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Optimizing Multi-class Fleet Compositions for Shared
Mobility-as-a-Service

Alex Wallar1, Wilko Schwarting1, Javier Alonso-Mora2, and Daniela Rus1

Abstract— Mobility-as-a-Service (MaaS) systems are trans-
forming the way society moves. The introduction and adoption
of pooled ride-sharing has revolutionized urban transit with the
potential of reducing vehicle congestion, improving accessibility
and flexibility of a city’s transportation infrastructure. Recently
developed algorithms can compute routes for vehicles in real-
time for a city-scale volume of requests, as well as optimize
fleet sizes for MaaS systems that allow requests to share
vehicles. Nonetheless, they are not capable of reasoning about
the composition of a fleet and their varying capacity classes.
In this paper, we present a method to not only optimize fleet
sizes, but also their multi-class composition for MaaS systems
that allow requests to share vehicles. We present an algorithm
to determine how many vehicles of each class and capacity are
needed, where they should be initialized, and how they should
be routed to service all the travel demand for a given period of
time. The algorithm maximizes utilization while reducing the
total number of vehicles and incorporates constraints on wait-
times and travel-delays. Finally, we evaluate the effectiveness
of the algorithm for multi-class fleets with pooled ride-sharing
using 426,908 historical taxi requests from Manhattan and
187,243 downtown Singapore. We show fleets comprised of
vehicles with smaller capacities can reduce the total travel
delay by 10% in Manhattan whereas larger capacity fleets in
downtown Singapore contribute to a 9% reduction in the total
waiting time.

I. INTRODUCTION

Mobility-as-a-Service (MaaS) is important for the future of
transportation by making transportation available anywhere
at anytime. With autonomous vehicles on the horizon [1],
transportation network companies are revolutionizing per-
sonal mobility and have the potential to provide faster
and more efficient transportation using fleets of coordinated
autonomous vehicles.

MaaS has to cope with the challenges of routing vehicles
efficiently and determining the size and composition of fleets.
State of the art algorithms are able to efficiently manage
fleets of vehicles to service large volumes of requests as
is needed in dense urban areas [2], as well as determining
fleet sizes for fixed capacity vehicles [3]. This work not
only determines routes and fleet sizes, but also the fleet
composition, i.e. how many vehicles of which capacity the
fleet should be composed of.
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Pooled ridesharing, where multiple passengers share the
same vehicle, has allowed less vehicles to service more
requests and therefore an increase in vehicle utilization and
efficiency. This has been shown by services like UberPool
and Lyft by extending our means of transportation within a
city. In a similar manner, actively optimizing for the capacity
and number of vehicles in a fleet is poised to increase
efficiency.

Routing and assigning vehicles to pooled trips is compu-
tationally intractable for a large volume of requests and fleet
sizes. While there has been recent developments in global on-
demand vehicle dispatching algorithms that use constraints
for the maximum allowable waiting time and travel delay
to reduce the number of viable vehicle trips and make the
pooled ridesharing problem more tractable [2], additionally
assigning the number of vehicles and their respective capac-
ities increases the problem complexity further.

When optimizing for fleet composition a trade-off between
employing fewer cars and increased utility has to be made.
When optimizing for fewer cars, one would intuitively in-
crease the vehicle capacity, while if optimizing for vehicle
utilization, more but smaller capacity cars would be the
desired outcome. We introduce a tunable algorithm that
allows a fleet operator to specify the desired operating point
determining the tradeoff, driven by cost of vehicle versus
cost of under-utilization. Our algorithm can also ensure that
passengers do not need to wait too long to be picked up
and that by sharing a ride, the passenger will not go too
far out of their way. The approach can also guarantee that
all requests are serviced and tells us how many vehicles of
which capacity we need.

This paper contributes:
• Formulation of an optimization problem for ride-sharing

fleet compositions, determining how many vehicles of
which capacity are needed with objective of high utility
and reduced number while incorporating bounds on
maximum waiting time and maximum incurred delay.

• An algorithm for determining a computationally
tractable approximate solution of the optimization prob-
lem.

