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ABSTRACT
Substitution boxes (S-boxes) are nonlinear mappings that repre-

sent one of the core parts of many cryptographic algorithms (ci-

phers). If S-box does not possess good properties, a cipher would

be susceptible to attacks. To design suitable S-boxes, we can use

heuristics as it allows significant freedom in the selection of re-

quired cryptographic properties. Unfortunately, with heuristics,

one is seldom sure how good a trade-off between cryptographic

properties is reached or if optimizing for one property optimizes

implicitly for another property. In this paper, we consider what is

to the best of our knowledge, the most detailed analysis of trade-

offs among S-box cryptographic properties. More precisely, we ask

questions if one property is optimized, what is the worst possible

value for some other property, and what happens if all properties

are optimized. Our results show that while it is possible to reach a

large variety of possible solutions, optimizing for a certain property

would commonly result in good values for other properties. In turn,

this suggests that a single-objective approach should be a method

of choice unless some precise values for multiple properties are

needed.

CCS CONCEPTS
• Security and privacy → Block and stream ciphers; • Com-
puting methodologies→ Discrete space search;
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1 INTRODUCTION
Substitution boxes (S-boxes) are nonlinear mappings often used in

block ciphers [8]. They are important as without them, a cipher
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would be linear and thus trivial to break with techniques like differ-

ential [2] or linear cryptanalysis [10]. Throughout the years (almost

half a decade of research on block ciphers), there are numerous S-

boxes designed that fit the cipher size (common sizes are from 3× 3

up to 8 × 8. Most often with the same size of the input and output

but there are exceptions, e.g., 6 × 4 S-box size.) and have strong

cryptographic properties. Today, the most accepted approach is to

employ certain algebraic constructions to build S-boxes [3].

At the same time, researchers explored whether random S-boxes

or S-boxes created with heuristics can result in appropriate crypto-

graphic properties. There, one of the main arguments for heuristics

is the fact that such techniques can produce a variety of S-boxes

where the designer can select the properties to emphasize on. Still,

there are two problems when considering the heuristics for S-box

design: 1) for larger sizes, heuristics cannot compete with algebraic

constructions in the quality of obtained solutions (see, e.g., [9]), and

2) most of the heuristic research conducts experiments in an ad-hoc

manner. More precisely, we identify several common approaches

(and corresponding problems):

(1) Use a single-objective approach and concentrate on a single

cryptographic property. This approach, as expected, com-

monly results in S-boxes with a very good property that was

evolved. At the same time, to be useful in practice, S-box

needs to fulfill several properties. Consequently, other prop-

erties are often either not “good enough” or they are “good

by luck” (as we never evolved those properties).

(2) Use multi-phase approaches where first, concentrate on a

single property, and once that is obtained, continue to other

relevant properties. Alternatively, several properties are con-

sidered at the same time (additionally, some authors use

weight factors). These approaches commonly result in vari-

ous trade-offs as it is not trivial (or maybe even possible) to

evolve S-boxes with all required properties in such ways.

(3) Use a multi-objective approach and evolve S-boxes with

several properties. Again, this approach commonly results

in trade-offs among properties.

To conclude, heuristic approaches commonly result in trade-

offs, and thus suboptimal cryptographic properties. Additionally,

even when certain properties reach optimal values, it is not clear

whether those values are the result of luck or optimization process.

Unfortunately, this is not a simple problem as we must work with

large search spaces. Indeed, the search space size for an S-box of

size 𝑛×𝑚 (𝑛 input bits and𝑚 output bits) equals 2
𝑛 ·2𝑚

. For example,

for the smallest practical S-box size (3 × 3), this gives search space

size equal to 2
24
, while for 8 × 8 size, the search space size equals

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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. Finally, even if we restrict our attention to permutations only

(where 𝑛 =𝑚), the search space size equals 2
𝑛
!.

As already indicated, related works consider various settings

when optimizing S-box properties, but they have in common a

certain perspective where only the results are important. At the

same time, a more thorough investigation of how difficult it was to

obtain an S-box with certain properties or what are the ranges of

attainable values are usually neglected.

In this paper, we consider evolutionary algorithms for the de-

sign of S-boxes with strong cryptographic properties. We consider

various S-box sizes, solution encodings, and algorithms (single-

objective and multi-objective). By doing so, we provide, to the best

of our knowledge, the most detailed account of the difficulty of

S-box evolution, and we provide answers to questions like 1) if we

evolve only a single property, what is the worst value we can expect

for some other property? 2) are there property combinations that

are more aligned (i.e., so it is enough to evolve a single property

only)? 3) is a multi-objective paradigm more appropriate when we

optimize for several cryptographic properties? Our extensive exper-

imental investigation can be summed into 1) permutation encoding

should be the preferred choice for larger S-box sizes, 2) for smaller

S-box sizes, there is almost no influence in the selection of cryp-

tographic property that is optimized, encoding, or algorithms (as

such, we suggest to use the cellular automata encoding and single-

objective approach where only one property is optimized), and 3)

multi-objective approach results in solutions covering smaller part

of the search space, which can help avoid “surprises” that could

happen with the single-objective approach that does not consider

all relevant properties.

