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Estimation of the Change in Cumulative
Flow over Probe Trajectories using
Detector Data

Paul B. C. van Erp1,2, Victor L. Knoop1, Erik-Sander Smits2,
Chris Tampère3, and Serge P. Hoogendoorn1,2

Abstract
Detector data can be used to construct cumulative flow curves, which in turn can be used to estimate the traffic state.
However, this approach is subject to the cumulative error problem. Multiple studies propose to mitigate the cumulative error
problem using probe trajectory data. These studies often assume ‘‘no overtaking’’ and thus that the cumulative flow is zero
over probe trajectories. However, in multi-lane traffic this assumption is often violated. Therefore, we present an approach
to estimate the change in cumulative flow along probe trajectories between detectors based on disaggregated detector data.
The approach is tested with empirical data and in microsimulation. This shows that the approach is a clear improvement over
assuming ‘‘no overtaking’’ in free-flow conditions. However, the benefits are not clear in varying traffic conditions. The
approach can be applied in practice to mitigate the cumulative error problem and estimate the traffic state based on the
resulting cumulative flow curves. As the performance of the approach depends on the changes in traffic conditions, it is sug-
gested to use the probe speed observations between detectors to assign an uncertainty to the change in cumulative flow esti-
mates. Furthermore, a potential option for future work is to use more elaborate schemes to estimate the probe relative
flow between detectors, which may, for instance, combine probe speeds with estimates of the macroscopic states along the
probe trajectory. If these macroscopic estimates are based on the cumulative flow curves at the detector locations, this
would result in an iterative approach.

Traffic state estimation (TSE) is important in dynamic
traffic management (DTM) applications (1). TSE aims
to infer the traffic state (which may be described using
different variables) from incomplete and inaccurate
information, for example, partially observed and noisy
traffic-sensing data and traffic-flow models. The traffic
state estimates can be used as input for different types of
DTM applications, for example, local ramp-metering (2)
or network-wide traffic management (3).

Throughout this study, road segments without discon-
tinuities (which are denoted as links) are considered. In
these links, the conservation-of-vehicles condition holds.
Vehicles enter (flow in) the link at the upstream bound-
ary and leave (flow out) the link at the downstream
boundary.

Traffic can be described using three dimensions: space
x, time t, and cumulative flow N (4). The cumulative flow
N (x, t) denotes the number of vehicles that have passed
position x at time t. Here, it is important that the same
set of vehicles is used for the counts at all locations. As
the number of vehicles are counted, the cumulative flow

is discrete. However, by smoothing the discrete function,
we can obtain a continuously differentiable cumulative flow
function. Taking the derivatives to time and space, respec-
tively, yield flow and (-) density, that is, ∂tN (x, t)= q(x, t),
and ∂xN(x, t)= � k(x, t), which in turn can be used to
obtain the mean speed u(x, t)= q(x, t)=k(x, t).

Multiple methodologies have been proposed to esti-
mate the traffic state in or via the cumulative flow plane.
For instance, Newell’s (three-detector) method (5, 6),
Claudel’s method (7, 8), Sun’s method (9) and Van Erp’s
principles (10), all apply variational theory (11, 12) to
estimate the cumulative flow over space and time, that is,
N (x, t). Other studies estimate the macroscopic traffic
states flow and density (13), vehicle accumulations (14,
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15), or (mean) travel times (16) based on observations
related to the cumulative flow curves over paths in space-
time.

To obtain the cumulative flow curves, we rely on
traffic-sensing data. Stationary observers such as a loop-
detectors can be used to observe the flow with respect to
a fixed position and can thus be used to construct the
cumulative flow curves at these locations. However, these
curves should be initialized; that is, we want to know the
number of vehicles that are between the detectors at the
initial time, and we need to address the cumulative error
problem. Over time, error in the flow observations accu-
mulates, causing a drift in the cumulative flow estimation
error. If the problem is not mitigated, the traffic state
estimates that are based on the cumulative curves will
become highly inaccurate. Therefore, multiple studies
propose to use other data to periodically recover the
cumulative error (9, 13, 14, 16).

