
The influence of learning algorithms for Bayesian
Networks on predictions - a citation analysis study case

Dutch title: De invloed van leeralgoritmes voor
Bayesiaanse netwerken op predicties- een citatie

analyse casus

by

Redouan Ochalhi
to obtain the degree of Bachelor of Science in Applied Mathematics

at the Delft University of Technology,
to be defended publicly on Thursday July 11, 2019 at 02:00 PM.

Student number: 4582764
Project duration: April 1, 2019 – July 1, 2019
Thesis committee: Dr. ir. T. Nane, TU Delft, supervisor

Dr. B. van den Dries TU Delft
Dr. ir. R. van der Toorn TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

I would like to thank my supervisor Tina Nane for the support during the whole
process.

1

Abstract

In this thesis, attention is paid to building different Bayesian networks. You can
think of aspects such as parameter learning, search procedures and score func-
tions. In addition, a distinction is made between the use of Discrete Bayesian
Networks and Gaussian Networks. These models both have different assump-
tions which are also discussed. Finally, the theory is applied to publication
and citation data for a group of Canadian researchers. We will build Bayesian
networks with different techniques and try to predict and compare the perfor-
mance of researchers. We will also build an algorithm based on clustering that
can perform predictions by using one of the possible learning algorithms.

Contents

1 Outline of the thesis 2

2 Introduction in Bayesian Network theory 3
2.1 Basic definitions . 4
2.2 Bayesian networks . 4
2.3 Structure learning of Bayesian networks 8

2.3.1 Search procedures . 9
2.3.2 Score functions . 10

2.4 R-package bnlearn . 11

3 Discrete Bayesian Networks 12
3.1 Discretization algorithms . 13
3.2 Parameter learning . 14

4 Gaussian Bayesian Networks 17
4.1 Multivariate normal distribution 17
4.2 Multivariate normality tests . 18

5 Study Case: Canadian researchers 22
5.1 Data description . 22
5.2 k-fold cross validation . 26
5.3 Bootstrap procedure . 26
5.4 Results . 27

5.4.1 Network Comparison for Discrete Bayesian Networks . . . 27
5.4.2 Network comparison Gaussian Bayesian Networks 28
5.4.3 Self-composed algorithm 36

6 Conclusions and recommendations 40

A R-code 45

1

Chapter 1

Outline of the thesis

A Bayesian network is used for two purposes: to do predictions and to
understand the probabilistic relationship between different variables. It is a
directed acyclic graph in which the nodes describe random variables , and the
arcs the relations between them. To construct such a network, we could make
use of learning algorithms like the Tabu algorithm and Hill-Climbing
algorithm. These algorithms try to build a network that corresponds best to
reality. In this research, We will mainly focus on comparing the predictive
performance of the networks that are built by different algorithms. In the
following paragraphs, you can read how the thesis is structured.

As said, in this thesis we will try to make predictions with the help of
Bayesian Networks. Before we move on to this, it is good to have a solid basis.
In Chapter 2 we therefore give an extensive introduction to Bayesian Networks
which is necessary to understand the rest of this thesis. In chapter 2 we will
also discuss topics such as learning algorithms and parameter learning.

In Chapter 3 and 4 we describe two different types of Bayesian Networks:
Discrete Bayesian Networks and Gaussian Bayesian Networks. In Chapter 3
there are some discretization algorithms that are discussed and also the ways
we can draw conclusions from Discrete Bayesian networks. In chapter 4 we
will discuss what conditions we must meet to make use of Gaussian Bayesian
networks and some tests to check whether we meet this conditions.

In the final chapter, we will apply the theory to a data set of Canadian
researchers. We will try to construct different Bayesian Networks with different
algorithms and compare them in some way. We will use the Mean Squared
Error (MSE) for this purpose. In addition, we will also look at the bootstrap
procedure and also apply this concept to our data set. Finally, we look at the
predictive power of a self-produced algorithm based on discretization.

2

Chapter 2

Introduction in Bayesian
Network theory

”Probabilistic graphical models are an elegant framework which combines uncer-
tainty (probabilities) and logical structure (independence constraints) to com-
pactly represent complex, real-world phenomena. The framework is quite gen-
eral in that many of the commonly proposed statistical models (Bayesian net-
works, hidden Markov models, Ising models) can be described as graphical mod-
els. Graphical models have enjoyed a surge of interest in the last two decades,
due both to the flexibility and power of the representation and to the increased
ability to effectively learn and perform inference in large networks.” [1]

A Bayesian network is a graphical tool that is used to model probabilistic rea-
soning [2]. It is a directed acyclic graph in which the nodes describe random
variables , and the arcs the relations between them. Usually the direction from
an arc is seen as a causal relationship between the different events, but this
is not necessarily the case. However, the causal interpretation is often a good
intuitive way to read a probabilistic network. Bayesian networks make inference
easier and ensure that we can understand the underlying interaction between
different variables a lot better. In the remainder of this report it will become
clear why this is the case.

To ensure that you can read this report without having much trouble under-
standing it, it is imperative that you have some affinity with probability theory
and graph theory. I have listed a number of features for you below so that you
can better understand the remainder of the report.

3

2.1 Basic definitions

Definition 2.1.0.1. Suppose we have two events A and B. The conditional
probability of A given B is defined by

P (A | B) =
P (A ∩B)

P (B)
(2.1)

Definition 2.1.0.2. Two events A and B are called conditionally independent
given C if and only if P (A | B,C) = P (A | C) and P (B | A,C) = P (B | C).This
is denoted as follows: A⊥B | C.

There are a number of properties that we can easily deduce from the previous
definitions. The following properties hold:

• Symmetry: For events A and B : A⊥B ⇒ B⊥A

• Decomposition: For events A,B and C : A⊥B,C ⇒ A⊥B and A⊥C

• Weak For events A,B and C : A⊥B,C ⇒ A⊥B | C and A⊥C | B

• Contraction: For events A,B and C : A⊥B | C and A | C ⇒ A⊥B,C

• Intersection For events A,B,C and D : A⊥B | C,D ⇒ A⊥D | C,B

Definition 2.1.0.3 (DAG). A directed graph that has no directed cycles is called
a directed acyclic graph; this is often abbreviated to DAG.

Definition 2.1.0.4. A graph G is called undirected, if the edges of G have no
direction.

Definition 2.1.0.5. A node A is called a parent of another node B if there is
an edge in the network from A to B. In this case, B is called a child of A. The
descendants of A are all the nodes that can be reached from A in the DAG.

2.2 Bayesian networks

Bayesian networks are graphical representations of conditional independencies
between different variables via DAGs. The nodes in such a graph represent
random variables. Usually the direction of the edges in such a graph is seen as a
causal relationship between the different events, but this is not necessarily true.
We can read dependencies between different variables in such a graph by using
the properties that will follow below.

Definition 2.2.0.1. Formally, a Bayesian network consists of two parts.
On the one hand a DAG and on the other a set of conditional probability dis-
tributions for each variable (node) conditioned on the parents of this variable
(node).

4

So there must be a link between the conditional independencies and the
structure of a DAG. The following three definitions provide us the way to read
such a network.

Definition 2.2.0.2. The three possible connections are as follows:
Serial connection: Xi → Xk → Xh

Divergent connection: Xi ← Xk → Xh

Convergent connection: Xi → Xk ← Xh

Definition 2.2.0.3. If A,B and C are three disjoint subsets of the nodes of a
DAG G, C D-seperates A from B (A⊥GB | C), if along every path between a
node in A and a node in B in the undirected version of G, there exist a node v
satisfying one of the following two conditions:

(1) v has converging edges and v and its descendants are not in C
(2) is in C and does not have converging arcs

Definition 2.2.0.4. A graph G is an I-map if (A⊥GB | C)⇒ (A⊥B | C)

We are now ready to introduce the formal definition of a Bayesian Network.

Definition 2.2.0.5. A Bayesian network is a minimal I-map.

This means that when we remove any edge of the graph that belongs to the
Bayesian network, the I-Map condition does not hold anymore. Since a
Bayesian Networks is an I-map, this guarantees that we always deal with
DAGs.

It is possible to decompose the global distribution of a multivariate random
variable X = (X1, X2, .., Xn) in the following way by using definition 2.1.0.1 :

P (X) =

n∏
i=1

P (Xi|Xi+1, ...Xn) (2.2)

The following definition can be easily deduced from the fact that an Bayesian
Network is a minimal I-map.

Definition 2.2.0.6 (Local Markov property). Each node of a graph that belongs
to a Bayesian network is conditionally independent of its non-descendants given
its parents.

