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Abstract. Motivation: Anti-cancer drugs may elicit resistance or sen-
sitivity through mechanisms which involve several genomic layers. Never-
theless, we have demonstrated that gene expression contains most of the
predictive capacity compared to the remaining omic data types. Unfor-
tunately, this comes at a price: gene expression biomarkers are often hard
to interpret and show poor robustness.
Results: To capture the best of both worlds, i.e. the accuracy of gene
expression and the robustness of other genomic levels, such as mutations,
copy-number or methylation, we developed Percolate, a computational
approach which extracts the joint signal between gene expression and
the other omic data types. We developed an out-of-sample extension of
Percolate which allows predictions on unseen samples without the neces-
sity to recompute the joint signal on all data. We employed Percolate to
extract the joint signal between gene expression and either mutations,
copy-number or methylation, and used the out-of sample extension to
perform response prediction on unseen samples. We showed that the joint
signal recapitulates, and sometimes exceeds, the predictive performance
achieved with each data type individually. Importantly, molecular signa-
tures created by Percolate do not require gene expression to be evaluated,
rendering them suitable to clinical applications where only one data type
is available.
Availability: Percolate is available as a Python 3.7 package and the
scripts to reproduce the results are available here.
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1 Introduction

Over the course of their lifespan, human cells accumulate molecular alterations
that result in the modification of cell behavior [27]. When aggregated at the tissue
level, these alterations can compromise tissue homeostasis, in turn clinically
impacting a patient [13]. Understanding the combined effect of these alterations
is key to designing bespoke lines of treatment [28,33]. These molecular alterations
occur at different genomic levels and are recorded using different technologies,
collectively referred to as “omics” technologies. Each of these omic measurements
offers only partial information regarding the compromised tissue. Aggregating
different omic measurements, an analysis known as multi-omics integration, is
therefore necessary to generate a comprehensive picture of the molecular features
underlying a cancerous lesion [5,20].

Owing to their high versatility, cell lines offer a cost-effective model system for
drug response modelling [8]. Specifically, large scale consortia have industriously
subjected a large number of cell lines to hundreds of different compounds, yield-
ing valuable drug response measurements [12,16,32]. A key challenge resides in
combining these response measurements with multi-omics data to study mecha-
nisms of resistance and sensitivity [24]. Existing approaches focus on combining
all omics data types and can be ordered based on the stage of the analysis
at which the integration is performed [6]. At one extreme, early integration
approaches [4,19] first aggregate all features from all data types to process them
all simultaneously. At the other extreme, late integration approaches first com-
pute a representation of each data type individually, and subsequently combine
these representations [11,26,36]. Several other methods can be positioned along
this ordering, and differ by the analysis stage during which the grouping of data
types is performed [41]. Although promising and encouraging, these methods do
not take into account the quality of the data types and do not explicitly model
their topology [2], i.e., how the data types relate to each other regarding infor-
mation content and capacity to predict drug response. In particular, it has been
observed that, although it has traditionally been the least clinically actionable
data type, gene expression consistently prevails over other data types [9] and
provides similar performance as early-integration approaches [1], obviating the
need for complex integration strategies.

In order to maintain the predictive power of gene expression data, while
exploiting the robustness of the most actionable data types, we present Perco-
late, an unsupervised multi-omics integration framework. Percolate sets itself
apart from other integration approaches as it aims to eliminate gene expres-
sion measurements from the final predictor, rather than integrating it with all
other data types. This is achieved by extracting the joint signal between gene
expression and the other data types in an iterative fashion. First the joint signal
between gene expression and Data type 1 (e.g. mutations) is extracted. Then
the remaining signal (not shared with Data type 1) is employed to extract the
joint signal of gene expression with Data type 2 (e.g. copy number data). This
procedure is repeated for all omics data types. In this way, the gene expression
signal is “percolated” down the other omics data types, ideally extracting all
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predictive signal from the gene expression data. Technically, Percolate employs
a popular framework, called JIVE [11,26], which breaks down paired datasets
into joint and individual signals. We first extended JIVE to non-Gaussian noise
models employing GLM-PCA [7]. Specifically, we used an alternative optimiza-
tion, the decomposition of saturated parameters [21], which we theoretically
proved to be competitive with the original formulation. Finally, we developed an
out-of-sample extension for JIVE, useful when only one of the two data types is
available.

