
Vautard et al. (2013) show that regional climate models have a broad prediction range when it comes
to simulating heat waves. The models differ in their prediction of temperature and precipitation.

There are many ways to account for structural uncertainty in (simulation) models. There are three types
of accounting for structural uncertainty: the compensating strategy, the expert judgement strategy, and
exploratory modelling.

Compensating strategy: If the compensating strategy is used, the error caused by structural un-
certainty is compensated by for example a statistical Gaussian process (Brynjarsdóttir & O’hagan,
2014). In this way, the prediction error is compensated by means of an uncertainty bandwidth.
Expert judgement strategy: Another strategy to account for structural uncertainty is the expert
judgement strategy (Winsberg, 2010). Webster et al. (1998) show that expert judgement can form
the basis of parametrizing structural uncertainties. In their study, the structural uncertainties are
first represented by parameters. This is possible, as the parameters can be used to change the
model’s characteristics. Afterwards, these uncertain parameters are estimated by experts. These
subjective expert judgements are mapped into a probability density function, which is used to run
the model. The model then generates a set of outcomes, to which a probability is linked.
Exploratory modelling: The idea of this approach is to create multiple possible model structures
that are all plausible. Exploratory modelling is a modelling approach that is based upon the explo-
ration of multiple different model structures (Bankes, 1993). Using this approach, an ensemble
of models is generated to study a problem.

This thesis focuses on the exploratory modelling approach. The exploratory modelling strategy has
several benefits over the other two strategies. The compensating strategy focuses on compensating
for the error introduced by structural uncertainty. However, this strategy does not take into account
that the distribution of the errors might have a shape that is not easily reproduced with a statistical
distribution. The expert judgement strategy is based on opinions of experts. The exploratory modelling
strategy does not require such opinions, within this strategy as many as possible models are generated.
Therefore, this study attempts to account for structural uncertainty in supply chain models leveraging
exploratory modelling.
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Bankes (1993) defines three forms of exploratory modelling: data-driven, question-driven, and model
driven exploratory modelling. The focus in this thesis is on model-driven exploratory modelling. Model-
driven exploratory modelling is the studying of an ensemble of models without having a data set or
a particular question up front. When studying supply chains with an unknown configuration, this type
of modelling is relevant because empirical data is scarcely available. Besides, the goal is foremost
to better map (illicit) supply chains. The analysis is thus not started with a particular policy question
known up front. Therefore, data-driven exploratory modelling is not applied because it requires data
sets, and question driven exploratory modelling is not suitable because it is not aimed at better mapping
phenomena.

So far, relatively few studies have combined supply chains, transport, or logistics with exploratory mod-
elling (Gruchmann et al., 2019). Besides, studies that did combine exploratory modelling with supply
chains, transport, or logistics focused on parametric uncertainties rather than structural uncertainties
(Halim et al., 2016; Moallemi & Köhler, 2019). Halim et al. (2016) use exploratory modelling in the con-
text of the global container shipment system. In their study, nine uncertain parameters are used and
varied. Model structural uncertainty was not examined. Moallemi and Köhler (2019) use exploratory
modelling in the context of mobility. However, they solely use model parameters to represent uncer-
tainty and structural uncertainty is not modelled.

Concluding, few studies pay attention to structural uncertainty when studying supply chains. Besides,
few studies account for structural uncertainty using exploratorymodelling in the domain of supply chains.
Therefore, this study aims to efficaciously account for structural uncertainty leveraging exploratory mod-
elling. To achieve this, a number of sub-goals are defined. The first sub-goal is to formulate a clear
conceptualization of structural uncertainty in simulation models. The second sub-goal is to formulate
a specific exploratory modelling method that accounts for structural uncertainty. The third and final
sub-goal of this research is to apply and test the method.

To achieve these objectives formulated, the following research question is formulated:

How to efficaciously account for structural uncertainty in supply chain simulation models using
model-driven exploratory modelling given limited data?

This main question is split into multiple sub-questions:

1. How to conceptualize structural uncertainty in the context of supply chain simulation models?
2. What model-driven exploratory modelling approaches are used to account for structural uncer-

tainty in simulation models used in other fields?
3. How can model-driven exploratory modelling be used to account for structural uncertainty in the

context of supply chain simulation models?
4. How does a change in perception of the target system change the method’s efficacy?

An approach to each of the sub-questions is explained in the next paragraphs.

1. How to conceptualize structural uncertainty in the context of supply chain simulation mod-
els?
To answer this sub-question, a clear conceptualization of structural uncertainty is made in chapter 2. By
answering this sub-question, terminology for the rest of this thesis is laid out. There is special attention
for the difference between structural and parametric uncertainty. Furthermore, this chapter focusses
on what constitutes a valid (simulation) model. This will be approached from several philosophical
perspectives to formulate a well-considered, practical definition.

2. What model-driven exploratory modelling approaches are used to account for structural
uncertainty in simulation models used in other fields?
There are many approaches to account for structural uncertainty. However, the focus in this thesis
is on model composability. Model composability is one form of model-driven exploratory modelling.
Departing from the theoretical fundaments of simulations, chapter 3 highlights howmodel composability
can be used to model structural uncertainty. In this chapter, concepts such as Discrete Event System
Specification (DEVS), coupled DEVS models, the System Entity Structure (SES) and their relation are
explained.
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3. How can model-driven exploratory modelling be used to account for structural uncertainty
in the context of supply chain simulation models?
This sub-question is answered in chapter 4. Within this chapter, the theoretical concepts of chapter 2
and 3 are applied to a real world case. This shows how the theoretical concepts can be applied to a real
world illicit supply chain. A composable discrete event simulation model is developed to demonstrate
its abilities to account for structural uncertainty. The implementation of this composable discrete event
simulation model is explained, and an introduction to how it is used will also be provided.

4. How does a change in perception of the target system change the method’s efficacy?
The final sub-question of this thesis focuses on the efficacy of the composable model to account for
structural uncertainty. The answer to this question is laid out in chapter 6. The focus of this chapter is
to discover which assumptions of the model structure are of significance to the simulation outcomes.
To do this, the composable model is tested with different sets of assumptions.

1.3. Structure of this thesis
The structure of this thesis is shown in figure 1.1. This chapter (chapter 1) introduced the topic of the-
sis, and the research questions. Chapter 2 is aimed at clarifying what structural uncertainty exactly is.
In chapter 2, structural uncertainty is conceptualized, and distinguished from other types of uncertain-
ties. Leveraging these definitions, chapter 3 is aimed at explaining how structural uncertainties can
be modelled using exploratory modelling. Within this chapter, it is explained how model composability
can be used to model structural uncertainty in supply chain simulation models. Chapter 4 focusses on
demonstrating the techniques explained in chapter 3. A practical case study of an illicit supply chain is
conducted, to demonstrate the method. A so-called model composer is developed to model structural
uncertainty in supply chain simulation models. In chapter 5, an experimental setup is discussed using
this model composer. The experiments are aimed at testing the model composer’s efficacy in mod-
elling structural uncertainty. Chapter 6 presents the results of the experiments. Chapter 7, contains a
discussion. Finally, chapter 8 contains a conclusion of this research.

Figure 1.1: Structure of thesis

1.4. Link to EPA programme
This thesis is related to the EPA program. First of all, the thesis is not only about structural uncertainty in
supply chain models. The approaches used to account for structural uncertainty are generalizable, and
could be used within other domains. For example, the developed method is also relevant to climate
models. Similar to illicit supply chains, climate models are prone to structural uncertainty because
both types of models are hard to validate using empirical data. Secondly, this thesis recognizes the
relevance of the involvement of many actors’ perspectives. Within this thesis, we aim to include a
diversity of perspectives, rather than presenting a single solution as most optimal.



2
Conceptualizing structural uncertainty in

supply chain simulation models
This chapter is about what structural uncertainty is, how it differs from other types of uncertainty, and
why it arises when modelling. Section 2.1 includes a discussion on when models are considered to
be true, useful or valid. Section 2.2 sheds light on what structural uncertainty is, and where it origi-
nates from. Subsequently, section 2.3 is aimed at distinguishing structural uncertainty from other types
of uncertainty. Afterwards, section 2.4 applies the concept of structural uncertainty in supply chain
simulation models. Finally, section 2.5 provides an overview of this chapter.

2.1. What is a valid simulation model?
Models are used for many purposes, and whether a model is valid depends upon where the model is
used for. Models are used to describe the world, to predict the weather, to navigate ships, to recom-
mend content on Youtube, and to give insight in the worlds future climate (Page, 2018). Models are
powerful, but are simplifications of reality; usually they are not a replication of the system under study.
Consider the example of maps. To have a perfectly detailed map, the world would essentially have
to be replicated. For example, a map showing highway routes in France does not contain details like
water pipes or water depth. Since perfect replication is impossible, geographers have made maps to
describe the world. However, not all maps are suited for every purpose. Some maps, like the Mercator
map (the projection system used by google maps), are perfectly suitable to navigate. However, the Mer-
cator map should not be used to determine the size of a country or to calculate the distance between
two points. If one were to measure the distance between two points using the Mercator projection, the
distance measured would be wrong. Instead, one should use an equal area projection to determine
the size of a county and an equidistant projection for the distance between two points. Geographers
have described which map should be used given a certain purpose. Yet, this is not always the case.
In many fields it is unclear what model should be applied in a particular case. Consider the example
of modelling the spread of Ebola. Li et al. (2017) demonstrate that 37 models recommend different
measures against the spread of Ebola. In such a situation, there is uncertainty about the structure of
the model. It is unclear which model is valid and all the models have a different structure.

The above examples illustrate why the purpose and the validity of a model are of relevance when it
comes to structural uncertainty. Before continuing, a definition of a model is provided to make sure that
it is clear what is meant by a model. In the rest of this thesis, the following definition of a model is used:

”Any system A is a model of a system B if the study of A is useful for the understanding of B without
regard to any direct or indirect causal connection between A and B. A must be like B in some

respects. The resemblance is in terms of the pattern or order exhibited in each system.” (Kaplan,
1964, pp. 258-291)

When validating a simulation model, the modeller argues that there is a strong relation between system
A and B. Often, system B is a real world system, but it can also be a simple model of a complex model

5
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that we aim to understand. For example, a flowchart of a complex simulation model is a model of a
model. In the rest of this text, system B is seen as a real world system.

There are different approaches when it comes to modelling. This thesis does not focus upon every
approach and type of modelling, therefore it is useful to further specify which approach of modelling in
this thesis is used. In general, there are three approaches towards modelling (Page, 2018). One of
them is the embodiment approach, which tries to capture as much as possible from reality (for instance,
a map). A second approach is the analogy approach, in which an analogy is used to explain a certain
phenomenon (for example, using a bird to understand a plane). The final approach is the alternative
reality approach. Examples of suchmodels are the game of life, or models that try to help us understand
the implications of unrealistic scenarios such as flying energy. In this thesis, the focus is on models
that take the embodiment approach. The embodiment approach is taken, because it is most useful
in modelling structural uncertainty. Moreover, this thesis focuses on supply chain simulation models,
which typically are models developed using the embodiment approach.

In simulation modelling, developing such a model usually starts by formulating a problem, followed by
conceptualization of the system (Dam et al., 2013). Afterwards, the conceptual model is formalized, and
the formalized model is used to experiment. Finally, the model is validated and verified using several
tools. In this validation and verification process, the model is tweaked untill the model has become
sufficiently credible or representative. If this is the case, a model is deemed valid by the modeller.

It is precisely this validation process that is of interest when it comes to structural uncertainty. Depend-
ing on which philosophical world-view is adopted, the meaning of validation changes (Andreas Tolk,
2013; Barlas, 1996). If a strict positivist approach is taken, a model is considered valid when the model
output corresponds to the empirical real world value. If a more constructivist approach is taken, a model
is considered valid when it is fit for purpose or credible.

An uncertain structure of a supply chain simulation model usually means that there is a lack of data.
When a simulation model is constructed in a data sparse environment, the positivist approach to va-
lidity seems rather obsolete (Winsberg, 2010). This is because there is no empirical data to which a
simulation model can be compared. A more constructivist approach to validity seems more useful in
simulation modelling in data sparse environments.

In sparse data environments, a model is thus valid, when it is fit for purpose, or it is credible to the
user. This raises the question of what credibility really is. According to Winsberg (2010), a simulation
model is credible whenever the results it produces fit well into the web of previously accepted data, our
observations, our pen and paper analysis, and whenever their predictions are successful. It is thus a
matter of our (shared) perception whether a simulation model is valid or not.

Such a notion of validation has several implications. From the perspective of positivism, a model is
seen as an absolute representation of reality, and therefore models are either true or false (Barlas
& Carpenter, 1990). This implies that for each phenomenon there is only one ideal and valid model.
However, from the perspective of constructivism, a valid model is seen as only one of the possible ways
of describing reality. Not a single model can claim absolute objectivity, because every model is based
on the modellers’ world-view. Not a single model is better than another, however one can prove to be
more effective. In constructivism, models lie on a continuum of usefulness, and are not true or false.

Pluralism is a world-view that is somewhere in between constructivism and positivism. Pluralism is a
world view in which there can be more than one model of a phenomenon. Parker (2006) discusses
two types of pluralism: competitive pluralism and compatible pluralism. In competitive pluralism, two
models of the same phenomena can coexist, even when their assumptions of the world are conflicting.
However, in competitive pluralism, the coexistence is only temporarily. The existence of multiple models
is there to ultimately select one best representation of reality. The models solely exist to stimulate
debate. In compatible pluralism, the models have compatible underlying assumptions. In compatible
pluralism, models can coexist permanently. The model’s assumptions can be true at the same time.
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Mitchell (2009) presents integrative pluralism as an alternative to compatible and competitive pluralism.
Integrative pluralism maintains the belief that there are multiple correct ways to parse reality into mod-
els and theories. However, in integrative pluralism models can be compatible even when they have
conflicting assumptions. This is because all descriptions are always partial. Descriptions are always
partial, because there exists no such model that completely captures all relevant aspects of the world.
A linguistic or a mathematical representation of the world is never complete and always leaves room
for ambiguity. The partiality of representations forces us to simplify processes at higher levels that in
fact should not be simplified to fully understand the phenomena. For example, Mitchell (2009) provides
an example of models trying to predict depression in humans. She demonstrates that depression often
is the result of a combination of causes at different levels. Both a person’s trauma and a lack of sero-
tonin seem to play a role in developing a depression, however the models that we have are unable to
combine these causes in a single representation.

Considering the partiality of representations, the possibility that two incompatible models are both cor-
rect at the same time should not be neglected. In integrative pluralism, there ultimately is a single true
explanation of a particular natural phenomenon. However, representations of the world might seem
incompatible, because the level of abstraction of our representations is determined pragmatically by a
combination of our cognitive ability and the scientific objective.

