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1. Definition of digital process, digitalization, and safety

Several developments in the process industry, such as optimal use of
energy, more complex processes and process conditions, and larger flexibil-
ity for product adaptation, with a work force that is more mobile, ask for a
higher degree of automation. To adapt to this change and ensure production
safety, digital technologies provide a potential way to improve production
efficiency and reduce the likelihood and severity of industrial accidents.

The first push for digital computing in the process industry came in
1949 through IBM’s industrial computing seminars (Lee, Cameron, &
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Hassall, 2019). The exponential increases in computing power and software
development over the past 70 years have been the mainstay of the develop-
ment of high-fidelity dynamic modeling of entire process plants (Lee et al.,
2019). Fig. 1 shows the main development over the last 80 years.

Digital technologies, which are the bread and butter of Industry 4.0, have
been used in many fields such as ecology, economy, engineering, and pro-
cess system (Single, Schmidt, & Denecke, 2019). A clear definition of digital
terms 1s the first step in determining its opportunities and threats in process
systems.

Digital process refers to the basic process of transforming much complex
and changeable information of a whole system into numbers and data that
can be measured and then using these numbers and data to build an appro-
priate digital model, introducing them into the internal computer for unified
processing (Porthin, Liinasuo, & Kling, 2020). Several authors have
expressed their views in this regard in the available literature. However,
there is no accepted definition in the academic community so far. There
is a good example in process safety to describe the digital process. Single
et al. (2019) developed an “semi-automated HAZOP” system to support
a HAZOP team to identify potential hazards of a process plant. The infor-
mation of Process Flow Diagrams (PFDs) and Piping and Instrumentation
Diagrams (P&ID:s) is exacted and used to represent the process plant. The
nodes in PFDs and P&IDs can be modeled by a specific modeling language
and a graphical editor. In the light of this, deviations in process variables can
be automatically applied and propagated through the process system,
detecting potential faults and hazardous events by employing inference
methods. In this process, all information, including the information of the
process plant and expert knowledge, is transformed into data processed by
computers.

Digitization or digitalization is defined as the integration of digital technol-
ogies in process operations for greater efficiency and increased product qual-
ity (Kayikci, 2018; Khan, Amyotte, & Adedigba, 2021; Vaidya, Ambad, &
Bhosle, 2018). Digitalization generally means encoding various information
(e.g., images, voices, videos, data, etc.) into zeros and ones for better storage,
processing, and transmission of information (Khan et al., 2021). The
digitalization process comprises the increased use of robotics, automation
solutions, and computerization, reducing costs, improving efficiency and
productivity, and responding flexibly to changes.

The digitalization in process industries consists of two main parts:
(1) physical digitalization (i.e., automation of equipment, holistic simulation
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of process systems), (i) information digitalization (i.e., automation of data
collection, processing, and analysis). In the field of process safety, the latter
is of greater interest (Lee et al., 2019). The essence of digitalization is to use
the abundant data in systems to solve the uncertainty of complex systems.
Digitalization enables digital twin, which focuses on the simulation of the
overall system to optimize the system structure and verify the effectiveness
of existing operating strategies, and collecting, storing, and processing a large
amount of monitoring data and production data generated in systems. The
main reasons for the growing interest in digitalization are exponential
growth in technology development and the fact that data is becoming richer
from more sources, real-time with higher data rates, more complex, and
more useful.

Digitalization depends on data, and data relies on eftective collection,
and for reliable use, data should be keept cybersecure, data preparation
and effective analysis is required to distil information from them, and in
the end, their value would show up by useful application. The analysis
focuses on identifying problems and analyzing them based on data and
the main reasons behind the generation of such data to monitor the opera-
tions and status of process systems and develop strategies and measures for
optimization.