By combining equation 2.2 and the Local Markov Property we are now able to
decompose the global distribution of a multivariate random variable X in the
following way:

P (X) =
∏
i=1

P (Xi|Parents(Xi)) (2.3)

5

For example, the Local Markov property shows us that in Figure 2.1, node D is
conditionally independent of all the other nodes given node C. We can derive
the global distribution for this network according to (2.3) in the following way:

P (A,B,C,D,E) = P (A)P (B)P (D|C)P (E|B,C)P (C|A)

Figure 2.1: Bayesian Network of 5 variables

It can be shown that the global distributions for the variables of a serial
connection is equivalent to the global distribution for the variables of a
divergent connection by just using definition 2.1.0.1:

P (Xi)P (Xj |Xi)P (Xk|Xj) = P (Xj , Xi)P (Xk|Xj) = P (Xi|Xj)P (Xj)P (Xk|Xj)

Definition 2.2.0.7. A convergent connection Xi → Xk ← Xh is called a V-
Structure, when there is no edge between Xi and Xh.

Definition 2.2.0.8 (Equivalence). Two DAGs are equivalent, if they have the
same underlying undirected graph and the same V-Structures.

Figure 2.2: Three different structures

6

In figure 2.2, the first two structures do not contain V-structures and have the
same underlying undirected graph, while the third structure contains a
V-structure. So only the first two structures are equivalent. We can display
equivalent structures in a so-called Partially Directed Acyclic Graph (PDAG),
leaving the arcs that are not part of the common v-structure directed and the
remaining arcs undirected. If we would be interested in the PDAG of the two
equivalent structures of figure 2.2, we end up with the PDAG of figure 2.3

Figure 2.3: PDAG of the two equivalent structures of figure 2.2

Often, we are only interested in the behavior of one particular node. The
Markov blanket of a node is the only knowledge that we need to predict the
behavior of that node and its children.

Definition 2.2.0.9. The Markov Blanket of a node A ∈ V of a DAG G is
the minimal subset of nodes S of V such that A⊥GV \ (S ∪A) | S

We can derive from theorems 2.2.0.5 and 2.2.0.4 the following result:

Theorem 2.2.0.10. The Markov Blanket for every node of the graph of a BN
consists of the parents, the children and all the other parents of the children.

For example, in figure 2.4 we see an example of a Bayesian Network with all
the nodes that belong to the Markov Blanket of A located in the grey circle. It
is clear that all the parents, children and parents of the children are in the
Markov Blanket.

7

Figure 2.4: Markov Blanket for node A

2.3 Structure learning of Bayesian networks

To build up Bayesian networks for a given number of random variables, it is
often not possible to rely solely on expert knowledge. It is often necessary to
establish these Bayesian networks on the basis of data. There are different ap-
proaches to finding the most appropriate structure. You can divide these types
of algorithms into two groups. Constraint-Based algorithms and Score-Based
algorithms. Constraint-Based algorithms are based on the work of Pearl [3].
They try to find out the DAG of a Bayesian network through conditionally in-
dependence tests. During this research, no attention is paid to Constraint-Based
algorithms.

You may be wondering why you cannot simply view each network individu-
ally and from there determine to what extent each network matches the given
data. The problem to this is that the number of DAGS increases exponentially
as the number of nodes increases. Robinson[4] showed that the number of un-
labeled DAGs f(n) on n nodes can be expressed in the following way:

f(1) = 1 (2.4)

8

f(n) =

n∑
i=1

(−1)i+1 n!

(n− i)!i!
2i(n−i)f(n− 1) (2.5)

For example, when we want to find the DAG for 10 variables, we could choose
among 4.2 ∗ 1018 unlabelled DAGs.

2.3.1 Search procedures

As said above, we will only focus on score-based algorithms. Score-based al-
gorithms consist of two components: a search procedure and a score function.
Score-based algorithms are able to assign a score (more information on scores
can be found in section 2.3.2) to a specific network and from this point try to
adapt the network in such a way that the score will improve. A number of smart
procedures can be used for these purposes: Hill Climbing and Tabu Search.

But how do we adapt the network? We start with a random structure. From
this structure, we adjust the network in one of the following ways: we reverse an
edge, we remove an edge or we add an edge. We then assign one of the scores to
the adjusted networks. All the possible networks that could be made from one
network are called the neighbors of a network. The next network you choose
is the best-scoring network from the neighbors. You repeat this process. The
danger here is that your starting structure can cause that you end up with a
structure that gives us a local optimum.

In order to prevent this issue, we let the Hill-Climbing algorithm [5] start from
multiple random positions to determine the network with the best score. The
HC-algorithm shown below does take these steps into account

Data: Data set
Result: Network with the best score
x = Initial structure
MaxScore = Score(x)
while MaxScore increased in the previous step do

for s ∈ Neighbors(x) do
if Score(s) > MaxScore then

x = s;
MaxScore = Score(s);

end

end

end
Algorithm 1: Hill-Climbing Algorithm

The Tabu-Search [6] algorithm, on the other hand, has less issues with local
optima. This algorithm is structured as follows:

9

Data: Data set
Result: Network with the best score
BestStructure = initial structure
BestCandidate = initial structure
TabuList = [BestStructure]
while stoppingcondition() do

for candidates ∈ Neighbors(BestCandidate) do
if candidate
6∈ TabuList, Score(candidate) > Score(BestCandidate) then

BestCandidate = Candidate
end

end
if Score(BestCandidate) > Score(BestStructure) then

BestStructure = BestCandidate
end
TabuList.add(BestCandidate)

end

Algorithm 2: Tabu-Search Algorithm

2.3.2 Score functions

In this section there will be an introduction to various types of score met-
rics which we can assign to a network. The following scores will be covered:
Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC).
The principle of assigning a score comes down to the following expression:

P (S, θS | D) =
P (D | S, θS)P (θS | S)P (S)

P (D)
(2.6)

where S stands for a specific BN, θS the parameters which belong to S and D
for the data set.

AIC-Score:

The AIC-score can be calculated as follows:

AIC = 2k − 2 ln(L̂) (2.7)

where k is the number of dimensions and L̂ is the likelihood function (see section
3.2).

So the method rewards the goodness of fit, and it penalizes the number of
parameters, since a large number of parameters for a model always improves
the goodness of fit. The aim is to find the network or model with the lowest
AIC-value.

10

BIC-score:

The BIC-score can be calculated as follows:

BIC = ln(N)k − 2 ln(L̂) (2.8)

where N is the number of data records, k the number of variables and L̂ the
maximized value of the likelihood function.

The BIC-Score also penalizes the number of parameters. This score can only
be used if N is much larger than k. It is closely related to the AIC-score. The
exact derivation of this score is studied in [7].

Both the BIC and the AIC score can be used in combination with the
HC-algorithm or Tabu- algorithm.

2.4 R-package bnlearn

There is an R package called bnlearn [8] for learning a Bayesian network from
data. The package was founded in 2007 by Marco Scutari. There are several
algorithms and search-procedures implemented in bnlearn. The Hill-climbing
and Tabu-search procedures are both implemented in this package. The package
is able to deal with continuous, discrete and hybrid data. For this research,
this package is used to determine the networks by different algorithms and to
compare the predictive power of different obtained networks.

11

Chapter 3

Discrete Bayesian Networks

If we want to establish discrete Bayesian networks, the question is whether the
given data is continuous or discrete. To determine this, it is important to be
able to determine a certain threshold to check whether a random variable is
continuous or not. This choice is generally quite suggestive. If a variable is
nevertheless modelled as continuous, it does not mean that you cannot apply
discrete Bayesian networks to it. Before we can apply Discrete Bayesian net-
works, we need to discretize the data set. One of the possible ways to define
discretization is the following:

Definition 3.0.0.1. A discretization of a real valued vector x of length N is
simply an integer-valued vector d of identical length that satisfies the following
properties [9]:

• each element of d is in the set {1,....,D-1} for some positive integer D

• for all i, j we have di ≤ dj if and only if xi ≤ xj

As said above, the continuous data must be converted to discrete data before
we can apply the concept of discrete Bayesian Networks. This is done through
the use of different clustering (discretization) algorithms. The question which
now probably arises is how to choose the right number of clusters. In order to
choose the right number, we could make use of the silhouette statistic [10].
This statistic works as follows: Let

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j), (3.1)

b(i) = min
i 6=j

1

|Ci|
∑
j∈Cj

d(i, j). (3.2)

where |Ci| is the number of elements in cluster i and d(i, j) is the Euclidean
distance between clusters i and j.

12

The value b(i) gives us the smallest average distance of i to all points in any
other cluster, while the value a(i) gives us the average distance between a point
i and all the other points which are assigned to the same cluster. We need to
compare the s(i)-values which can be computed by the following expression:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.3)

To find the right value for the cluster-numbers, we need to compare the
average s(i)-value for the different groupings (with different number of
clusters) which result from a clustering algorithm . The average value of s(i) is
a measure to show how tightly the points are grouped.

Before we can determine the right number of cluster, we must first be able to
discretize the data using some algorithms. In the next section such
discretization algorithms will be discussed.

