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Summary

The location of laminar to turbulent transition is an important consideration as turbulent flow is associ-
ated with higher skin friction drag and, by extension, lower fuel economy. In unswept boundary layers,
natural transition proceeds by the amplification of Tollmien–Schlichting waves. Tollmien–Schlichting
waves are convective instabilities with spanwise oriented vorticity. The amplification of these instabil-
ities/perturbations is sensitive to roughness elements, such as forward-facing steps. These surface
imperfections are inevitable as steps, gaps, and humps are a byproduct of mismatch between panels
of a wing. However, their interaction with Tollmien–Schlichting waves is not very well understood.

Direct numerical simulation of the flow field around forward facing steps has been performed in
this thesis to gain an in-depth understanding of the particular flow features that stabilise or destabilise
the incoming Tollmien–Schlichting wave, with respect to a flat plate zero pressure gradient flow. The
forward facing step is found to significantly distort the base flow, its effect scaling with the roughness
Reynolds number in the upstream regime. This distortion of the base flow is observed to amplify the
incoming instability, both upstream and far downstream. At the step location, however, stabilisation or
destabilisation can be observed, depending upon the height of the step. The step causes the incoming
Tollmien–Schlichting wave to split into two, just upstream of the step, and leads to two counter-rotating
structures at the step location. The interaction of these structures influences downstream growth. Lo-
calised stabilisation is observed, at the step location, for step heights that are smaller than the boundary
layer displacement thickness. Destabilisation is observed for larger step heights.

The upstream base flow distortion is due to an adverse pressure gradient imposed by the forward
facing step. The magnitude of the pressure gradient is found to scale with the roughness Reynolds
number. The upstream amplification is due to the Tollmien–Schlichting wave encountering the distorted
base flow. The response of the Tollmien–Schlichting wave to the distorted base flow is observed to scale
with its wavelength. The ratio of the roughness Reynolds number to the wavelength (𝑅𝑒 /𝜆) is found
to be the governing parameter for the upstream interaction of the step with the instability.
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1
Roughness Induced Transition in

Unswept Incompressible Boundary
Layers

1.1. Motivation
The most critical consideration in the design of an aircraft is its lift to drag ratio; how much drag does
the aircraft have to overcome to achieve the desired lift. The higher the drag of the aircraft, the greater
is the operational cost due to lower fuel efficiency. Laminar flow produces less skin friction drag as
compared to turbulent flow, resulting in greater fuel efficiency. In the absence of laminar separation
bubbles, it is preferable, therefore, to maintain laminar flow as much as possible over the wing of the
aircraft.

A turbulent boundary layer, in contrast to a laminar boundary layer, is characterised by fuller velocity
profiles, featuring a larger wall-normal gradient of the streamwise velocity at the wall. This results in
a larger wall shear stress (𝜏 = 𝑑�̃�/𝑑�̃�|wall) and therefore, greater skin friction drag. The greater
drag then leads to lower fuel efficiency, higher flight costs and a higher carbon footprint. Currently,
air travel represents 3% of the yearly worldwide carbon emissions [42]. It is expected to rise with air
travel becoming increasingly popular, and the number of aircraft expected to more than double from
2019 to 2038 [1]. Natural transition, however, is inevitable for almost all realistic scenarios. While
it is challenging to maintain laminar flow over the entire length of the wing, a better understanding
of the transition process can aid in delaying transition, reducing skin friction drag and, consequently,
improving fuel effeciency.

The transition to turbulence is brought about due to ’disturbances’ that exist in a laminar boundary
layer. These disturbances can initially be brought about by a number of factors including, but not
limited to, vibrations, surface imperfections and acoustic waves. Depending upon how the boundary
layer reacts to these perturbations, they can either amplify, decay or maintain their amplitude. If the
disturbances amplify and obtain a significant amplitude, the boundary layer transitions into turbulence.
If instead, they decay, laminar flow is maintained.

The evolution of these perturbations over simple geometries, for example a flat plate, can be anal-
ysed with reasonable accuracy, with the aid of stability analysis. Stability analysis tools, such as the
Orr-Sommerfeld (OS) equation and the Parabolised Stability Equations (PSE), are essentially simpli-
fications of the Navier Stokes equations. Due to the underlying assumptions, most of these stability
analysis tools may fail with non-parallelism in the boundary layer. Moreover, most stability analysis
tools also do not take into account non-linearity and, thus, begin to fail as the perturbations grow and

1



2 1. Roughness Induced Transition in Unswept Incompressible Boundary Layers

the nonlinear effects kick in. For more detail regarding the formulation and underlying assumptions,
the reader is reffered to Section 2.3. Under certain conditions, such as if streamwise changes in the
flow are small or their effect is negligible, stability analysis tools can even be extended to slightly more
complex geometries, such an airfoil, with an external pressure gradient. Anything beyond such simple
geometries, however, and the validity of the assumptions in the stability analysis tools become ques-
tionable. This is why the study of the stability of the flow over complex geometries, such as flow in the
presence of a roughness element, is not very well understood.

These roughness elements, particularly forward and backward facing steps, are a natural by-product
of mismatch between panels on a wing. Eliminating these would prove to be needlessly costly. An
understanding of how these roughness elements influence the point of transition can aid in the design
of the wing. Should these roughness elements delay transition, an understanding of the physics can
enable an engineer to strategically place them. Alternatively, if these roughness elements bring the
point of transition forward, an understanding of how they modify the stability of a boundary layer can
provide acceptable tolerance levels.

Stability analysis tools can not accurately predict the impact of roughness elements on the stability
of a boundary layer. Direct Numerical Simulation (DNS), despite the high cost, can be a very useful
tool to understand the flow physics around steps, gaps and humps, as it allows the resolution of all the
essential features of the flow that work together to cause a modification of the incoming instability. The
control of these instabilities near such complex geometries is only possible if a thorough understanding
of the flow physics around them is gained.

1.2. Transition Mechanisms in Unswept Boundary Layers
Critical Reynolds numbers are often presented in basic fluid dynamics courses, demarcating a sharp
boundary beyond which laminar flow can not and does not exist. In reality, however, the transition to
turbulence is due to the amplification of perturbations and should these perturbations not exist, laminar
flow can be maintained indefinitely. In the absence of perturbations, the steady state solution of the
Navier Stokes equations is referred to as the laminar base flow. This is discussed in further detail in
Section 2.3.

In all practical scenarios, there are disturbances. These disturbances lead to perturbations in the
boundary layer and laminar flow can not be maintained indefinitely. The mechanism that ultimately
causes transition is a function of both the initial boundary layer perturbation and the underlying laminar
base flow. For 2D unswept boundary layers, transition usually proceeds through the amplification of
Tollmien–Schlichting (TS) waves.

In natural transition, such as what happens in low turbulence environments, transition is governed
by the growth of TS waves, with an infinitesimally small initial amplitude (Path A in Figure 1.1). In such
a scenario, perturbations in the boundary layer can be decomposed into eigenmodes that develop
independently of each other. The frequency of a particular TS mode defines the domain where it
amplifies and the corresponding growth rate. As TS waves obtain a significant amplitude, the onset of
secondary instabilities follows, which ultimately leads to turbulence.

However, transition to turbulence through TS waves, with an extended region of linear growth,
occurs only if the initial perturbations are small, seen, for example, on the wings of an aircraft [43].
Transition is a complex process, for which there does not exist a single general theory that governs all
possible routes to turbulence [7]. Small changes in the freestream turbulence or local roughness can
strongly alter the mechanism that causes transition.

In cases where the external disturbances have significant amplitude, non-modal growth can be
immediately triggered, leading to path C or D in Figure 1.1. If the initial perturbations are very large,
transition can immediately be triggered, as in path E in Figure 1.1.
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Figure 1.1: Possible routes to turbulence [16].

1.2.1. Tollmien–Schlichting Waves

TS waves are perturbations in the flow, with spanwise oriented vorticity, that convect with the flow. In
unswept boundary layers, that do not have a spanwise component of the velocity, they are the primary
transition mechanism. The wavelike nature of these perturbations permits describing them in terms
of frequencies and wavenumbers. In a boundary layer, TS waves of different frequencies often exist
simulataneously, each exhibiting a different growth rate (amplification or decay).

The frequency of the TS wave also defines the shape function. The shape function of a typical TS
wave is shown in Figure 1.2. Two maximas in the wall normal direction for the streamwise perturbation
and a single maxima for the wall normal perturbation can be observed. Higher frequencies have shape
functions where their maximas lie closer to the wall. The shape function of a TS wave, together with
its frequency and wavenumber define the TS wave. TS waves can be 2D or 3D in nature, with oblique
waves being associated with a non-zero spanwise wavenumber (𝛽). However, according to Squire’s
theorem [58], 2D TS waves are more amplified than their 3D counterparts. A study of the stability of a
2D flow can, therefore, be described well by the response and amplification of 2D TS waves.

The process of transition can be split into the initial introduction of perturbations into the boundary
layer, called receptivity, followed by growth of the TS waves in the boundary layer, leading ultimately to
breakdown. These are discussed briefly, in the following sections.
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Figure 1.2: Characteristic shape function of a TS wave for the wall normal perturbation (a) and the streamwise perturbation (b).
Thick lines indicate the absolute of the perturbation while thin lines indicate the real and imaginary part, related to the phase of

the TS wave [58].

1.2.2. Receptivity of Unswept Boundary Layers

The first step in transition is receptivity - the process through which the boundary layer localises distur-
bances [39]. These disturbances can be, for example, in the form of acoustic waves [22, 54], freestream
disturbances [53], or small roughness elements [31]. Receptivity establishes the initial conditions for
the amplitude, frequency, wavenumber and the phase of the resulting disturbance [55].

The phase speed of a TS wave is approximately one third of the streamwise freestream velocity [58].
This is a fraction of the phase speed of acoustic waves, which travel at the speed of sound, or vortical
disturbances, which travel with the freestream. Naturally occurring receptivity mechanisms, therefore,
have to go through a wavenumber conversion mechanism when the disturbances are localised within
the boundary layer. This conversion usually takes place in regions of large streamwise gradients,
such as near the leading edge [21]. On the other hand, forced mechanisms, such as suction and
blowing or a vibrating string usually have the energy at the appropriate wavenumber and frequency,
and wavenumber conversion does not have to take place [55]. Forced mechanisms, therefore, do not
need large streamwise gradients.

1.2.3. Growth of Tollmien–Schlichting Waves

Once perturbations have been localised into the boundary layer through receptivity, TS waves grow
by extracting energy from the base flow, through linear mechanisms [58] by the work done by the
perturbations on the velocity gradients in the flow.

For a predefined base flow, the growth of TS waves is a function of its frequency. The frequency
defines not only the growth rate of the corresponding TS wave, but also its domain of instability. For
a given frequency, the streamwise location where the wave initially becomes unstable is referred to
as branch I of the neutral stability curve. The streamwise location where the amplification stops and
is followed by an exponential decay of the corresponding TS wave is referred to as branch II of the
neutral stability curve. If the amplification between branch I and branch II is ’significant’, transition to
turbulence occurs. Figure 1.3 shows the neutral stability curve for a Blasius boundary layer, obtained
by an OS analysis (see in Section 2.3.1). Both branch I and II of higher frequencies lies upstream as
compared to lower frequencies.

Whether an amplification between branch I and II is significant is defined by the 𝑁 factor. The 𝑁
factor represents the cumulative effect of the growth rate experienced by a TS wave within its region
of instability and is defined as:
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Figure 1.3: Neutral stability curve of the Blasius profile determined using the OS equation. is a global non-dimensional
frequency.

𝑁 = −∫ 𝛼 𝑑𝑥 = ln(
𝐴 ,
𝐴 ) , (1.1)

where 𝐴 , represents the maximum amplitude of the streamwise component of an instability in the
wall-normal direction, at a given streamwise location. 𝐴 is the maximum amplitude of the streamwise
perturbation in the wall-normal direction at branch I of the neutral instability curve. −𝛼 is the growth
rate of the instability. 𝑥 is the streamwise location of branch I of the neutral stability curve and 𝑥 is
the point at which the 𝑁 factor is to be calculated.

The 𝑁 factor that triggers transition depends upon freestream turbulence levels. In low turbulence
environments, the critical 𝑁 factor is higher and vice versa. Typical critical 𝑁 factors can vary from 7-9,
depending upon the freestream turbulence levels.

1.2.4. Breakdown to turbulence

The final breakdown to turbulence is triggered when TS waves grow until the streamwise perturbation
is about 1% [70] of the freestream value. The perturbations, then, become susceptible to a secondary
instability. The secondary instability consists of a spanwise modulation of the TS wave, resulting in Λ-
shaped vortices. These vortices precede turbulent spots that ultimately lead to turbulence [56]. K-type
transition [32], and H-type [25] transition are the two main transition mechanisms.

In both K-type and H-type transition, a spanwise modulation of the velocity profile is observed [3],
with H-type transition occuring at a lower disturbance amplitude of about 0.3% of the freestream value
[70]. The inital process of transition in a 2D unswept boundary layer, therefore, is two dimensional. It
is not until the amplitude of the TS is about 0.3 − 1%, that 3D instabilities and effects play a role. The
initial process of transition can accurately be described by the two-dimensional Navier Stokes.

The primary instability, therefore, does not directly lead to transition but allows the formation of the
secondary instabilities. Following the occurrence of these secondary instabilities, the final breakdown
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is initiated. Turbulent spots appear and grow, ultimately coalescing to a fully turbulent flow [70]. The
growth of the three-dimensional structures to form the spanwise modulated flow occurs over several
wavelengths of the TS wave. However, the final breakdown is much quicker, occurring over about one
wavelength of the TS wave [58].

1.3. Effect of Surface Roughness
Among the different parameters that can affect transition, roughness is amongst the most relevant. It
is also unavoidable in an aircraft as, in addition to surface waviness, gaps, ramps and steps are a
natural result of mismatch between panels. Earlier work on the subject revolved around calculating
the critical roughness height that tripped the boundary layer and caused transition [67]. At that point,
it was erroneously believed that the transition point immediately moves upstream as the roughness
height reaches a certain critical height. Later experiments [17, 66], however, showed that the transition
location moves progressively upstream as the height of the roughness element increases.

It is now well established that roughness elements have an effect on boundary layer below the
critical height that trips the flow. Not only does it have an impact on the initial receptivity process, it also
interacts with the incoming TS wave. Recently, an effort has been put into developing semi-empirical
models, with the aid of experiments [47, 48, 68] and simulations [16], that could aid in predicting the
location of transition. The interaction of these roughness elements with TS waves, in prior work, has
primarily observed an amplification of the incoming instability. However, very particular configurations
of these roughness elements have also been observed to delay transition.

The section explores the impact of roughness element, as observed in literature, in terms of its
impact on the receptivity of a boundary layer and the interaction of TS waves with roughness elements.

1.3.1. Receptivity due to Surface Roughness

In the absence of forced mechanisms, boundary layer receptivity occurs primarily in regions where
there are large streamwise gradients. This can be near the leading edge [21], for example, or when the
flow needs to adjust due to a roughness element rapidly [22]. Large roughness elements can cause a
significant modification of the stability of a boundary layer locally, while small roughness elements can
serve to increase the local receptivity [51]. The disturbances localised into the boundary layer are of the
same frequency as that in the freestream but have a different wavenumber [61], through a wavenumber
conversion mechanism, corresponding approximately to the solution of the Orr Sommerfeld equation.

Sescu, Visbal and Rizetta [59] concluded that steps and ramps were more receptive to acoustic
waves than to vortical disturbances in the freestream. Sescu, Visbal and Rizetta [59] also observed
that a BFS resulted in a greater receptivity to these disturbances as compared to a forward-facing step.
Furthermore, the impact of the shape of the roughness element was studied by Shen and Lu [61]. They
found that, whereas the frequency and wavenumber of the TS wave is not altered, its amplitude and
phase is modified as the shape of the roughness element changes. Amplitudes of TS waves generated
by a sine hump were found to be higher than those generated by a sine gap.

In addition to the large streamwise gradients that cause greater receptivity of a boundary layer with
a separation bubble to acoustic noise is much higher than one without [40]. Roughness elements
can lead to significant separation bubbles. Backward facing steps exhibit (BFS) a separation bubble
downstream. Forward facing steps are susceptible to one or two separation bubbles with the extent of
the separation bubbles increasing as the step height increases [16]. Therefore, the greater the height
of a forward facing step, the higher the receptivity of the boundary layer to acoustic noise.
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1.3.2. Interaction with Tollmien–Schlichting Waves

Roughness elements lead to modified base flow profiles. The distorted base flow profiles often exhibit
inflection points, observed for both forward and backward facing steps, that can significantly modify
incoming TS waves. The shape of the TS wave changes and it exhibits a new maxima in the stream-
wise perturbation. This was observed by Nayfeh, Ragab & Al-Maaitah [41] in the OS analysis of flow
over bulges. The distorted TS waves exhibited much larger growth rates and resulted in an overall
destabilisation of the flow. Boiko et al. [6] also observed, through experiments the modified instability
behind roughness elements and found it similar to instabilities in mixing layers.

The existence of a new peak in the shape of the instability near a forward facing step, close to the
inflection point, was also observed through stability analysis performed by Gao, Park and Park [20]
and Park and Park [46], through DNS by Danabasoglu and Biringen [11] and experimentally by Dovgal
& Kozlov [13]. The new third peak increases in value until it is comparable to the largest peak of the
original TS wave and then disappears as the base flow recovers to its undistorted state (see Figure
1.4).

Figure 1.4: Three peak structure of a modified TS wave interacting with a FFS [46].

The presence of the inflection point due to the distorted base flows causes the instability to obtain
a mixed viscous-inviscid nature close to the roughness element, as proposed by Danabasoglu and
Biringen [11]. Thismixed viscous-inviscid nature was attributed to the higher growth rate observed close
to roughness elements by Danabasoglu and Biringen [11]. In order to observe these inviscid instabilities
in the flowDanabasoglu and Biringen [11] conducted a ’2DDNS’ simulation, by supressing the spanwise
velocity, of the flow over a rectangular step. The DNS results were complimented by performing an OS
analysis of separated regions of the flow. The DNS analysis showed that disturbances with frequencies
that would be damped for a Blasius flow show significant growth rates near a step and can be almost as
amplified as an instability that is naturally unstable for the equivalent Blasius flow. Identified as inviscid
perturbations, these instabilities decay further downstream as the velocity profile recovers to that of a
smooth Blasius case.

To determine the nature of the instablities, Danabasoglu and Biringen [11] generated fictitious self-
similar flow fields by extrapolating the region of strongest reverse flow seen observed in their DNS and
performed OS analysis on the fictitious base flows. For small step heights, in addition to the viscous
instabilities expected for a Blasius boundary layer flow, additional inviscid instabilities were recognised
for high frequencies at high Reynolds numbers. This is shown in Figure 1.5. At larger step heights, the
barrier between viscous and inviscid instabilities blurred and frequencies that would normally be very
stable for a Blasius boundary layer were seen to become unstable. The critical Reynolds number also
decreased significantly.