2 BACKGROUND
Let 𝑛,𝑚 be positive integers, i.e., 𝑛,𝑚 ∈ N+. We denote by F𝑛

2
the

𝑛-dimensional vector space over F2 and by F2𝑛 the finite field with

2
𝑛
elements. Next, the set of all 𝑛-tuples of elements in the field F2

is denoted by F𝑛
2
, where F2 is the Galois field with two elements.

An S-box (substitution box) is a mapping F from𝑛 bits into𝑚 bits.

An (𝑛,𝑚)-function F can be defined as a vector 𝐹 = (𝑓1, · · · , 𝑓𝑚),
where the Boolean functions 𝑓𝑖 : F

𝑛
2
→ F2 for 𝑖 ∈ {1, · · · ,𝑚} are

called the coordinate functions of F. The component functions of an

(𝑛,𝑚)-function 𝐹 are all the linear combinations of the coordinate

functions with non all-zero coefficients. As for every 𝑛, there exists

a field F2𝑛 of order 2
𝑛
, we can endow the vector space F𝑛

2
with the

structure of that field when convenient. The addition of elements

of the finite field F2𝑛 is denoted with “+”. The inner product of 𝑎

and 𝑏 equals 𝑎 · 𝑏 = 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 [3].

An (𝑛,𝑚)-function 𝐹 is balanced if it takes every value of F𝑚
2
the

same number 2
𝑛−𝑚

of times.When 𝐹 is balanced, it is a permutation

(the function is bijective, meaning 𝑛 =𝑚).

The Walsh-Hadamard transform of an (𝑛,𝑚)-function F equals

(see, e.g., [3]):

𝑊𝐹 (𝑎, 𝑣) =
∑
𝑥 ∈F𝑚

2

(−1)𝑣 ·𝐹 (𝑥)+𝑎 ·𝑥 , 𝑎, 𝑣 ∈ F𝑚
2
. (1)

The nonlinearity 𝑛𝑙 of an (𝑛,𝑚)-function F is the minimum

nonlinearity of all its component functions 𝑣 · 𝐹 , where 𝑣 ∈ F𝑚∗
2

Table 1: Best known values for bijective S-boxes. For 8 × 8,
we present the best-known results while there is no guar-
antee better results are not possible. For bijective S-boxes
(and in F2), both nonlinearity and differential uniformity
can be even values only. The worst possible values are 0
for nonlinearity (i.e., the S-box in linear) and 2

𝑛 for the dif-
ferential uniformity. The best possible differential unifor-
mity equals two, and such functions are called the Almost
Perfect Nonlinear (APN) functions. APN functions exist for
both odd and even number of variables. For 𝑛 odd (andwhen
𝑛 =𝑚), the best possible nonlinearity equals the Sidelnikov-
Chabaud-Vaudenay bound [5]. This bound is possible for 𝑛
odd only, and such functions are called theAlmost Bent (AB)
functions.

Size 𝑛𝑙 𝛿

3 × 3 2 2

4 × 4 4 4

5 × 5 12 2

6 × 6 24 2

7 × 7 56 2

8 × 8 112 4

(for any set 𝑆 , we denote 𝑆\{0} by 𝑆∗.) [3, 12]:

𝑛𝑙 = 2
𝑛−1 − 1

2

max

𝑎 ∈ F𝑛
2

𝑣 ∈ F𝑚∗
2

|𝑊𝐹 (𝑎, 𝑣) |. (2)

The nonlinearity of any (𝑛,𝑚) function 𝐹 is bounded above by

the covering radius bound:

𝑛𝑙 ≤ 2
𝑛−1 − 2

𝑛
2
−1 . (3)

Let 𝐹 be a function from F𝑛
2
into F𝑚

2
with 𝑎 ∈ F𝑛

2
and 𝑏 ∈ F𝑚

2
.

We denote:

𝐷𝐹 (𝑎, 𝑏) =
{
𝑥 ∈ F𝑛

2
: 𝐹 (𝑥) + 𝐹 (𝑥 + 𝑎) = 𝑏

}
. (4)

The entry at the position (𝑎, 𝑏) corresponds to the cardinality of

the delta difference table 𝐷𝐹 (𝑎, 𝑏) and is denoted as 𝛿 (𝑎, 𝑏). The
differential uniformity 𝛿 is then defined as [11]:

𝛿 = max

𝑎≠0,𝑏
𝛿 (𝑎, 𝑏) . (5)

In Table 1, we give the best known/possible results for S-box

properties and sizes we consider in this paper.