In the rest of this work, an integrative pluralist view of validation is adopted. Like mentioned before,
this means that there are many descriptions of reality and that there is no such thing as the most ac-
curate model. Because of the partiality of representations, models can coexist while having conflicting
assumptions, but at the same time, there is just one true explanation for a particular phenomenon.
The integrative pluralist view of validation is adopted, because of pragmatic concerns. The positivist
approach is not suitable in the context of supply chains with an uncertain supply chain configuration,
because empirical data is scarcely available. On the contrary, the constructivism provides relatively
little guidance to validity. Since constructivism is based on credibility, there is a risk of accepting any
model as valid. The integrative pluralist approach is favoured over the other two types of pluralism,
because both competitive and compatible pluralism exclude the possibility that models with conflicting
assumptions might coexist permanently.

2.2. A conceptualization of structural uncertainty
The notion of validity is closely connected to conceptualize structural uncertainty. In this section, a
conceptualization of structural uncertainty from the perspective of integrative pluralism is presented.
To explain what structural uncertainty is, we will first briefly touch upon the concept of a modelling
relation, as defined by Rosen (1991). A modelling relation exists between a target system (natural
system) and a model (formal system) representing that target system. The target system consists of
physical matter, and the model is a simulation model or a different mathematical representation of the
target system. The relation between the model, and the target system is called the modelling relation.
In integrative pluralism, there is not just a single model that faithfully represents the target system.
There even exists a plethora of models that each represent the target system. Therefore, it is possible
to establish multiple modelling relations, as seen in figure 2.1. In many cases, it is unsure which model
should be used given a certain purpose. Such a lack of sureness, which implies a lack of knowledge,
can be seen as a synonym of uncertainty (Walker et al., 2013). Structural uncertainty relates to the
uncertainty about how well a model represents its target system (Baldissera Pacchetti, 2021; Winsberg,
2010). Often, it is defined as the uncertainty in the structure of the mathematical model.
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Figure 2.1: Structural uncertainty visualized, based on the modelling relation of Rosen (1991)

Philosophers have defined many explanations for the existence of structural uncertainty (Baldissera
Pacchetti, 2021). Parker (2006) mentions that structural uncertainty occurs due to inability of compar-
ing the model’s output to empirical data. For example, in climate modelling, projections of 50 years
into the future cannot be compared to empirical data. In such a case, it is impossible to validate the
model with observational data, because of the inexistence of future data and the inaccuracy of histori-
cal observational data. Winsberg (2010) argues that structural uncertainty originates from value-driven
priorities to certain prediction tasks. For example, he demonstrates that economic or political reasons
might drive scientists to prioritize certain predictions tasks in coupled climate models. For instance, he
shows how climate models estimate temperature projections to be less uncertain compared to precipi-
tation projections. Frigg et al. (2014) argue that slight differences in the model structure of a non-linear
target system might cause the model to inaccurately represent its target. Pacchetti (2018) argues
that structural uncertainty occurs because modellers are unable to unequivocally distinguish the target
system. She argues that modellers make implicit scale separation assumptions, causing structural un-
certainty. Many models assume a phenomenon to happen at a certain scale. However, she argues
that phenomena occur at different scales. For example, climate change is an interaction of molecular
processes as well as processes that happen at a world scale like El Niño. Because scientists ignore
some processes at different scales, due to the partiality of representations, their models are prone to
structural uncertainty.

In literature, structural uncertainty is mentioned under many names, such as model discrepancy, model
inadequacy, model error, model form error, model structure uncertainty, conceptual uncertainty and
model bias (Brynjarsdóttir & O’hagan, 2014; Refsgaard et al., 2006; Walker et al., 2013; Webster et al.,
1998). In the rest of this research, the term structural uncertainty will be used, by which the same
concept is meant.

2.3. Structural uncertainty and other types of uncertainty
This section focuses on distinguishing structural uncertainty from other types of uncertainty. First, struc-
tural uncertainty is distinguished from parametric uncertainty. Afterwards, structural uncertainty is dis-
tinguished from contextual uncertainty. Finally, it is distinguished from methodological uncertainty.

Both structural uncertainty and parametric uncertainty are partially epistemic in nature (Kiureghian &
Ditlevsen, 2009). Epistemic uncertainties can be resolved by gathering more data or refining the model.
This means that epistemic uncertainties can eventually be mitigated using extra knowledge and re-
sources. By contrast, aleatory uncertainties are uncertainties caused by the inherent randomness of a
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natural phenomenon. Even though both types of uncertainty are epistemic in nature, in classifications of
uncertainty, structural uncertainty is often distinguished from parametric uncertainty (Bojke et al., 2009;
Jackson et al., 2011; Webster et al., 1998; Winsberg, 2010). Whenever there solely is parametric un-
certainty and no structural uncertainty, the ideal model structure is known, but its parameter values
are uncertain. When there is structural uncertainty, the mathematical structure of the model is unsure.
However, a distinction between parametric and structural uncertainty should be made carefully.

Only if a model is an adequate representation of reality, reviewing parametric uncertainty makes sense
(Pilkey & Pilkey-Jarvis, 2007). However, if a model is not an adequate representation of reality, ac-
counting for parametric uncertainty is meaningless. The reason for this is that the parameters of an
invalid model are different from the parameters in the target system. In this sense, both parameters and
models are means to depict certain phenomena. However, if a model is an inadequate representation
of reality, its parameters values are also likely wrong and meaningless. And therefore, parametric and
structural uncertainty are connected.

Structural and parametric uncertainty do not manifest themselves independently, because they can
affect each other’s magnitude (Van Zelm & Huijbregts, 2013). An increase in model complexity can
increase parametric uncertainty and reduce structural uncertainty, and vice versa. Although the way
structural uncertainty and parameter uncertainty affect each other might differ from study to study, figure
2.2 shows the tradeoff identified in the study of Van Zelm and Huijbregts (2013).

Figure 2.2: Tradeoff between parameter and structural uncertainty, image from Van Zelm and Huijbregts (2013)

Hyperparameters make distinguishing between structural uncertainty and parametric uncertainty even
harder. In machine learning, hyperparameters are parameters that ”guide” the model in learning its
optimal form (Probst et al., 2019). Hyperparameters are used to construct are particular subset of
models or are used to select an optimal model. Suppose that two simple equations 2.1 and 2.2 could
be used to represent an arbitrary target system. Both could be valid representations, because the
actual behaviour of the target system is unknown.

f(x) = x2 (2.1)

f(x) = x− 1 (2.2)
In such a case, a single model structure can be created by using an extra parameter that ”switches”
between the two model structures. Combining the example models 2.1 and 2.2, results in model 2.3.

f(x) = z ∗ (x2) + (1− z) ∗ (x− 1) with z ∈ {0, 1} (2.3)

Using hyperparameter z, the model enables structure 2.1 or 2.2. In this thesis, hyperparameter z is
seen as a parameter helps to grasp some structural uncertainty. Parameters x and y are seen as
parametric uncertainties, because they can vary within a range without changing the model structure.
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In the rest of this research, structural uncertainty and parametric uncertainty are considered to be
partially overlapping terms. Because of the dependence between parametric and structural uncertainty,
parametric uncertainties should be treated carefully. In this study, parametric uncertainties are seen as
uncertainties that are represented by a single variable. By this, we mean variables that are not used
to enable or disable certain parts of the model. Parameters that are used to enable or disable certain
parts of the model are called hyperparameters. Examples of parametric uncertainties in the context
of supply chain models are changes in price, demand, costs, delays in production, and willingness to
return a product (Govindan et al., 2015).

Structural uncertainty can be distinguished from context uncertainty (Walker et al., 2010). Context un-
certainty refers to the boundaries of the target system, or the formulation of the problem. Whenever
there is context uncertainty, the target systems’ boundary is unclear, and multiple formulations of the
problem are thus possible. This is visualized in figure 2.3. When solely facing structural uncertainty,
the system boundary of the target system is thus fixed and unambiguous. Warmink et al. (2010) high-
lights the importance of making a distinction between structural uncertainty and contextual uncertainty
explicitly, because many papers do not properly distinguish between these two types of uncertainties.

This distinction is of high relevance, as this study considers only structural uncertainty and no contextual
uncertainty. This means that the system boundaries of the target system are not subject to discussion.
The reason that this study excludes contextual uncertainty, is because it is out of scope.

Figure 2.3: Context uncertainty visualized, based on Walker et al. (2010)

Furthermore, structural uncertainty is distinguished from methodological uncertainty (Jackson et al.,
2011). Methodological uncertainty arises when it is unsure which type of (simulation) model, is most
appropriate to represent the system of interest. For instance, a system might be modelled by using
a system dynamics model, an agent based model or a discrete event simulation model. All of which
have their own strengths and downsides. In this research, structural uncertainty is seen disjoint from
methodological uncertainty. The choice of a specific modelling method is thus not seen as part of
structural uncertainty.

2.4. Location and sources of structural uncertainty
Besides distinguishing structural uncertainty from other types of uncertainty, it is helpful to locate struc-
tural uncertainty in the model. A useful framework to describe the location of structural uncertainty is
the XLRM framework of Lempert et al. (2003). The framework is depicted in figure 2.4. ”L” refers to
decision levers, which are variables that the decision maker can control. ”X” stands for the externalities
in the model, and represents all parametric uncertainties in the model. ”M” refers to metrics, these are
observables that are used to determine the effects of a particular strategy. ”R” stands for relationships
and refers to the relations between L and X within the model. Structural uncertainty mostly originates
from uncertainty about the relations (R) in the model (Walker et al., 2013).
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Figure 2.4: XLRM framework, based on Lempert et al. (2003) and Walker et al. (2013)

To explain relevant sources of structural uncertainty in supply chains simulation models, we first define
a supply chain. A supply chain is an integrated system, in which raw materials are transferred into
finished products and in which the goods are distributed amongst suppliers, manufacturers, distributors,
retailers and costumers (Min & Zhou, 2002).

Structural uncertainty is uncommonly examined in the context of supply chains (Farrokh et al., 2018).
More commonly, it is studied in the context of climate modelling or hydrological modelling (Gupta &
Govindaraju, 2019; Webster et al., 1998; Winsberg, 2010). Literature on approaches to account for
structural uncertainty in the context of supply chains is limited. However, two studies have identified
two important sources of structural uncertainty in supply chains. The first one relates to uncertainty
about the physical supply chain structure (Vilko et al., 2014). Secondly, structural uncertainty can
originate from unexpected or unpredictable events (Farrokh et al., 2018).

The physical structure is the way distributors, retailers and other relevant actors are arranged, and is
sometimes named the supply chain configuration. A supply chain configuration consists of the following
aspects (Cigolini et al., 2014):

1. The number of nodes (locations) in the supply chain.
2. The amount of storage at each location.
3. The distance between the locations.
4. The number of levels (echelons) in the supply chain.

In literature, the supply chain configuration is rarely treated as an uncertainty. Frequently, it is seen
as either given, or as a configuration to choose from. Previous studies focus on the relation between
the configuration and the performance or the optimal configuration given a certain key performance
indicator.

Previous work has demonstrated that the supply chain configuration has an effect on the supply chains’
performance. Tombido et al. (2020) show that the supply chain configuration affects the size of the bull
whip effect. The bull whip effect is caused by variability in demand for final products. This causes an
upstream distortion of the supply chain. Furthermore, Cigolini et al. (2014) show that the supply chain
configuration affects the overall supply chains’ performance. Furthermore, Cardoso et al. (2015) show
that the supply chains’ configuration influences the supply chains’ resilience. They show that some
structures are more susceptible to disruptions than others.

Other studies demonstrate how to optimize the supply chain configuration to reduce cost or transport
time (Bittante et al., 2018; Ding et al., 2004; Gargalo et al., 2017). These studies show that the supply
chain configuration can be optimized given one or more key performance indicators.

Although many studies show the effect of having a different supply chain configuration or show how to
optimize the configuration, none of them treat the supply chain configuration as a true uncertainty.
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Besides structural uncertainty originating from the configuration, structural uncertainty can originate
from unexpected or unpredictable events (Farrokh et al., 2018). These are events that have an influ-
ence on the supply chain, for example the introduction of a new competitor or a crisis.

2.5. Definition of structural uncertainty
This chapter discussed the main concepts surrounding structural uncertainty. It started by stating that
models in this study are created using an embodiment approach. When it comes to validation, this study
takes the view of integrative pluralism. This means that multiple models of the same target system may
exist, even when they have conflicting assumptions. In the rest of this thesis, structural uncertainty
is considered to be the uncertainty in the structure of a simulation model. Structural uncertainty is
distinguished from contextual, parametric, and methodological uncertainties. In the context of supply
chain models, the supply chain configuration is considered as the main source of structural uncertainty.



3
Modelling with structural uncertainty

In this chapter exploratory modelling and its relation to structural uncertainty is explained. The structure
of this chapter is as follows. Section 3.1 covers the types of exploratory modelling. Section 3.2 covers
a particular type of exploratory modelling: model-driven exploratory modelling. A particular type of
model-driven exploratory modelling is model composability. In section 3.3 the fundamental concepts
of model composability are explained. The focus is on explaining Discrete Event System Specification
(DEVS) and the System Entity Structure (SES). In section 3.4 the relation between the two concepts is
explained. Afterwards, section 3.5 explains the simulation framework used throughout the rest of this
thesis. Finally, section 7.3 provides some limitations of model composability.

3.1. Exploratory modelling
Exploratory modelling is a modelling approach that is based upon the exploration of multiple different
model structures (Bankes, 1993; Bankes, 2011). The creation of this family of models can either be
done by sampling over the input space of a single model, or by generating several alternative model
structures. This family of models is generated to study a problem. Exploratory modelling is applied
in situations where there is significant uncertainty. In general, there are three types of exploratory
modelling: data-driven, question-driven, and model-driven exploratory modelling. Each of them will be
explained in the following alineas.

In data-driven exploratory modelling, a set of models is fitted to a dataset. Fitting a regression model
to a dataset, is an example of this type of exploratory approach. Another example of data-driven
exploratory modelling is the work of Keller and Hu (2019). They use a genetic algorithm to generate
a set of models in a crowd management context. The genetic algorithm is used to fit several model
structures on a dataset and requires big volumes of data. In the end, one particular model structure
that best predicts the dataset is the result of these types of analysis.

Another type of exploratory modelling is question-driven exploratory modelling. In this type of modelling,
a family of models is used to answer a particular policy question. An example of such a study is the
study Li et al. (2017). In their study, a family of models is used to determine which measure is the most
effective against the spread of Ebola. Using this type of exploratory modelling, a fit with a data set is
not necessarily needed.

The final type of exploratory modelling is model-driven exploratory modelling. This type of exploratory
modelling starts without a dataset or a particular type of policy question. In such an approach, a family
of models is generated by coupling several sub-models or components in different manners. The
general idea is to generate a set of alternative model structures, without fitting it to a dataset or without
a particular question at first.

Regardless of what type of exploratory modelling is applied, the models will always result in a broad
range of predictions. To make these predictions more precise, model averaging or selection can be
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used to reduce the range of predictions (Grainger et al., 2018). Both of these techniques start by using
each model to compute the outcomes of interest. When applying model averaging, the average for
each variable of interest is computed based upon every model. If model selection is applied, the model
which represent the target system most accurately is selected.