We first show that comparing gene expression to other data types individually
recovers a known topology of multi-omics data. We then show that the informa-
tion shared between individual omic data types and gene expression increases
drug response predictive performance for the individual omic data types. Finally,
reconstructing the joint signal solely from mutation, copy-number and methy-
lation, we show that the signatures derived from “percolating” gene expression
down these data types recapitulate the drug response predictive performance of
these data types.

2 Methods

2.1 Trade-off Between Robust and Predictive Types

We consider four data types: mutations (MUT), copy number aberrations
(CNA), methylation (METH) and gene expression (GE). MUT and CNA directly
measure genetic aberrations and therefore rely on DNA measurements. Due
to several biological and technological factors, these measurements are highly
robust and suffer from little technical artefacts. On the other end of the spec-
trum, GE measures RNA abundance, a process known for exhibiting large bio-
logical variability and prone to technical artefacts. Between these two extremes,
methylation offers an intermediate level of robustness. However, when it comes
to drug response prediction, the order is reversed: GE offers, on average, a bet-
ter predictive performance than METH, and significantly outperforms MUT and
CNA [1,8,17]. This leads to a trade-off between robustness and predictive abil-
ity (Fig. 1A) with MUT and CNA being the most robust and least predictive
and GE being the most predictive and least robust, with METH rating at the
intermediate level in terms of robustness and predictive capacity.

2.2 Exponential Family Distribution

Our integrated approach is inspired by AJIVE [11], a computational approach
which takes as input two paired datasets and computes a joint and a data-
specific signals. AJIVE is an extension of the JIVE model [26], which we selected,
among other extensions [35,37], for its computational tractability and its math-
ematical formulation which is amenable to the derivation we propose. JIVE,
AJIVE, and derivations thereof, critically rely on Principal Component Analysis
(PCA) which assumes a Gaussian noise model on the data [22,39]. To extend this
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Table 1. Exponential family distributions. Gaussian distribution is assumed to
have unit variance. The dispersion parameter r is fixed for the Negative Binomial.

Data type Family distribution

Copy-number aberration (CNA) Log-Normal or Gamma

Gene expression (GE) Negative-Binomial

Methylation (METH) Beta

Mutation (MUT) Bernoulli

framework to non-Gaussian settings, we make use of a generalized formulation
that can deal with a wider class of parametric distribution models, i.e., the so-
called exponential family [31].

Definition 2.1 (Exponential family distribution). Let X ⊂ R
p, we say that

a random vector Z ∈ X follows an exponential family distribution if its
probability density function f can be written as

∀z ∈ X , f (z|θ) = h (z) exp
(
η (θ)T

T (z) − A (θ)
)

. (1)

T : X → R
q (q > 0) is called the sufficient statistics, θ ∈ R

q the exponential
parameter, η : Rq →∈ R

q the natural parametrization, A : Rq → R the log-
partition function and h : X → R

+ the base measure.

The exponential family encompasses a broad set of distributions (Supp.
Table 1), including the Gaussian distribution with unit variance, the Poisson,
the Bernoulli, the Beta or the Gamma distributions. Practically, the functions
A, T and η are modelling choices which can be tuned for any specific application.

2.3 Saturated Model Parameters

For this section, we consider a data matrix X ∈ R
n×p, with n (resp. p) the

number of samples (resp. features). We model this data using an exponential
family distribution E = (T,A, η) (Definition 2.1), which choice is motivated by
prior knowledge. For instance, if the data is known to be binary, one would
turn to E defined by the Bernoulli distribution, while another data distribution
would lead to a different choice of functions (Supp. Table 1). We denote by q the
dimensionality of T and A output space.

Definition 2.2 (Negative log-likelihood). We define the negative log-
likelihood, denoted L, as follows:

∀Θ ∈ R
n×p×q, L (Θ;X, E) =

n∑
i=1

p∑
j=1

A (Θi,j) − η (Θi,j)
T

T (Xi,j) . (2)
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Fig. 1. Dissecting multi-omics topology using Percolate bridges the gap
between predictive and robust data types. (A) Trade-off between robust data
types (MUT, CNA) and predictive types (METH, GE). (B) Workflow of our imple-
mentation of GLM-PCA, which relies on the projection of saturated parameters. (C)
Workflow of Percolate, which extends JIVE to non-Gaussian settings by comparing the
low-rank structures of saturated parameter matrices.

