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To the wonderful world of science and technology...

“....The woods are lovely, dark and deep,
But I have promises to keep,
And miles to go before I sleep,
And miles to go before I sleep.”

-Robert Frost, “Stopping by Woods on a Snowy Evening”.
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Summary

Reliable prediction and monitoring of dynamically changing environments are es-
sential for a safer and healthier society. Sensor networks play a significant role
in fulfilling this task. The two fundamental aspects of environmental sensor net-
works (ESNs) include the need for accuracy as well as low-complexity and energy-
efficient sensing modalities. One of the wonted challenges of ESNs is high resolu-
tion environment monitoring in the presence of sensing overheads (such as number
of sensors, battery life, maintenance). Limiting the number of sensing resources yet
still guarantee a desired resolution of the unknown environmental field necessitates
resource-efficient sensing framework. On the other hand, the physical behavior of
many environmental fields can be predicted using statistical models. Cognizance
of the physical properties of environmental fields motivates opportunistic sensor
placement to dynamically monitor the environment. In this thesis, we present sig-
nal processing methods for resource-efficient environment monitoringexploiting
the physical properties of environmental fields. We mainly focus on a general class
of environmental fields that obey standard physical properties (such as diffusion,
advection) responsible for the spatio-temporal evolution of the field.

We first discuss different mathematical representations to link the sensor mea-
surements with the unknown field intensities. Statistical characterizations of dif-
ferent physical properties of environmental fields such as space-time correlation
and the dynamics of field propagation are also discussed. A comprehensive envi-
ronment monitoring framework is presented that encompasses sensor management,
measurement accumulation, and field estimation.

We propose a spatio-temporal sensor management method which can be ap-
plied for stationary as well as non-stationary environmental fields. We formulate
a unified optimization framework that provides the number and the most informa-
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tive sensing locations to deploy sensors guaranteeing a desired estimation accu-
racy in terms of the mean square error (MSE). The main objective is to implement
“sparse-sensing” in an environment monitoring perspective while also achieving
a prescribed accuracy. We also propose different strategies to solvethe proposed
optimization problem for both online and offline applications.

We present a practical example of environment monitoring, i.e., dynamic rain-
fall monitoring using rain-induced attenuation measurements from commercial mi-
crowave links. We describe different methods to incorporate some physical prop-
erties of rainfall (such as the physics behind the rainfall propagation, spatial effects
such as sparsity, correlation etc.) in the dynamic monitoring setup. We also com-
pare the estimation performance of the developed technique with standard estima-
tors such as an extended Kalman filter (EKF).

We extend the proposed sparsity-enforcing spatio-temporal sensor management
method for a broader class of environmental fields consisting of a combination
of both stationary and non-stationary components. We develop an algorithmfor
sensor placement followed by field estimation using a kriged Kalman filter (KKF),
which is used for the estimation of the aforementioned type of field.

We also consider the scenario, where the prior physical knowledge regarding
the environmental field is either unavailable or inaccurate. In these circumstances,
we discuss some methods to estimate the underlying dynamics of the field, i.e.,
the state/process model using the observed measurements. While estimating the
process model, we consider both the scenario, where the true value/ground truth of
the field is known as well as the scenario where it is unknown.
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dynamics (Figure 4.3); (Algorithm 3). . . . . . . . . . . . . . . . 81

4.10 Pixel-wise comparison of the estimates [Algorithm 2 (known dy-
namics)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Pixel-wise comparison of the estimates [Algorithm 3 (known dy-
namics)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.12 Estimate of the spatial rainfall (mm) map (û1) with unknown dy-
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i.e., û0|0 = u0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.7 True spatio-temporal evolution of the rainfall field (mm).. . . . . . . . 133
6.8 Locations of theM microwave links from where the measurements

are collected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.9 Estimated spatio-temporal evolution of the rainfall field (mm). . . . . . 134
6.10 Estimation comparsion forN = 625 pixels forT = 8 snapshots. . 135



List of Tables

4.1 Performance comparison with EKF (with thresholding); Perfectly
known dynamics (σ2

s = 10−4, σ2
e = 10−3). . . . . . . . . . . . . 87

4.2 Performance comparison with EKF (with thresholding); Dynamics
is assumed to be a Gaussian random walk (σ2

s = 10−4, σ2
e = 10−3). 87

xiii



xiv



Chapter 1
Introduction

H uman interests to know more about the spatial and temporal diversity of
environmental fields motivate the development of sophisticated environ-

ment monitoring systems. In this era of drastic change of earth environment and
expeditious urbanization, advanced environment monitoring is of paramount inter-
est. The fundamental necessities of such a monitoring system mainly include cor-
rect prediction of environmental conditions and disaster management, whichsatisfy
both economical and societal needs. In this thesis work, we use statistical signal
processing tools to develop opportunistic environment monitoring methods which
efficiently utilize the available sensing resources as well as maintain a specified
monitoring accuracy. To accomplish the aforementioned task we exploit several
physical properties of the environmental fields.

In this chapter, we first elaborate the motivation of the research. Then we
present a brief literature survey of the application of signal processingmethods
in the state-of-the-art environment monitoring techniques. We finally illustratean
outline of the thesis work highlighting the major contributions.

1.1 Motivation

Sensor networks are omnipresent in our everyday life. They are useful both in the
form of wired or wireless and micro or macro sensor networks [2], [3].Specifi-
cally, wireless sensor networks (WSNs) are popular because of their flexibility in
terms of their deployment and use [2]. Environment monitoring is an important ap-
plication of wireless sensor networks. Environment monitoring can be performed
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by two types of sensor networks. Firstly, a homogeneous sensor network, i.e., a
network of dedicated sensors to monitor any specific type of environmentalfield
such as a temperature monitoring network, which only consists of thermal sensors.
Secondly, a heterogeneous sensor network [4], which consists of different types
of fixed/mobile sensors to monitor a single type or multiple types of environmen-
tal fields. An example of a heterogeneous sensor network could be a precipitation
monitoring network, where the precipitation is measured using the data collected
from rain gauges, radar measurements, microwave link (used for cellularcommu-
nication) attenuations [5] and reactions of general people in social media (social
sensing).

• Design challenges: Sensor networks, homogeneous as well as heteroge-
neous, confront some traditional challenges in terms of their design and im-
plementation. The usual problems include constraints related to the sens-
ing resources (cost, power, life-time of sensor nodes), bandwidth require-
ments (to communicate between the sensor nodes and the data fusion cen-
ter/processing unit and/or inter-sensor communication), memory requirements
(for high resolution field estimation applications), and maintenance of dedi-
cated sensors (in case of remote deployment).

• Cognizance of physical properties and smart placement:One plausible so-
lution of all the aforementioned problems could be minimization of the total
number of sensors by optimizing their locations. This can be achieved by a
smart sensor placement methodology that maintains the monitoring accuracy
and also saves sensing resources.

For environmental field estimation, the aforementioned cost-effective sensor
deployment method can be improved by the proper knowledge of some phys-
ical properties of the field. These properties could be related to the spatio-
temporal variability of the field. Based on these properties, the prior knowl-
edge can be modelled statistically. When the prior knowledge is already
available through a statistical model then the sensor deployment method can
be viewed as amodel-drivenapproach. When the statistical characteristics of
the field are estimated from the available data/measurements then the sensor
deployment method can be termed as adata-drivenapproach. The avail-
able/estimated statistical properties of the field can also be utilized in the
estimation of the field from the measurements collected from the deployed
sensors in the selected locations.
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Design of a “resource-efficient environmental sensor network” is the main motiva-
tion of this thesis work. The major research questions addressed in this thesis are
mentioned below.

• How to design a parsimonious (sparse over space and time in terms of
sensing resources) environmental sensor network that offersa desired
monitoring accuracy?

• How to estimate an environmental field with a pre-specified
spatio-temporal resolution, using a limited number of sensing resources
exploiting the physical properties of the field?

• How to efficiently exploit the prior information regarding the environ-
mental field for sensor placement as well as estimation, in both the
model-driven and the data-driven approach?

We mainly exploit tools from statistical signal processing and linear algebra tosolve
the opportunistic sensor placement and environmental field estimation problems.

The types of environmental fields can be diverse such as precipitation fields
(rain, snow), air pollution, concentration of some specific gas/aerosol inthe at-
mosphere, chemical vapor from volcanic eruption, surface temperatureand wa-
ter vapor concentration, ground layer ozone. The types of heterogeneous sensing
equipments can be static sensors like weather radar, rain gauges, microwave links,
dedicated fixed sensors for air quality measurement and mobile sensors likerobotic
sensors, sensors mounted on bikes, smart phone sensors, reaction of people in so-
cial media (facebook, twitter etc.). A pictorial representation of the diverse envi-
ronmental fields and some heterogeneous sensing equipments are shown inFigure
1.1.

The research work performed in this thesis work is partly sponsored by the TU
Delft project “Sensing Heterogeneous Information Network Environment (SHINE)”
[6]. The main objective of this project was the self-organization of the heteroge-
neous sensing resources for environment monitoring.

1.2 Signal processing and environment-monitoring: a brief
survey

The task of monitoring the spatio-temporal evolution of an environmental field us-
ing the measurements from homogeneous/heterogeneous sensors involves many
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Figure 1.1: Diverse environmental fields and heterogeneous sensing modalities
(image courtesy: Google images).

branches of electrical and computer engineering. Statistical signal processing is
one of the important tools which can be very useful for modelling, prediction, esti-
mation, noise reduction and outlier rejection for environmental signals. There is a
huge plethora of research work available regarding the statistical analysis of envi-
ronmental data [7]. Here, we mention a few contributions related to the application
of signal processing in environment monitoring. However, the detailed literature
reviews based on the specific problem statements are presented in every chapter.

The infrastructure and importance of homogeneous as well as heterogeneous
environmental sensor networks are presented in [4]. Challenges of practical en-
vironment monitoring methods are mentioned in [8] in the context of the “Sen-
sorScope” project [9]. Practical problems related to the environment such as es-
timating the spatio-temporal concentration of radioactive substances in the atmo-
sphere due to nuclear experiments can be modelled as a regularized inverse prob-
lem [10]. Signal processing tools can be exploited for outlier rejection in non-
Gaussian noise scenarios in inverse problems related to the atmosphere [11]. Tradi-
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tional signal processing tools like weighted least squares (WLS) and the extended
Kalman filter (EKF) can be used for spatio-temporal rainfall monitoring, where
the data are collected from the rain-induced attenuation measurements of the mi-
crowave links used for wireless communication [12], [13]. Environment moni-
toring can be viewed as a field estimation problem, where the detection of the
field-generating source (if unknown) and the estimation of the spatio-temporal dis-
tribution of the field are equally important. In many cases, the source generates
a diffusive field (such as some gas vapor, pollutants, hazardous chemicals). The
mathematical analysis of the detection and estimation of the location of these types
of sources is presented in [14]. In [15], the source estimation as well asdiffusive
field reconstruction methods are presented. In [16] a data assimilation algorithm
for advection models for cloud motion analysis are developed.

The exploitation of prior statistical knowledge, resulting in Bayesian methods,
is also highly cultivated for environment monitoring [17]. Statistical knowledge
regarding the spatial variability of the environmental field can be exploited in the
interpolation of the field magnitude at the unobserved locations [18]. Prior informa-
tion regarding the dynamics of the field can be combined with the spatial variability
in order to monitor the field dynamically [19], [20]. Statistical knowledge regarding
the space-time variability can also be exploited in the design of network protocols
for a WSN [21].

In [22], it is shown that in some circumstances the mathematical tool of com-
pressive sensing (CS) [23] can be applied for environment monitoring.The prior
knowledge regarding the sparse behavior of the source can be exploited in diffusive
field estimation problems [24].

1.3 Outline of the thesis

Chapter 2:

In this chapter, we first discuss the mathematical representation of the modelsby
which the data/measurements and the environmental field to be measured are re-
lated. We also present an overview of the different statistical modelling approaches
of some physical properties of the environmental fields, which can be used as prior
information. As the physical properties of a general class of environmental fields,
we include correlation over space and time, dynamics of the field and some spatial
properties. Finally, we present a generalized environment monitoring framework
that encompasses all the objectives of this thesis. Also, the connections between
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the objectives of the chapters and the presented environment monitoring framework
are discussed in this chapter.

Chapter 3:

In this chapter, we present opportunistic sensor placement methods overspace and
time for environmental field estimation. We develop a unified framework to manage
the sensing resources when the environmental field is spatio-temporally stationary
as well as non-stationary.

The main contributions of this chapter are given below.

• We first present a general time-varying linear measurement model that incor-
porates the spatio-temporal selection of the locations to deploy the sensors.
We discuss how to select at any time the most informative set of sensors such
that some predefined estimation accuracy is achieved.

• We present the statistical characterization of a general class of environmental
fields for both stationary and non-stationary types. Resorting to the Bayesian
philosophy, we develop a generalized performance metric (in terms of mean
square error (MSE)) that can be used for sensor placement, when thefield is
stationary as well as non-stationary.

• We discuss a mathematical framework to efficiently exploit the spatio-temporal
correlation information of the environmental field in order to optimize the
number of sensing locations.

• We propose a first-order iterative saddle-point method that enforcessparsity
in the selection of the informative sensing locations over space and time. We
study the spatio-temporal constellation of the selected sensing locations with
different statistical characterizations of the field such as a high/low correla-
tion and a time-varying/time-invariant dynamic model.

The contributions of this chapter are published as

• V. Roy and G. Leus, “Correlation-aware sparsity-enforcing sensor placement
for spatio-temporal field estimation,” inProc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Aus-
trallia, April 2015, pp. 340-343.

• V. Roy, A. Simonetto, and G. Leus, “Spatio-temporal sensor management
for environmental field estimation,”Elsevier Signal Processing, vol. 128,
November 2016, pp. 369-381.
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Chapter 4:

In this chapter, we present a practical example of environmental field estimation.
We consider the application of spatio-temporal rainfall monitoring. Standardpre-
cipitation monitoring techniques are generally rain gauges or weather radar. Here,
we focus on a recently developed method for rainfall monitoring which is based on
the attenuation measurements from microwave links used for wireless communica-
tion.

The contributions of this chapter are presented below.

• We first describe the measurement model that represents the mapping be-
tween the attenuation measurements and the spatial rainfall distribution (with
a predefined resolution) in an area. Because of the measurement type, the
model is non-linear, underdetermined and time-varying.

• To estimate the rainfall field from the aforementioned measurement setup we
develop a framework that exploits some physical properties of the field such
as spatial sparsity (in a suitable representation basis) and non-negativity.

• We develop a sparsity regularized and non-negativity constrained sequential
estimator for dynamic rainfall monitoring. The representation basis for the
sparsity and the tuning parameter that regulates the amount of sparsity are
dynamically tuned for every snapshot.

• Finally, we evaluate the performance of the developed algorithm and also
compare it with an ordinary EKF. By several simulation studies, we show
that the proposed method outperforms an ordinary EKF, when the rainfall
dynamics are not perfectly known.

The contributions of this chapter are published as

• V. Roy, S. Gishkori, and G. Leus, “Spatial rainfall mapping from path-aver-
aged rainfall measurements exploiting sparsity,” inProc. IEEE Global Con-
ference on Signal and Information Processing (GlobalSIP),, Atlanta, USA,
December 2014, pp. 321-325.

• V. Roy, S. Gishkori, and G. Leus, “Dynamic rainfall monitoring using mi-
crowave links,”EURASIP Journal on Advances in Signal Processing, vol.
2016, no. 1, December 2016, pp. 1-17.
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Chapter 5:

In this chapter, we propose a spatio-temporal sensor placement followedby an esti-
mation method for a general class of environmental fields which is the combination
of a non-stationary and a stationary component. A typical approach to dynamically
monitor these types of fields is the kriged Kalman filter (KKF), which is a com-
bination of kriging (for the estimation of the stationary component) and a Kalman
filter (for the estimation of the non-stationary component).

The contributions of this chapter are discussed below.

• We address the fact that when the environmental field has both a stationary
and non-stationary component, the stationary component acts as a spatially
correlated noise term while estimating the non-stationary component. We
also consider the situation, where the spatial covariance matrix of the sta-
tionary component can be highly ill-conditioned.

• We present an analytical formalism to develop a combined performance met-
ric for the estimation of the stationary as well as the non-stationary compo-
nent of the field. We use this metric for sparsity-enforcing sensor placement
using a KKF. The proposed methodology tackles the aforementioned situa-
tions of correlated noise and an ill-conditioned spatial covariance matrix.

• Finally, we present a semidefinite programming (SDP) approach for sparsity-
enhancing sensor placement that incorporates a flexible resource constraint.
The selected sensing locations over time are used for field estimation using a
simple KKF.

The contributions of this chapter are submitted as

• This chapter is submitted as: V. Roy, A. Simonetto, and G. Leus, “Spatio-
temporal field estimation using kriged Kalman filter (KKF) with sparsity-
enforcing sensor placement, submitted toSensors, April, 2018.

Chapter 6:

In the aforementioned chapters, we mainly discuss sensor placement and field es-
timation methods assuming that the prior statistical information regarding the field
is perfectly known. But in many practical scenarios this is not the case. Inthis
chapter, we discuss some methods by which we can estimate the prior knowledge
regarding the field using the measurements.

The contribution of this chapter are given below.
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• We consider the dynamics/process model of the field as prior information,
which we need to estimate from the available measurements. We consider
both the scenarios, where the true value/ground truth of the field is perfectly
known and unknown.

• We consider the measurement model to be linear and develop a sparsity-
leveraging method for the estimation of the process model. The estimated
process model is then used for prediction in the sequential estimation of the
field using a Kalman filter.

Chapter 7:

We review the key contributions of the thesis and present the conclusions inthis
chapter. Finally, the future research directions are highlighted.

1.4 Related contributions

In this thesis, we have mainly considered the application of environmental fieldes-
timation. But the developed framework of sensor management can be equivalently
applied for localizing a target. We have used a similar framework as described
in Chapter 3 for sensor selection for direction of arrival (DOA) estimation. One
example application of this technique is the off-line selection of antennas, while
planning stations for radio astronomy in which resources like the number of anten-
nas, available aperture etc. are already known, and are generally limited.

The aforementioned work is briefly described below.

• We propose a method for array design for a linear array with fixed aperture
and inter-element spacing.

• We formulate the array design as a sensor selection problem, where the array
element selection is performed such that it achieves a desired Cramér-Rao
bound (CRB) for estimating the DOA of a single source.

• The sidelobes generated due to the nonuniformity of the sensor selection are
suppressed in a specified angular sector via sensor selection.

• We cast the aforementioned problems as a combined semidefinite program-
ming (SDP) problem.

The work is published as
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• V. Roy, S. P. Chepuri, and G. Leus, “Sparsity-enforcing sensor selection for
DOA estimation,” inProc. IEEE Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP),Saint Martin, December 2013, pp. 340-
343.



Chapter 2
Environmental Field Estimation:

The Signal Processing Perspective

One of the principle objectives of any environmental sensor network (ESN) [4], [9]
is to extract meaningful information from the observed data. The observations or
measurements are generally collected over space and time by homogeneous and/or
heterogeneous sensing equipments. Spatio-temporal measurements collected either
in a centralized or distributed manner are corrupted by different kinds ofnoises
incurred in the measurement process. Statistical signal processing tools can be
leveraged to model the sensor measurements, to estimate the field from these mea-
surements, and also to model the prior knowledge about the physical properties of
the field to be estimated. Further, the modelled prior knowledge along with the
collected measurements can be exploited to dynamically monitor the field in an
efficient manner.

In this chapter, we describe the mathematical representations of the different
types of measurement models used in this thesis work. We also present a brief
review of the existing modelling approaches of the spatio-temporal variability and
dynamic models for a general class of environmental fields. Finally, we discuss a
generalized spatio-temporal field monitoring framework, which can be viewed as a
backbone of all the spatial/temporal/spatio-temporal field estimation setups usedin
the rest of the chapters of this thesis.

The outline of the chapter is as follows. In Section 2.1, we discuss different
types of measurement models. The different statistical modelling approaches for
the prior information regarding the environmental field are presented in Section

11
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2.2. The concept of hierarchical modelling of the data and the prior information is
presented in Section 2.3. In Section 2.4, we present the architecture of a generalized
dynamic environment monitoring framework.

2.1 Measurement models

We denote the unknown physical field asut(x), which is a continuous function of
the location indexx ∈ R

2 andt ∈ R is a time index. We consider a uniform spatial
discretization of the entire service area of interest into a set ofN spatial points
given by{x1, . . . ,xN}. These points are considered as the points of interest (POI),
where we would like to estimate the field. The overall unknown field vector at time
t is denoted byut = [ut(x1), . . . , ut(xN )]T . The aforementioned representation
can be used to represent a uniform tessellation of the entire service area, where the
set ofN points given by{x1, . . . ,xN} definesN pixels of the same area. The area
of a pixel is decided by the required spatial resolution. We also make an assumption
that the magnitude of the field is the same everywhere within a pixel.

The measurements/observations collected by the sensors can be related to the
physical field vector by a measurement/data/observation model. Mathematically,a
generalized measurement model can be represented by

yi,t = φi,t(uj,t) + ei,t, i = 1, . . . ,M, j = 1, . . . , N, (2.1)

whereyi,t is thei-th spatial measurement anduj,t = ut(xj) = [ut]j is the magni-
tude of the field at locationxj at timet. The functionφi,t(·) describes the mapping
between the true value of the field and thei-th measurement at timet. The param-
eterei,t is the noise incurred in the measurement process, which is assumed to be
additive in nature.