Safety in the process industry can be defined as the ability or state of a
system to be free from undesired accident risk during the production process
(e.g., Hollnagel, 2008). Safety and risk are closely linked. Risk is a composite
measure of the probability of an undesired accident and the corresponding
consequences. From a conceptual point of view, reducing the accidents’
probability and consequence can decrease sytem risk which will improve
systems’ safety. Early warning (Chang, Khan, & Ahmed, 2011; Schmitz,
Swuste, Reniers, & van Nunen, 2020), fault detection and diagnosis
(Fazai, Mansouri, Abodayeh, Nounou, & Nounou, 2019; Kopbayev,
Faisal, Yang, & Halim, 2022), and safety barriers (e.g., physical barriers
and non-physical barriers) can be used to improve the safety of process
systems.

2. Brief history of process safety and reasons why
digitalization can support process safety

2.1 A brief history of process safety

Process systems, and, in particular, chemical ones store and process a large
amount of hazardous materials, which by explosion blast, radiant heat, or
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toxic substance exposure may lead to casualties, property damages, and eco-
logical pollution (Abbassi, Khan, & Garaniya, 2015; Benson, Dimopoulos,
& Argyropoulos, 2021; Khan, Wang, & Yang, 2016; Sun, Haiqing, Yang, &
Reniers, 2021). Quite a few compilations of accidents that occurred are
available, e.g., Marsh, 100 Largest Losses in the Hydrocarbon industry
1974-2019 (Marsh, 2020), while several countries maintain accident data
bases, e.g., in Europe the JRC eMARS database. As a typical accident
the Amuay refinery disaster in Venezuela can be mentioned causing more
than 50 people dead, over 100 people injured, and about 1600 buildings des-
troyed, resulting in $1 billion in economic loss (Mishra, Wehrstedt, & Krebs,
2014). There have been many more, some more serious, others less.

Process safety plays a critical role in safety operations during production
processes. It is identified as an integral part of process development and
manufacturing rather than being viewed as an “add-on” to the process
(Gibson, 1999). However, safety was not a high priority in the 1940s. At
that time, the full-time safety worker were older foremen, retired army offi-
cers, and men (no women then) with non-technical backgrounds and expe-
rience (Kletz, 2012, see also, Swuste, Van Gulijk, & Zwaard, 2010). At
British industrial pioneer Imperial Chemical Industries (ICI), in the late
1960s, only after several major safety incidents in a row, management
decided that the safety work should be done by people with relevant knowl-
edge and technology. In 1963, the method of Hazard and Operability
(HAZOP) study started its development at ICI to identify the hazards
and determine the potential equipment failures (Kletz, 1999, 2012). It is
worth noting that late Trevor Kletz was the promotor of HAZOP within
ICI and beyond. Besides, he advised and trained workers to conduct the
HAZOP process. Since then, although the scale of process industries has
doubled in the 1970s, the rate of fatal accidents in the process system has
dropped significantly (Kletz, 1999), which can be seen in Fig. 2.

The origin of the term “process safety” and its evolution is related to the
major accidents that occurred between 1960 and 1990 as a result of rapid
industrialization and technological developments (Khan, Rathnayaka, &
Ahmed, 2015). In other words, the driving force behind the movement
to foster process safety and to regulate the industry is the unwavering occur-
rence of major accidents. For example, the Flixborough aerosol cloud
explosion accident in the UK in June 1974 led to the death of 28 workers
and injured 36 staft, besides destroying the plant and damaging nearby
residential area. This disaster promoted in the same year the creation of
the Advisory Committee on Major Hazards by the Health and Safety
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Fig. 2 Fatal accident rate from 1960 to 1982. Adapted from Kletz, T. (2012). The history of
process safety. Journal of Loss Prevention in the Process Industries, 25, 763—765.
doi:10.1016/}.,jlp.2012.03.011.

Committee in the United Kingdom, which itself was based on Health and
Safety at Work etc. Act 1974.

Those developments were followed in continental Europe and the
United States. But the engineering associations became already active earlier
by organizing symposia to exchange experiences and to learn from each
other. The earliest are the AIChE Loss Prevention symposia in the
United States starting in 1967, while the IChemE 1971 Major Loss
Prevention in Newcastle UK became the initiating gathering for the
EFCE Loss Prevention symposia in Europe with the first one in 1974. In
Table 1 a number of shocking accidents have been listed, which gave rise
to changes in thinking and approaches to safety.