Definition 2.3 (Saturated parameters). We define the saturated parameters
Θ̃ (X, E) ∈ R

n×p×q as the minimizers of L, i.e.,

Θ̃ (X, E) = argmin
Θ∈Rn×p×q

L (Θ;X, E) . (3)

The saturated parameters correspond to single-sample maximum likelihood
estimates. This quantity, which will be the pillar of our approach to GLM-PCA
(Sect. 2.4), can be computed as follows.

Proposition 2.4 (Computation of saturated parameters). Assume that A and
ν are differentiable with invertible differentials. Then, denoting J as the Jacobian
of a function:

Θ̃ (X, E) = η−1 ◦ (
JA◦η−1

)−1 ◦ T (X) =̂ g−1 (X) , (4)

using an element-wise operation on all elements of X.
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Proof. We refer the reader to the Supplementary Material (Sect. 4) for the proof.
�

Proposition 2.4 shows that the saturated parameters correspond to a dual repre-
sentation of the data motivated by prior knowledge on the data-distribution. We
will exploit this representation ‘a la PCA to find the main sources of variations
in a framework called GLM-PCA.

2.4 Generalized Linear Model Principal Component Analysis
(GLM-PCA)

JIVE is based on Principal Component Analysis (PCA), which admits three
equivalent definitions: maximization of projected variance, minimization of
reconstruction error and maximization of a Gaussian likelihood with unit-
variance. This latter definition can be restrictive for non-Gaussian data and
we therefore set out to replace PCA by an extension called GLM-PCA [7].
In these methods, the Gaussian likelihood is replaced by an exponential family
distribution. The original approach from Collins et al. [7] minimizes a negative
log-likelihood using an SVD-like decomposition for the exponential parameters,
yielding three different matrices. Refinements of this idea, which solve a similar
optimization problem, have been proposed in the literature [23,25] and offer com-
petitive routines for the computation of these three matrices. Another take on
this problem, which relies on the projection of saturated parameters, has recently
been developed by Landgraf et al. [21]. This approach offers the advantage of a
simpler single-matrix optimization instead of concomitantly optimizing on three.
Furthermore, the out-of-sample extension relies on a matrix multiplication and
is thus computationally fast. These two approaches therefore aim at finding the
same decomposition through different computational routines. We here present
these two approaches and prove that the latter offers a similar or better mini-
mizer for the negative log-likelihood, which, to the best of our knowledge, had
not been established.

2.4.1 Two Formulations of GLM-PCA

Definition 2.5 (SVD-type [7]). SVD-type GLM-PCA computes three matrices,
USV D ∈ R

n×d, VSV D ∈ R
p×d and ΣSV D ∈ R

d×d (diagonal), alongside a vector
μSV D ∈ R

p defined as

USV D, VSV D, ΣSV D, μSV D =̂ argmin
U,V,Σ,μ

V T V =UT U=Id

L (
UΣV T + 1nμT ; X, E)

(5)

Definition 2.6 (Projection of saturated parameters [21]). GLM-PCA by pro-
jection of saturated parameters computes one matrix, VSP ∈ R

p×d alongside a
vector μSP ∈ R

p defined as

VSP , μSP =̂ argmin
V ∈R

p×d,μ∈R
p

V T V =Id

L
((

Θ̃ (X; E) − 1nμT
)

V V T + 1nμT ; X, E
)

, (6)
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The loading matrices (VSV D and VSP ) and the score matrix (USV D) have orthog-
onal constraints, which is similar to PCA where scores are by construction uncor-
related.

2.4.2 Equivalence of the Formulations

We here show that the projection of saturated parameters provides a competitive
minimization when compared to the SVD-type decomposition. The main result
is based on Supp. Lemma 5.1 and we refer the reader to the Supplementary
Material (Sect. 5) for a complete proof.

Theorem 2.7. Let us define USV D, VSV D,ΣSV D and μSV D as in Definition
2.5, and VSP , μSP as in Definition 2.6. The likelihood resulting from the two
optimization processes satisfies

L (
USV DΣSV DV T

SV D + 1nμT
SV D

) ≥ L
((

Θ̃ − 1nμT
SP

)
VSP V T

SP + 1nμT
SP

)
,

(7)
where the dependencies on X and E for L and Θ̃ were removed for verbosity’s
sake.