Bhaskar et al. (16), Van Lint and Hoogendoorn (14),
and Sun et al. (9) use probe trajectory or vehicle re-
identification data to mitigate the cumulative error prob-
lem. In these studies, it is assumed that there is no over-
taking, that is, the cumulative flow value is constant over
the probe trajectory (DN = 0). This is a valid assumption
for single-lane links, but it is likely to be violated in
multi-lane links, which is also mentioned by Sun et al.
(9) as a limitation. One may think of different mitigation
techniques to address this limitation: (1) deal with the
uncertainty in DN in error correction, (2) observe DN

over probe trajectories (i.e., collect relative flow data
with moving observers [13]) or (3) estimate DN over
probe trajectories based on alternative data. The first
technique will always be valuable, because observations
or estimates of DN along probe trajectories are still sub-
jected to uncertainties (potential errors). Out of the latter
two techniques, observing DN is expected to be most
accurate; however, this would require that probe vehicles
are equipped with sensors that observe the vehicles that
are overtaken or overtake the probe vehicle. The trend
of vehicle automation is expected to make it possible to
collect this so-called relative flow data (10, 13, 17), but it
will take time before these data can be collected on a
wide scale. Therefore, in this study, we evaluate a mitiga-
tion technique (3), in which we explore the option to use
disaggregated detector data (which are currently widely
available in The Netherlands and in other countries) to
estimate DN over probe trajectories. To the best of the
authors’ knowledge, the option to estimate the change in
cumulative flow along probe trajectories between detec-
tor locations has not been studied before.

To study the possibility to estimate the change in
cumulative flow (DN ) over probe trajectory using lane-
specific detector data, we make use of simulated and real
datasets. Both datasets have their strength and limitation

and therefore it is interesting to consider both. Real
probe trajectory and disaggregated lane-specific detector
data are available for a road stretch in The Netherlands.
These data relate to real-life traffic behavior and are sub-
jected to real-life observation errors. However, we do not
have a ground truth for the real data. We can still evalu-
ate the ability to estimate the probe relative flow using
detector data, but these evaluations are less thorough
than are possible with a ground truth. The simulated
data, for which the microscopic simulation tool FOSIM
(18) is used, allows us to construct the two data types
and the ground truth. This thus gives us the opportunity
to compare the estimated and true changes in cumulative
flow. However, in contrast to the real data, traffic beha-
vior may be less realistic and we do not consider obser-
vation errors.

The main contribution of this paper is the design and
evaluation of a methodology to estimate the change in
cumulative flow along probe trajectories based on detec-
tor data. This methodology estimates the probe relative
flow at the detector locations and uses these relative
flows to estimate the relative flow over the full probe tra-
jectory between detector locations. Evaluation using real
and simulated data shows that in most cases estimation
of relative flow using detector data is an improvement
over the assumption that the relative flow is zero.
However, changes in traffic conditions (e.g., when a
probe encounters a traffic jam) negatively affect the esti-
mation performance. The methodology and the insight
that its estimates are more accurate when the probe does
not encounter large changes in traffic conditions are both
valuable to construct cumulative flow curves. These
curves can, for instance, be constructed based on detec-
tor and probe trajectory data using a Bayesian approach
(e.g., using a Kalman Filter). In such an approach, the
proposed methodology can be used to obtain prior esti-
mates, while the expected accuracy of this approach can
be used to assign the error characteristics to the prior
estimates.

This article is structured as follows: First, the theoreti-
cal foundations that are relevant for this study are
explained. Next, a methodology to estimate the change
in cumulative flow along probe trajectories between
detector locations is presented. The performance metho-
dology is testing using simulated and real data. After
explaining how these data are used to assess the estima-
tion performance of the methodology, we present the
results. Finally, the conclusions and insights of this study
are presented.

Theoretical Foundations

As explained in the introduction, this study aims to esti-
mate the change in cumulative flow along probe
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trajectories between two detector locations. This
describes the number of vehicles that have overtaken the
probe vehicle minus the number of vehicles that are overta-
ken by the probe vehicle. This section provides the theoreti-
cal foundations that are relevant in this study. First, we
explain that the change in cumulative flow along a probe
trajectory depends on the individual probe speed and
macroscopic traffic-flow variables. Second, we explain how
the change in cumulative flow along two probe trajectories
relates to detector passing observations. The former is
important to design the methodology that is proposed in
the next section, whereas the latter is important to evaluate
that methodology in an empirical case study.

Change in Cumulative Flow along a Probe Trajectory

The position of vehicle j at time t is described by Xj(t).
Furthermore, the probe vehicle speed can be obtained by
taking the derivative to time of the probe vehicle posi-
tion, that is, Vj(t)= ∂tXj(t). Figure 1a shows the trajec-
tory, that is, position over time, of probe vehicle j.