All types of exploratory modelling are valid approaches to account for structural uncertainty. However, in
this thesis, the emphasis will be on themodel-driven exploratory modelling approach. Themodel-driven
approach is favoured over other types of exploratory modelling, because the model-driven approach
does not depart from empirical dataset (Bankes, 1993). This is an advantage, as supply chain data is
usually sparsely available. Besides, this form of exploratory modelling is not applied often in literature,
as discussed in chapter 1.

3.2. Model-driven exploratory modelling
Bankes (1993) provides a somewhat broad definition when it comes to model-driven exploratory mod-
elling. He defines it as a form of experimental mathematics, in which a family of models is explored
without a dataset or question known up front. Model-driven exploratory modelling encompasses many
approaches. For instance, multi-resolution modelling is mentioned as one type of model-driven ex-
ploratory modelling. Multi-resolution modelling is the modelling of a particular phenomenon on several
levels of scale. Another common approach is to use the exploratory modelling and analysis work-
bench from Kwakkel (2017). The workbench consists of many useful techniques, such as sampling
techniques and optimization algorithms. However, the techniques are limited to varying the param-
eters of a single model structure. When desiring to evaluate structural uncertainties, or alternative
model structures, the alternative model structures should be transformed to exogenous parameters.
Currently, the workbench does not contain any techniques to create alternative model structures. The
final model-driven exploratory modelling approach is model composability (Rodriguez & Yilmaz, 2020).
Model composability is the idea of coupling several sub models in different combinations.

Model composability is the only type of model-driven exploratory modelling techniques that is capable
of creating multiple alternative model structures. Despite the fact that model composability is capable
of creating alternative model structures, so far it is rarely applied in the context of structural uncertainty.
Other than Rodriguez and Yilmaz (2020), who applied model composability to account for structural un-
certainty in modelling plume containment, model composability has not been applied to model structural
uncertainty.

3.3. Model composability
Model composability is a type of model-driven exploratory modelling that can be used to vary the struc-
ture of a simulation model (Davis & Anderson, 2003). The structure of the model can be varied by the
creation of various components (sub-models) that can coupled in various ways. Each component has
inputs and outputs that can be connected to inputs and outputs of other components. Through different
ways of coupling these components, multiple models can be created.

To create a valid family of coupled component systems, a SES, a set of constraints, a simulator and a
model composer are needed (Yilmaz, 2019). Figure 3.1 provides a visual overview of these elements.
The model composer is paramount in creating a family of models. The model composer couples all
model components, while the coupling complies to the constraints. Eachmodel is created in such a way
that it is able to interact with the simulator. A SES is needed to describe all model components. Within
the context of supply chains, components such as retailers, manufacturer and supplier are relevant.
They can be described by using the SES or any equivalent ontology. The constraints contain information
on how the elements in the SES might be pruned, and how they might be coupled. To simulate a model,
a model also needs parameters. These are needed to control the behaviour of the control the behaviour
of the model components.

Like stated before, the model composer is paramount to the model creation process. To illustrate how
themodel composer works, the DEVS formalism is used to illustrate that several simulation components
can be coupled to form a higher level structure. There are several forms of the DEVS formalism. The
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most basic version of the DEVS version is introduced in section 3.3.1. This version of DEVS does
not support the coupling of individual model components, but it is the basis of more sophisticated
versions of DEVS. After the basic DEVS formalism is introduced, the DEVS formalism is expanded
to the parallel DEVS formalism in section 3.3.2. Parallel DEVS contains the possibility to couple the
model structure to another model structure. However, it is not yet a full specification of a coupled
model. Therefore, the parallel DEVS coupled models are explained in section 3.3.3. Subsequently,
section 3.3.4 introduces the SES. Afterwards, the simulation framework used in this thesis is discussed
in section 3.5. Thereupon, this chapter concludes with section 3.4 in which the relation between DEVS
and SES is covered. Finally, some limitations of the method are introduced in section 7.3

Figure 3.1: Using model composability to generate multiple simulation models. Figure based on (Yilmaz, 2019)

3.3.1. DEVS
To explain howmodel composability works, it is useful to discuss DEVS. DEVS is a formalism by Zeigler
et al. (2019b) which can be utilized to specify a simulation model or a simulation model component.
DEVS is used to explain how several model components can be coupled, forming the basis of model
composability (Zeigler et al., 2019b). DEVS provides a strong computational basis for simulations and
enables users to specify simulation models on paper. It can be utilized to specify any type of simulation,
because other formalisms, such as system dynamics and agent-based models, can be embedded in
the DEVS formalism (Vangheluwe, 2002). A basic DEVS structure can be expressed by structure 3.1.

M = ⟨X,S, Y, δint, δext, λ, ta⟩ (3.1)

with:

X refers to the set of all input events of the model.
S refers to the set of all internal states of the model.
Y refers to the set of all output events of the model.
δint is a function called internal transition function that is used to internally transform the state
from the previous to the next one. It looks like S → S.
δext is a function called the external transition function. It is used whenever external of this par-
ticular DEVS model, for example the user triggers the model to do something else. It looks like:
Q ∗X → S in which Q is Q = {(S, e)|S ∈ S, 0≤e≤ta(s)} in which e is the time elapsed since the
last transition.
λ is the output function: S → Y . This function maps the state to the output of the model.
ta is the time advance function: S → [R+

0,+∞].
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The DEVS formalism is visualized in figure 3.2 to clarify what the symbols in the DEVS formalism mean.
The emphasis in this figure is on symbolsX,Y and S. X denotes a set of input events, Y a set of output
event and S denotes the internal state of the model. The other aspects of DEVS are equally important,
but are less relevant when it comes to explaining the basic ideas of model composability.

Figure 3.2: DEVS visualized

DEVS models can be coupled by the linking of an output of a DEVS model (from the set of outputs Y )
to an input of another DEVS model (from the set of inputs X). This can be specified more elegantly by
using the parallel DEVS formalism. The coupling itself can be specified by the coupled parallel DEVS
formalism.

3.3.2. Parallel DEVS
Parallel DEVS is different from the basic DEVS formalism (Zeigler et al., 2019b). It is an extension of the
basic DEVS formalism. The use of parallel DEVS has two benefits. First, it has a build in specification
of what should happen when an internal an external event occur at the same time. Second, it has the
notion of ports. The ports make it easy to couple specific outputs to specific inputs of another model.
In parallel DEVS, a DEVS model is expressed by equation 3.2. This equation is similar to equation 3.1,
but the sets X and Y are replaced by ports and the confluent transition function is added. No longer
does the DEVS model only have a set of in- and outputs. The confluent transition function is added to
specify what should happen if an external event and an internal event happen at the same moment.

M = ⟨X+
M , Y +

M , S, δint, δext, δconf , λ, ta⟩ (3.2)

with:

X = {(p, v)|p ∈ InputPorts, v ∈ Xp}.
Y = {(p, v)|p ∈ OutputPorts, v ∈ Yp}.
S is the set of states.
δext = Q ∗X+

M → S.
δint = S → S.
δconf is the confluent transition function. This function is triggered whenever δext and δint are
triggered at the same moment. It looks like: Q∗X+

M → S in whichQ = {(S, e)|S ∈ S, 0 ≤ e ≤ ta(s)}.
e refers to the time elapsed since the last transition.
λ = S → Y + this is the output function. This function maps the state to the output of the model.
ta = S → [R+

0,+∞] this is the time advance function.

3.3.3. Parallel DEVS Coupled models
Model composability is the idea of coupling several parallel DEVS models to each other. Parallel DEVS
models can be coupled to form a parallel DEVS coupled model (Zeigler et al., 2019a). A parallel DEVS
coupled model can be expressed by equation 3.3.

N = (X,Y,D, {Md}, {Id}, {Zi,d}) (3.3)

with:

X refers to the set of input events of the coupled model N .
Y refers to the set of output events of the coupled model N .
D is a set of names for each individual component.
{Md} refers to a set of parallel DEVS models.
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{Id} is the influencer set of d with Id ⊆ D ∪ {N}, d /∈ Id. This set is used to specify which
component influences another component.
{Zi,d} is a set that consists of the in- and output relations between model component i and d. In
which Zi,d can be specified as follows:

X → Xd, if i = N
Yi → Y , if d = N
Yi → Xd, if d ̸= N and i ̸= N

A coupled parallel DEVS system is depicted in figure 3.3. The figure consists of three parallel DEVS
components, which are coupled together. In this example, three different components were thus cou-
pled in one way to form a single model (N). The interesting thing, is that the parallel DEVS models
could theoretically be coupled differently to form a different coupled model (N). This is the property of
model composability that is used to account for structural uncertainty in the rest of this thesis.

Figure 3.3: Coupled DEVS visualized based on Zeigler et al. (2019a)

Coupled component systems (like seen in figure 3.3) can be specified by usingmore than one formalism
at the same time (Sarjoughian, 2006). In the rest of this thesis the focus is on model composability with
few compatibility issues. This is because model composability becomes increasingly complex when the
components use different formalisms. In this section, the coupling between several model components
in the same formalism is described. Coupling model components in the same formalism is the simplest
form ofmodel composability. This type of model coupling is calledmonolithic coupling. It is also possible
to write different components in different formalisms, such as system dynamics combined with an agent
based component. However, the coupling then becomes increasingly harder. To account for structural
uncertainty it is sufficient to make use of monolithic coupling, because a supply chain can be modelled
using a single formalism.

3.3.4. Referential ontology: The System Entity Structure
A referential ontology supports the development of a simulation model. It helps to describe the state of
the world, or changes of the state of the world (Zeigler & Hammonds, 2007). In simulation modelling,
they are particularly useful to describe and communicate the elements in the model. Examples of
referential ontologies are Extensible Markup Language (XML), Unified Modelling Language (UML) and
SES. The SES is an ontological framework that is specifically designed for simulation engineering.

Referential ontologies can be distinguished from methodological ontologies (Hofmann, 2013). Refer-
ential ontologies refer to the description of real world entities (for example: figure 3.4). By contrast,
methodological ontologies refer to the modelling world view that is applied. Examples of methodolog-
ical ontologies are event-oriented, activity-oriented, and process-oriented world views (Nance, 1981).
In this study, only one world view is applied because the type of model coupling that is applied is mono-
lithic. Recall that this means that all components are specified in the same formalism. Within this thesis,
an event-oriented world view is applied. This means that changes in state of model objects are caused
by events. This world view is chosen because it is inherent to the DEVS formalism.
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One particular type of referential ontology that is applied throughout this thesis is the SES. The SES
is specifically designed for modelling and simulation, and can be used to specify a family of models
(Zeigler & Hammonds, 2007). The SES can be used to specify a system with respect to a specific
system boundary. It can be used to specify the relevant entities in a system, and the relations between
these entities. The SES consists of a web of entities, and makes use of three types of relations:

• Aspect-relation
• Multi-aspect relation
• Specializations

To illustrate how the SES can be used to specify multiple simulation models, a minimal example of a
train simulation model will be given. To demonstrate the SES, the example includes a relation of each
type. In a SES, aspect relations are used to reduce entities into parts. For example, a train has wagons
and a locomotive. This is an example of a physical aspect relation. An aspect relation can also be non-
physical, for example when discussion the relation between cultural concepts. Multi-aspect relations
are used when there are many entities of the same kind. For example, a set of wagons consist of
many (identical) wagons. Finally, specializations are used to describe the variants of an object. For
example, a locomotive can be either green, red or blue. This is an example of a colour specification
relation. There are other types of specification relations, such as the specification of a wagon’s shape.
The examples given in this section are shown graphically in figure 3.4.

Figure 3.4: An example of a SES

The SES in figure 3.4 can be used to generate multiple simulation models by using a process called
’pruning’ (Folkerts et al., 2020). Pruning is the process of deriving a single model configuration from
a SES. Using the example from figure 3.4, the SES can be pruned into different trains. For example,
based on this SES, an instance of a train can have a red locomotive with ten wagons. It is also possible
to prune a train with a blue locomotive with nine wagons. Such a train blue or red train can be called a
pruned entity system, which has a non-isomorphic relation with the SES. The process of pruning can be
restricted by a table of constraints. For example, a constraint might be that a train with a red locomotive
may never have more than five wagons. This prevents pruning from creating invalid instances.

3.4. The relation between DEVS and SES
The relation between DEVS and SES is illustrated in figure 3.5, this figure is based on Zeigler and
Hammonds (2007). In this figure, a distinction is made between the ontological level and the imple-
mentation level. The ontological level includes the conceptual SES model and the mathematical DEVS
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models. The implementation level includes the computer implementation entities. From the ontological
perspective, the SES provides a static snapshot of the world, from which pruned entity systems can
be generated. These pruned entity systems provide a static description of the world, valid within a
particular pragmatic frame. The pruned entity system can be transformed to a DEVS model by adding
dynamics to the pruned entity system. From the implementation perspective, the SES can be imple-
mented using object-oriented programming. Entities from the SES can be represented using classes.
From these classes, typically instances can be generated, representing pruned entity systems.

Figure 3.5: Relation between SES and DEVS based on Zeigler and Hammonds (2007)

3.5. Simulation software: Pydsol
All models in this thesis are implemented in a modified version of pydsol. Pydsol is a python implemen-
tation of DSOL (a Java-based simulation framework). Pydsol is a relatively new simulation framework,
which has some advantages and limitations.

A major advantage of pydsol is that it is based on python. Python is easy to read and has a lot of
libraries which developers can make use of. For instance, some libraries provide access to machine
learning algorithms and other libraries provide access to algorithms that handle spatial data and so on.
Another advantage of pydsol is that it is modular in nature. Because pydsol is modular, it is much more
suitable for model composability than other simulation frameworks. It supports the coupling relation
that was demonstrated in DEVS.

Pydsol has some disadvantages, however most of its disadvantages can be mitigated. Python is in
interpreted language, and can therefore be slow. The low speed is especially an issue when conducting
large numbers of experiments. Besides, pydsol does not have any visualization utilities. This makes it
hard to visually validate and verify the execution of a simulation model. However, both disadvantages
can be mitigated. In this thesis, a modified version of pydsol is used to increase its speed and improve
its visualization abilities.

The disadvantage of the slow execution time is mitigated by changing the event list of the pydsol sim-
ulation framework. An event list is used to store the actions that should be executed by the simulator.
Event lists are commonly used in discrete event simulation frameworks. The underlying data structure
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of an event list predominately determines the speed of the simulation, especially when there are many
events scheduled. Pydsol depends upon an external python library PyTreeMap, which is a python im-
plementation of a red black tree. Pytreemap becomes slow when event lists becomes long. Therefore,
an alternative to PyTreeMap was implemented.

The PyTreeMap module is replaced by a C++ module, resulting in speed improvements up to 96%.
C++ is a programming language that has a build in priority list, which is much more efficient than
PyTreeMap. Priority lists are conceptually based on heaps, which are tree structures that efficiently
point to the elements first in queue. C++ is much more efficient due to the fact that C++ is a lower-level
programming language, and is a compiled language. The C++ event list is connected to python by using
Cython to make it compatible with pydsol. Cython is a python library that facilitates communication
between python and C++.