The presence of inviscid instabilities in the OS analysis of Danabasoglu and Biringen [11] hints at
the role of the distorted base flow in bringing about this mixed viscous-inviscid nature of the instability.
This is because these inviscid instabilities were observed in an OS analysis. As is discussed in detail
in Section 2.3, the OS analysis is a completely local analysis and, therefore, represents the inherent
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Figure 1.5: Appearance of inviscid instabilities as observed by Danabasoglu and Biringen [11] on the fictitious base flows
generated by extrapolating regions of reverse flow.

stability of a base flow. Park and Park [46] were actually able to identify two separate modes at the
same streamwise location through an OS local analysis. The two modes were identified as the viscous
and inviscid mode. The inviscid mode exhibited significantly larger growth rates and appeared even in
regions where the clean Blasius flow would otherwise be stable.

The distorted TS waves exhibiting larger growth rates has meant that the effect of roughness ele-
ments has found to be destabilising in general. To identify the parameters that determine the extent
of destabilisation, stability analysis has been employed extensively. The primary parameter that ef-
fects the location of transition is the height of the roughness element. This has been observed by the
OS analysis of Nayfeh, Ragab and Al-Maaitah [41], Park and Park [46] and the PSE analysis of Gao,
Park and Park [20], among others. Figure 1.6 illustrates the effect of changing the step height on the
corresponding TS amplification. Higher amplification is observed as step height is increased

Figure 1.6: Effect of changing the hump height on the stability of the flow [41]. ’e’ represents clean Blasius flow, whereas ’a’-’d’
represent humps of increasing height
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Park and Park [46] also observed how the location of the hump, relative to its position to the neutral
stability curve, influences the amplification. Humps located close to branch I of the neutral stability
curve were found to be more amplified. Nayfeh, Ragab and Al-Maaitah [41] found that the frequency
of the most amplified TS wave in the presence of a step was higher than that for a ’clean’ Blasius flow.

Franco et al. [18] developed their Adaptive Harmonised Linearised Navier Stokes stability analysis
tool and performed a parametric study of the effect of humps on base flow stability. Humps that are ap-
proximately equal to half the boundary layer displacement thickness were found to only marginally bring
the transition location forward. Humps that were approximately equal to the boundary layer displace-
ment thickness brought the transition location significantly upstream. Rectangular humps greater than
the boundary layer displacement thickness were found to immediately cause transition in the vicinity of
the hump. Franco et al. [18] found that a rounded hump had less impact than a rectangular hump on
flow stability. They also indicate that increasing the width of the hump reduces the overall amplification
of the TS wave.

An effect of the width of the hump was also observed by Wu and Dong [73]. A local scattering
approach to theoretically analyse the flow over a rounded humpwas employed, that was later expanded
to include sharp steps [12]. The assumptions employed in the approach limited the maximum height of
the step relative to the boundary layer displacement thickness to𝐻/𝛿∗ ≤ 𝑂(𝑅𝑒 / ) [73]. The maximum
amplification was observed for TS waves that have a wavenumber approximately equal to the width of
the step.

The primary parameters that influence transition location, therefore, appear to be the height of the
roughness element, the frequency of the incoming TS wave, the position of the roughness element and
its width (in the case of a hump). Stability analysis can be useful to identify these parameters because
of its relative ease. However, the use of stability analysis tools to steps, gaps and humps is not without
its perils due to the underlying simplifications involved in their derivation (Section 2.3). More recently,
DNS simulations have been employed to study the most relevant flow features around these roughness
elements and to confirm the efficacy of stability analysis for roughness elements.

Lüdeke, Watermann and Seitz [35] performed a DNS of a TS wave encountering a forward facing
step (FFS), recording an amplification of the wave. Lüdeke and Backhaus [34] extended the analysis by
studying the amplification of TS waves over an airfoil, within the favourable pressure gradient regime,
encountering a FFS. Amplification of the wave was captured, and it was also shown that LST results
agree reasonably well with DNS results, insofar as the perturbation shape is concerned. The frequency
of the TS wave downstream of the step was shown to be similar to the frequency upstream of the step,
albeit with a different wavenumber.

Rizetta and Visbal [51] performed a hybrid Large Eddy Simulation (LES)/DNS of the flow over a BFS
and FFS. The flow features upstream of transition were fully resolved, but the grid was not fine enough
to resolve the small structures formed downstream of transition. In both the FFS and BFS, the transition
location moved forward. Unlike the prior experimental work of Wang and Gaster [68], transition location
did not differ significantly between a BFS and a FFS. The numerical forcing methodology was such that
the perturbation was introduced through blowing and suction at the step, thus possibly not giving the
instability wave enough time to develop into a standard TS wave - possibly the cause of their results
being dissimilar to prior experimental work. An important takeaway, however, is that the flow did not
become unstable unless it was forced. Furthermore, the transition location itself was not consistent
unless the disturbance forced was in the unstable range of the flow downstream of the step. A global
instability is therefore unlikely, at least, as long as the height of the step is less than the boundary
layer thickness. Global instabilities are possible in separated flows [50, 52]. Alam and Sandham [2] &
found that if the reverse flow velocity exceeds 15−20% of the freestream velocity, a global or absolute
instability may exist. The small height of the step chosen to be studied by Rizetta and Visbal [51]
ensured that the reverse flow velocity was not large enough to cause a global instability.

A small step, therefore, serves primarily to amplify perturbations already present in the flow, without
introducing new modes into the flow, whereas large steps may introduce absolute instabilities. By
extension, since 2D-waves are the most amplified waves in the absence of roughness elements, the
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Figure 1.7: factor (left) and recorded by Edelmann [16]. Step Case 1 had a larger height.

same could also be possible for the flow over a roughness element. This was confirmed by Edelmann
[16], who extensively studied the effect of a FFS on incoming disturbances. He showed that the most
amplified waves in subsonic conditions were 2D waves, although weak 3D effects were seen when
operating close toMach 0.8. It became necessary to take into account 3D effects in supersonic regimes.
This is primarily due to the large separation bubbles encountered both upstream of and on top of the
FFS in the supersonic regime. Separation bubbles were significantly smaller in subsonic flows, and if
the forward-facing step was significantly small, only one separation region was seen upstream of the
FFS. The 3D effects are more critical in confined flows, such as channel flow. However, even then they
are of secondary importance. 3D disturbances may be amplified, but as shown by Wilhelm, Härtel and
Kleiser [71], even in confined flows, 2D disturbances below 1% of freestream value may not induce
significant amplification of 3D effects at the step.

Edelmann [16] attributed the significant amplification of the incoming disturbances to the presence
of the separated region, similar to prior work [6, 11, 13]. Contrary to Rizetta and Visbal [51], Edelmann
[16] introduced a wave packet instead of a single frequency as the disturbance. The effect of the step
was then quantified using the 𝑒 method: the FFS results in a change in the 𝑁 factor over the step:

𝑁 = 𝑁 + Δ𝑁, (1.2)

where 𝑁 and 𝑁 are the 𝑁 factors upstream and downstream of the step, respectively, and Δ𝑁 is the
change in 𝑁 factor due to the effect of the step. For all configurations tested, the value of Δ𝑁 is positive,
i.e. the effect of a step on a TS wave is destabilising. Figure 1.7 illustrates the evolution of 𝑁 and Δ𝑁
for two step cases studied by Edelmann [16]. Much like the results of stability analysis from literature,
a greater destabilising effect was seen as height of the FFS was increased. Edelmann [16] also found
that for the same height to momentum thickness ratio, a greater 𝑁 factor is observed if the step is
translated downstream, indicating greater destabilisation.

The state of the art generally, whether through the use of DNS, experiments or stability analysis,
indicates a destabilising effect of roughness elements and that the transition location tends to move
upstream. While that may be true in most circumstances, roughness elements, if strategically placed,
can help aid in delaying transition. Within the parameters studied by Wörner, Rist and Wagner [72],
the effect of a FFS was observed to be, in fact, stabilising. This is illustrated in Figure 1.8. The effect
of a BFS, consistent with prior work, was found to be destabilising. The combined effect of a FFS and
BFS was observed to be overall destabilisation of the boundary layer. Wörner, Rist and Wagner [72]
attributed the result to the fact that the step increases receptivity, but there are no disturbances super-
imposed on the freestream and due to the thinner boundary layer developing after the step. Hence,
a stabilisation is seen. Furthermore, the parameters used are very different from those found in most
literature related to the effect of steps on the evolution and amplification of disturbances. As a matter of
example, the ratio of the boundary layer displacement thickness of the clean Blasius flow to the height
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of the step (𝛿∗/𝐻) is equal to 0.24 for Wörner, Rist and Wagner [72] compared to 𝛿∗/𝐻 = 0.9 − 1.5 in
prior work [16, 35, 51]. The latter found a destabilising effect for a FFS.

Figure 1.8: Stabilisation observed by Wörner, Rist and Wagner [72] for a FFS.

TS stabilisation has been achieved with the aid of smooth roughness elements by Xu, Lombard and
Sherwin [74]. They used LST and DNS to study the effect of a smooth FFS, defined by a gaussian error
function with height less than or a third of the local boundary layer thickness (approximately equal to or
less than the local boundary layer displacement thickness) and width equal to four times the boundary
layer thickness. The FFS profile used, therefore, because of the large width, eliminated the separation
bubble in front of the step. Transition delay was observed for the configuration for small step heights
and higher frequencies. For larger step heights, a destabilisation was observed. Destabilisation was
less than if the steps were sharp, as prior literature indicates.

Transition delay has also been achieved by a a spanwise modulation of the velocity profile through
the use of roughness [10]. The spanwise modulation was found to delay transition and to cause a
decay of TS waves as it results in fuller velocity profiles that are less susceptible to disturbance amplifi-
cation. Inhibiting the growth of disturbances through spanwise modulation was later confirmed through
experiments [19], and simulations [57] and several methods to introduce this spanwise modulation
were studied, such as the use of cylinders [19], miniature vortex generators [60] and riblet like periodic
roughness elements [14]. Conversely, however, the streak like structures formed by these roughness
elements can bring about the final secondary breakdown of TS waves if their wavenumber matches
the wavenumber of the secondary instability, causing transition to move significantly upstream.

1.4. Research Questions and Objectives
The type of roughness element employed leads to uniquely different flow features. Steps, gaps and
humps, all modify the base flow, and, by extension, boundary layer stability in a unique way. Humps
and gaps represent successive forward and backward facing steps (or vice versa), with the width of the
gap or hump an extra variable that increases, significantly, the size of the parameter space that needs
to be tested.

The impact of backward facing steps has been found to be destabilising. There is some disagree-
ment with respect to the impact of forward facing steps, however. In that regard, the remainder of
the thesis will focus on the effect of forward facing steps on flow stability. Furthermore, in order to re-
duce the parameter space further, to focus on how the step parameters influence flow stability, a zero
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external pressure gradient is assumed. The research questions addressed in the thesis are as follows:

How does the presence of a forward facing step modify the flow features of the boundary layer?

1. How is the base flow distorted?

2. How is the incoming TS wave modified by the presence of the roughness element?

3. What role does the inflection point play in the amplification of the incoming wave?

4. How does the position of the step, relative to branch 1 or 2 of the Blasius neutral curve impact
the growth rate of the instabilities?

Can dominant parameters be identified that can accurately represent the impact of a step on
boundary layer stability?

1. How does the base flow distortion scale with height of a step?

2. How does the TS wave modification scale with height of a step and its frequency?

3. Can semi-empirical relations be derived that represent the impact of forward facing steps on flow
stability?

Can forward facing steps be used to stabilise Tollmien–Schlichting waves such that transition
delay is achieved?

1. What are the critical parameters that trigger the high growth rate of TS waves close to a roughness
element?

2. How can the shape of the roughness element by manipulated to aid the decay of instabilities?

Accordingly, the main objectives of the present work are:

1. Identify, with the aid of literature, the step heights that cause a modification of incoming TS waves
but do not immediately trip the flow.

2. Using DNS simulations, analyse the base flow around forward facing steps for a range of step
heights.

3. Using DNS simulations, analyse the instantaneous unsteady flow of forward facing steps for a
range of step heights by introducing TS waves at the inflow.

4. Using DNS simulations, analyse the instantaneous unsteady flow of forward facing steps for a
range of step heights by introducing TS at the step location using a blowing and suction strip.

5. Use stability analysis tools on the base flow derived from DNS to identify modification of boundary
layer stability due to base flow distortion.

6. Identify the physical phenomena and the relevant scaling parameters that can be used to char-
acterise the effect of steps on base flow distortion and flow stability.



2
Governing Equations

The evolution of an instability over an spanwise invariant step located in an unswept low speed bounadry
layer is studied numerically using DNS of the full incompressible Navier Stokes equations. The analysis
is coupled with a stability analysis of the flow, utilising simplifications of the Navier Stokes equations.
The formulation of these equations is detailed in the rest of this chapter.

2.1. Navier Stokes Equations
The Navier Stokes equations govern the behaviour of fluid flows. The unsteady incompressible formu-
lation is considered for the flow problem. In this work, the three-dimensional turbulent breakdown is
not analysed. Therefore, the spanwise direction is neglected and instead the two dimensional form of
the equations can be solved. The resulting set of governing equations can be expressed as:

𝜕𝑢
𝜕𝑥 = 0 (2.1)

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 = − 𝜕𝑃𝜕𝑥 + 1

𝑅𝑒
𝜕 𝑢
𝜕 𝑥 , (2.2)

where the equations have been non-dimensionalised as follows:

𝑥 = �̃�
�̃� , 𝑢 = �̃�

�̃� , 𝑡 = �̃� ⋅ �̃�
�̃� and 𝑅𝑒 = �̃� ⋅ �̃�

�̃� . (2.3)

All results in the remainder of the thesis are presented in a non-dimensionalised form. The reference
length scale, �̃�, is the boundary layer thickness at the inflow, and the reference velocity scale, �̃�, is the
freestream velocity at the inflow. Quantities with ( ̃) represent dimensional quantities and those without
are non-dimensional. The pressure and velocity in the domain are solved for, numerically, at each time
step. While the momentum equations (2.2) provide explicit relations for velocity components that can
be marched in time, an explicit equation for the pressure is not available. The divergence of (2.2) is
taken to obtain an equation for the pressure:

𝜕 𝑃
𝜕𝑥 = −

𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑥 (2.4)

13
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Equations (2.1), (2.2) and (2.4) form a complete set of equations which can, in principle be used
to obtain a numerical solution for a given flow configuration if adequate boundary and initial conditions
are used.

2.2. Boundary Layer Equations
The elliptic nature of the Navier Stokes equations means that the entire flow field needs to be solved
for simultaneously, as each point in the flow field has a downstream and upstream influence. Simpli-
fications of the Navier Stokes equations are possible for situations in which, for example, streamwise
gradients are negligible. This is the case for an unswept boundary layer that is far from roughness
elements and the leading edge.

In the boundary layer approximation, it is assumed that the 𝑅𝑒 ≫ 1, such that the viscous effects
are confined to a thin shear layer close to the wall. By performing an order of magnitude analysis,
the 𝑦-momentum equation reduces to 𝜕𝑃/𝜕𝑦 = 0 i.e. there is no pressure gradient in the wall normal
direction. The continuity and 𝑦-momentum equation can then be expressed as:

𝜕𝑢
𝜕𝑥 = 0 (2.5)

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢
𝜕𝑥 = −𝜕𝑃𝜕𝑥 +

1
𝑅𝑒

𝜕 𝑢
𝜕 𝑦 , (2.6)

The pressure is imposed on the boundary layer by the external inviscid flow, which is accurately
described by the Bernoulli equation. The external pressure gradient can then simply be related to the
external velocity distribution using 𝜕𝑃/𝜕𝑥 = −𝑈 ⋅ 𝜕𝑈 /𝜕𝑥, where 𝑈 is the external velocity in the
inviscid flow.

2.3. Stability analysis
DNS can be used to obtain a numerical representation of a flow field without prior assumptions. It
can be used to study how perturbations evolve and ultimately cause transition. DNS is, however,
computationally expensive. Stability analysis, depending on the flow conditions, aims to simplify the
problem by identifying the elements of the flow that have the most significant impact on stability. Effects
such as non-parallelism may have a negligible impact for boundary layers of gradually varying flows
such as that over a flat plate. Despite its limitations, stability analysis can provide quick and reasonably
accurate results to aid transition prediction and to aid a preliminary assessment of the flow field that
can then be more accurately analysed through high fidelity DNS

The essence of stability analysis relies on superimposing an infinitesimally small perturbation on a
laminar base flow, which itself is a solution of the Navier Stokes equations, and studying its evolution [7,
15, 58, 75]. The Navier Stokes equations can be represented as q̇ = ℱ(q), where q andℱ(q) represent
the vector of state variables and the nonlinear Navier Stokes operator respectively. (.) represents the
time derivative of a quantity. The instantaneous flow is decomposed into a sum of the laminar base
flow, q , and the infinitesimally small perturbation, q :

q = q + 𝜖q where 0 < 𝜖 ≪ 1. (2.7)

Decomposition (2.7) is introduced into the Navier Stokes equations. Assuming small fluctuations,
the product of fluctuations can be neglected through an order of magnitude analysis. This results in a
linearised form of the Navier Stokes provided that the base flow is a known quantity:
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𝜕𝑢
𝜕𝑥 = 0 (2.8)

𝜕𝑢
𝜕𝑡 + 𝑢

𝜕𝑢 ,
𝜕𝑥 + 𝑢 ,

𝜕𝑢
𝜕𝑥 = −𝜕𝑃𝜕𝑥 + 1

𝑅𝑒
𝜕 𝑢
𝜕 𝑥 , (2.9)

where 𝑢 , represents the base flow velocity in the ’𝑗 ’ direction. A wave-like form of the perturbations
can be assumed, and this allows the decomposition of an arbitrary disturbance into its Fourier com-
ponents. A consequence of the linear nature of the equation is that the different components develop
independent of each other.

2.3.1. Orr Sommerfeld Equation

Stability analysis can be simplified if it is assumed that the base flow is independent of the streamwise
direction. By extension, the stability properties of the base flow are also independent of the streamwise
location. Perturbations can be assumed to have a constant wavenumber and shape function as follows:

q = q̂(𝑦)𝑒 ( ) + 𝑐.𝑐, (2.10)

where, q̂ is the shape function of the perturbations, 𝛼 and 𝛽 are the streamwise and spanwise wavenum-
ber respectively, 𝜔 represents the angular frequency of the perturbation, and 𝑐.𝑐 is the complex con-
jugate. For the current set-up, where only two dimensional TS wave are considered, the spanwise
wavenumber is zero. Substituting (2.10) into (2.8) and (2.9) and simplifying, one can arrive at:

[𝑖(𝜔 − 𝛼𝑢 − 𝛽𝑤 )( 𝜕𝜕𝑦 − 𝛼 − 𝛽 ) + 𝑖𝛼𝜕 𝑢𝜕𝑦 + 𝑖𝛽𝜕 𝑤𝜕𝑦 + 1
𝑅𝑒(

𝜕
𝜕𝑦 − 𝛼 − 𝛽 ) ]�̂� = 0. (2.11)

This is the well-known Orr-Sommerfeld (OS) equation, derived separately by Orr [45] and Sommerfield
[64]. AnOS analysis is essentially a local stability analysis since all streamwise gradients are neglected,
and the equation can be used to find eigenmodes of the boundary layer. Along with the associated
boundary conditions, an OS analysis is an eigenvalue problem.