Theorem 2.7 shows that, although the two approaches compute the same
decomposition, the one obtained from saturated parameters yields a lower or
equal negative log-likelihood. It is also worth noting that the SVD-like optimiza-
tion is usually performed by alternate optimization [40] and the initialization can
play a major role in the convergence. The projection of saturated parameters
only requires one minimization round, and is thus faster and less prone to ini-
tialization effects. Using the decomposition of saturated parameters, however,
comes at a price: there is an infinity of solutions, all equal up to a unitary trans-
formation. In order to obtain sample scores that are uncorrelated, we proceed
as follows.

Definition 2.8 (Sample scores). Let VSP and μSP be defined as in Definition
2.6 and assume that rank

(
Θ̃ − 1T

nμSP

)
≥d. Then rank

[(
Θ̃ − 1T

nμSP

)
VSP V T

SP

]

= d and we define USP , ΣSP and WSP as the unique rank-d SVD decomposition
of the saturated parameters, i.e.

USP ΣSP WT
SP =

(
Θ̃ − 1T

nμSP

)
VSP V T

SP . (8)

It is worth noting that the equality in Eq. 8 is not an approximation and this
second SVD does not entail any loss of information. It is a pure computational
maneuver to whiten the obtained scores.

2.4.3 Hyper-parameter Optimization

The solution of Eq. (6) is an optimization problem with a Stiefel-manifold con-
straint, which we solved by using recent advances in auto-differentiation [30]
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Fig. 2. Assessing the number of joint components. (A) Schematic of the sample-
level permutations we perform to estimate the number of joint components. (B) Venn-
diagram of the number of joint components obtained using the permutation scheme. (C)
Ratio of variance explained for the GE saturated parameters matrix after projection
on the joint components.

and optimization on Riemmannian manifolds [29]. We modelled the functions
A, T and the negative log-likelihood using PyTorch; stochastic gradient descent
(SGD) on the Stiefeld-manifold was performed using McTorch. Such a formula-
tion allows to employ a large variety of exponential family distributions without
the need for heavy and potentially cumbersome Lagrangian computations. Our
optimization scheme relies on four hyper-parameters: number of factors (or prin-
cipal components), learning rate, number of epochs and batch size. To determine
them, we compute the Akaike Information Criterion (AIC) of the complete data
for various values of d and different hyper-parameters [3]. For a GLM-PCA model
with d PCs, the AIC corresponds to the sum of the data log-likelihood and the
number of model parameters, which we estimate as the dimensionality of the
Stiefel manifold

{
V ∈ R

d×p|V V T = Id

}
, equal to pd − d(d + 1)/2. Among all

trained models, we select the one which harbors the smallest AIC.

2.5 Comparison of GLM-PCA Directions by Percolate

Setting: We consider two datasets XA ∈ R
n×pA and XB ∈ R

n×pB with paired
samples (rows) but potentially different features. We first perform GLM-PCA
independently on XA and XB using two different exponential family distribu-
tions, yielding dA and dB factors, respectively denoted as ṼA and ṼB . We fur-
thermore denote by Θ̃A and Θ̃B the saturated parameters of datasets A and
B respectively, and μ̃A and μ̃B the intercept terms. Using the decomposition
presented in Definition 2.8, we furthermore define ŨA,ΣA, W̃A and ŨB ,ΣB , W̃B .
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Definition 2.9. To compare the two sets of samples scores, ŨA and ŨB, we
aggregate them in a matrix M, which we decompose by SVD:

M =
[
ŨA, ŨB

]
= UMΣMV T

M . (9)

The top left-singular vectors correspond to sample scores which are highly cor-
related between ŨA and ŨB , since both of these two matrices are consisting, by
construction, of uncorrelated factors. Following the same intuition as in AJIVE,
these can be understood as the joint signal, motivating the following definition.