The cumulative flow N along the probe trajectory is
given by N(Xj(t), t), which we will denote as Nj(t). In
multi-lane traffic, where overtaking is possible, Nj(t) can
change over time. The rate at which the cumulative flow
along a probe trajectory changes over time is denoted as
the probe relative flow and described by qrelj (t)= ∂tNj(t).
This probe-specific relative flow can be described as a
function of the probe speed Vj(t) and the macroscopic
variables, that is:

qrelj (t)= k(Xj(t), t) u(Xj(t), t)� Vj(t)
� �

ð1Þ

A positive value indicates that Nj increases over time,
which means that probe j is overtaken by more vehicles
than it overtakes; that is, it is a relatively slow vehicle.

The change in cumulative flow DN along the probe
trajectory between two locations (x1 and x2) can be
described as a function of the relative flow. For this pur-
pose, we take the integral of the probe relative flow
between the period that is considered:

N (x2, Tj(x2))� N (x1, Tj(x1))=

ðTj(x2)

Tj(x1)

qrelj (t) ð2Þ

where Tj(x1) and Tj(x2) respectively denote the times at
which probe j passes locations x1 and x2.

Figure 1b visually shows how Equation 2 can be inter-
preted. The probe relative flow qrelj (t) is indicated by the
solid black line. The area under this line describes the
change in cumulative flow over the probe trajectory
between x1 and x2, that is, N (x2, Tj(x2))� N (x1, Tj(x1)).

Equations 1 and 2 state that the change in cumulative
flow along a probe trajectory depends on the probe speed
and the macroscopic variables along this trajectory. In
this study, probe trajectory data are considered that do
not contain observations of the relative flow. However,
the relations provided in this section show that other
data related to the macroscopic variables (i.e., detector
data) can be used to estimate the probe relative flow.
Therefore, in the next section, a methodology is pro-
posed to estimate the change cumulative flow along
probe trajectories using detector data.

Differences in the Change in Cumulative Flow between
Probe Trajectories

Equation 2 shows that it is possible to evaluate the accu-
racy of qrelj (t) -estimates if the cumulative flow curves at
x1 and x2 are known, that is, if we know N (x1, Tj(x1)) and
N (x1, Tj(x1)). However, as explained in the introduction,
real detector data alone do not provide accurate

(a) (b) (c)

Figure 1. Visualizations related to the theoretical foundations. (a) Probe trajectory Xj(t), (b) probe relative flow and change in
cumulative flow, and (c) area enclosed by two observation paths of stationary observers and two probe trajectories.
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information on these curves as they need to be initialized
and we need to mitigate the cumulative error problem.
Below, we propose an approach to evaluate the DN -esti-
mates along two (consecutive) probe trajectories based
on detector data. This approach does not require initiali-
zation of cumulative flow curves and is less sensitive to
the cumulative error problem as it only uses the detector
passings in a short time period.

Let us consider a combination of two (consecutive)
detectors and two (consecutive) probe vehicles; see
Figure 1c. The thick solid black lines in this figure show
the observation paths of the detectors, and the thick
dashed blue lines show two probe trajectories. In case we
combine detector and probe trajectory data, the change in
cumulative flow DN is observed over the black lines ( b

!

and d
!
), but not over the blue lines ( a! and c!).

Conservation-of-vehicles determines that the net flow over
the enclosed area boundary needs to be equal to zero:

DN
b
!+DN

c!=DN
a!+DN

d
! ð3Þ

where the elements in the left part (DN
b
! and DN

c!) and

the right part (DN
a! and DN

d
!) of the equation are,

respectively, positive when there is an inflow into or out-
flow out of the area. The individual changes in cumula-
tive flow are given by:

DN
a!=N (x2, TI (x2))� N (x1, TI (x1)) ð4Þ

DN
b
!=N (x1, TII (x1))� N (x1, TI (x1)) ð5Þ

DN
c!=N(x2, TII (x2))� N (x1, TII (x1)) ð6Þ

DN
d
!=N (x2, TII (x2))� N (x2, TI (x2)) ð7Þ

In Equation 3, DN
a! and DN

c! describe the changes
in cumulative flows over the probe trajectories, which in
turn depend on the probe relative flows, see Equations 1
and 2:

DN
a!=

ðTI (x2)

TI (x1)

qrel
I (t) ð8Þ

DN
c!=

ðTII (x2)

TII (x1)

qrelII (t) ð9Þ

The other parts of Equation 3, that is, DN
b
! and

DN
d
!, describe the true changes in cumulative flow over

detectors. In case of observation errors e, the observed

changes in cumulative flow DN̂ can differ from the true
changes in cumulative flow DN , that is:

