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Linear and Nonlinear Stability Analysis of a Three-Dimensional
Boundary Layer over a Hump

S. Westerbeek∗, T. Michelis†, M. Kotsonis‡

Delft University of Technology, Section of Aerodynamics, Leeghwaterstraat 42, 2628CA Delft, The Netherlands,

J.A. Franco§, S. Hein¶

German Aerospace Center, Institute of Aerodynamics and Flow Technology, Bunsenstrasse 10, 37073 Göttingen,
Germany

The Parabolized Stability Equations (PSE), Adaptive Harmonic Linearized Navier-Stokes
(AHLNS) and Harmonic Navier-Stokes (HNS) solvers are used to analyze the linear and nonlinear
stability of swept-wing boundary layers under the influence of smooth wall deformations of
varying size and geometry. Special attention is given to the validity of the slowly varying flow
assumption of PSE via a comparison with AHLNS and HNS results. The surface deformations
analyzed in this work are found to affect the development of the primary stationary crossflow
instability mode as well as higher harmonics. Analysis of the locally most amplified mode reveals
successive modulation of the growth rate in the vicinity of the surface deformation. This process
was found to be largely governed by linear terms and driven by the base flow modification due to
the deformed wall. Similarly, the base flow modification causes higher harmonics to experience
a significant destabilization. This is followed by stabilization as nonlinear interactions become
dominant. The PSE methodology proved capable of predicting the stability response for small
wall deformations with only minor amplitude discrepancies compared to HNS results. The main
difference was found to occur in the wall-normal velocity profiles of the mean flow distortion
mode. The deviations of the PSE results compared to harmonic stability methods increased as
the protuberance was made steeper. Moreover, the PSE framework was not able to converge for
all cases nonlinearly.

I. Nomenclature

𝑥, b = Streamwise coordinate (global and body-fitted resp.) 𝑖 = Imaginary unit
𝑦, [ = Wall-normal coordinate (global and body-fitted resp.) ℎ = Protuberance height
𝑧 = Spanwise coordinate (global and body-fitted resp.) 𝑏 = Protuberance width
𝑈, 𝑢′ = Streamwise velocity (base and perturbation resp.) 𝑥𝑐 = Protuberance center location
𝑉, 𝑣′ = Wall-normal velocity (base and perturbation resp.) 0 = Inflow value
𝑊, 𝑤′ = Spanwise velocity (base and perturbation resp.) ′ = Perturbation value
𝑃, 𝑝′ = Static pressure (base and perturbation resp.) ¯ = Dimensional quantity
Q, q′ = State vector of velocities and pressure ∗ = Integration quantity
𝛼 = Streamwise wavenumber a = Kinematic viscosity
𝛽 = Spanwise wavenumber 𝛿0 = 𝛿99 at the inflow, characteristic length
𝜔 = Angular frequency 𝑅𝑒 = �̄�0 ·𝛿0

ā
Reynolds number

𝐴 = Maximum streamwise perturbation velocity
𝛿99 = Boundary layer height based on 𝑈
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II. Introduction
Modern aircraft wings are swept backwards to delay the occurrence of unwanted compressibility effects on the

suction side of the wing. This wing configuration gives rise to an additional flow component within the boundary layer
called the Crossflow (CF) component, see [1]. Laminar-to-turbulent transition in such three-dimensional boundary
layers is commonly dominated by the exponential growth of stationary Crossflow Instabilities (CFI) in flows with low
freestream turbulence. CFI are known to be extremely sensitive to both distributed and isolated roughness and surface
protuberances on the wing surface. However, accounting for rapid geometrical features poses significant challenges to
flow stability and transition prediction methodologies.

The stability of two-dimensional boundary layers (i.e. unswept) over smooth wall protuberances (i.e. humps)
was studied in e.g. [2, 3]. Results clearly indicate the local and downstream significance of accounting for surface
protuberances in a transition scenario dominated by Tollmien-Schlichting (TS) instabilities. It was shown by Hein [4]
and Theofilis et al. [5] that the Parabolized Stability Equations (PSE) methodology is an effective tool to assess the
instability in flows with thin separation bubbles. This holds for both linear and nonlinear instability analyses. Thus
the rise of separation bubbles thus might not be a limiting factor to the application of the PSE methodology. Gao et
al. [2] showed a validation of the linear PSE implementation over humps with reversed flow regions. However, a
validation of the curvilinear implementation as well as a verification of the PSE assumption of slowly varying flow
was lacking for the presented case. Franco et al. [3] instead shows that the Parabolized Stability Equations (PSE) are
unable to correctly predict the stability in the vicinity of specific hump shapes. Instead, a method based on the Adaptive
Harmonic Linearized Navier-Stokes (AHLNS) equations proved very accurate. This was reiterated by Tocci et al. in [6]
concluding that the use of PSE should be avoided in flows featuring sharp geometries of wall protuberances, though it
could be used in some flows over smooth irregularities. In 2013, Park and Park [7] showed an extension of the PSE
method to nonlinear stability over a smooth hump and compared the results with Direct Numerical Simulations (DNS)
from Wörner et al. [8]. Local differences between DNS and the PSE were shown. However, Park and Park attributed
this deviation to a difference in hump shape with the results from Wörner et al. [8]. More recently, Park and Oh [9]
investigated the effect of hump shape on the stability of two-dimensional boundary layers showing a destabilization of
the incoming modes for all cases.

While a wealth of past studies has treated two-dimensional, TS-dominated flows, considerably less knowledge is
available in the case of three-dimensional, CFI-dominated flows. Cooke et al. [10] analyzed the stability of a swept-wing
boundary layer subject to forward- and backward-facing steps using Linear Stability Theory (LST), Parabolised Stability
Equations and Linearized Harmonic Navier–Stokes (LHNS) despite this case clearly violating the parallel flow and
slowly varying flow assumptions present in LST and PSE, respectively. They conclude that the PSE indeed "fails to
correctly capture the effects of the steps" and that the LHNS is more physically correct. A systematic analysis of the
limits of the PSE framework in cases with strong local curvature is currently not available. However, Tocci et al. [6]
suggest to use the relative importance of streamwise and wall-normal gradients in the base flow to assess the validity of
the slowly varying flow assumption in PSE. Additionally, they note that the application of PSE is dubious if the length
scale of streamwise variations introduced by surface irregularities is of the same order as the instability’s streamwise
wavelength.