3.1 Discretization algorithms

K-means clustering by Hartiga-Wong method

The procedure [11] starts by determining the right number of clusters k. You
then assign each point of the data to a random cluster {Ci}i∈{1,...k}. After doing
this, the method seeks to find the minimum of the following expression:

f(x, n,m) =
∑
x∈Cm

(x−µm)2+
∑
x∈Cn

(x−µn)2−
∑

x∈Cm\x

(x−µm)2−
∑

x∈Cn
⋃
x

(x−µn)2.

(3.4)
where µi is the mean of cluster i.

Once we have found the values x, n and m; we should remove x from Cn and
move this point to Cm. The procedure terminates when equation 3.4 is positive
for all the possible clusters and points. To better understand the method and
the computational aspects of the method, I would like to refer you to [11].

Quantile discretization

The method aims to place the same number of elements in each cluster. This is
done by sorting the observations that belong to a specific variable. Thereafter,
the observations will be simply discretized by their ranking. For example, when
we would like to discretize a variable X from a data set with 1000 observa-
tions into 10 levels. We will first use an efficient sorting algorithm, before we
cluster every 100 subsequent observations of the sorted X̂ in a different cluster.
Thereafter, we should return the discretized values to their original positions.

13

Interval discretization

This method is not based on the ranking of the observations, but on their bin
number in a histogram with D bins. When we have N observations x0,xN−1
we divide the interval between the first point x0 and the last point xN−1 into
D sub-intervals and then discretize according to the sub-interval an observation
belongs. So the ith observation belongs to level j if and only if

x0 +
j(xN−1 − x0)

D
< xi < x0 +

(j + 1)(xN−1 − x0)

D

So we can use all of these discretization methods to convert a continuous data
set into a discrete one, such that we will be able to apply discrete Bayesian
Networks.

3.2 Parameter learning

As we saw earlier, we can derive the joint probability distribution of a multi-
variate random variable X from a network. The joint probability distribution
looks as follow:

P (X) =
∏
i=1

P (Xi|Parents(Xi))

If all the variables are discrete, we use a Condition Probability Table, often
abbreviated to CPT, to quantify the influence a parent has on his/her child.
Parameter learning[12] is about using different techniques to estimate the values
in such a table. There are some techniques that are based on a complete data
set without missing values, while other algorithms aim to handle data sets with
lack of information.

Parameter learning for complete data

Maximum likelihood estimation

Maximum likelihood estimation [13] is a method which determines estimations
of parameters of a specific model. These values are chosen in a way such that
the data that is observed is most likely to be produced by the model with these
values as parameters. So for a specific Bayesian Network, which can be seen as
a model, we need to estimate their parameters. But how do these parameters
look like? When the data is discrete and there’s no other information about
the distribution of the variables from our data set, we are forced to estimate
the terms of equation 2.3. Since the data is discrete, you should think of an
estimation of the probability value of one of the value of a specific node given
some combination of the possible values that the parents may have. The only
way to estimate these probability values is by computing the relative frequency
in our data set for these values.

14

Assume the data records are independent given all the estimated probability
values θ and assume that the records are identically distributed, then we are
able to express the likelihood function for a Bayesian network as follows:

L(θ : D) =
∏
m

P (x1m, ...xnm|θ) =
∏
m

∏
i

P (xim|Parents(i), θi) =
∏
i

Li(θi : D)

(3.5)

where D is the data set of m records.

The maximum likelihood estimation θ∗ is in fact a vector such that

L(θ∗ : D) = sup
θ
L(θ : D)

If we look thoroughly at figure 3.1, we see an example of a Bayesian Network
where the the binary variables Sprinkler, Rain, Wetgrass and Cloudy are con-
sidered. What stands out is that a sprinkler and the occurrence of rain influence
the wetness of the grass. This corresponds to reality. We can read our θ from
this figure easily. For example, the parents of node w have four different con-
figurations, because of the size of its table. θ∗ij

k gives us the the estimation
that node i has value j given the parents of node i have configuration k. We
can estimate the parameter θ∗ij

k by the number of records in our data set with
the values of configuration k and records with value i for variable w divided by
how many times configuration k occurs. So our likelihood estimation for the
parameter consists of the set of all possible θ∗ij

k for different values of i,j and k.

Figure 3.1: Conditional probability tables for 4 variables [5].

15

Bayesian estimation

Given a Bayesian network with unknown parameter θ and a complete data set,
where θ is modelled as a random variable [14]. The goal is to determine

P (θ|D) =
P (D|θ)P (θ)

P (D)
(3.6)

where P (θ) is called a prior distribution and P (θ|D is called the posterior dis-
tribution. The goal of the method is to compute the posterior density. Often,
we make the assumption that the the prior distribution is the Dirichlet distri-
bution [15].

16

Chapter 4

Gaussian Bayesian
Networks

4.1 Multivariate normal distribution

It is well known that the normal distributed random variable X has the following
probability density function

fX(x) =
1√
2πσ

exp−
1

2σ2
(x−µ)2

We can generalize this definition for a higher dimensional data set, assuming
that every linear combination of variables follows a normal distribution. This is
also known as the multivariate Gaussian distribution [16].

fX(x = (x1,, xn)) =
1

(2π)n/2|
∑
|1/2

exp−
(x−µ)T

∑−1(x−µ)
2 (4.1)

where |
∑
| is the determinant of the covariance matrix and µ is the vector of

means of the multivariate random variable X.

A Gaussian Bayesian network satisfies the following properties: all variables
are continuous and multivariate normal.

Definition 4.1.0.1. Suppose we have the continuous random variable Y. Y has
a Linear Gaussian Model if there exist some continuous random variables
X1, X2, ...Xk such that

P (Y |X1, ..., Xk) = N ((B0 +B1µ1 ++Bkµk), σ2
Y)

where σ2
Y is the variance of variable Y, µi is the expectation of variable i and

B = (B0, .., Bk) is a vector of constants.

17

Figure 4.1: A network of 4 variables

For example, from figure 4.1 we can deduce the following terms which describe
the joint probability distribution that belongs to the network:

P (B) = N (µB , σ
2
B)

P (A) = N (µA, σ
2
A)

P (C) = N (A0 +A1µB +A2µA, σ
2
C)

P (D) = N (B0 +B1µA +B2µC , σ
2
D)

The parents of a certain node are seen as explanatory variables in terms of
regression analysis. The parameters B = (B0,, Bk) must be chosen from our
data set with n variables in such a way that

∑n
i=1(BTXi − Yi)2 is minimal.

The parameters B can be calculated by

B = (ATA)−1ATY (4.2)

where A is matrix that consists of the data that belong to the parents of a
particular node and Y is the data column of that node.

4.2 Multivariate normality tests

In order to use Gaussian Bayesian Networks, we need to check whether the the
variables of our data set are multivariate normally distributed. This is the case,
when every linear combination of the variables is univariate normally distributed
for some mean and variance. Two measures to asses univariate normality are
the kurtosis(γ1) and skewness(γ2). The kurtosis(γ1) is a measure for the tailed-
ness and the skewness(γ2) is a measure for the asymmetry of the distribution
of a variable.

18

γ1 =
E[(X − µ)3]

σ3
(4.3)

γ2 =
E[(X − µ)4]

σ4
(4.4)

where µ is the expectation and σ is the standard deviation.

Assume we have a data set that consists of N records and k variables. The
goal is to test whether these variables follow a multivariate normal distribution.
One of the tests that can be applied to check if the assumptions are met is
the so-called Mardia’s test[17]. The below methods are all implemented in the
MVN-Package [18] in R.

Mardia’s test

You can imagine that if we are dealing with multivariate normality assump-
tions, we must have a measure for the skewness (asymmetry) and the kurtosis
(tailedness) for all the linear combinations than can be derived from multivari-
ate random variable. The most common test-statistic to asses the skewness
(asymmetry) for a multivariate random variable is defined as follows

B1 =
1

N2

N∑
i=1

N∑
j=1

g3ij (4.5)

and the test-statistic to asses kurtosis for a random vector is defined as

B2 =
1

N

N∑
i=1

g2ii (4.6)

where gij = (xi − x)TA−1(xj − x) , A = 1
N

∑
i(xi − x)(xi − x)T and x = 1

N xi.

With the help of these two test statistics we see that

z1 =
(k + 1)(N + 1)(N + 3)

6(N + 1)(k + 1)− 36
B2 (4.7)

is approximately χ2 distributed with k(k+1)(k+2)/6 degrees of freedom and

z2 =
b2,k − k(k + 2)√

8k(k+2)
N

B1 (4.8)

is approximately standard normally distributed.

19

Henze-Zirkler’s test

If the data are distributed as multivariate normal, the test-statistic in (4.9) is
approximately log-normally distributed, with some mean and variance that will
follow below. The test statistic of Henze-Zirkler[19] is defined as follows:

HZ =
1

n

n∑
i=1

n∑
j=1

exp−
β2

2 D1j −2(1 + β2)−
k
2

n∑
i=1

exp
− β2

2(1+β2)
gi +n(1 + 2β2)−k/2

(4.9)

where β = 1√
2
(n(2k+1)

4)
1
k+4 and Dij = (xi − xj)

TA−1(xi − xj). From this

expression, because we know that this statistic is log normally distributed it is
possible to express the mean and the variance of the statistic.