• Case studies on downtown Singapore and Manhattan.
In the following we address the problem of determining how
many vehicles of which capacity are needed and where they
should be located for a MaaS fleet to service all the taxi
demand at city-scale with a maximum waiting time and
maximum incurred delay while allowing multiple requests
to be serviced by the same vehicle. Our method runs offline
and can inform a fleet operator of the distribution and size
of their fleet needed to satisfy historical demand. We show
that optimizing the number of vehicles, their distribution and
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their capacity, we can significantly improve the efficiency of
a MaaS fleet. In the resulting case studies we also show
that meaningful interpretations of fleet compositions can
be made, such as whether investment in micro-mobility
solutions with many 2 seat cars or fewer larger passenger
cars with 6 seats additionally to traditional 4 seat vehicles
are more suitable for increased utilization.

A. Related Work

While initial work on MaaS systems was bound to algo-
rithms dealing with fleets of single occupancy vehicles [4]–
[9], ride-sharing and the increased popularity of the sharing
economy in general have shown to make fleets more efficient
and affordable for more users.

Recently, algorithms that can compute and assign trips
that allow multiple passengers to share the same vehicle
for a large volume of requests have been developed. Santi
et al. [10] showed that 80% of rides in Manhattan could
pairwise shared without significantly impacting the quality
of service to passengers. Tachet et al. [11] then extended
this analysis of shared rides to multiple cities. Alonso-Mora
et al. [2] developed a scalable algorithm to determine optimal
assignments of transportation requests to vehicles in a fleet
that allow more than two passengers to share the same
vehicle. However, what makes these approaches so scalable
are the hard constraints on the maximum waiting and delay a
passenger can experience. This means that given an arbitrary
vehicle distribution and fleet size, these approaches cannot
guarantee that all the requests will be serviced.

There has been some research in determining what fleet
sizes are needed to maintain a desired level of service.
Boesch et al. [12] analyzed how different fleet sizes will
perform to satisfy a given travel demand. Winter et al. [13]
used a fixed start and end point model to determine how
many vehicles would be needed. A recent breakthrough by
Vazifeh et al. [14] can compute the minimum fleet size
required to service historical demand data, but does not allow
for pooled rides. Čáp and Alonso-Mora [15] used multi-
objective analysis to estimate how many shared vehicles
are needed to satisfy a set of requests, but the method was
too computationally intensive and the authors only presented
experiments using 1 minute worth of data.

The authors’ recent previous work in [3] presented a
scalable method to determine the fleet size given days worth
of historical demand and allowed multiple passengers to
share the same vehicle, but assumed that all vehicles had
the same had the same capacity.

B. Paper Structure

The structure of this paper is as follows. Sec. II introduces
many terms and defines many structures used throughout the
paper. Sec. III presents the algorithm for determining the
fleet size needed to service all the transportation requests.
Sec. IV presents the experimental setup and evaluation
on data from downtown Singapore and Manhattan. Lastly,
Sec. V discusses the findings from the case studies and
suggests a few future directions for research.

II. PROBLEM STATEMENT

Consider the operator of a pooled ridesharing system
with vehicles of varying capacity. They are interested in
optimizing the composition of their fleet without sacrificing
their quality of service. Particularly, they want to know how
many vehicles of each capacity are needed and where they
should be located to satisfy all of the travel demand. The fleet
operator provides historical travel request data to determine
what fleet composition and vehicle distribution would have
been needed to service these requests.

A. Vehicles

A vehicle’s capacity is the maximum number of passen-
gers it can carry at any time and can be one of Kavail =
{κ1, κ2, . . . , κ|Kavail|} where 1 ≤ κi ≤ Kmax. Vehicles travel
along a road-network, G = (N,E), represented as a directed
graph, and let’s assume we have a function τ(ni, nj) for
ni, nj ∈ N that gives the shortest travel times between nodes
in the graph. Vehicles are initialized on the road-network
at locations called vehicle deposits. The vehicle deposits,
D ⊆ N , can be thought of as starting locations for vehicles
before they have been assigned any requests.

B. Requests

For the time interval, [0, tmax], the ridesharing system
received a set of travel requests denoted as R. A travel
request is a tuple r = (pr, dr, t

r
r), where pr ∈ N is the

pickup location, dr ∈ N is the dropoff location, and trr is the
time the request was made. We consider a travel request to
be successfully completed if the following quality of service
constraints are satsified:

1) the waiting time, ωr, given by the difference between
the pickup time, tpr , and the request time, trr is less
than a specified maximum waiting time, Θwait

2) the travel delay for the request given by δr = tdr − t∗r
is less than a specified maximum travel delay, Θdelay,
where tdr is the time when the request is dropped off
and t∗r = trr+τ(pr, dr) is the earliest possible time the
destination could be reached.