Despite the known significance of surface protuberances to the transition scenario, the body of literature on the
stability of three-dimensional boundary layers over smooth protuberances is lacking. To the authors’ best knowledge, no
publication currently exists examining the interactions between incoming stationary crossflow instability disturbances
and a two-dimensional hump. Recent studies have performed various Direct Numerical Simulations (DNS), stability
analysis and experiments on steps, e.g. [10–12], that provide valuable insight in the flow mechanics, though the
conclusions cannot be directly extended to the interaction with smooth geometries.

After an introduction to the setup (Section III) and methodology (Section IV), the effect of hump size is first
investigated by linear stability analysis and the limit of the PSE assumption is then assessed for the primary mode. This
analysis is then extended by comparing nonlinear stability predictions of PSE and HNS. In doing so, a first indication is
given of the limits in wall deformation geometry for which the PSE assumptions are not valid. Nonlinear simulations
are used to identify the effect of the considered wall geometries on the nonlinear evolution of the incoming crossflow
instabilities. Lastly, the work will also consider the interaction of the incoming disturbance with the protuberance
through energy exchange budgets. A conclusion is then presented on both the physics of the interaction, as well as the
viability of the numerical frameworks used to predict this interaction.
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Fig. 1 Schematic of the problem showing the computational domain and coordinate systems, base flow, Virtual
Leading Edge (VLE) and protuberance dimensions. (Note: the shown protuberance shape is only for illustration
purposes, the exact shape is not shown)

III. Problem Statement
The stability of boundary layers over wall protuberances on a 45◦ swept plate subject to a favourable pressure gradient

is considered. The base case is adjusted from the experiments of Rius-Vidales and Kotsonis [12]. The experiments
feature a swept symmetrical wing named the M3J, see [13]. At a chord-based Reynolds number of 2.3 · 106 and a
moderate angle of attack (3 degrees), the crossflow instability mode that is most amplified upstream of the transition
point is characterized by a spanwise wavelength _̄𝑧 = 7.5 mm [12] and its angular frequency 𝜔 = 0. This mode is fully
stationary. Sharp forward-facing steps were then mounted on the wing at a chord-wise location of 𝑥

𝑐
= 20%. Some

shallow steps were found to locally stabilize the primary stationary mode and its harmonics. However, the majority
of studied geometries resulted in a notable transition advancement. The results of Rius Vidales expose the need for
a systematic analysis of the interaction of wall protuberances and stationary CFI in a fast and efficient manner. This
approach can guide and inform future experimental investigations and at the same time provide insights in the physical
interpretation of the outcomes. The aim of the present work is to survey a range of different stability analysis methods,
for a nominal test problem, namely smooth protuberances.

Here, the effect of smooth surface deformations of varying shapes and sizes are thus analyzed for the same flow
topology. This wall deformation is centered at 20% of the chord. The flow conditions from the experiments of
Rius-Vidales and Kotsonis [12] are matched by imposing the experimentally measure external pressure at the top
boundary for base flow computations (see section IV). The inflow of the computational domain is set at a chord-based
location of 5% as shown in figure 1. The Cartesian coordinate system [𝑥, 𝑦, 𝑧] is swept with the wing such that the
x axis is orthogonal to the leading edge. The body-fitted coordinate system [b, [, 𝑧] used for stability calculations is
similarly swept.

The smooth protuberances are placed at 𝑥
𝑐
= 0.2, or 𝑥 = 238.3, and are characterized by their height, ℎ, and width,

𝑏. A total of 10 cases are considered, including the clean case A for which no protuberance is present. The height,
widths and names of all protuberances are shown in table 1. The exact wall shape is not shown.

The protuberances of cases B1, C2 and D3 have a constant aspect ratio (𝑏 = 16ℎ), but vary in overall size. The
boundary layer stability for these cases is analyzed to observe the effect of protuberance size on incoming stationary
crossflow instabilities. A variation in height for equal width, as is present in cases B1-B4, C2-C4 and D3-D4, will
be used to provide insight in the limitations of the PSE methodology for the currently analyzed protuberances. In
addition to the cases presented in table 1, a clean case A, void of any surface protuberance, is analyzed for validation
and comparison purposes.
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Table 1 Considered cases described by protuberance height and width

𝑏

0 9.4 12 14.5

ℎ

0 A
0.59 B1
0.75 B2 C2
0.97 B3 C3 D3

1 B4 C4 D4

IV. Methodology
A basic flow state that describes the steady, unperturbed solution to the Navier-Stokes equations is required as input

to the considered stability analysis methods. For this, the finite element Navier-Stokes solver in COMSOL is used (see
[14]). A numerical domain with height 𝐻 = 51.9 and length 𝐿 = 454 is discretized in second order basis functions, with
115 elements in the wall-normal direction that are clustered near the wall. In the streamwise direction, 945 elements
are present with a local refinement around the surface protuberance. In the spanwise 𝑧-direction, two elements are
present and periodic boundary conditions are imposed. Both pressure and velocities are solved using second-order
finite elements. Due to the upstream truncation of the domain at 𝑥0, there exists a virtual leading edge upstream of
the computational domain. Therefore, a pre-calculated three-dimensional boundary layer profile is prescribed at the
inflow. The local solution of the Falkner-Skan-Cooke equations is used to this extent. The bottom wall imposes the
no-slip condition. An experimentally determined favourable pressure gradient from [12] is adjusted as shown by [11]
and imposed on the top boundary condition. At the outflow, a constant static pressure is prescribed that matches the
local top boundary pressure. The streamwise base flow velocity contours around the surface protuberances for all cases
are shown in figure7. Some flow separation can be seen in cases B3, C4 and D4. The maximum reverse flow velocity is
less than 2% of the local external velocity.