Definition 2.10 (Joint and individual signals). Let rJ < min (dA, dB), we
define the joint signal as the matrix ŨJ ∈ R

n×rJ with the top rJ left-singular
values of M. We furthermore denote by ΣJ the diagonal matrix with the top rJ

singular values of M.
We define the individual signal of A (resp. B), denoted as ŨA

I (resp. ŨB
I ),

as the signal from ŨA
I (resp. ŨB

I ) not present in ŨA (resp. ŨB), formally:

ŨA
I & =

(
In − ŨJ ŨT

J

)
ŨA

ŨB
I & =

(
In − ŨJ ŨT

J

)
ŨB

. (10)

We call the complete process Percolate, and a summarised workflow can be
found in Fig. 1B-C.

In order to set the number of joint components rJ , we employ a sample-level
permutation scheme. We first independently permute the rows of ŨA and ŨB ,
which we then aggregate as in Eq. (9) to obtain the singular values. We perform
100 such permutations independently and retrieve the first singular value for
each. Finally, we set rJ as the number of elements in ΣM over one standard
deviation from the mean of the permuted singular values (Fig. 2A).

2.6 Projector of Joint Signal

AJIVE does not provide an out-of-sample extension, and we here propose a
derivation thereof by rewriting the matrix UJ as a function of the saturated
parameters.

Theorem 2.11. Let’s decompose the matrix VM as VM =
[
V T

M,A V T
M,B

]T such
that V T

M,A contains the first dA columns of V T
M and V T

M,B the last dB ones, we
obtain:

ŨJ = ŨJ,A + ŨJ,B

with

⎧
⎨
⎩

ŨJ,A =
(
Θ̃A − 1nμ̃T

A

)
Ṽ T

A ṼAWAΣ−1
A VM,AΣ−1

J

ŨJ,B =
(
Θ̃B − 1nμ̃T

B

)
Ṽ T

B ṼBWBΣ−1
B VM,BΣ−1

J

. (11)
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Fig. 3. The joint signal between robust and gene expression contains most
of the predictive signal. (A) Workflow of our approach. (B) Predictive performance
for MUT when using Percolate between MUT and GE. Each point corresponds to a
single drug, with the x-axis corresponding to the predictive performance obtained using
the original mutation data, and the y-axis by either the joint (red) or the individual
(blue) signals. (C) Predictive performance for CNA, similarly displayed as in B. (D)
Predictive performance for METH, similarly displayed as in B.

Proof. We refer the reader to the Supplementary Material (Sect. 6) for the com-
plete proof. �

The formulation of ŨJ presented in Equation (11) highlights the additive
contribution of both dataset to the joint signal. At test time, both views are
therefore required to estimate the joint signal. To tackle the issue of missing data-
view, we propose a nearest-neighbor imputation of the unknown joint-term. Let’s
consider, without loss of generality, that only the view A is available. The joint
signal has been computed using the two data matrices XA and XB , yielding ŨJ,A

and ŨJ,B . The second term contains rJ terms, and we train rJ corresponding
k-Nearest-Neighbors (kNN) regressors. The test dataset YA ∈ R

m×pA can be
projected on the joint signal by replacing the saturated parameter Θ̃A in Eq. 11
with the saturated parameter of the test data. We then estimate the second term
by means of the rJ kNN regression models. Adding these two terms yields an
estimate of the joint signal.

2.7 Drug Response Prediction

We assess the predictive performance of a dataset by employing ElasticNet [42],
which has been shown, inspite of its relative simplicity, to outperform more
complex non-linear models when it comes to drug response prediction [8,17,38].
For a given dataset, we perform nested cross-validation as follows. First, datasets
are stratified into 10 groups of equal size. For each group (10%), we employ
a 3-fold cross-validation grid search on the remaining 90% to determine the
optimal ElasticNet hyper-parameters (�1-ratio and penalization). We then fit
this optimal ElasticNet model on the 90% to predict the class labels on the 10%.
Repeating this procedure, we obtain one cross-validated estimate per sample
and we define the predictive performance as the Pearson correlation between
these estimates and the actual values.
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2.8 Data Download, Modelling and Processing

We consider four data types in our analysis (Table 1) which we modelled using
different exponential family distributions (Supp. Material). The GDSC data was
accessed on January 2020 from CellModel Passport [16]. For GE, MUT and CNA,
we restricted to protein coding genes known to be frequently mutated in cancer,
referred to as the mini-cancer genome [15]. GE was corrected for library size
using TMM normalization [34] and mutations were restricted to non-silent.