Finally, a fixed point is an input value that maps to the same

output value:

𝑥 = 𝐹 (𝑥),∀𝑥 . (6)

The minimal number of fixed points is zero, while the maximal

number equals 2
𝑛
.

The rationale for the consideration of nonlinearity and differ-

ential uniformity properties is evident as those are two properties

directly related to the resilience against many cryptanalyses. At the

same time, the number of fixed points is more subtle as too many

fixed points are not good (for instance, all fixed points give a linear

S-box), but the maximal allowed number depends on the whole

cipher design. Having more fixed points could benefit the cipher

form the implementation perspective, as fixed points are wires in

the hardware design, and they are energy-efficient. Thus, having
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more fixed points can result in S-box that is more power-efficient

(and the whole cipher that is more energy-efficient).

Results show that the maximal nonlinearity is possible even with

half of the values being fixed points [4]. For differential uniformity,

there are no such results, so to the best of our knowledge, it is not

known how many fixed points are possible while maintaining the

best possible differential uniformity.

3 RELATEDWORKS
We divide the related works into those considering a single crypto-

graphic property vs. those that consider multiple properties.

Clark et al. used the principles from the evolutionary design of

Boolean functions to evolve S-boxes with the desired cryptographic

properties [6]. They used simulated annealing and hill-climbing

to evolve bijective S-boxes with high nonlinearity for sizes up to

8 × 8. This work is interesting as they use two-phase optimization

where in the first phase, the authors do not optimize for any of

the considered cryptographic criteria (nonlinearity, autocorrelation

spectrum). In contrast, in the second phase, they optimize for one of

the cryptographic properties only. Finally, they provide the results

for the third property, algebraic degree, but they never optimize

for it. P. Tesar used a combination of genetic algorithm and a total

tree searching to generate 8 × 8 S-boxes with nonlinearity equal

up to 104 [23]. The author used a single-objective approach and

concentrated on a single property only. Kazymyrov et al. used a

gradient descent technique where they start with an S-box that

has good differential uniformity, and they conduct a number of

steps until they find an S-box with good nonlinearity, among other

cryptographic properties. Picek, Knezevic, and Jakobovic used evo-

lutionary computation in order to evolve bent (𝑛,𝑚)-functions [17].
There, the authors experimented with several different fitness func-

tions considering one or two terms in the single-objective optimiza-

tion. The authors considered only nonlinearity property. Picek and

Jakobovic used genetic programming to evolve constructions result-

ing in S-boxes with good cryptographic properties [16]. They used a

single-objective approach and worked with differential uniformity

property only.

Picek et al. used CGP and GP to evolve 3×3 and 4×4 S-boxes and
discussed how to obtain permutation-based encoding with those

algorithms [21]. The authors used the single-objective optimization

where both nonlinearity and differential uniformity are used. Picek

et al. explored the evolution of S-boxes of size 8 × 8 with better

resistance against side-channel attacks as measured with the trans-

parency order and modified transparency order properties [15]. The

authors use single-objective optimization with two terms, but they

also report results for several more cryptographic properties. Picek

et al. investigated the genetic programming approach to evolve

cellular automata rules that are then used to generate S-boxes [18].

The authors used a single-objective optimization with multiple

terms, and they obtained results outperforming other metaheuristic

techniques for sizes 5 × 5 up to 7 × 7.

Finally, Picek, Rotim, and Cupic developed a new cost function

able to reach high nonlinearity values for several different S-box

sizes [13]. The authors use a multiple-phase optimization procedure

where they optimize for the nonlinearity. Interestingly, they also

report the differential uniformity results. While the emphasis of this

paper was on the development of a new cost function, the authors

also presented results with the multi-objective approach (NSGA-II),

where they optimized for nonlinearity and differential uniformity.

4 EXPERIMENTAL SETUP
In this section, we briefly discuss the evolutionary algorithms we

use, the solution encodings, and the fitness functions. All the exper-

iments were performed 30 times to ensure that significant results

are obtained.

4.1 Encodings
In order to tackle the problem of finding S-boxes with good cryp-

tographic properties, two solution encodings were applied, the

permutation and the cellular automata encoding. Those encodings

are selected based on the related work, see., e.g., [13, 20].

The permutation encoding represents the S-box as a permutation

of numbers between 0 and 2
𝑛−1, where 𝑛 is the S-box size, and thus

implicitly ensures the bijectivity of the S-box. For this encoding,

three mutation operators and five crossover operators, which are

among the most commonly used in practice, were selected. The

mutation operators are insert mutation, inversion mutation, and

swap mutation. As for the crossover operators, we used partially

mapped crossover (PMX), position-based crossover (PBX), order

crossover (OX), uniform like crossover (ULX), and cyclic crossover.