2.1.1 Linear measurement model

A simplification of the generalized measurement model of (2.1) is a linear mea-
surement model. Considering all theM measurements at timet as mentioned in
(2.1), a linear measurement model can be represented in matrix vector formas

yt = Φtut + et, (2.2)

whereyt ∈ R
M represents theM measurements at timet. TheM × N matrix

Φt is generally termed as the measurement/observation/sensing matrix. The noise
components associated with theM measurements are given byet ∈ R

M . Based
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on the number of available measurements (M ) and the dimension of the unknown
field vector (N ), a linear measurement model can be underdetermined, i.e,M < N

or overdetermined, i.e,M > N . Depending upon the application, the elements of
the measurement matrix could be real or complex.

One simple example of a linear measurement model isΦt ∈ {0, 1}M×N . In
this case, if[Φt]ij = 1 for somej and [Φt]ij = 0 for the otherj’s, wherej =

1, . . . , N , then it can be considered that thei-th measurement is a noisy version of
the field value at thej-the pixel. A more general representation of the measurement
matrix assumes thatΦt ∈ R

M×N . In this case, the rows ofΦt are modelled
as real regression vectors to represent thei-th measurement as a weighted linear
combination of the elements ofut.

2.1.2 Non-linear measurement model

The non-linear version of the generalized measurement model of (2.1) can be rep-
resented as

yt = Φt(ut) + et, (2.3)

whereΦt(·) : RN → R
M is a non-linear mapping between the true field values and

the measurements. In the context of environment monitoring applications, a practi-
cal example of a non-linear measurement model is measuring the rainfall depth in
a given area, where the measurements are computed using the rain-induced attenu-
ations of the microwave links present in that area [12] [25]. A detailed description
of the aforementioned measurement model is presented in Chapter 4.

2.1.3 Measurement noise

The collected observations from different sensing equipments over space and time
are corrupted by errors. These errors in the measurement process are generally
modelled as measurement noise. The measurement noise can originate from elec-
tronic noise, calibration errors of the data collecting devices, weather related im-
pairments (for outdoor monitoring networks), maintenance related issues, human
related errors, etc. Due to the lack of knowledge regarding the true magnitude
and uncertain behavior of these noise components, they are generally modelled as
stochastic processes [7].

It is generally assumed that the measurement noise is independent of the true
field to be estimated. But the noise components can be correlated over spaceor
time [26] or spatio-temporally uncorrelated. In this thesis, we have considered both
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of the aforementioned types of measurement noises. The probability distribution
function (pdf) of the measurement noise can vary with the type of the measurement
procedure.

2.2 Prior information regarding environmental fields

The knowledge regarding the physical properties of the environmental fields can
be statistically modelled as prior information. This prior information can be ex-
ploited for the field estimation as well as for placing the sensors in the informative
locations. Generally, the field is modelled as a random process and categorized as
a spatio-temporally stationary or non-stationary process. However, physical infor-
mation can also be exploited, when it is assumed that the field is deterministic.

2.2.1 Spatial and temporal variability

Let us consider that the field at timet is represented by anN dimensional discrete
random processut = [ut(x1), . . . , ut(xN )]T . In order to interpolate the field at all
theN POIs over time, information regarding the space-time variability of the field
can be exploited along with the measurements. The spatio-temporal nature of the
field in a specified geographic area can be characterized by the trend and the space-
time interaction of the field between different regions of the given area. These can
be modelled as the first and the second order statistics of the field. The mean and
the covariance of the field can be represented as,

E[ut(xj)] = µt(xj), (2.4)

cov[ut1(xi), ut2(xj)] = E[(ut1(xi)− µt1(xi))(ut2(xj)− µt2(xj)]

= f(xi,xj ; t1, t2), (2.5)

wherei, j = 1, . . . , N . The functionf(xi,xj ; t1, t2) is defined as a covariance
function which can be modelled as a parameterized function. It should be noted
that the parameters off(xi,xj ; t1, t2) or the value ofcov[ut1(xi), ut2(xj)] can
be empirically estimated from the available data. The covariance function can be
separable as well as non-separable in space and time dimensions [27]. A valid
covariance functionf(xi,xj ; t1, t2) needs to satisfy some mathematical conditions
[27], [7].
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Spatio-temporal stationarity

A field is considered to be spatio-temporallysecond order stationary / weakly sta-
tionary / wide sense stationary (WSS)andisotropic if the following conditions are
satisfied [28], [7]:

E[ut(xj)] = µ, ∀t, j = 1, . . . , N (2.6)

cov[ut1(xi), ut2(xj)] = f(‖xi − xj‖2; t1 − t2). (2.7)

The notion of stationarity can also be defined individually for space or time [7].

Variogram and covariance

In spatial statistics, one important measure of spatial variability for a WSS discrete
spatial random processut(xi) can be expressed by the variogram2γ(xi,xj), or
semi-variogramγ(xi,xj), for all i, j = 1, . . . , N . This metric is widely used in
spatial prediction or kriging [29]. Mathematically, the variogram can be defined as

2γ(xi,xj) = var[ut(xi)− ut(xj)] = E[(ut(xi)− ut(xj))
2]. (2.8)

The semivariogram can also be related to the spatial covariance between the loca-
tionsxi andxj as

γ(xi,xj) =
1

2
var[ut(xi)− ut(xj)]

=
1

2
E[(ut(xi)− µ)2] +

1

2
E[(ut(xj)− µ)2]− E[(ut(xi)− µ)(ut(xj)− µ)]

= σ2
u − cov(ut(xi), ut(xj)). (2.9)

Here, we consider that the variance of the stationary field is given byσ2
u = E[(ut(xi)−

µ)2] = E[(ut(xj)− µ)2].
One common example of a semivariogram is a spherical semivariogram func-

tion used for modelling precipitation [30] [31]. Considering spatial stationarity and
isotropy, the spherical semivariogram model can be expressed as

γ(h) =







N0 + S0

[

3h
2d − h3

2d3

]

if 0 < h ≤ d,

N0 + S0 if h > d,
(2.10)

whereh , ‖xi − xj‖2 is the distance between two locations. The parameters
that characterize a variogram model are the sillN0 + S0 of the variogram (γ(h)
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Figure 2.1: Spherical semivariogram and the covariance function (N0 = 0, S0 =

5.3328 (for rainfall field the unit ismm2), d = 17 km.

for h → ∞) with S0 as the partial sill, the nuggetN0 (non-zero value ofγ(h)
for h → 0), and the ranged (value ofh for which the variogram reaches the sill).
Assuming second-order stationarity, as discussed before, the covariance function
can be expressed as a function ofh by cov(h) = (N0 + S0) − γ(h) [28]. An
example of a spherical variogram and the corresponding covariance function is
plotted in Fig. 2.2.1.

2.2.2 Dynamic models

The spatio-temporal evolution of the environmental processes can be described by
different dynamic models. There are both deterministic as well as stochastic ap-
proaches to model the dynamics of the environmental fields.

Partial differential equation (PDE) based modelling

Different physical phenomena responsible for the spatio-temporal evolution of en-
vironmental fields can be mathematically expressed by PDEs. Some examples of
these phenomena are diffusion, advection, convection and their combinedeffects.

As before, let us consider thatut(x) represents a spatio-temporally continuous
and deterministic envtironmental field. The diffusion phenomenon can then be
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expressed as
∂ut(x)

∂t
= ∇ · [D∇u(x, t)], (2.11)

where∇ = [ ∂
∂x ,

∂
∂y ] is the gradient operator,D ∈ S

2
++ is the diffusion coeffi-

cient/diffusivity, and· is the vector dot product or inner product. Similarly, the
advection phenomenon, i.e, the transition of some field (e.g. some particle, pollu-
tant, some specific gas, water vapour) due to the influence of some velocity vector
field [7] (e.g., wind) can be represented by

∂u(x, t)

∂t
+ a · ∇u(x, t) = 0, (2.12)

wherea is the velocity vector field, which is considered to be solenoidal, i.e,∇.a =

0. The combined effect of both diffusion and advection phenomena can beobserved
in many environmental fields (e.g., movement of pollutants, rainfall [32]).

The aforementioned modelling of the dynamics can also be represented in a
stochastic framework, where the field can be modelled as a stochastic variable and
a random noise term (also known as a stochastic forcing term) is added to thePDEs
(2.11), (2.12) [32]. In such scenarios, the dynamic model is a stochasticpartial
differential equation (SPDE) [33], [32].

Integro-difference equation (IDE) based modelling

When the field dynamics are modelled using a PDE as mentioned in the previous
section, it is generally considered that the field is spatio-temporally continuous.
Another modelling approach, where it is considered that the field is spatially con-
tinuous but temporally discrete is the integro-difference equation (IDE) based dy-
namical model [34] [35]. A discrete time IDE with a stochastic process noise term
can be represented by

ut(x) =

∫

A
h(x,x′;θ)ut−1(x

′)dx′ + qt(x), x′ ∈ A ⊂ R
2, (2.13)

whereqt(x) is generally modelled as a spatially coloured yet temporally white pro-
cess noise term. The functionh(x,x′;θ) models the spatio-temporal interaction of
the field which is parameterized by a set of time-varying or time-invariant deter-
ministic or random parametersθ. The parameters of the interaction function can
also depend on the temporal sampling interval.
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Spatio-temporally discrete process model

Let us consider that the field is spatially discrete overN pixels as well as temporally
discrete. At timet, the spatial field distribution is represented by theN dimensional
field vectorut. In this case, a generalized discrete-time process model can be
written as

ut = Ht(ut−1) + qt, (2.14)

whereHt(·) : RN → R
N is a non-linear mapping representing the spatio-temporal

interaction of the field. A simplified version of (2.14) is a linear state model given
by ut = Htut−1 + qt, whereHt ∈ R

N×N is also known as a propagator ma-
trix/state transition matrix andqt ∈ R

N is the process noise vector. The elements
of the state transition matrix can be perfectly known a priori or estimated from the
data or modelled by some parametric function (e.g., Gaussian dispersal kernel [35])
whose parameters can be either deterministic or random. Possibly, the simplestex-
ample of a linear process model can be a scaled Gaussian random walk model,
whereHt = αIN with α < 1 a scaling parameter. It should be mentioned here that
the maximum eigenvalue ofHt should be less than1 to avoid an explosive growth
of the process [7].

Markov property

While modelling the spatio-temporal evolution of a stochastic process, a common
assumption is the Markov assumption. Let us consider that the joint pdf of the
spatio-temporally discrete stochastic processut, for t = 0, . . . , T snapshots is
given byp(u0, . . . ,uT ). The joint pdf can be expressed in terms of the condi-
tional dependencies of the states at different times by the following chain rule of
probabilities, which can be derived from Bayes’ theorem. This is given as

p(u0, . . . ,uT ) = p(uT |uT−1, . . . ,u0)p(uT−1|uT−2, . . . ,u0) . . . p(u1|u0)p(u0).

(2.15)
The first-order Markov property simplifies the above joint pdf by assumingthat
the state at timet is solely conditioned by the state at timet − 1 [7] as was also
assumed in (2.14). This givesp(uT |uT−1, . . . ,u0) = p(uT |uT−1). Based on this
assumption, the chain rule in (2.15) can be simplified as

p(u0, . . . ,uT ) = p(uT |uT−1)p(uT−1|uT−2) . . . p(u1|u0)p(u0)

= p(u0)
T
∏

t=1

p(ut|ut−1). (2.16)
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The Markov assumption is a common assumption to stochastically model the dy-
namics of a complex environmental process where the joint pdf is computationally
intractable.

Characterization of the process noise

The process noise is generally considered to be a zero mean spatially colored yet
temporally white component and indepedendent of the field. However, depending
on the field it can also be non-zero mean. In that case, if the mean is known then it
can be subtracted fromut. If the spatial covariance matrix ofqt is given byQ then
assuming spatial isotropy and stationarity of the random processqt, the elements
of Q can be represented by the Matèrn covariance function as,

[Q]ij = σ2
s

21−p

Γ(p)

[√
2p‖xi − xj‖2

γ

]p

Kp

(√
2p‖xi − xj‖2

γ

)

, (2.17)

whereΓ(·) is the Gamma function,Kp(·) is the modified Bessel function of the
second kind, andγ is a positive shaping parameter [7]. Withp → ∞ andp = 1/2,
(2.17) becomes the squared exponential and exponential covariance function, re-

spectively i.e.,[Q]ij = σ2
s exp

(

−‖xi−xj‖
2

2

2γ2

)

, and[Q]ij = σ2
s exp

(

−‖xi−xj‖2
γ

)

.
The process noise covariance matrix can also be time-varying.

Estimating the dynamic model

In many real circumstances, the underlying dynamics of the process are either un-
known or guided by the combination of many complicated physical processes. In
these cases, the dynamic model can be estimated using the available measurements.
Mathematical tools from the field ofsystem identification[36] can be used to com-
pute the process model using the measurements. The process of modelling the
dynamics can be broadly classified into two types which aregray boxandblack
box approaches. In gray box modelling, some physical knowledge regarding the
evolution of the process is known but in black box modelling it is assumed that no
prior knowledge about the dynamics is available [36]. In a Bayesian setup, for a
parameterized state model, if the prior pdf of the parameters are already available,
then the posterior pdf can be computed and a Markov chain Monte Carlo (MCMC)
method can be used to calculate the model parameters [7], [32] (used for modelling
the dynamics of rainfall).
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2.2.3 Other prior information

In the previous sections, we discussed the statistical modelling of the correlations
over space and time as well as some dynamic models for a general class of environ-
mental fields. Beyond these information, there are many other physical properties
of the environmental fields which can be exploited as prior information in the esti-
mation procedure. In this section, we mention two properties of the environmental
signals which are extensively used in this thesis.

Sparsity

At any time, the environmental field can be assumed to be a sparsely distributed
environmental field over the entire service area. Otherwise, spatial sparsity can
also be introduced by representingut in a sparsity-promoting complete or over-
complete dictionaryΨ [37]. Some examples of complete orthonormal dictionaries
include a wavelet, discrete cosine transform (DCT), and Fourier basis.Denoting
ut = Ψzt, (i.e.,zt = Ψ−1ut in case of a complete dictionary) sparsity is measured
by the number of non-zero entries inzt, i.e.,‖zt‖0. Sparsity can also be exploited
over time as well, where the field has zero or very low intensity over multiple
snapshots.

The aformentioned prior information can be exploited after a convex relaxation,
i.e., ‖zt‖1, as a sparsity-promoting prior in the field reconstruction problem for a
underdetermined measurement setup [23], [38]. It has already been proved that
anℓ1 regularized reconstruction method is very helpful, when the number of mea-
surements is much smaller than the dimension of the unknown sparse signal. This
has been successfully implemented in many fields such as image processing, seis-
mology, localization and tracking, radar applications [23]. The use of anℓ1 prior
can also be viewed in a Bayesian perspective, where the prior pdf on thesignal is
assumed to be a Laplace distribution [38].

Non-negativity

In many environmental applications, the unknown field to be estimated can be as-
sumed to be non-negative (such as a rainfall field). In this case, the prior informa-
tion ut ≥ 0N (element-wise inequality) can be used as a constraint to restrict the
solution to remain in the non-negative orthant. This helps to avoid the generation
of an unrealistic estimate and helps maintaining the accuracy of a sequential esti-
mator, where the estimate of the current snapshot is predicted by the past estimate
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and corrected by the measurement.

2.3 Hierarchical modelling

In the aforementioned sections, we have briefly illustrated different methods of
data collection, i.e., measurement models. We have also discussed differentmod-
elling approaches of the prior information regarding the environmental fields. All
of these can be represented in a hierarchical fashion, where at any timeinstance
t, the available measurements are given byyt, the unknown stochastic field vector
is given byut, and the prior information regarding the field is characterized by a
stochastic or deterministic parameter vectorθt. For example, the process model
in (2.13) is parameterized by the set of parametersθ. It should be noted that the
measurements are conditioned on the unknown field and the field is conditionedon
the parameters governing the field, i.e,θt. Depending on the statistical nature of
the parametersθt, i.e, stochastic or deterministic, there are two types of hierarchi-
cal modelling approaches which are Bayesian hierarchical modelling (BHM) and
empirical hierarchical modelling (EHM), respectively [7] [39] .

2.4 Sensor management and environment monitoring

As discussed in Chapter 1, one of the most wonted problems of dynamic envi-
ronmental monitoring using an ESN is the handling of the resource related con-
straints. These include the sensing hardware cost, memory requirements, life-time
related issues, bandwidth etc. Under these circumstances, efficient utilization of
the sensing resources is desirable in order to perform the monitoring task with a
desired accuracy using a limited number of resources. We propose a centralized
multi-step approach for dynamic environment monitoring with opportunistic sen-
sor placement.

2.4.1 Description of the proposed environment monitoring framework

The overall block diagram of the proposed environment monitoring framework is
presented in Fig. 2.2.

Inputs:

The inputs to the proposed monitoring framework are
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Figure 2.2: Proposed framework for dynamic environment monitoring

• measured spatio-temporal data,

• measurement noise statistics, and

• available prior information regarding the field.

Outputs:

The outputs of the proposed monitoring framework are

• estimated field with a desired resolution,

• informative sensing locations, and

• physical properties of the field
(if the measurements are used to estimate the process model).

It should be noted that the two principle objectives of the presented model are
spatio-temporal sensor placementandfield estimation. These two aforementioned
tasks can be performed either on asingle snapshotbasis or on amultiple snapshot
basis depending upon the availability of the data and the computational resources.
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2.4.2 Mapping of the developed framework to the chapters of the the-
sis

The blockdiagram shown in Fig. 2.2 encompasses the objectives of the different
chapters of the thesis. The links between the chapters and the different functions of
the models are presented as follows.

• Spatio-temporal sensor management⇒ Chapter 3.

• Dynamic field (rainfall field) estimation exploiting prior information⇒Chap-
ter 4.

• Dynamic field estimation using only the measurements from the selected
sensing locations⇒ Chapter 5.

• Estimation of the process model followed by field estimation⇒ Chapter 6.
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Chapter 3
Spatio-Temporal Sensor

Management for Environmental
Field Estimation

Monitoring an environmental field, e.g., humidity, precipitation, surface tem-
perature, pollution concentration is generally performed by a network of dedicated
sensors deployed in an intelligent constellation. The sensitivity of the estimation
performance depends strongly on the sensor deployment (static) or movement (dy-
namic) strategies. In a centralized framework, due to the resource-related con-
straints of the sensors (e.g., life-time and bandwidth), it is always desirableto use a
limited number of sensors to perform the sensing task with a predefined accuracy.

In this chapter, we develop spatio-temporal sensor management methods en-
forcing sparsity over space as well as time in terms of sensing resources.Lever-
aging the space-time stationarity, an environmental field can be estimated with a
desired spatio-temporal resolution based on recorded measurements. Ifthe field is
non-stationary, it can be monitored dynamically based on the collected measure-
ments and predictions can be made through a state model, if known a priori. We
develop algorithms to implement sparse sensing, i.e., sensing only the most infor-
mative locations in space and time for both spatio-temporally stationary and non-

This chapter is published as: V. Roy, A. Simonetto, and G. Leus, “Spatio-temporal sensor man-
agement for environmental field estimation,”Elsevier Signal Processing, vol. 128, November 2016,
pp. 369-381.
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stationary field monitoring applications. The selected sensing locations form an un-
derdetermined measurement model which can be used to estimate the field exploit-
ing the prior knowledge regarding the space-time variability of the field. The task of
locating the most informative sensing locations can be performed for both multiple
snapshots and a single snapshot based on the availability of prior knowledge (space-
time correlation and dynamics) regarding the field, available computing power and
the application. We formulate the centralized sensor placement problems for the es-
timation of both stationary and non-stationary fields as relaxed convex optimization
problems, constrained by static or dynamic performance criteria.

The outline of the chapter is as follows. In Section 3.1, we present a brief sur-
vey of related works and the main contributions of this chapter. The measurement
model and the main problem statement are presented in Section 3.2. In Section
3.3, the statistical characterizations of the environmental field are described. The
generalized mean square error (MSE) matrix of a linear minimum mean square
error (LMMSE) estimator is derived in Section 3.4 for both stationary and non-
stationary field estimation problems. In Section 3.5, we formally address the sensor
placement problems for both stationary and non-stationary field estimation appli-
cations. An iterative saddle point method is formulated in Section 3.6 to solve
the proposed sensor placement problems. To enhance the spatio-temporal sparsity
in sensor placement, we combine the aforementioned saddle point method with
an iterative reweightedℓ1-norm minimization algorithm. The iterative sparsity-
enhancing saddle point method is presented in Section 3.7. Simulation studies are
presented in Section 3.8. The final conclusions are presented in Section 3.9.

3.1 Prior art and contributions

Sensor selection promoting sparsity both for linear as well as non-linear measure-
ment models is extensively studied for field estimation [40], localization [41], and
tracking [42] problems. Specifically for spatial field estimation, sparsity-aware
kriging [43] and correlation-aware sensor placement [44] promoting sparsity are
also proposed. The problem of performance-aware sensor selectionconstrained by
the number of resources has been well-formulated as a convex problem in[45], for
statistical A, D, and E optimality criteria [46]. Also a distributed implementation
of the sparsity inducing sensor selection problem is presented in [47]. The problem
of sensor placement for field estimation has also been solved using tools from net-
work and information theory. In [48], information theoretic approaches are adopted
for placing sensors to estimate Gaussian processes, where the submodularity of the
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mutual information between the sensor locations is exploited. To monitor a dy-
namic process, periodic sensor activation and deactivation is optimal for an infinite
time horizon [49], and it is shown to be approximately optimal for a finite time
window [50]. In [51], a sparsity-enforcing sensor scheduling methodis presented
and applied to monitor a dynamic field.