C. Trips

Vehicles are assigned requests in batches we call trips.
A trip, T =

(
(`1, t1), (`2, t2), . . . , (`|T |, t|T |)

)
is a sequence

of pick up and drop off locations along with the time the
pick up or drop off will occur. Let’s define reqs(T ) ⊆ R
to be the requests serviced by T . Let’s also define the load
of T , L(T ), as the maximum number of passengers in a
vehicle at any one time while executing T . For convenience,
let’s use `start(T ), `end(T ), tstart(T ), and tend(T ) to denote the
locations and times of the first and last events of T . Let’s also
use `depo(T ) to denote the vehicle deposit with the shortest
travel time to `start(T )

The cost of a trip is given by the sum of the delays
experienced by the requests it services

δ(T ) =
∑

r∈reqs(T )

δr (1)
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TABLE I: Main symbols.

Kavail = {κ1, . . . , κ|Kavail|} Vehicle capacity, where 1 ≤ κi ≤ Kmax
G = (N,E) Road network, directed graph
τ(ni, nj) Shortest travel time between ni, nj ∈ N
D ⊆ N Vehicle deposits, i.e. starting locations
r = (pr, dr, trr), r ∈ R Travel request
pr ∈ N, dr ∈ N, trr pickup-, dropoff location, time of request
ωr = tpr − trr ≤ Θwait Wait time, diff. of pickup and request time
δr = tdr − t∗r ≤ Θdelay Travel delay, diff. of droppoff and earliest t.
T =

(
(`1, t1), . . .

)
Trip, sequence of locations and times

reqs(T ) ⊆ R, L(T ) Requests, and load of trip
ttrans(Ti, Tj) Trip transition time
tidle(Ti, Tj) ≤ Θidle Tripe idle time
π =

(
T1, T2, . . . , T|π|

)
Vehicle schedule

reqs(π) Requests serviced by schedule
T ∗ Minimum trip cover of R

For T to be valid, all the travel requests in the trip must
be completed without violating the quality of service con-
straints. This implies that if an empty vehicle executed trip T ,
the vehicle would be empty upon completion. Additionally,
for a vehicle to execute trip T , the load of T needs to be
less than or equal to the capacity of the vehicle. We will use
κ(T ) ∈ Kavail to denote the capacity of the vehicle executing
T .

D. Vehicle Schedules

We also consider which trips could be serviced by the
same vehicle in sequence. We do so by finding ordered pairs
of trips we call trip transitions. A trip transition is an ordered
pair, (Ti, Tj), such that a vehicle is able to satisify Ti then
Tj without idling for longer than a given maximum vehicle
idle time, Θidle, or violating the quality of service constraints.
Let’s define the transition time between trips as:

ttrans(Ti, Tj) = τ(`end(Ti), `start(Tj)) (2)

and the idle time between trips as:

tidle(Ti, Tj) = tstart(Tj)− tend(Ti)− ttrans(Ti, Tj) (3)

We call the sequence of trips serviced by the same vehicle
a vehicle schedule and it represents how a given vehicle
will move to satisfy requests throughout the time interval.
Specifically, a vehicle schedule, π =

(
T1, T2, . . . , T|π|

)
is a

trip sequence such that ∀Ti ∈ π, (Ti, Ti+1) is a valid trip
transition.

Due to the similarity in structure of trip and schedules,
we will reuse the convenience functions (i.e. reqs(π) are the
requests serviced by schedule π).

E. Fleet Optimization Criteria

We consider two main objectives when optimizing the
composition of a pooled ridesharing fleet: 1) the total number
of vehicles needed to satisfy the demand, 2) the utilization
of vehicle capacity. The values of these objectives is fully
defined by the set of schedules we compute. For a set
of schedules, Π = {π1, π2, . . .}, we can combine these
objectives into a single cost function:

C(Π) = Ksize · |Π|+Kutil ·
∑
π∈Π

∑
T∈π

κ(π)− L(T ) (4)

where Ksize and Kutil are scalarization weights. Ksize and
Kutil define a point along the pareto optimality forntier defin-
ing the tradeoff between smaller fleets and higher utilization
of capacity of vehicles. They are defined by a fleet operators
specifications of the cost tradeoff of fleets with many, smaller
capacity vehicles and fewer, but larger capacity vehicles.