3 Results

3.1 The Breakdown of the Joint Signals Highlights the Topology
of Multi-omics Data

To compare data types, we employ Percolate using the distributions defined in
Table 1, and a number of PCs set using the procedure presented in Subsect. 2.4
(Supp. Figure 2). For each comparison, setting the number of joint components
is a crucial step, as it defines the threshold between the joint and individual
signals. For that purpose, we used a sample level permutation test (Fig. 2A,
Subsect. 2.5).

We observe that GE shares 21 joint components with METH, 13 with CNA
and only 6 with MUT, which is coherent with the gradient put forward in Fig. 1.
We furthermore observe that MUT is consistently the data type with the least
number of joint components (Fig. 2B), highlighting the weakness of the signal
coming from MUT data, corroborating previous measured topologies of multi-
omics data [2]. To measure the strength of the underlying joint signals, we com-
puted the proportion of GE variance explained by the joint directions (Fig. 2C),
computed as the ratio between the joint signal variance and the variance of the
GE’s saturated parameters matrix. We observe that the joint signal between GE
and METH explains 26% of GE variance, while this figures drops to 14% and
7% for CNA and MUT, respectively. These observations highlight the existence
of a joint signal, of which the predictive performance can be interrogated.

3.2 Robust Signal Predictive of Drug Response Is Concentrated
in the Joint Part

We then investigated the relevance of the joint and individual signals when it
comes to drug response prediction. Considering one robust data type at a time
(MUT, CNA or METH), we first decomposed the original robust data type into
a signal joint with GE and an individual signal specific to the robust data type.
We then computed, for 195 drugs (Methods), the predictive performance for
these two signals and compared it to the original robust robust data (Fig. 3A,
Subsect. 2.7). To ensure a proper comparison between joint, individual and cell-
view, the cross-validation was performed using the same folds for all datasets. As
ElasticNet has been shown in the literature to outperform other more advanced
algorithms for this particular task [8,17,38], we restricted our comparison to
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Fig. 4. Robust-type-based signatures created from Percolate recapitulate
drug response. (A) Schematic of the cross validation experiment. (B) Results for
MUT with a special zoom on drugs predictive for joint but not robust (left) and for
robust but not join (right). (C) Results for CNA. (D) Results for METH.

this regression method. Such experimental design has the advantage to properly
assess the effect of Percolate, as no additional performance can be gained from
the regression model.

We first analyzed the results obtained between MUT and GE data (Fig. 3B).
We observe that for most drugs, the predictive performance of the joint signal
exceeds the predictive performance of the original robust signal, except for a
number of drugs of which the response is quite well predicted based on MUT
only. This set includes the drugs Nutlin-3, Dabrafenib, and PLX-4720. In con-
trast, the individual signal shows no predictive performance (Pearson correlation
below 0) for most drugs, indicating an absence of drug response related signal in
the individual portion. We then turned to CNA where the choice of distribution
was unclear, with, to the best of our knowledge, no clear precedent on how to
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model such data. Due to the observed behavior of CNA data, we opted for two
possible distributions: Log-normal and Gamma distributions (Supp. Table 1). We
observe that the joint signal computed using a Gamma-distribution yields bet-
ter performances than the log-normal model (Supp. Figure 3A-B). When using
a Gamma distribution, a conclusion similar to the MUT data can be reached
with the majority of drugs predicted well with the joint signal except three
drug, AZD4547, PD173074 and Savolitinib (Fig. 3C). This advocates for using
the Gamma distribution for analyzing CNA data and shows that the joint signal
presents an increased performance while the individual signal is not predictive.
Finally, we studied the drug response performance obtained after decomposing
METH using GE (Fig. 3D). We observe that the joint signal presents a similar
predictive performance as the original methylation data. The individual signal
is, again, not predictive. These results highlight the potential of restricting pre-
dictors to the joint signal for robust data types.

3.3 Out-of-sample Extension Recapitulates the Predictive
Performance of Robust Signal

In order to compute the joint signal between one robust data type and GE, one
needs to have access to both modalities. However, the purpose is to become inde-
pendent of non-robust GE measurements. In order to study whether the joint
signal could be estimated without access to gene expression, when the predic-
tor is applied to a test case, we exploited our out-of-sample extension (Subsect.
2.6). We employed this algorithm to compute the drug response predictive per-
formance of the joint signal estimated using the robust data alone (Fig. 4A).
Dividing the data in ten independent folds, we performed a cross-validation esti-
mation as follows. For each train-test division of the data, we trained a Percolate
instance on the 90% of the data, the training set containing GE and the robust
data type. The resulting joint information was then used to train an ElasticNet
model to predict drug response. The remaining 10% (test data) were then used
to first estimate the joint signal, solely based on the robust data (Subsect. 2.6).
This joint signal was then used as input into the ElasticNet model to predict
the response on this test set. Finally, we computed the predictive performance
as indicated in Subsect. 2.7.