The second encoding is based on the fact that an S-box could be

represented as a cellular automaton (CA) with defined transitions

from the input bits as the current state to the output bits as the

following state. One way to define the transitions of the cellular

automaton is by using a local update rule, which is simply a Boolean

function of at most 𝑛 bits with a single output bit. The CA local rule

defines the next state of a given bit 𝑐𝑖 (𝑡 + 1) based on the current

state of the same bit and adjacent bits: 𝑐𝑖 (𝑡), 𝑐𝑖+1 (𝑡), 𝑐𝑖+2 (𝑡) etc. The
same principle is used in the design of existing S-boxes, such as in

the Keccak cipher [1].

Since the S-box is, in this case, represented with a Boolean func-

tion, we employ genetic programming to evolve a suitable function

in the form of a tree. The input bits of the S-box are used as GP

terminals, where the number of terminals equals 𝑛. The GP uses

the function set that consists of several Boolean primitives: NOT,

which inverts its argument, XOR, AND, OR, NAND, and XNOR,

each of which takes two input arguments. Finally, we use the func-

tion IF, which takes three arguments and returns the second one

if the first one evaluates to 𝑡𝑟𝑢𝑒 , and the third one otherwise. A

candidate Boolean function obtained with GP is evaluated in the

following manner: all the possible 2
𝑛
input states are considered,

and for each state, the same rule is applied in parallel to each of the

bits to determine the next state (S-box output)

The variation operators are simple tree crossover, uniform cross-

over, size fair, one-point, and context preserving crossover [22]

(selected at random) and subtree mutation. All our experiments

suggest that having a maximum tree depth equal to the size of the

S-box is sufficient (i.e., maximum tree depth equals 𝑛, which is the

number of terminals). Both encodings are applied with the same

population size of 500 individuals, whereas for the mutation proba-

bility, the permutation encoding uses 0.8, and the cellular automata

encoding uses 0.7. Both encodings use the same stopping criterion,
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which is either 500 000 function evaluations, or 10 000 iterations

without improvement.

4.2 Fitness Functions
In this paper, we consider three properties, namely nonlinearity,

differential uniformity, and the number of fixed points, which are

optimized in pairs. To optimize the pairs of criteria, we use two

scenarios. In the first scenario, a single objective approach, which

represents a weighted sum of the two optimized properties is de-

fined in the following way 𝑓 = 𝛼𝑃1 + 𝛽𝑃2, where 𝑃1 and 𝑃2 rep-

resent the optimized property values, whereas 𝛼 and 𝛽 represent

the weights of the properties. The value of the previously defined

fitness function is maximized.

In the experiments, the fitness function is defined to always fa-

vor the optimization of one property, by giving it a larger weight

than that of the second property. In that way, the algorithm will

mostly focus on optimizing the first property and only fine-tune

the second one to achieve a better fitness value. Several experi-

ments with different ratios of property weights were tested. The

tuning experiments demonstrate that the best average results over

several executions were obtained when the ratio between the prop-

erty weights is 10:1. Furthermore, both properties are additionally

normalized. Nonlinearity and 𝛿 are normalized by using the best-

known values denoted in Table 1, 𝛿𝐹,𝑤𝑜𝑟𝑠𝑡 represents the worst

possible delta value which is equal to 2
𝑛
, whereas the number of

fixed points is normalized by 2
𝑛
, where n is the column number

of the S-box. However, depending on whether the property is im-

proved or worsened, the normalization is performed in a way that

the best solution has a value of 1 or 0, respectively. This fitness

function is optimized by using the steady-state genetic algorithm

with the 3-tournament selection.

The fitness functions used in experiments are:

• Improving nonlinearity and worsening differential unifor-

mity. 𝐹1 = 10 ∗ 𝑛𝑙
𝑛𝑙𝑏𝑒𝑠𝑡

+ 𝛿
𝛿𝐹,𝑤𝑜𝑟𝑠𝑡

• Improving differential uniformity and worsening nonlinear-

ity. 𝐹2 =
𝑛𝑙𝑏𝑒𝑠𝑡−𝑛𝑙
𝑛𝑙𝑏𝑒𝑠𝑡

+ 10 ∗ (𝛿𝐹,𝑤𝑜𝑟𝑠𝑡−𝛿)
𝛿𝐹,𝑤𝑜𝑟𝑠𝑡

• Improving nonlinearity and the number of fixed points. 𝐹3 =

10∗ 𝑛𝑙
𝑛𝑙𝑏𝑒𝑠𝑡

+ 𝑓 𝑝

𝑓 𝑝𝑚𝑎𝑥
, where 𝑓 𝑝 represents the number of fixed

points in the solution, and 𝑓 𝑝𝑚𝑎𝑥 the maximum number

of fixed points possible (or, believed to be possible) for the

considered S-box size.