The absense of visualization utilities is mitigated by developing a VUE.js web application. This ap-
plication shows the static elements of a simulation in an interactive map. Some details about this
visualization utility can be found in appendix C.

3.6. Limitations to model-driven exploratory modelling
There are some drawbacks to the use of model composability in modelling and simulation. Most lim-
itations originate to the use of a referential ontology. For certain domains, it is hard to construct an
objective referential ontology (Hofmann, 2013). This is especially the case in social and sociotechnical
domains. For example, it is almost impossible to construct a referential ontology of concepts such as
culture, democracy, and society. Another limitation originates from the fact that a model is created by
one modeller, or a group of modellers. Salt (2008) mentions that there is a risk that these modellers see
themselves capable of perfectly observing the world. He mentions the risk of modellers seeing their
ontology as perfect, and that they do not acknowledge that there are different interpretations of the
world. Although these are severe limitations to account for structural uncertainty, model composability
might be very successful in the context of supply chain systems. These limitations are mitigated by
making a referential ontology based on literature as much as possible. This makes sure that the SES
used is grounded in literature. Furthermore, it also mitigates the risk of creating a biased model.
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Testing model composability with a

ground truth
In this chapter, model composability is used to efficaciously account for structural uncertainty in supply
chain simulation models. The process of testing model composability on its efficacy to account for
structural uncertainty is depicted in figure 4.1. First, a particular model structure is chosen as a ground
truth. This model structure acts as a benchmark. Consequently, the ground truth is estimated with a
model composer. To limit the amount of plausible model structures, a careful selection of simulation
models is simulated. Finally, experiments are conducted to test the method on its efficacy. This chapter
focusses on the first two steps: establishing the ground truth and estimating the ground truth with a
model composer. Chapter 5 focusses on the last two steps, the selection of simulation models and the
comparison to the ground truth (testing).

Figure 4.1: Process of testing model composability

4.1. Ground truth
The first step of testing model composability, is to introduce a ground truth. A ground truth is a perfect
replication of a target system, which is unequivocally understood by its observer (Khondoker et al.,
2016). In essence, it is a model of reality that is perceived as reality. In this thesis, a simulation model
of an illicit supply chain of personal protective equipment is considered to be the ground truth. The
ground truth can be seen as some sort of ’benchmark’. It provides a baseline to which estimated
plausible models can be compared.

The goal of comparing the estimatedmodels to a ground truth is not to select a perfect model. Estimated
models do not need to have similar outcomes like the ground truth. The ground truth rather functions
as a benchmark that helps to understand which uncertainty is added by removing information from the
ground truth.

As a ground truth, a supply chain of illicit personal protective equipment between the Vietnam and
Netherlands is chosen. The model is based on a model authored by Isabelle van Schilt. The model
represents a supply chain of one product from suppliers to retailers. It is a discrete event simulation
model made in pydsol.

4.1.1. Conceptual model
Goods flow from supplier to retailer, trespassing a number of other supply chain actors. This general
flow of goods is depicted in figure 4.2. This figure shows the supply chain actors and the links between

21
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them. The figure contains several types of simulation elements: sources, servers and sinks. These
elements are model components that are build into the simulation framework. In discrete event simula-
tion packages, sources are model components that create entities, in this case products. Servers are
model components that process entities. Sinks remove entities from the simulation and delete them.
In the models, suppliers are sources and retailers are sinks. Other supply chain actors are servers.

Three suppliers deliver raw goods to three manufacturers in Vietnam. The manufacturers deliver their
finished goods to an export port in Vietnam. This export port is located south of Hanoi. From here
on, the goods are transferred to a transit port located closely to Hanoi. From the transit port, a larger
ship departs to the Netherlands. The ship arrives in the port of Amsterdam (import port), where it
is unloaded. The finished goods are trucked from the port of Rotterdam to a wholesaler located in
Dordrecht. From here on, the goods are delivered to retailers in Amsterdam, Hoofddorp, Utrecht, Breda
and in Rotterdam.

In figure 4.2, green arrows represent land connections and blue arrows represent naval connections.
On land connections, either small or big trucks are used to transport goods. Between a supplier and
a manufacturer, a small truck delivers the raw materials to the manufacturer. A big truck delivers the
finished products to the export port. Feeders (small ships), transfer the goods to the transit ports.
Through an intercontinental journey, a large vessel takes the goods to the import port. Afterwards,
a large truck takes the goods to the wholesaler. In turn, a small truck delivers the goods from the
wholesaler to the retailers.

At each supply chain actor, such as a manufacturer, or a port, the product has to be processed. Pro-
cessing involves the handling of products, such as storage, transformation, transshipment, and sales.
The product is processed for a specific duration, depending on the type of actor. If the actor is occu-
pied, meaning that it is processing another product, the product has to wait before it can be processed.
The product is then added to a queue. It is processed whenever the actor is idle again. The queue,
including the products that are being processed, represents the stock of the supply chain actor.

The processing times of the supply chain actors are stochastic. They are drawn from statistical distribu-
tions which are inspired by a real world fashion supply chain. Arrival processes such as the creation and
deletion of products at suppliers and retailers are assumed to be distributed exponentially. Processing
times at a manufacturer are assumed to be normally distributed. Ports processing times are controlled
by a skewed normal distribution. At wholesalers, a triangular distribution is used. The parameters for
these distributions are controlled by model parameters with fixed values.

After the processing time is over, the product leaves the supply chain actor. The product is then cou-
pled to a vehicle, which transfers the product to the next supply chain actor. The speed at which this
happens is controlled by the vehicle type. The speeds are stochastic, and are controlled by triangular
distributions. Feeders and vessels are assumed to be slower than trucks. Large trucks are assumed
to be a bit slower than smaller trucks. This is because large truck with a trailer are often limited to 90
km/h.

In figure 4.2, the supplier in the middle is connected to two manufacturers. In such a case, a unit
produced by this supplier could go to both manufacturers. In the ground truth, both manufacturers
have an equal probability of receiving the package. Both links thus have an equal selection weight.

One time unit in the model represents a day in reality. A total number of 700 days is simulated. This is
chosen, as it takes some days before vessels complete their intercontinental journey. Other than that,
the model needs some time to stabilize the outcomes.

The above paragraphs describe the ground truth simulation model. The components, processing times,
and simulation time are similar in the generated models mentioned in the rest of this text. Specific
connections and configuration are specific for the ground truth.
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Figure 4.2: Supply chain flow of goods

4.1.2. Model outcomes
The model has several tally model outcomes, e.i. averages of a model run. The outcomes of the model
are listed below:

• Average time in system
• Average production time
• Average transfer time
• Average International transport time
• Demand side time
• Average time at wholesalers

The tally statistics are shown in figure 4.3. In this figure, a red dot symbolizes processing and storage
time. The arrows symbolize the transport times. The time in system measures the time of the whole
chain, other outcomes focus on specific parts of the chain.
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Figure 4.3: Outcomes of simulation models

4.2. Estimating the ground truth with a SES
The SES is used to provide a backbone for the model family for estimating the ground truth. It contains
all possible entities in the simulation model. Figure 4.4 shows the system entity structure for a supply
chain network. Within in the diagram, all entities that are considered within this analysis are depicted.
The diagram contains all types of nodes of the supply chain network, such as suppliers, retailers, whole-
salers and ports. These supply chain actors are chosen based on Basu (2013). Other than that, the
diagram contains all types of links within the network, such as sea links and land links. The figure con-
sists of several type specifications. Type specifications are inheritance relations that make an object
more specific. The figure also has a physical multi aspect relation. This relation is used whenever an
object contains several physical objects of the same kind.

The SES can be pruned to a pruned entity system (Folkerts et al., 2020). An example of a pruned entity
system is a supply chain network composed of multiple suppliers, a single manufacturer, a transit
port, and a set of retailers. Pruning should be done with subject to constraints, because neglecting
constraints might cause the composer to generate invalid pruned entity systems. An example of such
an invalid pruned entity system is a supply chain network without a single supplier or retailer.

In order to make a plausible family of simulation models, a set of constraints should be specified. The
constraints that are needed to generate a plausible family of simulation models vary from parameters to
datasets. The constraints are related to the number of supply chain actors that could be in the simulation
model, to the type of coupling between the supply chain actors, and to the spatial distribution of supply
chain actors, among others specified in section 4.3. To generate a valid pruned entity system, the
constraints are considered by the model composer. An overview of all constraints used in this thesis is
discussed in section 4.3.
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Figure 4.4: System entity structure of a supply chain

4.3. Constraints
The SES is pruned while accounting for the constraints. Constraints are restrictions for pruning the
SES. The constraints can be specified using parameters or datasets. The constraints range from the
number of supply chain actors, to a specification of which supply chain actors can be coupled to each
other, to the spatial distribution of the supply chain actors. All types of constraints used in this research
are listed in table 4.1. A more detailed overview of the constraints can be found in appendix A. The
appendix consists of all the exact constraints. Besides, this appendix also contains all datasets that
are part of the constraints.

In this thesis, constraints are subjective and can not be determined objectively. Constraints restrict the
number of models that can be generated. A decision maker should set these constraints based on their
beliefs of the actual supply chain. For instance, a decision maker that acts at the end of the supply
chain might have different beliefs about the number of retailers than a decision maker involved at the
beginning of the supply chain.
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Table 4.1: Constraints

Constraint Description Example

Number of supply chain ac-
tors

Restriction of number of sup-
ply chain actors of each type.

There should be at least five
retailers, and at most 20 re-
tailers.

Coupling order of supply
chain actors

Certain types of supply chain
actors can not precede of
other types of supply chain
actors.

Wholesalers can deliver
goods to retailers, but suppli-
ers can not.

Indegree and outdegree of
supply chain actors

For some supply chain actors
it is unrealistic if they serve
many other supply chain ac-
tors.

A supplier can not supply
thirty manufacturers.

Land use restrictions Some supply chain actors
should be located on a partic-
ular type of land use.

Ports should be located close
to water. Retailers should
be in build-up environments.
Build-up locations are areas
filled with buildings.

Proximity restrictions The location of a supply chain
actor depends upon the loca-
tion of another.

A retailer can not be sep-
arated from a wholesaler.
They should be somewhat
proximate to each other.

Note. View appendix A to see an exhaustive list of all restrictions.

4.4. Model composer
The model composer generates model structures to estimate the ground truth. The model composer
generates a model structure by coupling predefined model components of the SES in a specific way.
The model composer creates a pruned entity system from the SES.

The model composer is conceptually based on graph theory. A Directed Acyclic Graph (DAG) is used
to represent the components in a model, and the coupling relations between them. A directed graph
is a graph, with nodes and directed edges. Directed edges are edges that have a specific direction.
Graphs are acyclic when they do not contain any circular paths. The choice for a DAG is substantiated
by the fact that a supply chain is linear with a directed flow of goods.

A DAG is created in five steps by the composer (visualized in figure 4.5). Step 1 and 2, determining
the number of nodes per type and establishing the edges are explained in section 4.4.1. Step 3, the
assignment of the locations is introduced in section 4.4.2. Finally, section 4.4.3 includes how the edge
weights are computed, and how the DAG is converted to a pydsol simulation model.

Figure 4.5: Working of the model composer

The model composer is implemented in python in order to ensure that it can easily interact with the
python based simulation package pydsol. The python package Networkx is used to create the network
structures and to evaluate them. The python packages Rasterio and Geopandas are used to facilitate
the geospatial computation.

To make sure that everything is implemented as outlined in the rest of this chapter, over fifty tests
are conducted to validate the behaviour of the model composer. Some tests are developed to test
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the algorithms that return the distance between two points. Others are developed to test whether
validation algorithms are implemented as intended. Validation algorithms are algorithms that check if
the hyperparameters of the model comply to the constraints. Other tests are used to test whether the
spatial algorithms work as assured. All tests can be found in appendix B. Furthermore, a visualization
utility was used to verify if the models were successfully implemented. More about this visualization
utility can be found in appendix C.

4.4.1. Step 1 & 2: Creating nodes and edges
In the first two steps of composing a model, a number of nodes and edges is created. Firstly, the
number of nodes is determined, and secondly the edges are created. The generation of nodes and
edges is subject to constraints. An algorithm is used to assure that a valid DAG can be generated,
while complying to the constraints.

To create the nodes, a random number of supply chain actors for each type of actor is generated. This
is done based on a uniform distribution, for each actor type. The model composer assures that the
number of supply chain actors per type is within a predefined range. There should be at least one
supply chain actor of each type. This is an assumption that is part of the constraints. Secondly, the
model composer validates whether this number of supply chain actors can be composed to a valid
graph by checking whether the minimum and maximum indegree and outdegree of the supply chain
actors match with each other. For example, if there is just one supplier, and a supplier has a maximum
outdegree of three, there should be no more than three manufacturers. The first two steps are repeated
until a valid number of supply chain actors per type is found.

In the second step, the model composer starts randomly drawing edges between the nodes, while
accounting for the maximum and minimum in and outdegrees. Again, this process is repeated, until a
valid DAG is found. An example of a valid DAG is shown in figure 4.6. In this figure, each colour refers
to a type of supply chain actor.

Figure 4.6: A valid directed acyclic graph of a supply chain

4.4.2. Step 3: Geographical location of the nodes
The generated DAG forms the basis for the supply chain structure, but it does not yet accurately re-
semble reality. This is because the nodes do not have a spatial location, and the distances between
them are not determined in previous steps. To ensure that the nodes get a valid geographic position,
an algorithm is used to make sure that supply chain actors are placed within a plausible position. A
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difficulty is that the location of the supply chain actors are conditional to each other. For example, a
retailer can not be separated hundreds of kilometres from its wholesaler, as that is likely to be untrue.
Other than that, ports should be located near the water, and manufacturers should be close to their
port(s) etc. Like stated before, such requirements are called constraints.

To assign locations to the nodes, an algorithm is developed to comply to these constraints. In this
algorithm, first port locations are sampled from a dataset with ports in Vietnam and the Netherlands.
Import ports are assumed to be in the Netherlands, Belgium or Germany, whereas export and transit
ports are assumed to be in Vietnam. After the ports are sampled, the rest of the locations are sampled.
The rest of the locations, those of retailers, wholesalers, manufacturers and suppliers are assumed to
be in build-up environments. A location is considered to be build-up, i.e. filled for the most part with
buildings, whenever it is classified as such in the Copernicus land cover dataset (Buchhorn et al., 2020).
Besides the requirement that these supply chain actors should be in build-up environment, the supply
chain actors should also be located near their predecessor or successor. For example, a retailer should
be close to its wholesaler(s) (its predecessor). By contrast, a manufacturer should be located near the
port(s) it is delivering too (its successor). To ensure that this requirement is met, buffers are drawn
around the predecessor or successor supply chain actors. A zone is then generated by intersecting
the buffer with the administrative borders of the country the supply chain actor should be situated in.
The supply chain actor is then placed within the buffer, on a random location that classifies as a build-up
location. Buffers are zones around a spatial feature, in this case they look like circles. If there is more
than one predecessor or successor, several buffers are drawn, and consequently they are intersected.
The supply chain actor is then placed within the intersection of the buffers. If there is no intersection,
the buffers are enlarged until there is an intersection.