Computational complexity is an issue for realistic sensor placement problems,
where the service area is quite large. As mentioned earlier, the accuracy-constrained
sensor selection problem can be formulated as a convex problem and solved using
off the shelf solvers like CVX [52] and SeDuMi [53]. But to select sensing loca-
tions over a large service area and/or multiple time snapshots these solvers can be
computationally inefficient. In [40] and [51], alternating direction method of mul-
tipliers (ADMM) and accelerated proximal gradient method (APGM) algorithms
are used to improve the speed of the sensor selection process.

In this work, we select the most informative sensing locations for the estimation
of a general class of environmental fields. The main difference of this work with
the standard sensor selection literature (like [41], [45], [47], [54]) isthe primary
measurement model, which we consider to be underdetermined. Resorting to the
Bayesian philosophy, we exploit the available prior statistical knowledge regarding
the unknown field. In the first case, we model the field as aspatio-temporally sta-
tionary stochastic process. The spatio-temporal covariance structure is considered
to be known as prior information. In the second case, the field is considered to be
non-stationary, where the prior knowledge comes from the known dynamics. For
a non-stationary field, we specifically model the spatio-temporal evolution using
a state model incorporating some common physical phenomena present in many
environmental processes like diffusion and advection [7].

The estimation of the field intensities with a prescribed resolution can be per-
formed offline based on recorded measurements at different locations over multiple
snapshots if the field is spatio-temporally stationary. If the field is non-stationary,
then first and second order statistics can be computed multiple snapshots ahead
based on the available prior statistics and the dynamics of the field. This allows for
dynamic estimation of the non-stationary field multiple snapshots ahead.

In both of these scenarios, it is always useful to know the best time/place tode-
ploy the sensors in order to reduce the number of sensors to economize theoverall
processing time and power. The importance of sensor placement for stationary and
non-stationary environmental field estimation applications is briefly elucidated in
the next paragraph.

One plausible application of sensor placement for stationary field estimation
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could be the deployment of rain gauges in an area for long term precipitationmon-
itoring, where stationarity is a valid assumption [55]. A dynamic deployment of
sensors is needed for spatio-temporal field tracking applications like robotic sensor
networks, social sensing, and mobile sensor networks (sensors deployed on vehi-
cles, bikes) for environment monitoring as well as disaster management. Formany
such applications, it is essential to know the locations where to deploy/move the
sensors in the next snapshots. For the aforementioned applications, a single snap-
shot or multiple snapshots ahead sensor placement method can be applied for the
sensor deployment over upcoming snapshots, if the dynamics for the future snap-
shots are known a priori.

The main contributions of this chapter are summarized below.

• Sensor placement problems for both spatio-temporally stationary and non-
stationary environmental field estimation are formulated as convex optimiza-
tion problems with similar structures but with different Bayesian perfor-
mance metrics.

• A mathematical framework to efficiently utilize the spatial/temporal corre-
lation information of the environmental field is developed to optimize the
required number of sensing locations.

• A first-order iterative sparsity-enhancing saddle-point method is developed
to solve the sensor placement problems.

To enforce sparsity in selecting the optimal sensing locations and time instances, we
follow the iterative reweightedℓ1minimization technique [56]. Numerical experi-
ments are carried out to select the optimal sensing locations for different stationary
and non-stationary environmental field models.

3.2 Measurement model and problem statement

3.2.1 Measurement model

We assume a finite uniform pixelation of the entire service area of interest intoN

pixels, where we would like to estimate the field intensities. The field intensity atN

pixels at time indext = 1, 2, . . . can be represented byut ∈ R
N . It is assumed that

the field intensities are the same everywhere within a pixel. The elements ofut are
given by[ut]j = ut(xj), for j = 1, . . . , N , whereut(x) is the continuous function
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representing the field at timet at any arbitrary positionx ∈ R
2 andxj ∈ R

2 is the
centroid of thej-th pixel.

The measurements are given byyt ∈ R
Mt , collected fromMt sensing loca-

tions (pixels) of the aforementioned service area. Only a single dimension ofut is
measured by a sensor deployed at any of theN pixels. The measurement model is
underdetermined asMt < N . The linear time-varying underdeterminedmeasure-
ment model can be constructed as

yt = Ctut + et, (3.1)

where the measurement matrixCt ∈ {0, 1}Mt×N mapsMt measurements fromN
pixels inyt. The measurement matrix can be constructed byCt = diagX(wt),
wherewt = [wt1, . . . , wtN ]T ∈ {0, 1}N is thesensor location selection vectorfor
time t, anddiagX(wt) removes the all zero rows fromdiag(wt). It signifies that
if we have[wt]j = 1(0), then thej-the field location is selected (not selected) for
sensor deployment at timet. The measurement matrixCt is related to the sensor
location selection vectorwt by the relations

CT
t Ct = diag(wt); CtC

T
t = IMt

. (3.2)

TheMt measurements are corrupted by additive spatio-temporally white Gaussian
noiseet ∼ N (0, σ2

eIMt
), whereσ2

e is the noise variance. Further, we also assume
thatet is uncorrelated withut.

Any spatio-temporal distribution of the field, i.e., the field intensities at the
N pixels for any observation window ofNs snapshots, can be represented by the
vectorũt = [uT

t , . . . ,u
T
t+Ns−1]

T ∈ R
NNs. In this case, the overall measurement

model to estimate the field atN locations over anyNs snapshots can be expressed
as

ỹt = C̃tũt + ẽt, (3.3)

whereC̃t = blkdiag(Ct, . . . ,Ct+Ns−1) ∈ {0, 1}M̃t×NNs, with M̃t =
∑Ns−1

τ=0 Mt+τ

andblkdiag(·) denoting a block diagonal matrix. The measurements are given
as ỹt = [yT

t , . . . ,y
T
t+Ns−1]

T of lengthM̃t and the noise components at all snap-
shots are represented by the vectorẽt = [eTt , . . . , e

T
t+Ns−1]

T of the same length
as ỹt. The noise vector̃et is spatio-temporally white and characterized byẽt ∼
N (0M̃t

, σ2
eIM̃t

). By using the relation (3.2), we obtain

C̃T
t C̃t = blkdiag(diag(wt), . . . , diag(wt+Ns−1)) (3.4)

= diag(w̃t), (3.5)
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wherew̃t = [wT
t , . . . ,w

T
t+Ns−1]

T is the sensor location selection vector for theN

locations in all theNs snapshots.

3.2.2 Problem statement

The optimal placement of the sensors at the informative locations can be formu-
lated as asensor location selectionproblem, i.e., the design of a selection vector
w̃t ∈ {0, 1}NNs . However, generally choosing the best subset of sensing loca-
tions achieving some desired estimation performance is a combinatorially complex
problem. A standard approach to tackle this problem is to relax it into a convex
problem, which can be efficiently solved in polynomial time [45], [47], [41].In
this case, a sparsity-enforcing, performance-constrained design ofw̃t can be ob-
tained by solving

ˆ̃wt = argmin
w̃t∈[0,1]

NNs

{‖w̃t‖1, s.t. g(w̃t) ≤ γ}, (3.6)

whereg(w̃t) is a performance metric expressed as a function of the selection vec-
tor, andγ is the desired threshold on the performance. After solving (3.6), we
obtainw̃t ∈ [0, 1]NNs . To generate a Boolean selection vectorw̃t ∈ {0, 1}NNs

from w̃t ∈ [0, 1]NNs , we can adopt the randomized rounding technique of [41] or
a simple thresholding. The randomization is done by simply generating random
realizations ofw̃t with the probability that[w̃t]k = 1 specified by[ ˆ̃wt]k, where
k = 1, . . . , NNs. The realizations satisfyingg(w̃t) ≤ γ are selected and the mini-
mumℓ0 norm realization is picked up, whose support denotes the sparsest optimal
sensor placement scheme.

3.3 Statistical characterization of the field

In this work, two statistical characterizations of the field vectorut are considered.

Stationary field

In the first case, we consider the elements ofut, i.e., [ut]j = ut(xj) for j =

1, . . . , N , to be Gaussian random variables. We further assume they are realizations
of a spatio-temporally (second-order) stationary isotropic process [7]with mean
E[ut(xj)] = µs for all t andj = 1, . . . , N . The spatio-temporal covariance matrix
is derived from a space-time separable exponential covariance function. For any
temporal lagτ , i.e., the time difference between the snapshotsut andut−τ , and
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Figure 3.1:Plot of the space-time variation of the covariance function(sh = 5; sτ =

5, σ2

u = 1).

any two spatial locationsxi,xj , with dij , ‖xi − xj‖2, the elements of the spatial
covariance matrix for lagτ , which is denoted asΓτ , are modelled as

[Γτ ]ij = [E[(ut − µs1N )(ut−τ − µs1N )T ]]ij

= σ2
u exp[−

1

sh
dij −

1

sτ
|τ |]. (3.7)

Here,E[(ut(xj) − µs)
2] = σ2

u andsh, sτ are the positive correlation parameters
representing the strengths of the spatial and the temporal correlations, respectively.
Increasing (or decreasing)sh andsτ , we model higher (or lower) spatial and tem-
poral correlations, respectively. We assume that the parametersσ2

u, sh andsτ are
all known a priori. The nature of the covariance function of (3.7) with different
lags over space and time is shown in Fig. 3.1. The overall spatio-temporal covari-
ance matrix can be expressed asΓ̃t = E[(ũt − µ̃t)(ũt − µ̃t)

T ] ∈ S
NNs
++ , where

µ̃t = E[ũt] = µs1NNs
. The diagonal and off-diagonal blocks ofΓ̃t are given by

Γ̃t =







Γ0 . . . Γ−Ns+1
...

. . .
...

ΓNs−1 . . . Γ0






. (3.8)

It should be noted that, if the field is spatio-temporally uncorrelated then the spatio-
temporal covariance matrix is simply given asΓ̃t = σ2

uINNs.
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Non-stationary field

In the second case, we considerut to be a non-stationary environmental field. The
spatio-temporal evolution of the environmental field can be described by anintegro-
difference equation (IDE) [7]. For a specific sampling intervalTs (i.e., the time
duration between two consecutive time indices) the discrete time IDE can be rep-
resented as,

ut(x) =

∫

Rs

f(x,x′)ut−1(x
′)dx′ + qt(x), (3.9)

whereRs ⊂ R
2 is the service area of interest. The spatio-temporal evolution of

ut(x) is modelled by the functionf(x,x′). Here,qt(x) is the Gaussian process
noise which can be spatially coloured but is temporally white. The space-time in-
teraction functionf(x,x′) can be modeled as a time-varying parameterized kernel
functionf(x,x′) = νht(x,x

′,θt), where the parameters of the function, i.e.,θt,
can be deterministic or random. The parameterν is a positive scaling parameter to
ensure the stability of the process [35]. In this case, the IDE is given as

ut(x) = ν

∫

Rs

ht(x,x
′;θt)ut−1(x

′)dx′ + qt(x). (3.10)

It should be noted that, the state models in (3.9) and (3.10) are infinite dimensional.
One way to approximate these to finite dimensional models is by using a spectral
representation off(·) or ht(·), andut(·) using a known orthonormal basis and
selecting only theK dominant coefficients [19].

However, here we have considered a finite uniform spatial discretizationof the
field intoN pixels. A spatio-temporally discrete process model can be represented
as

ut(xi) = ν
N
∑

j=1

ht(xi,xj ;θt)ut−1(xj) + qt(xi), (3.11)

wherei = 1, . . . , N . Here, we assume that the parameters of the kernel function,
i.e.,θt, are perfectly known and deterministic. It should be noted that the parame-
ters of the kernel function can depend upon the temporal sampling intervalTs.

Spatial phenomena like advection and diffusion can be modelled by chang-
ing the translation and dilation parameters of a Gaussian kernel [32], [35]. More
specifically, we consider a time-varying 2D Gaussian kernel

ht(xi,xj) = exp[−(xi − xj − at)
TD−1

t (xi − xj − at)], (3.12)

where the translation parameterat ∈ R
2 and the dilation parameterDt ∈ S

2
++

model the advection and the isotropic/anisotropic diffusion, respectively.In this
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case, the parameter vector of the kernel function, i.e,θt in (3.11), contains the
elements ofat andDt. Here, we modelat as the time-varying displacement and
Dt as the time-varying diffusion in everyTs seconds. Note that,at andDt can
also be varied over space in order to model more complicated dynamics of the
field [35]. The directions of anisotropy of diffusion can be incorporated through
Dt. Otherwise, isotropic diffusion can be modelled asDt = κtI2, with κt > 0. For
example, like (3.12), modelling the functionht(·) as aGaussian dispersal kernel
can be used for short term rainfall prediction [32]. The above approach can be
generalized to describe the dynamics of many environmental phenomena such as
the distribution of pollutants, movement of aerosols, vapour concentrations, etc.
that possess properties like advection, diffusion, etc.

Let us now assume a state transition/propagator matrixHt ∈ R
N×N which is

modelled using a simple 2D Gaussian kernel whose elements are given by[Ht]ij =

νht(xi,xj). After proper vectorization of the field intensities and the process noise
for theN pixels, the overall state model can be represented as

ut = Htut−1 + qt. (3.13)

Here,qt ∼ N (0,Qt) is the spatially colored yet temporally white Gaussian pro-
cess noise. In Fig. 3.2, an example of the spatio-temporal evolution of the field is
shown with a time-invariant isotropic diffusion and a time-varying advection. The
initial state ofut, i.e., the state att = 0 is generated by a simple Gaussian function.
In Fig. 3.2, it is seen that the field is isotropically diffused as well as shifted in
different directions given by the advection vectorat changing with timet.

In this case, the field is statistically characterized by the dynamics as

p(ut|ut−1) ∼ N (Htut−1,Qt). (3.14)

TheNs snapshots ahead first and second order statistics of the field can be derived
using the state model. In this case, theNs snapshots ahead mean and covariance
matrix, i.e.,µ̃t = E[ũt] andΓ̃t = E[(ũt − µ̃t)(ũt − µ̃t)

T ] can be computed in the
following way. Using (3.13), the mean can be computed as

µ̃t =













HtE[ut−1]

Ht+1HtE[ut−1]
...

Ht+Ns−1Ht+Ns−2 . . .HtE[ut−1]













=













µt

µt+1
...

µt+Ns−1













. (3.15)

The time-dependent covariance matrix for anyNs snapshots, i.e.,̃Γt is given by

Γ̃t = R̃t − µ̃tµ̃
T
t , (3.16)
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Figure 3.2: Spatio-temporal evolution of the field in10 × 10 square km
area; Spatial resolution: 1 × 1 square km; Dt = I2; ν = 0.4; qt ∼
N (0100, 10

−3I100); Displacement due to advection, i.e.,at on every snapshot is given by
[0.5, 0.5]T , [1.5, 1.5]T , [0, 2]T , [0, 2]T , [1.5,−1.5]T , [0.5,−1.5]T , [1.5,−1.5]T where
t = 1, . . . , 7 min.

where the correlation matrix̃Rt = E[ũtũ
T
t ] is given by

R̃t =







E[utu
T
t ] . . . E[utu

T
t+Ns−1]

...
. . .

...
E[ut+Ns−1u

T
t ] . . . E[ut+Ns−1u

T
t+Ns−1]






. (3.17)

The diagonal blocks of̃Rt are given as

Rt+τ = E[ut+τu
T
t+τ ] = Ht+τRt+τ−1H

T
t+τ +Qt+τ , (3.18)

whereτ = 0, . . . , Ns−1. The general form of the right and left off-diagonal blocks
of R̃t can be given for any two temporal lagsτm andτn, whereτm = 0, . . . , Ns−1,
τn = 0, . . . , Ns − 1 andτm 6= τn. The right off-diagonal blocks(τm < τn) are
given as

E[ut+τmu
T
t+τn ] = Rt+τmH

T
t+τm+1 . . .H

T
t+τn−1H

T
t+τn , (3.19)

and the left off-diagonal blocks(τm > τn) are given as

E[ut+τmu
T
t+τn ] = Ht+τmHt+τm−1 . . .Ht+τn+1Rt+τn , (3.20)
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whereRt+τm andRt+τn can be computed by the recursive relationships of (3.18).
Substituting (3.17) into (3.16) and using the expression of (3.15) only the diagonal
blocks ofΓ̃t can be recursively represented as

Γt+τ = E[(ut+τ − µt+τ )(ut+τ − µt+τ )
T ] (3.21)

= Ht+τ (Rt+τ−1 − µt+τ−1µ
T
t+τ−1)H

T
t+τ +Qt+τ (3.22)

= Ht+τΓt+τ−1H
T
t+τ +Qt+τ , (3.23)

whereτ = 0, . . . , Ns − 1.
Note that, at any timet, theNs snapshots aheadfirst and second order statis-

tics of the field can be precomputed ifE[ut−1], Γt−1, Ht+τ , andQt+τ for τ =

0, . . . , Ns − 1 are all known a priori. One way to estimate the first and second or-
der statistics ofut−1 is to use a “sequential minimum mean square error (MMSE)
estimator”, i.e., a standard Kalman filter [57] that uses the previous measurements
up to timet− 1. Let us assume that this estimate is given byût−1, with an estima-
tion error covariance matrixΣt−1, i.e.,Σt−1 = E[(ut−1 − ût−1)(ut−1 − ût−1)

T ].
We use these as the first and second order statistics of the stateut−1, i.e.,ut−1 ∼
N (ût−1,Σt−1).

3.4 Estimation performance metric

In this section, the performance metric, i.e.,g(w̃t) as mentioned in (3.6) is derived
for both stationary and non-stationary field estimation problems. In the measure-
ment model of (3.3), the unknown parameterũt is statistically characterized by
ũt ∼ N (µ̃t, Γ̃t). The mean and the covariance matrix can be computed for both
the stationary and the non-stationary fields as mentioned in the previous section.

The unknown parameter̃ut can be estimated using an LMMSE estimator [57],
i.e., ˆ̃ut = µ̃t + σ−2

e (Γ̃−1
t + σ−2

e C̃T
t C̃t)C̃

T
t (ỹt − C̃tµ̃t). The MSE matrix, i.e.,

E[(ũt − ˆ̃ut)(ũt − ˆ̃ut)
T ] is then given by

Σt(wt, . . . ,wt+Ns−1) = (Γ̃−1
t + σ−2

e C̃T
t C̃t)

−1. (3.24)

We mention that (3.24) is considered as the generalized expression (for both sta-
tionary and non-stationary field estimation) of the MSE matrix in this work. The
performance metric to estimate the field atN locations overNs snapshots is quan-
tified astr[Σt(wt, . . . ,wt+Ns−1)] or tr[Σt(w̃t)]. By using the relation of (3.5), the
performance metric in (3.24) can be written as

Σt(wt, . . . ,wt+Ns−1) = (Γ̃−1
t + σ−2

e diag(w̃t))
−1. (3.25)
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Figure 3.3:MSE variation withsh andsτ ; (N = 25, Ns = 4, σ2

u = 1, σ2

e = 0.1).

Here, we assume that̃Γt is well-conditioned and accurately invertible. We will
come back to this issue later on in this section.

Remark (Recursive performance metric): When the field is non-stationary as
mentioned in the previous section, we can useut−1 ∼ N (ût−1,Σt−1) to com-
pute theNs snapshots ahead first and second order statistics, i.e,µ̃t andΓ̃t. The
expression of the MSE matrix of (3.25) can be evaluated by substitutingut−1 ∼
N (ût−1,Σt−1) in the recursive relationship of (3.23). After the aforementioned
substitutions, forNs = 1, the performance metric of (3.25), i.e.,Σt(w̃t), becomes
Σt(wt). This is given as

Σt(wt) = [(HtΣt−1(wt−1)H
T
t +Qt)

−1 + σ−2
e CT

t Ct]
−1

= [(HtΣt−1(wt−1)H
T
t +Qt)

−1 + σ−2
e diag(wt)]

−1. (3.26)

This expression is the same as the single snapshot ahead update of the stateer-
ror covariance matrix of a simple Kalman filter and is an explicit function of the
selection vectors at time indext andt− 1.

We can see that, for a large service area (largeN ) and/or highNs, the computa-
tions ofµ̃t andΓ̃t as derived in (3.15) and (3.16), respectively, can be cumbersome
from thereal time monitoringperspective. However, in the simulation section we
solve both the single snapshot and the multiple snapshots ahead sensor placement
problems.
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3.4.1 Effect of spatio-temporal correlation

The parameterssh andsτ control the strength of the spatial and temporal correla-
tions, respectively. Increasing these values, the field becomes more correlated over
space and time. Also for a fixed noise power, the MSE with all the candidate loca-
tions equipped with sensors, i.e.,tr[Σt(1N , . . . ,1N )], reduces assh andsτ jointly
increase as shown in Fig. 3.3. From the aforementioned analysis, it can besaid that
to achieve a desired estimation performance, less sensors are required toestimate a
highly space-time correlated field than to estimate a lightly correlated field.