µ = 1− a−
k
2 (1 + kβ

2
a + (p(p+ 2)β4))

2a2

σ2 = 2(1+4β2)−
k
2 +

2a−k(1 + 2kβ4

a2
)+

3k(k + 2)β8

4a4
−4w−

k
2 (1+

3kβ4

2w
+
k(k + 2)β8

2w2
)

where a = (1 + 2β2) and w = (1 + β2)(1 + 3β2), hence the log-normalized

mean and log-normalized variance are log(µ) = log(
√

µ4

σ2+µ2) and log(σ2) =

log(σ
2+µ2

σ2).

The Wald test-statistic to asses multivariate normality is defined as

z =
log(HZ)− log(µ)

log(σ)
(4.10)

Royston’s MVN test

Royston’s test[20] makes use of the Shapiro-Wilk test to test that a sample
x1, .., xN can from an (univariate) normally distributed population.

W =
(
∑n
i=1 aix(i))2∑n
i=1(xi − x)2

where x(i) is the ith smallest number in x1,xn and the ai can be computed by

the following expression: (a1,, an) = mTV −1

C where C = (mTV −1V −1M)1/2,
m is made of the expected values of the ordered variables when making n inde-
pendent draws and V is the covariance matrix of these ordererd variables.

Royston’s test also makes use of the Shapiro-Francia test

W =
cov(x,m)

σxσm
(4.11)

20

If the kurtosis is greater than 3, then the Royston test uses the Shapiro-Francia
test, otheriwse it uses the Shapiro Wilk test. Let Wj the Shapiro-Wilk or
Shapiro-Francia test and Zj the values obtained from a normality transforma-
tion.

When 4 ≤ N ≤ 11 use x = N and wj = − log(γ − log(i − Wj)) and when
12 ≤ N ≤ 2000 use x = log(N) and wj = log(1−Wj).

The transformed variables Zj can be computed by

Zj =
wj − µ
σ

where γ, µ and σ are derived by the polynomials below:

γ = a0γ + a1γx+ ...+ adγx
d

µ = a0µ + a1µx+ ...+ adµx
d

σ = a0σ + a1σx+ ...+ adσx
d

We have now finally arrived at the point that makes us able to formulate the
Royston’s test statistic

H =
e
∑k
j=1 ψj

k
(4.12)

This statistic is approximately χ2 distributed with e degrees of freedom and Φ is
the cumulative distribution function for the standard normal distribution such
that

e =
k

1 + (k − 1)c

ψj = (Φ−1(Φ(−Zj)/2))2

The term c also needs to be calculated

c =
∑
i

∑
j

cij
k(k − 1)

where rij is the correlation between the ith and jth variables.

cij =

{
g(rij , n) if i 6= j
1 if i = j

and where g(0, n) = 0 and g(1, n) = 1 and g is defined as follows:

g(r, n) = rλ(1− µ

v
(1− r)µ)

The parameters λ, µ and v were estimated from a simulation study by Ross [21].

He found that the values µ = 0.715 and λ = 5 and v can be found by

v = 0.21364 + 0.015124 log(n)2 − 0.0018034 log(n)3

21

Chapter 5

Study Case: Canadian
researchers

Bibliometrics [22] is the science that revolves around analyzing publications
and their citations using statistical methods. Methods from bibliometrics are
mainly used in information sciences. It is often tried to show how much influence
a particular publication or researcher has had. Bayesian networks are used in
this research to perform this analysis.

5.1 Data description

In order to understand which factors and to what extent these factors play a
role in the results achieved by a particular researcher, it is essential that biblio-
metric data is studied. In this section we are going to look at a data set that
comes from the Web of Science (WoS). Initially, the data set consisted of 13626
records. This data set has been adapted by removing researchers born before
1959. Only researchers who obtained their PhD-degree after 1980 are also taken
into account. Older academics in the database who published before 1980 do
not have an entry in the year of first publication, therefore we omit anybody
who has a birth year earlier than 1959 (under the assumption that nobody will
have published before they are 20 years old). Subsequently, all researchers were
removed who made their first publication after 2010, due to the fact that such
a researcher is too short a time active to draw conclusions about his/her per-
formance. We ended up with a data set with 1338 records and 14 variables.
This data set has already been used by various researchers for their bibliometric
research [23]. In the table below you can see where every variable of the data
set stands for:

22

Variable Description
pp top prop Proportion of publications in top 10% most cited

publications in their field
fpy Year of the first publication in the WoS
authors paper Average number of authors per paper of the scholar
countries paper Average number of countries per paper of the scholar
refs paper Average number of references per paper of the

scholar
pp pos 1 Proportion of publications with the scholar in the

first place
pp pos last Proportion of publications with the scholar in the

last place
p Number of publications of the scholar on WoS
Journal Score Journal citation indicators, determining the percent-

age of publications in the journal that are in the top
10% most cited publications in their field.

pp collab The percentage of publication that are collaborative
pp int collab The percentage of publications that result from an

international collaboration
pp industry Proportion of publications with any type of indis-

trual collaboration produced by the scholars
bithyear Birthyear
Phd year The year of obtaining PhD-degree.

Table 5.1: Data description

You can take a look at figure 5.1 to get an impression of the distributions for
the different variables. It becomes clear from this figure that only the variables
fpy, pp pos last, pp collab and refs paper look like some normal distribution.

23

Figure 5.1: Histograms of the variables of our data set

To get an impression of how different variables correlate, we will make use of
the Pearson correlation coefficient to measure this correlation. The coefficient
must be calculated in the following way:

ρ(X,Y) =
cov(X,Y)

σXσY
(5.1)

The values of these coefficients lie between -1 and 1. The closer to 1, the more
the two variables correlate positively. If the value is close to 0, then there is no

24

relation between the two variables and if the value is close to -1 there is a
negative relation between them. We can calculate these coefficients for every
combination of two variables of our data set and can put it in a matrix. See
figure 5.2 for the correlation matrix of the bibliometric data set.

Figure 5.2: Correlation plot to see correlations between variables

The correlation between birthyear, Phd year and fpy immediately stands out.
The high number of variables that have some kind of a relation with P is also
worth mentioning.

In this thesis we will focus primarily on the variable pp top prop, which we
will use as a measure of performance. We are interested in predicting this
variable. So this variable will be our target variable.

25

5.2 k-fold cross validation

Cross-Validation [24] is a technique which is used to asses how a particular
model will perform in terms of prediction given another independent data set
with the same variables. For example, it can be used to check how a Bayesian
network will predict a target-variable, when it is exposed to unseen data. This
is done by splitting the original data set into a training part and a test-part.
The parameters of the model are estimated by making use of the training-
part. Thereafter the test-set is used to check how ”good” the prediction of the
Bayesian network will be with the estimated parameters. One of the metrics that
can be used to determine this ”goodness” is the Mean Squared Error (MSE).
MSE takes the sum of the squares of the differences between the observed values
and the predicted values into consideration.

MSE =

n∑
i=1

(Yi − Ŷi)2 (5.2)

One of the most common cross-validation procedures in Bayesian network is the
k-fold cross validation. This procedure works in the following way. The original
data set is partitioned into k equal samples. One of the k samples is chosen to
be the test set, and the remaining sets will be used as training set. This process
is repeated k times, with each of the k samples used once as the test set. So all
our records of our data set will be used for both test and training. Although k
is an unfixed parameter, 10-fold cross-validation is commonly used.

5.3 Bootstrap procedure

Suppose we have a data set D of N records and we have a Bayesian Network
G(D) that is returned by one of the data-driven algorithms that are defined in
section 2.3. We also assume that every record of our data set is independent
of the Bayesian Network. Suppose now we are interested in the existence of a
specific arc in the network that will be returned by our algorithm. We denote
the occurrence of this feature by a Boolean f . To estimate the confidence that
this feature will happen, we can define the following quantity:

PN (f) = P (f(G(D) = 1||D| = N)

This gives us the probability that the feature f will occur given a data set of N
records that is sampled with replacement from our original data set. Since we
only have one data set we need to use such a sampling technique called
bootstrap. In this research, we focus solely on non-parametric bootstraps. It is
about getting confidence on the existence of a feature, even if the data set is
different from the original data set. The non-parametric bootstrap-method [25]
works as follows: make a data set with N records by sampling with
replacement. Then you need to apply a learning algorithm on this data set.
Repeat this process m times and calculate the probability that the feature will

26

occur by dividing the number of times the feature of interest occurred and the
m steps. So Pn(f) can be estimated by this simple process. Of course, we can
apply this procedure to obtain some confidence about other features like
whether a specific variable is in the Markov Blanket of another variable.
However, in this research, we will focus only on the existence of a specific arc.