The PSE, HNS and AHLNS methodologies are used to evaluate the stability of stationary crossflow modes over
various wall deformations. The fundamentally different nature of PSE (parabolized, nonlinear), AHLNS (elliptic, linear)
and HNS (elliptic, nonlinear) is used to draw conclusions regarding the interaction between the incoming perturbation
and the wall deformation. The PSE neglect second-order streamwise derivatives of the perturbation shape function, but
account for wave-triad interactions. The AHLNS methodology instead neglects nonlinear terms while maintaining
higher order streamwise gradients in the perturbation equations. Finally, the HNS are used to solve the nonlinear
perturbation equations without further assumptions. All three aforementioned methods are based on the incompressible
NS equations:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
=

𝜕𝑝

𝜕𝑥
+ 1
𝑅𝑒

(
𝜕2𝑢

𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 + 𝜕2𝑢

𝜕𝑧2

)
, (1a)

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
=

𝜕𝑝

𝜕𝑦
+ 1
𝑅𝑒

(
𝜕2𝑣

𝜕𝑥2 + 𝜕2𝑣

𝜕𝑦2 + 𝜕2𝑣

𝜕𝑧2

)
, (1b)

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
=

𝜕𝑝

𝜕𝑧
+ 1
𝑅𝑒

(
𝜕2𝑤

𝜕𝑥2 + 𝜕2𝑤

𝜕𝑦2 + 𝜕2𝑤

𝜕𝑧2

)
, (1c)

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
+ 𝜕𝑤

𝜕𝑧
= 0, (1d)

where 𝑝 is the static pressure and 𝑢, 𝑣 and 𝑤 are the total velocities in respectively the streamwise direction 𝑥, the
wall-normal direction 𝑦 and the spanwise direction 𝑧. The equations are nondimensionalized by the reference velocity
�̄�𝑒 = 15.1 m/s, the boundary layer thickness at the inflow 𝛿0 = 7.71 · 10−4 m shown in figure 1 and the kinematic
viscosity ā = 1.4711 · 10−5 m2/s, resulting in a global reference Reynolds number 𝑅𝑒 =

�̄�0 𝛿0
ā

= 791.4. The bars denote
dimensional quantities.
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The velocities and pressure are decomposed as the sum of the steady base flow, Q = [𝑈 𝑉 𝑊 𝑃]𝑇 , and un-
steady perturbations, q′ = [𝑢′ 𝑣′ 𝑤′ 𝑝′]𝑇 . The base flow terms are subtracted from the equations to arrive at the
perturbation equations. In addition, a coordinate transformation is performed to the body-fitted b[-coordinates. The b

axis, for which [ = 0, follows the wall. The grid is then generated elliptically ensuring orthogonality at the wall. The
transformation results in the generalized perturbation equations:

𝜕𝑢′

𝜕𝑡
+𝑈

𝜕𝑢′

𝜕b
b𝑥 +𝑈

𝜕𝑢′

𝜕[
[𝑥 + 𝑢′

𝜕𝑈

𝜕𝑥
+ 𝑢′

𝜕𝑢′

𝜕b
b𝑥 + 𝑢′

𝜕𝑢′

𝜕[
[𝑥 +𝑉

𝜕𝑢′

𝜕b
b𝑦

+𝑉 𝜕𝑢′

𝜕[
[𝑦 + 𝑣′

𝜕𝑢

𝜕b
b𝑦 + 𝑣′

𝜕𝑢

𝜕[
[𝑦 + 𝑣′

𝜕𝑈

𝜕𝑦
b𝑦 +𝑊

𝜕𝑢′

𝜕𝑧
+ 𝑤′ 𝜕𝑈

𝜕𝑧
+ 𝑤′ 𝜕𝑢

′

𝜕𝑧
=

− 𝜕𝑝′

𝜕b
b𝑥 −

𝜕𝑝′

𝜕[
[𝑥 +

1
𝑅𝑒

(
𝜕2𝑢′

𝜕b2 b2
𝑥 +

𝜕2𝑢′

𝜕[2 [2
𝑥 + 2b𝑥[𝑥

𝜕2𝑢′

𝜕b𝜕[
+ 𝜕𝑢′

𝜕b
b𝑥𝑥

+ 𝜕𝑢′

𝜕[
[𝑥𝑥 +

𝜕2𝑢′

𝜕b2 b2
𝑦 +

𝜕2𝑢′

𝜕[2 [2
𝑦 + 2b𝑦[𝑦

𝜕2𝑢′

𝜕b𝜕[
+ 𝜕𝑢′

𝜕b
b𝑦𝑦 +

𝜕𝑢′

𝜕[
[𝑦𝑦 +

𝜕2𝑢′

𝜕𝑧2

)
, (2a)

𝜕𝑣′

𝜕𝑡
+𝑈

𝜕𝑣′

𝜕b
b𝑥 +𝑈

𝜕𝑣′

𝜕[
[𝑥 + 𝑢′

𝜕𝑉

𝜕𝑥
+ 𝑢′

𝜕𝑣′

𝜕b
b𝑥 + 𝑢′

𝜕𝑣′

𝜕[
[𝑥 +𝑉

𝜕𝑣′

𝜕b
b𝑦

+𝑉 𝜕𝑣′

𝜕[
[𝑦 + 𝑣′

𝜕𝑣

𝜕b
b𝑦 + 𝑣′

𝜕𝑣

𝜕[
[𝑦 + 𝑣′

𝜕𝑉

𝜕𝑦
+𝑊

𝜕𝑣′

𝜕𝑧
+ 𝑤′ 𝜕𝑉

𝜕𝑧
+ 𝑤′ 𝜕𝑣

′

𝜕𝑧
=

− 𝜕𝑝′

𝜕b
b𝑦 −

𝜕𝑝′

𝜕[
[𝑦 +

1
𝑅𝑒

(
𝜕2𝑣′

𝜕b2 b2
𝑥 +

𝜕2𝑣′

𝜕[2 [2
𝑥 + 2b𝑥[𝑥

𝜕2𝑣′

𝜕b𝜕[
+ 𝜕𝑣′

𝜕b
b𝑥𝑥

+ 𝜕𝑣′

𝜕[
[𝑥𝑥 +

𝜕2𝑣′

𝜕b2 b2
𝑦 +

𝜕2𝑣′

𝜕[2 [2
𝑦 + 2b𝑦[𝑦

𝜕2𝑣′

𝜕b𝜕[
+ 𝜕𝑣′

𝜕b
b𝑦𝑦 +

𝜕𝑣′

𝜕[
[𝑦𝑦 +

𝜕2𝑣′

𝜕𝑧2

)
, (2b)