When analyzing results for MUT (Fig. 4B), we first observe a clear drop in
performance for the joint signal compared to the previous results (Fig. 3B). This
suggests that the GE portion of the joint signal (Eq. 11) contains a significant
portion of predictive signal, which is less well captured by our out-of-sample
extension. Nonetheless, we observe that 11 drugs show a predictive performance
above 0.2 for joint but not for the robust data. In contrast, 11 drugs show
the opposite effect, including seven which target the MAPK pathway – MEK
(Trametinib, PD0325901, Selumetinib) and ERK (ERK2440, ERK6604, Ulix-
ertinib, SCH772984). BRAF inhibitors Dabrafenib and PLX-4720 also show a
drop in performance. This suggests that constitutive activation of the MAPK
pathway is not recapitulated by the joint signal. Nonetheless, the joint signal
generated by Percolate helps increase performance for several poorly predictive
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Fig. 5. Study of joint signals contributing to improved performance. For each
drug, we report the top 10 largest gene regression coefficients from the joint signal,
in absolute values. We first analysed the joint biomarkers created from MUT data for
Gemcitabine (A), Vincristine (B) and Palbociclib (C). We then turned to CNA-based
signatures for OSI-27 (D), Vorinostat (E) and Vincristine (F).

drugs and is therefore of interest to study various response mechanisms. We
then turned to CNA (Fig. 4C) and observe a modest decrease in predictive per-
formance compared to the performance on the original CNA profiles. Three drugs
show a spectacular drop as the response can not be predicted by the joint signal
– Savolitinib (cMET), PD173074 (FGFR) and AZD4547 (FGFR). In contrast,
three drugs show improved performance for the joint signal – OSI-027 (mTOR),
Navitoclax (HDAC) and Vincristine (tubulin). Finally, we repeated the experi-
ment for METH (Fig. 4D) and observe that predictive performances of the joint
signal is remarkbly comparable to the predictive performance on the original
METH data, with most drugs falling showing less than 2% relative performance
difference (Supp. Figure 4C). Taken together, these results show that the joint
signal recapitulates the drug response performance abilities of DNA-based mea-
surements.
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3.4 Study of Genes Contributing to the Joint Signals

We then set out to study the underlying mechanisms associated with the pre-
dictors derived from the robust data types (Subsect. 3.3) which also lead to
improved performance. For a given drug, we trained an ElasticNet model on
the joint signal, yielding one regression coefficient per joint component. Using
the relationship from Eq. 11, we obtain a regression coefficient for each gene.
A positive coefficient indicates that larger values of the saturated parameters,
caused by a mutation or amplification of the supporting gene, are associated
with resistance. In contrast, a negative coefficient indicates that larger values of
the saturated parameters are associated with sensitivity.

For MUT, we studied the mode of action of three drugs for which the joint
signal performs well (Fig. 4B): Gemcitabine (Fig. 5A), Vincristine (Fig. 5B) and
Palbociclib (Fig. 5C). We observe that TP53 mutation status is associated with
resistance to three drugs, concordant with earlier observations showing that
TP53 mutant are more resistant to chemotherapy [14]. Resistance to Gemc-
itabine and Vincristine is also associated with KRAS and PI3KCA mutations,
known for their proliferative potential [10,18]. Interestingly, mutations in MYC
and MAPK8IP2 are associated with sensitivity to these three drugs. Three other
drugs show a drop in predictive performance on the joint signal as compared to
the original signal: Nutlin-3, Dabrafenib and PLX-4720 (Fig. 4B). We observe
that the known targets of these drugs exhibit a large coefficient: TP53 for Nultin-
3 (known resistance biomarker) and BRAF for Dabrafenib and PLX-4720 (Supp.
Figure 5). These three drugs highlight a limitation of our approach: GLM-PCA
generates scores which aggregates the contributions of several genes. Highly-
specific drugs, like Nutlin-3 (Mdm2-inhibitor) or BRAF/MEK-inhibitors not
only target a specific protein, but mutations in the target are excellent response
predictors. Such cases do not benefit from the GLM-PCA aggregation as a single
feature alone is predictive.