• Improving differential uniformity and the number of fixed

points. 𝐹4 = 10 ∗ (𝛿𝐹,𝑤𝑜𝑟𝑠𝑡−𝛿)
𝛿𝐹,𝑤𝑜𝑟𝑠𝑡

+ 𝑓 𝑝

𝑓 𝑝𝑚𝑎𝑥

In the second scenario, the NSGA-II algorithm [7] is applied to

perform multi-objective optimization of two criteria. In this case,

no normalization is required and depending on whether the criteria

need to be improved or worsened, it will simply be maximized or

minimized during the evolution process.

5 RESULTS
We conduct two sets of experiments. In the first set of experiments

(called the Best-Best Scenario), we employ either single-objective

or multi-objective optimization to optimize for two properties. In

the second set of experiments (called the Best-Worst Scenario), we

Table 2: Best results with heuristics from the literature. The
results for 4× 4, 5× 5, and 7× 7 are also the best possible ones.
We note that all solutions except 8 × 8 are obtained with the
single-objective approach. For 8×8, both single-objective and
multi-objective obtained the same values.

Size 𝑛𝑙 𝛿

4 × 4 4 4

5 × 5 12 2

6 × 6 24 4

7 × 7 56 2

8 × 8 104 8

concentrate on nonlinearity and differential property, but now, in-

stead of improving both properties, one property we improve. At

the same time, the other property we deteriorate (i.e., we are inter-

ested in the combinations of best property-worst property). This

may seem counter-intuitive as one would assume we aim to im-

prove cryptographic properties (regardless of one or several). Still,

with this set of experiments, we aim to obtain insights on whether

optimizing for a single property is enough. More precisely, if we

optimize for a single property, how bad can the other property be.

Then, if the other property is still good (despite our effort to make

it as bad as possible), this will show we can optimize for a single

property and expect the second property (or several properties)

to be good. On the other hand, if we can obtain solutions that are

very good in one property and bad in other property, this means

that 1) there is a wide variety of solutions one can obtain, and 2)

not optimizing for all relevant properties can be problematic (we

say can as often, an S-box with one good property has also other

property good). Note, in all experiments, the higher, the better the

nonlinearity, and the lower, the better the differential uniformity.

Finally, note that in Tables 4 until 7, we present the best obtained

solutions regardless of their encoding.

5.1 Best-Best Scenario
First, in Table 2, we recall on the best results from the related

works [19]. Note there are no solutions for 3 × 3 size, but this is the

simplest scenario that we will see does not offer much insight into

the S-box optimization.

After introducing the best-known solutions from the literature,

we present our results for the multi-objective approach in Table 3.

Note that here, we optimize both nonlinearity and differential uni-

formity. The results for sizes 3 × 3 and 4 × 4 are the best possible

ones, which is as expected (as the problem is “easy” for such small

sizes). We see already for the 5 × 5 size that the results cannot

compare with the single-objective approach. This indicates that

concentrating on two properties makes the search easier to get

stuck in local optima. For sizes 6 × 6 up to 8 × 8, we see the re-

sults not being able to compete with the single-objective approach.

Still, for 8 × 8 size, the best-obtained solution is not far from the

best-known solutions with heuristics (nonlinearity is not as good

as in [14], which indicates there is an additional benefit from more

elaborate fitness functions).

In Tables 4, we give results for optimizing either nonlinearity

and the number of fixed points or differential uniformity and the
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Table 3: Results obtained for themaximization of𝑛𝑙 andmin-
imization of 𝛿 in the multi-objective approach

Size 𝑛𝑙 𝛿

3 × 3 2 2

4 × 4 4 4

5 × 5 10 4

6 × 6 22 6

7 × 7 46 8

8 × 8 100 8

Table 4: Results obtained for optimizing 1) 𝑛𝑙 and fixed
points and 2) 𝛿 and fixed points. Single-objective approach.

Size 𝑛𝑙 fixed points 𝛿 fixed points

3 × 3 2 4 2 4

4 × 4 4 8 4 7

5 × 5 12 7 2 7

6 × 6 24 8 4 10

7 × 7 48 2 8 26

8 × 8 98 45 10 41

number of fixed points with a single-objective approach. When

optimizing nonlinearity, for sizes 3 × 3 and 4 × 4, we can reach the

maximal possible number of fixed points for the optimal nonlinear-

ity (half of the values). For size 5 × 5, we can reach the maximal

nonlinearity, but the number of fixed points is one less than the

maximal possible. Larger sizes give relatively good nonlinearity val-

ues, but the number of fixed points is far from the maximal possible.