DN
b
!=DN̂

b
!+ e

b
! ð10Þ

DN
d
!=DN̂

d
!+ e

d
! ð11Þ

Therefore, we can describe the sum of the (net) detec-
tor observation errors (e

b
! and e

d
!) and (net) change in

cumulative flow over probe trajectories (DN
a! and DN

c!)

based on the observed changes in cumulative flow (DN̂
b
!

and DN̂
d
!):

DN̂
d
!� DN̂

b
!=DN

c!� DN
a!+ e

b
!� e

d
! ð12Þ

This relation is used in the empirical case study to
evaluate the accuracy of estimates related to the change
in cumulative flow along probe trajectories (i.e., DN

a!
and DN

c!). The left side of this equation is observed

using detectors, whereas DN
a! and DN

c! are estimated.

By comparing DN̂
d
!� DN̂

b
! and the estimates of

DN
c!� DN

a!, we gain insight in the combination of

observation and estimation errors.

Methodology to Estimate the Change in
Cumulative Flow between Detectors

To estimate the change in cumulative flow over probe
trajectories between detectors, we will rely on disaggre-
gated detector data. Disaggregated lane-specific detector
data are collected using double loop-detectors. These
data describe each individual passing n of detector d in
lane l. This passing is described by the passing time Td

l (n)
and passing speed V d

l (n).
The disaggregated data can be used to calculate the

macroscopic traffic states. Within a defined period p with
duration Dt, the flow and mean speed are respectively
calculated by dividing the number of passing by the
period duration and by taking the harmonic mean speed
of the individual speeds related to the relevant passings.
This yields q(xd, p) and u(xd, p) where xd denotes the loca-
tion of detector d. In line with Edie’s generalized defini-
tions of traffic flow, the harmonic mean speed is taken
instead of the arithmetic mean speed. Based on the flow
and mean speed, we calculate the density, that is,
k(xd , p)= q(xd , p)=u(xd , p).

Equation 1 shows how the probe relative flow relates
to the macroscopic traffic-flow variables and the individ-
ual probe speed. This equation is applied to estimate the
probe relative flow at the times that it passes the detector
locations. For this purpose, a time-window of length
Dt around the time at which the probe passes detector
d is selected; that is, the detector passings between
t = Tj(xd)� Dt=2 and t = Tj(xd)+Dt=2 are used to esti-
mate the macroscopic variables.
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The detector data provide probe relative flow qrelj (t)
estimates for the times at which the probe passes the
upstream and downstream detector locations x1 and x2,
that is, Tj(x1)) and Tj(x2)). However, to estimate the
change in cumulative flow between x1 and x2, we need
estimates for the full period between Tj(x1) and Tj(x2).

Depending on probe vehicle driving behavior and the
traffic conditions that are encountered by the probe vehi-
cle, the probe relative flow can change along its trajec-
tory. The probe trajectory data contain information on
the probe speed Vj(t) along the full probe trajectory.
Changes in the probe speed indicate that the relative flow
has changed; however, a decrease in probe speed does
not mean that the relative flow has to increase. A rela-
tively fast probe may reduce its speed because it encoun-
ters congestion, but may (still) be a relatively fast vehicle.
Furthermore, in congested conditions the density is
higher than in free-flow conditions. This means that, fol-
lowing Equation 1, the probe relative flow may even
decrease when the probe speed decreases, as a result of
decreasing mean speed and increasing density.

As the probe speed does not provide sufficient infor-
mation to estimate qrelj (t), we solely rely on the estimates
of qrelj (Tj(x1)) and qrelj (Tj(x2)) to estimate the probe rela-
tive flow along the full trajectory. For this purpose, we
consider a simple scheme in which the probe-specific rela-
tive flow linearly changes between detector locations:

qrelj (t)=f(t)qrelj (Tj(x1))+ (1� f(t))qrelj (Tj(x2)) ð13Þ

where x1 and x2 denote the upstream and downstream
detector locations and the weight factor f(t) is given by:

f(t)=
Tj(x2)� t

Tj(x2)� Tj(x1)
ð14Þ

If we solely want to estimate the change in cumulative
flow along the probe vehicle between the detector loca-
tions, that is, N(x2, Tj(x2))� N (x1, Tj(x1)), Equations 13
and 14 simplify to:

N(x2, Tj(x2))� N (x1, Tj(x1))

=
qrel

j (Tj(x1))+ qrelj (Tj(x2))