Because in this research we are mainly interested in how different networks
will operate in terms of prediction on a data set that is completely unknown ,
we will use this non-parametric bootstrap method to build up networks. This
means that we will only add a possible edge into our network if PN (f) is larger
than a chosen α. So we will only add edges with confidence higher than α.
The question that may arise now is, how high do we choose α. In the
remainder of the report, it will become clear how we deal with this issue.

5.4 Results

In this section we will try to apply the previously described theory to our data
set of researchers. In this section we will also try to build different networks that
may provide a good MSE value. We will use 10-fold cross validation to validate.
The reason to choose 10 for the parameter k, is because 10 is commonly used
in practice.

5.4.1 Network Comparison for Discrete Bayesian Networks

Using the different cluster techniques that can be found in section 3.1 always
leads to the network in figure 5.3. We can’t do a lot of inference by making
use of this network, since we can determine very few relationships between
different variables. We only find edges from countries paper to authors paper
and pp int collab. The edge from countries paper to pp int collab makes sense,
since the number of countries per paper is of course highly correlated with
the percentage of publications that result from an international collaboration.
The existence of the other edge is less obvious. On the other hand we can’t
find any variables in the Markov Blanket of our target variable pp top prop. So
predicting the behavior of this variable will become hard. The silhouette statistic
is used to determine the number of clusters for every variable. Using this test
statistic, an attempt was made to subdivide each variable into 4,8,12,16 or 20
clusters, depending on the value of the statistic. You can imagine that you will
get huge amounts of CPT values through the use of a discrete Bayesian network,
so computationally it is very inefficient. One possible reason for failing to find
a correct network is that the use of discretization has affected the dependency
structure between different variables in such a way that building a network has
become virtually impossible.

27

Figure 5.3: Network that is returned by the discrete-based algorithms

5.4.2 Network comparison Gaussian Bayesian Networks

Multivariate normality assumption

Before we start to predict, we will first examine the extent to which all our
variables meet the multivariate normality assumption. For the HZ test we get
the value 2.116773 and the p-value 0. We do not meet the assumption according
to this test. The Mardia-test gives us for the skewness-value 109240.790751032
and for the kurtosis-value 613.2662014710069. The p values for both are mea-
sures 0. To confirm the feeling we already had, the Royston test also showed
that we do not meet the assumption. The results for the different test can be
found in the table below.

Test Statistic p-value Result
Mardia skewness 109240.790751032 0 No
Mardia kurtosis 613.266204710069 0 No
Royston 1700.674 0 No
Henze-Zirkler 2.116773 0 No

A p-value of 0 means that the results are highly significant. It tells us that the
probability to get our data set, if the null hypothesis (Multivariate normality)
is true, is very low. Despite this result, we are nevertheless interested in how
the Gaussian Bayesian Networks will predict our target-variable pp top.

Predictive performance of different networks

First of all, an attempt was made to build a network through the use of the
HC-algorithm. Because with this algorithm the starting network is very decisive
for the result, we have run this algorithm 10 times with 10 different starting

28

networks. The final chosen network is the network, with the BIC score being
the best. With the help of bnlearn, this network gives us the network from
figure 5.4. The BIC-score of this network is -27499.08. What we see is that
there are no edges to our target variable pp top prop. We expect an MSE that
will be approximately equivalent to the variance of the target variable, since the
target variable will be predicted by the mean, because of the lack of explanatory
variables. In our case, this is a disappointing result, since we could determine
the same result by just using the mean of pp top prop to predict.

Figure 5.4: Network 1: Network produced by HC-algorithm

The Tabu-algorithm was then used to build a network. Within this concept,
different iterations do not have to be used due to the nature of the algorithm.
The network (see figure 5.5) that we get as a result is a network where
different variables are parents for our target variable, namely P, refs paper and
Journal.score. The main difference with the HC-algorithm is that the edges
between pp top prop and these variables are in the direction of pp top prop,
while in the HC-algorithm there are edges between pp top prop and P,
refs paper and Journal Score, but these edges point in the opposite direction.

29

Figure 5.5: Network 2: Network produced by Tabu-algorithm

During the process of learning the right network, you can get a network that
does not correspond to reality. The use of prior information, which is often
based on logical reasoning, is possible in such cases to be added to the network
in the form of blacklist and whitelist. In the blacklist you add all arcs that
cannot possibly occur and in the whitelist you add all arcs that must occur. It
can be a chore to manually add all possible arcs to the blacklist or whitelist.
This will especially become an issue when the number of variables of a data set
to which you want to apply a learning algorithm is huge. In such cases, only
the arcs from an earlier obtained network are considered to add to our blacklist
or whitelist. For the whitelist, we have chosen to add the following three edges:

Whitelist
Phd year to P
Phd year to fpy
birtyear to Phd year

Table 5.2: Whitelist

The reason to add these tree edges, is because were are quite sure about their
existence. The year of obtaining a PhD-degree has a lot of influence on the
number of publications, because someone who has just obtained his or her
degree has not had the time to publish. The reason to add the edge from
PhD year to fpy is because the year of obtaining PhD-degree will definitely
have some influence on the year of first publication. Since the birtyear of a
researcher is always less than the Phd year, we expect that there is some
relation between these variables. Of course, we could have add the edges from
our Tabu-Network(see figure 5.5) that point in the direction of our target

30

variable, but we have not done this yes, because we are not very sure about
their existence. So we have chosen to only add the edges that we are 100
percent sure of. For the blacklist, we have chosen to add the following edges:

Blacklist
Phd year to birthyear
P to birthyear
fpy to birtyear
pp pos last to birtyear
pp int collab to pp collab
pp int collab to fpy
pp pos last to fpy
pp pos last to Phd year
Journal score to refs paper
P to pp top prop

Table 5.3: Blacklist

The choice to add all these edges is based on the following rule of thumb: If
one variable certainly has no influence on the other variable, we will add the
edge between these variables into to the blacklist. Again we did not choose to
consider edges from the two previously obtained networks, because we are
currently quite uncertain about which edges will not occur. Adding edges to
the blacklist ensures that we exclude the possibility of existence.

It is now time to use the previously defined blacklist and whitelist that
hopefully could ensure that we will get a good prediction by using the
HC-algorithm. However, this hope is in vain, once again we are dealing with
edges that do not go in the direction of our target variable (see figure 5.6).

31

Figure 5.6: Network 3: Network produced by HC-algorithm with blacklist and
whitelist

Although we got a nice result by using the Tabu algorithm, it can’t hurt to
check whether we might get better results by adding the blacklist and whitelist.
The obtained network can be found in figure 5.7. There are two edges that point
in the direction of our target variable; an edge from refs paper and another edge
from Journal Score. When we compare this network with the Tabu-network of
5.5, these two edges are the only edges that point in the direction of our target
variable. It appears that adding the blacklist and whitelist gives us an MSE-
value of 0.01289887, which is a bit lower than the MSE-value of 0.01283498
for the network in figure 5.5. This difference in value is due to the use of a
numerical algorithm called the QR-algorithm [26] for estimating the parameters
of our linear models.

Figure 5.7: Network 4: Network produced by TABU-algorithm with blacklist
and whitelist

32

Because we are also interested in which network we get when we apply the
bootstrap-procedure with a certain threshold. Hopefully we can now get a
good result from the HC-algorithm. We set the treshold at 0.75. The reason
for choosing this value is because we have tried a number of different threshold
values for the Tabu-algorithm and looked at the MSE-values for the different
obtained networks. The results can be found in the following table:

Threshold value MSE
0.5 0.01661752
0.6 0.01663301
0.7 0.01663196
0.8 0.01723760
0.9 0.01723760

Table 5.4: MSE-values for different thresholds

Despite the fact that the value for 0.5 is the best, we decide not to opt for this.
It is of course true that if we keep the threshold value low, we get more edges
in our network. So it can be very tempting to keep the threshold value very
low, because then we have more chance of more edges in the direction of our
target variable. However, we are not going to do this because we want to use
the bootstrap procedure in the way it is intended. We have therefore chosen to
set the threshold to 0.75. However, the resulting network for the bootstrap
procedure mixed with the HC-algorithm is disappointing. There are no edges
in the direction of our target variable(see figure 5.8).

Figure 5.8: Network 5: Network prodcuced by the bootstrap-procedure and
HC-algorithm

33

If we now continue to apply the blacklist and whitelist with the bootstrap
procedure for our HC-algorithm, we will again get a network where no edges
point towards our target variable (see figure 5.9).

Figure 5.9: Network 6: Network prodcuced by the bootstrap-procedure, HC-
algorithm, blacklist and whitelist

Although we already had some nice results for the Tabu algorithm, there is the
hope that we can make it better by applying the bootstrap procedure. An
interesting fact is that there is now an edge from pp int collab towards our
target variable (see figure 5.10). Nevertheless, the MSE value is now
0.01663533. This value is slightly worse than that of the previous networks.

Figure 5.10: Network 7: Network prodcuced by the bootstrap-procedure and
Tabu-algorithm

34

When we use the defined blacklist and whitelist together with the bootstrap
procedure, wee see that there are no edges in the direction of our target
variable (see figure 5.11).