An example of the location allocation process is shown in figure 4.7. In this figure, the geometric assets
needed to locate a wholesaler are shown. The map shows where a wholesaler connected to the port
of Antwerpen can be located. This wholesaler can be placed on a random build-up location indicated
by red. These build-up locations are identified in three steps. First, a buffer is drawn around the port
of Antwerpen. This buffer is indicated by the blue circle. Second, the buffer is intersected with the
administrative boundaries of the Netherlands. This is indicated by the green area. Finally, the resulting
intersection is used to clip a land-use dataset. This land-use dataset contains all build-up locations.
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Figure 4.7: Example of location placement of a wholesaler

4.4.3. Step 4 & 5: Computation of edge weights and conversion to simulation
model

The fourth step of the model composer is to compute edge weights. Edge weights are determined
by the distance between the two nodes. How the distance between two nodes is computed depends
on the edge type. There are two types of edges: those which represent an overseas connection and
those which represent a land connection. The type of the edge is determined by the type of nodes it is
connecting to. An edge between a wholesaler and a retailer is a land connection (land edge), while a
connection between two ports is a sea connection (sea edge).

The length of a land connection is computed using a ’straight’ (Euclidean) line between two points. The
coordinates of the nodes that are connected by the edge are projected in an equidistant worldwide map
projection. This projection system is suited to compute the Euclidean distances between two points.
It corrects for the round shape of the earth, which guarantees that distances can be computed with
relatively small distortion.

Figure 4.8 shows the locations of the supply chain actors and the land connections between them. The
locations shown in this map are generated using the DAG depicted in figure 4.6. As can be seen, the
routes between the locations are indicated using straight lines (arrows). The lengths of these lines are
computed and saved as attributes within the DAG.
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Figure 4.8: Physical supply chain structure (Netherlands), starting from the import port

To compute the length of a sea connection, the route between two locations is computed with a cheapest
route algorithm. The Copernicus land cover dataset (Buchhorn et al., 2020) is used to determine the
ship routes. The land cover dataset is a grid type of dataset (commonly called raster dataset) which has
a land cover classification for each cell. The land cover dataset has over 30 classes indicating whether
land is classified as urban area, agricultural area or forests. This classification scheme is manipulated
by classifying each type of water as water, and each different type of land as land. The resulting dataset
is a binary classified dataset with land and water. The dataset is converted from an image to an array.
The route was computed using an algorithm that searched for the cheapest route through an array.
Water cells are assigned a low cost, and land cells are assigned a high cost. An example of a route
computed using this approach is shown in figure 4.9.
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Figure 4.9: Sea route between a port in Vietnam and a Dutch port

After a DAG has been generated, the final step is to convert a DAG into a simulation model. Nodes in
the DAG are converted to python class instances. The python classes comply to the SES described
in section 4.2. Edges between nodes are represented by python class instances named links. A Link
establishes a coupling relation between two components. The class instances are all part of a pydsol
simulation model. Due to of the modular nature of the simulation environment pydsol, the components
function together to form a simulation model.



5
Experimental setup

This chapter continues on the concepts introduced in chapter 4. Whereas chapter 4 focusses on the
first two steps of the testing process, this chapter focusses on the last two steps. In the previous chapter,
a ground truth is established, and the model composer is explained.

This chapter first outlines how a selection in simulation models is made. Second, this chapter highlights
how the selected models are used in an experiment. In section 5.1, the process of selecting simulation
models is substantiated. In section 5.2, an analysis that substantiates how many times each model
should be replicated is presented. In section 5.3, an experimental setup is laid out to test the efficacy
of the method.

Figure 5.1: Process of testing model composability

5.1. Selection of plausible models
Many simulation models are generated by the model composer. None of these models should be
seen as wrong or invalid, because all of them comply to the constraints given to the model composer.
However, it is not feasible to simulate all of them, due to a high computational burden. Besides, it is
not interesting to simulate all models, because models become more and more similar if more models
are generated. Therefore, this chapter first focuses on making a selection in simulation models that
are simulated and analysed. It is of importance, that the chosen simulation models differ as much as
possible, to make sure that the results are as meaningful as possible.

A selection in simulation models is made in three steps. First, a set of topological features to describe
a DAG is selected. The second step is to generate a set of DAG’s and determine a suitable number of
DAG’s. The third step is to sample from this set of simulation models. This is done using the k-means
algorithm.

The first step is to identify topological features. Topological features are needed to characterize a DAG.
Topological features are properties of a DAG, expressed in numerical values. Topological features
are needed to compare DAG’s, due to the fact that it computationally expensive to compare a DAG
to another DAG. Aside of the fact that such a comparison is computationally expensive, many DAG’s
are only slightly different. For instance, two DAG’s are considered completely different, when in fact
only the distance between two nodes might differ slightly. Even when the link length is not considered
when comparing network structures, but only the number of nodes and their edges, the total number
of DAG’s that can be generated is still too high.
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Transportation networks have a number of topological features that can be leveraged to make a se-
lection in networks (Calatayud et al., 2017; Lin & Ban, 2013; Wang et al., 2011). Examples of such
topological features are mean degree centrality, efficiency and mean betweenness. In this study, the
topological features shown in table 5.1 are used to make a selection in simulation models. These are
chosen, because they are commonly used in research about transportation networks (Calatayud et al.,
2017; Lin & Ban, 2013; Wang et al., 2011). In addition to that, a regression analysis was conducted
to validate whether these topological features can describe a DAG successfully. In this regression
analysis, the topological features of 700 models are compared to the simulation model outcome ’time
in system’. The time in system outcome was chosen, as it measures the ’whole’ supply chain. The
time in system is the average time of a product that flows from supplier to retailer. In the regression
analysis, the topological features are used as independent variables. The time in system outcome of
the simulation model was used as the dependent variable. The explained variance of the regression
model (r2) is 0.391, as seen in appendix D. Albeit that can be higher, a significant proportion of the vari-
ance is caused by the inherent randomness of the simulation model. Therefore, the chosen topological
features sufficiently describe a DAG.

Table 5.1: Typology of directed acyclic graphs

Metric Description

Number of nodes Total number of nodes (supply chain actors) of
the supply chain simulation model.

Number of edges Total number of edges in the supply chain sim-
ulation model.

Mean degree centrality Average number of edges that connect to a
node.

Mean betweenness centrality Average extent to which a node lies on the
shortest path between other nodes.

Mean closeness centrality Average length of the shortest path between all
pairs of nodes.

Note. Metrics are based on Calatayud et al. (2017), Lin and Ban (2013), and Wang et al. (2011)

The second step is to generate a suitable number of DAG’s. It is not feasible to generate all DAG’s
because this is computationally expensive. Therefore, a limited number of DAG’s is generated. By
selecting a limited number of DAG’s some plausible models are not operationalized. Because of this,
it is vital to make sure that the generated structures are similar to the total set of DAG’s. To make
sure that the DAG’s generated are as different as possible, Shannon’s entropy measure is used. Using
Shannon’s entropy measure, the variety of a random variable (entropy) can be computed (Shannon,
2001). Shannon’s entropy measure is used, because it helps to quantify the variety of a dataset. If the
variety does not change anymore, enough models are generated. The higher the entropy, the more
variable a dataset is. For example, the entropy of a random variable with two values: heads (p = 0.5)
or tails (p = 0.5) is lower than the entropy of a random variable with three values: red (p = 0.33), blue
(p = 0.33) or green (p = 0.33).

The original measure can be used to compute the entropy of a discrete variable, such as gender. Be-
cause the topological features edges and weights are discrete, the original Shannon entropy measure
is used. The centrality metrics are continuous variables. Therefore, differential entropy for continuous
variables is used for these variables. There are several methods to estimate differential entropy for
continuous variables, all of them compare similar in terms of performance and outcomes (Alizadeh
Noughabi, 2015). Because the performance and outcomes of all these approaches are similar and the
ebrahimi method is implemented in python, the ebrahimi method is chosen.

The estimated entropy values for each topological feature are shown in figure 5.2. The x-axis shows
the model set size, which is the number of DAG’s generated. The figure shows that after generating
about 700 DAG’s, the entropy value does not change. Therefore, in all experiments the number of
DAG’s generated is 700.
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Figure 5.2: Entropy computed for each set size

The third and final step is to use the k-means algorithm to reduce the total number of DAG’s. The num-
ber of DAG’s is reduced because it is computationally unfeasible to simulate all 700 model structures,
while doing enough replications. To keep the simulated models as diverse as possible, it is important
to keep a subset of models with as diverse topological features as possible. The k-means algorithm is
used to select a diverse subset of these 700 DAG’s. The k-means algorithm is an unsupervised ma-
chine learning algorithm that makes k clusters. The algorithm tries to minimize (euclidean) distances
within a cluster, and maximizes distances between other clusters. This makes sure that the DAG’s
within each cluster are as similar as possible, but the clusters are as different as possible. Selecting a
DAG from each cluster, makes sure that the models are as different as possible. A cluster has a value
for each of the topological features described in table 5.1.

K is chosen by the number of structures that should be sampled from the set of DAG’s. From each
cluster, one random DAG is selected. In this manner, the k-means algorithm ensures that the selected
DAG’s differ as much as possible from each other, with respect to their topological features. The choice
to select a random model from a cluster is made deliberately, because in this way models are retained
from being unselected based on their topological features. Every model still has a probability greater
than zero of being selected.
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5.2. Seed analysis
Using the process described in section 5.1 a selection of models is used in further analysis. The se-
lected models are stochastic in nature, this means that their outcomes are not deterministic. Each
simulation generates different outcomes. Therefore, it is of importance to replicate the simulation sev-
eral times.

To determine a suitable number of replications for each model, a seed analysis was conducted. Every
model has a seed, which controls the stochastic behaviour of the model. Whenever the seed of a model
is fixed, the outcomes of the model are always the same. In a seed analysis, a model is replicated
several times with a different seed. Every time a new replication is done, the average of all replications
is computed. Replications of a model are done, until the average stabilizes. In a seed analysis, the
goal is to find a suitable number of replications for each model run.

Figure 5.3 shows the seed analysis that is conducted with a constant model structure. In this figure, it
can be seen that the average outcome value fluctuates whenever the number of replications increases.
The figure shows the average outcome value for six different outcomes: average time in system, aver-
age international transport time, average time at wholesaler, average production time, average transfer
time, and average demand side time. In figure 5.3, the mean value for all outcomes tends to stabilize
after 60 replications. Therefore, a simulation is replicated 60 times for each model.

Figure 5.3: Mean value of four kpi’s with increasing number of replications
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5.3. Comparing the ground truth to the plausible structures
The final step of testing model composability is to estimate the efficacy of model composability to ac-
count for structural uncertainty. The efficacy of developed model composer is evaluated by comparing
the plausible structures to the ground truth. Testing the efficacy is done in three steps:

1. Simulate ground truth.
2. Estimate ground truth using model composer and model selection process.
3. Estimating the relation between the model outcomes and the model structure.

In the first step, the ground truth is simulated to provide a benchmark. In the second step, this bench-
mark is estimated by generating and simulating plausible model structures. The aforementioned selec-
tion process is relevant in this stage. In the final step, a regression analysis is conducted to see which
elements of the model structure contribute to different simulation model outcomes.

In the first step, the ground truth is simulated. The ground truth is a fixed model structure, introduced
in chapter 4. This model structure is replicated 100 times.

In the second step, the ground truth is estimated by varying the constraints that the model composer
uses. As the structure of an illicit supply chain is unknown and uncertain, there is no objective way
in which these constraints can be set. Therefore, five constraint sets are chosen to reflect different
perspectives on an illicit supply chain:

• Base set (set 1): Base set of constraints
• Different transit ports (set 2): Different dataset for transit ports.
• Larger retailer area (set 3): Different boundaries for locations wholesalers and retailers.
• Larger retailer network (set 4): Larger number of retailers and wholesalers.
• More suppliers (set 5): Higher number of suppliers and manufacturers

Constraint set 2 to 5 are all variations to the base set of constraints. Variations are restricted to one
aspect of the constraints to see what a change in perception of these factors do. Ideally, a full factorial
would have been conducted. However, due to computational constraints this is not possible. Therefore,
only a selection of the constraints are varied, not all constraints are varied. The modifications are
summed below:

• In constraint set 1, the base set of constraints is used. In this constraint set, transit and export
ports are located in Vietnam, and wholesalers and retailers are located in the Netherlands. Fur-
thermore, relatively low numbers of entities are used. Besides, entities do not have high in and
out degrees.

• In constraint set 2, a different dataset for the transit ports is used. In this constraint set, transit
ports can be located outside of Vietnam. The transit ports in this dataset are located in China,
Indonesia, and several other deep sea terminals.

• In constraint set 3, the location in which wholesalers and retailers may be placed is changed. In
this constraint set, retailers and wholesalers may be located in the west of Germany, the North
of Belgium, and the Netherlands. Furthermore, the range they can be allocated in, is expanded
from 80.000 to 200.000 meters.

• In constraint set 4, a larger number of retailers and wholesalers is assumed, compared to the
base set of constraints. In the base set, a maximum of 10 retailers and 3 wholesalers is assumed.
In this constraint set, this number is increased to 20 retailers and 3 wholesalers.

• In constraint set 5, the maximum number of suppliers andmanufacturers is changed. The number
of suppliers is raised from 5 to 15, and the number of manufacturers is increased to 10.

The above constraint sets are chosen to vary as much of the constraints as possible, while keeping the
experiment’s computational costs relatively low. Furthermore, all changes are related to the structure
of the supply chain. Vilko et al. (2014) identify that the structure of an (illicit) supply chain is uncertain.
The exact values for these constraint sets can be found in appendix A.
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The final step of testing the efficacy of model composability is to estimate the relation between model
outcomes and constraints. This is done using several regression analyses, conducted using all the
models generated in the previous step. In this final analysis, the focus is on what specific elements of
a model structure cause the model outcome to change.

The independent values of these regression models are highly related to the constraints of the model
composer. For example, the number of supplier and retailers are included in the analyses. Furthermore,
the average length of a (sea) link is also included. Besides, the (summed) in degrees and out degrees
of each supply chain actor type are also included.



6
Results

In this chapter, the results of the simulation experiments are presented. The results shed light on the
efficacy of the model composer in accounting for structural uncertainty. First, the influence of various
constraint sets on the outcomes of the simulationmodels are covered in section 6.1. Afterwards, section
6.2 covers the relation between the model structure and the simulation outcome.

6.1. Influence of the different constraint sets
The aim of this analysis is to find differences and similarities between various perspectives on an illicit
supply chain. Each perspective contains one hundred models, each generated by using a unique
constraint set. Recall that there are five constraints sets, and multiple simulation outcomes.