𝜕𝑤′

𝜕𝑡
+𝑈

𝜕𝑤′

𝜕b
b𝑥 +𝑈

𝜕𝑤′

𝜕[
[𝑥 + 𝑢′

𝜕𝑊

𝜕𝑥
+ 𝑢′

𝜕𝑤′

𝜕b
b𝑥 + 𝑢′

𝜕𝑤′

𝜕[
[𝑥 +𝑉

𝜕𝑤′

𝜕b
b𝑦

+𝑉 𝜕𝑤′

𝜕[
[𝑦 + 𝑣′

𝜕𝑤

𝜕b
b𝑦 + 𝑣′

𝜕𝑤

𝜕[
[𝑦 + 𝑣′

𝜕𝑊

𝜕𝑦
+𝑊

𝜕𝑤′

𝜕𝑧
+ 𝑤′ 𝜕𝑊

𝜕𝑧
+ 𝑤′ 𝜕𝑤

′

𝜕𝑧
=

− 𝜕𝑝′

𝜕𝑧
+ 1
𝑅𝑒

(
𝜕2𝑤′

𝜕b2 b2
𝑥 +

𝜕2𝑤′

𝜕[2 [2
𝑥 + 2b𝑥[𝑥

𝜕2𝑤′

𝜕b𝜕[
+ 𝜕𝑤′

𝜕b
b𝑥𝑥

+ 𝜕𝑤′

𝜕[
[𝑥𝑥 +

𝜕2𝑤′

𝜕b2 b2
𝑦 +

𝜕2𝑤′

𝜕[2 [2
𝑦 + 2b𝑦[𝑦

𝜕2𝑤′

𝜕b𝜕[
+ 𝜕𝑤′

𝜕b
b𝑦𝑦 +

𝜕𝑤′

𝜕[
[𝑦𝑦 +

𝜕2𝑤′

𝜕𝑧2

)
, (2c)

𝜕𝑢′

𝜕b
b𝑥 +

𝜕𝑢′

𝜕[
[𝑥 +

𝜕𝑣′

𝜕b
b𝑦 +

𝜕𝑣′

𝜕[
[𝑦 +

𝜕𝑤′

𝜕𝑧
= 0. (2d)

The PSE, AHLNS and HNS approaches are described here in short in addition to the respective discretization of the
equations. The initial condition for all methods is generated through solving the local eigenvalue stability problem
for the shape function and wave number, although the resulting wave number is not used in HNS. All methods were
subjected to a grid convergence study.

A. Parabolized Stability Equations
The nonlinear PSE are derived from the perturbation equations by assuming a nonlinear perturbation ansatz as:

q′ (b, [, 𝑧, 𝑡) =
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑛=−𝑁

q̂𝑚,𝑛 (b, [)𝑒
𝑖 (

∫ b𝑒

b0
𝛼𝑚,𝑛𝑑b

∗+𝛽𝑛𝑧−𝜔𝑚𝑡 )
, 𝛽, 𝜔 ∈ R; 𝑞, 𝛼 ∈ C, (3)

where 𝛼 is the complex-valued streamwise wavenumber, 𝛽 the real-valued spanwise wavenumber and 𝜔 is the angular
frequency. The subscripts of 𝛽 and 𝜔, 𝑛 and 𝑚 respectively, indicate the wave specifications of mode (𝑚, 𝑛) with
respect to the mode (1,1) as 𝛽𝑛 = 𝑛𝛽1 and 𝜔𝑚 = 𝑚𝜔1 truncated at 𝑛 = 𝑁 and 𝑚 = 𝑀. However, here 𝜔𝑚 = 0 for all
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𝑚 and 𝛽1 = 0.6459 (corresponding to the 7.5 mm mode in Rius Vidales experiments) since only stationary crossflow
instabilities are considered. The modal sum is truncated at 𝑁 = 5, as the addition of higher modes was found not to
affect the results. The imaginary unit is denoted 𝑖. The computational domain ranges from b0 to b𝑒. The ∗ annotation, in
𝑑b∗, indicates the integration variable. A more detailed derivation in Cartesian coordinates can be found in [15, 16].
Here, however, the derivation is performed in generalized coordinates to be able to account for the (local) curvature
of the protuberance. The parabolization assumption is made in the b direction and the grid for this case is generated
ensuring orthogonality at the wall. The LPSE and NPSE equations can be written in matrix form as:

[𝐿]q̂𝑚,𝑛 + [𝑀]
𝜕q̂𝑚,𝑛

𝜕b
+ [𝑁]

𝜕𝛼𝑚,𝑛

𝜕b
q̂𝑚,𝑛 = r𝑚,𝑛, (4)

where the right-hand side forcing, r, comprises the nonlinear terms that are neglected in LPSE.
The equations are then discretized. Streamwise derivatives are approximated via a first-order backward Euler

scheme. The streamwise direction is discretized with 200 equidistant stations. In the wall-normal direction, spectral
differentiation is employed using a Chebyshev polynomial basis with 70 collocation points clustered near the wall, see
[17, 18] for further details.

B. Adaptive Harmonic Linearized Navier-Stokes Equations
The AHLNS equations are derived from the perturbation equations by assuming a linear version of the PSE

perturbation ansatz:

q′ (b, [, 𝑧, 𝑡) = q̂(b, [)𝑒𝑖 (
∫ b𝑒

b0
𝛼𝑑b ∗+𝛽𝑧−𝜔𝑡 )

, 𝛽, 𝜔 ∈ R; 𝑞, 𝛼 ∈ C. (5)
The main advantage of the adaptive approach is that it exploits the wave-like character of the convective instabilities

in a similar fashion as in the PSE method. Thus, the spatial resolution of the numerical grid required in streamwise
direction is significantly reduced when compared with HNS for linear computations. However, unlike to the PSE
approach, two aspects are crucial in this approach: First, the streamwise wavenumber 𝛼 is allowed to rapidly vary in the
streamwise direction. Second, the adaptive approach does not introduce any further simplification in the system of
equations, i.e. 2nd-order derivatives in streamwise direction are maintained. A more detailed description of the AHLNS
approach can be found in the works of Franco and Hein [19] and Franco et al. [3].