In the temporal apparoch, the wavenumber is set real, whereas the angular frequency can be com-
plex. The eigenvalue problem is solved by assuming a wavenumber. The real part of the corresponding
eigenvalue determines the angular frequency of the wave, whereas the imaginary part represents the
temporal growth rate, such that:

𝜔 = 0 Neutral Instability
𝜔 > 0 Growing Instability
𝜔 < 0 Decaying Instability.

(2.12)

Alternatively, in the spatial approach, the angular frequency is set real, whereas the wavenumber
can be complex. The eigenvalue problem is solved by assuming a frequency. The real part of the corre-
sponding eigenvalue determines the wavenumber of the wave, whereas the imaginary part represents
the spatial growth rate, such that:
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𝛼 = 0 Neutral Instability
𝛼 < 0 Growing Instability
𝛼 > 0 Decaying Instability.

(2.13)

2.3.2. (Non-)Linear Parabolised Stability Equations

In many practical scenarios, streamwise gradients in the boundary layer may not be negligible. The
Parabolised Stability Equations (PSE) and the Non-linear Parabolised Stability Equations (NPSE) [5,
27, 44, 69] permit taking streamwise gradients into account. The shape function is assumed to vary
both in the streamwise direction and in the wall-normal direction (q̂ = q̂(𝑥, 𝑦)), and the perturbation
ansatz reads:

q = q̂(𝑥, 𝑦)𝑒 (∫ ( ) ) + 𝑐.𝑐. (2.14)

Substituting (2.14) into the (2.8) and (2.9) yields an elliptic set of equations. In order to parabolise
it, the term 𝜕 q̂/𝜕𝑥 , is neglected and a slowly varying shape function is assumed. This simplification
has been shown to be a good approximation [26]. The resulting equations allow for weakly non-parallel
effects and a changing boundary layer. However, they can not account for upstream propagating effects
due to the parabolic nature of the resulting equations.

An advantage of using the PSE equations to model the evolution of disturbances is that, in addition
to being able to take into account streamwise varying effects, an eigenvalue problem does not need be
solved at every streamwise location. The initial condition, obtained through the use of the OS equation,
can be marched forward in the streamwise direction.

The PSE allows streamwise changes in the shape function of the perturbation. This gives rise to an
ambiguity as the growth can be contained within the growth rate itself, or the shape function. In order
to remove this ambiguity, a normalisation condition is enforced:

∫ q̂∗
𝜕q̂
𝜕𝑦 = 0 (2.15)

The normalisation condition, (2.15) ensures that the shape function does not change ’rapidly’ be-
tween streamwise locations. The shape function, therefore, changes slowly, as compared to the
wavenumber.

The NPSE takes into consideration non-linear effects and the interaction between different modes.
Much like the PSE, the equations are parabolised by assuming a slowly varying shape function and the
normalisation condition is introduced. However, the perturbations are no longer independent of each
other and can not be studied separately. The perturbation ansantz reads:

q = ∑ ∑ 𝐴( , )q̂( , )(𝑥, 𝑦)𝑒 (∫ ( , )( ) ) + 𝑐.𝑐. (2.16)

Even though the OS equation and (N)PSE, to some extent, have been used to study the stability of
flow over steps [20], their efficacy for such geometries, as of yet, is not known. This is because discon-
tinuities such as steps cause considerable streamwise (and wall-normal) gradients. The assumptions
used to formulate, both the OS equation and (N)PSE break down.
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2.4. Reynolds-Orr Growth Equation
The perturbation field extracts energy, through linear mechanisms, from the base flow through the
work of the perturbations on the shears in the base flow [58]. If the energy extracted from the base
flow exceeds, the instability grows. If instead, dissipation dominates, the instability tends to decay. The
exact mechanism that leads to decay or growth of the perturbation can be analysed with the help of
the Reynolds Orr equation [24]. The strength of the Reynolds Orr lies in the fact that each term that
contributes to the growth of the instability can be evaluated separately and compared. However, the
approach assumes a temporally evolving instability, which can lead to inaccuracies in situations where
the perturbation grows spatially instead. Although the two can be related by Gaster’s transformation,
discussed in section 2.4.1, it is an approximation that is valid only close to the neutral points of the
stability curve.

A detailed derivation is not presented in this work (see Groot [24]), the essence of Reynolds Orr
is in deriving an equation for the perturbation kinetic energy, by inserting the Fourier ansatz ((2.10),
(2.14) or (2.16)) into the Navier Stokes and multiplying it by the complex conjugate of the shape func-
tions (�̂�∗, �̂�∗, �̂�∗). The Reynolds-Orr evaluates terms in the resulting equation and their contribution to
the imaginary part of the frequency. Those terms that contribute positively to the imaginary part of
the frequency tend to have a destabilising effect. The term that contributes the most is the dominant
instability mechanism. It is, generally, not possible to formulate an equivalent formulation for the spatial
approach. The equation can simplified to yield an equation for the frequency of the wave:

𝜔 = R+ P− D. (2.17)

R represents the Reynolds Stress terms, P represents the Pressure term and D represents the dissipa-
tion terms. Detail of all these separate terms can be found in Groot [24]. The advection terms can also
be included here if the Eulerian form of the equation is considered [37]. In the Lagrangian perspective,
the advection terms do not appear.

The Reynolds stress terms represent the work of the perturbations on the shears of the base flow
and represent the energy exchange between the base flow and the perturbation field. The Reynolds
stress terms read:

𝑅 = 1
||q̂||

⎡
⎢
⎢
⎢
⎢
⎣

�̂��̂�∗ 𝜕𝑢𝜕𝑥 �̂��̂�∗ 𝜕𝑢𝜕𝑦 �̂��̂�∗ 𝜕𝑢𝜕𝑧
�̂��̂�∗ 𝜕𝑣𝜕𝑥 �̂��̂�∗ 𝜕𝑣𝜕𝑦 �̂��̂�∗ 𝜕𝑣𝜕𝑧
�̂��̂�∗ 𝜕𝑤𝜕𝑥 �̂��̂�∗ 𝜕𝑤𝜕𝑦 �̂��̂�∗ 𝜕𝑤𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎦

, (2.18)

where:

||q̂|| = ∫ �̂��̂�∗ + �̂��̂�∗ + �̂��̂�∗𝑑𝑦. (2.19)

2.4.1. Gaster’s Transformation

The formulation for a temporal stability problem is computationally less expensive than its spatial coun-
terpart. Furthermore, the Reynolds Orr equation can not, in general, be expressed such that the
wavenumber is isolated. Whereas, the angular frequency, and therefore the associated temporal
growth rate, can quite easily be isolated. Although the two approaches are not equivalent, Gaster’s
transformation [36] allows an approximate relation to convert between spatial and temporal growth
rates:
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− 𝛼 = 𝜔
𝑐 . (2.20)

The transformation is an approximation, as the temporal and spatial theories are not equivalent,
and is only accurate for very small growth rates, i.e. close to the neutral point of the stability curve.
Nevertheless, if the flow is temporally unstable, it is also spatially unstable. Therefore, for the Reynolds
Orr equation, the dominant instability mechanism that leads to an increase in the temporal growth rate,
will also lead to an increase in the spatial growth rate. As a consequence of the approximate nature of
the transformation means, the Reynolds-Orr equation is more suitable for a qualitative, rather than a
quantitative analysis.

The temporal Reynolds Orr approach was used, successfully, by Malik & Chang [37] to identify the
dominant physical mechanisms that give rise to secondary crossflow vortices. The temporal approach
provided accurate and useful information to link the appearance of different secondary vortices to the
shears in the mean flow.

2.5. Definition of relevant flow quantities
The flow quantities used for analysis in the results, that have not been introduced previously, are de-
fined. The shape factor is as follows:

H = 𝛿∗
𝜃 , (2.21)

with the boundary layer displacement thickness and boundary layer momentum thickness being defined
as follows:

𝛿∗ = ∫ (1 − 𝑢
𝑈 )𝑑𝑦 (2.22)

𝜃 = ∫ 𝑢
𝑈 (1 − 𝑢

𝑈 )𝑑𝑦. (2.23)

The external velocity, 𝑈 is the velocity of the flow at the top boundary. However, as is discussed in
the following chapter, a zero pressure gradient boundary condition is employed at the top boundary
that attempts to force a zero streamwise gradient of the external velocity. The boundary condition is an
approximation of actual flow conditions. To define the external velocity, an inviscid streamline is first
defined, which starts at twice the boundary layer thickness at the inflow, such that it is far from both the
viscous region and from the top boundary where a boundary condition has been forced. The velocity
and pressure along the inviscid streamline from the inflow to the outflow are used as the external velocity
and pressure.

The 𝑁 factor, see section 1.2.3, on its own, can not provide any information about the stability of
a flow. In the present work, a reference case is defined, and the change of the stability of the flow is
measured with respect to the reference case. The parameter widely used to quantify this change is:

Δ𝑁 = 𝑁 − 𝑁 . (2.24)

The parameter Δ𝑁 is the difference in the 𝑁 factor for the reference case and the ’clean’ case un-
der consideration. Alternatively, to define the stability of a flow, the growth of the perturbation is also
used. Stability analysis tools such as the OS equation and PSE provide growth rates without further
manipulation. However, growth rate in DNS is a derived quantity:
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− 𝛼 = 1
𝐴 (

𝑑𝐴 ,
𝑑𝑥 ) , (2.25)

The real part of 𝛼, which corresponds to the wavenumber is determined using:

𝛼 = 𝑑(arg(�̂� ))
𝑑𝑥 , (2.26)

where arg(�̂� ) represents the phase of a particular instability that is calculated using the real and imag-
inary parts of the corresponding shape function. The real and imaginary contributions to the shape
function, from the DNS flow field, are obtained through a fast fourier transform of the velocity field.

The Reynolds number based on step height can be defined as follows:

𝑅𝑒 = 𝐻 ⋅ 𝑈
�̃� . (2.27)

An alternative parameter to characterise the height of the step is the roughness Reynolds number. The
roughness Reynolds number uses the velocity at the step height for the clean reference case instead
of the external velocity, 𝑈 , and reads:

𝑅𝑒 =
𝐻 ⋅ 𝑢 ,clean

�̃� . (2.28)

The vorticity of the flow is defined as:

𝜁 = ∇ × 𝑢. (2.29)

In addition to the vorticity, the Q criterion is used to analyse vortical structures in the boundary layer.
The Q criterion is a non-linear quantity and can not be split into the base flow and perturbation field.
However, Q criterion of the full instantaneous flow field did not provide valuable information, as the
shears in the flow at the step location dominated. Instead, the Q criterion of just the perturbations was
used and is defined as:

𝒬 = 1
2 (

1
2𝜁 − 𝜕𝑢𝜕𝑥

𝜕𝑢
𝜕𝑥 ) (2.30)

For a constant �̃� and �̃�, the nondimensional frequency, 𝜔 is constant. However, in order to make
comparisons with literature easier, a global non-dimensional frequency is defined as:

𝐹 = 𝜔 ⋅ 𝜈
𝑈 (2.31)

This definition of a global non-dimensional frequency, 𝐹, is also used by Joslin et al. [30], in their DNS
of a TS wave over a flat plate. As discussed in the following chapter, their work is used as a validation
study for the current DNS set up.





3
Numerical Set-Up

A numerical solution of the governing equations presented in Chapter 2 requires appropriate boundary
conditions and initial conditions, along with a suitable grid and numerical scheme. The details of the
numerical set up used in the DNS set up, along with limitations of the approach, are detailed in this
chapter.

3.1. Flow Problem

3.1.1. Motivation for 2D Analysis

Direct Numerical Simulations of transitional flows are expensive to simulate. Depending upon the
Reynolds number, very fine structures may be found in the boundary layer. These fine structures
are what are responsible for the dissipation of turbulent kinetic energy in the boundary layer and it is
necessary to resolve them. Resolving these structures requires an extremely fine mesh. Furthermore,
turbulence is a 3D phenomenon, and 2D simulations can not capture turbulence. This is because
vortex stretching, which is a necessary part of turbulence, can only take place if all three components
of vorticity are present within the domain.

The initial transition process, where TS waves are amplified is a 2D phenomenon. This is primarily
because, following Squire’s Theorem [7], the waves that are most amplified are 2D waves. Stability
of a flow can be studied by studying its stability to 2D perturbations. It is only after the TS waves
saturate, that they are susceptible to distortion by oblique waves, which then leads to the appearance
of secondary instabilities, followed by the final transition to turbulence. FFS can induce a significant
amplification of incoming waves and can lead to early transition. However, in the limit where the FFS
does not immediately trip the flow or does not amplify the TS waves to the point where they very quickly
saturate, it can be assumed that the flow remains 2D.

In this work 2D simulations are, therefore, employed to study the evolution of perturbations. This
enables the study of perturbations going over a FFS, without the numerical simulations becoming ex-
tremely computationally expensive. Turbulence can not be captured in the simulation, and the impact
of a FFS on oblique waves can not be studied. However, oblique waves are expected to be less am-
plified, and the final transition to turbulence is not the primary goal of the study. This does, however,
limit the roughness elements that can be studied to those that are very small relative to the boundary
layer thickness, such that the flow is not immediately tripped. Furthermore, a small initial perturbation
will be employed in order to make sure that the TS waves are not amplified to the point of saturation.

21
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3.1.2. Reference Flow

In order to investigate the effect of a FFS transition towards turbulence, a reference flow with which to
compare the results has to be defined. TS amplification is sensitive to a wide variety of parameters.
Even a small favourable or adverse pressure gradient can impact the overall stability properties of the
boundary layer. Compressibility effects can also play a significant role, particularly in the flow over a
FFS. Edelmann [16] noted how 3D disturbances started playing a major role in transition over a FFS
as the Mach number was increased and crossed over into the supersonic regime. In that regard, in
order to reduce the number of parameters that could impact the stability of the flow, the reference case
chosen is the incompressible flow over a flat plate with zero pressure gradient.

The choice of the reference flow is also aided by the fact that both the base flow, and its corre-
sponding stability properties, are very well described by simplifications of the Navier Stokes equations.
The boundary layer equations, describe reasonably well the base flow for a flat plate with zero external
pressure gradient. Since the boundary layer equations are parabolic, they can be solved by a parabolic
marching technique and provide a quick and easy way to validate the base flow obtained from the DNS
of the clean flat plate flow without any step and perturbation. Furthermore, the stability of flow over a
flat plate has also been investigated thoroughly in literature before and, fortunately, the assumptions
employed in the derivation of the current stability analysis tools, such as the OS equation and the PSE,
are very well suited to the flow over a flat plate.

3.2. Step Cases Considered
The number of parameters that can be varied is quite substantial. The height of the step is a critical
parameter that affects the stability of the flow. Steps can not only change the growth rate of a TS wave,
but they can also result in a change of the neutral point with respect to a reference flow. The step
position, therefore, can also have an impact on flow stability. The step position, relative to the neutral
point, can be modified directly by translating a step upstream or downstream, or indirectly by changing
the incoming TS frequency since the neutral point is a function of the TS frequency.

Modifying the frequency of the TS wave also enables the study of how the step interacts with the
different shape functions associated with each frequency. For a Blasius flow, the higher growth rates
are concentrated in frequencies ranging from 𝐹 = 60 to 𝐹 = 100. Figure 3.1 illustrates where the extents
of the domain used lie with respect to the Blasius netural curve. Lower frequencies have larger domains
of instability and it is not computationally feasible to consider their entire range of instability. The grid is
made, therefore, such that it covers the entire range of instability of a TS wave for frequencies greater
than 𝐹 = 80.

Section I: Inflow Forcing Only:
In this regard, the height of the step and the frequency of the incoming TS wave were the main control
parameters. The step heights and frequencies considered are detailed in Section I of Table 3.1. The
step position is also varied. Case 13 is an upstream translation of case 2.

Section II: Variation of Initial Amplitude:
In order to investigate whether the effect of the step depends upon the initial amplitude, case 4 was
re-run with different inflow amplitudes of the TS waves, as shown in Section II of Table 3.1

Section III: Blowing Suction Only:
As an alternative to prescribing TS waves at the inflow, blowing suction was also employed to introduce
perturbations. Two separate methodologies were used. Blowing suction was employed upstream or
downstream of the step. Details of the blowing suction wall boundary condition are detailed in Section
3.4.3. The cases employing (only) blowing suction to excite TS waves are detailed in Section III of
Table 3.1.

Section IV: Blowing Suction and Inflow Forcing
Inflow forcing was also used in combination with downstream blowing suction. The cases are detailed
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Section I: Inflow Forcing Only

Case 𝐻 Step
Location 𝐹 Forcing

Method
Inflow

Amplitude
BS

Amplitude
BS

Phase
BS

Location
1 0 - 80 Inflow 10 - - -
2 0.5 222.5 80 Inflow 10 - - -
3 0.75 222.5 80 Inflow 10 - - -
4 1 222.5 80 Inflow 10 - - -
5 0 - 60 Inflow 10 - - -
6 0.5 222.5 60 Inflow 10 - - -
7 0.75 222.5 60 Inflow 10 - - -
8 1 222.5 60 Inflow 10 - - -
9 0 - 100 Inflow 10 - - -
10 0.5 222.5 100 Inflow 10 - - -
11 0.75 222.5 100 Inflow 10 - - -
12 1 222.5 100 Inflow 10 - - -
13 0.5 182.5 80 Inflow 10 - - -

Section II: Variation of Initial Amplitude

Case 𝐻 Step
Location 𝐹 Forcing

Method
Inflow

Amplitude
BS

Amplitude
BS

Phase
BS

Location
14 1 222.5 80 Inflow 10 - - -
15 1 222.5 80 Inflow 10 - - -

Section III: Blowing Suction Only

Case 𝐻 Step
Location 𝐹 Forcing

Method
Inflow

Amplitude
BS

Amplitude
BS

Phase
BS

Location
16 0.5 222.5 80 BS - 10 0 Upstream
17 0.5 222.5 80 BS - 10 0 Downstream
18 1 222.5 80 BS - 10 0 Upstream
19 1 222.5 80 BS - 10 0 Downstream

Section IV: Blowing Suction and Inflow Forcing

Case 𝐻 Step
Location 𝐹 Forcing

Method
Inflow

Amplitude
BS

Amplitude
BS

Phase
BS

Location

20 1 222.5 80 BS
Inflow 10 3 ⋅ 10 0 Downstream

21 1 222.5 80 BS
Inflow 10 3 ⋅ 10 𝜋/2 Downstream

22 1 222.5 80 BS
Inflow 10 3 ⋅ 10 𝜋 Downstream

Section V: Very Small Forward Facing Steps

Case 𝐻 Step
Location 𝐹 Forcing

Method
Inflow

Amplitude
BS

Amplitude
BS

Phase
BS

Location
23 0.125 222.5 80 Inflow 10 - - -
24 0.25 222.5 80 Inflow 10 - - -
25 0.125 222.5 60 Inflow 10 - - -

Section VI: Validation with Joslin et al. NPSE

Case 𝐻 Step
Location 𝐹 Forcing

Method
Inflow

Amplitude
BS

Amplitude
BS

Phase
BS

Location
26 0 - 80 Inflow √2 ⋅ 2.5 ⋅ 10 - - -

Table 3.1: Cases studied with the current DNS setup. The last three columns of the table represent the properties of the
blowing suction strip, detailed in Section 3.4.3, in terms of its amplitude, phase and location. All values are non-dimensional.
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Figure 3.1: Blasius neutral curve depicting growth rates of TS waves in the unstable region for the domain considered.

in Section IV of Table 3.1. Here, 𝜙 represents the phase difference of the blowing suction with respect
to the inflow.