2
Tj(x2)� Tj(x1)
� � ð15Þ

In this study, we consider this simple (linear) scheme
to estimate how the probe-specific relative flow changes
between detector locations. This scheme solely uses
probe data that describe the times and speeds at which
the probe passes the detectors and detector data around
these times. If the traffic conditions change significantly
along the probe trajectory, this scheme may be too sim-
plistic. In our experiment, we will evaluate the effect of
the traffic condition on the accuracy of this scheme.
Furthermore, it is important to note that more extensive

schemes may be used that incorporate information
related to the full probe trajectory and potentially also
estimates of the traffic state between the detectors. The
former would require that we have high-frequency probe
data, whereas for the considered scheme it suffices that
probe vehicle share the time and speed at which they
pass the detector locations. For the latter (i.e., estimating
the traffic state between detectors), different methodolo-
gies to estimate the traffic state may be used, for exam-
ple, the ASM-filter (19).

Case Study

In the case study, both real and simulated traffic data are
used. Real data have the advantage of real traffic beha-
vior and real observation errors. However, we lack a
ground truth for real data. Therefore, we also use micro-
scopic simulation to construct traffic-sensing data with
similar characteristics, while having access to a ground
truth.

Below, we first explain which traffic-sensing data are
collected for the two studies and which traffic conditions
occur in the study period and road stretch. Next, we
explain which experiments will be conducted and which
insights these experiments should provide.

Traffic-Sensing Data and Traffic Conditions

Figure 2 shows the road layouts and traffic conditions
for the two case studies. For both studies, we will discuss
which data are available and why certain study periods
are selected.

Simulation Study. In the simulation study, the microscopic
simulation program FOSIM (18) is used. The model
used in this program is validated for Dutch freeway traf-
fic (20). Figure 2a shows that we consider a three-lane
road segment with an on-ramp that is located at
x= 4000 m. In the simulation, the on-ramp traffic causes
congestion that spills back on the link upstream of the
on-ramp, see Figure 2b. Detectors are located at
x= 0, 1000, 2000, 3000, 4000 m, which provide disaggre-
gated detector data.

Empirical Study. Real disaggregated detector and probe
trajectory data are available for a test section on the A9
in The Netherlands on June 18th, 2019. These data are
respectively made available by the Dutch road authority
(RWS) and BeMobile as part of a project that aims to
evaluate the value of fusing these two data types to gain
more accurate traffic state estimates and potentially
reduce the required road-side sensing equipment.
BeMobile provides high-frequency (1 s) probe GPS-data,
which are map-matched by Modelit. This yields probe
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trajectory data that describe the position over time (i.e.,
trajectory) of a subset of the vehicles (i.e., the probe
vehicles).

The layout (including detectors locations) of the road
segment that is considered in the empirical study is
shown in Figure 2c. An off-ramp is located directly
downstream of the considered segment. Two 1-hour
peak-periods are selected, that is, 07:30–08:30 h and
16:00–17:00h. These periods are selected to study the
effect of changing traffic conditions on the ability to cor-
rectly estimate the change in cumulative flow over probe
trajectories between detector locations. In the first
period, some probes experience congested conditions,
see Figure 2d. This figure shows that a stop-and-go
wave propagates upstream. The cause of this jam lies

downstream of the considered segment. In the second
period, solely free-flow conditions are observed.

Experimental Set-Up

Multiple experiments are performed that provide insight
in the estimation accuracy. The aim of the experiments is
to evaluate the accuracy of estimating the change in
cumulative flow over probe trajectories between two
detector locations based on disaggregated detector data.

Selecting the period is a trade-off between capturing
the local and current traffic conditions (which may be
missed if we consider a very long period) and observing
extreme flow values (which may happen if we consider a
very short period). We tested with periods of 30 s, 60 s,

(a) (b)

(c) (d)

Figure 2. Road layouts and traffic conditions for the two case studies. (a) Road layout, simulation study, (b) individual vehicle speeds
(m/s) (every 10th vehicle), simulation study, (c) road layout, empirical study, and (d) individual probe vehicle and detector passing speeds
(km/h), empirical study.
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and 120 s. Although small changes are observed in the
results, the overall findings and conclusions remain the
same. Therefore, we solely present the estimates resulting
from using Dt = 60 s, which aligns with the standard
aggregation period of detector data in The Netherlands.