The five constraint sets are compared to the ground truth, which functions as a benchmark model. The
ground truth helps to understand how a single simulation model relates to a set of simulation models.
It helps to see the influence of varying the structure on the simulation model outcomes.

To prove that structural uncertainty affects the simulation outcomes, it is of relevance to test whether
each outcome is distributed differently within each constraint set. Therefore, several two sample
kolmogorov-smirnov tests are conducted. A two sample kolmogorov-smirnov test statistically tests
whether two samples are drawn from the same (unknown) distribution or not. An advantage of a two
sample kolmogorov-smirnov test is that it tests the difference between two distributions, rather than the
mean, the median or the standard deviation.

The p-values of the two sample kolmogorov-smirnov tests are shown in figure 6.1. In this figure, six
heatmaps are presented, one for each simulation outcome. Each cell represents a single two sample
kolmogorov-smirnov test. If there is a significant difference between the two constraint sets, the cell
is coloured white. If not, the cell is coloured blue. The figure shows that most constraint sets differ
significantly from each other and from the ground truth, with a few exceptions. This means that all
constraint sets and the ground truth yield different distributions for each simulation outcome, with a
few exceptions. The exceptions relate to the transfer time and the wholesales time, indicating that a
different constraint set has less effect on these simulation outcomes.
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Figure 6.1: Pvalues of two sample kolmogorov-smirnov test, coloured by significance level of 5%

The two sample kolmogorov-smirnov tests indicate that the distributions of the outcomes within each
constraint set differ. However, the tests do not reveal the nature and the magnitude of the differences.
To provide insight in the magnitude of the difference between the constraint sets, KL-divergence is
computed. KL-divergence is ameasure that can be used to compute the relative difference between two
distributions. The higher a KL-divergence value is, the bigger the difference between two distributions
is.
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Figure 6.2: KL-divergence values of constraint sets kernel density functions. No value represents infinite.

Figure 6.2 shows the KL-divergence values of the constraint sets. The figure indicates that constraint
set 5 has a different distribution when it comes to the time in system, the production time, and the
international transport time. Constraint set 2 differs marginally from the other constraint sets when it
comes to the transfer time. Constraint set 3 differs with respect to the demand side time. To explain
and inspect the differences, several histograms and kernel density figures are plot throughout the rest
of this analysis.

Figure 6.3 shows histograms and a kernel density estimates of the time in system. Recall that the time
in system portrays the average total time a single product takes from the beginning of the supply chain
to the end. Within figure 6.3 constraint set 1, 5, and the ground truth are depicted. These sets are
chosen, because the KL-divergence values indicate that constraint set 5 differs the most from the base
set of constraints. The histogram shows that a higher time in system is more frequent in constraint set 5
compared to constraint set 1. Recall that constraint set 5 contains a higher restriction for the number of
suppliers. This higher number of suppliers is causing congestion in the system, causing many products
to delay. The delay in its turn leads to a higher time in system. Figure 6.3 also shows that the constraint
sets 1 and 5 differ significantly from the ground truth. The ground truth is distributed in a much smaller
range than the constraint sets. A single model structure thus provides a far less uncertain perception
of the time in system.
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Figure 6.3: Histogram and kernel density distributions of the time in system

Figure 6.4 shows the distributions of the demand side time. The demand side time is the time it takes
to ship a package from an import port to a retailer. Within this figure, the ground truth and constraint
sets 1 and 3 are shown. The peak of constraint set 3 much more centred to the right than the base
set of constraints (set 1). Recall that constraint set 3 has a larger area for wholesalers and retailers.
In constraint set 3, retailers and wholesalers may be located in the Netherlands, parts of Belgium, and
parts of Germany. In the other constraint sets, retailers and wholesalers may only be located inside
the Netherlands. The figure indicates that the median travel times are larger in constraint set 3 than
in base set of constraints. This figure combined with the two sample kolmogorov-smirnov tests shows
that a different area for wholesalers and retailers result in higher demand side times.
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Figure 6.4: Histogram and kernel density distributions of the demand side time

Figure 6.5 shows the production time of constraint set 1 and constraint set 5. The production time is
the time it takes to process and ship a product from a supplier to an export port. The figure shows that
the median of production times is higher in constraint set 5 compared to constraint set 1. Constraint set
5 allows models to have more suppliers, resulting in more congestion. Due to the congestion, products
have to wait longer before they can be processed and shipped.

Figure 6.5: Histogram and kernel density distributions of the production time

Figure 6.6 shows the transfer time of constraint set 1 and constraint set 2. The transfer time is the
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time a product takes to ship a product from an export port to a transit port. Recall that constraint set
2 allowed the model composer to create models with a different transit port dataset. The transit ports
in constraint set 2 are located outside Vietnam, spread around Asia. Whereas in constraint set 1, all
transit ports are located inside Vietnam. Figure 6.6 shows that the transfer times of constraint set 2
have a longer range. Transfer times range from 7 to 12, instead of 7 to 9.

Figure 6.6: Histogram and kernel density distributions of the transfer time

6.2. The relation between model structure and model outcomes
The aim of this analysis is to find which parts of the model structure are associated with the simulation
model outcomes. To do this, six regression analysis between the model structure elements and the
model outcomes are conducted. The independent variables of these regression analyses are model
structure variables, which are values based on python model objects. For instance, the number of
suppliers and retailers. The dependent variables of the regression models are the simulation outcomes.

The standardized regression coefficients of the regression models are depicted in figure 6.7. The
coefficients provide an insight in which model structural elements affect the simulation model outcomes
most significantly. In this figure, the columns indicate simulation model outcomes, and the rows indicate
the model structural elements. The cells of the heatmap are coloured blue if the relation is negative,
and red if the relation is positive.

The explained variance of each model is reported in table 6.1. It shows that the models of the time
in system, the production time, the international transport time and the wholesales time have high
explained variance. The models of the transfer time and the demand side time have relatively low
explained variance. This is possible due to the fact that these outcomes are effected by constraints
coded in datasets. Because of this, these constraints were not considered in the regression analysis.

The regression model of the time in system has a relatively high explained variance. The heatmap
(figure 6.7) shows that the time in system is associated positively by the number of suppliers. On
the contrary, the number of manufacturers, export ports, transit port, import port and wholesalers are
associated with a lower time in system. Accordingly, addition of extra supply chain actors reduces the
time in system, except for suppliers. Furthermore, the heatmap shows that the addition of extra links
increases the time in system. Possibly due to more inefficient routes in such models.
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A higher number of export ports and manufacturers is associated with a shorter production time. The
more suppliers a model has, the more products are created in the model. An overflow of products might
lead to congestion. The more manufacturers, and exports ports a model has, the less time it takes to
process and ship a product from a supplier to an export port.

The wholesales time correlates positively with the number of import ports. The more import ports there
are, the more products are delivered to the wholesaler. Addition of extra wholesalers reduces the
wholesales time, because there is more capacity to process products.

Figure 6.7: Standardized regression coefficients, coloured by size

Table 6.1: Explained variance of each regression model

Regression model Dependent variable Explained variance (r2)
Model 0 Time in system 0.571
Model 1 Production time 0.803
Model 2 Transfer time 0.234
Model 3 International transport time 0.847
Model 4 Wholesales time 0.517
Model 5 Demand side time 0.269
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Discussion

In this chapter, a discussion is presented. First, section 7.1 discusses the results. Thereafter, section
7.2 highlights the generalizability of this thesis. Afterwards, section 7.3 introduces the limitations of this
study.

7.1. Discussion of results
The aim of this study is to efficaciously account for structural uncertainty in supply chain simulation
models using model driven exploratory modelling. Exploratory modelling is often applied in studies that
deal with a large extent of epistemic uncertainties. In this thesis, an illicit supply chain was modelled
using exploratory modelling. Exploratory modelling helps to model such uncertainties.

Understanding structural uncertainty, starts by strictly defining when a model is deemed valid. Tradi-
tionally, a model is deemed valid whenever it perfectly matches empirical data. If the model matches
the empirical data it is deemed valid, and otherwise it is ’false’. Only a single model can be valid at any
time.

In many cases, it is impossible to establish such a true model. Systems are too complex to understand,
or too few empirical data is available, to formulate a perfect model (Winsberg, 2010). An alternative
to the traditional positivistic view of validation is integrative pluralism. In integrative pluralism multiple
models of the same phenomena can be valid, while having conflicting assumptions (Mitchell, 2009).
When multiple valid models of the same phenomena can be created, one faces structural uncertainty.

Exploratory modelling is a modelling approach, that departs from a family of models, rather than a single
model. Many studies that use exploratory modelling to account for uncertainty, focus on parametric
uncertainty rather structural uncertainty (Halim et al., 2016; Moallemi & Köhler, 2019). Models are
build and validated, and afterwards its parameters are varied to map the effects of uncertainty. The
model structure is assumed fixed and is not subject to discussion. Previous studies thus fail to account
for structural uncertainty.

Not accounting for structural uncertainty can be problematic, especially when models are hard to val-
idate. If the model is not a valid representation of the target system, varying its parameters is mean-
ingless (Pilkey & Pilkey-Jarvis, 2007). This thesis shows that by changing the model building process,
this pitfall can be overcome. By using model composability a plethora of plausible model structures
can be generated. This enables the modeller to see the target system from a variety of perspectives,
rather than a single representation. In this thesis, model composability is applied to generate a set of
simulation models of an illicit supply chain. Standard model components are coupled in a dissimilar
fashion to generate several model structures. The developed models all have a different configuration
to represent structural uncertainty. Models generated by the model composer differ in number of actors,
routes, and locations.
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The results of this thesis show that changing the model building process helps in accounting for struc-
tural uncertainty. By employing model composability, several model components are combined in
different combinations. This enables the modeller to create models with different model structures,
without manually specifying each model. This is a pragmatic advantage over other approaches that
compare several models of different authors, such as Li et al. (2017).

Important patterns and results can be missed when studying a single representation of the target sys-
tem. This study proves this, because the ground truth (a single model structure) differentiates largely
from the model sets generated by model composer, with respect to all studied simulation outcomes.
The uncertainty bandwidths are significantly different. Additionally, this thesis shows that changing the
model structure results in uncertainty bandwidths without varying parameters.

Furthermore, this study highlights the importance of a modellers’ perception on the target system. In
this study, a modellers’ perception is operationalized by generating models with different constraints
sets. Constraint sets define ’the degree of freedom’ of the model composer to generate simulation
models. The results show that by employing a different perspective on the illicit supply chain, different
distributions of simulation outcomes are found. These results suggest that modellers should be aware
of the influence of their perspective of the simulation results. Model composability can help modellers
to record such effects of different perspectives.

The ability of generating models from several perspectives can help to stimulate debate in the policy
arena. Model composability can potentially help involved actors to generate models in line with their
own perspective. This facilitates communication, and makes models more useful in decision-making.

7.2. Generalizability
This research focussed on accounting for structural uncertainty in simulation models of illicit supply
chains. The focus is on illicit supply chains, because decision makers face a substantial amount of
structural uncertainty when regulating these types of supply chains. Nevertheless, the results also
hold for similar legal supply chains with a substantial amount of uncertainty. For example, legal supply
chains of coffee, cocoa or tobacco. The results hold, considering the fact that the model represents the
physical flow of the supply chain. The physical flow of an illicit supply chain is relatively similar to a legal
supply chain (Basu, 2013). The models do not contain any flow of information, and are not considered
with any economic transactions.

Themodels generated in this study are generated specifically for a supply chain that is situated between
Vietnam and the west of Europe. The results are reported specifically for this illicit supply chain. Despite
that, the constraints of the model composer can easily be changed to model a supply chain that is
situated elsewhere. The model composer can thus easily be applied to other uncertain illicit supply
chains.

The results cannot be generalized to all types of supply chains. All models in this thesis represent
single product supply chains, rather than complex multi product supply chains. Complex multi product
supply chains might be modelled similarly, however the conclusion drawn differ.

7.3. Limitations
The results might be affected by five limitations: (1) the limited number of models generated, (2) the
ontology used, (3) the assumptions of the constraints, (4) the simplicity of the individual simulation
components, and (5) the experimental setup.

The first limitation of this study is the limited number of simulation models that are generated. Per
perspective (constraint set) 700 models are generated. These are not all models that could have been
generated by the model composer. It is therefore possible that some useful representations were not
generated by the model composer. However, this study used Shannon’s entropy to make sure that the
generated models are as diverse as possible.
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The second limitation of this study is related to the ontology used (the SES), which specifies which
types of components are present in the model structure. Not every modeller creates the same SES,
even when they try to model the same phenomena. The SES used in this research has seven types
of supply chain actors, because the author believes these seven are of most relevance. However,
the specification of these seven types of supply chain actors might be too limited or advanced. Other
modellers might specify different components, or components with different specification relations. For
instance, one might believe that the system has three types of ports (export, transit and import), while
someone else might believe that there is no relevant difference between these types of ports. However,
the ontology used in this study is based on literature. Therefore, the risk of such disagreement is
mitigated.

The third limitation is related to the constraints used by the model composer. Constraints can be speci-
fied more specific, or more ’advanced’. For instance, a buffer around a port to place a wholesaler could
potentially result in a wholesaler being located closely to the port. Such a constraint can be improved
by specifying a minimum and a maximum range. Another example is the fixed order of supply chain
actors in a simulation model. The model composer links supply chain actors with others, by selecting
one actor of the next tier. For example, a supplier is always followed by a manufacturer. As a conse-
quence, supply chain actors cannot be skipped. Each model structure has a transit port, while in fact
such a port might not always be needed in a transport network. Besides, transport is assumed to be
by boat and truck.

The fourth limitation of this study is the focus on structural uncertainty, originating from the composition
of individual simulation model components. The behaviour of the individual components, such as re-
tailers and manufacturers is fixed. In supply chain systems, this is a reasonable assumption because
the (structural) behaviour of the components is known and not subject to structural uncertainty. Fur-
thermore, this thesis does not account for structural uncertainty originating from unpredictable events.

The fourth limitation of this study is that the model components used in this study are relatively simple.
For instance, supply chain actors have unlimited storage capacity. There is no maximum number in
the number of products that a supply chain actor can store in their storage. Furthermore, supply chain
actors handle just one type of good.

The final limitation of this study are related to the experimental setup of this research. Model parameters
are not changed due to computational constraints. This might be of relevance, because Van Zelm and
Huijbregts (2013) show that there is interaction between the complexity of the model structure and the
size of parametric uncertainty. For instance, an increase in the number of raw goods produced by the
suppliers, will lead to more congestion in the rest of the system regardless of the model structure. This
is because high numbers of products will always lead to queues at other supply chain actors. However,
having one set of parameters enables to focus on structural uncertainty.
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Conclusion

The goal of this research was to efficaciously account for structural uncertainty in supply chain simula-
tion models using model driven exploratory modelling. To accomplish this goal and answer the main
question, four sub questions were formulated. In the following paragraphs, these four questions are
answered one by one.