Section V: Very Small Forward Facing Steps
In addition to the three main step heights, 𝐻 = 0.5, 0.75 & 1, two smaller step heights were simulated.
These smaller step heights were chosen such that the the height of the step was smaller than the
incoming TS maxima. Higher frequencies have lower TS maximas. Therefore, only 𝐹 = 60 − 80 were
simulated. The details are shown in Section V of Table 3.1.

For the purposes of validation, case 1 in Section I of Table 3.1 and case 26 in Section IV of Table
3.1 are used.

The extents of the domain for cases 1-25 and for case 26 are different. Case 26 starts further
downstream, in order to make sure that the domain is comparable with Joslin et al. [30]. The extents
of the domain are detailed in Table 3.2. The values of �̃�, for a corresponding �̃� = 10𝑚/𝑠 and �̃� =
1.5188 ⋅ 10 𝑚 /𝑠, for the purposes of conversion to a dimensional system, are also shown in Table
3.2.

Case Domain Extents 𝑅𝑒 ,in 𝑅𝑒 ,out �̃�(m)
1-25 0-400 1.15 ⋅ 10 7.82 ⋅ 10 0.002533
26 0-500 1.60 ⋅ 10 1.14 ⋅ 10 0.002988

Table 3.2: Domain extents for the simulations detailed in Table 3.1.

𝑅𝑒 ,in and 𝑅𝑒 ,out are the 𝑅𝑒 values at the inflow and outflow boundaries. The base flow properties
for the reference case influence the extent of distortion of the base flow due to the step. The boundary
layer properties for the reference zero pressure gradient case, at the step locations, are shown in Table
3.3.

The step heights, relative to the boundary layer properties, shown in Table 3.3 are detailed in Table
3.4.
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Case Step Location 𝛿 𝛿∗
1 222.5 0.7147 0.2803
13 182.5 0.6634 0.2604

Table 3.3: Boundary layer thickness and displacement thickness at the step location for the clean reference cases in Section I
of Table 3.1.

Case 𝐻 Step Location 𝑅𝑒 𝐻/𝛿∗ 𝑅𝑒
23 0.125 222.5 4.86 ⋅ 10 0.18 20.7
24 0.25 222.5 4.86 ⋅ 10 0.35 82.8
2 0.5 222.5 4.86 ⋅ 10 0.70 327.5
3 0.75 222.5 4.86 ⋅ 10 1.1 716.9
4 1 222.5 4.86 ⋅ 10 1.4 1212.6
13 0.5 182.5 4.19 ⋅ 10 0.75 351.5

Table 3.4: Step properties for cases detailed in Table 3.1.

3.3. Grid Topology
A cartesian grid is set up for the step cases. Uniform cell size in the wall-normal direction is maintained
until 𝑦 = 3, after which a hyperbolic coarsening is applied until the top boundary. The homogeneous
region is such that the boundary layer lies within, at least until far downstream of the step. In the
streamwise direction, the cells are uniform in size, far upstream and far downstream of the step. When
approaching the step in the streamwise direction, a hyperbolic refinement is applied. Cell size is uniform
very close to the step to guarantee an accurate representation of the sharp gradients of the flow solution
around the step.

The grid is set up slightly differently for the clean reference case with no roughness element and the
case with a step. Although the wall-normal distribution of points is the same, irrespective of the case,
the local refinement in the streamwise direction that is applied for cases with steps, is absent for the
clean reference case.

The 𝑦 is approximately 0.8 at the inflow for all cases studied. Step cases, due to the singularity,
have local regions of higher 𝑦 value. However, the 𝑦 of the first cell at the step does not go higher
than 1.8 in any of the cases studied. There are at least 64 points in the boundary layer, at any given
streamwise location. Close to the step, the boundary layer contains at least 120 grid points.

3.3.1. Grid Convergence

The grid for case 26 consisted of 2.3 million cells. The grid was made fine enough to accurately capture
the TS waves within the domain. However, to ensure that the grid was suitable, a more refined case
with 4.6 million cells was also considered. Figure 3.3 (a) compares the displacement and momentum
thickness observed between the two different meshes. Approximately the same boundary layer devel-
opment is observed in the coarse mesh and the fine mesh. Figure 3.3 (b) shows the development of
the first (1,0) and second harmonic (2,0) for the coarse mesh and the refined mesh. The evolution of
TS waves also did not show any noticeable difference. It was decided, therefore, to proceed with the
coarse mesh as diminishing returns were observed by further refinement.

3.4. Numerical Method
DNS has been performed using an in-house finite volume Navier Stokes solver, INCA [8, 28]. A sixth-
order central differencing scheme is employed for the spatial direction. For the time marching, a third-
order Total Variation Diminishing Runge-Kutta method was used, as detailed by Gottlieb and Shu [23].
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Figure 3.2: Sketch of the grid structure. For illustration purposes, every point in the wall normal direction and every
point in the streamwise direction is shown.

For baseflow convergence, the Courant–Friedrichs–Lewy (CFL) number was set to 0.5. After the in-
troduction of the TS wave into the domain, a constant time step was maintained and 2500 time steps
per time period of the TS wave were used to ensure sufficient temporal accuracy.

The incompressible form of the Navier Stokes was solved, which required the solution of the Poisson
equation for pressure. The bi-conjugate gradient (BiCGstab) method, along with the Algebraic Multigrid
preconditioner is used to solve the Poisson equation with a tolerance of 𝜖 = 10 .

Flow in the spanwise direction is suppressed, and only the streamwise and wall-normal directions
are resolved. An adiabatic and no-slip boundary condition is imposed at the walls, including the step.
For simulations involving blowing and suction, only the wall-normal velocity is perturbed. More detail
can be found in section 3.4.3.

For the inflow, a Falkner Skan inflow velocity profile is applied. For the case with zero pressure
gradient, this is equivalent to a Blasius velocity profile. At the top boundary, a zero pressure gradient
boundary condition is imposed, that allows both inflow and outflow from the domain.

For the outflow, a second-order Neumann boundary condition for the velocity and first-order Neu-
mann boundary condition for the pressure is employed. The outflow boundary condition tended to
interact with the unsteady pressure fluctuations produced by the TS waves washing out of the domain.
This resulted in a modulation of the TS waves that were still within the domain. Additional treatment
of the outflow boundary condition was required to ’quench’ the waves exiting the domain. See Section
3.4.2 for more details.

The inflow was located significantly upstream of the step so that it can be assumed that the baseflow
is slowly varying and the Orr-Sommerfeld Equation can be used to determine shape functions of the
TS wave to be introduced at the inflow. Turbulent breakdown can not occur within the current set up. It
is known, however, that secondary instabilities, that ultimately trigger the breakdown do not play a role
until TS wave reach a threshold amplitude (1-3% of the freestream streamwise velocity). The amplitude
of the TS wave introduced is low enough to ensure that this threshold is not reached at the step and
the 2D flow assumption remains intact.

3.4.1. Treatment of Inflow



3.4. Numerical Method 27

0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

(a)

0 100 200 300 400

10
-4

10
-3

10
-2

(b)

Figure 3.3: Comparison of ∗ and (a) and first two harmonics (b) for the coarse (lines) and fine mesh (symbols).

Laminar Inflow using Falkner Skan Equation

The Falkner Skan solutions are steady laminar similarity solutions of the boundary layer equations for
flows with a prescribed pressure gradient. Self-similar solutions state that the velocity profile at all
streamwise locations are similar if they are scaled with the relevant parameters.

The Falkner Skan flows represent a family of solutions that have an external velocity distribution of
the form 𝑈 = 𝑈 ⋅ (�̃�/�̃� ) , where �̃� represents the point where the external velocity, 𝑈 , is equal to
the reference freestream velocity, 𝑈 . For the Falkner Skan family of solutions, the scaling parameter
takes the form:

𝜂 = �̃�
�̃�
√𝑚 + 1

2
𝑈 �̃�
�̃� . (3.1)

The Falkner Skan power law parameter, 𝑚, or alternatively the Hartree parameter, 𝛽 = 2𝑚/(1 +
𝑚), represent the pressure gradient of the flow. 𝛽 > 0 represents a family of solutions that have a
favourable pressure gradient and 𝛽 < 0 represents solutions that have an adverse pressure gradient.
𝛽 = 0 represents a flat plate flow with zero pressure gradient. The Falkner Skan equation is:

𝑓 + 𝑓 + 𝛽 (1 − 𝑓 ) = 0, (3.2)

where 𝑓 (𝜂) = �̃�(�̃�, �̃�)/𝑈 (�̃�).

The Falkner Skan equations can be used to prescribe the shape of the velocity profile at the inlet.
They are not suitable for locations with high streamwise gradients. Therefore, the equations can not
be used to obtain the velocity profile at or close to the leading edge or close to the step. In order to
solve (3.2), it is rewritten as:
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Figure 3.4: Schematic of the grid domain with the employed boundary conditions.

𝐺(1) = −𝑌(1) ⋅ 𝑌(3) − 𝛽 ⋅ (1 − 𝑌(2) ⋅ 𝑌(2)), (3.3)
𝐺(2) = 𝑌(1), (3.4)
𝐺(3) = 𝑌(2), (3.5)

(3.6)

as in the book by White [70]. A value for 𝛽 is selected, which corresponds to a particular pressure
gradient, and a fourth-order Range Kutta shooting method is used to solve the Falkner Skan equation.
The value of 𝑓 (0) is iteratively found until |𝑓 − 1| < 𝜖, where 𝜖 is equal to 10 .

Perturbation Introduction using Orr Sommerfeld Equation

The perturbation is introduced either through the action of a blowing suction wall, detailed in Section
3.4.3, or by introducing it at the inflow. An OS analysis, using the formulation detailed in Section 2.3.1,
of the velocity profile at the inlet, the TS wave that the boundary layer can support is identified and
introduced.

The solution of the OS equation result in a large set of eigenmodes that can be used to decompose
any arbitrary initial perturbation. The eigenvalues are filtered to extract the TS wave, by selecting the
eigenmode that matches best, the exponential decay in the freestream. The eigenfunction derived
from the OS equation is used as the shape function for the first harmonic to be introduced at the inflow.
Higher harmonics are not introduced at the inflow.

3.4.2. Treatment of Outflow

TS waves need to be damped before they wash out from the domain to prevent them from interacting
with the outflow boundary condition. Several treatments for the outflow boundary condition are possi-
ble. Waves can be damped in an artificial manner, using numerical techniques, or more physically by
employing methods that naturally stabilise the flow.

Physical methods of damping the wave can be to use a larger domain size, extending significantly
beyond branch II of the neutral stability curve. Since turbulent breakdown does not occur, due to the 2D
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Figure 3.5: Development of (1,0) for and . SFD begins at .

nature of the simulation, it can be ensured that the TSwaves do stabilise beyond branch II. Furthermore,
a favourable pressure gradient can be used to stabilise the flow further. Coarsening of the cells can be
combined with the larger domain to reduce the computational cost.

However, in addition to the fact that this results in a significantly large domain, non-linear effects
also mean that the primary TS mode introduced into the domain is unstable beyond branch II of the
neutral stability curve, feeding off the energy of the higher harmonics. Coarsening of the cells was also
found to introduce numerical instabilities into the flow field, rendering such an approach impractical.

Tam, Webb and Dong [65] proposed selective artificial damping and a variant of the method was
used by Edelmann [16]. In the current set up, however, selective artificial damping was not found to be
effective over a small region and an extended domain was required for any significant damping. Selec-
tive artificial damping can possibly be used in combination with cell coarsening to damp TS waves. The
efficacy of such an approach, however, was not tested in the current study. A variation of the sponge
layer approach used by Kloker, Konzelmann and Fasel [33] was also employed, with the purpose to
force the solution towards a laminar base flow. However, it was found to be computationally expensive.

Selective Frequency Damping (SFD) was initially proposed by Åkervik et al. [76] and has been used
in transition studied to extract base flows in cases where the flow does not naturally converge towards
a steady state solution [16, 49]. In the current set-up, localised SFD was found to be the most effective
way to damp TS waves approaching the outflow. A very small region was required to, effectively,
quench TS waves, with a negligible increase in the computational effort. The effect was very localised
and managed to reduce, by several orders of magnitude, the amplitude of all the harmonics present.
This is shown in Figure 3.5. Details of selective frequency damping are detailed in the following section.

Selective Frequency Damping

Selective frequency damping has been used primarily in literature to converge towards base flows in
cases where the flow is naturally unsteady. It can be used, for example, in cases where an absolute
instability exists or even in cases where truncation error, for example, is significant enough to trigger a
convective instability. In the current set up, however, selective frequency damping was not required to
converge towards a steady base flow. Instead, it was used in a very small region close to the outflow
to ’quench’ TS waves before they washed out.

Selective frequency damping is based on control theory and adds a linear term to the Navier Stokes
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that tends to force the solution towards a particular steady state [76]. This steady state, in general, is
not known beforehand. The solution is therefore, forced towards a filtered solution:

q̇ = ℱ(q) − 𝜒(q− q ), (3.7)

where q represents the filtered solution. The forcing term added is proportional to the difference
between the unsteady solution and the filtered steady solution. The filter width, Δ depends on the
cut off frequency, Δ = 1/𝜔 , and together with the control parameter, Δ, determines the effectiveness
and stability of the final problem. In the current set up, the encapsulated form of selective frequency
damping is employed:

[ q̇q̇ ] = [ℱ(q)0 ] + [−𝜒𝐼 𝜒𝐼
𝐼/Δ −𝐼/Δ] . [

q
q ] . (3.8)

For more details, the reader is referred to the work by Casacuberta [49].

3.4.3. Blowing and Suction Wall

The interaction of the step with the TS wave that is introduced at the inflow appears to have a history ef-
fect. A blowing and suction strip enables the introduction of the perturbation at any desired streamwise
location. The blowing suction strip perturbs the wall normal velocity:

𝑣(𝑥, 𝑡) = 𝐴 ⋅ 𝑆(𝑥) ⋅ sin(𝜔𝑡 + 𝜙), (3.9)

where 𝑆(𝑥) is the spatial distribution of the perturbation defined as 𝑒
. (
𝑥 − 𝜇
𝜎 )

. 𝜇 is defined as 0.5(𝑥 −
𝑥 ), where 𝑥 and 𝑥 are the extents of the blowing and suction wall and 𝜎 is defined as 0.5(𝜇 − 𝑥 ).

The location of the blowing suction strip depends upon the method employed. If upstream forcing
is used, the coordinates of the start and end of the blowing suction wall are (222,0) and (222.5,0). If
instead downstream blowing suction is employed, the coordinates of the blowing suction are (222.5,𝐻)
and (223,𝐻).

𝜙 represents the phase difference of the blowing suction with respect to the inflow. For cases in
which blowing suction alone is used to perturb the flow (case 16-19 in Table 3.1), 𝜙 is 0. For cases
in which the TS waves are introduced simultaneously from the inflow and through the action of the
blowing suction strip (case 20-22 in Table 3.1), 𝜙 controls the phase difference between the two.

For the case where both inflow forcing and blowing suction are employed, the blowing suction
is always placed in the downstream position. Values of 𝜙 = 0, 𝜋/2 and 𝜋 are chosen. The phase
difference between the wall-normal blowing suction perturbation and the wall-normal component of the
near-wall structure at the point where the suction strip perturbs the flow is found to be approximately
𝜋/18. The case 𝜙 = 0, therefore, represents blowing suction that is approximately in-phase, and the
the case 𝜙 = 𝜋 represents blowing suction that is approximately out of phase with the perturbation at
the wall.

3.5. Set up for Boundary Layer Solver and Stability Analysis
For the boundary layer solver and stability analysis, a finite difference scheme in the streamwise direc-
tion and a Chebyshev spectral scheme in the wall normal direction is employed. For the OS analysis,
an eigenvalue problem is solved at each streamwise location and the finite difference scheme is not
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used. Points in the wall normal direction are clustered at the wall using the transformation proposed
by Malik [38]:

𝑦 = 𝑦 𝑦 (1 + 𝜂)
𝑦 − 𝜂(𝑦 − 2𝑦 ) , (3.10)

where 𝑦 is the extent of the DNS domain in the wall normal and 𝑦 is the point up to which half of
the wall normal points are clustered. The coordinate transformation maps 𝜂 from -1 to 1 to 𝑦 from 0 to
𝑦 .

The OS equation is a completely local analysis and permits the selection of a different 𝑦 at each
streamwise location. For the OS solver, 𝑦 is set to twice the local boundary layer thickness. The
boundary layer equations solver and the PSE solver, on the other hand, need a fixed value for the 𝑦 .
This is set to the boundary layer thickness at the outflow, which is available from the DNS simulations.
A total of 150 Chebyshev polynomials employed, with 75 of these clustered between 0 and 𝑦 .





4
Distortion of Base Flow due to Forward

Facing Steps

The presence of a step modifies the base flow as compared to the reference case of a flat plate with
zero pressure gradient. The distortion of the base flow is observed both upstream and downstream.
The underlying velocity profile is intimately linked with the stability of the flow, leading to the possibility
that this distortion may modify its stability. Higher or lower growth rates, compared to the reference
case may be observed, solely due to the distortion of the base flow. The following chapter addresses
how the presence of a step modifies the base flow. The base flow of the clean case is first validated
with the aid of the boundary layer equations. It is then used as to measure the degree of distortion of
the base flow by a step.

4.1. Validation of the Clean DNS Base Flow
Figure 4.1 potrays the evolution of the base flow streamwise velocity component obtained from DNS
and the boundary layer equations. The DNS solution shows good agreement with the solution of the
boundary layer equations.

Figure 4.2 shows the development of the boundary layer displacement thickness and momentum
thickness. Both show very good agreement with the boundary layer development observed with the
aid of the boundary layer equations. The negligible mismatch between the results obtained through
DNS and the boundary layer solver are because the boundary layer solver is an approximation of the
Navier Stokes and the elliptic terms are neglected in its derivation.

4.2. Base Flow around Forward Facing Steps
Although forward-facing steps have an upstream and downstream influence, they represent singular-
ities where rapid changes in the flow quantities are observed at the step position. Far upstream and
downstream of the step, the velocity profile (see Appendix A), is similar to that observed in the clean
configuration without a step.