Economically the process industry was booming as the demand for its
products grew as again seen in Japan, later in the early 1990s in the
Middle-East followed by many Asian countries, notably China, and
India. The hazardous nature of the substances (flammable, explosive, toxic)
in the system makes it possible to cause severe consequences in the event of
an accident. Especially, for toxic materials, in the event of a leakage, the con-
sequences would be unacceptable. For instance, after the TCDD spreading
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Seveso runaway accident, to avoid further dioxin contamination, more than
80,000 animals had to be exterminated, censored thousands of people in
their activities, and allowed abortions based on mothers’ decisions. To avoid
the occurrence of major accidents, institutions were developed and regula-
tions made. It can be seen in Table 1 that each major incident has facilitated
the development of process safety, including promoting the establishment of
relevant institutions and laws and regulations.

The focus of research on process safety has varied over time as systems
and laws, and regulations have evolved. As mentioned above, in the
1960s, safety was not a concern until major accidents occurred. In order
to prevent accidents, people with technical background were tasked to carry
out relevant work. In the beginning, process safety focused on technical
problems, which can be seen in Fig. 3. Accidents were seen as being caused
by equipment failure. In quite a few cases the mechanism of a cause chain
resulting in a severe consequence was not clear. Type denotations, such as
reactor run-away and vapor cloud explosion, had to be invented yet.
However, the call for proactive approach became stronger and Trevor
Kletz’s HAZOP, to identify already at the design stage potential technical
failures of process systems became famous (Gowland, 2012). Also around
1974 tollowing the example of the nuclear power industry, the concept
of risk asessment emerged with the Canvey Island (UK, Canvey, 1978)
and Rotterdam Rijnmond (NI, COVO, 1982) studies. These studies recog-
nized the problem of lack of knowledge on equipment failure data,

Safety level From hindsight to foresight

Preventive thinking _ Resilience?

Legislation Safety management system

Safety in management focus
Human failure/factors

Technical safety

| | | | | | (-

1960 1970 1980 1990 2000 2010 2020 Year

Fig. 3 Major contributions to the evolution of process safety presented in 1995 at the
8th European Loss Prevention symposium in Antwerp by Koos Visser, process safety
pioneer at Shell, and since then stepwise expanded by Hans Pasman (Pasman &
Fabiano, 2021).
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consequence analysis models, and the importance of human factors in the
safety performance of the process industry. A wave of activities in the
1980s and 1990s started to gather data by collecting equipment failure ones,
by experiments and field trials, to develop models and to expand knowledge.
Human factors led to significant developments in management and
behavioral sciences, as well as advances in systems and cultural approaches
(Khan et al., 2021). In this century, due to better insights and more complex
process systems, more attention has been paid to socio-technical system
approach, in which human factors, technical factors, and organizational
and managerial factors interact. Note that since the Chernobyl nuclear reac-
tor disaster in 1986, safety culture is recognized as important and over the
years is taken into account in organizational and managerial factors. The
Phillips Petroleum company 1989 dramatic vapor cloud explosion near
Houston, US, gave the impetus to US Occupatioal Safety Administration
(OSHA) to launch the Process Safety Management (PSM) requirements,
which led further to safety management systems (SMS). The eftect of these
introductions of concepts appeared industry sometimes only many years
later (Fig. 3). Nowadays, as digitalization proceeds, process systems belong
to the cyber-physical system, which means more focus should be on
managing process safety information and communicating these experiences
as knowledge. Meanwhile, the impacts of digitalization on process safety
require more discussion.