3.4.2 Highly correlated fields

For highly space-time correlated fields the spatio-temporal covariance matrixcan
be ill-conditioned [58], meaning that̃Γt in (3.25) is close to singular. In that case,
the MSE matrixΣt can be computed using the alternate expression of (3.25) given
by Σt(wt, . . . ,wt+Ns−1) = Γ̃t − Γ̃tC̃

T
t (C̃tΓ̃tC̃

T
t + σ2

eIM̃t
)−1C̃tΓ̃t which is ob-

tained by applying the matrix inversion lemma (MIL) on (3.25). It should be noted
that the alternate expression of the MSE can be used to compute the MSE without
inverting (̃Γt), but it is difficult to express it as an explicit function ofwt.

We leverage the matrix inversion lemma (MIL) and a special regularization pa-
rameter to remove the ill-conditioning, as follows. Assuming a nonzero scalar con-
stantβ ∈ R, the ill-conditioned matrix̃Γt can be regularized to a well-conditioned
matrixS as

S = Γ̃t + βINNs. (3.27)

We now substitutẽΓt = S − βINNs in the middle inverse of the right-most term
of the aforementioned alternate expression ofΣt(wt, . . . ,wt+Ns−1) and using the
fact thatC̃tC̃

T
t = IM̃t

, we obtain

Σt(wt, . . . ,wt+Ns−1)

= Γ̃t − Γ̃tC̃
T
t (C̃tSC̃

T
t + (σ2

e − β)IM̃t
)−1C̃tΓ̃t. (3.28)

Using the MIL we can write

(S−1 + (σ2
e − β)−1C̃T

t C̃t)
−1

= S− SC̃T
t (C̃tSC̃

T
t + (σ2

e − β)IM̃t
)−1C̃tS. (3.29)

Using (3.29), we have the following matrix identity

C̃T
t (C̃tSC̃

T
t + (σ2

e − β)IM̃t
)−1C̃t

= S−1[S− (S−1 + (σ2
e − β)−1C̃T

t C̃t)
−1]S−1. (3.30)
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Substituting (3.30) into (3.28), the error expression ofΣt(wt, . . . ,wt+Ns−1) can
be viewed as a function of the space-time sensor location selection vectors given
by

Σt(wt, . . . ,wt+Ns−1) = Γ̃t − Γ̃tS
−1[S− (S−1 + (σ2

e − β)−1C̃T
t C̃t)

−1]S−1Γ̃t

= A+BT [S−1 + (σ2
e − β)−1diag(w̃t)]

−1B, (3.31)

where the matricesA = Γ̃t − Γ̃tS
−1Γ̃t andB = S−1Γ̃t are independent of the

selection vectors, and therefore known a priori.
We notice that the MSE matrixΣt(wt, . . . ,wt+Ns−1) computed as in (3.31)

does not involve any inversion of the possible ill-conditionedΓ̃t. The only inver-
sions are of the regularized, and thus well-conditioned matrixS.

Here we comment that, the regularization in (3.27) is valid for any nonzero
β ∈ R if S is only desired to be invertible. However, to maintain the positive
definiteness ofS as well as[S−1 + (σ2

e − β)−1diag(w̃t)], we specifically choose
0 < β < σ2

e . The aforementioned restriction in the selection ofβ also helps to
formulate the general sensor placement problem as a convex optimization problem
which is detailed in the Section 3.5.

3.4.3 Uncorrelated fields

We mainly target the application of spatio-temporal monitoring of environmental
fields like pollutant concentrations in the atmosphere, concentrations of somehaz-
ardous gas, rainfall, ground layer ozone, humidity, etc. Generally, these fields are
spatio-temporally correlated. But in some scenarios the spatial/temporal correla-
tion may be very small. In these cases, the off-diagonal elements ofΓ̃t are close to
0. For a spatio-temporally uncorrelated field,Γ̃t can be modeled as̃Γt = σ2

uINNs.
Then the MSE matrix is given by

Σt(wt, . . . ,wt+Ns−1) = (σ−2
u INNs + σ−2

e C̃T
t C̃t)

−1

= (σ−2
u INNs + σ−2

e diag(w̃t))
−1. (3.32)

Note that, if the field is uncorrelated the estimation error is mainly characterized
by the signal to noise ratio (SNR) of the system, i.e.,σ2

u/σ
2
e . In this case, the term

σ−2
u INNs acts both as a regularization term ensuring the computability of (3.32)

and as a scaling term for the MSE. For the current measurement model of (3.3), to
estimate an uncorrelated field (with the sameσ2

u over space and time) the number
of sensors is more relevant for the estimation performance than their constellation
as long as the MSE is considered to be the performance criterion.
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3.5 Generalized sensor placement problem

A generalized performance metric to estimate both stationary and non-stationary
fields can be formulated astr[Σt(w̃t)], whereΣt(w̃t) is the generalized MSE ma-
trix (3.24). Following the main optimization problem of (3.6), an offline selection
of sensing locations fromN locations overNs snapshots can be performed by solv-
ing the following optimization problem

ˆ̃wt = argmin
w̃t∈[0,1]

NNs

{‖w̃t‖1, s.t. tr[Σt(w̃t)] ≤ γ′}, (3.33)

whereγ′ is a threshold on the estimation performance. An extra set of affine con-
straints can be added to the problem of (3.33), to restrict the minimum number of
sensing locations to be selected at every time indext. This is given as

‖wt+τ‖1 ≥ p, τ = 0, . . . , Ns − 1. (3.34)

This constraint enforces at leastp sensors to be selected at every snapshot. This
is an optional design constraint to efficiently utilize the available sensors in every
snapshot. Spatial selection of sensing locations can be performed in a moreefficient
manner by employing a structural constraint onwt+τ like group sparsity. The
evolution ofwt can also be controlled by using a smoothing penalty in the cost
function of (3.33), where the sensing locations are selected on a single snapshot
basis [59].

Considering the general form of the performance metric, i.e., (3.31), the opti-
mization problem of (3.33) can be formulated as a semidefinite program (SDP). For
theN candidate sensing locations, the performance constraint can be expressed as
N linear matrix inequalities (LMIs) [46], [45]. If the column vectors of the matrix
B are given bybj , wherej = 1, . . . , N , then the SDP is given by

ˆ̃wt = argmin
w̃t∈[0,1]N ,v∈RN

‖w̃t‖1,

s.t.

[

vj bT
j

bj S−1 + (σ2
e − β)−1diag(w̃t)

]

� 0, j = 1, . . . , N (3.35)

1Tv ≤ γ′ − tr(A), (3.36)

where we use the auxiliary variablev = [v1, . . . , vN ]T . The set ofN LMIs in
(3.35) signify the fact thatvj ≥ bT

j [S
−1 + (σ2

e − β)−1diag(wt)]
−1bj , wherej =

1, . . . , N (using the Schur complement of the blockS−1 + (σ2
e − β)−1diag(wt)).
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The solution of the aforementioned optimization problem gives the sensor place-
ment patterns achieving the desired estimation performanceγ′. It is clear that low-
eringγ′, i.e., putting a tighter threshold on the performance, more sensing locations
need to be selected.

In practical scenarios, the performance threshold can generally be derived from
the application, i.e., the nature of the field to be estimated, required resolution,
etc. In the present work, we calculate the thresholds by scaling the best case, i.e.,
sensors are deployed in allN candidate locations. In other words, we consider
γ′ = ζtr[Σt(1NNs)], whereζ > 1 is a positive scaling parameter.

3.6 Iterative saddle point method for sensor placement

From the above discussions, the structure of the general optimization problem, i.e.,
(3.33) with the performance metric (3.31), can be formulated as,

ŵ = argmin
w∈[0,1]L

{‖w‖1 s.t. tr[BT (S−1 + (σ2
e − β)−1diag(w))−1B]− γ′′ ≤ 0}

(3.37)
whereγ′′ = γ − tr(A), and the matricesA andB are independent ofw. In
this section, we usew instead ofw̃t for the sake of notational simplicity. For the
generalized sensor placement problem (i.e., stationary/non-stationary),the length
of the selection vector is given asL = NNs. In this work, we consider the fact that
the spatio-temporal covariance matrix is accurately invertible, i.e, we takeβ = 0,
B = IL, andA = 0L×L. Using these the optimization problem of (3.37) can be
given as

ŵ = argmin
w∈[0,1]L

{‖w‖1 s.t. tr[Z−1 + σ−2
e diag(w)]−1 − γ ≤ 0}, (3.38)

where the matrixZ is the spatio-temporal covariance matrix. We define a function
h(w) as

h(w) = tr[Z−1 + σ−2
e diag(w)]−1 − γ. (3.39)

However, as mentioned earlier, the convex problem (3.38) can be easily formu-
lated as an SDP and solved forw using off-the-shelf solvers like CVX [52] and
SeDuMi [53]. The complexity of standard SDP problems are discussed in [60].
But for a large service area and/or many snapshots the number of unknowns (L),
i.e., the number of LMIs becomes increasingly high. In this case, SDP basedap-
proaches using standard solvers can be time consuming. In this section, wepropose
an alternative approach to solve the optimization problem (3.38) directly.
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3.6.1 Primal-dual iterations

We use an iterative saddle-point method [61], to solve the optimization problem
(3.38). We adopt first-order methods rather than Newton’s method because New-
ton’s method requires the expression of the Hessian and also its inverse, which
increases the computational complexity and leads to storage issues. First ofall, we
define the dual variable associated with the inequality constraint (3.38) asλ. Under
convexity and Slater’s condition (which holds for (3.38), given the choice ofγ), we
can prove that the dual variableλ lives in a bounded compact set[0, λmax] [61,
Lemma 3]. The value ofλmax > 0 is easily computable a priori, given any
Slater’s vector. Let us now define the compact constraint sets,X ∈ [0, 1]L and
D ∈ [0, λmax] for the primal and the dual variablesw ∈ X, andλ ∈ D, respec-
tively. The Lagrangian functionL(w, λ) : X × D → R, for the optimization
problem (3.37) is given by,

L(w, λ) = 1Tw + λ h(w). (3.40)

The primal-dual iterations fori ≥ 0 can be given as,

ŵi+1 = PX[ŵ
i − α∇wL(ŵi, λ̂i)], (3.41)

λ̂i+1 = PD[λ
i + α∇λL(wi, λi)], (3.42)

wherePX andPD are the projection operators onto the setsX andD, respectively.
The scalarα > 0 is the step size. We define∇w(·) and∇λ(·) as the gradients
w.r.t. w andλ, respectively. Note that, the primal-dual iterations actually minimize
L(w, λ) w.r.t. w and maximize it w.r.tλ in order to achieve the saddle point(ŵ, λ̂)

[61], which satisfies

L(ŵ, λ) ≤ L(ŵ, λ̂) ≤ L(w, λ̂), ∀w ∈ X, λ ∈ D. (3.43)

The expressions of the gradients∇w(·) and∇λ(·) are computed in the Appendix.
They are given as

∇wL(ŵi, λ̂i) = 1L + λ̂iσ−2
e diag(−[Z−1 + σ−2

e diag(ŵi)]−2) (3.44)

∇λL(ŵi, λ̂i) = tr[Z−1 + σ−2
e diag(ŵi)]−1 − γ. (3.45)

Due to compactness of the setsX andD and the invertibility ofZ, it can be proven
that the gradients are bounded. And, in particular, we can write

max{‖∇wL(w, λ)‖, ‖∇λL(w, λ)‖} ≤ C, ∀w ∈ X, λ ∈ D, (3.46)
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whereC > 0 is a constant. With this in place, due to Propositions 1 and 2 of [61],
the iterates{ŵi, λ̂i} converge weakly (in the ergodic mean sense) to a neighbor-
hood of the saddle point of the Lagrangian (3.40). The size of the neighborhood
(i.e., the asymptotical error bound) is proportional toαC2. In addition, conver-
gence goes asO(1/iα), i being the iteration counter. A similar result is also valid
for the amount of constraint violation. In practice, in the simulation results, wewill
select the step sizeα to trade-off convergence speed and asymptotical error. The
stopping criteria will be based either on a maximum number of iterations, or on a
required tolerance on the value of|h(ŵi)|.

3.7 Iterative reweightedℓ1-norm minimization algorithm
to improve sparsity

The well-known convex approximation of the non-convexℓ0-norm is the sought-
after ℓ1-norm. However, there are better functions to model a sparsity-promoting
cost like a sum of logarithms or a sum of inverse squared exponentials. Unfortu-
nately both of these functions are non-convex.

For example, in the optimization problem of (3.6), the objective function can
be replaced by a sparsity-promoting non-convex cost, i.e.,

∑L
l=1 ln(ǫ+[w]l). Here,

ǫ > 0 is used to maintain the stability of the sum of the logarithm cost. As men-
tioned in [56], such a log-concave function can be well approximated by itsfirst
order linear approximation. This means that minimizing

∑L
l=1 ln(ǫ+ [w]l) can be

approximated by iteratively minimizing its linear approximation, i.e.,

argmin
w

L
∑

l=1

[w]l
ǫ+ [ŵj ]l

, (3.47)

whereŵj is the estimate ofw in thej-th iteration [56]. Following the derivation of
[56], the optimization problem (3.6), can be formulated as the iterative reweighted
ℓ1-norm minimization given by

• Initialize j = 0, weight vectorz0 = 1L, ǫ, and maximum number of itera-
tionsJ .

• for j = 0, . . . , J

ŵj = argmin
w∈[0,1]L

{(zj)Tw, s.t. g(w) ≤ γ}
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• [zj+1]l =
1

ǫ+[ŵj ]l
, for l = 1, . . . , L

• end

• setŵ = ŵJ .

The aforementioned algorithm is envisaged to avoid the dependence ofŵ on
the magnitude of its elements. Using this iterative approach, a higher weight is put
on the smaller elements ofw to push them towards0, enhancing the sparsity in
w. On the other hand, it maintains the magnitude of the larger elements by putting
a smaller weight. However, after this “sparsity-enhancing” iterative algorithm we
still haveŵ ∈ [0, 1]L. After the computation of̂w from the above iterative algo-
rithm we computew ∈ {0, 1}L using simple thresholding and randomized round-
ing.

3.7.1 Primal-dual iterations with the iterative reweighted ℓ1-norm min-
imization

The sparsity-enhancing iterative algorithm mentioned in the previous sectioncan
be implemented in combination with the saddle-point method. In this case, the
Lagrangian can be formulated as

L(ŵj , λ) = (zj)T ŵj + λ h(ŵj), (3.48)

wherezj is the weighting vector of thej-th iteration of the iterative algorithm. As
before, we can compute the saddle-point iterates with this new Lagrangian,which
(for the same reasons as mentioned in Section 3.6.1) will converge weakly to a
saddle point up to a bounded error.

In Algorithm 3, the saddle-point iterations for the reweightedℓ1 minimization
are presented. The overall algorithm is implemented using two nested loops, where
the inner loop (indexed byi) is used for the primal-dual iterations and the outer
loop (indexed byj) is used for the iterative reweightedℓ1 algorithm.

To place the sensors dynamically every snapshot, the same Algorithm 3 is im-
plemented fort = 1, . . . , T snapshots withNs = 1, i.e.,L = N . The estimation
error is initialized asΣ0 at t = 0. After estimatingwt at anyt, the estimation error,
i.e.,Σt(wt) is updated based on the recursive relation of (3.26). We refer to this
algorithm as Dynamic Iterative Sparsity-Enhancing Sensor Placement (DISESP).
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Algorithm 1 Saddle point iterations enhancing sparsity

1: Initialize : j = 0, weight vectorz0 = 1L, α, I, J , tol, andǫ.
2: for j = 0, . . . , J

3: solvethe saddle point iterations
4: while i < I or |h(w)| ≥ tol

ŵi+1,j = PX[ŵ
i,j − α∇w[(z

j)T ŵi,j + λ̂i,j h(ŵi,j)]],

λ̂i+1,j = PD[λ̂
i,j + α∇λ[(z

j)T ŵi,j + λ̂i,j h(ŵi,j)]]

5: end while
6: update the weight vector by[zj+1]l =

1
ǫ+[ŵj ]l

, wherel = 1, . . . , L.
7: end for
8: ŵ = ŵJ .

3.8 Simulation result

In this section, we perform some numerical experiments for both stationary and
non-stationary field estimation applications using the developed sensor placement
method. Let us assume a service area of10×10 square km which is discretized into
N = 100 pixels of size1 square km. The service area and the centroids of the pixels
are shown in Fig. 3.4. We assume that all of these centroids are candidate sensing
locations. They are row-wise indexed from top to bottom as shown in Fig. 3.4.

3.8.1 Sensor placement for stationary field estimation

Firstly, we assume that the environmental field is spatio-temporally stationary.

We consider to haveNs = 3 snapshots. In this case, the size of the spatio-
temporal covariance matrix (Γ̃t) is 300 × 300. The temporal lags areτ = 0, 1, 2

asNs = 3. The diagonal and off-diagonal blocks ofΓ̃t are given byΓ0 ∈ S
100
++

andΓ2,Γ1, Γ−1,Γ−2 ∈ S
100
++, respectively. The elements of these matrices are

generated by the exponential covariance function mentioned in (3.7) (Section 3.3)
with parametersσ2

u = 1, sh = 5, sτ = 2. Thedij parameters are computed from
the distance matrix (matrix of all possible pair-wise Euclidean distances) of the
pixel centroids as shown in Fig. 3.4. Based on these,Γ̃t is a symmetric, positive-
definite and block-toeplitz matrix.

The measurement noise variance is assumed to beσ2
e = 1. The performance

thresholdγ′ is computed by scaling the best case MSE (i.e.tr[Σt(1300)]) by ζ = 2.
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The parameters of the sparsity-enforcing iterative algorithm areǫ = 10−8 andJ =

5. A constant step-size ofα = 0.1/(NNs) is used in the saddle point algorithm
and the algorithm is iterated until a desired tolerance level (tol) or the maximum
number of iterations (I) is achieved. Here, we taketol = 10−4 andI = 300NNs.

The estimated sensor location selection vectors forNs = 3 snapshots, i.e.,
ŵ1, ŵ2, ŵ3 before and after the randomized rounding are shown in Fig. 3.5 and
Fig. 3.6, respectively. In the next case, we keep the sameγ′ but assume that the field
is spatio-temporally more correlated than the last time. In this case, we usesh = 7

andsτ = 3. The resulting selected sensing locations, i.e.,ŵ1, ŵ2, ŵ3 before and
after the randomized rounding are shown in Fig. 3.7 and Fig. 3.8, respectively.

It is observed that less sensors are needed to achieve a desired estimation per-
formance, when the field is highly correlated over space and/or time. We seethat
in Fig. 3.8 less sensing locations are selected than in Fig. 3.6. This observation is
consistent with the fact that the Bayesian MSE is reduced as the correlationover
space/time is increased, as shown in Fig. 3.3.

We study space-time sensor placement patterns for a simple exponential covari-
ance function (uniformly decaying with increasing spatial/temporal lags). Itcan be
conjectured that for such a covariance function the optimal sensor placement is
more or less uniform over space and time. However, different sensor placement
patterns can be observed for different spatio-temporal covariance matrices, i.e.,̃Γt.

3.8.2 Sensor placement for non-stationary field estimation

In this section, we consider that the environmental field is non-stationary. We con-
sider that the dynamics, i.e,Ht for t = 1, . . . , 7 snapshots (minutes) are assumed
to be known a priori. We present two scenarios. First, we solve the multiple snap-
shots ahead sensor placement problem. We solve this only once without anyup-
dating although this could be considered as well. In the next case, we solvethe
single snapshot ahead sensor placement problem, where the performance metric is
updated every snapshot. We consider the same service area as shown inFig. 3.4.

Multiple snapshots ahead sensor placement

We considerNs = 3 snapshots. The parameters of the state transition matrix are
given by ν = 0.4, Dt = D = I2, which is an isotropic diffusion, andat =

a = [0.5, 0.5]T for H1, H2, H3. We assume that the initial distribution of the
field is given asu0 ∼ N (µ0,Γ0), where we takeµ0 = 1100 and the elements
of Γ0 ∈ S

100
++ are given by (3.7) with parametersσ2

u = 1, sh = 1, sτ = 0,
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Figure 3.4: Service area with the candidate sensing locations.
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Figure 3.5:Sensor placement pattern (sh = 5; sτ = 2) (before randomization).
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Figure 3.6:Sensor placement pattern (sh = 5; sτ = 2) (after randomization).
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Figure 3.7:Sensor placement pattern (sh = 7; sτ = 3) (before randomization).
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Figure 3.8:Sensor placement pattern (sh = 7; sτ = 3) (after randomization).
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Figure 3.9: Multiple snapshots ahead sensor placement pattern for non-stationary field

(before randomization).
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Figure 3.10:Multiple snapshots ahead sensor placement pattern for non-stationary field

(after randomization).

i.e, [Γ0]ij = exp[−dij ] for i, j = 1, . . . , 100. The process noise is characterized
by qt ∼ N (0100, 0.001I100) for all t. The diagonal, right and left off-diagonal
blocks ofR̃t are computed using (3.18), (3.19), and (3.20), respectively. Finally,
the overall space-time covariance matrix is computed byΓ̃t = R̃t − µ̃tµ̃

T
t , where

µ̃t andR̃t are computed using the expressions of (3.15) and (3.17), respectively.
The measurement noise variance is assumed to be same as before, i.e.,σ2

e = 1.
The parameters of the iterative saddle point algorithm are also maintained to bethe
same as before. In this case, we again adopt the performance thresholdγ′ by scaling
the best MSE byζ = 2. The sensor location selection vectors, i.e.,ŵ1, ŵ2, ŵ3

(before and after randomization) are shown in Fig. 3.9 and Fig. 3.10, respectively.