The contours of the streamwise velocity close to the step are shown in Figure 4.5, whereas the
contours of the wall-normal velocity are shown in Figure A.13 in Appendix A. Close to the step, the
velocity profile differs significantly from its clean counterpart. Upstream of the step, the streamwise
velocity decreases gradually, close to the step. This is followed by a very sharp drop of the streamwise
velocity at the step location, compensated by an increase in the wall-normal velocity since the flow is
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Figure 4.1: Development of streamwise velocity component for flat plate zero pressure gradient flow. Comparison between
DNS (–) and the boundary layer solver (∘).

incompressible (𝜕𝑣/𝜕𝑦 = −𝜕𝑢/𝜕𝑥)

The distortion of the base flow under the influence of the step can be explained by the presence of a
step-induced adverse pressure gradient. The pressure gradient induced by the step is shown in Figure
A.14 in Appendix A. Sharp forward-facing steps represent regions of large adverse pressure gradients,
in both the wall-normal and streamwise direction. The pressure gradient forces the fluid upwards and
reduces streamwise momentum close to the wall, modifying the shape function of the velocity profile.

The adverse pressure gradient is observed both upstream and downstream of the step with a strong
but very localised favourable pressure gradient at the step location. The magnitude of the adverse
pressure gradient increases with the height of the step, along with a corresponding increase in the very
localised favourable pressure gradient at the step.

The adverse pressure gradient leads to an inflection point in the velocity profile, both upstream and
downstream. The upstream inflection point rises significantly above the wall. At the step position, the
flow is significantly distorted, and a highly inflectional velocity profile is observed, with multiple inflection
points in the streamwise velocity profile.

The first appearance of the inflection point is a function of the step height, relative to the local
boundary layer properties, as is detailed in Table 4.1. A schematic of the distribution of the inflection
points (and separation bubbles) is shown in Figure 4.3. The larger the step height, the more upstream
is the location where the inflection point is first observed. Furthermore, for larger step heights, the
inflection point rises significantly above the wall, signalling greater distortion of the base flow.

Table 4.1 provides insight into how upstream translation of a step leads to greater base flow distor-
tion. A comparison of case 2 and case 13 reveals that the inflection point appears earlier, relative to
the step location, and also rises higher above the wall if the same step is placed upstream. The thinner
upstream boundary layer is more distorted by a step of the same absolute height.

The adverse pressure gradient ultimately leads to flow separation close to the step. The number
of separation bubbles depends upon the step height (see Table 4.1). For a step height up to 𝐻 = 0.5,
within the parameters studied, only a single separation bubble is observed upstream of the step. For
step heights 𝐻 = 0.75 and 𝐻 = 1, an upstream and downstream separation bubble is observed.

The separation bubbles did not show large reverse velocity values, with a maximum of 3% of the
freestream velocity observed for a step height 𝐻 = 1. This is not large enough to trigger an abso-



4.2. Base Flow around Forward Facing Steps 35

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Comparison of streamwise evolution of the displacement thickness and momentum thickness of the clean
configuration for DNS (lines) and the boundary layer solver (symbols).

lute instability. According to Alam and Sandham [2], a reverse flow velocity of about 15-20% of the
freestream velocity is required to make the flow absolutely unstable. The current simulations did not
find any evidence of a global instability, as is detailed in Chapter 5.

The extent of the upstream and downstream distortion can also be characterised by the 𝜕𝑢/𝜕𝑦 at
the wall, which is proportional to the shear stress acting on it. As shown in Figure 4.4, the streamwise
location where an observable difference between the 𝜕𝑢/𝜕𝑦 of the step case and the clean case occurs
further upstream, and extends further downstream, for larger step heights and vice versa.

The boundary layer is significantly thicker upstream of the step, as compared to downstream. The
step acts as a virtual leading edge, and a new thinner boundary layer develops downstream. This can
be observed, visually, in Figure 4.5. This can have a significant impact on the stability of the flow as
thinner boundary layers tend to support oscillations that are closer to the wall; oscillations that have a
smaller wavelength are better suited for thinner boundary layers.

Oscillations upstream of the step, which are further away from the wall and have larger wavelengths,
may not necessarily be supported by the new boundary layer that develops downstream. This was also
the mechanism, suggested by Wörner, Rist and Wagner [72], behind the stabilising forward-facing step
that they studied. A small region of stabilisation may be present downstream of the step.

Separation Bubble Inflection Point
Upstream Downstream Upstream

Case 𝐻 𝑥 𝑆 , 𝑆 , 𝑆 , 𝑆 , 𝐼 , 𝐼 ,
23 0.125 222.5 222.45 0.0153 - - 149.96 0.4378
24 0.25 222.5 222.40 0.0453 - - 138.46 0.5493
2 0.5 222.5 222.03 0.1367 - - 126.38 0.7472
3 0.75 222.5 220.11 0.2300 222.50 222.84 118.88 0.9611
4 1 222.5 216.52 0.3102 222.50 223.57 113.13 1.1849
13 0.5 182.5 181.98 0.1415 - - 90.63 0.8370

Table 4.1: Upstream inflection points and separation bubbles in the base flow due to the step. refers to the streamwise
location of the step. Refer to schematic 4.3 for a definition of the quantities presented.
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Figure 4.3: Reference figure for the quantities reported in Table 4.1. Dotted lines represent inflection points and solid lines
represent separation bubbles. The figure has not been drawn to scale and is only mean for visualisation purposes.

Most indicators, however, tend to signal an overall destabilisation of the flow. Adverse pressure
gradients tend to destabilise the flow. The distorted base flow, both upstream and downstream, may
experience larger growth rates compared to the equivalent clean case and the very localised nature
of the favourable pressure gradient may not permit it to offset that destabilisation. The presence of an
inflection point also makes the velocity profile susceptible to inviscid instabilities [46].

Evidence of possibly larger growth rates can also be seen in the contours of the 𝜕𝑢/𝜕𝑦 in Figure 4.6.
It is shown in section 5.3.4, the velocity gradient fromwhich the perturbation field extracts energy from is
the 𝜕𝑢/𝜕𝑦. As can be observed in Figure 4.6, the step distorts the base flow so that a region of greater
𝜕𝑢/𝜕𝑦 is observed downstream, providing a mechanism for the perturbations to more effectively extract
energy from the base flow, leading to possibly larger growth rates. Upstream of the step, the region of
maximum 𝜕𝑢/𝜕𝑦 at a particular streamwise location is further away from the wall. Perturbations can,
therefore, extract energy through work on the velocity gradients without feeling the dissipative effects
of the wall.

4.2.1. Base Flow Distortion Upstream of the Step

Distortion of the base flow upstream of the step is caused by the pressure gradient induced by the step.
It manifests itself as a change in the external velocity. In order to quantify the distortion of the base
flow, an inviscid streamline is defined that is sufficiently far from the wall, where viscous effects are
negligible, and from the top of the domain, where the influence of the top boundary condition is not felt.

The velocity and pressure along this external streamline for the clean case with no step are sub-
tracted from the velocity and pressure along the inviscid streamline for the step (Δ𝑈 = 𝑈 , −
𝑈 , ). This is shown in Figure 4.7. An exponential increase in the pressure is observed closer to
the step. A corresponding exponential decrease in the external velocity is observed due to this adverse
pressure gradient. A sharp favourable pressure gradient is observed to start slightly upstream of the
step. However, it is extremely localised.

The exponential change in the base flow properties observed appears to follow a predictable trend
- the gradient of the change (in an exponential sense) in the external velocity and the external pressure
is insensitive to the height of the step. The change in the external velocity,Δ𝑈 can, therefore, be
expressed as:
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Figure 4.4: / variation throughout the domain.

Δ𝑈 = 𝐾 (𝐻) ⋅ 𝑒 ⋅( ), (4.1)

where 𝐾 is a function of the step height, 𝐾 is a constant irrespective of the step height, and 𝑥 is the
streamwise location of the step. The upstream base flow distortion can then be fully described if 𝐾
is calculated or if a scaling parameter is found for the external velocity, as discussed in section 4.2.2,
such that 𝐾 is no longer a function of the step height.

The stability of a flow is highly dependent upon the base flow characteristics. The exponential
change in the base flow properties, particularly the exponential increase in the pressure is predicted to
manifest itself in the stability of the ensuing distorted base flows. An exponential change in the growth
rate is predicted due to the distortion of the base flow.

4.2.2. Quantification of Base Flow Distortion Upstream of the Step

Table 4.1 illustrates how the absolute height of the step can not be used to predict its distortion of the
base flow. A step of the same absolute height, 𝐻 = 0.5, but located upstream causes greater distortion.
Quantification of the effect of the step lies, therefore, in determining a parameter that represents, not
the absolute height of the step, but the height of the step relative to the local boundary layer properties.
This is also reflected in Wang & Gaster [68] and Edelmann [16], who observed that the impact of the
step scales with the ratio of the height of the step to the boundary layer displacement thickness, 𝐻/𝛿∗,
or the ratio of the roughness Reynolds number and the momentum thickness, 𝑅𝑒 /𝜃, respectively.

Literature identifies the roughness Reynolds number, see section 2.5, as a parameter that correlates
well with the critical roughness height, in particular, and the interaction of roughness with laminar or
turbulent boundary layers, in general [62, 63]. As shown in Figure 4.8, the roughness Reynolds number,
for the current set up, is a useful parameter to quantify the base flow distortion due to a step. It can be
used to scale the change in the external velocity and pressure due to the step.

An equation for the external velocity component derived from Figure 4.8 (b) is:

ln(− Δ𝑈
𝑅𝑒 . ) = 0.06362(𝑥 − 𝑥 ) − 7.865 (4.2)
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Figure 4.5: Contours of streamwise velocity ( ). White lines indicate demarcate the regions of reverse flow.
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Figure 4.6: Contours of / . Black points indicate the inflection points.
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Figure 4.7: Change of external pressure (a) and external velocity (b) due to the step. . -U represents case 13, where the
step of . is translated upstream.

(4.2) is then used to derive an external velocity distribution as follows:

𝑈 , = 𝑈 , + Δ𝑈 (4.3)
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Figure 4.8: Change of external pressure (a) and external velocity (b) scaled with . . -U represents case 13, where
the step of . is translated upstream.

4.2.3. Base Flow Reconstruction Upstream of the Step

The upstream effect of the step on the base flow is a modification of the external pressure, leading to
a decrease in the external velocity of the flow. Furthermore, the roughness Reynolds number scales
remarkably well the upstream distortion of the base flow. The step can, effectively, be replaced by an
imposed external pressure distribution. Following this approach, the external pressure distribution can,
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then be used as the boundary condition in the freestream for a DNS simulation, if the interest lies in
determining the upstream amplification due to a step.

In the current framework, the external pressure was not used as a boundary condition for DNS
simulations. Instead, the external velocity derived from Figure 4.8 (b) is used as a boundary condition
for the boundary layer equations, that are then parabolically marched in the streamwise direction till
the point of separation.

The advantage of such an approach is that, if found to reasonably approximate the base flow up-
stream of the step, costly DNS simulations can be avoided. The boundary layer equations are several
orders of magnitude faster than DNS. The order of magnitude for the simulation time is reduced from
days to minutes.

For a step height,𝐻 = 0, the flow is equivalent to the clean flat plate with zero pressure gradient. The
external velocity is constant, and it has already been shown in section 4.1 that the base flow obtained
through the boundary layer solver and DNS show good agreement.

As shown in Figures 4.9 - 4.11, for step height 𝐻 = 1, the base flow is reconstructed with reasonably
good accuracy, until close to the step (located at 𝑥 = 222.5). The base flow can not be reconstructed
all the way till the step as the boundary layer equations predict early separation. The boundary layer
solver does not permit the solution of the equations beyond the point of separation. The base flow
profiles for the other step heights are shown in Appendix B.

Slight differences in the velocity profiles, between the base flow obtained through DNS and the
boundary layer solver are observed. These are primarily because, although a streamwise pressure gra-
dient can reasonably approximate the step, there exists, see Figure A.14 in Appendix A, a wall-normal
pressure gradient for an actual step. Furthermore, the boundary layer equations are, nevertheless, a
simplification of the Navier Stokes equations and a solution to the boundary layer equations is not a
solution to the full Navier Stokes.
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Figure 4.9: Comparison of reconstructed base flow wall normal velocity profiles (∘) with DNS (–) for = .
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Figure 4.10: Comparison of reconstructed base flow wall normal velocity profiles (∘) with DNS (–) for = .
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Figure 4.11: Comparison of reconstructed / (∘) with DNS (–) for = .





5
Interaction of Forward Facing Steps with

Tollmien–Schlichting Waves

Chapter 4 explored the modification of the laminar base flow due to the step. The following chapter
discusses to what extent the base flow distortion modifies flow stability and how the incoming TS wave
interacts with the forward facing step. The change in boundary layer stability is quantified by comparison
with the reference clean flat plate zero pressure gradient flow. The stability of the clean flow is first
validated with the aid of PSE and NPSE.

5.1. Validation of the Clean DNS Perturbation field
Case 1 and case 26 are used for validation of the clean flow with PSE and NPSE, respectively. For
case 1, the amplitude of the TS wave prescribed at the inflow (10 ) is low enough to assume that
non-linear effects are negligible and can be ignored. In such scenarios, the evolution of an instability
over a flat plate can be very well described with the help of the linear PSE equations [26]. This is further
aided by the fact that upstream propagating effects are negligible.

The PSE can only capture linear effects. In order to verify if nonlinear effects are reasonably well
captured, DNS results for case 26 are compared to the results by Joslin et al. [30] and to the Non-
Linear PSE (Westerbeek [69]) results. Joslin et al. [30] note how the prescribed inflow amplitude is
large enough to trigger significant non-linear effects, such that the first harmonic continues to grow past
branch II of the neutral stability curve.

5.1.1. Comparison with Linear Parabolised Stability Equations

The domain used to compare the DNS results with PSE extends from 𝑥 = 0 to 𝑥 = 400, with the region
where SFD is applied to quench the TS waves extending from 𝑥 = 380 to 𝑥 = 400. The frequency
used to verify and match DNS results to PSE is 𝐹 = 80. Branch I and II of the neutral stability curve lie
within the domain of the DNS set up.

Figure 5.1 shows the growth rate and the 𝑁 factor comparison between PSE and DNS. For both,
the initial condition is provided through the OS equation. The growth rate derived from DNS shows
a good agreement with the growth rate obtained via PSE. Similarly, the 𝑁 factor, which although is
obtained directly from the DNS data, is nevertheless an integrated quantity, and can be thought of as
the cumulative effect of the growth rate experienced at each streamwise location. The 𝑁 factor also
shows negligible differences, even close to the outflow.
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Figure 5.1: Comparison of streamline evolution of factor (a) and growth rate (b) between DNS and PSE for .

5.1.2. Validation of Non-Linear Effects

The domain used to compare the results with Joslin et al. [30] and the NPSE solver is slightly larger,
extending from 𝑥 = 0 to 𝑥 = 500, with the region where SFD is used to kill the TS waves extends from
𝑥 = 480 to 𝑥 = 500. The frequency used to validate DNS results with NPSE is 𝐹 = 86, which has been
extensively studied previously [4, 9, 46]. Branch I lies slightly downstream of the inflow of the domain
while branch II lies significantly upstream of the outflow of the domain.

The (1,0) obtained from DNS shows differences with the results from a linear PSE(see Figure 5.2).
This is as expected. Non-linear effects extend the region of instability beyond branch II of the neutral
stability curve. Whereas the higher harmonics decay, the first harmonic (1,0) feeds off their energy and
continues to amplify. The maximum amplitude of the (1,0) is higher than one that would otherwise be
obtained if non-linear effects were negligible.
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Figure 5.2: Comparison of the streamwise perturbation amplitude of DNS results (lines) with those by Joslin et al. [30]
(symbols).
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Comparison with Literature

Figure 5.2 compares the (1,0), (2,0) and the mean flow distortion of the DNS with Joslin et al. [30]. A
good match is seen for the first harmonic (1,0) and the second harmonic (2,0), along with the mean flow
distortion, close to the inflow, including the ’dip’ in the amplitude of the second harmonic. Disagreement
is seen further out, with Joslin et al. [30] observing higher amplitudes.

The differences with Joslin et al. are not only in the maximum amplitude obtained by the harmonics,
but also the location where this maximum amplitude is obtained. Joslin et al. [30] record a downstream
location for the maximum amplitude. The lower amplitude of the first harmonic obtained with the current
DNS, as compared to Joslin et al. [30], is due to the overall smaller amplitude of the higher harmonics,
that feed energy back into the (1,0), past the branch II neutral point.

Different positions for the ’kink’ in the mean flow distortion is also recorded. The kink is a byproduct
of the fact that only the maximum of the absolute is extracted. The wall normal position of this maximum
is not taking into account, leading to sharp changes in gradients, such as at the kink, when a different
local maxima becomes the global maxima.

The differences actually lie in how the DNS simulations are performed. Joslin et al. [30] perform
DNS simulations on the perturbations, while assuming a Blasius base flow. While the Blasius solution
is a good approximation, it is not a solution of the Navier Stokes. This approach was also followed by
other authors, such as the DNS results by Bertolotti, Herbert, Spalart [4], the NPSE results by Chang
et al., the NPSE results by Hjort [29], and the NPSE results by Park and Park [46].

In the current DNS setup, the full flow field, i.e.the sum of the perturbation and the mean flow, was
solved for. This resulted in a slightly smaller shape factor (H = 2.57 − 2.58) for the current DNS, as
compared to the shape factor for Blasius flow (H = 2.59). A slightly fuller velocity profile is obtained that
leads to marginally smaller growth rates. The cumulative effect of these very small changes manifests
itself in a significant change in the amplitude closer to the outflow boundary - leading to the differences
observed in Figure 5.2.

The disagreement observed between the current DNS and Joslin et al. [30] can also be attributed to
how the primary mode is introduced into the domain. Joslin et al. [30] note that even small differences
in the introduction technique tend to enhance the differences downstream. Modifications such as in-
troducing a shape function derived through the aid of PSE instead of OS could lead to lower maximum
amplitudes. They also found a significant impact of the mesh spacing on the development of the TS
wave in the domain. The current set up is such that it is much more refined, with approximately 150
points per wavelength than the cases considered by Joslin et al., who found diminishing returns beyond
80 points per wavelength of the TS wave. The mesh validation study presented in section 3.3.1 also
indicates that almost no differences are observed with a finer mesh.

It must also be noted that other authors have also reported disagreements with the results Joslin et
al. [30]. Bertolotti, Herbert, Spalart [4] report a maximum 𝑢 of the (1,0) of 0.0244. This is slightly
lower than that Joslin et al. [30], who report a maximum 𝑢 of the (1,0) of approximately 0.025. Hjort
[29] reports a maximum of 0.0234. This is much higher than the current DNS setup that exhibits a
maximum of 0.0193. However, as discussed earlier, this is due, in part, to the more stable base flow
obtained. All the authors mentioned consider a Blasius base flow.

Comparison with Non-Linear Parabolised Stability Equations

Figure 5.3 compares the DNS results with the results obtained with the aid of NPSE on the DNS base
flow (see Westerbeek [69]). The first harmonic (1,0), mean flow distortion and the higher harmonics
((2,0) and (3,0)) obtained from DNS show very good agreement with the results from NPSE. Not only
do the maximum amplitudes match reasonably well, the location of both the maximum amplitudes and
the ’kink’ in the mean flow distortion show excellent agreement.