Figure 5.11: Network 8: Network produced by the bootstrap-procedure, Tabu-
algorithm, blacklist and whitelist

What becomes very clear is that the Tabu algorithm and the HC-algorithm
differ greatly in the direction that the edges have. It has often happened with
the HC-algorithm that certain edges point away from our target variable,
while the edges in the opposite direction are part of a network produced by
the Tabu algorithm. A possible solution may be to whitelist all the edges of
which our target variable has been a part, in the direction of our target
variables. This means that we need to add edges from refs paper, p,
pp int collab and Journal towards our target variable pp top prop. The
MSE-value for this new network is 0.01272587. This is the best value we have
seen so far. The network can be found in figure 5.12.

35

Figure 5.12: Network 9: Network produced by HC-algorithm with new defined
whitelist

You may be wondering to what extent we can see from the BIC score the
predictive power of a network. The following table shows that the BIC score
certainly does not influence the prediction of pp top prop, since Network 9 has
the best-scoring MSE-value and the second worst BIC-score.

Network Blacklist or whitelist Bootstrap MSE BIC- score # Arcs
Network 1: HC NO NO 0.01719681 -27499.08 40
Network 2: Tabu NO NO 0.01283498 -27504.96 41
Network 3: HC YES NO 0.01723294 -27511.03 41
Network 4: Tabu YES NO 0.01289887 -27510.55 40
Network 5: Tabu NO YES 0.01721951 -27728.96 25
Network 6: Tabu YES YES 0.01720736 -27725.93 25
Network 7: HC NO YES 0.01663533 -27737.33 25
Network 8: HC YES YES 0.01722387 -27744.17 25
Network 9: Tabu YES NO 0.01272587 -27503.76 40

Table 5.5: Results for the different networks

5.4.3 Self-composed algorithm

During the construction of different networks using different algorithms, the
idea arose to combine the theory of clustering with that of Gaussian Bayesian
Networks. An algorithm has been attempted that uses different Bayesian net-
works for different inputs to make predictions.

36

First of all we start by choosing m variables, that best describe the data set.
Use can be made of techniques such as PCA or factor analysis[27]. We then try
to divide the data set into k parts, using the the Hartiga-wong method and the
Euclidean Distance as the distance function. After the data set is divided into
k parts, we run a learning algorithm on each part. So we will end up with k
networks. If we want to apply prediction one by one for a new data set (with
the same variables), we look at the Euclidean distance between the value of the
variables of our data record and the average of each part of our original data
set. We then choose the network that belongs to the shortest distance. We have
chosen to split our data set into 5 parts and we have chosen the following 6 vari-
ables as main variables: birthyear, P, authors paper, fpy and countries paper.
However, this choice for these values is a subjective one. As mentioned earlier,
different techniques could be used to better determine these values.

As said above, the first step in the process is to cluster the data. The Hartiga-
wong method given us the following means for each cluster:

Clusternumber fpy Birthyear Phd year P authors paper countries paper
1 1965.298 1996.452 1994.474 55.72704 8.613078 1.610372
2 1963.583 1994.042 1992.222 139.12500 7.985599 1.637599
3 1966.250 1996.000 1995.250 349.00000 837.348143 16.185511
4 1966.539 1999.335 1996.585 16.98150 4.201006 1.450337
5 1970.750 1996.500 1998.500 288.75000 1963.107342 28.821237

Table 5.6: The mean for the main variables of the clusters

Because the values of the TABU algorithm were good compared to the
HC-algorithm, we will only apply this self-composed algorithm in combination
with the HC-algorithm. So we can now use the HC-algorithm for each cluster.
We can find the network that is returned by the HC-algorithm in figure 5.13.
There is an edge from birthyear to our target variable.

Figure 5.13: Network for cluster 1

37

The network that belongs to the second cluster has an edge from refs paper to
our target variable.

Figure 5.14: Network for cluster 2

The network (see figure 5.15) that belongs to our third cluster has two edges
to our target variable: one from birthyear and one from refs paper.

Figure 5.15: Network for cluster 3

38

The network (see figure 5.16) that belongs to our fourth cluster has one edge
from countries paper to our target variable.

Figure 5.16: Network for cluster 4

The network (see figure 5.17) that belongs to our fifth cluster has no edges
that point to our target variable.

Figure 5.17: Network for cluster 5

So what we see is that with regard to edges in the direction of our target
variable, we are making considerable progress with the HC- algorithm. We are
now ready to start predicting.The MSE value that is returned by the use of
these networks is 0.0143184. So we made some improvement for the
HC-algorithm.

39

Chapter 6

Conclusions and
recommendations

To start with, we have seen that there are many possibilities for learning a
certain network. For example, we have seen that we can use different search
procedures and also assign different scores to networks. This large amount of
choices that could be made means that you cannot view every possible combi-
nation due to a lack of computational time.

In the beginning we had the idea to build networks by means of discretiza-
tion. However, this proved difficult to achieve, because after discretization it
appeared that the independencies between our variables virtually disappeared.
In the future, for example, the Gaussian Mixture Model [28] could be taken into
account to better manage this process.

We then switched to the Gaussian Bayesian Networks. We showed some nice
results by using this model. The Tabu algorithm combined with the BIC-score
gave us a nice MSE score. Apparently the self-made blacklists and whitelist even
improved the structure that does not used these lists. For the HC-algorithm,
the results were somewhat more disappointing. We found structures for this al-
gorithm that did not contain edges pointing towards our target variable. Even
though we added blacklists and whitelists, the result did not improve signifi-
cantly.

In order to give the HC-algorithm a chance of success, we tried to apply our
own algorithm, using clustering. This resulted in a significant improvement
compared to what we had seen before. We can nevertheless make a few com-
ments on this, since a number of parameters for this algorithm have been chosen
on a subjective basis.

In the future, consideration could be given to applying constraint-based al-

40

gorithms to the used data set. Perhaps this would produce even better results
in terms of prediction. In addition, consideration could be given in the future
to certain metrics that have been used. For example, apart from the BIC-score
and the AIC-score, it is possible to involve other score metrics in our analysis.
Finally, there is the possibility to consider the use of other search procedures
like the Genetic algorithm.

41

Bibliography

[1] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew Mc-
Callum, Avi Pfeffer, Pieter Abbeel, Ming-Fai Wong, David Heckerman,
Chris Meek, et al. Introduction to statistical relational learning. MIT press,
2007.

[2] Marco Scutari and Jean-Baptiste Denis. Bayesian networks: with examples
in R. Chapman and Hall/CRC, 2014.

[3] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Elsevier, 2014.

[4] Robert W Robinson. Counting unlabeled acyclic digraphs. In Combinato-
rial mathematics V, pages 28–43. Springer, 1977.

[5] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. Malaysia; Pearson Education Limited,, 2016.

[6] Fred Glover. Tabu search—part i. ORSA Journal on computing, 1(3):190–
206, 1989.

[7] Harish S Bhat and Nitesh Kumar. On the derivation of the bayesian in-
formation criterion. School of Natural Sciences, University of California,
2010.

[8] Marco Scutari. Learning bayesian networks with the bnlearn r package.
arXiv preprint arXiv:0908.3817, 2009.

[9] Elena S Dimitrova, M Paola Vera Licona, John McGee, and Reinhard
Laubenbacher. Discretization of time series data. Journal of Computa-
tional Biology, 17(6):853–868, 2010.

[10] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied math-
ematics, 20:53–65, 1987.

[11] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):100–108, 1979.

42

[12] Zhiwei Ji, Qibiao Xia, and Guanmin Meng. A review of parameter learning
methods in bayesian network. In International Conference on Intelligent
Computing, pages 3–12. Springer, 2015.

[13] John Aldrich et al. Ra fisher and the making of maximum likelihood 1912-
1922. Statistical science, 12(3):162–176, 1997.

[14] James O Berger. Statistical decision theory and Bayesian analysis. Springer
Science & Business Media, 2013.

[15] Thomas Minka. Estimating a dirichlet distribution, 2000.

[16] Yung Liang Tong. The multivariate normal distribution. Springer Science
& Business Media, 2012.

[17] Kanti V Mardia. Measures of multivariate skewness and kurtosis with
applications. Biometrika, 57(3):519–530, 1970.

[18] Selcuk Korkmaz, Dincer Goksuluk, and Gokmen Zararsiz. Mvn: An r
package for assessing multivariate normality. The R Journal, 6(2):151–162,
2014.

[19] N Henze and B Zirkler. A class of invariant consistent tests for mul-
tivariate normality. Communications in Statistics-Theory and Methods,
19(10):3595–3617, 1990.

[20] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test
for normality (complete samples). Biometrika, 52(3/4):591–611, 1965.

[21] GJS Ross, RD Jones, RA Kempton, FB Laukner, RW Payne, D Hawkins,
and RB White. MLP: maximum likelihood program. 1980.