How to conceptualize structural uncertainty in the context of supply chain simulation models?
How structural uncertainty can be conceptualized largely depends on the modellers view of model
validation. This is important because it determines the number of models of a phenomenon that can be
valid at the same time. A modellers view on validation depends on the research philosophy they use.

From a traditional positivistic view, structural uncertainty does not exist. A model is either false or
true, and therefore there cannot be any uncertainty in the structure of the model. The model is simply
false if its structure is uncertain. Another view is compatible pluralism. Compatible pluralism allows for
multiple models at the same time, however their assumptions should be compatible. Rival explanations
are not allowed. From this view, structural uncertainty exists, but only complementary assumptions are
allowed.

This study advocates integrative pluralism as research philosophy. This research philosophy allows
having multiple models with conflicting assumptions of the same phenomenon. This research philoso-
phy allows for a diversity of perspectives.

What model-driven exploratory modelling approaches are used to account for structural uncer-
tainty in simulation models used in other fields?
Model-driven exploratory modelling encompasses a diversity of approaches. Approaches range from
multi-resolution modelling to the usage of parameter sampling techniques, machine learning algorithms
and optimization algorithms. In this study, the relevance of model composability to the modelling of
structural uncertainty is argued. Utilizing DEVS, it was discussed how a variety of model structures
can be generated using fixed model components. Furthermore, it was shown how the theory of model
coupling in DEVS can be brought to practice, by describing its relation to the SES and by describing
the process of pruning.

How can model-driven exploratory modelling be used to account for structural uncertainty in
the context of supply chain simulation models?
This study has demonstrated how structural uncertainty of an illicit supply chain can be modelled using
model composability, which is a specific form of model-driven exploratory modelling. A family of models
can be generated by defining a standard set of model components, a set of constraints and a model
composer. The model composer couples the standard model components, while complying to the
constraints. Constraints include the order of coupling, the number of components per type, and the
available locations. Model components were tiny submodels of suppliers, manufacturers, ports and
other supply chain actors.

48
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How does a change in perception of the target system change the method’s efficacy?
A change in perspective of the target system changes the assumptions of the model composer. It
changes the constraints that the model composer uses to generate models. Using a particular set
of constraints, a set of models can be generated and simulated. These models combined show a
particular distribution of a simulation outcome. This thesis shows that these distributions differ when
different constraint sets are used to generate the models. The perspective from which a simulation
model is generated, matters to the distribution of simulation outcomes.

Some assumptions had a larger effect on the simulation results than others. When the supply chain
is assumed to have a higher number of manufacturers, ports, wholesalers and retailers, the time in
system is shorter. If the system’s number of suppliers is increased, the time in system becomes longer.
Assumptions such as the indegree and outdegree of supply chain actor had a demonstrable relation
with the simulation results, but their relations were smaller.

Concludingly, this study has shown that model composability, a form of model driven exploratory mod-
elling, can be utilized to account for structural uncertainty in supply chain simulation models. By cou-
pling standardized model components in different configurations, several model structures can be cre-
ated. This study shows the international transport time, the production time and the time in system are
affected most significantly by the structural uncertainty. In the case of illicit supply chains, the number
of suppliers corresponds strongly to time in system, international transport time and the production time.
A different perception on the model structural elements affects the outcomes of the simulation model.

Four recommendations for further research are specified. First, model composability could be used to
account for structural uncertainty in other fields. The technique can be useful in modelling any type
of system with fixed types of components, but an uncertain composition of them. For example, the
technique can be useful in modelling water pipes networks, gas pipes networks, electricity networks,
telecom networks. Especially when the data quality about these systems are bad, the technique can
help to model several possible networks of the networks. For instance, the technique can possibly
help in modelling water pipes system with an uncertain location of the pipes and pump stations. It is
interesting to see if similar results can be achieved in these fields.

Besides that, further research could also focus on changing the behaviour of individual components,
while varying the composition of these components. For instance, multiple variants of a wholesaler
could be introduced, each having different behaviour. One with fixed capacity, one solely based a
processing time, and another based on an advanced sub-model of a distribution centre. These variants
can also be created by a dedicated model composer. Furthermore, it is also interesting to see if the
structure of the simulation model can be varied over time. For example, introducing transit ports at
certain times in the simulation, or removing or adding links during the simulation time.

Third, further research can also focus on the robustness of several policies given an uncertain illicit
supply chain structure. For example, it is useful to try and test which policies are effective given an
uncertain configuration of the illicit supply chain. To do this, both the parameters and the structure
should be varied.

Finally, further research could also aim to discover the most optimal supply chain structure. Because
themodel composer generates several models, further research could focus on finding themost optimal
supply chain structure in terms of processing and production time. Several optimization algorithms can
be tested to see which supply chain is the most effective. It would also be interesting to see if the
constraints of the model composer can be changed by the optimization algorithm to generate more
optimal supply chain structures.
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A
Constraints

This appendix lists all the constraints that were taken into account by the model composer. Table A.1
provides an overview of the constraints in the number of nodes (supply chain actors). Table A.2 shows
the limitations on the indegree and outdegree of nodes. Table A.3 shows the predecessor and the
succesors of the supply chain entities. Supply chain actors can only be succeeded by the successor,
and preceded by their predecessor. Table A.4 shows the datasets used as constraints. The sources of
these datasets are listed in table A.6. Table A.5 shows the buffer sizes used as constraints. Table A.1,
table A.2, table A.3, table A.4, and table A.5 contain the base set of constraints. The datasets listed in
table A.4 are visualized in figure A.1 to A.7.

Table A.7 shows the values that are different in the constraint sets used in the experiments. The
changed datasets in these constraints sets are shown in figure A.8 and figure A.9. Figure A.8 shows the
transit ports used in constraint set 2. This dataset was created by the author, based on discussions with
experts and inspection of Google Maps. Figure A.9 shows the area in which retailers and wholesalers
may be placed in constraint set 3.

Table A.1: Constraints in number of nodes

Constraint Variable name Value

Number of suppliers n_suppliers 5
Number of manufacturers n_manufacturers 5
Number of export ports n_export_ports 2
Number of transit ports n_transit_ports 2
Number of import ports n_import_ports 2
Number of wholesalers n_wholesalers 3
Number of retailers n_retailers 10
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Table A.2: Constraints in degree

Node type Variable name Value (minimum, maximum)

Suppliers indegree range (0,0)
Suppliers outdegree range (1,3)
Manufacturers indegree range (1,3)
Manufacturers outdegree range (1,3)
Export ports indegree range (1,4)
Export ports outdegree range (1,3)
Transit ports indegree range (1,-1)
Transit ports outdegree range (1,-1)
Import ports indegree range (1,-1)
Import ports outdegree range (1,-1)
Wholesalers indegree range (1,-1)
Wholesalers outdegree range (1,-1)
Retailers indegree range (1,3)
Retailers outdegree range (-1,-1)

Note. -1 means that there is no restriction.

Table A.3: Predecessor and successor constraints

Node type Variable name Value

Supplier predecessor None
Supplier successor Manufacturer
Manufacturer predecessor Supplier
Manufacturer successor Export port
Export port predecessor Manufacturer
Export port successor Transit port
Transit port predecessor Export port
Transit port successor Import port
Import port predecessor Transit port
Import port successor Wholesaler
Wholesaler predecessor Import port
Wholesaler successor Retailer
Retailer predecessor Wholesaler
Retailer successor None
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Table A.4: Datasets required

Dataset Description

Ports suppliers side Dataset with ports on the supplier side of the
supply chain

Transit ports Dataset with transit ports (same as ports sup-
plier side)

Land use supplier side Dataset with the land use of the supplier side
area

Borders supplier side Dataset with the administrative borders of the
supplier side

Ports receiver side Dataset with ports on the receiving side of the
supply chain

Land use receiver side Dataset with the land use of the receiving side
of the supply chain

Borders receiver side Dataset with the administrative borders of the
receiving area of the supply chain

Sea dataset Dataset with a binary classification of the
world, distinction between land and water.

Table A.5: Buffer ranges

Buffer Value

Supplier 80.000
Manufacturer 80.000
Wholesaler 80.000
Retailer 80.000
Increment 10.000

Table A.6: Dataset sources

Data set Source

Landuse data sets Buchhorn et al. (2020)
Vietnam ports data set Open development Mekong

(https://data.opendevelopmentmekong.net/dataset/bn-
cng)

Dutch ports own interpretation
Alternative transit ports own interpretation based on satellite imagery

and port lists
Administrative regions Europe Nuts (https://ec.europa.eu/eurostat/web/gisco/geodata/

reference-data/administrative-units-
statistical-units/nuts)

Administrative region Vietnam Open data soft
(https://public.opendatasoft.com/explore/dataset/world-
administrative-boundaries/export/)

Sea dataset Buchhorn et al. (2020)
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Figure A.1: Export and transit ports in the base set of constraints (Ports suppliers and Transit ports)

Figure A.2: Administrative boundaries used in Vietnam (Borders suppliers side)
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Figure A.3: Land-use Vietnam (Land use supplier side)

Figure A.4: Dutch ports of Vlissingen, Rotterdam and Amsterdam. Port of Hamburg (Germany) and Antwerpen (Belgium)
(Ports receiver side)
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Figure A.5: Land use in the Benelux and Western Germany (Land use receiver side)

Figure A.6: Administrative boundaries of the Netherlands (Borders receiver side)
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Figure A.7: Sea dataset (Sea data set)

Table A.7: Variation of constraint sets

Constraints set Variable name Value

Constraint set 1 (base) no changes -
Constraint set 2 (different
transit ports)

Transit ports Dataset with different ports

Constraint set 3 (larger re-
tailer area)

Borders receiver side Different administrative
boundaries for locations
wholesalers and retailers

Constraint set 3 buffer wholesaler 200.000
Constraint set 3 buffer retailer 200.000
Constraint set 4 (Larger re-
tailer network)

n_wholesalers 3

Constraint set 4 (Larger re-
tailer network)

n_retailers 20

Constraint set 5 (larger con-
nected supplier network)

n_suppliers 15

Constraint set 5 (larger con-
nected supplier network)

n_manufacturers 10
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Figure A.8: Transit ports used in constraint set 2
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Figure A.9: Administrative boundaries used in constraint set 3 (Borders receiver side)



B
Unit tests: code validation

This appendix covers some more details on the python implementation of the model composer. Table
B.1 shows all the composer tests that have been constructed to ensure that the code was implemented
as intended. Table B.2 shows all the tests of the utilities used by the composer.

Table B.1: Composer tests

Test name Function to test

test_create_instance function that determines entities per entity
type

test_validate_instance function that checks if an instance (number of
entities per type) is valid

test_validate_instance_search function that searches for a valid combination
of number of entities per type

test_create_ids function that generates a unique id per entity
test_create_graph function that creates a networkx graph from

a combination of number of entities per type
test_create_graph2 function that test a specific case that was

known to result in bugs
test_validate_graph function that tests whether a graph complies

to all in and out degree constraints
test_graph_set function that generates a number of graphs
test_sea_distance function that computes a sea route and its dis-

tance
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Table B.2: Utility tests

Test name Function to test

test_find_overlaps function that checks if two ranges overlap or
not. Used in validating in and out degrees.

test_generate_buffer_zone function that generates a buffer zone
test_get_distance_points_ max function that computes the distance between

two points
test_get_distance_two_points_min function that computes the distance between

two points
test_get_distance_two_points_haversine function that computes the distance between

two point using the mathematical haversine
approach.

test_get_urban_locations_tif function that retrieves a location within a poly-
gon classified as an urban area.



C
Pydsol visualization tool

This appendix is about the web app that is developed to visualize the pydsol simulation components.
A web app is developed to assist in the development of the model composer. The web app helps to
quickly visualize models. This helps to quickly visualize obvious mistakes. The web app shows the
spatial configuration of a model. Figure C.1 shows the UI of the web application. The web app is
developed in VUE.js 3 (released in February 2022), which is a code framework written in JavaScript.
An experimental version of leaflet is used to visualize the model on a map.

The user can drag the map to a location of interest. Furthermore, the user can hover over a specific
model component to view the components’ id, name, and type. Besides, each type of model component
has its own colour. Figure C.1 shows an example of a supply chain model generated using the model
composer. In the figure, two blue circles indicate the transit ports in the model. The orange circles
indicate the manufacturers in the model. The black circles indicate the export ports in this particular
model.

Figure C.1: Pydsol web app visualization utility
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D
Regression analysis topological features
This appendix contains the outcomes of a regression analysis between the outcomes of the simulation
models and the topological features of the models. Table D.1 shows the statistics of this regression
model. Table D.2 presents the model coefficients and their associated p-values.

Table D.1: Time in system statistics

Dep. Variable: Time_In_System R-squared: 0.391
Model: OLS Adj. R-squared: 0.391
Method: Least Squares F-statistic: 3851.
Date: None Prob (F-statistic): 0.00
Time: 15:32:54 Log-Likelihood: -35130.
No. Observations: 30000 AIC: 7.027e+04
Df Residuals: 29994 BIC: 7.032e+04
Df Model: 5
Covariance Type: nonrobust

Table D.2: Time in system statistics

coef std err t P> |t| [0.025 0.975]
edges 0.2144 0.020 10.805 0.000 0.176 0.253
nodes 0.1460 0.029 4.980 0.000 0.089 0.204
betweenness 0.4950 0.009 54.982 0.000 0.477 0.513
degree_centrality -1.6177 0.022 -74.124 0.000 -1.660 -1.575
closeness_centrality 1.1153 0.016 70.259 0.000 1.084 1.146
const -8.275e-16 0.005 -1.84e-13 1.000 -0.009 0.009
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E
Regression analysis model structural

elements
This appendix contains all regression analysis of the constraints (model structural elements) and the
simulation models. In these regression analyses, all simulation results from all constraint sets are
included. In each regression model, the dependent variable is the outcome of the simulation model.

Table E.1 and E.2 present the (standardized) regression coefficients and statistics of a regressionmodel
with the time in system as dependent variable. Tables E.3 and E.4 show the coefficients and statistics of
the production time. Tables E.5 and E.6 show the coefficients and statistics of the transfer time. Tables
E.7 and E.8 present the outcomes of the regression between the model structural elements and the
international transport time. Tables E.9 and E.10 show the results of a model with the wholesales time
as dependent variable. Finally, table E.11 and E.12 show the coefficients and statistics of a regression
model with the demand side time as dependent variable.