This lends further credibility to the possibility that the disagreement between the current DNS results
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Figure 5.3: Comparison of current DNS (lines) results with NPSE developed by Westerbeek [69] (symbols).

and those obtained by Joslin et al. [30] are due to small changes in the base flow as a Blasius base
flow, which is not physical, was not assumed in the current DNS setup.

5.2. Stability of Flow over Forward Facing Steps
In a similar fashion to the flat plate zero pressure gradient flow, the TS wave is introduced at the inflow
using shape functions derived from the OS equation. A range of step heights and frequencies are
considered. In all cases, the step is placed sufficiently far from the inflow to ensure that, irrespective of
the step height, its influence at the inflow is small and the TS wave experiences growth rates similar to
its ’clean’ Blasius counterpart initially.

Figure 5.4 illustrates the N factor and growth rate for a step height 𝐻 = 0.5 and frequency 𝐹 = 80.
Greater amplification of the incoming TS wave, relative to the clean case, is observed. Overall, a
positive value for the Δ𝑁 is observed for the step sufficiently downstream it, after the flow has recovered
to the equivalent flat plate flow. This indicates an overall destabilisation of the flow due to the presence
of the step.

The effect of a step on a TS wave can be split into three separate regions - upstream, (far) down-
stream, and at the step position. The upstream and downstream amplification, as is discussed in the
following sections, is a function of the step height. The trend is irrespective of the step height. How-
ever, the dynamics of the perturbation at the step position change entirely with the step height and
significantly alter the maximum Δ𝑁 obtained in the domain. For a step height, 𝐻 = 0.5, the dynamics of
the perturbation at the step lead to stabilisation slightly downstream of it. This trend differs significantly
for higher step heights.

In the following sections, the amplification for a step height 𝐻 = 0.5 and frequency 𝐹 = 80 is decom-
posed into the three separate regions identified above. This is followed by a discussion on the effect of
the step height and frequency on the perturbation dynamics. The dominant physical mechanism that
leads to such perturbation dynamics is then identified.
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Figure 5.4: Comparison of factor (a) and growth rate (b) for . and and the corresponding clean reference case.

5.2.1. Upstream Effect

For a step height 𝐻 = 0.5 and frequency, 𝐹 = 80, see Figure 5.4, amplification begins upstream of
the step. Close to the inflow, the growth rate matches the clean reference case. As the TS wave
approaches the step, the growth rate increases and is higher than the equivalent clean growth rate i.e.,
flow destabilisation occurs.

The upstream DNS growth rate caused by the step matches, very well, the growth rate obtained
from the OS equation. Since the OS equation is a completely local analysis, this leads to the possibility
that the amplification is due to the modification of the base flow due to the presence of the step. It
was shown in section 4.2.1, that the upstream base flow is modified in a very predictable manner - an
exponential change in the base flow properties. As discussed in detail in section 5.4, this exponential
base flow distortion leads to an exponential change in the growth rate, as was previously hypothesised.

Similar to what is seen in literature, the step also tends to distort the incoming TS wave, causing it
to develop a third maxima in the shape function. Profiles of the TS wave are shown in Appendix D. The
distortion can be attributed to the upward movement of the inflection point, caused by the deceleration
experienced by the fluid close to the wall, upwards of the maxima of the incoming TS wave. The
distorted TS wave experiences much larger growth rates as compared to a clean flat plate flow.

Upstream of the step, sinusoidal fluctuations in both the 𝑁 factor and the growth rate are observed
and are more accentuated in the growth rate, which is a derived quantity from the DNS data. These
fluctuations are not very apparent in Figure 5.4 due to the small step height. They are more apparent
for larger step heights, as shown in Figure 5.8 (b). These fluctuations were also observed by Edelmann
[16] and were attributed to upstream propagating sound waves in his compressible simulations.

Within the current incompressible formulation, sound waves do not exist. Although not shown here
in the interest of brevity, the fluctuations were observed to be due to pressure perturbations of the TS
waves hitting the step. These perturbations, because of the Poisson solver, are immediately distributed
throughout the domain, decreasing as the distance from the step increased. The sinusoidal fluctuations
have a wavenumber equal to the wavenumber of the TS wave, which provides further evidence that
pressure perturbations hitting the step cause these fluctuations.
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5.2.2. Downstream Effect

A similar trend is observed far downstream of the step, for a step height, 𝐻 = 0.5, and frequency, 𝐹
= 80. The growth rate of the TS wave downstream (𝑥 > 250) is higher than the equivalent clean case.
It is not until significantly downstream, and after the base flow velocity profile is approximately similar
to the clean Blasius profile that the growth rate reduces to one that would be expected from a flat plate
zero pressure gradient flow.

The growth rate observed sufficiently downstream of the step is found to also be approximated well
by the OS equation. Even the OS equation predicts a higher growth rate for TS waves compared to a
clean scenario, supporting the idea that the stability of the flow is changed due to modification of the
base flow by the step in a similar fashion to the upstream amplification.

5.2.3. Distortion at the Step Location

The perturbation field at the step is much more complex. Figure 5.5 shows the contours of the first
harmonic and its corresponding phase obtained from DNS. At the step location, two phase jumps are
observed in the wall normal direction. For a TS wave, only a single phase jump in the wall normal
direction is expected. Two separate vortices are observed at the step location. A smaller structure
close to the wall and a larger, counter-rotating structure (with respect to the near wall vortex) further
out, on top of the smaller structure. Neither of these vortices match the shape of a TS wave. The
smaller structure tends to immediately disappear whereas the large structure, further out, tends to go
through a large region of stabilisation, after which it develops the shape typical of a TS wave. This
small scale structure was also observed by Edelmann [16] at the step. However, further details of how
it evolves and/or changes with step height were not given.

Figure 5.4 also compares the growth rate of DNS with the growth rate from the OS equation. The
growth rate obtained through DNS, at the step, does not match the growth rate predicted by the OS
equation. The OS equation does not account for non-linear effects and large streamwise gradients.
However, non-linear effects are not significant for the cases under consideration, as is shown in section
5.2.6, and the OS equations appears to disagree even in regions with milder streamwise gradients,
further downstream of the step. This is even though good agreement of the growth rate is seen between
DNS data and the OS upstream of the step it, although streamwise gradients are similar.

This suggests a modification of the incoming TS wave by the step. It is hypothesised, with the aid
of the Q Criterion of the perturbations shown in Appendix C, that the incoming TS wave breaks into
two finer structures close to the step, both of which have different wavenumbers and, by extension,
different phase speeds. Stability analysis tools, such as the OS equation and the PSE assume a
constant wavenumber in the wall-normal direction, independent of the distance from the wall. This is
also true of more advanced stability analysis tools such as the AHLNS [18], which is a fully elliptic solver
but still assumes that the wavenumber is only a function of the streamwise direction.

The shortcoming of current stability analysis tools can shed light on the difference between the
growth rate predicted by the OS equation and DNS. Whereas the OS is an entirely local analysis, TS
waves approaching the step have a history and have already been influenced and distorted by the
adverse pressure gradient upstream of the step. The break-up of the TS wave by the step can not be
predicted by the OS equation.

It is, therefore, hypothesized that the dynamics of the structures formed after the step are funda-
mentally different from that of a TS wave. The boundary layer before the step is thick, and immediately
after the step is thin. Oscillations that the boundary layer upstream of the step could support are not
necessarily supported by the new boundary layer that develops downstream of the step. Although the
step is what causes the TS wave to break into two smaller structures, neither can be supported by the
new thinner boundary layer. The boundary layer can not support the vortex on top because it lies, ef-
fectively, in the freestream. Similarly, the small scale structure is very close to the wall and experiences
its dissipative effects.
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Both structures later force, further downstream, the TS wave, whose oscillations can be supported
by the boundary layer. The relative importance of each structure in forcing the new TS wave down-
stream of the step is a function of the step height and also the frequency. For smaller step heights, such
as in case 2 and 3, the small scale structure does not significantly influence the dynamics downstream.
However, its presence forces the vortex, which exists on top of the small scale structure, further out into
the freestream and away from the regions of large shear, from which the perturbation field can extract
energy.

Analysis of the Q criterion of the perturbation field in Appendix C shows that the small near-wall
structure originates upstream of the step. Upstream of the step, the distorted TS wave splits in two.
Part of the TS wave goes over the step. The other part, that later forms the small scale structure, lags
and is only ’pushed’ up the step by the next TS wave approaching the step. As it is pushed up, it forms
a very small scale structure close to the wall. As it had lagged behind the original wave, with which it
was co-rotating, it is now counter-rotating with the structure on top of it - the part of the TS wave that
went over the step.
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Figure 5.5: Contours of (1,0) (a) and its phase (b) for . and .

5.2.4. Effect of Step Height

Figure 5.6 illustrates the 𝑁 factor and growth rate for step height 𝐻 = 0.75−1. Larger step heights have
a more significant effect on flow stability, both upstream and downstream. Upstream, the change of
the shape factor is a consequence of the adverse pressure gradient applied by the step. The adverse
pressure gradient increases with the step height, leading to a larger region of influence upstream of the
step. Consequently, the streamwise location where an inflection point in the velocity profile is observed
also moves further upstream.

The profiles of the TS wave approaching the step are shown in Appendix D. Higher steps lead to
a more significant upstream distortion of the incoming TS wave, with the third maxima becoming ever
more prominent. This leads to very high growth rates close to the step and a much higher Δ𝑁 upstream
of the step. The sinusoidal variations in the 𝑁 factor and the growth rate are also more pronounced for
higher step heights, due to the greater amplitude of the pressure perturbations approaching the step.

Downstream of the step, a trend towards greater destabilisation is observed. For step heights,
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𝐻 = 0.5 and 𝐻 = 0.75, and a frequency, 𝐹 = 80, there is a region of decay, followed by a region of
amplification. This region of decay is absent for 𝐻 = 1 and 𝐹 = 80. For step height, 𝐻 = 1, downstream
amplification is almost as significant as upstream amplification, which was not the case for small step
heights.

Whereas for step height, 𝐻 = 0.5, the maximum Δ𝑁 was observed upstream of the step, for step
height, 𝐻 = 1, the maximum Δ𝑁 is observed downstream of the step and is almost twice as high as
the Δ𝑁 observed upstream. Essentially, for smaller step heights, the small initial downstream stabil-
isation after the step is sufficient to offset the destabilisation further downstream, larger step heights
have a greater downstream destabilisation and the region in which amplification occurs is also greater.
Consequently, a higher Δ𝑁 downstream of the step is also observed.

The increase in the downstream amplification can be attributed to a change in the near-wall structure
just at the step, and its subsequent evolution, along with greater distortion of the base flow downstream
due to the step. The larger the height of the step, the larger is the distortion of the base flow experienced
by the TS wave, and the higher is the destabilisation.

Contours of the (1,0) of the streamwise velocity are shown in Figure 5.11 (a) and Figure 5.12 (a) for
𝐻 = 0.75 (a) and 𝐻 = 1 respectively. As the step height increases, so does the amplitude of the near-
wall structure - both the absolute amplitude and its amplitude with respect to the structure on top. The
nature of the near-wall structure influences the amplification downstream. Although in all cases, the
small near-wall structure does experience immediate reduction in amplitude, for larger step heights, it’s
initial amplitude is large enough for it to sustain this reduction, persist and later influence amplification
downstream.

For large step heights, the appearance of a downstream separation bubble also causes a small
amplification of the near-wall structure. Although within the parameters studied, this amplification was
negligible and was very localised, for step heights larger than the one studied, a significantly large
separation bubble may be observed that is hypothesised to lead to significant amplification of the near-
wall structure.
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Figure 5.6: Comparison of factor (a) and growth rate (b) for and the corresponding clean reference case.

5.2.5. Effect of Frequency

Both upstream and (far) downstream amplification have been attributed to a distortion of the base flow
by the step. The distortion of the base flow, the appearance of the inflection point and the greater
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shear downstream, are all functions of the step height. The effect of a change in the TS frequency is,
therefore, related to how a TS wave of a particular frequency reacts to the distortion in the base flow.

TS waves with lower frequencies have maximas that are further away, whereas higher frequencies
have maximas closer to the wall. Small distortions in the base flow would have a greater impact on
TS waves of higher frequencies, due to their closer wall-normal maxima and their presence in a region
of greater shear. Therefore, the point where a significant amplification of the incoming TS wave is
observed, beyond that of the equivalent clean case, occurs upstream for higher frequencies and down-
stream for lower frequencies. This is visible in Figure 5.7, and is also discussed in detail in section
5.4.3.

Furthermore, TS waves are greatly distorted by the upward movement of the inflection point. Dis-
torted TS waves experience larger growth rates. Higher frequencies, due to their closer to the wall
maxima experience greater distortion due to modified base flow. The third peak becomes more pro-
nounced and the upstream growth experienced by the TS wave is, therefore, higher. Lower frequen-
cies, on the other hand, experience smaller distortions and lower growth rates. TS profiles for a step
height 𝐻 = 1 and 𝐹 = 60 − 100 are shown in Figure D.11 - D.16.

A similar effect is seen (far) downstream of the step. Higher frequencies experience a larger Δ𝛼 ,
leading to larger values for the Δ𝑁 and take sufficiently longer to return to the equivalent flat plate TS
growth rates; higher frequencies react more to distortions in the base flow.

The near-wall structure, formed at the step, also obtains a significantly higher amplitude (see Figure
5.11 (a) and Figure 5.12 (a)) for higher frequencies. Formed as a result of the break up of the incoming
distorted TS wave by the step, its significance increases as higher frequency TS waves are more
distorted by the step. As the near-wall structure is more efficient at forcing TS waves with higher
frequencies, due to its proximity to the wall and the corresponding low TS maxima (and greater shear),
the greater amplification downstream of the step can also be attributed to the higher amplitude of the
near-wall structure.
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Figure 5.7: Comparison of for . (a) and .

5.2.6. Effect of Inflow Amplitude

The step appears to be insensitive to the inflow amplitude of the perturbation. Although non-linear
effects play a role, as higher harmonics are excited, and small differences are seen, the effect of the
step is, by and large, a linear effect. The growth rate experienced downstream of the step, therefore,
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is not a function of the absolute energy in the small scale structure, but rather a function of the ratio of
the energy contained in the small scale structure and the structure on top.

For very large inflow amplitudes, a change in the growth rate, and the 𝑁 factor is observed. How-
ever, this change is due to the higher harmonics becoming significant, and the primary wave that was
introduced into the domain approaching saturation. If even higher inflow amplitudes were used, this
saturation could be observed upstream of the step. Therefore, the impact of the step observed would
be the combined effect of the step and the non-linear interactions between the different harmonics.

It must be noted here that the non-linear effects that cause saturation are between 2-D waves
and waves with a spanwise wavenumber can not be taken into account due to the 2-D nature of the
simulations. This could mean that the point where saturation occurs could occur more upstream than
indicated in Figure 5.8. As the current simulations lie within the linear regime, non-linear effects are
unimportant, and waves with a non-zero spanwise wavenumber can be ignored.
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Figure 5.8: Comparison of factor (a) and growth rate (b) for and for different inflow amplitudes.

5.2.7. Reynolds-Orr Analysis

A Reynolds-Orr analysis is performed to identify the dominant physical mechanism responsible for
the amplification. The Reynolds-Orr equation can help identify the velocity gradients in the flow that
contribute most to the growth of the instability in the flow. Although the temporal approach is an ap-
proximation, it can provide qualitative information about relatively the most important velocity gradients
in the flow.

Figure 5.9 illustrates the contribution of the Reynolds stress terms to the growth rate. The work of
perturbations on 𝜕𝑢 /𝜕𝑦 is the dominant mechanism that leads to the growth of the instability. The
contribution of �̂��̂�∗𝜕𝑢 /𝜕𝑦 is higher for larger step heights, both upstream and downstream.

It was seen in section 4.2 that a step acts to increase 𝜕𝑢 /𝜕𝑦 gradient downstream of the flow.
Upstream of the flow, the region of higher velocity gradients is away from the wall and, thus, does
not experience its dissipative effects. Larger step heights distort the flow more and the effect is more
pronounced. As the dominant velocity gradient that leads to an amplification of TS waves, the distortion
of the base flow is indeed responsible for the large growth rates experienced both upstream and (far)
downstream. The stepmodifies the base flow in a way that the perturbations canmore efficiently extract
energy from it.
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Figure 5.9: Contribution of the Reynolds Stresses to instability for = and = . (a) and = (b).
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Figure 5.10: Contours of ̂ ̂ ∗ / for .

Close to the step, the other velocity gradients in the flow also gain importance and just at the step,
whereas the work of the perturbations on the 𝜕𝑢 /𝜕𝑦 of the base flow leads to destabilisation, the other
Reynolds Stresses in the flow tend to have a slightly stabilising effect.

At the step, significant differences between step heights of 𝐻 = 0.5 and 𝐻 = 1, are observed.
Whereas for small step heights, the work of the perturbations on the shear is negative in a small region,
i.e. energy is fed back into the base flow, for larger step heights, the work is always positive. This is
why larger step heights do not experience a region of stabilisation downstream of the step. This leads
to ultimately, larger amplitudes at the outflow boundary.

In order to investigate why such a trend is followed, contours of �̂��̂�∗𝜕𝑢 /𝜕𝑦 are shown in Figure 5.10.
A step height of𝐻 = 1, experiences strong but very localised stabilisation just at the step. However, this
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is immediately followed by a large region of destabilisation. The trend is different for 𝐻 = 0.5. Energy
is fed back into the base flow through the perturbation. The region where the stabilisation occurs,
however, is further out in the freestream.

The very localised region where stabilisation is seen just at the step is attributed to the reduction in
amplitude experienced by the small scale structure. Whereas for smaller step heights, the small scale
structure immediately disappears, larger step heights tend to lead to the near-wall structure having a
larger amplitude. The near wall structure persists for larger step heights and the overall shape function
of the perturbation is such that stabilisation is observed.

As the near-wall structure disappears for 𝐻 = 0.5, the perturbation dynamics downstream are com-
pletely dominated by the structure on top, that lies effectively in the freestream and is stable. This can
be attributed to the region of stability shown in Figure 5.10 (a). On the other hand, for 𝐻 = 1, the near-
wall structure, which is closer to the wall and located in a region of greater velocity gradients, leads to
the near-wall destabilisation observed in Figure 5.10 (b).

5.2.8. Role of Near-Wall Structure

The trend of amplification upstream of the step is scalable. Amplification is larger for larger step heights
and higher frequencies, but the trend of the amplification is the same. This is also detailed in section
5.4. The same can also be said about (far) downstream amplification. This is because both of these
effects are due to distortions of the base flow. The same can not be said about how the TS wave
amplifies (or decays) just at the step.

How the perturbation field evolves at the step location can not be attributed to a mere distortion
of the base flow as the growth rate shows an entirely different trend as compared to the growth rate
obtained through the OS equation. It is predicted that the dynamics of the amplification downstream
are strongly influenced by how the two structures, formed by the break up of the incoming TS wave at
the step, interact.