Since the perturbation ansatz of eq. 5 is similar to that of LPSE, the coupling between both methodologies (LPSE &
AHLNS) is relatively straightforward. Therefore, the whole domain in streamwise direction is divided in three regions:
1) from the inflow up to 𝑥 = 142, 2) from 𝑥 = 142 up to 𝑥 = 390, and finally, from 𝑥 = 390 up to the outflow. This division
is based on the local influence of the presence of a wall deformation on the base flow quantities, limited to region 2.
Consequently, LPSE (here, NOLOT-PSE [20]) are used in regions 1 & 3, while AHLNS is applied in region 2 only. In
principle, one could use AHLNS for the whole domain (1+2+3) without introducing any division, but then the efficiency
of the marching procedure of the LPSE in regions 1 & 3 would be lost. For region 2, 150 points in both streamwise and
wall-normal directions are used. A 4th-order centered scheme is employed to solve the AHLNS equations.

C. Harmonic Navier-Stokes Equations
A framework that employs the full nonlinear harmonic Navier-Stokes equations has been developed [21] which

follows from the perturbation equations by assuming a nonlinear perturbation ansatz as:

q′ (b, [, 𝑧, 𝑡) =
𝑀∑︁

𝑚=−𝑀

𝑁∑︁
𝑛=−𝑁

q̂𝑚,𝑛 (b, [)𝑒𝑖 (𝛽𝑛𝑧−𝜔𝑚𝑡 ) , 𝛽, 𝜔 ∈ R; 𝑞, 𝛼 ∈ C, (6)

where all oscillations and growth are maintained in the shape functions. This approach is described by Appel in [22].
Consequently, as in AHLNS, higher order derivatives of 𝑞 are not neglected. The nonlinear terms are also maintained
and return in the final equations as an explicit forcing term on the right-hand side. The final equations can be written in
the form:

[𝐴]q̂𝑚,𝑛 + [𝐵]𝜔q̂𝑚,𝑛 + [𝐶]𝛽q̂𝑚,𝑛 + [𝐷]𝛽2q̂𝑚,𝑛 + [𝐸]
𝜕q̂𝑚,𝑛

𝜕b
+ [𝐹]

𝜕2q̂𝑚,𝑛

𝜕b2 = r𝑚,𝑛. (7)

As with the NPSE, the nonlinear terms enter the equations as the forcing term r, which is iteratively converged in
the solution procedure. The contents of the matrices of equation 7 can be found in the appendix.
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Table 2 Discretization per method

Method Streamwise differentiation nx wall-normal differentiation ny
PSE first-order backward 200 Pseudo-spectral 70

AHLNS (region 2) 4th-order central 150 4th-order central 150
HNS 4th-order central 1500 Pseudo-spectral 70

In the HNS solver, both the first-order and second-order streamwise derivatives are approximated via a 4th-order
centered finite-difference scheme. The streamwise axis is discretized with 1500 locations according to a Gaussian
distribution with refinement around the surface deformation. Wall-normal differentiation is performed the same way as
in PSE via spectral differentiation using a Chebyshev polynomial basis on 70 wall-clustered collocation points.

Table 2 summarizes the information on discretization per method. However, A note is necessary here regarding the
discretization and grid size details for each method. Due to their fundamentally different governing assumptions as
well as different numerical implementations, each method is applied on a different numerical grid. Nevertheless, for
the results in this study, all three methods have been subject to a grid refinement process and have converged, within
truncation error. As such, any pertinent differences appearing in the results can be largely attributed to modeling
assumptions, rather than grid resolution differences.

D. Boundary Conditions
Due to the common problem and geometry, all three stability analysis methods make use of commonalities in

boundary conditions. However, depending on method some necessary changes are also implemented. At the inflow, the
local linear stability problem is solved and an amplitude is imposed on the resulting eigenfunction to provide the inflow
condition. At the curved wall ([ = 0), the no-slip condition is imposed by forcing the perturbation velocities to be 0.
Similarly, the perturbations should exponentially decay into the freestream and perturbation velocities are therefore
set to 0 at the top boundary. Perturbation pressure is solved for implicitly in all three methods, thus not requiring
boundary conditions. Due to the parabolic approximation and adaptive technique respectively, the PSE and AHLNS
implementations do not require a specific outflow condition. In HNS however, an outflow buffer is required to damp
the amplitude of the perturbations and prevent upstream reflections. This outflow buffer is applied directly on the
perturbations and ensures that the amplitudes are smoothly following a hyperbolic tangent [23–25].

V. Results
The HNS, NPSE and AHLNS were used to predict the (nonlinear) stability of swept wing boundary layers with

smooth wall deformations. The effect of protuberance size, nonlinearities, the slowly varying flow assumption of PSE
and the interaction of incoming perturbations with the wall deformation are considered separately.

A. Effect of Protuberance Size and Shape on Instability Development
The effect of the size of the wall deformation can be investigated by comparing the linear stability results of cases B1,

C2, and D3. The width-to-height ratio of 16 is maintained as the overall is increased. Additionally, these simulations
help verify the coordinate transformation performed for the generalized PSE and HNS codes.

Figure 2 shows the evolution of the amplitude and the imaginary component of streamwise wavenumber (i.e. growth
rate) of the incoming crossflow perturbation. The amplitude is defined here as the maximum of the absolute streamwise
perturbation velocity, |𝑢′ |𝑚𝑎𝑥 . The amplitude evolution is only marginally affected by the deformation of the wall. The
imaginary component of the streamwise wavenumber, shown in figure 2 (c), describes the growth rate which is the
primary focus of this comparison as the cumulative effect on the downstream evolution is marginal. In HNS, this growth
rate is not present and is calculated a-posteriori based on the maximum streamwise perturbation velocity following:

𝛼 =
1

𝑖 𝑢′𝑚𝑎𝑥

𝜕𝑢′

𝜕b

���
𝑦=𝑦𝑢𝑚𝑎𝑥

, (8)

where 𝑦𝑢𝑚𝑎𝑥
corresponds to the location where the absolute streamwise perturbation is maximum. The imaginary

component of 𝛼 is the growth rate.
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Fig. 2 Amplitude evolution (a), close-up view (b) and growth rates (c) for the clean case (black), case B1 (green),
case C2 (red) and case D3 (blue) as calculated by LPSE (dashed line), HNS (solid line) and AHLNS (dots)

The growth rates predicted by PSE, AHLNS and HNS match closely, though the PSE slightly overpredicts the
response to the wall curvature. The stability response is magnified when the size is increased. For all cases presented in
figure 2, a minor stabilization of the primary mode can be seen with respect to the clean flat plate case.