Using this cost function and the other structures provided
in this section, we can formulate our fleet composition
optimization problem as follows:

Problem 1 (Heterogeneous Fleet Composition). Given a set
of requests, R, a set of available capacities classes, Kavail,
and vehicle deposit locations, D, find the set of schedules Π
that solves

argmin
Π

C(Π) subject to

ωr ≤ Θwait ∧ δr ≤ Θdelay, ∀r ∈ R (5)
tidle(Ti, Ti+1) ≤ Θidle, ∀Ti ∈ π,∀π ∈ Π (6)

L(π) ≤ κ(π), ∀π ∈ Π (7)
`start(π) ∈ D, ∀π ∈ Π (8)

∩π∈Πreqs(π) = ∅ (9)
∪π∈Πreqs(π) = R (10)

A solution to the aforementioned problem is the set of
vehicle schedules that would need to be executed to minimize
the cost function, service all of the travel demand, and satisfy
the quality of service constraints. The schedules directly
define the number, the capacity classes, and the starting
locations of all the vehicles.

III. OPTIMIZING MULTI-CLASS FLEET COMPOSITIONS

We optimize the composition and fleet size needed to
service the given transportation demand in four steps. Firstly,
using integer linear programming, we determine where and
how many vehicle deposits are needed to dispatch vehicles
in the fleet, cf. Sec. III-A. These deposits can be thought
of as potential starting locations for the vehicles. Next, we
generate a large candidate set of possible vehicle trips that
service the transportation demand, see Sec. III-B. This set
contains trips of different lengths and may contain multiple
trips that service the same request. These candidate trips can
be thought of as all the different ways the transportation
requests can be serviced. Next, we select the minimum
number of trips from the candidate set such that every request
is serviced exactly once, Sec. III-C. We can think of this
as minimizing the number of total trips needed to service
all of the transportation demand. Finally, we determine how
many and which types of vehicles are needed to complete
these trips, cf. Sec. III-D, by considering which trips can
be completed in sequence without violating the quality of
service constraints or letting a vehicle idle for too long
between trips.

A. Selecting Vehicle Deposits

Due to the maximum waiting time and maximum delay
constraints for travel requests, it is not possible to guarantee a
prescribed service rate for an arbitrary set of vehicle deposits.
For instance, if the travel time from the closest vehicle
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deposit to a request’s pick up location is larger than the
maximum waiting time, that request may be impossible to
service. Therefore, in order to provide a guaranteed service
rate, we must intelligently select the locations for the vehicle
deposits.

Using the road-network, G = (N,A), we can select a
set D ⊆ N as vehicle deposit locations such that ∀n ∈ N ,
∃d ∈ D with τ(d, n) ≤ Θdepos where 0 ≤ Θdepos ≤ Θwait. To
reduce the computational overhead for computing trips, we
select the minimum number of vehicle deposits needed. We
can do this by solving an integer linear program. First, let’s
define a reachability matrix as follows,

Hij =

{
1, if τ(ni, nj) ≤ Θdepos

0, otherwise
(11)

This matrix describes which nodes are reachable from a
given node within a specified amount of time. Let’s also
define a set of binary variables x where xi = 1 if ni is used
as a deposit location and 0 otherwise. We can now solve
an ILP to determine the minimum number of nodes to use
as vehicle deposits such that the reachability constraint is
satisfied:

argmin
x

|N |∑
i=1

xi, subject to (12)

|N |∑
i=1

xi ·Hij ≥ 1, ∀j ∈ [1, |N |] (13)

Eq. (13) guarantees that every node in N is reachable
within Θdepos travel time from at least one vehicle deposit.
Now we can define the set of vehicle deposits as D = {ni :
1 ≤ i ≤ |N | ∧ xi = 1}

B. Generating Candidate trips
The first part of our problem is to compute the set of

candidate trips for a given set of requests. We first define
a pairwise shareability graph, Q = (R ∪ D, E), where R
is our set of requests, D is our set of vehicle deposits, and
E is our set of edges. There exists an edge between two
requests, r1, r2 ∈ R, if it is possible for a vehicle starting
at the pick up location of one request to complete pick up
and drop off of both requests while satisfying our maximum
travel delay and maximum waiting time constraints and if
|trr1− t

r
r2 | ≤ treqs, that is the time between when the requests

were made is less than some parameter, treqs. Since we are
computing trips for an arbitrarily large set of requests, R,
this constraint limits the size of our shareability graph to
make the computing trips more tractable.