2.2 Why can digitalization support process safety?

To prevent accidents, scholars developed various risk assessment (RA)
method variants to reduce the probability of an accident and mitigate
accident consequences (Khan, Khan, & Veitch, 2020; Khakzad, 2019;
Landucci, Argenti, Cozzani, & Reniers, 2017; Sultana, Anderson, &
Haugen, 2019; Yang, 2018). RA plays an essential role in understanding
the mechanism of accidents and ensuring system safety. Following Sam
Mannan’s thougths O’Connor, Pasman, and Rogers (2019) proposed three
crucial elements of safety, namely, prevention, mitigation, and response,
which can be integrated as a so-called safety triad. These three factors
may seem simple, even intuitive. However, reports and investigations of
accidents have proven that the main cause of accidents was the lack of these
three factors. To determine their effectiveness methods, such as fault and
event tree have been devised, which over the years became further devel-
oped. An example is bowtie which combines fault and event tree and shows
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besides scenarios also preventative and protective barriers. For quantitative
evaluation of the probabilities of basic events to final major consequences
bowties can be easily converted into Bayesian networks (see, e.g.,
Khakzad, Khan, & Amvyotte, 2013). Because there may be interdependency
of events and barriers, Ghosh, Ahmed, Khan, and Rusli (2020) utilized
copula-based Bayesian network (BN), as well as traditional BN to assess
the failure of the multivariable time-dependent system. Sun, Wang,
Yang, and Reniers (2020) developed an integrated approach based on the
window of opportunity and complex network to evaluate the risk of a pro-
cess system.

The works described above show the significant progress on RA in pro-
cess systems. Nevertheless, recurring accidents show that relying on conven-
tional R A alone and following its recommendations is not enough to ensure
system safety (Marsh, 2018). Marsh (2018) indicates the losses caused by
accidents have not been reduced. In fact, semi-quantitative or quantitative
risk assessment is not applied taking all possibilities and parameters into
account, and moreover the used models and data contain large uncertainties
and the analysts are limited in their knowledge and awareness as, e.g., well
described by Rae, Alexander, and McDermid (2014). Nowadays, complex
systems, which arise from non-linear interdependencies, are built rapidly to
meet people’s demand. The ensuing uncertainty, complex interaction, and
interdependence between components (e.g., human, technical, and organi-
zational elements) have become new risk factors in the process system.

These changes make it difficult to assess reliability, detect and diagnose
faults, and determine the relationship between process parameters and sys-
tem state. For example, deterioration and corrosion of equipment (such as
valves) 1s a random process influenced by process parameters and “non-
equipment factors” such as human factors, technical factors, environmental
factors, etc. It is difficult to use the abovementioned traditional RA methods
to ensure system safety under those conditions.

Automated and digital systems generate a large amount of data, leading to
new opportunities for process safety and asset integrity assessment. Lee et al.
(2019) suggest digitalization of chemical process industries could improve
the mechanical issues by introducing early warning signaling, corrosion
monitoring, remote sensing, increased connectivity, application of predic-
tive models relying on real-time data, and machine learning. Moreover, they
suggest digital systems could improve work processes, risk assessment, oper-
ator interfaces, and alarm management systems. In addition, digitization
benefits from generating digital operational data and replacing manual
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operations with software that automates data collection, processing, and
analysis for effective process monitoring.

Specifically, the benefits of digitalization are mainly reflected in five
aspects: productivity, production quality, safety, efficiency, and flexibility
(Hole, Hole, & MaFalone-Shaw, 2021). For example, digitalization can
reduce labor and save costs. A high degree of automation can increase pro-
ductivity while ensuring product quality and system safety. Digitalization
provides novel and more efficient measures to improve the manufacturing
process and safety system (e.g., safety barrier system). In practice, much
information on site needs to be recorded by workers and fed back to the
control room, which wastes a lot of time recording and feeding back, and
increases the probability of human error. It is not conducive to safe and effi-
cient production. Fortunately, digitalization can solve this problem. Besides,
digitalization can help to improve control systems, which enables every
process of production to be monitored eftectively. This ensures the safety
of the system and the quality of the product. For example, the boiled-oft
gas (BOG) is inevitably generated at the LNG receiving terminal during
unloading, storage, and delivery. An eftective control system can reduce
the amount of BOG and thus save energy from liquefied BOG (Animah
& Shafiee, 2020).