Figure 3 (a) shows the amplitude development for cases B4, C4, and D4 as calculated by linear PSE, HNS and
AHLNS. The varying width of these cases results in strongly varying gradients in the base flow. The stability response
is therefore less comparable between the cases compared to figure 2. The PSE predicts a linear amplitude development
closely matching with HNS and AHLNS for all cases. The discontinuity of the growth rate, 𝛼𝑖 , in figure 3 (b) is an
artefact of the change in monitoring location of the maximum amplitude.

B. Nonlinear Effects and Behaviour of Higher Harmonics
Figures 4 (a) and (b) show the linear and nonlinear (𝑁 = 5) amplitude development for the primary crossflow

instability and accompanying harmonics of cases B1 and D3. Nonlinearities start being visible in the growth of the
primary mode around the location of the wall deformation as indicated by the prediction of linear HNS. In these
nonlinear scenarios, the primary mode is still stabilized due to the presence of the protuberance for both cases. The
primary mode shape or and amplitude are not strongly altered by the presence of the wall deformations shown here. The
higher harmonics experience similar growth trend where the growth is first damped. This is a direct consequence of
the primary mode being damped, resulting in a decrease in the strength of the nonlinear interactions on all harmonics.
Slightly more downstream, around 𝑥 = 250, a strong amplification follows for all higher harmonics 𝑛 > 1. The mean
flow distortion sees a similar response to the higher harmonics slightly further upstream. Despite this strong rise in
amplitudes, no direct effect is seen in the primary mode other than the strength of nonlinearities being locally increased.

The response of the primary mode and that of the higher harmonics is analyzed later in section V.D using a
Reynolds-Orr energy budget analysis.
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Fig. 3 Amplitude evolution (a) and growth rates (b) for the clean case (black), case B4 (green), case C4 (red)
and case D4 (blue) as calculated by LPSE (dashed line), HLNS (solid line) and AHLNS (dots)

C. Limitations of the PSE Methodology
The PSE framework assumes slowly varying perturbation shape in the streamwise direction. The limit of this

assumption is sought for various wall deformation shapes. Linear simulations showed that the PSE framework performs
well for cases with smooth wall deformations. In nonlinear simulations however, the NPSE was not able to converge to
a solution for all cases. This indicates an upper limit to the framework’s validity governed by higher harmonics, the
mean flow distortion or its interactions. The stability results that are available are compared in terms of amplitude and
shape function to evaluate how accurate the PSE framework is. It is noted that nonlinearities complicate the analysis of
the results as growth rates are no longer an amplitude-independent metric. Therefore, amplitudes are used instead to
observe any deviations from the HNS result.

Figures 4 (a) and (b) show the nonlinear stability development as calculated by NPSE (red) and HNS (black) for
cases B1 and D3, respectively. Previously, in figure 2, it was shown that the PSE was able to predict the linear stability
accurately for these cases. A close match was also found for the nonlinear stability. A quantitative difference can be seen
in the response of higher harmonics around the protuberance as the PSE predicts a smaller and slower rise of amplitudes.
Nevertheless, the effect on the primary mode is negligible. For higher amplitudes this might prove significant.

The ability of PSE to find the correct nonlinear stability response for the cases presented in this work is shown via a
maximum difference in N-factor, Δ𝑁 , over the domain compared to HNS for the primary mode in table 3. This metric
was chosen since the perturbations nonlinearly saturate shortly downstream of the center of the deformation which could
reduce the perceived error of the PSE assumption if the N-factor at the outflow is taken. The HNS framework was able
to converge the nonlinear problem for all cases except B4 which showed a strong destabilizing response of the second
harmonic. The PSE framework failed to converge for cases B3, B4 and C4. The limit of the PSE assumption therefore
lies between cases B2 and B3 and cases C3 and C4. However, it should be noted that the error between PSE and HNS
was significant already for cases C2, C3 and D4 with Δ𝑁 ≈ 0.39 − 0.58 despite the PSE’s ability to converge to a
solution. The linear development of the primary mode computed by AHLNS, and HNS shows an excellent agreement
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Fig. 4 Case B1 (a) and case D3 (b) Linear (dotted) and nonlinear (solid lines) amplitude (|𝑢′ |𝑚𝑎𝑥) development of
the crossflow instability characterized by 𝛽 = 0.65 (o) in addition to the development of the mean flow distortion
(dashed), second harmonic (+), third harmonic (∗), fourth harmonic (x) and fifth harmonic (□) as predicted by
HNS (black) and NPSE (red)

for all cases considered in the present study.

Table 3 Maximum N-factor difference Δ𝑁 between HNS and PSE based on the primary mode development per
case

B C D
1 0.105
2 0.388 0.111
3 - 0.495 0.107
4 - - 0.583

A comparison between perturbation shape functions can be found in figure 5 for the streamwise component of the
primary mode. Figure 6 shows a comparison of the wall-normal perturbation velocity of the mean flow distortion for
case B1. Not all components, harmonics and locations can be shown. A close match is found for all but the mean flow
distortion’s wall-normal velocity after the apex. The deviation from HNS is significant even for the small shallow hump
that is present for this case. As the protuberance reconnects to the flat wall, the PSE solution converges again to the
HNS solution in terms of normalized perturbation shape while some amplitude discrepancies remain. The mismatch
is considered a direct result of neglecting the higher order derivatives of the perturbation shape function. For the
wall-normal velocity component especially, higher-order streamwise derivatives proved significant.
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Fig. 5 Normalized streamwise perturbation shape function of the primary mode as per HNS (black, solid) and
NPSE (red, dashed) at (a) 𝑥 = 238, (b) 𝑥 = 250, (c) 𝑥 = 259, and (d) 𝑥 = 272 for case B1
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Fig. 6 Normalized wall-normal perturbation shape function of the mean flow distortion as per HNS (black,
solid) and NPSE (red, dashed) at (a) 𝑥 = 238, (b) 𝑥 = 250, (c) 𝑥 = 259, and (d) 𝑥 = 272 for case B1