It is seen that when the field is non-stationary, the selected sensing locations
are less uniformly distributed than for the stationary field case. It is also seen that
when a non-stationary field is to be estimated jointly using the measurements from
multiple snapshots then measurements from alternate snapshots are more informa-
tive than measurements from consecutive snapshots. This makes sense as sensors
in alternate snapshots are less correlated and the values for the middle snapshot can
be easily predicted. The dependence on the dynamics is even more clearly observed
in the next case, where we update the performance metric every snapshot.



50

Single snapshot ahead sensor placement

In this case, we select the sensing location for every snapshot, i.e., we consider
Ns = 1. To avoid the computation of̃Γt we update the performance metric every
snapshot based on (3.26), i.e., we use the developed DISESP approach mentioned
in Section 3.7.1.

Considering the same service area shown in Fig. 3.4, we would like to choose
the sensing locations every snapshot dynamically. Note that, for everyt we com-
putewt (with the prior knowledge ofHt, Qt, and the estimation error covariance
of the previous snapshot, i.e.,Σt−1) whose support gives the locations where to
move/place the sensors to estimate the field for the current snapshot. The scal-
ing and diffusion parameters of the state transition matrix are given byν = 0.4

andDt = D = I2, which are the same as before. For the advection, we con-
sider two scenarios. In the first case, we assume thatat is fixed for all t, i.e.,
we haveHt = H. In the next case, we changeat every minute. In that case,
the values ofat for t = 1, . . . , 7 are given as[0.5, 0.5]T , [1.5, 1.5]T , [0, 2]T ,
[0, 2]T , [1.5,−1.5]T , [0.5,−1.5]T , [1.5,−1.5]T . Here, we mention that the pa-
rameters of the matrixHt are chosen in such a way that the maximum eigenvalue of
Ht is always less than1, in order to assure the stability of the model. The measure-
ment noise variance is assumed to beσ2

e = 1, for all t. The process noise is chosen
to be the same as before. i.e.,qt ∼ N (0100, 0.001I100) for all t. We assume that at
time t = 0 the estimation error covariance isΣ0 = I100. The performance thresh-
old γ′ is dynamically computed by scaling the best case MSE, i.e.,tr[Σt(1100)],
by ζ = 1.3 on everyt. We performJ = 3 iterations of the iterative algorithm at
every snapshott. In order to improve the speed, the selected sensing locations are
computed by thresholding w.r.t.0 (i.e., setting the non-zero elements to1) rather
than performing randomization on every snapshot.

The resulting sensor placement patterns for the fixed and time-varyingHt are
shown in Fig. 3.11 and Fig. 3.12, respectively. The y-axis represents the indices of
the selected sensing locations indexed as shown in Fig. 3.4. The x-axis represents
the time in minutes. In Fig. 3.11, it is seen that more or less the same subset of
sensing locations are selected with increasing time as the state error covariance con-
verges to the steady state. The number of required sensing locations for individual
snapshots is also decreasing with time due to the reduction of the state error.

On the contrary, in Fig. 3.12 different sensing locations are selected with time
due to the time-varying state transition matrixHt. It is seen that the number and
position of the optimal sensing locations, achieving a prescribed estimation perfor-
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Figure 3.11:Sensor deployment pattern forHt = H.

mance are guided by the dynamics of the field, as well as the required performance
(which is also dependent on the noise level) of the system.

3.8.3 Analysis of the performance metric

In this section, we compare the performance of the developed sensor placement
algorithm with random sensor placement in terms of their respective mean square
errors for different measurement noise variances (σ2

e ). For every noise variance,
100 random realizations of the selection vectorw̃t ∈ {0, 1}NNs are generated with
the same number of1s generated by the proposed approach. The average MSE
of all these realizations are compared with the achieved MSE using the proposed
algorithm.

We consider two scenarios. In the first case, we consider the spatial sensor
placement problem, i.e,Ns = 1, to estimate a stationary field in the service area
shown in Fig. 3.4, i.e.,N = 100. The elements of the spatial covariance ma-
trix Γ̃t are generated using the exponential covariance function mentioned in (3.7)
with sh = 5. The comparison of the MSE for the proposed approach and the av-
erage MSE of random sensor placement for different noise variances is shown in
Fig. 3.13. The standard deviation of the MSEs for different realizations of the ran-
dom placement are also shown for everyσ2

e . In the second case, we consider the
field to be non-stationary with the sameHt = H as mentioned in Section 3.8.2.
In this case, we considerN = 25 (5 × 5 square km service area with25 pixels),
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Figure 3.12:Sensor deployment pattern for a time-varying advection parameterat.

Ns = 3 and solve forw̃t ∈ {0, 1}75, i.e, in a multiple snapshots ahead fashion.
The comparison of the MSE with random placement is shown in Fig. 3.14. In the
last two cases, we considerζ = 2 andζ = 1.5, respectively.

In the third case, we consider the single snapshot ahead sensor placement prob-
lem, i.e., the performance metric is updated every iteration. We fixσ2

e = 1 and
ζ = 2. Everyt, the MSE of the proposed approach and the average MSE for100

different realizations ofwt ∈ {0, 1}N (with the same number of1s generated by
the proposed approach) are compared. We consider the same setup as mentioned
in Section 3.8.2. The performance comparison is shown in Fig. 3.15.

First of all, it is observed that the achieved MSE using the proposed approach
is lower than randomly placing the sensors for a given number of available sensing
locations. It is also seen that when the field is stationary with a smoothly varying
spatial covariance function, on average random placement performs well. The rea-
son behind this is that a uniform placement is close to optimal in order to estimate
a stationary field as observed in Fig. 3.6 and Fig. 3.8. So, the performancegap is
not significant in this case, as long as the average MSE of the uniformly at random
realizations is concerned. But there could be some realizations producinga high
MSE, as seen by the standard deviation plot.

But when the field is non-stationary, the optimal sensor placement patterns are
non-uniform over space and time as shown in Figures 3.10, 3.11, and 3.12for mul-
tiple snapshots and single snapshot ahead sensor placements, respectively. They
are mainly guided by the dynamics of the field. In this case, the performance gap
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Figure 3.13:MSE comparison with random sensor placement (stationary field; N = 100,
Ns = 1).

between the proposed approach and a random placement is significant.

3.9 Conclusion

We have presented sparsity-enforcing sensor placement methods for the estimation
of both stationary and non-stationary spatio-temporal environmental fields. The
developed methodologies can be used for both offline and online field estimation
applications. They exploit the space-time correlation information as well as thedy-
namics of the field to deploy sensors at the most informative locations over space
and time. We have also developed a sparsity-enforcing iterative first order approach
to select the sensing locations that achieve a prescribed estimation accuracy in terms
of the MSE. We further compared the performance of the developed sensor place-
ment approach with random sensor placement.

It is observed that for an exponentially decaying stationary covariancefunction,
the higher the spatio-temporal correlation the less sensing locations are needed. For
a non-stationary field, the number and the position of the selected sensing locations
are controlled by the dynamics of the field, the required estimation accuracy,and
the noise level. If the dynamics are not changing with time then the same set of
sensors are selected with time once the posterior error covariance reaches a steady
state.
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Figure 3.14:MSE comparison with random sensor placement (non-stationary field; N =

25, Ns = 3).
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3.10 Appendix

In this section, we compute the derivatives of the Lagrangian which are used in
(3.41) and (3.42). The derivatives w.r.tw andλ are given as

∇wL(w, λ) = 1L + λ∇wh(w), and (3.49)

∇λL(w, λ) = h(w), (3.50)

respectively. To compute∇wh(w) we use the following identities for the differen-
tiation of a scalar function of matrix and vector variables [62]. They are

∂f(X(w))

∂[w]l
= tr

[

(

∂f(X(w))

∂X(w)

)T ∂X(w)

∂[w]l

]

, and

∂tr[X−1]

∂X
= −(X−2)T ,

wherel = 1, . . . , L. Now using the above identities we can compute,

∇wh(w) = ∇w[tr[Z
−1 + σ−2

e diag(w)]−1]

= σ−2
e diag(−[Z−1 + σ−2

e diag(w)]−2). (3.51)

Extended derivation: We considerf(X(w)) = h(w), whereX(w) = [Z−1 +

σ−2
e diag(w)]. Now, we compute the elements of the vector∂f(X(w))

∂w = ∂h(w)
∂w =

∇wh(w) by,

∂f(X(w))

∂[w]1
= tr

[

(

∂f(X(w))

∂X(w)

)T ∂X(w)

∂[w]1

]

= tr[−[Z−1 + σ−2
e diag(w)]−2σ−2

e A1],

whereA1 is anL × L matrix with only one non-zero element at(1, 1) given as
[A1]11 = 1. Similarly,

∂f(X(w))

∂[w]L
= tr

[

(

∂f(X(w))

∂X(w)

)T ∂X(w)

∂[w]L

]

(3.52)

= tr[−[Z−1 + σ−2
e diag(w)]−2σ−2

e AL], (3.53)

whereAL is anL × L matrix with only one non-zero element at(L,L) given as
[AL]LL = 1. So, the overall gradient is computed as

∇wh(w) =

[

∂f(X(w))

∂[w]1
, . . . ,

∂f(X(w))

∂[w]L

]T

. (3.54)

Substituting the elements we have∇wh(w) = σ−2
e diag(−[Z−1+σ−2

e diag(w)]−2).
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Chapter 4
Spatio-Temporal Environmental
Field Estimation Exploiting Prior

Information

Dynamic estimation of the spatio-temporal evolution of an environmental field
using limited number of sensing resources is a challenging task. As discussed
in Chapter 2, depending upon the sensing modality and the required resolution
of the estimate, the observations can be modelled as linear/non-linear underdeter-
mined/overdetermined measurement models. In these circumstances, prior infor-
mation regarding the field can be exploited in order to estimate the field accurately.
In this chapter, we focus on a practical example of environmental field monitoring,
i.e., spatio-temporal rainfall monitoring. We describe a dynamic rainfall moni-
toring methodology using rain-induced attenuation measurements from microwave
links exploiting some physical properties of rainfall.

Spatial rainfall mapping from the measurements of rain-induced attenuations
collected from microwave links (used by cellular telecommunication networks) is
an emerging technology which can serve as an alternative to traditional approaches
like rain gauges and weather radar [5]. The motivation behind this methodology
is to utilize existing systems such as cellular networks to improve the quality of

Part of this chapter is published as: V. Roy, S. Gishkori, and G. Leus, “Dynamic rainfall moni-
toring using microwave links,”EURASIP Journal on Advances in Signal processing, vol. 2016, no.
1, pp. 1-17, December 2016
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rainfall estimates using rain gauges and radar, as well as to use it as an independent
rainfall measuring unit in areas, where traditional measuring modalities are scarce.
To estimate the rainfall intensity dynamically from a limited number of non-linear
measurements, we exploit the physical properties of rainfall such as spatial sparsity
and non-negativity along with the dynamics of the rainfall intensity. We develop
a dynamic state estimation algorithm, where the aforementioned spatial proper-
ties are utilized as prior information. The developed methodology is applied to
dynamically monitor the rainfall field intensity in an area with a specified spatial
resolution. The proposed methodology can be generalized for any dynamic field
reconstruction, where the limited number of non-linear measurements are fieldin-
tensities integrated over a linear path.

The outline of the chapter is as follows. In Section 4.1, the previous works in
this field along with the main contributions of this chapter are presented. The mea-
surement model for the dynamic rainfall mapping from microwave link attenuation
measurements is presented in 4.2. In Section 4.3, spatial and temporal variability
of the rainfall field are presented. The dynamic rainfall monitoring algorithmex-
ploiting the physical information regarding the rainfall field is described in Section
4.4. In Sections 4.5 and 4.6, the methods for dynamic selection of the “sparsi-
fying” basis and the selection of the tuning parameter regulating the sparsity are
described. The simulation results for different scenarios (e.g., known or unknown
spatio-temporal prior information) are presented in Section 4.7. Finally, the con-
cluding remarks along with the challenges are presented in Section 4.8.

4.1 Prior art and contributions

One of the main motivations behind “rainfall monitoring using microwave link at-
tenuation” is to utilize existing systems such as microwave links in the cellular
networks to improve the quality of rainfall estimates using rain gauges and radar.
It can also be used as an independent rainfall measuring unit. These can be ap-
plied mainly in the areas, where traditional measuring modalities are scarce. The
attenuation measurements from microwave links can also be used for monitoring
snowfall, fog and humidity [63]. However, practicability of spatio-temporalrainfall
monitoring is exhibited in [1] by comparing its performance with rain gauges and
radar. In Fig. 4.1, the comparison of the estimates of rainfall intensity (mm/hr) of
rain-gauge, radar, and microwave link based estimates are presented [1]. Seminal
works in this domain include tomographic rainfall mapping [64], and a stochastic
implementation of the microwave tomographic inversion technique (MTIT) [65].
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Figure 4.1: Rainfall intensity (mm/hr) measured by microwave links, rain gauges, and
radar, in two places in Israel: (A) Tel-Aviv and (B) Haifa : source of figureMesser et al.
2006 [1].

Figure 4.2:Proposed dynamic rainfall monitoring framework.
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Recently, it has been observed that signal processing algorithms like a modified
weighted least squares method can be implemented to spatially map the rainfall
intensity on a regular grid, using microwave link attenuation measurements [12].
Also, a direct spatial reconstruction from non-linear measurements usinga vari-
able grid size is exhibited in [66]. The robustness of a practical applicationof
“rainfall monitoring using microwave link attenuation” is illustrated in [67], where
a country-wide (The Netherlands) rainfall mapping is shown to be possibleusing
link attenuation measurements using a data set of12 days (with a temporal resolu-
tion of 15 minutes). However, in order to achieve some desired spatial resolution of
the rainfall field estimate (in terms of number of pixels), the number of microwave
links, i.e., the number of attenuation measurements is always much smaller than
the number of pixels in a given service area. In this case, to dynamically monitor
the rainfall intensity, physical properties of rainfall like spatial sparsity and non-
negativity can be exploited as extra information. In [68], a sparse reconstruction of
the rainfall field from a limited number of non-linear measurements is presented.
In [69], a sparsity- as well as a ridge-penalized, non-negativity constrained, ordi-
nary least squares method is used to estimate the spatial rainfall map from linear
path-averaged rainfall intensities, albeit for a single snapshot. Furthermore, incor-
porating the non-linearity of the measurements as well as a state-space model,a
spatio-temporal rainfall monitoring method using an extended Kalman filter (EKF)
is described in [13]. Recently, a linear Kalman filter is used for the reconstruction
of rainfall maps inspired by object tracking algorithms [70]. However, none of
the above dynamic rainfall monitoring methods exploits structural properties of the
rainfall field like sparsity or non-negativity.

Commingling the concepts of the aforementioned literature, estimating a spatio-
temporally evolving rainfall field can be viewed as a dynamic sparse field estima-
tion problem, where the spatial sparsity of the rainfall field can be tailored byrep-
resenting it as a sparse signal in a suitable “sparsifying” basis [37], [71]. Such a
dynamic estimation of sparse signals, also known as sparsity-aware Kalman filter-
ing, is a well-studied problem in the field of signal processing with quite a number
of applications like target tracking, video coding etc. Next to the spatial sparsity
also the temporal sparsity can be exploited in the state estimation [72]. Sparsity
penalties lead to a faster convergence than a clairvoyant Kalman filter, as illus-
trated in [72]. Also, a non-negativity constrained sparsity-aware Kalmanfilter is
applied to the target tracking problem in [73]. In [74], the “dynamic filtering”
is implemented by introducing an iterative re-weightedℓ1 penalty. In that work,
a Bayesian hierarchical model is used for the dynamically varying sparsecoeffi-
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cients of the signal. Also, in [75], the convergence of the aforementionedapproach
has been illustrated, formulating it as a basis pursuit denoising (BPDN) problem.
Another notable approach of tracking a sparse signal in an underdetermined mea-
surement scenario is viewing sparsity as a pseudo-measurement and implementing
a parallel state and covariance update scheme for this extra measurement [76]. In
the Bayesian paradigm, a sparsity-aware state estimation can be formulated asa
constrained maximum a posteriori estimator (MAP) [77].

In this work, we assume that the spatial rainfall intensity can be represented as
a sparse environmental signal. We assume two scenarios for the spatio-temporal
evolution of the rainfall field. In the first case, we assume that the dynamicsof the
rainfall field are perfectly known. In this case, we use a linear but time-varying
dynamical model for the space-time evolution of the rainfall event, which incorpo-
rates physical phenomena like advection, diffusion and convection [32], [78]. In
the second case, we assume that the information regarding the dynamics arenot
perfectly known. In this case, we approximate the spatio-temporal evolutionby a
simple Gaussian random walk model.

We develop a complete structured framework to dynamically monitor the rain-
fall intensity exploiting the prior knowledge regarding the spatial sparsity, non-
negativity and the dynamics of the rainfall field. The overall dynamic rainfall mon-
itoring setup is pictorially represented in Figure 4.2. The proposed setup accepts
attenuation measurements, in a given service area at any given snapshot from the
operating links, whose geometry and operating frequencies are known.Accumulat-
ing these non-linear measurements, the spatial rainfall intensity in the given service
area is computed in a centralized approach with a specified resolution. The devel-
oped dynamic rainfall monitoring algorithm has the following salient features:

• A non-linear, underdetermined, and time-varying measurement model is con-
sidered here. A dynamic linearization, followed by a state estimation is per-
formed, where sparsity and non-negativity are exploited, in order to achieve
a stable solution from the underdetermined measurement setup.

• The tuning parameter regulating the sparsity can be dynamically updated on
every estimation step.

• The algorithm is generalized to dynamically select the representation basis
that minimizes the mutual coherence between the basis matrix and the mea-
surement matrix at a particular time instance, which represents the geometry
of the available link measurements at that time instance.
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4.2 Measurement model

The topology of the network of microwave links deployed by any telecommunica-
tion service provider in any service area is fixed. These links can be viewed as a
fixed network of sensors to monitor rainfall since the received signal level (RSL)
measurements related to these links depend on the rainfall. It should be noted
that the signal attenuation on a microwave link is not only due to rainfall but also
depends on other atmospheric effects like humidity, wet-antenna attenuation,and
propagation loss. For simplicity, we assume that the attenuation caused by these
other effects (except precipitation) can be pre-computed e.g., during “dry periods”,
and subtracted from the recorded RSL measurements. In this way, the effective
measurements only include the rain-induced attenuation. The conventional empiri-
cal relationship between the rain-induced specific attenuation and the path-averaged
rainfall rate is given byys = arb, whereys is the specific attenuation of the link
(dB/km), andr is the path-averaged rainfall rate over the link (mm/hour) [79]. If
L is the length (km) of the microwave link, then the total rain-induced attenuation
over the link isy = ysL = arbL dB. Parametersa andb are related to the drop
size distribution (DSD) of the rain, the polarization and frequency of the trans-
mitted electromagnetic wave, the length of the link, the ambient temperature, etc.
It has been extensively studied and shown in several works that variations of the
aforementioned environmental and non-environmental parameters affect the esti-
mate of the path-averaged rainfall rate. A quantitative analysis of DSD related
errors in estimating the path-averaged rainfall from direct rain-inducedattenuation
measurements is illustrated in [80], [81]. It can be observed that the attenuation
for links operating in frequencies around35 GHz can be treated as a linear mea-
surement of the path-averaged rainfall rate [80]. A detailed analysis ofthe effects
of the frequency, DSD, link length, and temporal sampling in estimating the path-
averaged rainfall rate has been presented in [82], [83]. Also, in a wide coverage
area the link (measurement) availability in different hours of the day may signifi-
cantly vary. All of these aforementioned studies advocate a dynamic tuning of the
a andb coefficients in order to better monitor the rainfall from link attenuation.