For processes, safety is a most critical concern. The benefits of digitali-
zation for safety can ensure system safety by performing fault detection and
diagnosis, risk assessment, and safety control. Reinartz, Kulahci, and Ole
(2021) developed an extensive reference dataset, incorporating repeat sim-
ulations of healthy and faulty process data, additional measurements, and
multiple magnitudes for all process disturbances. All six production modes
of the Tennessee Eastman process (TEP) process control testbed as well as
mode transitions and operating points in a region around the modes, are sim-
ulated. Besides, fault detection is conducted based on principal component
analysis integrated with T° and Q charts using average run length as a per-
formance metric to provide an initial benchmark for statistical process mon-
itoring schemes for the presented data. Wu and Zhao (2021) presented a
process topology convolutional network (PTCN) approach to conduct fault
diagnosis of a chemical process system. The proposed method was validated
by experiments on the benchmark Tennessee Eastman process (TEP), and
results showed that PTCN improved the fault diagnosis accuracy. Cheded
and Doraiswami (2021) developed a comprehensive approach, including
model-free (MFA) and model-based (MBA) methods, for fault detection
and 1solation with in process system. Deng, Han, Cheng, et al. (2022)
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proposed a real-time fault detection approach, which comprises space-time
compressed matrix (STCM) and Naive Bayes (NB), to realize the fast learn-
ing and prediction in chemical process system. Experiments on the TEP
show that the proposed approach reduces the sample size and feature size
by 75% and 92%, respectively. Bi and Zhao (2021) presented a novel orthog-
onal self-attentive variational autoencoder (OSAVA) model, which includes
orthogonal attention (OA) and variational self-attentive autoencoder (VSAE),
to monitor the process system. OA is utilized to extract the correlations
between difterent variables and the temporal dependency among different
timesteps; VSAE is trained to detect faults through a reconstruction-based
method, which employs self-attention mechanisms to comprehensively con-
sider information from all timesteps and enhance detection performance.
Arunthavanathan, Khan, Ahmed, and Imtiaz (2021) developed an early
potential fault detection approach, including the Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM), to examine fault
symptoms in chemical process systems. The performance of the proposed
approach was validated by TEP again and indicated that the proposed method
1s efficient in finding out potential faults in chemical process systems. This will

all be further detailed in Chapter 6.

3. Process safety treated in digitalized process systems

The benefits of digitalization in process systems are the generation of
digitized operational data and the replacement of manual process operations
with software that allows automated data collection for effective process
monitoring (Khan et al., 2021). Digitalization can help systems predict
uncertain disruptions, monitor, and control the process of systems, detect
and diagnose faults, manage abnormal situations, and process massive
amounts of data automatically. Therefore, the productivity, flexibility,
and quality of process systems can be enhanced. However, new problems
arise when most operations are digitally (e.g., sensor, controller, processor)
dependent.

3.1 Human and management errors

The analysis of the causes of the 100 major accidents in the area of onshore
oil, gas, and petrochemical from 1996 to 2015 was conducted by Jarvis and
Goddard (2017). This study revealed major system failure causes: mechanical
failures accounted for 43% of losses; operations, practices, and procedures
made up 25%; work control accounted for 21%, etc. The above statistics
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illustrate the impact of management system failures on accident occurrence.
It should be noted that nearly 60% of mechanical failures were due to man-
agement issues, such as inadequate inspection programs. Besides, hazard
identification is involved in more than half of losses due to human errors.
Even though digitization is beneficial for reducing operators’ workload
and involvement time, it increases the complexity of human-computer
interaction. This is because the screens, displayed data, and buttons in the
control room will become more numerous and complex. Moreover, the sys-
tem generates and automatically processes a large amount of data, and while
most decisions are made automatically by the system, the decisions of the
people in the control room remain also critical to ensuring the safety of
the system. In addition, managers and operators are prone to laxity because
they may believe all work can be done by digitalized equipment. Situation
awareness, safety awareness, safety culture, management policy, etc., may
decrease with the development of digitalization. This observation can be
supported by an accident on December 11, 2005, at the Buncefield storage
depot in the United Kingdom. The main cause of the overfilling of the gas-
oline (petrol) storage tank was the failure of the automatic tank measurement

system while the control room was manned at the time (Paltrinieri, @ien, &
Cozzani, 2012).