In both the empirical and simulation studies, we com-
pare the estimates for different detector spacings. In the
simulation study, the considered detector spacings are
1,000, 2,000, 3,000, and 4,000m. In the empirical study,
the considered detector spacings are 920, 1,500, and
2,030m (which includes all detectors installed on the test
section).

The availability of the ground truth in the simulation
study allows us to visualize and quantify the estimation
errors. As this provides a detailed insight into the estima-
tion performance, we will first perform the simulation
study. The resulting insights help to analyze the results
of the empirical study.

In the simulation study, two steps are taken. First, we
compare the estimated and true changes in cumulative
flow (DN ) for all vehicles. For this purpose, a scatter plot
is constructed with the estimated and true DN , respec-
tively, on x-axis and y-axis. Furthermore, the vehicle
travel time is indicated by the color of the dots. In these
figures, two DN errors can be distinguished: 1) The error
if it is assumed that the cumulative flow does not change
along the probe trajectory—as assumed in other studies
(9, 14, 16)—is indicated by the vertical distance between
the dots and the true change in cumulative flow is zero.
For this purpose, a horizontal dashed black line is drawn
for ‘true DN = 0’. 2) The error that remains after
correction-based detector data is indicated by the hori-
zontal/vertical difference between the dots and the diago-
nal black line. These errors are also represented using the
error statistic Root Mean Squared Error (RMSE), where
we make a difference between vehicles that experience
congestion between detectors and those that do not.
Second, to gain a deeper understanding of the underlying
factors that influence the estimation accuracy, the esti-
mates related to four individual vehicles are studied in
more detail. For these vehicles, time-series plots are con-
structed of the true and estimated changes in cumulative
flow, and the vehicle speed.

Because of the absence of the ground truth, it is not
possible to directly compare the estimated and true
changes in cumulative flow over probe trajectories for
the empirical study. Therefore, an alternative compari-
son is considered in the empirical study; we analyze the
difference in DN , that is, the difference in the net number
of (-) overtakings, between two consecutive probe vehi-
cles. As explained in the section ‘‘Theoretical founda-
tions,’’ this difference can be observed using detector
data. The observed difference can be compared with the
probe-specific relative flow estimates. In line with the

simulation study, we construct a scatter plot the shows
the estimated (x-axis) and observed (y-axis) difference in
DN between two consecutive probe vehicles. As the
observations relate to two probes, the color of the dots is
based on the mean travel time. The ability to explain the
difference in N based on the detector data is indicated by
the differences between the dots on the black diagonal
line. It is important to note that the observed difference
is still subject to detector count errors; see Equation 12.
Detectors may miss or double count passing vehicles. A
lane change might cause a vehicle to miss a detector, but
perhaps also two detectors in adjacent lanes can both be
triggered (21). However, evaluation of the empirical data
indicates that the number of missed or double-counted
vehicles is limited. Comparing the cumulative number of
passings of consecutive detectors shows that the differ-
ence only slowly increases. This means that there is a
need to address the cumulative error problem (in which
the presented methodology can be used), but that the
effect of these errors on the methodology and evaluation
of it is very limited.

Results

This section presents the results from the simulation
study and the empirical study. The simulation study is
discussed first because it yields insights that are valuable
in analysis the empirical study results.

Simulation Study

Figure 3 shows the true and estimated change in cumula-
tive flow over vehicle trajectories between two detector
locations. In these figures the vehicle travel time between
detectors is indicated by the color. Furthermore, Figure
4 shows time-series of the true and estimated change in
cumulative flow together with the individual speed for
four vehicles. These time-series are used to provide more
detailed explanations on the features that are observed in
Figure 3.

In free-flow conditions, estimating the change in
cumulative flow over vehicle trajectories is a clear
improvement over assuming that there is no overtaking.
As the congestion does not spill back upstream of
x= 2500 m, Figure 3, a and b, solely include vehicle tra-
jectories in free-flow conditions. These figures show that
the solid black line is a better fit than the dashed black
line, which indicates that estimation is an improvement
over assuming ‘‘no overtaking.’’ This is also indicated by
an improvement in the RMSE, that is, it improves from
5.11 vehicles to 1.65 vehicles for the detector spacing of
1,000m, and from 9.25 vehicles to 3.18 vehicles for the
detector spacing of 2,000m, see Table 1. Figure 4, a–d,
show the vehicle speed and lane together with the
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estimated and true change in cumulative flow between
x= 0 m and x= 4000 m for a relatively slow and fast
vehicle that solely travel in free-flow conditions. These
figures show that the change in cumulative flow is esti-
mated relatively accurate along the vehicle trajectory.