D. Mechanism of the Interaction between Wall Deformation and CFI
To gain more insight into the mechanism of the interaction of incoming stationary crossflow instability with the

surface protuberances, the total flow field is analysed through a Fourier decoupled energy budget analysis of the
Reynolds-Orr equations. For this analysis, the methodologies presented in Lanzerstorfer and Kuhlmann [26] as well as
Casacuberta et al. [27] are utilised. The derivation leads to a Fourier-decoupled scalar kinetic energy budget equation
that is well suited to correlate various sets of terms in the stability equations to the development of the perturbation
flow field. For conciseness, the analysis is presented here only for the case D3. Additionally, only the energy budget
of the nonlinearly developed primary mode and second harmonic are considered here. Although the same analysis
can be applied to the higher harmonics and the mean flow distortion, [27] states the behaviour of higher harmonics is
comparable to that of the second harmonic and no further insight can be gained from such an analysis. This statement is
also supported by the amplitude development seen in figure 4

The Reynolds-Orr energy budget contours in the vicinity of the wall deformation can be seen in figures 8 (a-e)
for the primary mode and 8 (f-j) for the second harmonic. The primary mode experiences a relative stabilization just
downstream the apex (𝑥 = 238.3) which appears to be driven by linear production terms near the wall. This is also
supported by the fact that this stabilization was captured in linear simulations (see figure 2). Nonlinear effects on the
primary mode can be seen to be net negative despite a positive contribution to the energy budget that can be seen around
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[ = 1. For the second harmonic, the nonlinear interactions result in a net negative effect around 𝑥 = 240 as the primary
mode stabilizes, while become strongly positive downstream as the linear effect fades and amplitudes are reduced from
elevated levels. The work done by viscous and pressure forces is of a smaller order and does not appear to be the driver
of the discovered behaviour of any of the instabilities.

VI. Conclusion
Linear and nonlinear simulations were performed for swept wing boundary layers featuring varying surface

deformations using the Parabolized Stability Equations, Adaptive Harmonic Linearized Navier-Stokes and Harmonic
Navier-Stokes equations. The goal of this study was to gain more insight into the interaction between stationary crossflow
instabilities and smooth surface protuberances and the ability of the PSE framework to find the spatial development of
stationary crossflow instabilities in such flows.

The effect of the protuberance size was investigated alongside the mechanism of its interaction with incoming
stationary crossflow instabilities. For the cases presented here, it was shown that the response to an equal surface
geometry of greater size resulted in a stronger response following a similar pattern. This process starts slightly upstream
of the protuberance where primary mode is destabilized. This is followed by alternating stabilization and destabilization
until the growth rate converges to that of the flat plate. For the cases presented here, all protuberances resulted in a net
stabilization of the incoming mode compared to the flat plate. The behaviour of the instability appears to be governed by
linear mechanisms for the investigated amplitude and cases.

Comparing nonlinear simulations with a purely linear result, the effect of nonlinearities was seen to become
significant around the location of the protuberance. Nevertheless, the main effect on the growth rate of the primary mode
was driven by linear mechanisms. It was found that all higher harmonics experience a qualitatively similar rapid growth
shortly downstream of the protuberance center. This rise appears to be governed by linear processes as production
terms were seen to be responsible for a strong energy influx. It is succeeded by a decline in amplitude as these linear
mechanisms fade and nonlinear interactions are not able to drive further growth.

Both linear and nonlinear PSE simulations were performed or attempted for all cases presented in this work. In
linear simulations, the PSE framework proved fast and was able to closely match the results from linear HNS and
AHLNS computations. AHLNS and PSE computations could be performed linearly requiring only a fraction of the
streamwise resolution used for linear HNS computations due to the streamwise wavenumber present in the ansatz. When
nonlinearities are accounted for, some disparity can be found in amplitude and mean flow distortion shape function
calculted by NPSE compared to HNS. This holds for even the smallest surface protuberance geometry presented here.
This difference is limited to amplitude for the primary mode as shape functions match closely. The mean flow distortion
shows a significant deviation for the wall-normal velocity compared to HNS computations. Nevertheless, PSE proved
capable of accounting for small humps in stability calculations qualitatively. Without validation through elliptic methods
however, the results can only be used as an indication of the stability response. It is recommended to perform stability
calculations around similar flow problems with a harmonic Navier-Stokes approach.
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Appendix

HNS Matrix Contents

[𝐴]q̂𝑚,𝑛 + [𝐵]𝜔q̂𝑚,𝑛 + [𝐶]𝛽q̂𝑚,𝑛 + [𝐷]𝛽2q̂𝑚,𝑛 + [𝐸]
𝜕q̂𝑚,𝑛

𝜕b
+ [𝐹]