Our shareability graph also has edges between vehicle
deposits and requests. There exists an edge between d ∈ D
and r ∈ R if a vehicle starting at the location of deposit
d is able to reach r’s pick up location under the maximum
waiting time, Θwait. That is, τ(ld, pr) ≤ Θwait. Let us also
define a function ζ∗(d,R), where d ∈ D and R ⊆ R to
return the minimum cost trip given by Eq. (1) or ∅ if no
valid trip exists. The function ζ∗(d,R) can be determined
using a variety of techniques such as solving an ILP, using
constraint programming techniques, or tree search. For our

Algorithm 1 Generating Candidate trips

1: T ← {}
2: for d ∈ D do
3: T1 ← {}
4: for (d, r) ∈ E do
5: T ← ζ∗(d, {r})
6: T1 ← T1 ∪ {T}
7: end for
8: for i = 2 to Γ do
9: Ti ← {}

10: for T ∈ Ti−1 do
11: U ← {r1 : (r1, r2) ∈ E∧r2 /∈ reqs(T )∧(d, r1) ∈

E}
12: for u ∈ U do
13: T ′ ← ζ∗(d, reqs(T ) ∪ {u})
14: Ti ← Ti ∪ {T ′}
15: end for
16: end for
17: end for
18: T ← T ∪

⋃Γ
i=1 Ti

19: end for

implementation, we performed tree search over the possible
trips and kept track of the minimum cost trip to return for a
given set of requests. A valid trip must also ensure that the
number of passengers in a vehicle from deposit d does not
exceed the vehicle capacity, κd.

We compute the trips for a given set of requests iteratively,
starting with trips with one request, and adding requests to
these trips to build larger ones. An overview of how trips are
computed is shown in Algo. 1

Using the shareability graph, Q, we compute all trips
containing exactly one request for a given vehicle deposit,
d ∈ D, which we call T1. For all T ∈ T1, we expand our
search tree with neighbors of requests in reqs(T ) from Q
that also have an edge to d. We then check if a trip exists
and add it to our set of trips with two requests, T2. We repeat
this process up until we have computed all trips routing up to
Γ requests. We also repeat this process for each d ∈ D. For
more information on how these trips are computed, please
refer to [2].

C. Trip Selection

Given the set of candidate trips, T , we must determine
which trips should be selected to feasibly satisfy all of
the requests in R. To compute these trips we propose the
following problem:

Problem 2 (Trip Selection). Given a set of candidate trips,
T , that service requests in R, solve

argmin
T ∗⊆T

|T ∗| subject to⋂
T∈T ∗

reqs(T ) = ∅⋃
T∈T ∗

reqs(T ) = R
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A solution to the aforementioned problem selects the
minimum number of trips from T ∗ that would satisfy all
of the requests. We can formulate the trip selection problem
as an ILP and solve it to find which trips will be used. Let’s
define a set of binary variables σ = {σ1, σ2, . . . , σ|T |} where
σi = 1 if the ith trip in T is selected and 0 otherwise. Let’s
also define a function I : R → 2N to be the set of indices
of trips in T that service a given request, i.e. I(r) are the
indices of trips in T that service request r. The whole ILP
is formulated as follows:

argmin
σ

|T |∑
i=1

σi subject to (14)∑
i∈I(r)

σi = 1, ∀r ∈ R (15)

The constraint in Eq. 15 ensures that each request is
serviced exactly once and Eq. 14 computes the number of
trips selected over the variables, σ.

We extract the minimum trip cover, T ∗, from the solution
of the aforementioned ILP as follows:

T ∗ = {Ti : Ti ∈ T ∧ σi = 1} (16)

We will call the T ∗, the minimum trip cover of R, because
it is the smallest subset from T to cover all of the requests
in R.