The non-linear attenuation measurements from the microwave links in any
given service area for a fixed time can be used to estimate the spatial rainfallinten-
sity over the same area. Let us consider a uniform discretization of the specified
service areaA (square) intoN pixels where we would like to estimate the rainfall
intensity. Here, we make the assumption that the rainfall intensity is constant within
any pixel. This assumption is flexible as any resolution can be attained by tailoring
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the areas of the square pixels. Let us assume that there areM links in the given
service area. The length of thei-th link can be written asLi =

∑N
j=1 lij , wherelij

is the length of thei-th link passing through thej-th pixel, wherei = 1, . . . ,M . If
thei-the link does not pass through thej-th pixel thenlij = 0, otherwise it is com-
puted by the link and the pixel coordinates. The total attenuation over a link can be
modelled as the sum of the attenuations over the link-segments [12]. Using this,the
attenuation over thei-th link at timet can be expressed asyi,t ≈

∑N
j=1 yij,t, where

yij,t is the attenuation over the link-segment of lengthlij . Using the power-law re-
lationship for the attenuations over the link-segments, the measurement model can
be constructed in the following way,

yi,t = ai,t

N
∑

j=1

u
bi,t
j,t lij + ei,t, i = 1, . . . ,M, (4.1)

whereyi,t is the attenuation measurement of thei-th link, anduj,t is the intensity
of the rainfall field in thej-th pixel at timet. The power-law coefficients of the
i-th link at time t are given byai,t andbi,t. The measurement model in (4.1) is
a generalized time-varying non-linear tomographic measurement model. In this
work, we consider the fact that all theM links are operated in the same frequency
and that the other environmental conditions (e.g., DSD, temperature) are fixed for
all t. Based on these assumptions, the aforementioned measurement model can be
simplified as

yi,t = a

N
∑

j=1

ubj,tlij + ei,t, i = 1, . . . ,M. (4.2)

The measurement noise incurred at thei-th link measurement at timet is given
by ei,t. The measurements are corrupted by errors which are mainly due to quan-
tization but also there are other sources of noise. A more detailed description of
the statistical nature of the measurement noise can be found in [12]. For thesake
of simplicity, let us assume thatei,t is zero-mean spatio-temporally white Gaussian
noise with varianceσ2

e . Further, we assume thatei,t is uncorrelated withuj,t.
Combining all the measurements from theM links at timet, we can construct

the following non-linear measurement model at timet:

yt = Φ(ut) + et, (4.3)

whereyt ∈ R
M stacks the measurements from theM links at timet, whereas

et ∈ R
M does the same for the noise. The vectorut ∈ R

N gathers the rainfall
intensities for all of theN pixels at timet, i.e, it is the parameter to be estimated
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dynamically. The non-linear mapping between the rainfall intensities and the at-
tenuation measurements is given byΦ : RN → R

M and it is assumed to be per-
fectly known. The elements ofut are given by[ut]j = uj,t = ut(xj), where
ut(x) represents the continious rainfall field at any arbitrary locationx ∈ R

2 and
xj = [xj , yj ]

T is the centroid of thej-th pixel of the service area. The measurement
noise components associated with theM link measurements are characterized by
et ∼ N (0,Rt), whereRt = R = σ2

eIM , whereσ2
e is the measurement noise

variance which is assumed to be known a priori.

4.3 Spatio-temporal variability of rainfall

4.3.1 Spatial variability of ut

At any snapshott, the spatial rainfall intensityut(xj), for j = 1, . . . , N can be
viewed as a wide-sense stationary (WSS) random process. In spatial statistics,
ut(xj) is WSS (or second-order stationary) if it satisfiesE[ut(xj)] = µt (for all
j = 1, . . . , N in the service area), and if the spatial covariance between any two
points is dependent only on the distance between them (i.e., isotropic) [84].The
parameterµt is the mean/trend of the rainfall field. As mentioned in Section 2.2.1, a
variogram model can be used to represent the spatial variations. Generally, several
variogram models are used as it is computationally hard to calculate the spatial
dependency for every lag distanceh. Some statistical functions like a Gaussian,
exponential or empirically fitted models like spherical functions are often used as
variogram models [7]. From the analysis of [30], the spherical variogram model is
seen to be an appropriate model to describe the spatial variability of rainfall.The
mathematical expression of a spherical variogram (2γ(h)) or semivariogram (γ(h))
is given in (2.10).

The advantage of the spherical variogram model is that the parameters that
charachterizes a spherical variogram, i.e., sill (N0 + S0), partial sill (S0), nugget
(N0), and range(d) can be approximated in hourly scales for a specific day of the
year [30]. Now, the spatial covariance functionCv(h) can be defined asCv(h) =

E[(ut(xi) − µt)(ut(xj) − µt)]. As mentioned in 2.2.1, using the second-order
stationarity of the random processut(xj), the semivariogram can be related to the
spatial covariance functionCv(h) by the relationγ(h) = (N0 + S0) − Cv(h)

[84]. Now, the elements of the spatial covariance matrixΣu can be computed as
[Σu]ij = Cv(‖xi − xj‖2), ∀i, j ∈ {1, . . . , N}.



4.3. Spatio-temporal variability of rainfall 65

4.3.2 State model

The spatio-temporal evolution of rainfall is a complicated phenomenon involving
many physical processes like diffusion, advection etc. In the following sections we
present two approaches of modelling the dynamics of rainfall.

A Kernel-based state model

One standard approach of modelling the spatio-temporal evolution of any environ-
mental field is based on the integro-difference equation (IDE) [7]. The aforemen-
tioned approach is similar to Section 3.3 . Following this approach, the dynamics
of the rainfall field for any specific temporal sampling intervalδt can be modelled
as the following discrete time IDE

ut(x) =

∫

A
g(x,x′;θ)ut−1(x

′)dx′ + qt(x). (4.4)

Here,g(x,x′;θ) is the space-time interaction function parameterized byθ, which
can be deterministic or random and dependent on the temporal sampling interval δt.
The quantityqt(x) is the process noise which is generally modelled as independent
in time but correlated over space.

The space-time interaction functiong(·) can be modelled as a parameterized
Gaussian dispersal kernel which captures the underlying physical processes be-
hind the spatio-temporal evolution of rainfall, i.e., diffusion, advection and con-
vection [32], [78]. In this case, the space-time interaction function is given as
g(x,x′;wt,D, α) = α exp[−(x − x′ − wt)

TD−1(x − x′ − wt)], i.e., a Gaus-
sian kernel. The translation parameter of the kernel, i.e.,wt ∈ R

2 models the
time-varying advective displacement, i.e., the spatial drift of the rain storm, and the
dilation parameter of the kernel, i.e.,D ∈ S

2
++, models the diffusion. Note that,

wt can also vary with space but we assume that it is averaged over the entire area
and fixed. The diffusion coefficientD can be used to model isotropic as well as
anisotropic diffusion. The amount and the directions of the spatial anisotropy can
be introduced byD. The parameterD can also vary with time but this is not con-
sidered here. The scalar scaling parameterα ∈ R++ is used to control the stability
(i.e., to avoid the explosive growth) of the dynamic process.

Here the entire service area is uniformly discritized intoN pixels. We assume a
state transition matrixHt ∈ R

N×N whose elements are modelled by the aforemen-
tioned simple 2D Gaussian kernel. After proper vectorization of the field intensities
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and state noise forN pixels we obtain

ut = Htut−1 + qt, (4.5)

where the elements of the state transition matrixHt are given by[Ht]ij =

α exp[−(xi − xj −wt)
TD−1(xi − xj −wt)], andqt is the spatially colored yet

temporally white Gaussian state noise vector. The quantitywt is the advective dis-
placement during the temporal sampling intervalδt, which can be represented more
precisely aswt = vtδt, wherevt is the advection velocity. Note that the aforemen-
tioned model is non-stationary when the advection vectorwt changes with time,
which happens in many real scenarios [32]. If there is no advection, i.e.,wt = 0

andD = I, the model is stationary and isotropic. We assume that the dynamic
model, i.e., the state transition matrixHt is perfectly known through the parame-
terswt, D, andα which are considered to be deterministic and known. Without
loss of generality, we follow the assumptions of [32] and [33] that the distribution
of qt is given byqt ∼ N (0N ,Qt). But this assumption is not true in practical sce-
narios because the rainfall process cannot be negative. In the simulation section,
after generatingut using the sate model of (4.5), we set the negative elements of
ut to 0. This is a modelling approximation.

One notable advantage of the model in [32] is the linear relation of the rainfall
intensities in one snapshot with the ones in the previous snapshot.

Gaussian random walk model

In the last section, we assume that the parameters of the state model are perfectly
known. But in many practical scenarios for a largeN , it can be computationally
intractable to estimate theN2 elements of the state transition matrixHt using the
available data. In this case, without any prior knowledge regarding the parame-
terization ofHt, one way to approximate the dynamics is by assuming that the
process follows a Gaussian random walk model [85]. In this case, we assume that
Ht = H = I and the process model is given by

ut = ut−1 + qt. (4.6)

The benefit of a Gaussian random walk model is that it has very few modelpa-
rameters rather than a parameterized process model as mentioned in the previous
sub-section.

Note that the parameterized state model of (4.5) can be viewed as a random
walk model by incorporating negligible diffusion, i.e.,D = ǫI, whereǫ ≪ 1 and
no advection, i.e.,wt = 0. In this case, we haveHt ≈ I assumingα = 1.
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Structure of the state error covariance matrix

It is assumed that the state error, i.e.,qt, is a spatially colored but temporally white
Gaussian process. Assuming spatial isotropy and stationarity of the state error qt,
the elements of the covariance matrixQt = Q can be represented using the Matern
covariance function as,

[Q]ij = σ2
s

21−p

Γ(p)

[√
2p‖xi − xj‖2

γ

]p

Kp

(√
2p‖xi − xj‖2

γ

)

, (4.7)

whereΓ(·) is the Gamma function,Kp(·) is the modified Bessel function of the
second kind, andγ is a positive shaping parameter [7]. Withp → ∞ andp = 1/2,
(4.7) becomes the squared exponential and the exponential covariancefunctions,

i.e.,[Q]ij = σ2
s exp

(

−‖xi−xj‖
2

2

2γ2

)

, and[Q]ij = σ2
s exp

(

−‖xi−xj‖2
γ

)

, respectively.

4.4 Dynamic rainfall mapping

We dynamically estimate the rainfall intensities at theN pixels, i.e.,ut at t =

1, . . . , T snapshots from the attenuation measurementsyt at t = 1, . . . , T . The
measurement and state models can be represented in the following forms

yt = Φ(ut) + et (4.8)

ut = Htut−1 + qt. (4.9)

A standard practice to estimate the rainfall intensityut at every timet =

1, . . . , T from the measurement and state equations of (4.8) and (4.9) is the non-
linear semblance of the standard Kalman filter, i.e., the extended Kalman filter
(EKF) [57]. Note that we have non-linearity only in the measurements.

As one of the criteria for the optimal behavior of the Kalman fiter, we as-
sume that the measurement and the state noise statistics are completely known.
The measurement and the state noises are characterized byet ∼ N (0M ,R) and
qt ∼ N (0N ,Q), respectively. The dimension of the measurement noise covari-
ance matrix depends on the number of the available measurements at timet. As the
state model is a linear function ofut, the standard Kalman fiter prediction steps are
given by,

ût|t−1 = Htût−1|t−1 (4.10)

Mt|t−1 = HtMt−1|t−1H
T
t +Q, (4.11)
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where the prediction ofut from the lastt − 1 observations is given bŷut|t−1 with
the error covariance matrixMt|t−1 = E[(ut − ût|t−1)(ut − ût|t−1)

T ] [57]. The
termsût−1|t−1 andMt−1|t−1 are calculated in the previous time step.

The prediction based on the state model is corrected by the measurements. But
here we have a non-linear measurement model. To linearize that model, let usintro-
duce theM ×N Jacobian matrix computed atut = ût|t−1 asJt =

∂Φ
∂uT

t

∣

∣

∣

ut=ût|t−1

.

The elements of the Jacobian matrix are given by[Jt]ij = ablij [ût|t−1]
b−1
j , with

i = 1, . . . ,M , andj = 1, . . . , N . A first order Taylor series expansion of the non-
linear measurement function aroundût|t−1 is then given asΦ(ut) ≈ Φ(ût|t−1) +

Jt[ut − ût|t−1]. Substituting this in (4.8), we obtain the following linearized mea-
surement equation:

ỹt = Jtut + et, (4.12)

whereỹt = yt −Φ(ût|t−1) + Jtût|t−1. Note that here we have less observations
than unknowns, i.e., the number of links (M ) is much smaller than the number of
pixels (N ), i.e., the dimension ofut. Hence, in the correction step, to utilize the
measurements along with the state model, we need to solve the underdetermined
system (4.12) in order to updatêut|t−1 leading toût|t. After the dynamic lineariza-
tion, the state estimates can be obtained using a standard Kalman filter. In this case,
both the expressions for the state estimateût|t and its state error covarianceMt|t

can be obtained in closed form [57].

4.4.1 Limitations of standard EKF

The estimation ofut from only M measurements using an ordinary EKF has the
following uncertainties.

• First of all, the quality of the estimate strongly depends on the degree of
non-linearity and the accuracy of the linearization [57]. Also, for a highly
underdetermined(M ≪ N) and unpredictable measurement matrix (many
rows of Jt can be zero for anŷut|t−1) the solution can be highly inaccu-
rate and dependent mainly on the predictions using the state model and the
initialization.

• In the above case, if the available information regarding the dynamics are
incomplete or imperfectly known then the prediction using the state model
will be inaccurate. In this case, an ordinary EKF may produce unrealistic
estimates in the presence of high measurement noise.
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• Also, there is no guarantee that an ordinary EKF will always produce non-
negative estimate of̂ut|t. For instance, let us assume that an element of the
predicted value, i.e.,[ût|t−1]j (predicted using (4.10)) is less than0 at anyt.
In that case, iflij 6= 0 we may have an imaginary[Jt]ij = ablij [ût|t−1]

b−1
j ,

if b− 1 is a fractional quantity. As mentioned in [79], the standard values for
b mainly lie in the interval of0 < b < 2.

In these circumstances, any further prior information aboutut (beyond the dy-
namics) is desirable to achieve a stable and more accurate solution.

4.4.2 Available prior knowledge regarding rainfall field

Prior information aboutut can be acquired from the physical properties of rainfall
such as sparsity and non-negativity. In a given area, the rainfall intensity itself
can be assumed to be a sparsely distributed environmental field over the entire
service area [86], [68]. But sparsity can also be introduced by representingut in an
orthonormal basisΨt, which can in principle be time-varying. When rainfall itself
is sparse we simply haveΨt = I. Denotingut = Ψtzt, sparsity is measured by
the number of non-zero entries inzt, i.e.,‖zt‖0.

As the rainfall intensity cannot be negative, another prior knowledge aboutut is
the non-negativity of the rainfall field. ForN pixels, this is represented asut ≥ 0N .

Comment: Here we mention that the prior information regarding sparsity and
non-negativity along with the measurements can be efficiently utilized to monitor
the rainfall over multiple snapshots. For this we do not need any information re-
garding the dynamics. This can be implemented for both linear [69] as well as
non-linear [68] measurement models. However, one limitation of this dynamics-
agnostic method is that the rainfall events should occur in areas where microwave
links are present for accurate estimation. Otherwise, the effect of the measurement
noise can be dominant. In this case, we need other spatial/temporal information
(e.g., covariance structure, dynamics) to interpolate the rainfall field overthe entire
service area.

In the next section, we illustrate iterative approaches to dynamically estimate
the state ofut for t = 1, . . . , T , exploiting sparsity, non-negativity as well as dy-
namics.
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4.4.3 Estimation ofut

A simple Kalman estimation step without the sparsity and the non-negativity con-
straint can be formulated as the following weighted least squares optimization prob-
lem [87]:

ût|t = argmin
ut

‖ût|t−1 − ut‖2M−1

t|t−1

+ ‖ỹt − Jtut‖2R−1 . (4.13)

This estimation step is not aware of sparsity or non-negativity. The sparsityinfor-
mation can be incorporated in the optimization problem of (4.13), by adding an
ℓ1-penalty that enforces sparsity. Note that here we use theℓ1 norm as a convex
relaxation of the non-convexℓ0 norm. Using the sparse representation ofut, i.e.,
zt, the optimization problem of (4.13) can be formulated as a sparsity and non-
negativity constrained optimization problem. This can be given as,

ẑt = argmin
Ψtzt≥0N

‖ût|t−1 −Ψtzt‖2M−1

t|t−1

+ ‖ỹt − JtΨtzt‖2R−1 + λt‖zt‖1 (4.14)

ût|t =Ψtẑt, (4.15)

whereλt is the tuning parameter that controls sparsity. The standard error covari-
ance update of̂ut|t for the estimation step (4.13) is given byMt|t = Mt|t−1 −
Mt|t−1J

T
t (Rt + JtMt|t−1J

T
t )

−1JtMt|t−1 = (M−1
t|t−1 + JT

t R
−1
t Jt)

−1 [57]. This
expression ofMt|t can be used to update the covariance of the estimate of (4.14)
but is an approximation as it is not aware of the sparsity and the non-negativity
constraint. If we do not consider to propagate the second order statisticsof the
estimate, like in the traditional Kalman filter, the state noise minimization term in
(4.14) can also be regularized byQ instead ofMt|t−1. This can be viewed as a
weighted least squares problem to estimateut using the measurement (4.12) and
the state equation (4.9) constrained by sparsity and non-negativity. In thiscase, the
simple iterative state estimates are given by,

ût|t−1 =Htût−1|t−1, (4.16)

ẑt = argmin
Ψtzt≥0N

‖ût|t−1 −Ψtzt‖2Q−1
+ ‖ỹt − JtΨtzt‖2R−1 + λt‖zt‖1, (4.17)

ût|t =Ψtẑt. (4.18)

Note that this is a suboptimal approach to dynamically estimate the statesut avoid-
ing the computation ofMt|t. As mentioned in [72], different penalties (likeℓ2 or
ℓ1) can be applied to the state error minimization term in (4.17) depending on the
nature of the sparse state (ut) and/or the state noise (qt).
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4.4.4 Constrained MAP estimator forut

Using the representation ofut in theΨt = Ψ domain, the measurement and state
equation of (4.12) and (4.9) can be written as,

ỹt = JtΨzt + et (4.19)

zt = H̃tzt−1 + q̃t, (4.20)

whereH̃t = ΨTHtΨ, q̃t = ΨTqt, and q̃t ∼ N (0,ΨTQΨ), whereqt ∼
N (0,Q). From the above measurement and state equations, we can derive the con-
ditional probability density functionsp(ỹt|zt) ∼ N (JtΨzt,R) andp(zt|zt−1) ∼
N (H̃tzt−1,Ψ

TQΨ). Using Bayes’ rule, the posterior pdfp(zt|ỹt) can be given
asp(zt|ỹt) ∝ p(ỹt|zt)p(zt|zt−1). So, a MAP estimator forzt can be formulated
as

argmax
zt

[ln p(ỹt|zt) + ln p(zt|zt−1)], (4.21)

wherezt−1 is computed from the previous time step. However, there is no guar-
antee that the estimator in (4.21) will produce a sparse estimate ofzt. On the
other hand, the representation ofut in theΨ domain is targeted to exploit sparsity.
So, the estimator of (4.21) can be formulated as a constrained MAP estimator by
adding the sparsity and non-negativity constraint in the optimization problem of
(4.21). After substituting the pdfs, following the same approach as used in (4.14),
the sparsity and non-negativity constrained MAP estimator can be given as

ẑt = argmin
Ψzt≥0N

‖zt − H̃tzt−1‖
2

(ΨTQΨ)−1 + ‖ỹt − JtΨzt‖2R−1

t
+ λ̃t‖zt‖1, (4.22)

where λ̃t controls the sparsity in the estimateẑt. From the solution of (4.22),
the state estimate is given asût|t = Ψẑt. It is seen that resorting to a Bayesian
paradigm, the developed constrained MAP estimator of (4.22) has a structure sim-
ilar to the optimization problem of (4.17).

4.5 Selection of the representation basis

If the spatial rainfall distribution is physically sparse, then we simply solve theop-
timization problem of (4.17) forΨt = I. But in the absence of physical sparsity,
which is a more general case in many practical scenarios, we use a basisΨt. Re-
visiting the celebrated theory of compressive sampling, we know that some ofthe
properties of bothΨt andJt, (or Θt = JtΨt) like mutual coherence, restricted
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isometry property (RIP), etc. are important in the framework of sparse recon-
struction [71]. Let us denote the quantityµ(Θt) as the mutual coherence of the
matrixΘt, which is the maximum absolute inner product of different columns of
Θt [88]. Without the state error minimization term and the non-negativity con-
straint in (4.17), the problem is a simple basis-pursuit denoising (BPDN) problem.
As derived in [89], if a suitable sparse representation ofzt is possible, which is
given by‖zt‖0 < 1

2(1 +
1

µ(Θt)
), then a “stable” solution with the standard BPDN

algorithm can be obtained with a bound on the estimation error. Along the same
lines, the cost function of (4.17) can be viewed as a BPDN problem by augmenting
the measurement and the state noise minimization terms into a single least squares
term [75]. In [75], the convergence guarantees of the aforementioned BPDN prob-
lem are also derived based on some assumptions on the dynamics and the measure-
ment matrix (hereJt).

In our application, the design of the measurement matrixJt, in every snapshot,
is dictated by the link locations and the predicted state estimates (ût|t−1). So, to
maximally exploit the sparsity information of the rainfall field, we focus mainly on
a suitable sparse representation of the stateut. Standard orthonormal bases such
as a discrete cosine transform (DCT) basisC or wavelet basisW are quite popular
in sparse signal representation for communications as well as image processing.
Also, a Gaussian basis function can be used to sparsely represent environmental
signals [22]. However, an orthonormal basis can also be constructed using the
spatial covariance matrix of the rainfall field. An orthonormal basis can becon-
structed by the spatial covariance matrixΣu described in Section 4.3.1, by simply
choosingΨt = U, whereΣu = UΛUT is the eigenvalue decomposition ofΣu

with UTU = I andΛ a diagonal matrix. In this case,zt = UTut is similar to
applying a Karhunen-Loeve transform (KLT), which is also advocatedas a sparse
representation technique [37].

We choose a basisΨt, that has a minimum mutual coherence with the mea-
surement matrixJt. Mutual coherence can be measured for the overall dictio-
naryΘt = JtΨt. In this case,µ(Θt) can be quantified as the maximum mag-
nitude off-diagonal element ofDt = Θ̆T

t Θ̆t, whereΘ̆t is obtained by normal-
izing the columns ofΘt. In this case, the mutual coherence can be defined as
µ(JtΨt) = µ(Θt) = maxl,k; l 6=k |[Dt]l,k| [90]. So, given a setU of U sparsifying
basis matrices, the minimal coherence basis matrix at timet can be selected by
solving the following optimization problem,

Ψ̂t = argmin
Ψt

µ(JtΨt) s.t.Ψt ∈ U . (4.23)
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Note that to optimally select the basis we need to solve this optimization problem
on every snapshot as the matrixJt is recomputed at every time stept. In our
simulations, we specifically useU = {C,U}.