𝜕2q̂𝑚,𝑛

𝜕b2 = r𝑚,𝑛,

with

𝐴 =


𝐴1 + 𝜕𝑈

𝜕𝑥
𝜕𝑈
𝜕𝑦

0 [𝑥𝐷1
𝜕𝑉
𝜕𝑥

𝐴1 + 𝜕𝑉
𝜕𝑦

0 [𝑦𝐷1
𝜕𝑊
𝜕𝑥

𝜕𝑊
𝜕𝑦

𝐴1 0
[𝑥𝐷1 [𝑦𝐷1 0 0


,

𝐵 =


−𝑖 0 0 0
0 −𝑖 0 0
0 0 −𝑖 0
0 0 0 0


,

𝐶 =


𝑖𝑊 0 0 0
0 𝑖𝑊 0 0
0 0 𝑖𝑊 𝑖

0 0 𝑖 0


,

𝐷 =


1
𝑅𝑒

0 0 0
0 1

𝑅𝑒
0 0

0 0 1
𝑅𝑒

0
0 0 0 0


,

𝐸 =


𝐸1 0 0 b𝑥

0 𝐸1 0 b𝑦

0 0 𝐸1 0
b𝑥 b𝑦 0 0


𝐹 =


− 1

𝑅𝑒
b2
𝑥 − 1

𝑅𝑒
b2
𝑦 0 0 0

0 − 1
𝑅𝑒

b2
𝑥 − 1

𝑅𝑒
b2
𝑦 0 0

0 0 − 1
𝑅𝑒

b2
𝑥 − 1

𝑅𝑒
b2
𝑦 0

0 0 0 0


r =



−�̂� 𝜕�̂�
𝜕b

b𝑥 − �̂� 𝜕�̂�
𝜕[

[𝑥 − �̂� 𝜕�̂�
𝜕b

b𝑦 − �̂� 𝜕�̂�
𝜕[

[𝑦 − 𝑖𝛽�̂��̂�

−�̂� 𝜕�̂�
𝜕b

b𝑥 − �̂� 𝜕�̂�
𝜕[

[𝑥 − �̂� 𝜕�̂�
𝜕b

b𝑦 − �̂� 𝜕�̂�
𝜕[

[𝑦 − 𝑖𝛽�̂��̂�

−�̂� 𝜕�̂�
𝜕b

b𝑥 − �̂� 𝜕�̂�
𝜕[

[𝑥 − �̂� 𝜕�̂�
𝜕b

b𝑦 − �̂� 𝜕�̂�
𝜕[

[𝑦 − 𝑖𝛽�̂�2

0


,

and

𝐴1 = 𝑈[𝑥𝐷1 +𝑉[𝑦𝐷1 −
1
𝑅𝑒

(
[2
𝑥𝐷2 + [𝑥𝑥𝐷1 + [2

𝑦𝐷2 + [𝑦𝑦𝐷1

)
,

𝐸1 = 𝑈b𝑥 +𝑉b𝑦 −
1
𝑅𝑒

b𝑥𝑥 −
1
𝑅𝑒

2[𝑥b𝑥
𝜕

𝜕[
− 1

𝑅𝑒
2[𝑦b𝑦

𝜕

𝜕[
− 1

𝑅𝑒
b𝑦𝑦 ,

where 𝐷1 and 𝐷2 are first-order and second-order wall-normal derivative operators respectively.
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NPSE Matrix Contents

Lq̂𝑚,𝑛 +M
𝜕q̂𝑚,𝑛

𝜕b
+ N

𝜕𝛼𝑚,𝑛

𝜕b
q̂𝑚,𝑛 = r𝑚,𝑛, (9)

with

L =



𝐿 + 𝜕𝑈
𝜕𝑥

𝜕𝑈
𝜕𝑦

0 𝑖𝛼b𝑥 + [𝑥𝐷1

𝜕𝑉
𝜕𝑥

𝐿 + 𝜕𝑉
𝜕𝑦

0 [𝑦𝐷1 + 𝑖𝛼b𝑦

𝜕𝑊
𝜕𝑥

𝜕𝑊
𝜕𝑦

𝐿 𝑖𝛽

𝑖𝛼b𝑥 + [𝑥𝐷1 𝑖𝛼b𝑦 + [𝑦𝐷1 𝑖𝛽 0


,

M =



𝑀 0 0 b𝑥

0 𝑀 0 b𝑦

0 0 𝑀 0

b𝑥 b𝑦 0 0


,

N =



− 𝑖
𝑅𝑒

(b2
𝑥 + b2

𝑦) 0 0 0

0 − 𝑖
𝑅𝑒

(b2
𝑥 + b2

𝑦) 0 0

0 0 − 𝑖
𝑅𝑒

(b2
𝑥 + b2

𝑦) 0

0 0 0 0


,

r =



−�̂� 𝜕�̂�
𝜕b

b𝑥 − �̂� 𝜕�̂�
𝜕[

[𝑥 − �̂� 𝜕�̂�
𝜕b

b𝑦 − �̂� 𝜕�̂�
𝜕[

[𝑦 − 𝑖𝛽�̂��̂�

−�̂� 𝜕�̂�
𝜕b

b𝑥 − �̂� 𝜕�̂�
𝜕[

[𝑥 − �̂� 𝜕�̂�
𝜕b

b𝑦 − �̂� 𝜕�̂�
𝜕[

[𝑦 − 𝑖𝛽𝑣�̂�

−�̂� 𝜕�̂�
𝜕b

b𝑥 − �̂� 𝜕�̂�
𝜕[

[𝑥 − �̂� 𝜕�̂�
𝜕b

b𝑦 − �̂� 𝜕�̂�
𝜕[

[𝑦 − 𝑖𝛽�̂�2

0


,

where

𝐿 = −𝑖𝜔 + 𝑖𝑈𝛼b𝑥 +𝑈[𝑥𝐷1 + 𝑖𝛼𝑉b𝑦 +𝑉[𝑦𝐷1

+ 𝑖𝛽𝑊 + 1
𝑅𝑒

(𝛼2 (b2
𝑥 + b2

𝑦) + 𝛽2) − 1
𝑅𝑒

([2
𝑥 + [2

𝑦)𝐷2

− 1
𝑅𝑒

2𝑖𝛼([𝑦b𝑦 + [𝑥b𝑥)𝐷1 −
1
𝑅𝑒

𝑖𝛼(b𝑦𝑦 + b𝑥𝑥)

− 1
𝑅𝑒

([𝑥𝑥 + [𝑦𝑦)𝐷1, (10a)

and

𝑀 = 𝑈b𝑥 +𝑉b𝑦 −
2𝑖𝛼
𝑅𝑒

(b2
𝑥 + b2

𝑦) − (b𝑥𝑥 + b𝑦𝑦)
1
𝑅𝑒

−
2([𝑦b𝑦 + [𝑥b𝑥)

𝑅𝑒
𝐷1, (11a)

where 𝐷1 and 𝐷2 are first-order and second-order wall-normal derivative operators respectively.
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VII. Base Flows

Fig. 7 Streamwise velocity xy plane contours for cases (a) B1, (b) B2, (c) B3, (d) C2, (e) C3, (f) C4, (g) D3 and (h)
D4. Solid line marks reverse flow regions and the dashed line is the local 𝛿99.
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VIII. Reynolds-Orr Energy Budget Analysis
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Fig. 8 Energy budget analysis around the wall deformation for case D3 for the primary mode (left) and second
harmonic (right) showing the effect of production (a,f), transport (b,g), viscous forces (c,h), pressure work (d,i)
and nonlinear terms (e,j). The dashed line indicates the streamline originating from 𝛿99 at the inflow and the
black bar indicates the location of the protuberance
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