D. Determining the Fleet Size and Composition

The last step is to determine how many vehicles are needed
and what capacity classes they should be to complete the trips
selected from the previous step, T ∗. We do so by determining
which trips can be executed in sequence by the same vehicle
without violating the quality of service constraints or letting
the vehicle idle for too long between trips, then we minimize
the total vehicles needed. The composition and size of the
fleet can be determined by solving the following problem:

Problem 3 (Fleet Size and Composition). Given the min-
imum trip cover, T ∗, find the trip transition function, θ :
T ∗ → T ∗ ∪ {∅} and capacity class for each trip, κ : T ∗ →
Kavail that solves

argmin
κ,θ

Ksize · |T ∗ \
⋃

T∈T ∗

θ(T )|+Kutil ·
∑
T∈T ∗

κ(T )− L(T )

subject to

tend(T ) + ttrans(T, θ(T ))

≤ tstart(θ(T )), ∀T ∈ T ∗, θ(T ) 6= ∅ (17)
tidle(T, θ(T )) ≤ Θidle, ∀T ∈ T ∗, θ(T ) 6= ∅ (18)

κ(T ) = κ(θ(T )), ∀T ∈ T ∗, θ(T ) 6= ∅ (19)
κ(T ) ≥ L(T ), ∀T ∈ T ∗ (20)⋂
T∈T ∗

θ(T ) = ∅ (21)

Constraints (17) and (18) ensure that the a vehicle is
able service trips T and θ(T ) in sequence without violating
the quality of service guarantees (i.e. all trip transitions are
valid). Constraints (19) and (20) ensure that all trips in a
schedule are assigned the same capacity and that the assigned

capacity is at least the load of the trip respectively. Finally,
the last constraint in Eq. (21) ensures a trip has only one
outgoing and incoming transition.

We can formulate this problem as an ILP. First let’s define
a transition matrix. For all Ti, Tj ∈ T ∗, we define a binary
transition as

ηij =


1, if tidle(Ti, Tj) ≤ Θidle

and tend(Ti) + ttrans(Ti, Tj) ≤ tstart(Tj)

0, otherwise
(22)

This transition matrix constrains the possible sequences of
trips. The first clause of Eq. (22) ensures that a vehicle would
not idle for longer than Θidle between trips. The second
clause guarantees that a vehicle will be be able to reach
the first pick up of the trip in time.

We define sets of variables to optimize over as follows:
• ε = {εij : ∀i ∈ [1, |T ∗|],∀j ∈ [1, |T ∗|]}, where εij = 1

if a vehicle should transition from the ith to jth trips
T ∗ and 0 otherwise

• χ = {χi : ∀i ∈ [1, |T ∗|]}, where χi = 1 if the ith trip
in T ∗ is the first trip to be completed by a vehicle and
0 otherwise

• ξ = {ξi ∈ Kavail : ∀i ∈ [1, |T ∗|]}, where ξi is the
assigned capacity of the ith trip in T ∗

With these variables and our transition matrix, η, we can
formulate the full ILP as:

argmin
ε,χ,ξ

∑
Ti∈T ∗

Ksize · χi +Kutil · (ξi − L(Ti)) (23)

subject to (24)

χj +

|T ∗|∑
i=1

εij = 1, ∀j ∈ [0, |T ∗|] (25)

|T ∗|∑
j=1

εij ≤ 1, ∀i ∈ [1, |T ∗|] (26)

ξi − ξj + εij ≤ 1, ∀i, j ∈ [1, |T ∗|] (27)
ξj − ξi + εij ≤ 1, ∀i, j ∈ [1, |T ∗|] (28)

ηij − εij ≥ 0, ∀i, j ∈ [1, |T ∗|] (29)
ξi ≥ L(Ti), ∀Ti ∈ T ∗ (30)

A solution to the aforementioned MIP selects the set of
transitions, initial trips, and capacities minimizes the cost
function from Problem 3 such that all requests are satisfied.
The objective function in Eq. (23) represents the weighted
sum of the fleet size and the unused capacity of the vehicles.
The constraints in Eq. (25) and (26) ensure that trips can have
at most one incoming transition and one out going transition
(i.e. that a trip can only be serviced by exactly one vehicle).
Eq. (27) and (28) guarantee that all trips in sequence are
serviced by a vehicle with the same capacity. Eq. (29) allows
only valid transitions between trips to be considered. The last
constraint in Eq. (30) ensures that the vehicle capacity class
assigned to a given trip can accommodate the trip’s load.