Note that for 8 × 8 size, the nonlinearity value is lower than for

our multi-objective results or related work results, which indicates

that fixed points restrict the search more than the combination of

nonlinearity and differential uniformity. This, in turn, indicates that

good values of nonlinearity and differential uniformity appear in

the same region of search space while increasing the number of

fixed points moves the search away from the region of high non-

linearity. Finally, as we are not able to reach optimal nonlinearity

with heuristics, it is expected that adding one more constraint on

the number of fixed points makes the search even more difficult.

When minimizing differential uniformity, sizes 3 × 3 up to 5 × 5

reach the minimal possible differential uniformity, but we notice

the number of fixed points to be less than half (except for 3 × 3

case). Still, we note that there is no known bound for the optimal

differential uniformity and the maximal number of fixed points, so

these results could also be the optimal ones. Larger S-box sizes give

very good differential uniformity values, but the number of fixed

points is far from half, which indicates it is a very difficult problem

to optimize for differential uniformity and the maximal number of

fixed points.

In Table 5, we give results when using the multi-objective ap-

proach for optimizing either nonlinearity and the number of fixed

points, or differential uniformity and the number of fixed points. For

each S-box size, the table includes only the solution that obtained

the best result for the cryptographic property that was optimized.

Sizes 3 × 3 up to 5 × 5 do not reveal anything new when compared

Table 5: Results obtained for optimizing 1) 𝑛𝑙 and fixed
points and 2) 𝛿 and fixed points. Multi-objective approach.

Size 𝑛𝑙 fixed points 𝛿 fixed points

3 × 3 2 4 2 4

4 × 4 4 8 4 7

5 × 5 12 7 2 7

6 × 6 24 4 4 10

7 × 7 46 10 8 26

8 × 8 98 34 8 32

with the single-objective approach. Larger sizes show somewhat

worse results than for the single-objective approach when con-

sidering nonlinearity and somewhat better results for differential

uniformity. Still, both are far from optimal values for nonlinear-

ity/differential uniformity and what should be the maximal possible

number of fixed points for optimal cryptographic properties. As

such, we can conclude that for smaller sizes, there is no significant

difference between single-objective and multi-objective approaches,

but as the problem size goes up, the single-objective approach can

reach a better trade-off between properties, especially for nonlin-

earity and fixed points case.

The distribution of solutions obtained by both approaches is

presented in Figure 1. It should be noted that these figures do

not represent the first Pareto front of solutions, but rather the

union of first Pareto fronts from different executions and encodings.

Therefore, certain solutions in those figures will be dominated by

other solutions. The reason for choosing such a representation

is to denote better the distribution of the first Pareto fronts over

different runs, and the difference between the fronts obtained by the

two encodings. The results are only included for the larger S-box

sizes since, for them, a better distribution of results was obtained.

For both sizes, it is evident that as the nonlinearity or differential

uniformity properties improve, the number of fixed points in the

solutions is decreasing. This just confirms the previous observation

that improving these two properties moves the search away from

solutions that have a large number of fixed points.

Furthermore, as the number of fixed points gradually increases,

both properties deteriorate quite fast. An additional observation

from Figures 1c and 1d is that one part of solutions is dislocated

and achieve better nonlinearity and differential uniformity values.

This set of solutions was obtained by using the permutation repre-

sentation, and thus demonstrates that this representation is better

suited for larger S-boxes (which is also in line with the results from

the related works).

5.2 Best-Worst Scenario
In these experiments, we aim to obtain the solutions that have the

best possible value for one property and the worst possible value

for the other property. As an example, in Table 6, when we present

results for maximization, we aim to obtain the best possible value

for nonlinearity (as higher is better) but the worst possible value

for differential uniformity (as lower is better).

In Table 6, we present results for the single-objective approach.

For size 3×3, we see it is not important whether we aim to improve

nonlinearity or differential uniformity, as, for the other property,
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(a) Optimization of 𝑛𝑙 and fixed point count for S-box size 7 × 7
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(b) Optimization of 𝛿 and fixed point count for S-box size 7 × 7
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(c) Optimization of 𝑛𝑙 and fixed point count for S-box size 8 × 8
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(d) Optimization of 𝛿 and fixed point count for S-box size 8 × 8

Figure 1: Solution distributions. Black points represent solutions obtained with the multi-objective approach, while red stars
denote several best solutions obtained with the single-objective approach.

the worst possible value is also the best possible value. When con-

sidering this size, there is no need to optimize for both properties.

Already for the 4 × 4 size, the results are much more interesting.