[22] Philipp Schaer. Applied informetrics for digital libraries: an overview
of foundations, problems and current approaches. Historical Social Re-
search/Historische Sozialforschung, pages 267–281, 2013.

[23] Rodrigo Costas, Tina Nane, and Vincent Larivière. Is the year of first
publication a good proxy of scholars’ academic age? In ISSI, 2015.

[24] Hastie Trevor, Tibshirani Robert, and Friedman JH. The elements of sta-
tistical learning: data mining, inference, and prediction, 2009.

[25] Nir Friedman, Moises Goldszmidt, and Abraham Wyner. Data analysis
with bayesian networks: A bootstrap approach. In Proceedings of the Fif-
teenth conference on Uncertainty in artificial intelligence, pages 196–205.
Morgan Kaufmann Publishers Inc., 1999.

[26] David S Watkins. Understanding the qr algorithm. SIAM review,
24(4):427–440, 1982.

43

[27] Fred B Bryant and Paul R Yarnold. Principal-components analysis and
exploratory and confirmatory factor analysis. 1995.

[28] Carl Edward Rasmussen. The infinite gaussian mixture model. In Advances
in neural information processing systems, pages 554–560, 2000.

44

Appendix A

R-code

1

2

3

4 #Hartemink method (see r epor t f o r exp lanat ion)
5 #args :
6 #l i s t= a l l p o s s i b l e va lue s f o r the number o f c l u s t e r s
7 #columnname= number o f the column you would l i k e to d i s c r e t i z e
8 #datase t= the datase t you want to use f o r d i s c r e t i z a t i o n
9 Hartemink<−f unc t i on (dataset , breaks , l i s t) {

10 d i s c=d i s c r e t i z e (datase t [l i s t] , method =
11 ”hartemink” , i b r eak s =30, breaks=breaks) ;
12 datase t [l i s t]= d i s c ;
13 r e turn (datase t) ;
14 }
15

16

17

18

19

20

21 # k−mean c l u s t e r i n g f o r d i s c r e t i z a t i o n o f the v a r i a b l e s and
determine the

22 #r i gh t number o f c l u s t e r with the s i l h o u e t t e (See r epor t f o r
exp lanat ion)

23 # s t a t i s t i c
24 #args :
25 #l i s t= a l l p o s s i b l e va lue s f o r the number o f c l u s t e r s
26 #columnnumbers= number o f the column you would l i k e to d i s c r e t i z e
27 #datase t= the datase t you want to use f o r d i s c r e t i z a t i o n
28 kmean<−f unc t i on (l i s t , columnnumber , datase t) {
29 max=−10000000;
30 k=0;
31 s e t=d i s t (datase t [columnnumber]) ;
32 f o r (va l in l i s t) {
33 vec to r=kmeans (datase t [columnnumber] , val , n s t a r t = 20) $ c l u s t e r ;
34 s i l=s i l h o u e t t e (vector , s e t) ;
35 i f (mean(s i l [, 3])>max) {
36 k=val ;

45

37

38 max=mean(s i l [, 3]) ;
39 }
40 }
41 r e turn (k) ;
42 }
43

44 # k−mean c l u s t e r i n g f o r d i s c r e t i z a t i o n and re tu rn s the new
dataframe

45 #args :
46 #l i s t= a l l p o s s i b l e va lue s f o r the number o f c l u s t e r s
47 #columnnnumber= the columnnumbers
48 #datase t= the datase t you want to use f o r d i s c r e t i z a t i o n
49 kmeandataset<−f unc t i on (dataset , l i s t , columnnumbers) {
50 f o r (i in columnnumbers) {
51 bestk=kmean(l i s t , i , da tase t) ;
52 datase t [i]=as . f a c t o r (f i t t e d (kmeans (datase t [i] , c en t e r s=bestk ,

n s t a r t =20))) ;
53 }
54 r e turn (datase t)
55 }
56

57 # Inte rva l−method f o r d i s c r e t i z a t i o n (See r epo r t f o r exp lanat ion)
58 #args :
59 # datase t : The datase t you want to use f o r d i s c r e t i x a t i o n
60 # breaks : number o f c l u s t e r
61 # l i s t : vec to r o f columnnumbers you want to d i s c r e t i z e .
62 #This l i s t w i l l have s i z e 1 most o f the time .
63 IntervalMethod<−f unc t i on (dataset , breaks , l i s t) {
64 f o r (va l in l i s t) {
65 datase t [va l]= d i s c r e t i z e
66 (data . frame (as . numeric (u n l i s t (datase t [va l]))) ,
67 method=” i n t e r v a l ” , breaks=breaks) ;
68 }
69 r e turn (datase t) ;
70 }
71

72 # quant i l e−method f o r d i s c r e t i z a t i o n r e t u r n (k) ;
73 #args :
74 # datase t : The datase t you want to use f o r d i s c r e t i x a t i o n
75 # breaks : number o f c l u s t e r
76 # l i s t : vec to r o f columnnumbers you want to d i s c r e t i z e .
77 #This l i s t w i l l have s i z e 1 most o f the time .
78 QuantileMethod<−f unc t i on (dataset , breaks , l i s t) {
79 f o r (va l in l i s t) {
80 datase t [va l]= d i s c r e t i z e (data . frame (as . numeric (u n l i s t (datase t [

va l]))) ,
81 method=” quan t i l e ” , breaks=breaks) ;
82 }
83 r e turn (datase t) ;
84 }
85

86

87 # Hi l l c l imb ing a lgor i thm with d i f f e r e n t s t a r t p o s i t i o n s .
88 #This i s done such that we can prevent that we get a l o c a l optimum

as
89 # a r e s u l t

46

90 #args :
91 # datase t : The datase t you want to use f o r d i s c r e t i x a t i o n
92 # method : s co r e you want to use
93 # number : number o f t imes you want to s t a r t with d i f f e r e n t DAGs
94 Hi l lC l imbing<−f unc t i on (dataset , method , number) {
95 nodes=names (datase t) ;
96 s c o r e =1000;
97 f o r (va l in 1 : number) {
98 bn . hc=hc (dataset , s t a r t=random . graph (nodes) , s c o r e=method) ;
99 newscore= sco r e (bn . hc , datase t) ;

100 i f (newscore<s c o r e) {
101 s c o r e=newscore ;
102 network=bn . hc ;
103 }
104 }
105

106 r e turn (network) ;
107 }
108

109

110

111 Tabu<−f unc t i on (dataset , method) {
112 r e turn (tabu (dataset , s c o r e=method))
113 }
114

115 Compare<−f unc t i on (dataset , method , number) {
116 hc=Hi l lC l imbing (dataset , method , number) ;
117 tabu=Tabu(dataset , method) ;
118 i f (s c o r e (hc , datase t)<=sco r e (tabu , datase t)) {
119 r e turn (hc) ;
120 }
121 e l s e {
122 r e turn (tabu) ;
123 }
124 }
125

126

127 CrossVa l idat ion<−f unc t i on (dataset , methods , ns tar t , runs , l o s s . a rgs) {
128 args=c () ;
129 f o r (va l in l ength (methods)) {
130 k=Compare (dataset , methods [va l] , n s t a r t) ;
131 p lo t (k)
132 args [va l]=bn . cv (dataset , k , runs=runs , l o s s=”pred” ,
133 l o s s . a rgs=l i s t (t a r g e t=l o s s . a rgs)) ;
134 }
135 r e turn (args) ;
136

137 }
138

139

140 main<−f unc t i on () {
141 wis=Convert (Canadian r e s e a r c h e r s bn , c (6 : 1 6)) ;
142 wis=data . frame (IntervalMethod (data . frame (wis) ,10 , c (6 : 1 6))) ;
143 wis [1]= data . frame (as . f a c t o r (u n l i s t (wis [1]))) ;
144 wis [2]= data . frame (as . f a c t o r (u n l i s t (wis [2]))) ;
145 wis [3]= data . frame (as . f a c t o r (u n l i s t (wis [3]))) ;
146 wis [4]= data . frame (as . f a c t o r (u n l i s t (wis [4]))) ;

47

147 wis [5]= data . frame (as . f a c t o r (u n l i s t (wis [5]))) ;
148 wis $ id os t=NULL;
149 s=CrossVa l idat ion (wis , c (”k2”) ,1 , 1 , ” r e f s paper ”) ;
150 r e turn (s) ;
151 }
152

153

154 Convert<−f unc t i on (dataset , columns) {
155 f o r (va l in columns) {
156 datase t [va l]=as . numeric (u n l i s t (datase t [va l])) ;
157 }
158 r e turn (datase t)
159 }
160

161 make<−f unc t i on () {
162 r e turn (bn . cv (data . frame (Convert (Canadian r e s e a r c h e r s bn [6 : 1 6] , c

(1 : 1 1))) ,Compare (data . frame (Convert (Canadian r e s e a r c h e r s bn
[6 : 1 6] , c (1 : 1 1)))) ,method =c (”bge”) ,5) , l i s t (t a r g e t=”pp top
prop”))