3.2 Process monitoring and control

Due to digitalization, equipment, including sensors, indicators, detectors,
controllers, and valves of main process parameters (e.g., temperature, pres-
sure, flow rate, etc.), are more automated. This means that fewer devices
require human involvement. Although it reduces human errors and time,
it Imay loose human as a vital back-up safety barrier. For example, there
are also manual detectors in conventional process systems in addition to
automatic detectors. When automatic detectors fail, regular manual detec-
tion can assist in the prevention of major accidents. However, digitalization
may abandon most equipment that requires human involvement, which
may increase systems risk if the reliability of the system is not sufficiently
increased.

Process monitoring allows for fault detection and diagnosis by monitor-
ing important process parameters, which is beneficial for ensuring system
safety. However, relying entirely on automated monitoring cannot fully
secure the system. For example, under normal conditions the safety instru-
mentation system (SIS) is dormant, and it only works when an accident
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occurs and demands it to function. Although faults can be signaled in part
automatically, in particular of the electronics, for this type of equipment,
human involvement of inspecting and testing will remain essential.

3.3 Massive data processing

With the process of Industry 4.0, process systems have become more auto-
mated and intelligent, which means that monitoring systems, control
systems, and operation systems produce massive data (Pasman & Fabiano,
2021). Adequate use of those data is beneficial for early warning, fault detec-
tion, diagnosis of the system, etc. However, due to limited time and
resources, it is challenging to analyze all of those data. To overcome
the challenge, researchers paid more attention to developing a targeted
approach to handling massive data. These methods are categorized as the
data-driven method.

One of the representative methods among data-driven methods is
machine learning. Machine learning consists of two types of methods:
unsupervised learning and supervised learning.

Unsupervised learning 1s relevant when one wants to find out whether the
data contain a pattern which at that moment is unknown. The technique
includes clustering algorithms (e.g., K-means clustering) and dimension
reduction algorithms (e.g., principal component analysis (PCA)). PCA is
widely used to reduce the dimensionality of data by exacting the main fea-
tures from the massive data. Ji, Jiao, Yuan, et al. (2021) employed PCA to
analyze high dimensional data to assess the combustion risk of flammable lig-
uids. L1, Hu, Gao, etal. (2021) L1, Jia, Zhang, et al. (2021), L1, Liu, Lin, et al.
(2021), Li, Zhang, Khan, and Han (2021), Li, Zhou, and Wang (2021)
developed a data-driven model, including PCA, artificial bee colony algo-
rithm (ABC), and support vector regression (SVR). In this model, PCA is
employed to reduce the dimension of corrosion influencing factors. The
obtained primary components are selected as the input variables of the
model. Kopbayev et al. (2022) combined Kernel principal component anal-
ysis (kPCA) and deep neural network (DNN) to perform fault detection and
diagnosis in process system. In the proposed method, kPCA is used to reduce
the dimensionality of the complex data. After this, the processed data is uti-
lized for training DNN for detection and diagnosis. Amin, Khan, Ahmed,
and Imtiaz (2021) presented a comprehensive method, including PCA and
Bayesian network, for fault diagnosis. Wu, Li, and Li (2021) utilized the
Principal Component Analysis (PCA) in combination with Support
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Vector Machine (SVM) to classity the fault for complex process systems. The
results show that the developed approach is efficient for fault detection and
diagnosis. Harrou, Nounou, Nounou, et al. (2013) presented a PCA-based
GLR fault detection method to detect faults in difterent process variables
without a process model. Kaced, Kouadri, Baiche, et al. (2021) used the
PCA to solve the problem of false alarms in a chemical process.