First, we see it is not the same whether we improve nonlinearity and

degrade differential uniformity or vice versa. Indeed, when maxi-

mizing nonlinearity, differential uniformity can differ significantly

from the optimal value. At the same time, minimizing differential

uniformity results in suboptimal nonlinearity but only for a single

step (remember, for permutations, nonlinearity, and differential

uniformity values change in steps of two). These results indicate

that when maximizing for nonlinearity, the search space of possible

values for differential uniformity will be easier to explore than in

the opposite case. Next, the S-box size 5×5 gives very interesting re-
sults. We see that reaching the best possible value for one property

also results in the best possible value for the other property (despite

trying to degrade the other property). These results indicate that 1)

it is enough to optimize for one property only, and 2) there does

not seem to be any solutions that are optimal in one property and

suboptimal in another property. Similar results are obtained for 6×6
size, where regardless of what property we maximize/minimize,

we obtain the same values. Note, these values are also equal to

the best-known values from literature; they are better than those

obtained when using multi-objective approach (Table 3, but are

worse than the best-known solutions (to the best of our knowledge,

no heuristic technique ever reached the best possible value for this

S-box size).

For 7 × 7 size, we cannot reach optimal solutions. We see that

when maximizing, nonlinearity is high, but so is the differential

uniformity. Consequently, optimizing for nonlinearity only can

result in having bad differential uniformity. Still, the nonlinear-

ity value is lower than the best-obtained nonlinearity value (Ta-

ble 2, which means that increasing the nonlinearity value above

48 would probably result in improving differential uniformity. As

such, single-objective optimization could suffice, if one uses good

fitness function. On the other hand, we see that when minimiz-

ing differential uniformity and nonlinearity, differential uniformity

is quite good but at the expense of having a linear function. We

postulate this happens as it was enough to make one of the coor-

dinate functions linear (which made the whole S-box linear), and

this only doubled the differential uniformity value. Finally, for the

8 × 8 size, when maximizing nonlinearity, we can reach very good

values. Unfortunately, the differential uniformity property is also

very high, which means there is a significant number of attainable

solutions for one to explore (and only a small part of it contains

good solutions). When minimizing differential uniformity, we see

similar behavior as for the 7×7 size, where we can obtain very good
differential uniformity value but at the expense of having a linear
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Table 6: Results obtained for 𝑛𝑙 and 𝛿 for single-objective ap-
proach.

Size

Maximization Minimization

𝑛𝑙 𝛿 𝑛𝑙 𝛿

3 × 3 2 2 2 2

4 × 4 4 8 2 4

5 × 5 12 2 12 2

6 × 6 24 4 24 4

7 × 7 48 16 0 8

8 × 8 100 54 0 10

Table 7: Results obtained for 𝑛𝑙 and 𝛿 for multi-objective ap-
proach.

Size

Maximization Minimization

𝑛𝑙 𝛿 𝑛𝑙 𝛿

3 × 3 2 2 2 2

4 × 4 4 8 2 4

5 × 5 12 2 12 2

6 × 6 16 32 4 6

7 × 7 48 16 2 8

8 × 8 100 38 24 8

function (which means that the search space is huge as it includes

both linear/affine functions as well as those that are nonlinear).

Finally, in Table 7, we give the results for the multi-objective ap-

proach and the best-worst scenario. For sizes 3× 3 up to 5× 5, there

is no difference in the best-obtained results when compared with

the single-objective approach. For 6 × 6 size, we see an interesting

trade-off: when maximizing nonlinearity, differential uniformity is

very high. At the same time, nonlinearity also does not reach good

values. When minimizing differential uniformity, both differential

uniformity and nonlinearity cannot compare with the solutions for

single-objective optimization. For 7×7, whenmaximizing nonlinear-

ity, the best-obtained solution is the same as for the single-objective

approach. When minimizing differential uniformity, we can reach

the same value as for the single-objective, but now, we obtained a

function that is not linear. While this is better (from a cryptographic

perspective), it also tells us that the multi-objective approach is

more restrictive as it was not able to look in the search space part

with linear functions. Similarly, for the 8× 8 size, the solutions with

a multi-objective approach do not have an as wide set of values as

for the single-objective approach. Again, this gives us more confi-

dence that the multi-objective approach cannot encompass as large

solution space as a single-objective approach.

Figure 2 shows the distribution of solutions when improving

one criterion and worsening the other one. These distributions

demonstrate that by improving one criterion, the second one is

also implicitly improved. This is especially true when improving

nonlinearity, as differential uniformity can be seen to improve as

well steadily. On the other hand, when improving differential uni-

formity, a very interesting phenomenon can be observed. Namely,

with the improvement of the differential uniformity property, the

nonlinearity of solutions is improved as well, but only until a certain

point. For the two smallest achieved differential uniformity values,

smaller nonlinearity values than those of several previous solutions

were obtained. The reason why this happened is that these two

solutions dominate all the other solutions, and thus the algorithm

could not explore the Pareto front more exhaustively. Finally, these

two solutions with the smallest differential uniformity values were

obtained by using the permutation encoding, wheres the other

solutions were obtained by using the cellular automata encoding,

which additionally demonstrates the superior performance of the

permutation encoding for larger S-box values.