From the optimized variables, we construct the set of
schedules, Π, that need to be executed by the vehicles in fleet.
This is shown in Algo. 2. Finally, we determine the initial
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Algorithm 2 Constructing Schedules

1: Π← ∅
2: for all Ti ∈ T ∗ do
3: π ← ∅
4: if χi = 1 then
5: π ← π ∪ {Ti}
6: k ← i
7: while ∃j, εkj = 1 do
8: π ← π ∪ {T ∗j }
9: k ← j

10: end while
11: end if
12: Π← Π ∪ {π}
13: end for

vehicle distribution using the starting locations of the initial
trips in each vehicle’s schedule. This is shown in Eq. (31)

L = {`start(Ti) : Ti ∈ T ∗ ∧ χi = 1} (31)

IV. EVALUATION

We evaluate the proposed algorithm using historical taxi
request data from Manhattan [16] and Singapore1. We collect
various metrics to show how a fleet operator can tune the
composition of their fleet to be most effective.

A. Experimental Setup

We evaluated the algorithm in two operating areas, Man-
hattan and downtown Singapore. These regions are indicated
by the green polygons in Fig. 1. For each operating area,
we used one day of historical taxi data. For Manhattan we
used May 1st, 2013; and in Singapore, we used June 4th,
2012. The historical data contains the origin, destination,
pick up time, and drop off time for a set of taxi requests
in Manhattan and Singapore. From this data, we use the
reported pick up time as the request time since the request
time was not provided. We extracted the road networks from
OpenStreetMap [17] and queried travel times from Google
Maps. For each operating area, we computed the shortest
paths and travel times between every pair of nodes in the road
network offline. We evaluated the algorithm independently
each 30 minute time intervals for each day (i.e. 12am-
12:30am, 12:30am-1am, etc).

We assess the performance of the proposed approach using
available capacities of Kavail = {2, 4} and Kavail = {4, 6}.
For each capacity set, we use a fixed maximum waiting time,
Θwait = 3 minutes and a maximum travel delay, Θdelay =
6 minutes. We specified the maximum vehicle idle time as
Θidle = 30 seconds. Vehicle deposits were selected using a
maximum travel time of Θdepos = 1 minute.

We compare the overall fleet sizes produced to the actual
size of the taxi fleet used to service the requests. We also
compare characteristics of fleet compositions produced given
the available capacity classes.

1Data provided by Comfort Taxi through the Singapore-MIT Alliance for
Research and Technology

B. Results

We collect several metrics to assess the performance of the
proposed algorithm including the resultant fleet compositions
for a given set of available capacity classes, the total fleet
size, the vehicle capacity utilization, the capacity efficiency,
the total waiting time, and the total incurred travel delay.
The vehicle capacity utilization is load of each trip divided
by the available capacity of the vehicle. We define the
capacity efficiency to be the total number of requests for
a time interval divided by the total capacity of the fleet.
We can think of this metric as the average number of
requests serviced per seat. The fleet sizes and compositions
for Manhattan and Singapore are shown in Fig. 2 and 3. A
comparison of the capacity utilization and efficiency between
fleets produced for different sets of available capacities for
Manhattan and Singapore is shown in Fig. 4. These metrics
can help a fleet operator decide what types of vehicles should
make up their fleet.

For both Manhattan and Singapore, we see a large re-
duction in fleet sizes needed to service all of the demand
compared to the actual fleet size. For Manhattan, we see
that for a {2, 4}-fleet, there are always more vehicles of
capacity 4 than of 2, but in Singapore, we see the opposite
trend. This is because Manhattan has a denser demand profile
than Singapore making sharing more prevalent. For both
Manhattan and Singapore, we see that for {4, 6}-fleets, there
are always more capacity 4 vehicles than capacity 6 vehicles.