Supervised learning learns the underlying class distinctions or trends from
a training data set. It comprises a classification algorithm and regression
algorithm. K Nearest Neighbor is a typical classification method. Besides,
classification algorithm includes Decision Tree, Support Vector Machine
(SVM), Logistic Regression, Random Forest, etc. depending on whether
the problme is linear or not and other. Meanwhile, the regression algorithm
comprises Linear Regression, Least Square Regression, Artificial Neural
Network (ANN), etc. In process safety, one of the most used methods is
ANN. ANN is composed of three parts: neurons, layers, and networks. A
typical ANN has three layers, the input layer, hidden layer, and output layer.
The basic neurons are connected by weights between the input and hidden
layers and the hidden layer and output. Put another way, the connection
only exists between layers, and there is no connection within a layer since
the information flows in one direction. It can be optimized based on new
data and information. Due to these advantages of ANN, it is used in many
research domains, such as risk analysis and fault detection and diagnosis.
Adedigba, Khan, and Yang (2018) utilized multi-layer perceptron (MLP)
and probability analysis to evaluate the safety of the process system. The
non-linear relationships among process variables are determined by the
MLP. Ayhan and Tokdemir (2019) developed a comprehensive approach,
including latent class clustering analysis (LCCA), ANN, and case-based
reasoning (CBR), for identifying potential accident scenarios. Sarbayev,
Yang, and Wang (2019) utilized ANN to overcome the limitations of FT
to quantify the risk of the process system. Li, Hu, et al. (2021), Li, Jia,
et al. (2021), L1, Liu, et al. (2021), Li, Zhang, et al. (2021) and Li, Zhou,
and Wang (2021) integrated computational fluid dynamics (CFD) with a
general regression neural network (GRINN) to evaluate the rescue risk in
explosion accidents. Li, Hu, et al. (2021), Li, Jia, et al. (2021), L1, Liu,
et al. (2021), Li, Zhang, et al. (2021), and Li, Zhou, and Wang (2021) pro-
posed a hybrid approach, which is composed of KPCA and BRANN, for
predicting corrosion degradation of offshore oil pipelines. KPCA is utilized
not only for decreasing the dimensionality of the factors affecting pipeline
corrosion and for extracting principal features from massive data.
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Meanwhile, BRANN is formed as a prediction model. Mamudu, Khan,
Zendehboudi, and Adedigba (2021) proposed a comprehensive method,
which consists of a multilayer perceptron—artificial neural network
(ANN) and BN, to assess the risk of the system. Many of these methods will
appear in several chapters of this volume.

Although massive data processing methods have undergone significant
improvements globally over the past couple of decades, this has not trans-
lated into a substantial reduction in major accidents in process industries.
The inherent characteristics of industrial system data create numerous
challenges for eftective process fault diagnosis (Khan et al., 2021). Those
data are complex, nonlinear, highly time-variant, and non Gaussian in dis-
tribution. Therefore, it is also a challenge to extract important information
from those complex data and to accurately perform fault detection and
diagnosis.

3.4 Cyber-attacks

The rapid development of digitalization has brought about a strong increase
of digitized process systems full of sensors, processing electronics, and often
connected wireless via IIoT (the industrial internet of things), which inev-
itably creates new hazards and risks, like internet cyber-attacks. According to
different attack motivations, attackers, hence hackers, can be divided into
four categories: terrorists motivated by political gain and revenge, activists
inspired by rebellion, disgruntled employees and contractors motivated by
money and revenge, and criminals motivated by money (laiani, Tugnoli,
Bonvicini, & Cozzani, 2021). Cyber-attacks are targeted, which means that
they can bring about serious consequences. Moreover, due to the high level
of automation and the ongoing digital transition (e.g., increased use of auto-
mated sensors, detectors, controllers, diagnostics, digital communications,
wireless connections, the interconnection between control and safety
instrumented systems, connections to external networks), incidents caused
by cyber-attack are more frequent than before. The cybersecurity-related
incidents in different industrial sectors are shown in Fig. 4. It is worth noting
that the incidents in chemical and petrochemical account for 54.87%. This is
because the cyber-attacks on chemical and petrochemical systems can result
in severe impacts, which means it is more attractive for cyber-attacks than
other areas. Therefore, there is a need to address the impact of cyber attacks
on industrial sector facilities (such as nuclear power plants, water and food
plants, chemical plants and oil refineries).
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Fig. 4 The cybersecurity-related incidents in different industrial sectors.