163 }
164

165

166 Bootstrapping<−f unc t i on (datase t) {
167 datase t [5]=NULL;
168 f o r (va l in 5 : 15) {
169 datase t [va l]=data . frame (as . numeric (u n l i s t (datase t [va l]))) ;
170 }
171 args=c () ;
172 r e p l i c a t e s=c (100 ,300 ,400 ,1000) ;
173 t r e s h o l d s=c (0 . 6 , 0 . 8 , 0 . 9 5) ;
174 a lgor i thm=c (”tabu” , ”hc”) ;
175 k=1;
176 f o r (va in 1 : 2) {
177 f o r (va l in 1 : l ength (r e p l i c a t e s)) {
178 f o r (i in 1 : l ength (t r e s h o l d s)) {
179 d=boot . s t r ength (dataset , a lgor i thm = algor i thm [va] ,R=200 ,m=

r e p l i c a t e s [va l] , cpdag = TRUE) ;
180 nw=model2network (paste (mode l s t r ing (s k e l e t on (averaged . network (

d [(d$ d i r e c t i on >0.5) & (d$ d i r e c t i on <0.7) ,] , th r e sho ld=
t r e s h o l d s [i] , names (datase t)))) ,

181 mode l s t r ing (averaged . network (d [(d$ d i r e c t i on >0.7) ,] ,
th r e sho ld=t r e s h o l d s [i] , names (datase t)))))

182 p lo t (nw)
183 args [k]=nw;
184 k=k+1;
185 }
186 }
187 }
188 r e turn (args) ;
189

190

191 }
192

193 bl=matrix (c (”Phd year ” , ” b i r thyea r ” , ”P” , ” b i r thyea r ” , ” fpy ” , ” b i r thyea r
” ,

194 ”pp pos l a s t ” , ” b i r thyea r ” ,

48

195 ”pp in t c o l l a b ” , ”pp c o l l a b ” , ”pp i n t c o l l a b ” , ” fpy ” , ”pp
pos l a s t ” ,

196 ” fpy ” , ”pp pos l a s t ” , ”Phd year ” , ”P” ,
197 ”pp top prop”) , nco l=2,byrow = TRUE, dimnames = l i s t (NULL

, c (” from” , ” to ”)))
198 wl=matrix (c (”Phd year ” , ”P” , ”Phd year ” , ” fpy ” , ” b i r thyea r ” , ”Phd year ”)

,
199 nco l=2,byrow = TRUE, dimnames = l i s t (NULL, c (” from” , ” to ”)

))
200

201

202

203 GetResults<−f unc t i on () {
204 r e s u l t s=c () ;
205 s c o r e s=c () ;
206

207 f i r s t=hc (data . frame (wis) , r e s t a r t =10) ;
208 p lo t (f i r s t) ;
209 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (f i r s t , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
210 s c o r e s=append (sco re s , s c o r e (f i r s t , data . frame (wis))) ;
211 second=tabu (data . frame (wis)) ;
212 p lo t (second) ;
213 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (second , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
214 s c o r e s=append (sco re s , s c o r e (second , data . frame (wis)))
215 th i rd=hc (data . frame (wis) , r e s t a r t =10, b l a c k l i s t = bl , w h i t e l i s t = wl

)
216 p lo t (th i rd) ;
217 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (th i rd , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
218 s c o r e s=append (sco re s , s c o r e (th i rd , data . frame (wis))) ;
219 f our th=tabu (data . frame (wis) , b l a c k l i s t = bl , w h i t e l i s t = wl)
220 p lo t (f our th) ;
221 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (fourth , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
222 s c o r e s=append (sco re s , s c o r e (fourth , data . frame (wis))) ;
223 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”hc” , a lgor i thm . args =

l i s t (r e s t a r t =10) ,) ;
224 f i f t h=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.75 , names (

data . frame (wis))) ;
225 p lo t (f i f t h) ;
226 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (f i f t h , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
227 s c o r e s=append (sco re s , s c o r e (f i f t h , data . frame (wis))) ;
228 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”hc” , a lgor i thm . args =

l i s t (b l a c k l i s t=bl , w h i t e l i s t=wl , r e s t a r t =10) , , cpdag=FALSE)
229 s i x=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.75 , names (

data . frame (wis))) ;
230 p lo t (s i x) ;
231 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (s ix , data=data . frame (wis) , l o s s=

”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
232 s c o r e s=append (sco re s , s c o r e (s ix , data . frame (wis))) ;
233 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”tabu” ,) ;
234 seventh=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.75 ,

names (data . frame (wis))) ;
235 p lo t (seventh) ;

49

236 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (seventh , data=data . frame (wis) ,
l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;

237 s c o r e s=append (sco re s , s c o r e (seventh , data . frame (wis))) ;
238 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”tabu” , a lgor i thm . args

=l i s t (b l a c k l i s t=bl , w h i t e l i s t=wl) ,) ;
239 e ighth=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.75 , names

(data . frame (wis))) ;
240 p lo t (e ighth) ;
241 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (e ighth , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
242 s c o r e s=append (sco re s , s c o r e (e ighth , data . frame (wis))) ;
243

244 r e turn (data . frame (r e s u l t s , s c o r e s)) ;
245 }
246

247 ##SELFCOMPOSED ALGORITHM pART1
248

249 addtoFrame<−f unc t i on (ok , k , data) {
250 r=c () ;
251 f o r (e l in 1 : k) {
252 df=data . frame (matrix (nco l=length (data) , nrow=0)) ;
253 colnames (df)=names (data) ;
254 f o r (va l in 1 : nrow (data)) {
255 i f (ok [va l]==e l) {
256 df=rbind (df , data [val ,]) ;
257 }
258 }
259 bn . hc=hc (df , w h i t e l i s t = wl , b l a c k l i s t = bl) ;
260 p lo t (bn . hc)
261 r=append (r , mode l s t r ing (bn . hc))
262

263 }
264 r e turn (r) ;
265

266 }
267

268 ##Se l f composed a lgor i thm part 2
269 checkCluste r<−f unc t i on (o , query , df) {
270 k=1000;
271 s=0;
272 f o r (va l in 1 : nrow (o)) {
273 w=Eucl ideanDistance (o [val ,] , query) ;
274 i f (as . numeric (w)<k) {
275 k=w;
276 s=va l ;
277 }
278 }
279 r e turn (df [s]) ;
280 }
281

282

283 ##Se l f composed a lgor i thm part 3
284 pr ed i c t r ed<−f unc t i on (t e s t , t r a in ing , columns , o , df) {
285 k=c () ;
286 f o r (va l in 1 : nrow (t e s t)) {
287 k [va l]= p r ed i c t (bn . f i t (model2network

50

288 (checkCluste r (o , as . numeric (t e s t [val ,] [
columns]) , d f)) ,

289 data=t r a i n i n g) , node=”pp top prop” , data=
t e s t [val ,])

290 }
291 pr in t (typeo f (k))
292 r e turn (MSE(as . numeric (k) , t e s t $pp top prop)) ;
293 }
294

295 #”Journal s c o r e ” ,” r e f s paper ” ,
296

297

298

299

300 TresholdCheck<−f u cn t i on () {
301 r e s u l t s=c () ;
302 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”tabu” , a lgor i thm . args

=l i s t (b l a c k l i s t=bl , w h i t e l i s t=wl) ,) ;
303 e ighth=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.5 , names (

data . frame (wis))) ;
304 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (e ighth , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
305 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”tabu” , a lgor i thm . args

=l i s t (b l a c k l i s t=bl , w h i t e l i s t=wl) ,) ;
306 e ighth=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.6 , names (

data . frame (wis))) ;
307 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (e ighth , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
308 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”tabu” , a lgor i thm . args

=l i s t (b l a c k l i s t=bl , w h i t e l i s t=wl) ,) ;
309 e ighth=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.7 , names (

data . frame (wis))) ;
310 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (e ighth , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
311 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”tabu” , a lgor i thm . args

=l i s t (b l a c k l i s t=bl , w h i t e l i s t=wl) ,) ;
312 e ighth=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.8 , names (

data . frame (wis))) ;
313 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (e ighth , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
314 d=boot . s t r ength (data . frame (wis) , a lgor i thm = ”tabu” , a lgor i thm . args

=l i s t (b l a c k l i s t=bl , w h i t e l i s t=wl) ,) ;
315 e ighth=averaged . network (d [d$ d i r e c t i on >=0.5 ,] , th r e sho ld =0.9 , names (

data . frame (wis))) ;
316 r e s u l t s=append (r e s u l t s , (l o s s (bn . cv (e ighth , data=data . frame (wis) ,

l o s s=”mse” , l o s s . a rgs=l i s t (t a r g e t=”pp top prop”))))) ;
317 p lo t (c (1 : 5) , r e s u l t s)
318

319

320 }

first.R

51