If vehicles experience congested conditions, the esti-
mated changes in cumulative flow are less accurate than
for vehicle solely experiencing free-flow conditions, that
is, the black diagonal line is a better fit for Figure 3, a
and b, than for Figure 3, c and d; however, also in these
cases it is still more accurate to estimate the change in

cumulative flow than assume ‘‘no overtaking,’’ see Table
1. In this table for a detector spacing of 4,000m, the
RMSE of vehicles solely experiencing free-flow condi-
tions is relatively large with respect to the other spacings,
that is, it jumps from 7.92 vehicles to 17.85 vehicles for
detector spacings of 3,000m and 4,000m, respectively. In
Figure 3d there are some observations that show a travel
time below the threshold (i.e., smaller than 180 s) and for
which the change in cumulative flow is highly underesti-
mated (i.e., estimates around DN = � 125 vehicles, while
the true DN are approximately 225 vehicles). Let us look

(a) (b)

(c) (d)

Figure 3. Simulation study: True and estimated change in cumulative flow over vehicle trajectories between two detector locations. The
color of the dots indicates the vehicle travel time between the considered detector locations. (a) Between detectors located at x= 0 m
and x= 1000 m (solely free-flow conditions), (b) between detectors located at x= 0 m and x= 2000 m (solely free-flow conditions), (c)
between detectors located at x= 0 m and x= 3000 m (free-flow and congested conditions), and (d) between detectors located at x= 0
m and x= 4000 m (free-flow and congested conditions).
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at Figure 4, e and f, to study this in more detail. Figure
4f shows that DN is highly underestimated for this vehi-
cle. It also shows that the true DN reduces sharply in the
last second that the vehicle is between the detectors and
Figure 4e shows that at the same time the vehicle speed
decreases. At this last period, the vehicle experiences con-
gested conditions, but is relatively fast, which results in a
short highly negative relative flow. In this case the

relative flow observed at the downstream detector is not
representative of the full trajectory, which causes a large
error in the estimated change in cumulative flow. The
large underestimation of DN in Figure 3c (large negative
estimates, while the true values are positive) can be
explained using the same principle; see Figure 4, g and h.
In these figures, we show a vehicle between x= 0 m and
x= 3000 m for the estimated DN is negative because of a

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Simulation study: True and estimated changes in the cumulative flow over probe trajectories together with the probe speeds.
(a) Slow vehicle solely in free-flow, (b) slow vehicle solely in free-flow, (c) fast vehicle solely in free-flow, (d) fast vehicle solely in free-flow,
(e) fast vehicle shortly experiencing congestion at downstream detector, (f) fast vehicle shortly experiencing congestion at downstream
detector, (g) slow vehicle shortly experiencing negative relative flow, and (h) slow vehicle shortly experiencing negative relative flow.
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large negative vehicle relative flow at the downstream
detector.

Empirical Study

Figure 5 shows the results of the empirical case study.
The axes are the same for all subfigures, that is,
Estimated DN

c!� DN
a! (x-axis) and Observed

DN
d
!� DN

b
! (y-axis). The section ‘‘Theoretical founda-

tions’’ explains the details behind comparing these two
features. In short, both axes relate to the difference in
the number of vehicles that overtake two consecutive
probes between the detector locations. The y-axis
describes this feature based on the detector passing
observations, whereas the x-axis shows the result of the
estimated change in cumulative flow along the two probe
trajectories.

In line with the simulation study, the empirical results
indicate that estimation of the change in cumulative flow
between detectors is relatively accurate in free-flow con-
ditions, see Figure 5, a, c and e. Also here, the estimates
are better than assuming that DN = 0, thus the points are
better aligned with the diagonal line. To get an insight in
the potential mean error of assuming ‘‘no overtaking’’
during the considered period, we may look at the mean
estimated change in cumulative flow along individual tra-
jectories between detectors. For the three detector spa-
cings, that is, 920, 1,500 and 2,030m, these mean DN are,
respectively, equal to 3.26, 5.45 and 7.49 vehicles.

In congestion, the computed relative flow is not very
accurate in estimating the real number of vehicles passed;
see Figure 5, b, d and f. These figures do not show a good
relation between the two axes. The largest differences are
observed for probes that have a high mean travel time,
which means that these probes are affected by the stop-
and-go wave. The figures indicate that the probe relative
flows estimated at the detectors are not representative for
the full probe trajectory between detectors. The simula-
tion study also showed that the estimation performance
decreased when probes experience congestion; however,
the estimation performance in congestion for the

simulation study seems to be better than for the empirical
study. This can partially be explained by the different fea-
tures that we compare. Figure 5 uses the estimates related
to two probes. If these errors have the same sign (+
or –), the total absolute error increases, which leads to
large positive or negative values of DN

c!� DN
a!.