Next we turned to CNA where three drugs: OSI-27 (Fig. 5D), Vorinostat
(Fig. 5E) and Vincristine (Fig. 5F), which all showed increased performance when
the joint signal is employed as compared to the original CNA data. For both
OSI-27 (mTORC1) and Vorinostat (HDAC), we observe that amplification of
CDKN2A (p16) is associated with sensitivity. P16 acts as a tumor-suppressor by
slowing down the early progression of the cell-cycle and its loss is here associated
with resistance for these two drugs. Finally, Vincristine’s predictor shows that
MAP4K1’s amplification as a predictor of resistance. Such result is coherent with
what we observed for MUT (Fig. 5B) where mutations on KRAS were associated
with resistance.

3.5 Iterative Application of Percolate Deprives Gene Expression
from Predictive Power

Finally, we questioned whether some signal predictive of drug response is still
present in gene expression. To this end, we studied the GE signal after it has been
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Fig. 6. The signal joint with DNA-based measurements deprives gene
expression from any predictive power. (A) Schematic of our iterative procedure
to remove from GE any signal joint with robust data type. (B) Predictive performance
of the resulting residual gene expression compared to the predictive performance of the
complete gene expression.

stripped of all the signal it shares with MUT, METH or CNA. To remove all sig-
nal associated with robust data types from GE, we used Percolate iteratively on
GE, starting with the least predictive data type (MUT), followed by CNA and
ending with the most predictive data type (METH) (Fig. 6A). Specifically, we
first”percolate” GE through MUT to obtain an individual GE signal (not shared
with MUT), which is then percolated through CNA to obtain a second GE indi-
vidual signal, which is then finally percolated through METH, resulting in the
individual GE signal we denote as residual gene expression. We finally assessed
the predictive performance of this residual gene expression and compared it to
the predictive performance of the original GE (Fig. 6B, Subsect. 2.7). We observe
that no drug reaches a Pearson correlation above 0.16, indicative of a complete
lack of predictive performance in the residual GE. This shows that removing the
signal joint with DNA-based measurements deprives gene expression from any
predictive ability.

4 Discussion

Designing multi-omics predictors of drug response has highlighted the existence
of a trade-off between robust and predictive data types. To study this trade-
off, we developed Percolate, a method which decomposes a pair of data types
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into a joint and an individual signal. After showing that the strength of the
joint signal recapitulates the known topology between data types, we showed
that the joint signal contains more predictive power than any robust data type
alone. Exploiting our out-of-sample extension, we showed that the joint signal,
computed from robust data types alone, recapitulates most of the predictive
performance of each original robust signal. Finally, we showed that the gene
expression signal predictive of drug response is fully captured by robust data
types through Percolate.

Although encouraging, our results display certain limitations that could
inspire future methodological improvements. A key direction lies in the drop
of performance between Fig. 4 and Fig. 5, caused by the out-of-sample exten-
sion. We theoretically decomposed the joint signal (Theorem 2.7) and presented
an approach to approximate, using the robust type, the contribution from gene
expression. We believe that this step can be improved in two ways: either by
increasing the sample-size, thereby expanding the pool of potential anchors, or
through the design of novel regression approaches. Another important improve-
ment would be to extend this methodology to unpaired (single-cell) multi-omic
measurements where characterizing the joint signal between omic datasets is a
critical step.

Technically, Percolate extends JIVE in two different ways. First, by using
GLM-PCA instead of PCA, we tailor the dimensionality reduction step to the
specific data under consideration. Second, we developed an out-of-sample exten-
sion which allows to estimate the joint signal, even in the absence of one data-
modality. For our analysis, we made use of standard distributions from the expo-
nential family: Negative Binomial, Gamma, Beta or Bernoulli. Our implemen-
tation of GLM-PCA is versatile and any exponential family distribution can be
employed in our framework, provided it can be auto-differentiated by PyTorch.
Employing more complex distribution, like the inverse-gamma for copy-number
is a fruitful avenue to improve on our methodology.
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