4.6 Selection of the tuning parameter

The sparsity regulating parameterλt in the optimization problem of (4.17), can be
adapted dynamically. It can also be kept fixed for multiple snapshots for monitoring
a short period of rainfall, within which the sparsity pattern can be assumed tobe
fixed. An upper bound onλt is given byλt = λmax

t , which gives the sparsest
solution, i.e.,ẑt = 0N or ût = Ψtẑt = 0N . Note that the cost function of
(4.17) is non-differentiable but convex forλt > 0. So, following the methodologies
of [73] and [91], we use a subdifferential based approach to computeλmax

t . The
subgradient of the non-differentiable cost of (4.17) with respect tozt can be written
as,

∇̃ztf(zt) = 2(−ΨT
t Q

−1(ut|t−1−Ψtzt)−ΨT
t J

T
t R

−1(yt−JtΨtzt))+λt∇̃zt‖zt‖1,
(4.24)

where∇̃zt is the subgradient operator towardszt. Using the first order optimality
condition we have,

[2(ΨT
t Q

−1(ût|t−1 −Ψtzt) +ΨT
t J

T
t R

−1(yt − JtΨtzt))]j ∈







λt [zt]j > 0,

−λt [zt]j < 0,

[−λt λt] [zt]j = 0,

where j = 1, . . . , N . Now, let us consider the casezt = 0. Substituting
this in the above equation the optimal value ofλmax

t can be selected asλmax
t =

‖2(ΨT
t Q

−1ût|t−1 +ΨT
t J

T
t R

−1yt)‖∞. In this way, a useful range forλt is given
by [0, λmax

t ).
Traditional approaches to select the tuning parameter for anℓ1-penalized re-

gression problem are cross-validation and generalized cross-validation (GCV) [38].
Recent methods suggest information theoretic approaches like Mallow’s Cptype
criterion [92], Akaike information criterion (AIC) [93], Bayesian information cri-
terion (BIC) [94] etc. to find an optimalλt. In all of these approaches, the optimal
tuning parameter is selected that minimizes a cost function which depends upon
the estimate ofut using a set of{λk

t }Kk=1, where the length of the search grid for
λt is K. In this case, we need to solve the optimization problem of (4.17)K times
in every iteration and select the optimalλk

t that minimizes any of these aforemen-
tioned model selection criteria. After that, (4.17) needs to be solved again withthe
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selectedλk
t , in order to estimateut. This seems to be computationally unrealistic

for an online application of the dynamic rainfall monitoring over a large service
area (largeN ). To circumvent this problem, theK optimization problems can be
solved once and the selectedλt can be used for multiple snapshots for a short term
monitoring application.

It is clear that increasing the value ofλt, i.e., the term‖zt‖1 becomes smaller
and vice versa. So, if an approximation ofzt, i.e., zapproxt , is available, it can be
related to the tuning parameter byλt ∝ 1/‖zapproxt ‖1. Following this, a coarse
but relatively fast approach to dynamically tuneλt could be selecting a tuning pa-
rameter given byλt = ν(‖ΨT

t ût|t−1‖1)−1, whereût|t−1 can be regarded as an
approximation of̂ut|t andν > 0 is a proportionality constant. In our simulations,
we useν = 1.

For the sake of completeness, we summarize the steps of the two proposed
dynamic rainfall monitoring algorithms. In algorithm 2, we follow the standard
steps of dynamic state estimation, but we do not update the second order statistics
of the estimate. In algorithm 3, we use the approximate approach, where we use
the standard Kalman covariance update (unaware of sparsity and non-negativity).

The performance of both these algorithms strongly depends upon the initial-
ization û0|0. One should avoid initializations like an all zero vector or anû0|0,
that consists of negative elements. If we consider the initializationû0|0 = 0N , it
will produceJt = 0M×N , asû1|0 = Htû0|0 = 0N . It is mentioned in [79], that
the standard values forb mainly lie in the interval of0 < b < 2. It should also
be noted that, forb < 1 (for frequencies in the range1 − 3 GHz, or frequencies
above 40 GHz [79, Table II]) the Jacobian[Jt]ij = ablij [ût|t−1]

b−1
j is undefined if

[ût|t−1]j = 0, if we havelij 6= 0. This problem can be circumvented by replacing
the0 rainfall scenario by a very small value (close to zero) like in the order of10−4

mm denoting a no rainfall event, and the non-negativity constraint can be replaced
by ut ≥ 10−41N in the optimization problems. However, in our simulations we
useb > 1.

4.7 Simulation results

In this section, we present some simulation results to test the developed methodolo-
gies to dynamically monitor the rainfall in a given area. Here we perform numerical
experiments for three scenarios.

In the first case,we assume that the dynamics/state model, i.e.,Ht is perfectly
known through the parametersα, D, andwt.
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Algorithm 2 : Dynamic rainfall monitoring (with no covariance update)

1: Initialize t = 0, û0|0

2: for t = 1, . . . , T

3: givena, b, lij , (i = 1, . . . ,M ; j = 1, . . . , N), yt, Rt, Ht, Q
4: Predict ût|t−1 = Htût−1|t−1.
5: ComputeJt, ỹt

6: SelectΨt (using (4.23))
7: Selectλt = (‖ΨT

t ût|t−1‖1)−1

8: Solve ẑt = argminΨtzt≥0[‖ût|t−1 −Ψtzt‖2Q−1
+ ‖ỹt − JtΨtzt‖2R−1

t
+

λt‖zt‖1]
9: Compute ût|t = Ψtẑt

10: end for
11: end

In the second case,we consider that the dynamics are not perfectly known and
we assume that the state model is a Gaussian random walk.

In the third case,we consider the scenario where we do not have any informa-
tion regarding the state model/dynamics. The simulations for these three scenarios
are presented below.

4.7.1 Ground truth with known dynamics

The ground truth is used from a practical rainfall event in an area of25× 25 square
kilometers in Amsterdam, The Netherlands . We take one spatial map of15 minutes
gauge adjusted radar rainfall depth (mm) of the same area of the day June 11, 2011,
which is shown as the first state, i.e,u1 in the Figure 4.3.

We assume that the state transition matrix, i.e.,Ht and the process noise co-
variance matrix, i.e.,Qt = Q is perfectly known in this case. The parameters of
the state transition matrixHt = H are given aswt = w = [1, 0]T , α = 0.33,
andD = I2 (isotropic diffusion) for allt = 2, . . . , T snapshots, whereT = 8.
We assume the temporal sampling interval, i.e.,δt = 15 minutes. The parameter
w represents a constant advective displacement in15 minutes. The covariance ma-
trix of the state noise, i.e.,Q is assumed to have an exponential structure given as

[Q]ij = σ2
s exp

(

−‖xi−xj‖2
γ

)

, with σ2
s = 10−3 andγ = 3.33. The state noise

vectorqt at every snapshot is generated from the distributionqt ∼ N (0N ,Q).

Data courtesy: Royal Netherlands Meteorological Institute (KNMI), TheNetherlands
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Algorithm 3 : Dynamic rainfall monitoring (with standard Kalman covariance up-
date)

1: Initialize t = 0, û0|0, M0|0

2: for t = 1, . . . , T

3: givena, b, lij , (i = 1, . . . ,M ; j = 1, . . . , N), yt, Rt, Ht, Q
4: Predict ût|t−1 = Htût−1|t−1, Mt|t−1 = HtMt−1|t−1H

T
t +Q

5: ComputeJt, ỹt

6: SelectΨt (using (4.23))
7: Selectλt = (‖ΨT

t ût|t−1‖1)−1

8: Solveẑt = argminΨtzt≥0[‖ût|t−1 −Ψtzt‖2M−1

t|t−1

+ ‖ỹt − JtΨtzt‖2R−1

t
+

λt‖zt‖1]
9: Compute ût|t = Ψtẑt

10: UpdateMt|t = (M−1
t|t−1 + JT

t R
−1
t Jt)

−1

11: end for
12: end

After generating the states ofut using the state model of (4.5), we set the nega-
tive elements ofut to 0. This is a modelling approximation adopted to avoid the
generation of the negative rainfall values for very low rainfall intensities.

The total number of pixels is given asN = 25 × 25 = 625, each of size
1 square km. Using this we generate the statesu2 . . .u8 using the state model
mentioned in (4.5). Based on these parameters, the space-time evolution of rainfall
overt = 1, . . . , 8 snapshots (each of15 minutes, i.e. in total120 minutes) is shown
in Figure 4.3. The unit of the rainfall field is millimeter (mm).

4.7.2 Ground truth with unknown dynamics

In this section, we consider8 consecutive snapshots of15 minutes radar rainfall
depths of the same day and area as mentioned in the previous section. The8 snap-
shots of thetrue gauge adjusted radar rainfall depthsare shown in Figure 4.4. In
this case, we have no information regarding the state model. We assume that the
state model is a Gaussian random walk, i.e.,Ht = I. The process noise covariance
matrixQ is assumed to be the same as before.
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Figure 4.3:Spatio-temporal evolution of the rainfall (mm) (known dynamics);
The matricesHt = H for t = 2, . . . , 8 are known and given in Section 4.7.1. The states
are generated using the state model.
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Figure 4.4: Spatio-temporal evolution of the rainfall (mm) (unknown dynamics). The
states are generated using the ground truth.
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4.7.3 Measurements

In this work, we simulate the measurements using the locations of the microwave
links from a network of151 microwave links. The total number of measurements
for all t = 1, . . . , 8 is M = 151. The locations of the microwave links in the
service area along with the (1 square km) pixels, where we would like to estimate
the rainfall intensities, are shown in Figure 4.5.

We would like to mention that most of the microwave links in the Netherlands
(specially in the urban areas) are operated at38 GHz. In that case,b ≈ 1, i.e.,
the measurement model becomes linear. To check the estimation performance of
the developed algorithms in a non-linear measurement framework, we intentionally
chooseb 6= 1. In this case, we assume that the rain temperature to be20◦, which
corresponds to [79, Table II]. We select the operating frequency to be 15 GHz,
with a = 3.28× 10−2 andb = 1.173. Using these, we simulate the measurements
at 8 snapshots, i.e.,{yt}8t=1, using the non-linear measurement model of (4.2),
whereuj,t’s are the true values forj = 1, . . . , 625, andt = 1, . . . 8 as mentioned
in the previous section. It is assumed that theM measurements are collected in
every15 minutes interval which are corrupted by additive white Gaussian noise
characterized byet ∼ N (0M , σ2

eIM ). Here we useσ2
e = 0.001. The parameters

Li andlij are known from the geometry of the links as shown in Figure 4.5.

Here, we generate two different sets of measurements. The first set ofmea-
surements is for the7 snapshots, i.e.,{yt}8t=2. These measurements are computed
using the ground truth where the dynamics, i.e.,Ht = H for t = 2, . . . , 8 are per-
fectly known (Figure 4.3). The second set of measurements are computedusing the
exact radar rainfall maps (Figure 4.4) for8 snapshots, i.e,{yt}8t=1 whose dynamics
are unknown.

4.7.4 Dynamic rainfall monitoring

The noisy sets of measurements are used to estimate the rainfall depths atN = 625

pixels overT = 8 snapshots. In this section, we perform simulations for two
different scenarios which are perfectly known dynamics and a Gaussian random
walk dynamics.

Perfectly known dynamics

The measurements{yt}8t=2 are computed using the true values shown in Figure
4.3, i.e.,{ut}8t=2. Here, we useσ2

e = 10−3. These measurements are used to
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Figure 4.5: Locations of theM microwave links from where the measurements
are collected (area: Amsterdam, The Netherlands).

estimate the states{ût}8t=2. The parameters of the spherical variogram model are
computed for the particular day of the year, i.e., June 11, 2011 [30], to compute
Σu. The sill (S0) and the range (d) parameters are computed using (11) of [30],
whose parameters are taken from of [30, Table 5]. The15 minutes time interval is
rescaled in hourly scales, i.e.,0.25 hrs. We assume that the nugget isN0 = 0. The
value of the range (d) is 17.4675 km and the sill (S0) is 5.3328 mm2.

Based on the predictions and the available link locations, it is seen that the
DCT matrix exhibits minimal coherence withJt, in every iteration. We initialize
û1|1 = µ̃1N , whereµ̃ is computed by empirically averaging the ground truth of
the first stateu1 overN pixels for both algorithms. In a real application, an appro-
priate initialization can be computed using the trend of the rainfall field, which is
generally available from the climatological information of the area. For Algorithm
3, we initializeM1|1 = IN . We use the software CVX [52] (parser CVX, solver
SeDuMi [53]) to solve the convex optimization problems (i.e, (4.17) for Algorithm
2 and (4.14) for Algorithm 3).

In Figures 4.6 and 4.7, we show the reconstructed spatial rainfall map forthe
stateŝu2 andû8, respectively using the Algorithm 2. The same estimates are shown
in Figures 4.8 and 4.9, respectively using the Algorithm 3.

We plot the pixel-wise comparisons of the estimates with the true values for all
the7 snapshots, i.e., a total of625× 7 = 4375 pixels for the Algorithms 2 and 3 in
Figure 4.10 and Figure 4.11, respectively. The dark black lines in the Figure 4.10
and Figure 4.11 represent they = x line. It is observed that Algorithm 3, i.e., using
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Figure 4.6: Estimate of the spatial rainfall (mm) map (û2) with perfectly known
dynamics (Figure 4.3); (Algorithm 2).

the standard Kalman covariance update exhibits better estimation performancethan
Algorithm 2, where the second order statistics are not updated.
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Figure 4.7: Estimate of the spatial rainfall (mm) map (û8) with perfectly known
dynamics (Figure 4.3); Algorithm 2.
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Figure 4.8: Estimate of the spatial rainfall (mm) map (û2) with perfectly known
dynamics (Figure 4.3); Algorithm 3.
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Figure 4.9: Estimate of the spatial rainfall (mm) map (û8) with perfectly known
dynamics (Figure 4.3); (Algorithm 3).

Gaussian random walk

In this section, the state model is considered to be a Gaussian random walk, i.e.,
Ht = I for t = 1, . . . , 8. The process noise statistics are considered to be same
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Figure 4.10: Pixel-wise comparison of the estimates [Algorithm 2 (known dynam-
ics)].
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Figure 4.11: Pixel-wise comparison of the estimates [Algorithm 3 (known dynam-
ics)].

as before. The measurements for8 snapshots, i.e.,{yt}8t=1 are generated using
thetrue radar rainfall depthsshown in Figure 4.4, using the meaurement model of
(4.2) with the samea, b coefficients as the previous case. The measurements are
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Figure 4.12: Estimate of the spatial rainfall (mm) map (û1) with unknown dynam-
ics (Figure 4.4).

different from the previous known dynamics case as the true values of{ut}8t=1, i.e,
the true radar rainfall depths (as shown in Figure 4.4) are different. Inthis case, the
measurement noise variance is reduced toσ2

e = 10−5. Due to better estimation per-
formance (as seen in the case of perfectly known dynamics), we select Algorithm 3
to estimate the states{ût}8t=1 using the measurements generated by the true radar
rainfall depths.

In this case, as the predictions using the sate model are not accurate in this case,
we do not perform the tuning ofλt based on the predictions. However, the tuning of
λt, in this case can be performed using the standard methods mentioned in Section
4.6. In the current setup, to exploit the sparsity prior on every snapshot we fix
λt = λ = 2 for the sake of simplicity. The initializations are given byû0|0 = µ̃1N
andM0|0 = IN .

In Figures 4.12 and 4.13, we show the estimated spatial rainfall maps of the
stateŝu1 andû8, respectively assuming that the state model is a Gaussian random
walk. In Figure 4.14, we compare the estimation performance of the estimates of
the625 pixels over8 snapshots, i.e., a total of625× 8 = 5000 pixels with the true
gauge adjusted radar rainfall depths.

The following inferences can be drawn from the aforementioned simulation
studies.



84

0 5 10 15 20 25
0

5

10

15

20

25

0.2

0.4

0.6

0.8

1

1.2

1.4

x (km)

y
(k

m
)

Figure 4.13: Estimate of the spatial rainfall (mm) map (û8) with unknown dynam-
ics (Figure 4.4).
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Figure 4.14: Pixel-wise comparison of the estimates [Algorithm 3, (Gaussian ran-
dom walk)]; Performance comparison on real data.
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• The estimation performances in the first two cases are highly dependent on
the accuracy of the state model, availability of the measurements in any re-
gion, and the initialization of the algorithm. In Figure 4.9, the estimate of the
stateû8 is much better than the same estimate in Figure 4.13, as the dynam-
ics are perfectly known in the first case. Also, the estimation performance is
improved with time as the state error is minimized with temporal iterations
(Figure 4.9).

• As seen in Figure 4.5, there are many regions without any microwave links/
measurements but where a rainfall field is present. In these regions, the es-
timates are mainly dependent on the predictions. On the other hand, if there
is no rainfall over any link, the rainfall can be overestimated or underesti-
mated in those regions, due to the effects of the measurement noise. This
effect severely impairs the estimation performance in the case when we do
not have an accurate prediction (or no prediction).

• There is always a trade-off between the estimation performance and the
“availability” of the measurements and/or the “accuracy” of the predictions.

• The reasons behind the scatter plots being not very symmetric are due to the
biased estimates in the measurement-void regions and the rainfall-void links.

4.7.5 Performance metrics

To compare the estimation performances of the developed methods we use some
performance metrics, which are described in the following part of this section. The
performance of a rainfall monitoring method can be quantified by root mean square
error (rmse in mm), the mean bias (mb in mm), and the correlation coefficient
(ρ) [66]. We quantify the overall estimation performances of all the above scenarios
for N pixels overT snapshots using the aforementioned metrics. If the true value
and the estimate of the rainfall field at anyt are given byut andût, respectively
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then the performance metrics can be defined in the following ways

rmse =

√

√

√

√

1

NT

T
∑

t=1

N
∑

j=1

([ût]j − [ut]j)2, (4.25)

mb =
1

NT

T
∑

t=1

N
∑

j=1

([ût]j − [ut]j), (4.26)

ρ =

T
∑

t=1

N
∑

j=1
([ût]j − µ̂)([ut]j − µ)

√

T
∑

t=1

N
∑

j=1
([ût]j − µ̂)2

√

T
∑

t=1

N
∑

j=1
([ut]j − µ)2

, (4.27)

whereµ̂ = 1
NT

∑T
t=1

∑N
j=1[ût]j andµ = 1

NT

∑T
t=1

∑N
j=1[ut]j are the sample

means of the estimated and the true values of rainfall forN pixels overT snapshots.
The performance metrics are computed for the estimates using Algorithm 3 for

the scenarios of perfectly known dynamics and Gaussian random walk dynamics.
For both of these scenarios, we also estimate the rainfall depths using a simpleEKF
without any sparsity and non-negativity constraint. To avoid the negativeestimates
produced by the EKF, we set the negative estimates to0. While computing the
performance metrics we fix the process and the measurement noise variances to
σ2
s = 10−4 andσ2

e = 10−3, respectively in all the cases.
When the dynamics are perfectly known then the performance metrics are com-

puted for the estimates of625 pixels for7 snapshots and averaged over20 different
measurement noise realizations. In Table 4.1, we present the performance met-
rics computed for Algorithm 3, and a simple EKF (with the thresholding) for the
perfectly known dynamics case.

In Table 4.2, we present the aforementioned performance metrics computed
for the estimates of625 pixels for 8 snapshots using Algorithm 3 (with fixed
λt = λ = 2) and an EKF (with the thresholding), where the state model is assumed
to be a Gaussian random walk. Here, we also average the performance metrics for
20 different measurement noise realizations. In all of these realizations, themea-
surements are generated using the true radar rainfall depths as shown inFigure 4.4.

From the above results it can be seen that

• For a perfectly known state model extra information like sparsity and non-
negativity does not play any significant role in terms of estimation accuracy.
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Table 4.1: Performance comparison with EKF (with thresholding); Perfectly
known dynamics (σ2

s = 10−4, σ2
e = 10−3).

Performance metric Algorithm 3 EKF (with thresholding)

rmse (mm) 0.3167 0.3178
mb (mm) 0.0014 0.0023

ρ 0.8973 0.8963

Table 4.2: Performance comparison with EKF (with thresholding); Dynamics is
assumed to be a Gaussian random walk (σ2

s = 10−4, σ2
e = 10−3).

Performance metric Algorithm 3 EKF (with thresholding)

rmse (mm) 0.4719 0.6542
mb (mm) 0.2123 0.4334

ρ 0.5572 0.3034

This is clear from Table 1 where it is shown that the performance improve-
ment over a simple EKF (with setting the negative estimates to 0) is negligi-
ble.

• When the information regarding the state model is unknown and approxi-
mated as a Gaussian random walk model then the performance of a simple
EKF is very poor. In this case, the sparsity and non-negativity information
along with the measurements improve the estimation performance (Table 2).

• The last mentioned observation is quite useful in practical cases, wherethe
availability of an accurate state model is scarce.