For small step heights, the small scale structure disappears almost immediately. For very small
step heights, as is discussed in section 5.5, the small scale structure is not even observed. In such
scenarios, the step can also be interpreted as a discontinuity in the boundary layer thickness - a thinner
boundary layer that supports smaller wavelengths develops after the step. The incoming TS wave has
a wavelength that does not match the oscillations that can be supported by the thin boundary layer
and, as a result, experiences a region of stabilisation.

This explains the behaviour of the outer structure, that experiences stabilisation, before eventual
growth. This is backed by the trends observed in the Reynolds Orr analysis, shown in Figure 5.9,
and the trend of the growth rate shown in Figure 5.4. If it is assumed that the small scale structure
disappears completely for a step height of 𝐻 = 0.5, the growth rate can entirely be attributed to the
vortex on top.

It is also interesting to note that the growth rate predicted by DNS and the growth rate predicted by
the OS equation tend to converge quicker for larger step heights, as shown in Figure 5.13 (compare
inflow forcing with OS results). This is unintuitive as greater disagreement is expected for larger step
heights that lead to larger streamwise gradients that can not be taken into account by the OS equation.

The phenomenon is attributed to the poor efficiency of the outer vortex as a receptivity mechanism
for the TS wave that the new boundary layer can support. The vortex on top, as a consequence of its
position further out in the freestream, in a region of lower shear, is less effective at forcing the TS wave
downstream of the step.

By extension, the near-wall vortex acts as a better, more efficient receptivity mechanism for the TS
wave. Larger step heights exhibit growth rates downstream of the step that very quickly converge to the
growth rates predicted by the OS equation as the near-wall structure, which has a larger amplitude and
does not immediately die out despite the dissipation it feels, forces the TS wave almost immediately.
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The near-wall structure for step heights of 𝐻 = 0.75 and 𝐻 = 1 can be observed in Figures 5.11 and
5.12. The phase difference that exists in the perturbation field, very close to the wall, downstream of
the step extends over a larger region for greater step heights.

The initial reduction in amplitude felt by the near-wall structure can be attributed to a number of fac-
tors. Its proximity to the wall means that it experiences the dissipative effects of the wall. Furthermore,
the outer vortex above the near-wall structure is counter-rotating with it and does not merge with it.
Without merging, the two structures coexist simultaneously but are oriented in a way that neither can
extract energy from the base flow through the action of the Reynolds Stresses.

The dynamics of the two structures can be observed in theQ criterion of the perturbation field, shown
in Appendix C. Both vortices have a different phase speed. The small near-wall structure exhibits a
lower phase speed. Therefore, further downstream of the step, it begins to lag behind the counter-
rotating vortex on top, that has a higher phase speed.

The vortex immediately upstream of the counter-rotating top vortex is co-rotating with the near-wall
structure and begins to catch up with it. The two co-rotating vortices then merge, marking the point
where the dissipation of the near-wall structure ends, and act together to force the TSwave downstream
of the step.

This process of merging of the small scale structure with the co-rotating vortex behind it is more
apparent for larger step heights and higher frequencies. As the small scale structure dissipates rapidly
at small step heights, the merging process is not seen. Similarly, for lower frequencies, the small scale
structure exhibits a lower amplitude initially, and the same argument can be made.

The idea that the small scale structure is more efficient at forcing the TS wave downstream is also
supported by the analysis of the dominant physical mechanism leading to instability. As shown by the
Reynolds Orr analysis in Section 5.2.7, it is the work of the perturbations on the 𝜕𝑢 /𝜕𝑦 that leads to
a growth in the instability. The small scale structure is located in a region of higher velocity gradients
and thus is more efficient in extracting energy from the base flow and feeding it to the perturbation field.
The role of the near-wall structure is ever more important for higher frequencies, which, by their very
nature, exist closer to the wall. Higher frequencies, therefore, experience higher downstream growth
rates.
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Figure 5.11: Contours of (1,0) (a) and its phase (b) for . and .
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Figure 5.12: Contours of (1,0) (a) and its phase (b) for and .

5.3. Blowing and Suction
Simulations involving blowing suction, both immediately upstream and immediately downstream of the
step are used to investigate further the role of the small scale structure. Similar to how a vibrating ribbon
introduces TS waves, very localised blowing suction, relative to the corresponding TS wavelength, is
used to excite them.

It is theorised that the small scale structure originates upstream of the step, when the incoming
distorted TS wave is split into two, and finer structures are formed. Upstream blowing suction is used,
therefore, to excite, only, the small scale structure. Downstream blowing suction, on the other hand, is
used to investigate the oscillations that can be supported by thinner boundary layer that exists down-
stream of the step.

The near-wall structure has been hypothesised to play a critical role in downstream amplification
for larger step heights. The control of TS for larger step heights, therefore, could lie in controlling and
eliminating this small scale structure.

In order to investigate its nature in more detail, blowing suction is used in combination with the TS
wave being forced at the inflow. The downstream blowing suction strip is used to modify the small scale
structure and to study its overall impact on the stability of the flow.

5.3.1. Downstream Blowing Suction

Figure 5.13 compares the growth rate observed when blowing suction is employed to when the per-
turbation is prescribed at the inflow. Unlike the case where the TS wave was forced by introducing it
at the inflow, the growth rate, obtained with the aid of the OS equation showed remarkable agreement
with the growth rate derived from DNS. Downstream blowing suction excited the TS wave that the new
developing boundary layer could support. The TS wave that can exist downstream of the step exhibits
a very small region of stability, followed by an extended region where the growth rate of the TS wave
is significantly higher than its Blasius counterpart.
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Figure 5.13: Growth rate comparison when blowing suction instead of inflow forcing for and . (a) and (b).

This provided further proof that the disagreement between the growth rates obtained via stability
analysis and DNS was a result of a modification of the nature of the incoming instability by the step. The
TS wave breaks into finer structures that can not be supported by the boundary layer and has distinctly
different stability properties than a TS wave that can be supported by the boundary layer would have,
otherwise.

For step height, 𝐻 = 0.5, the TS wave that was excited through the action of downstream blowing
suction exhibited, from approximately 𝑥 = 235 to 𝑥 = 260, growth rates that were larger than if the TS
wave was forced at the inflow. Beyond that point, the growth rate converged towards that predicted by
the downstream blowing suction (or the growth rate predicted by the OS equation).

The OS equation and the downstream blowing suction simulations predict not only higher growth
rates for the TS wave after the step, but they also predict relatively upstream locations where the
TS wave becomes unstable again. In addition to the near-wall structure acting as an efficient forcing
mechanism for the TSwave, the very high distortion of the base flow due to the step results in immediate
forcing of the TS wave supported by the boundary layer.

5.3.2. Upstream Blowing Suction

Figure 5.14 compares the shape functions of the streamwise velocity at two separate streamwise lo-
cations between inflow forcing and upstream blowing suction. Upstream blowing suction was able to
effectively force the near-wall structure with the difference that it now had a greater share of the kinetic
energy. The structure on top of the near-wall structure had very little energy.

Figure 5.13 illustrates the growth rates obtained with upstream blowing and suction. For upstream
forcing, the growth rates also reasonably match the growth rates derived from the OS equation and
those observed with downstream blowing suction. As the growth rate of the near-wall structure de-
pended, to a large extent, on the effect of the counter-rotating structure on top, the growth rate now
differed from the case where the inflow was used to introduce the perturbation. The (relative) absence
of the counter-rotating vortex on top of the small scale structure aids in the small scale structure effec-
tively dominating downstream perturbation dynamics and quickly develops into a TS.
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Figure 5.14: Shape function of the streamwise perturbation comparison between inflow forcing and upstream blowing suction
at . (a) and . (b) for and . .

5.3.3. Inflow Forcing and Blowing Suction

For 𝜙 = 0, the wall-normal velocity of the near-wall structure is in-phase with the wall-normal perturba-
tion velocity of the blowing suction employed. Since the near-wall structure is counter-rotating with the
structure on top, the blowing and suction is out of phase with it. This acted to enhance the near-wall
structure and reduce the amplitude of the structure on top. This can be seen in Figure 5.15 and 5.16,
which show the amplitude of the 𝑢 perturbation of the first harmonic and its phase. The ’domain’ of
near-wall structure increases when in-phase forcing is applied.

The trend of the growth rates for the combined inflow and blowing suction forcing are shown in
Figure 5.17. For 𝜙 = 0, the growth rate qualitatively matches the results obtained with inflow forcing,
albeit slightly higher growth rates are observed further downstream. The already enhanced near-wall
structure ends up, therefore, with a higher amplitude at the outflow, as evidenced by the 𝑁 factor shown
in Figure 5.17 (a).

For 𝜙 = 𝜋, the opposite is true. The near-wall structure is out of phase with the wall-normal per-
turbation of the blowing suction employed, while the structure on top is in-phase. This acts to reduce
the amplitude of the near-wall structure while enhancing the one on top. The growth rate trend now
matches the trend observed for small step heights (compare with Figure 5.13 (a) for 𝐻 = 0.5), where a
region of stabilisation is observed. The growth rate does not match that predicted by the OS equation
until much later.

The growth of TS waves downstream of steps, for smaller step heights, is governed by the structure
on top. By eliminating the small scale structure for large step heights, the growth of TS waves is now
also governed by the structure on top. The effectiveness of the small scale structure as a receptivity
mechanism when forcing the downstream TS wave is greater as compared to the vortex on top. This
is why blowing out of phase with the near-wall structure results in a lower amplitude at the outlet, as
shown in Figure 5.13 (a).

Further insight can be obtained by observing the contours in Figure 5.15 of the (1,0) of the stream-
wise velocity. The difference in the amplitude for inflow forcing and out of phase blowing suction is
small, however, as while the near-wall structure is eliminated, the vortex on top is enhanced. Although
it is less effective in forcing the TS wave downstream, a higher amplitude of outer vortex would nev-
ertheless, result in higher amplitudes downstream. Figure 5.15 shows how despite the fact that inflow
forcing results in a lower amplitude at 𝑥 = 230 than 𝜙 = 𝜋, the outflow amplitude is higher for inflow
forcing.
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Figure 5.15: Contours of (1,0) when combined inflow forcing and blowing suction are employed.
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Figure 5.16: Contours of phase of (1,0) when combined inflow forcing and blowing suction are employed.
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The greatest reduction in amplitude was found for blowing and suction at 𝜙 = 𝜋/2, as shown in
Figure 5.17 (a). This is despite the fact that initially, the near wall structure is enhanced as shown in
Figure 5.15.

This stabilisation was attributed to the blowing and suction changing the nature of the near-wall
structure. The dynamics of the modified near-wall structure are observed in the Q criterion, shown in
Figure C.4 in Appendix C. The phase speed of the near-wall structure was changed so that it did not
merge immediately with the structure on top. Instead, it convected along with a counter-rotating struc-
ture on top over a longer distance, which resulted in an overall greater dissipation of the perturbation
kinetic energy of the near-wall structure due to its presence near the wall. Furthermore, the orientation
of the two structures is such that neither can extract energy from the base flow and a region of negative
Reynolds Stress is observed. Although not explicitly reported here due to the fluctuations that were
encountered when attempting to do so, the phase speed can be calculated through the gradient of
the phase (shown in Figure 5.16). Visual inspection shows how the wavenumber of the small scale
structure is smaller for 𝜙 = 𝜋/2 and, therefore, the phase speed is larger.
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Figure 5.17: Comparison of factor (a) and growth rate (b) when combined inflow forcing and blowin suction are used for
and .

5.3.4. Reynolds Orr Analysis

A Reynolds Orr analysis of the perturbation dynamics seen at the step due to a combination of inflow
forcing and blowing and suction can provide further insight into the mechanisms behind the growth (or
decay) relative to the case where only inflow forcing is employed.

Contours of the �̂��̂�∗𝜕𝑢 /𝜕𝑦 are shown in Figure 5.18. The trend for inflow forcing and 𝜙 = 0 is
qualitatively similar - an extended region of destabilisation, concentrated primarily close to the wall.
However, for 𝜙 = 0, the dip close to 𝑥 = 0 is absent. This dip is primarily related to the work of the
outer structure on the 𝜕𝑢 /𝜕𝑦 shear in the flow. As blowing and suction at 𝜙 = 0 enhances the near
wall structure and diminishes the outer structure, perturbation dynamics are solely dominated by the
near wall structure.

The opposite trend is observed for 𝜙 = 𝜋. Here the near-wall structure is diminished, and the outer
structure is enhanced. The large destabilisation close to the wall seen in inflow forcing and 𝜙 = 0 is
absent. Furthermore, stabilisation further out in the freestream is observed. The trend for 𝜙 = 𝜋 can
be qualitatively compared to the Reynolds Orr analysis for inflow forcing at step height, 𝐻 = 0.5, shown
in Figure 5.10 (a). Both exhibit a region of stabilisation that is located far from the wall. In both cases,
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the near-wall structure was diminished and did not play a role in forcing the TS wave downstream.

For 𝜙 = 𝜋/2, the contours of the �̂��̂�∗𝜕𝑢 /𝜕𝑦 can be considered to be translated form of the trend
observed for 𝜙 = 0 or 𝜙 = 𝜋. However, a region of significant stabilisation observed tends to push this
trend further downstream. This stabilisation is attributed to the fact that merging now occurs further
downstream and the perturbation shape function prior to merging tends to lead to a negative Reynolds
Stress. This ultimately leads to a smaller amplitude at the outlet, as seen earlier.

Controlling amplification downstream of the step, therefore, may not necessarily lie in eliminating
the near-wall structure, but rather in modifying it in a way that these modified perturbations persist
instead of the TS wave. Here, a reduction in the 𝑁 factor was achieved through the action of blowing
and suction, and it was achieved even though the parameters of the blowing and suction, such as the
phase and the amplitude, were determined through a process of ’trial and error’. Further investigation
into the subject can reveal parameters which effectively utilise the counter-rotating nature of the vortices
to further enhance downstream stabilisation.
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Figure 5.18: Contours of ̂ ̂ ∗ / for and , when combined inflow forcing and blowing suction are used.

5.4. Upstream Amplification of TS Waves
Downstream amplification is influenced by the presence and role of the near-wall structure. Changing
the step height may change the dynamics of the near wall structure and the ensuing perturbation field.
Upstream amplification, on the other hand, shows a very regular pattern. All incoming TS waves are
amplified, in a regular manner, irrespective of the frequency of the TS wave and the height of the step.

Furthermore, it was shown in section 4.2.2, that the upstream distortion of the base flow due to the
step, is scalable with the aid of the roughness Reynolds number. An exponential increase in the pres-
sure was observed that was hypothesised to manifest itself as an exponential change in the upstream
growth rate. It was also shown that the base flow could be reconstructed, with reasonably good accu-
racy, at least for small steps, with the aid of the boundary layer solver, by modelling it with an external
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velocity distribution.

The scalable nature of the upstream amplification can be visualised by plotting the Δ𝑁 factor for
frequency and step height and normalising it by the maximum upstream Δ𝑁. This is shown in Figure
5.19. All step heights and all frequencies tend to collapse towards a single line. The step height,
therefore, appears to define the point where the flow, at least upstream, begins to ’significantly’ amplify
the TS wave. However, it tends to amplify it in a very regular manner. This means an empirical relation
for the upstream amplification is a genuine possibility if the relevant parameters can be identified.
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Figure 5.19: Observed behaviour of the due to upstream amplification.

5.4.1. Exponential Growth

Shown in Figure 5.20 is the natural logarithm of the Δ𝛼 and the Δ𝑁. A response to the exponential
change in the external pressure and velocity is an exponential rise in the growth rate experienced by a
TS wave, indicated by the linear nature of the resulting curves.

Similar to what was seen in section 4.2.1, where the gradient of the change in external velocity (in
an exponential sense) appeared to be independent of the height of the step, the gradient of ln(Δ𝛼 )
appears to not only be insensitive to the height of the step but also the frequency of the incoming wave.
This exponential rise in the growth rate is manifested in an exponential growth in the amplitude (or
alternatively the 𝑁 factor), as shown in Figure 5.20 (b).

The sinusoidal fluctuations, as discussed earlier, are a result of the TS wave hitting the step. These
fluctuations are accentuated in the growth rate as it is a derived quantity. The trend of the 𝑁 factor,
where fluctuations are less accentuated, clearly shows an exponentially rising trend, the closer the TS
wave is to the step.

It was also shown in Figure 5.4 (b), that the growth rate upstream can be reasonably well approx-
imated by the OS equation. The OS equation is a completely local analysis and a higher growth rate
predicted by the OS equation can be attributed to changes in the base flow. This is similar to what is
seen in the current DNS results. An exponential decrease in the external velocity corresponding to an
exponential rise in the external pressure leads to an exponential rise in the growth rate close to a step.

Several ways to quantify the upstream amplification are noted here. One way is to perform stability
analysis on the reconstructed base flows from section 4.2.3. Another approach, as is detailed in section
5.4.3, is to identify a region of influence for each case and to extract the accordingly. A third and final
way can be to identify a parameter, such as the roughness Reynolds number was identified to scale
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remarkably well distortions of the base flow, that scales the response of the incoming TS wave of any
given frequency.
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Figure 5.20: Increase in growth rate (a) and factor (b) for all studied cases.

5.4.2. Stability of Reconstructed Base Flows

Stability analysis of the reconstructed upstream base flows (using the boundary layer equations) can
be performed with the aid of either the PSE, or the OS equation. The OS, although it can not take
into account streamwise derivatives, has been shown in Figure 5.4 (b) to approximate the growth rate
reasonably well. However, the PSE is preferred here due to the fact that it can take into account (small)
streamwise gradients. It is also quicker than an OS analysis as an eigenvalue need not be solved at
each streamwise location.

The drawback of such an approach is that the base flows that were reconstructed through the aid
of the boundary layer solver could not be marched forward beyond separation. The accuracy of the
base flows very close to separation is also suspect. Furthermore, both the boundary layer equations
and the PSE are parabolic and can not be reasonably expected to accurately predict the stability of the
flow.

For a no step case the flow is effectively a flat plate zero pressure gradient flow. It has been shown
in section 5.1.1, that the PSE can accurately predict the stability of such a flow. For small step heights
in the range, 𝐻 = 0.125 − 0.5, the stability of the reconstructed base flow is remarkably similar to the
stability of the base flow obtained with the aid of DNS. This is despite all the assumptions involved in
first, the extraction of the base flow, and second, the stability analysis of the simplified base flow.

Stability of the reconstructed boundary layers is compared to the corresponding DNS results in
Figure 5.21. For larger step heights, the stability of the flow is reasonably similar up till the point of
separation. Beyond separation, as the base flow could not be reconstructed, the stability of the flow
could not be determined. However, as shown earlier, the increase of the Δ𝑁 is exponential in the
streamwise direction. The Δ𝑁 can then simply be extracted by an extrapolation of the ln(Δ𝑁).

Fortunately, the Δ𝑁 for small steps (𝐻 ≤ 0.5) has been observed to occur upstream of the
step. The reconstructed base flow can, at least for small steps below the boundary layer displacement
thickness, be used to obtain the Δ𝑁 . For larger steps, the Δ𝑁 upstream of the step can be obtained.
However, the Δ𝑁 downstream of the step may also be very large and equally significant. This requires a
larger parameter space to identify the ’critical’ step height after which the near-wall structure dominates
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downstream amplification.
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Figure 5.21: Stability of reconstructed base flows for . (a) and (b).