4. Purpose and organization of this MCPS Volume 6

This book is the sixth volume of the Methods in Chemical Process Safety
book series. This volume aims to provide state-of-art progress of digitaliza-
tion and corresponding opportunities and threats in process safety.
Chapter “State-of-the-art in process safety and digital system” by Amin
et al. will do that in more detail. Chapter “Data-driven approaches: Use
of digitized operational data in process safety” by Bai et al. details the appli-
cation of data-driven approaches to process safety, including process mon-
itoring, dynamic and operational risk assessment, and reliability modeling/
predictive maintenance. Chapter “Industry 4.0 based process data analytics
platform” by Wanasinghe et al. briefly presents Industry 4.0 based process
data analytics platform, comprising data acquisition, loT technologies,
machine learning, and big data. Chapter “Digital process safety
management” by Slezak et al. summarizes specific details on available process
safety management (PSM) and safety management system. It discusses
the advantages and disadvantages of digital (PSM and SMS). Chapter
“Statistical approaches and artificial neural networks for process monitoring”
by Alauddin et al. discusses statistical approaches and artificial neural
networks for process monitoring for fault detection and diagnosis.
Chapter “Alarm management techniques to improve process safety” by
Yang et al. will be on alarm management, which in many cases is the start
of abnormal situation management in digitalized process systems. It provides
the details of conventional and advanced alarm system, including alarm sig-
nal processing, alarm prioritization and control, and alarm response proce-
dures. Chapter “Performance evaluation of digitalized safety barriers” by
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Zhang and Liu will be on smart safety instrumented system (SIS) and per-
formance evaluation of digitalized safety barriers. Chapter “Dynamic oper-
ational risk assessment in process safety management” by Li et al. explains
advantages of dynamic operational risk assessment in process safety manage-
ment. Besides, in this chapter the methods of risk assessment and dynamic
risk assessment are briefly discussed. Next, in chapter “Risk of cascading
effects in digitalized process systems” by laiani et al. the risk of cascading
effects and uncertainty modeling in risk assessment of digitalized process sys-
tems are provided. Chapter “Uncertainty modeling in risk assessment of dig-
italized process systems” by Yazdi et al. treats the uncertainty in risk
assessment outcomes. Chapter “Human factors in digitalized process
operations” by Srinivasan et al. describes the effect of human factors in
digitalized process operations. Chapter “Safety assessment of complex
socio-technical systems” by Paltrinieri explains the safety assessment of com-
plex socio-technical systems, while chapter “Security of digitalized process
systems” by El-Kady et al. will provide the state of play of security measures
in digitalized process systems. Chapter “Integrated dynamic risk manage-
ment in process plants” by Taleb-Berrouane and Pasman discusses aspects
of the integrated dynamic risk management in process plants, including
safety and security interactions and economic aspects. A more detailed treat-
ment of application of digital twins in process safety management is provided
in chapter “Use of digital twins for process safety management” by Keprate
and Bagalkot. Chapter “Resilience analysis of digitalized process systems” by
Yarveisy et al. discusses the details of resilience analysis of digitalized process
systems, comprising various definitions and evolving methods. Finally,
chapter “Risk assessment in Industry 4.0” by Amin and Khan shows and
summarizes risk analysis in the Industry 4.0 time frame and concludes this
volume.
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