Table 8 represents themaximum, average, and standard deviation

of the fitness values, which represent the weighted sum of the two

considered properties, based on the 30 performed runs. Additionally,

the Mann-Whitney test was performed between the results for the

same S-box size between the different encodings, and the result is

denoted in the column “p-val”. The bolded values in this column

denote that the specific encoding performed significantly better,

where the results are considered significantly different if the p-value

is below 0.05. The table shows that both encodings achieve the same

performance for the smallest S-box values, with the CA encoding

usually achieving significantly better results. On the other hand, for

the larger S-box sizes, the permutation encoding performs better.

This is evident from the fact that the permutation encoding achieved

a better average value, as well as a smaller standard deviation, which

means that the obtained results in all runs are comparable. The

statistical tests confirm the previous conclusion. This is usually

manifested that for the property that was improved, the algorithm

obtained similar values in all runs. The largest differences between

the runs were in the values of the property that had to be worsened.

Table 8: Statistical results for the single-objective optimiza-
tion.

Size

Maximization Minimization

max avg std p-val max avg std p-val

P
e
r
m
u
t
a
t
i
o
n

3 × 3 10.25 10.25 0 1 7.5 7.5 0 1

4 × 4 10.5 10.5 0 10
−5

8 8 0 10−5

5 × 5 8.58 7.7 0.30 10
−5

9.42 9.25 0.07 10
−5

6 × 6 8.95 8.88 0.04 60−5 9.98 9.82 0.07 10−5

7 × 7 8.57 8.52 0.03 10−5 10.38 10.34 0.02 10−5

8 × 8 9.17 9.13 0.03 10−5 10.61 10.58 0.02 10−5

C
e
l
l
u
l
a
r
a
u
t
o
m
a
t
a

3 × 3 10.25 10.25 0 1 7.5 7.5 0 1

4 × 4 10.38 10.38 0 10−5 7.5 7.5 0 10
−5

5 × 5 10.06 9.82 0.56 10−5 9.58 9.36 0.13 10−5

6 × 6 10.06 7.79 1.22 60
−5

9.39 8.86 0.44 10
−5

7 × 7 8.87 6.97 1.04 10
−5

9.66 9.16 0.23 10
−5

8 × 8 7.04 5.96 0.48 10
−5

9.21 8.69 0.31 10
−5

6 DISCUSSION
Based on the results from the previous section, we can give a set of

guidelines when optimizing S-boxes. Informally, when discussing

smaller S-boxes, we consider sizes up to 𝑛 = 5, while larger S-boxes

are any size where 𝑛 > 5.

• If optimizing small S-box sizes and nonlinearity/differential

uniformity, there is no influence of the selection of the encod-

ing. Next, single-objective and multi-objective approaches
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(d) Minimization of 𝑛𝑙 and 𝛿 for S-box size 8 × 8

Figure 2: Solution distributions. Black points represent solutions obtained with the multi-objective approach, while red stars
denote several best solutions obtained with the single-objective approach.

result in the same best-obtained solutions. Optimizing for

a single property is enough, as the other property is either

very good or even optimal.

• For larger S-box sizes, the permutation encoding gives better

results (also, statistical indicators aremore stable over several

runs).

• For larger S-box sizes, single-objective is better than multi-

objective, but there is a limit. 8 × 8 S-box size gives simi-

larly good results for single-objective and multi-objective

approaches. This means that the single-objective approach

has a more sudden drop in the performance between 7 × 7

and 8 × 8 sizes.

• Nonlinearity and differential uniformity tend to go inline:

having good one property makes the other property also

good. Still, optimizing for nonlinearity gives on average bet-

ter results for differential uniformity than vice versa.

• Maximizing for the number of fixed points poses more re-

strictions on nonlinearity and differential uniformity for

larger S-box sizes (or vice versa).

• Single-objective optimization results in a wider spread of

solutions for the best-worst scenario. As such, this leaves

more room for random behavior (for instance, some prop-

erties with extremely bad values) if optimizing for a single

property but interested in several properties.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we explore various trade-offs for S-boxes stemming

from two encodings, two algorithms, and three cryptographic prop-

erties. Our results indicate that for small S-box size, there is little

importance in the selection of encodings, algorithms, or crypto-

graphic properties. For larger sizes, the permutation encoding is

better than the one based on cellular automata. Next, the single-

objective approach gives solutions with better cryptographic prop-

erties but also leaves more room for a bad property value if not

explicitly optimized in the fitness function.

In future work, we plan to explore the influence of the granu-

larity of the fitness function to the performance. Indeed, for now,

we considered only the property final values, but one could also

consider the whole Walsh-Hadamard spectrum or all the values

in the DDT. Besides this, as the single-objective approach results

in better solutions, it would be interesting to see how to tune the

multi-objective approach to reach the same performance. Alterna-

tively, to understand at what point in the optimization process, the

multi-objective approach concentrates on the local optima region.
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