5.4.3. Region of Influence

In section 4.2.1, it was shown that the height of a step merely influences where an ’observable differ-
ence’ in the base flow first occurs, as compared to a zero pressure gradient flat plate flow. Similar
behaviour is seen for the stability of the flow. The height of the step and the frequency of the incoming
TS wave merely influence where an ’observable difference’ in the stability first occurs. This is defined
as the region of influence for a step with a particular step height distorting a TS wave of a particular
frequency.

There is ambiguity surrounding the definition of the region of influence, both in defining a parameter
that encapsulates the change of the stability of the flow and defining the point where this parameter
’significantly’ deviates from the equivalent clean flat plate.

Influence of the step, in the sense of base flow distortion, is seen even very far upstream of it. By
defining the Δ𝑁, or the ln(Δ𝑁), as it has been established that the growth rate increase is exponential,
as the parameter that depicts the change of the stability of the flow, the region of influence can be
defined as the distance from the step where a threshold value for the ln(Δ𝑁) is observed.

A threshold value for the ln((Δ𝑁) factor is chosen to be -4. This corresponds to a Δ𝑁 of approximately
0.02. All curves are, then, shifted left (or right) so that the 𝑥 = 0 lies at Δ𝑁thres. This is shown in Figure
5.22 (a). An equation for ln(Δ𝑁) is as follows:

ln(Δ𝑁) = 0.06679(𝑥 − 𝑥 ) − 4.035 (5.1)

This region of influence is different for different frequencies. The change in growth rate can be
related to the change in the shape factor of the base flow and how the incoming TS wave reacts to the
changes. Higher frequency TS waves have much lower maximas and respond ’quicker’ to changes in
the base flow. Steps, therefore, have a larger upstream influence for higher frequencies and, therefore,
have a greater region of influence.

To obtain a value for the Δ𝑁 using (5.1), it is necessary to know the region of influence, which varies
with the step height and the frequency. The effect of the step height has already been seen to scale
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well with the roughness Reynolds number, 𝑅𝑒 . The response of a TS wave is seen to scale with
the wavelength of the wave 1. When plotting the region of influence against 𝑅𝑒 /𝜆, the lines tend to
collapse towards a single line, at least within the parameters studied, as shown in Figure 5.22 (b).

The wavelength of a TS wave can, therefore, be used as a parameter to characterise its response
to a step. In a way, two effects can be decoupled here. The roughness Reynolds number scales the
distortion of the step and the wavelength scales the response of a TS wave to the distortion. The
parameter, 𝑅𝑒 /𝜆, hereafter referred to as 𝛾, is used as a single parameter that encompasses just
enough physics to determine the upstream amplification of a TS wave. This is used in section 5.4.4 to
come up with a relation that can directly scale the Δ𝑁 values.

Although the region of influence can be estimated using Figure 5.22 (b), a detailed analysis requires
a larger parameter space, with more step heights and frequencies analysed.
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Figure 5.22: Variation of ln( ) for all studied cases (a) and the corresponding region of influence variation with (b).
Arrow shows how the region of influence is approximated for . and .

5.4.4. Empirical Relation for Upstream Amplification

The parameter 𝛾 = 𝑅𝑒 /𝜆 has been seen to scale, reasonably well, the influence of a step on a TS
wave. It is also used to scale directly the Δ𝑁 for all combinations of step heights and wavelengths. By
observing how, in Figure 5.22 (b), the region of influence is is approximately related to the square root
of 𝛾 and iterating, the lines of the Δ𝑁 appeared to collapse, albeit with some spread, on to a single line.
This is shown in Figure 5.23. An equation for the line is:

ln( Δ𝑁𝛾 . ) = 0.06662(𝑥 − 𝑥 ) − 2.1601 (5.2)

which can be used to directly relate the Δ𝑁 to any point upstream of the step. There is, undoubtedly,
some disagreement. However, this is exaggerated by the fact that sinusoidal fluctuations in the 𝑁
factor, and the Δ𝑁, exist close to the step. Despite the fact that there is an order of magnitude difference
between the considered step heights (𝐻 = 0.125 to 𝐻 = 1), and two orders of magnitude difference
between the roughness Reynolds number (Table 3.4), all lines do still tend to collapse towards a single
curve.
1Wavelength of the clean reference case at the step location was used
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This curve can be used to approximate the Δ𝑁 of a combination of step height and frequency, without
having to reconstruct the base flow or knowing the region of influence.
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Figure 5.23: Scaling of with .

5.5. Stabilising Forward Facing Steps
Wörner, Rist and Wagner [72] investigated very small step heights and observed stabilisation. The
mechanism behind the stabilisation was proposed to be the new thinner boundary layer that develops
downstream of the step that can not support the oscillations that existed upstream. The initial stabilisa-
tion has also been observed within the current set up, albeit for step heights that are smaller than the
boundary layer displacement thickness. Furthermore, the extent of the stabilisation is also a function of
the frequency of the incoming TS wave. For the step heights studied, however, there was no stream-
wise location where a negative Δ𝑁 was observed. Essentially, at all streamwise locations, the TS wave
had a larger amplitude than it otherwise would have for the clean reference case. No stabilisation was
observed, as in the work by Wörner, Rist and Wagner [72]. However, the steps studied in the current
set up were significantly larger than those studied previously.

In order to investigate whether forward-facing steps can indeed be stabilising, very small steps
were investigated (case 23-25 in Table 3.1), that were a mere fraction of the local boundary layer
displacement thickness of the clean reference case. Regardless of the step height, distortion of the
base flow upstream and (far) downstream will amplify TS waves.

Overall stabilisation of TS waves can only be achieved if the localised stabilisation provided by the
step, just downstream of it, can not only offset the upstream and downstream amplification but exceed
it. The localised stabilisation is also only observed if the near-wall structure does not play a significant
role in the amplification downstream. For small step heights, this was seen to be the case.

Interaction of the TS wave at the step shows no evidence of a near-wall structure for a step height,
𝐻 = 0.125 and 𝐻 = 0.25. For 𝐻 = 0.125, contours of the phase are shown in Figure 5.24 (b). The TS
wave simply goes over the step. However, stabilisation is observed immediately after the step, as was
predicted. This local stabilisation is, again, due to the thinner boundary layer.

For these small step heights, the localised stabilisation is sufficient enough to exceed the upstream
amplification, so that, downstream of the step, there exist streamwise locations where a negative Δ𝑁
is observed. However, further downstream, due to the distortion of the base flow, higher growth rates
are observed, and an overall positive Δ𝑁 is seen.
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Figure 5.24: Contours of (1,0) (a) and its phase (b) for . and .

In the current set up, very small steps were considered, and they were still found to have an overall
destabilising effect. The destabilising effect is smaller if the frequency is lower, as shown in Figure
5.25, which could mean that even lower frequencies may experience stabilisation. Furthermore, even
smaller step heights coupled with these lower frequencies could be possible candidates for stabilising
forward-facing steps. However, Figure 5.25 shows that the potential of stabilisation is limited.
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6
Conclusion and Recommendations

6.1. Conclusion
The perturbation dynamics of a flat plate zero pressure gradient flow with a forward facing step have
been studied. The change of boundary layer stability due to these FFS is summarised in Figure 6.1.
FFS represented discontinuities and resulted in distortions of the base flow. The distortion of the base
flow is found to be the primary factor behind the greater growth rates experienced upstream and far
downstream of the step by the TS waves.

Figure 6.1: Effect of a forward facing step on growth rate of TS waves in an unswept incompressible boundary layer.

The distortion in the base flow is observed both upstream and downstream of the step, with the up-
stream distortion found to scale with the roughness Reynolds number, 𝑅𝑒 . The upstream distortion of
the boundary layer is due to the adverse pressure gradient imposed by the step. A localised favourable
pressure gradient is also observed, but that is located very close to the step location and is found to
not significantly modify the stability of the flow. The adverse pressure gradient leads to a decelerated
external velocity closer to the step. The upstream distorted base flows can then be reconstructed, with
remarkably good accuracy, by using the external velocity distribution, which scales with the roughness
Reynolds number, 𝑅𝑒 , induced by the step as the boundary condition for the boundary layer solver.

69
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The effect of the step on the TS wave can be split into an upstream component, a (far) downstream
component where the wave has recovered to the shape that is typical of a TS wave, and modification of
the TS wave at the step location. The upstream and (far) downstream amplification is attributed solely
to the distortion of the base flow due to the presence of the step. At the step location, however, the
dynamics of the perturbation depend upon how the singularity modifies the TS wave.

Upstream of the step, irrespective of the frequency and the step height, an exponential change in
the growth rate is observed for the TS waves approaching the step. The step height changed, primarily,
the point where significant base flow distortion is observed. The frequency changed how upstream a
base flow distortion is felt. Higher frequencies, due to their lower TS maximas, responded quicker to
small distortions of the base flow, leading to larger Δ𝛼 at the step.

The predictability of upstream distortion is particularly useful for small step heights as it is seen
that the maximum Δ𝑁 is observed upstream of it. This is because there is initial stabilisation observed
immediately downstream of the step that is more than sufficient (for small step heights) to offset the
destabilisation observed far downstream.

To predict the upstream amplification, several different strategies are proposed. The reconstructed
base flows can be used in conjunction with the PSE solver to predict the stability of the flow in the
presence of a step. An advantage of such an approach is that a single scaling parameter, the roughness
Reynolds number, is required to obtain the base flow distortion and no scaling parameter for the TS
wave is required. Stability diagrams for the upstream portion can be obtained. However, the boundary
layer solved, used to reconstruct the base flows in the thesis, is parabolic in nature and fails close to
the step location, predicting earlier separation.

Other strategies include finding a region of influence of a given configuration, including step height
and TS frequency, and to directly derive a single scaling parameter that encompasses the physics of the
problem. Although a trend for the region of influence is observed, a larger parameter space is required
to obtain a definitive relation. The scaling parameter, 𝑅𝑒 /𝜆, is found to reasonably accurately capture
the physics of the flow and is used to derive a relation for the Δ𝑁 factor for a given step height and TS
frequency. Although this is probably the most straightforward method, requiring minimal computational
effort to obtain an estimate for the Δ𝑁 factor, there is, nevertheless, some spread in the data.

For larger step heights, the physics of the problem changes downstream of the step. In addition
to the more significant distortion experienced by the flow, leading to larger growth rates, larger step
heights tend to ’split’ the incoming TS wave in two, leading to two separate vortices being observed at
the step, each with a different wavenumber. The near wall vortex that is absent for smaller step heights
acts as an efficient receptivity mechanism for the downstream TS wave.

The amplitude and extent of the near wall structure is a function of the step height and the frequency.
For the same step height, higher frequency TS waves experience greater distortion as the step height,
relative to the wall normal position of their maxima, is higher.

For small step heights, a small region of stabilisation is observed immediately downstream of the
step. This stabilisation may be significant enough to offset the far downstream destabilisation. There-
fore, the maximum Δ𝑁 for small step heights may be observed upstream of the step. This is related
to the thinner boundary layer developing after the step, in addition to the incoming TS wave being
’pushed’ out into the freestream due to the presence of the step. The thinner boundary layer supports
oscillations close to the wall and the TS wave that could exist, and amplify, in the thicker upstream
boundary layer tends to decay.

The near wall structure, formed for larger step heights, lies in a region of greater velocity gradients
and can, more efficiently, force the downstream TS wave. This is why larger step heights do not exhibit
this region of stabilisation downstream of the step, and the maximum Δ𝑁 is observed much further
downstream, due to higher growth rates observed far downstream.

The stabilisation observed immediately downstream is exploited to investigate whether signficantly
reducing the step height can lead to an overall stabilisation, as observed by Wörner, Rist and Wägner
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[72]. Upstream and far downstream destablisation is inevitable, without employing active methods such
as suction to modify the shape factor of the boundary layer. The destabilisation is reduced by reducing
the step height and the stabilisation at the step height is seen to be sufficient to more than offset
the upstream amplification. However, the downstream amplification is observed to have an overall
destabilising effect on the boundary layer. A unique aspect of these very small forward facing step is
that there are streamwise locations where a negative Δ𝑁 is observed. This is not the case for larger
step heights, where a positive Δ𝑁 is observed at all streamwise locations. Overall, however, a positive
Δ𝑁 is observed at the outflow, irrespective of the step height.

6.2. Recommendations
For a sharp forward facing step, it has been observed that the upstream and downstream amplification
is inevitable. Unless the base flow is modified, the amplification will remain and forward facing steps
will, for all practical configurations, destabilise the boundary layer. If the base flow can be modified, the
destabilisation may be reduced.

Figure 6.2: Different possible step geometries.

An active way to stabilise the flow is through the
action of suction. Suction can produce fuller boundary
layer profiles that are less susceptible to TS amplifi-
cation. However, suction leads to a thinner boundary
layer and a step, of the same absolute height, will lead
to a larger roughness Reynolds number in the pres-
ence of suction. Since the effect of a step, at least up-
stream, has been found to scale with the roughness
Reynolds number, the benefit of suction is question-
able. Suction downstream of the step is, possibly, of
greater use than upstream suction.

A passive mechanism with which to control the am-
plification due to the step is by modifying the geometry
of the step. Three possible step geometries are shown
in Figure 6.2. Geometry (a) represents the sharp step
studied with the current DNS set up. These have been
shown to be destabilising. Geometry (b) is similar (not
drawn to scale) to steps studied by Xu, Lombard and
Sherwin [74], who studied smooth FFS. Stabilising na-
ture of the step was observed for select heights and
frequencies. However, large step widths were consid-
ered in their study, and that meant that the favourable
pressure gradient was no longer very localised, as in
the sharp step studied in the thesis. The width of the
step was approximately four times the height of the
step studied by Xu, Lombard and Sherwin [74].

The mechanism for stabilisation downstream of the
step that Xu, Lombard and Sherwin [74] leveraged,
therefore, is different than the mechanism observed
for sharp FFS in the current thesis. What is observed

is that the discontinuity that is the step causes a thinner boundary layer to develop that can not support
oscillations that the upstream boundary layer can support. In that regard, geometry (c) in Figure 6.2
is hypothesised also to provide a more favourable effect on boundary layer stability than a sharp FFS.
Geometry (c) is composed of a sharp upper corner and a smooth lower corner. The smooth corner can
aid in reducing the upstream distortion, while the sharp corner helps leverage the advantages of the
new, possibly stabilising, thinner boundary layer.



72 6. Conclusion and Recommendations

Controlling the perturbation amplitude can be achieved by reducing the amplitude of the near wall
structure. The near wall structure is counter-rotating with the structure on top and does not merge
with it. Modifying the near wall structure such that its phase speed increases slightly and the point
where it merges with the upstream co-rotating vortex is pushed further downstream is found to be
more effective at reducing the extent of amplification and blowing suction has already been shown to
help achieve this.
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Figure A.1: Evolution of the streamwise base flow velocity for clean case.
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Figure A.2: Evolution of the wall normal base flow velocity for clean case.
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Figure A.3: Comparison of the streamwise base flow velocity between = . (–) and the clean case (∘).
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Figure A.4: Comparison of the wall normal base flow velocity between = . (–) and the clean case (∘).
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Figure A.5: Comparison of the streamwise base flow velocity between = . (–) and the clean case (∘).

0 1 2

10
-3

0

1

2

3

4

0 0.5 1

10
-3

0 1 2

10
-3

0 0.005 0.01

0 5

10
-3

0

1

2

3

4

0 1 2

10
-3

0 0.5 1

10
-3

0 0.5 1

10
-3

Figure A.6: Comparison of the wall normal base flow velocity between = . (–) and the clean case (∘).
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Figure B.1: Comparison of reconstructed base flow streamwise velocity profiles (∘) with DNS (–) for = . .
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Figure B.2: Comparison of reconstructed base flow wall normal velocity profiles (∘) with DNS (–) for = . .
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Figure B.3: Comparison of reconstructed / (∘) with DNS (–) for = . .
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Figure B.4: Comparison of reconstructed base flow streamwise velocity profiles (∘) with DNS (–) for = . .
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Figure B.5: Comparison of reconstructed base flow wall normal velocity profiles (∘) with DNS (–) for = . .
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Figure B.7: Comparison of reconstructed base flow streamwise velocity profiles (∘) with DNS (–) for = . .
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Figure B.8: Comparison of reconstructed base flow wall normal velocity profiles (∘) with DNS (–) for = . .
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Figure B.9: Comparison of reconstructed / (∘) with DNS (–) for = . .
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Figure B.10: Comparison of reconstructed base flow streamwise velocity profiles (∘) with DNS (–) for = . .
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Figure B.11: Comparison of reconstructed base flow wall normal velocity profiles (∘) with DNS (–) for = . .
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Figure B.12: Comparison of reconstructed / (∘) with DNS (–) for = . .
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Figure C.1: Isocontours of the Q criterion of the perturbations for . and . (–) and (⋯ ) represent regions of
opposite perturbation vorticity.
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Figure C.2: Isocontours of the Q criterion of the perturbations for . and . (–) and (⋯ ) represent regions of
opposite perturbation vorticity.
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Figure C.3: Isocontours of the Q criterion of the perturbations for and . (–) and (⋯ ) represent regions of opposite
perturbation vorticity.
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Figure C.4: Isocontours of the Q criterion of the perturbations for , and inflow forcing combined with blowing
suction of phase, / . (–) and (⋯ ) represent regions of opposite perturbation vorticity.
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Figure D.1: Streamwise velocity perturbation evolution for and .
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Figure D.2: Wall normal velocity perturbation evolution for and .
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Figure D.3: Streamwise velocity perturbation evolution for . and .
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Figure D.4: Wall normal velocity perturbation evolution for . and .
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Figure D.5: Streamwise velocity perturbation evolution for . and .
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Figure D.6: Wall normal velocity perturbation evolution for . and .
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Figure D.7: Streamwise perturbation evolution for . and .
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Figure D.8: Wall normal velocity perturbation evolution for . and .
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Figure D.9: Streamwise perturbation evolution for . and .
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Figure D.10: Wall normal perturbation evolution for . and .
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Figure D.11: Streamwise perturbation evolution for and .

0 0.5 1

10
-5

0

1

2

3

4

0 1 2

10
-5

0 5

10
-5

0 1 2

10
-4

0 2

10
-4

0

1

2

3

4

0 5

10
-4

0 5

10
-3

0 5

10
-3

Figure D.12: Wall normal perturbation evolution for and .
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Figure D.13: Streamwise perturbation evolution for and .
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Figure D.14: Wall normal perturbation evolution for and .



107

0 5

10
-5

0

1

2

3

4

0 1 2

10
-4

0 5

10
-4

0 1 2

10
-3

0 2 4

10
-3

0

1

2

3

4

0 0.005 0.01 0 0.01 0.02 0 0.01 0.02

Figure D.15: Streamwise perturbation evolution for and .
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Figure D.16: Wall normal perturbation evolution for and .
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