During rush hour (between 5am to 8am), there are large
spikes in demand that the fleets need to accommodate. In
Manhattan, for both fleet types, we large spikes in the number
of capacity 4 vehicles. For {2, 4}-fleets, we see the number of
capacity 4 vehicles increase much more quickly during rush
hour than capacity 2 vehicles. This is likely due to the large
density in demand in Manhattan during rush hour. For {4, 6}-
fleets, we observe an interesting phenomenon; the number
of capacity 6 vehicles plateaus during rush hour even as the
number of capacity 4 vehicles continues to increase. This is
due to the saturation of capacity 6 vehicles given the quality
of service constraints and capacity utilization cost function
for determining the fleet composition. One can only add so
many capacity 6 vehicles to the fleet before the marginal
benefit due to more sharing is diminished due to longer
delays and waiting times along with less capacity utilization
than capacity 4 vehicles.

We can see in Fig. 4 that better vehicle capacity utilization
and capacity efficiency is obtained when using the {2, 4}-
fleet rather than the {4, 6}-fleet. Particularly in Manhattan
during lower demand times in the early morning, we see
steeper drops in the vehicle capacity utilization for {4, 6}-
fleets than for {2, 4}-fleets. In Manhattan, we observe a
higher capacity efficiency than in Singapore. For fleet types,
Manhattan had more requests per seat than Singapore. This
is also due to the differences in demand density between the
two areas. In Manhattan we see that for {2, 4}-fleets each
individual seat services at least one request on average per
30 minute interval. Given that the vehicle capacity utilization
is less than 100%, this means that vehicles are quickly
picking up and dropping off passengers without reaching full
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Fig. 1: Operating areas used for experimentation in Manhattan and Singapore
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Fig. 2: Plots showing the compositions and sizes for fleets composed of vehicles with available capacities of {2, 4} and
{4, 6} in Manhattan. Plots in the left column show results for {2, 4}-fleets and in the right column {4, 6}-fleets

capacity in order for the delay and waiting times to be under
the specified maximum tolerances.

Since the overall fleet sizes for each fleet type are very
similar, the more efficient utilization of the {2, 4}-fleet indi-
cates that an introduction of lower capacity, micro-mobility
platforms may be a more efficient addition to the mobility
markets of Singapore and Manhattan than adding SUVs.

The total incurred travel delay and waiting time also
differ between {2, 4}-fleets and {4, 6}-fleets. In Table. II
we record the total delay and waiting time for Manhattan
and Singapore for the different fleet types. In Manhattan we
observe that the total delay for the {4, 6}-fleet is over 10%
more than that of a {2, 4}-fleet while the total waiting time
stays roughly the same. However in downtown Singapore we
see the total delay and total waiting time drop almost 5%
and 9% respectively. This result along with the the capacity
utilization in Fig. 4 indicates that the additional capacity
in Singapore is used to pick up passengers more quickly
resulting to a drop in the waiting time. Due to the demand
density in Manhattan, the additional capacity is quickly filled
adding to total delays.

Total Delay [hr] Total Wait [hr]
Manhattan {2, 4}-fleet 13477 5276

{4, 6}-fleet 14855 5256
% Difference 10.2% -0.4%

Singapore {2, 4}-fleet 5749 1720
{4, 6}-fleet 5474 1569
% Difference -4.8% -8.8%

TABLE II: Table showing differences in total travel delay
and waiting time experienced by passengers for Manhattan
and downtown Singapore for fleets composed of different
available capacities

V. CONCLUSION

We have presented an algorithm to determine how many
vehicles of each class and capacity are needed, where they
should be initialized, and how they should be routed to
service all the travel demand for a given period of time.
The algorithm maximizes utilization while reducing the total
number of vehicles and incorporates constraints on wait-
times and travel-delays. We have shown that optimizing the
number of vehicles, their distribution and their capacity, we
can significantly improve the efficiency of MaaS fleets. In
the future we would like run case studies in other cities and
explore ways of applying the algorithm online.
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Fig. 3: Plots showing the compositions and sizes for fleets composed of vehicles with available capacities of {2, 4} and
{4, 6} in downtown Singapore. Plots in the left column show results for {2, 4}-fleets and in the right column {4, 6}-fleets
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Fig. 4: Plots comparing the capacity utilization and efficiency of {2, 4}-fleets and {4, 6}-fleets in Manhattan (bottom row)
and downtown Singapore (bottom row)
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