Table E.1: Time in system statistics

Dep. Variable: Time_In_System R-squared: 0.571
Model: OLS Adj. R-squared: 0.570
Method: Least Squares F-statistic: 2344.
Date: None Prob (F-statistic): 0.00
Time: 12:07:03 Log-Likelihood: -29885.
No. Observations: 30000 AIC: 5.981e+04
Df Residuals: 29982 BIC: 5.996e+04
Df Model: 17
Covariance Type: nonrobust
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Table E.2: Time in system coefficients

coef std err t P> |t| [0.025 0.975]
n_suppliers 0.4822 0.009 56.561 0.000 0.465 0.499
n_manufacturers -0.4789 0.011 -41.827 0.000 -0.501 -0.456
n_export_ports -0.2753 0.008 -32.979 0.000 -0.292 -0.259
n_transit_ports -0.0510 0.010 -5.176 0.000 -0.070 -0.032
n_import_ports -0.1212 0.008 -15.716 0.000 -0.136 -0.106
n_wholesalers -0.0326 0.008 -4.176 0.000 -0.048 -0.017
n_retailers -0.2408 0.016 -15.481 0.000 -0.271 -0.210
total_length_link 0.1078 0.006 18.332 0.000 0.096 0.119
total_length_link_sea -0.0043 0.019 -0.222 0.824 -0.042 0.033
n_sealinks 0.1320 0.034 3.918 0.000 0.066 0.198
n_links 0.6935 0.035 19.844 0.000 0.625 0.762
supplier_outdegree 0.0870 0.009 9.726 0.000 0.069 0.105
manufacturer_outdegree 0.0490 0.007 6.982 0.000 0.035 0.063
manufacturer_indegree 0.0870 0.009 9.726 0.000 0.069 0.105
export_port_outdegree -0.0716 0.009 -8.098 0.000 -0.089 -0.054
export_port_indegree 0.0490 0.007 6.982 0.000 0.035 0.063
transit_port_outdegree -0.0623 0.008 -7.743 0.000 -0.078 -0.047
transit_port_indegree -0.0716 0.009 -8.098 0.000 -0.089 -0.054
import_port_outdegree -0.0290 0.004 -7.022 0.000 -0.037 -0.021
import_port_indegree -0.0623 0.008 -7.743 0.000 -0.078 -0.047
wholesaler_outdegree -0.1257 0.006 -21.184 0.000 -0.137 -0.114
wholesaler_indegree -0.0290 0.004 -7.022 0.000 -0.037 -0.021
retailer_indegree -0.1257 0.006 -21.184 0.000 -0.137 -0.114
const 3.886e-16 0.004 1.03e-13 1.000 -0.007 0.007

Table E.3: Production time statistics

Dep. Variable: Production_Time R-squared: 0.803
Model: OLS Adj. R-squared: 0.803
Method: Least Squares F-statistic: 7172.
Date: None Prob (F-statistic): 0.00
Time: 12:07:04 Log-Likelihood: -18228.
No. Observations: 30000 AIC: 3.649e+04
Df Residuals: 29982 BIC: 3.664e+04
Df Model: 17
Covariance Type: nonrobust
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Table E.4: Production time coefficients

coef std err t P> |t| [0.025 0.975]
n_suppliers 0.3298 0.006 57.064 0.000 0.318 0.341
n_manufacturers -0.2794 0.008 -35.989 0.000 -0.295 -0.264
n_export_ports -0.9577 0.006 -169.205 0.000 -0.969 -0.947
n_transit_ports 0.0053 0.007 0.793 0.428 -0.008 0.018
n_import_ports -0.0028 0.005 -0.540 0.589 -0.013 0.007
n_wholesalers -0.0179 0.005 -3.383 0.001 -0.028 -0.008
n_retailers -0.0198 0.011 -1.882 0.060 -0.041 0.001
total_length_link 0.0463 0.004 11.618 0.000 0.038 0.054
total_length_link_sea -0.0009 0.013 -0.070 0.944 -0.026 0.025
n_sealinks 0.3059 0.023 13.387 0.000 0.261 0.351
n_links 0.1178 0.024 4.973 0.000 0.071 0.164
supplier_outdegree 0.1275 0.006 21.009 0.000 0.116 0.139
manufacturer_outdegree 0.0649 0.005 13.639 0.000 0.056 0.074
manufacturer_indegree 0.1275 0.006 21.009 0.000 0.116 0.139
export_port_outdegree -0.0481 0.006 -8.036 0.000 -0.060 -0.036
export_port_indegree 0.0649 0.005 13.639 0.000 0.056 0.074
transit_port_outdegree -0.0478 0.005 -8.758 0.000 -0.058 -0.037
transit_port_indegree -0.0481 0.006 -8.036 0.000 -0.060 -0.036
import_port_outdegree 0.0388 0.003 13.857 0.000 0.033 0.044
import_port_indegree -0.0478 0.005 -8.758 0.000 -0.058 -0.037
wholesaler_outdegree -0.0394 0.004 -9.801 0.000 -0.047 -0.032
wholesaler_indegree 0.0388 0.003 13.857 0.000 0.033 0.044
retailer_indegree -0.0394 0.004 -9.801 0.000 -0.047 -0.032
const 2.359e-16 0.003 9.2e-14 1.000 -0.005 0.005

Table E.5: Transfer time statistics

Dep. Variable: Transfer_Time R-squared: 0.234
Model: OLS Adj. R-squared: 0.233
Method: Least Squares F-statistic: 537.6
Date: None Prob (F-statistic): 0.00
Time: 12:07:06 Log-Likelihood: -38577.
No. Observations: 30000 AIC: 7.719e+04
Df Residuals: 29982 BIC: 7.734e+04
Df Model: 17
Covariance Type: nonrobust
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Table E.6: Transfer time coefficients

coef std err t P> |t| [0.025 0.975]
n_suppliers -0.0902 0.011 -7.916 0.000 -0.112 -0.068
n_manufacturers -0.1133 0.015 -7.405 0.000 -0.143 -0.083
n_export_ports 0.2058 0.011 18.456 0.000 0.184 0.228
n_transit_ports 0.0633 0.013 4.811 0.000 0.038 0.089
n_import_ports -0.2164 0.010 -21.007 0.000 -0.237 -0.196
n_wholesalers -0.0093 0.010 -0.889 0.374 -0.030 0.011
n_retailers -0.0454 0.021 -2.183 0.029 -0.086 -0.005
total_length_link -0.1222 0.008 -15.560 0.000 -0.138 -0.107
total_length_link_sea 2.3747 0.026 92.380 0.000 2.324 2.425
n_sealinks -2.1998 0.045 -48.850 0.000 -2.288 -2.112
n_links 0.2473 0.047 5.297 0.000 0.156 0.339
supplier_outdegree -8.167e-05 0.012 -0.007 0.995 -0.024 0.023
manufacturer_outdegree 0.0281 0.009 2.999 0.003 0.010 0.047
manufacturer_indegree -8.167e-05 0.012 -0.007 0.995 -0.024 0.023
export_port_outdegree 0.4191 0.012 35.496 0.000 0.396 0.442
export_port_indegree 0.0281 0.009 2.999 0.003 0.010 0.047
transit_port_outdegree -0.3659 0.011 -34.062 0.000 -0.387 -0.345
transit_port_indegree 0.4191 0.012 35.496 0.000 0.396 0.442
import_port_outdegree 0.0176 0.006 3.189 0.001 0.007 0.028
import_port_indegree -0.3659 0.011 -34.062 0.000 -0.387 -0.345
wholesaler_outdegree -0.0607 0.008 -7.658 0.000 -0.076 -0.045
wholesaler_indegree 0.0176 0.006 3.189 0.001 0.007 0.028
retailer_indegree -0.0607 0.008 -7.658 0.000 -0.076 -0.045
const 1.346e-15 0.005 2.66e-13 1.000 -0.010 0.010

Table E.7: International transport time statistics

Dep. Variable: International_Transport_Time R-squared: 0.847
Model: OLS Adj. R-squared: 0.847
Method: Least Squares F-statistic: 9795.
Date: None Prob (F-statistic): 0.00
Time: 12:07:07 Log-Likelihood: -14367.
No. Observations: 30000 AIC: 2.877e+04
Df Residuals: 29982 BIC: 2.892e+04
Df Model: 17
Covariance Type: nonrobust
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Table E.8: International transport time coefficients

coef std err t P> |t| [0.025 0.975]
n_suppliers 0.0340 0.005 6.688 0.000 0.024 0.044
n_manufacturers -0.0920 0.007 -13.479 0.000 -0.105 -0.079
n_export_ports 0.9104 0.005 182.937 0.000 0.901 0.920
n_transit_ports -0.0521 0.006 -8.879 0.000 -0.064 -0.041
n_import_ports -0.1056 0.005 -22.971 0.000 -0.115 -0.097
n_wholesalers -0.0075 0.005 -1.618 0.106 -0.017 0.002
n_retailers -0.1920 0.009 -20.705 0.000 -0.210 -0.174
total_length_link 0.0406 0.004 11.588 0.000 0.034 0.047
total_length_link_sea -0.0026 0.011 -0.224 0.823 -0.025 0.020
n_sealinks -0.2514 0.020 -12.509 0.000 -0.291 -0.212
n_links 0.4799 0.021 23.032 0.000 0.439 0.521
supplier_outdegree -0.0759 0.005 -14.229 0.000 -0.086 -0.065
manufacturer_outdegree -0.0345 0.004 -8.243 0.000 -0.043 -0.026
manufacturer_indegree -0.0759 0.005 -14.229 0.000 -0.086 -0.065
export_port_outdegree -0.0060 0.005 -1.139 0.255 -0.016 0.004
export_port_indegree -0.0345 0.004 -8.243 0.000 -0.043 -0.026
transit_port_outdegree 0.0018 0.005 0.367 0.714 -0.008 0.011
transit_port_indegree -0.0060 0.005 -1.139 0.255 -0.016 0.004
import_port_outdegree -0.0729 0.002 -29.611 0.000 -0.078 -0.068
import_port_indegree 0.0018 0.005 0.367 0.714 -0.008 0.011
wholesaler_outdegree -0.0651 0.004 -18.411 0.000 -0.072 -0.058
wholesaler_indegree -0.0729 0.002 -29.611 0.000 -0.078 -0.068
retailer_indegree -0.0651 0.004 -18.411 0.000 -0.072 -0.058
const -4.996e-16 0.002 -2.21e-13 1.000 -0.004 0.004

Table E.9: Wholesales time statistics

Dep. Variable: Wholesales_Time R-squared: 0.517
Model: OLS Adj. R-squared: 0.516
Method: Least Squares F-statistic: 1886.
Date: None Prob (F-statistic): 0.00
Time: 12:07:08 Log-Likelihood: -31661.
No. Observations: 30000 AIC: 6.336e+04
Df Residuals: 29982 BIC: 6.351e+04
Df Model: 17
Covariance Type: nonrobust
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Table E.10: Wholesales time coefficients

coef std err t P> |t| [0.025 0.975]
n_suppliers 0.0439 0.009 4.857 0.000 0.026 0.062
n_manufacturers -0.0620 0.012 -5.100 0.000 -0.086 -0.038
n_export_ports 0.0476 0.009 5.371 0.000 0.030 0.065
n_transit_ports -0.0248 0.010 -2.374 0.018 -0.045 -0.004
n_import_ports 0.4264 0.008 52.128 0.000 0.410 0.442
n_wholesalers -0.4973 0.008 -59.961 0.000 -0.514 -0.481
n_retailers -0.0740 0.017 -4.485 0.000 -0.106 -0.042
total_length_link -0.0076 0.006 -1.217 0.224 -0.020 0.005
total_length_link_sea 0.0954 0.020 4.675 0.000 0.055 0.135
n_sealinks 0.0369 0.036 1.031 0.303 -0.033 0.107
n_links 0.1833 0.037 4.943 0.000 0.111 0.256
supplier_outdegree -0.0307 0.009 -3.229 0.001 -0.049 -0.012
manufacturer_outdegree 0.0150 0.007 2.010 0.044 0.000 0.030
manufacturer_indegree -0.0307 0.009 -3.229 0.001 -0.049 -0.012
export_port_outdegree -0.0308 0.009 -3.284 0.001 -0.049 -0.012
export_port_indegree 0.0150 0.007 2.010 0.044 0.000 0.030
transit_port_outdegree 0.0244 0.009 2.865 0.004 0.008 0.041
transit_port_indegree -0.0308 0.009 -3.284 0.001 -0.049 -0.012
import_port_outdegree 0.1149 0.004 26.221 0.000 0.106 0.123
import_port_indegree 0.0244 0.009 2.865 0.004 0.008 0.041
wholesaler_outdegree -0.0277 0.006 -4.399 0.000 -0.040 -0.015
wholesaler_indegree 0.1149 0.004 26.221 0.000 0.106 0.123
retailer_indegree -0.0277 0.006 -4.399 0.000 -0.040 -0.015
const 5.152e-15 0.004 1.28e-12 1.000 -0.008 0.008

Table E.11: Demand side time statistics

Dep. Variable: Demand_Side_Time R-squared: 0.269
Model: OLS Adj. R-squared: 0.269
Method: Least Squares F-statistic: 649.3
Date: None Prob (F-statistic): 0.00
Time: 12:07:09 Log-Likelihood: -37866.
No. Observations: 30000 AIC: 7.577e+04
Df Residuals: 29982 BIC: 7.592e+04
Df Model: 17
Covariance Type: nonrobust
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Table E.12: Demand side time coefficients

coef std err t P> |t| [0.025 0.975]
n_suppliers 0.2930 0.011 26.343 0.000 0.271 0.315
n_manufacturers -0.1096 0.015 -7.334 0.000 -0.139 -0.080
n_export_ports -0.1579 0.011 -14.494 0.000 -0.179 -0.137
n_transit_ports -0.0813 0.013 -6.330 0.000 -0.107 -0.056
n_import_ports 0.3043 0.010 30.248 0.000 0.285 0.324
n_wholesalers -0.1708 0.010 -16.743 0.000 -0.191 -0.151
n_retailers -0.1823 0.020 -8.984 0.000 -0.222 -0.143
total_length_link 0.3621 0.008 47.202 0.000 0.347 0.377
total_length_link_sea 0.4018 0.025 16.007 0.000 0.353 0.451
n_sealinks 0.0151 0.044 0.343 0.732 -0.071 0.101
n_links 0.1175 0.046 2.576 0.010 0.028 0.207
supplier_outdegree -0.1424 0.012 -12.198 0.000 -0.165 -0.120
manufacturer_outdegree -0.0211 0.009 -2.309 0.021 -0.039 -0.003
manufacturer_indegree -0.1424 0.012 -12.198 0.000 -0.165 -0.120
export_port_outdegree -0.0058 0.012 -0.504 0.614 -0.028 0.017
export_port_indegree -0.0211 0.009 -2.309 0.021 -0.039 -0.003
transit_port_outdegree -0.1573 0.010 -14.992 0.000 -0.178 -0.137
transit_port_indegree -0.0058 0.012 -0.504 0.614 -0.028 0.017
import_port_outdegree 0.0193 0.005 3.583 0.000 0.009 0.030
import_port_indegree -0.1573 0.010 -14.992 0.000 -0.178 -0.137
wholesaler_outdegree -0.0208 0.008 -2.689 0.007 -0.036 -0.006
wholesaler_indegree 0.0193 0.005 3.583 0.000 0.009 0.030
retailer_indegree -0.0208 0.008 -2.689 0.007 -0.036 -0.006
const -1.624e-15 0.005 -3.29e-13 1.000 -0.010 0.010
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