Another potential reason for the low estimation perfor-
mance lies in the lane-drop directly upstream of the first
detector (which is used in all estimates). The stop-and-go
wave that propagates upstream in the considered period
causes a standing queue at this lane-drop. Figure 2d show
that the vehicles passing the detector at x= 60:14 km are
affected by this queue (which is indicated by the lower
speeds at the upstream detector between 08:00 h and
08:45 h). This effect can result in probe relative flow esti-
mates that are not representative for the full probe trajec-
tory, and thereby cause errors in the DN -estimates.

Conclusion and Insights

Probe trajectory or vehicle re-identification data can be
used for initialization and error correction of cumulative
flow curves constructed using stationary detectors.
Studies that use these data for this purpose often assume
that there is no overtaking, which would mean that the
cumulative flow value is constant along a probe trajec-
tory. However, in multi-lane traffic, this assumption is
often violated. This study investigates the option to esti-
mate the change in cumulative flow along probe trajec-
tories based on disaggregated detector data, and in this
way improve on the ‘‘no overtaking’’ assumption.

In this study, both simulated as real data are used to
investigate the changes in cumulative flow along probe
trajectories and the ability to expose this using detector
data. By means of a case study we show that the probe
relative flow estimated at two detector locations is repre-
sentative for the full trajectory between these locations in
free-flow conditions. Therefore, in these conditions it is a
clear improvement to describe the change in cumulative
flow based on detector data instead of assuming ‘‘no
overtaking.’’ If probe vehicles experience congestion

Table 1. Error Statistics for the Four Detector Spacings.

Detector
spacing (m)

Travel time
threshold (s)

Correction using detector data Assume no overtaking

RMSE FF (vehicles) RMSE CG (vehicles) RMSE FF (vehicles) RMSE CG (vehicles)

1,000 45 1.65 na 5.11 na
2,000 90 3.18 na 9.25 na
3,000 135 7.92 29.55 13.29 30.58
4,000 180 17.85 28.51 18.16 44.02

Note: A travel time threshold is used to distinguish vehicles that solely experienced free-flow (FF) conditions and those that experienced congested (CG)

conditions. RMSE = root mean squared error; na = not applicable.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Empirical study: The difference in the number of vehicles that overtake two consecutive probes between the detector
locations based on detector passing observations (y-axis) and probe relative flow estimates (x-axis). The color of the dots indicates the
mean travel time between the considered detector locations of the two consecutive probes. (a) Between detectors at x= 60:14 km and
x= 61:06 km, free-flow period, (b) between detectors at x= 60:14 km and x= 61:06 km, period with congestion, (c) between
detectors at x= 60:14 km and x= 61:64 km, free-flow period, (d) between detectors at x= 60:14 km and x= 61:64 km, period with
congestion, (e) between detectors at x= 60:14 km and x= 62:17 km, free-flow period, and (f) between detectors at x= 60:14 km and
x= 62:17 km, period with congestion.
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between detectors, the probe relative flows estimated at
the detector locations are less representative for the rest
of the trajectory. In the simulation study (where the esti-
mation accuracy can be quantified), using disaggregated
detector data still yields more accurate estimates than
assuming ‘‘no overtaking.’’ However, in the empirical
study, these benefits are not observed. Changing traffic
conditions along the probe trajectory (which are related
to ability to estimate the change in cumulative flow based
on detector data) can be observed using the probe speed.
This means that the probe speeds observed between
detectors could and should be used to assign an uncer-
tainty to the estimates of the change in cumulative flow
along probe trajectories.

More complex schemes may be used that may include
information such as the probe speed and the traffic states
along the trajectory between detector locations. Probe
trajectory data provide information on the probe speeds
between detector locations; however, the data do not
contain exact information on the traffic state between
these locations. Estimating the traffic states between
detector locations is the intended application and is the
reason for estimating the relative flows along probe tra-
jectories. The circular relation between estimating the
probe-specific relative flows and estimating the traffic
state indicates that an (iterative) optimization approach
to estimate both features is potentially interesting.
However, in this study, we focused on the first step and
evaluate how accurate the probe-specific relative flows
can be estimated without estimating the macroscopic
traffic states along the full probe trajectory.
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