The computation times for both Algorithm 2 and 3 including the basis selection
part is less than a minute forN = 625 pixels using the aforementioned off-the-
shelf solvers. The computation time is increased ifN is higher than625. Algo-
rithm 2 is computationally simpler than Algorithm 3 because there is no covariance
update state. But the price we pay is in terms of the estimation performance. How-
ever, the speed of the developed algorithms can be increased by using a projected
subgradient method [95].
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4.7.6 Spatial rainfall mapping (no dynamics)

In this case, we assume that we do not use any prior information regardingthe dy-
namics. On every snapshot, we estimateût using the measurements and exploiting
the prior information regarding the sparsity and the non-negativity. In this case, for
the sake of simplicity we assume that the measurement model is linear, i.e, the case
when the links are operated around38 GHz. Here we usea, b = 1.

The linear measurement model is given byyt = Φut + et, whereyi,t =
∑N

j=1 uj,tlij + ei,t, wherei = 1, . . . ,M . On every snapshot, we solve the sparsity-
aware non-negativity constrained optimization problem given as

ẑt = argmin
Ψzt≥0N

‖yt −ΦΨzt‖2R−1 + λ‖zt‖1 (4.28)

ût = Ψẑt, (4.29)

However, this can be easily extended to a non-linear measurement model byadopt-
ing an iterative linearization with respect to a suitable initial guess. Like in the
previous case, here we also fixλ = 2 and the used basis is DCT matrix on every
t. However, an upper bound onλ can be easily computed in this case by using the
same methodology discussed in Section 4.6.

In Figures 4.15 and 4.16, we show the estimated statesû1 andû8 by solving
the optimization problem of equation (4.28). The measurement noise varianceis
set asσ2

e = 10−5.

In Figure 4.17, we compare the estimation performance of the estimates of total
625× 8 = 5000 pixels with the true gauge adjusted radar rainfall depths.

4.8 Conclusion

We have developed a generalized dynamic rainfall monitoring algorithm fromlim-
ited non-linear attenuation measurements by utilizing the spatial sparsity and non-
negativity of the rainfall field. We have formulated the dynamic rainfall monitoring
algorithm as a constrained convex optimization problem. The performance ofthe
developed algorithm is compared with the standard approaches like an EKF for
the scenarios, where we have both perfect knowledge about the state model and
an approximate state model. Numerical experiments show that the developed ap-
proach outperforms a simple EKF in scenarios, where the state model is not per-
fectly known. The proposed methodology can be equivalently implemented for
dynamic field tracking in tomographic applications like MRI, microwave tomogra-
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Figure 4.15: Estimate of the spatial rainfall (mm) map (û1) with unknown dynam-
ics (Figure 4.4) (exploiting only sparsity and non-negativity).
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Figure 4.17: Pixel-wise comparison of the estimates (exploiting only sparsity and
non-negativity (no dynamics, linear model, performance comparison on real data)).

phy etc., where we can assume to have path-integrated measurements corrupted by
Gaussian noise.

However, tackling more complicated dynamics of the rain (possibly non-linear
and highly time-varying), and non-Gaussian measurement noise could be possible
future extensions of this work. In that case, both the state and the measurement
models are non-linear. This triggers one to use an unscented Kalman filter (UKF),
particle filtering based algorithms, or other heuristic approaches. Estimation of the
underlying dynamics of rainfall from the available ground truth and using itfor real
time dynamic monitoring is also a part of the future research. A real time selection
of the most informative attenuation measurements from the available links could be
interesting in order to reduce the processing time and computational complexity.



Chapter 5
Spatio-Temporal Sensor Placement

for Kriged Kalman Filter (KKF)

As mentioned in the earlier chapters, one of the most important applications of
a homogeneous/heterogenous wireless sensor network (WSN) is to trackthe spatio-
temporal evolution of an environmental field with a pre-prescribed accuracy. Dif-
ferent types of environmental, geophysical and biological processesexhibit com-
plicated spatial as well as temporal variability. Spatial and temporal variability of a
spatio-temporally stationary physical field can be modelled by its correlation over
space and time [7]. If the field is non-stationary then a suitable dynamic model can
be used to model the spatio-temporal evolution of the field [7]. If the field exhibits
both a stationary and non-stationary behavior over space and time then the field can
be dynamically monitored by the combination of kriging [7] and Kalman filtering,
i.e, a kriged Kalman filter (KKF) [96] or space-time Kalman filter [19].

In this chapter, we propose a sensor placement method for spatio-temporal field
estimation based on a kriged Kalman filter (KKF) using a network of static or
mobile sensors. The developed framework dynamically designs the optimal con-
stellation to place the sensors. We combine the estimation error (for the station-
ary as well as non-stationary component of the field) minimization problem with
a sparsity-enforcing penalty to design the optimal sensor constellation in an eco-

This chapter is published as: V. Roy, A. Simonetto, and G. Leus, “Spatio-temporal field
estimation using kriged Kalman filter (KKF) with sparsity-enforcing sensor placement”,
Sensors, vol. 18, no. 6, pp. 1778, April, 2018.
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nomic manner. The developed sensor placement method can be directly usedfor
a general class of covariance matrices (ill-conditioned or well-conditioned) mod-
elling the spatial variability of the stationary component of the field, which acts
as a correlated observation noise, while estimating the non-stationary component
of the field. Finally, a KKF estimator is used to estimate the field using the mea-
surements from the selected sensing locations. Numerical results are provided to
exhibit the feasibility of the proposed dynamic sensor placement followed bythe
KKF estimation method.

The outline of the chapter is as follows. The prior research works in this field
along with the main contributions of this chapter is presented in 5.1. In Section
5.2, the measurement model and the main problem statement is presented. The
statistical nature of the stationary and the non-stationary components of the field is
presented in the Section 5.3. A simple KKF estimator is described in Section 5.4.
In Section 5.5, the overall performance metric as a function of the sensor location
selection vector is presented. The proposed sensor placement problemfollowed by
a KKF estimator is presented in Section 5.6. The simulation results are shown in
Section 5.7. The conclusion of the chapter along with the future research directions
are presented in Section 5.8.

5.1 Prior art and contributions

The key idea behind the KKF is the liaison of kriging [7] and Kalman filtering.
The unknown physical field is modelled as a combination of a non-stationary (cap-
turing the dynamics) and a stationary (capturing the low magnitude spatial effects)
stochastic component. Assuming that the dynamics of the non-stationary compo-
nent and the second-order statistics of the stationary component (e.g., covariance
structure) are perfectly known, KKF jointly estimates both of these field compo-
nents using the spatial observations at every time instant. The KKF paradigmhas
been used for different applications like wireless communications (e.g., spectrum
sensing [97] and path delay estimation [98]) and field estimation [19].

One of the important overheads of dynamic field estimation using a WSN is
the lack of sufficient measurements at every time instant. This is related to the
shortage of sensor life time, availability of bandwidth, and other resource-related
economical constraints. In such scenarios, we need to efficiently place/move the
available sensors into the most informative locations over space and time. Dy-
namic sensor scheduling is a well-cultivated topic in the fields of signal processing
as well as control theory [99], [51], [100]. Prior knowledge regarding the corre-
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lation of the field over space and time can be exploited in a multi-layer design
of sensor networks [21]. Selecting the most informative sensing locationscan be
treated as a sensor selection problem, which can be formulated as a convexopti-
mization problem [45]. This can be solved for linear [101] as well as non-linear
measurement models [41]. Sparsity-promoting approaches for sensor placement
are also exhibited in [51], [102], where the placement algorithm is formulated us-
ing the alternating direction method of multipliers (ADMM). In [103], a general-
ized sparsity-enforcing and performance-constrained sensor placement method is
proposed, where the field can be either stationary or non-stationary. The afore-
mentioned method can be implemented for a single snapshot or multiple snapshot
ahead sensor placement and for a general class of spatio-temporal covariance matri-
ces, which can either be ill-conditioned or well-conditioned. Seminal contributions
on the convex formalism of sensor selection (like [45]) assume that the measure-
ment noise components are spatio-temporally uncorrelated. However, this can be
an unrealistic assumption in some practical scenarios [26]. But even in those sce-
narios, it has been shown that the sensor selection problem can be formulated as a
convex optimization problem [100], [104].

In this work, we develop a unified framework of sensor placement followed by
a KKF estimator to dynamically monitor a physical field that exhibits both station-
arity and non-stationarity over space and time. In the first step, we select the most
informative locations to deploy/move the sensors and in the second step we esti-
mate the field by using the measurements from those selected locations. The key
contributions can be summarized as follows,

• The performance metrics to estimate the stationary as well as the non-stationary
components of the field are represented in closed form as an explicit function
of the sensor location selection vector.

• The aforementioned analytical formalism tackles two important issues in the
sensor placement step. First, the developed method takes care of the fact
that the estimation of the non-stationary component of the field involves the
stationary component of the field as a spatially correlated observation noise.
Second, the proposed method is applicable for a general class of spatialco-
variance matrices of the stationary component of the field, even when they
are ill-conditioned or close to singular [58].

• The proposed sensor placement problem is formulated in a way that mini-
mizes a cost function that involves the sum of the mean square error (MSE)
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of the stationary and the non-stationary component of the field as well as
a spatial sparsity enforcing penalty. The overall optimization problem also
satisfies a flexible resource constraint at every time instant.

One of the aspects that distinguishes the proposed sensor placement method from
the prior works in sensor placement for environmental field estimation is the spe-
cific statistical nature of the unknown physical field, which yields an additive cou-
pling of stationary and the non-stationary components. Secondly, we develop a
unified framework for the efficient utilization of the spatio-temporal variabilityof
the field in order to design an opportunistic sensor placement method using a con-
vex approach. We develop a parsimonious sensor placement algorithm followed by
a KKF estimator, which can be used to dynamically monitor a general class of en-
vironmental fields (based on the assumed process model and spatial statistics of the
field components). However, the developed approach is similar to [103] in terms of
the primary measurement model, which is considered to be underdetermined. We
emphasize that the proposed technique is a model-based centralized sensor place-
ment method, where we resort to the Bayesian estimation philosophy. We assume
that the available prior statistical knowledge regarding the unknown physical field
like spatial correlation information and dynamics are perfectly known a priori. It is
also assumed that for the current centralized setup the communication rangeof the
sensors are sufficient to communicate with the fusion center, which can be located
inside/outside the given service area.

5.2 Measurement model and problem statement

5.2.1 Measurement model

Let us denote the spatially continuous field byut(x), at any discrete time indext
and locationx ∈ R

2. We assume that the entire service area of interest isuniformly
discretizedover N pixels, where we would like to estimate the field intensities.
The field intensities of theN pixels at timet are represented byut ∈ R

N . It is
assumed that the field intensity is the same everywhere within a pixel, and it can
be represented by[ut]j = ut(xj), wherexj ∈ R

2 is the centroid of thej-th pixel,
with j = 1, . . . , N . We consider a linear underdetermined measurement model

yt = Ctut + et (5.1)

= Ct(vt + st) + et, (5.2)
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wherevt ∈ R
N is the non-stationary component of the field andst ∈ R

N is a
stationary component of the field capturing the non-dynamic spatial effects. It is
assumed thatvt andst are mutually uncorrelated.

At any time t, the measurements are given byyt ∈ R
Mt collected fromMt

(Mt < N ) sensing locations (pixels) of the entire service area. The construction
of the time-varying sensing or measurement matrixCt ∈ {0, 1}Mt×N is same as
Chapter 3, i.e.,Ct = diagX(wt), wherewt = [wt1, . . . , wtN ]T ∈ {0, 1}N is the
sensor location selection vectorfor time t, anddiagX(wt) removes the all zero
rows fromdiag(wt). Similar to Chapter 3, we also have[wt]j = 1(0), when the
j-the field location is selected (not selected) for sensor deployment at timet. Using
these, we have

CT
t Ct = diag(wt); CtC

T
t = IMt

. (5.3)

Note that the type of measurement matrix used in this work is similar to an in-
cidence matrix, which can be viewed as a flexible data collection method using
heterogeneous sensing equipments. In practice, when different typesof sensing
modalities are used, we may not know the process by which any of the sensors
gathers its measurement but only its recorded magnitude is important. Also, we
rigorously exploit the property of the structure ofCt mentioned in (5.3), later in
this chapter.

The error incurred by the measurement process is modelled throughet, which
is uncorrelated with bothvt andst, respectively. The spatio-temporally white mea-
surement noiseet is characterized byet ∼ N (0Mt

, σ2
eIMt

).

5.2.2 Main problem statement

The main problem is to design an optimal sensor placement pattern, i.e, to design
wt, whose support gives the optimal locations to deploy the sensors. At anyt,
the design goal is to minimize the estimation error for both the stationary and the
non-stationary components of the field as well as to enforce sparsity inwt, i.e,
to reduce the number of required sensing locations. If the estimation error of the
stationary and non-stationary components of the field can be representedby a single
performance metricg(wt), the sensor placement problem can be represented by

argmin
wt∈{0,1}N

g(wt) + λt‖wt‖1 (5.4a)

s.t. Kmin
t ≤ 1Twt ≤ Kmax

t . (5.4b)

At any t, Kmin
t andKmax

t denote the lower bound on the number of available sen-
sors, and a given budget on the maximum number of available sensors, respectively.
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Sparsity is enforced through a sparsity-promoting penalty, i.e., anℓ1 norm ofwt

in the second summand of the cost function (5.4a) with a time-varying regulariza-
tion parameterλt > 0 controlling the sparsity of the elements ofwt. A detailed
description regarding the structure of the objective function and the importance of
the constraints in the optimization problem (5.4) are discussed later in this chapter.

5.3 Modelling of the spatio-temporal variability

5.3.1 Spatial variability

The spatial effects of the field are modelled through a spatially colored yet tempo-
rally white discrete random processst ∼ N (µs,Σs), whereµs ∈ R

N is the mean
andΣs ∈ S

N
++ is the spatial covariance matrix ofst. We assume that the processst

is spatially second-order stationary as well as isotropic, which means that

µs = E[st] = µs1N , (5.5)

[Σs]ij = E[(st(xi)− µs)(st(xj)− µs)] = f(‖xi − xj‖2), (5.6)

wherei, j = 1, . . . , N [7]. Note that here we follow the same spatial discretization
as mentioned in Section 5.2.1. There are several empirical as well as parametric
model-based approaches to model the spatial covariance. In this work, we assume
that the spatial covariance function is given by a simple squared exponential func-
tion:

f(‖xi − xj‖2) = σ2
s exp(−

‖xi − xj‖22
θ2

), (5.7)

whereθ > 0 is the parameter controlling the strength of the spatial correlation. The
covariance function mentioned in (5.7) is plotted in Fig. 5.1 for increasing values
of the pairwise distance between the centroids of the pixels, i.e,dij = ‖xi − xj‖2
and the parameterθ. Note that the aforementioned covariance function belongs to
the family of Mat́ern covariance functions [7], which are widely used to model the
spatial variability of a field in geostatistics and environmental sciences.

Using the squared exponential covariance function, the elements of theN ×N

spatial covariance matrix (Σs) can be constructed by the relation (5.6). Let us
consider a service area withN = 36 pixels. The centroids of these36 pixels,
which are also the candidate locations for sensor deployment are shown inFig. 5.2.
These centroids are indexed from the top left to the bottom right. The elementsof
Σs are shown in Fig. 5.3. Note that based on the nature of the covariance function
(5.7), the spatial covariance matrixΣs is symmetric and based on the constellation
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of the candidate sensing locations (Fig. 5.2),Σs is also a block Toeplitz matrix.
We assume thatµs andΣs are perfectly known a priori.

5.3.2 State model

The spatio-temporal evolution of the non-stationary component of the field,i.e.,vt,
can be modelled by the following state model

vt = Htvt−1 + qt. (5.8)

Here, the time-varying state transition/propagator matrix is given byHt ∈ R
N×N .

The process noise vectorqt is assumed to be characterized byqt ∼ N (0,Qt). The
elements of the state transition matrixHt act as spatial redistribution weights for
vt−1 for the temporal transition fromt− 1 to t [7]. Note that the spatial redistribu-
tion can be dependent on the temporal sampling interval. Similar to Chapters 3 and
4, we model the elements ofHt by using a parameterized Gaussian kernel function

[Ht]ij = νexp[−(xi − xj − a
ij
t )

T [Dij
t ]

−1(xi − xj − a
ij
t )], (5.9)

wherei, j = 1, . . . , N . and the spatio-temporally varying translation and dilation
parameters are represented bya

ij
t ∈ R

2, andDij
t ∈ S

2
++, respectively. The scalar

ν ∈ (0, 1) is a scaling parameter. In this work, we assume that the state transition
matrix Ht, whose elements are parameterized by{aijt } and {Dij

t } through the
function (5.9) is perfectly known a priori.

5.4 Simple KKF estimator and estimation error covari-
ance

Using the measurement and state models of (5.1) and (5.8), respectively, the state
estimateût, for t = 1, 2, . . . , can be computed following the lines of a standard
KKF [19], [97]. First, a simple Kalman filter is used to track the dynamic compo-
nentvt, where the stationary componentst is interpreted as a noise term. In this
case, the measurement model is given by

y̆t = Ctvt + ĕt, (5.10)

wherey̆t = yt − Ctµs, ĕt = Cts̆t + et, ands̆t = st − µs. Furthermore,̆st ∼
N (0N ,Σs), andĕt ∼ N (0Mt

, R̆t), with R̆t = CtΣsC
T
t +σ2

eIMt
. It can be easily

shown thatvt andĕt are mutually uncorrelated as it is already assumed in Section
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Figure 5.2: Service area withN = 36 candidate sensing locations.
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5.2.1 thatvt is mutually uncorrelated withst and et, respectively. Now, using
the state model of (5.8) and the measurement model of (5.10), the non-stationary
componentvt can be estimated following the lines of a simple Kalman filter [57].
In this case, the recursive state estimate at timet is given by

v̂t = Htv̂t−1 +Gt(y̆t −CtHtv̂t−1), (5.11)

where the Kalman gainGt can be expressed as

Gt = [HtMvt−1
HT

t +Qt]C
T
t ×

[R̆t +Ct(HtMvt−1
HT

t +Qt)C
T
t ]

−1. (5.12)

The MSE matrix of the estimatêvt at timet is given byE[(vt − v̂t)(vt − v̂t)
T ] =

Mvt , which is related to the MSE matrix of the estimate at timet− 1, i.e.,Mvt−1
,

by the recursive relation [57]

Mvt = [(HtMvt−1
HT

t +Qt)
−1 +CT

t R̆
−1
t Ct]

−1. (5.13)

In the next stage, the estimate ofv̂t in (5.11) is used to compute the stationary com-
ponentst using kriging, i.e, a simple linear minimum mean square error (LMMSE)
estimator [57]. The linear model is given byyt−Ctv̂t = Ctst+et and the related
estimator has the form

ŝt = µs +ΣsC
T
t (CtΣsC

T
t + σ2

eIM )−1(yt −Ctv̂t −Ctµs), (5.14)
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where we use the prior informationst ∼ N (µs,Σs). The MSE matrix [57] of the
estimatêst, i.e,Mst is given by

Mst = [Σ−1
s + σ−2

e CT
t Ct]

−1. (5.15)

Finally, the overall field estimate at timet is given byût = v̂t + ŝt.

5.5 Performance metrics as a function ofwt

In this section, we express the MSE matrices, i.e.,Mvt andMst as functions ofwt.
First of all, we mention some facts regarding the structure of the error covariance
matrices presented in the expressions (5.13) and (5.15).

It should be noted that the measurement noise in (5.10) is correlated over space
through the off-diagonal elements of̆Rt. Due to this fact, sensor selection ap-
proaches using the standard convex framework like [45], [41], and [103], i.e., de-
signing awt by directly optimizing the expression (5.13) is difficult due to the
presence of the off-diagonal elements ofR̆t. It should also be noted that the ex-
pression ofR̆t is a function of the measurement matrixCt and thus the selection
vectorwt. However, we do not encounter this issue in the performance metric to
estimate the stationary componentst, i.e, (5.15), as the measurement noiseet is
assumed to be spatially uncorrelated in this case.
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In the expression ofMst , i.e., (5.15), we assume thatΣs is well-conditioned,
i.e., accurately invertible. But this may not be the case in some scenarios. The
condition number ofΣs strongly depends on the correlation of the field, spatial
sampling distance, grid size etc. [58]. The variation of the condition number of
Σs with different values ofθ for bothN = 36 andN = 144 is plotted in Fig.
5.4. It is seen that for a higher resolution or a strong spatial correlation,the spatial
covariance matrix becomes increasingly ill-conditioned and thus close to singular.
In such circumstances, we cannot compute the estimation error covariancematrix
Mst using the expression (5.15). In that case,Mst can be computed using the
alternate expression of (5.15) given by

Mst = [Σ−1
s + σ−2

e CT
t Ct]

−1

= Σs −ΣsC
T
t (CtΣsC

T
t + σ2

eIMt
)−1CtΣs, (5.16)

which is obtained using the matrix inversion lemma (MIL). It should be noted that
the alternative expression of the MSE can be used to compute the MSE (without
invertingΣs), but it is difficult to express it as an explicit function ofwt.

In Fig. 5.5, we plottr[Mst ] for the best case, i.e., the MSE with all the pixel
centroids equipped with sensors (wt = 1N or Ct = IN ) for different values of
θ, and for two different spatial resolutions (N = 36 andN = 144) of the same
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6 × 6 square km service area. It is seen thattr[Mst ] decreases as the strength of
the correlation is increased by increasingθ.

To circumvent the effect of ill-conditioning as well as to handle the correlated
measurement noise in the expression ofMvt , we propose the following approach.
We start by introducing the substitution

Σsr = Σs + αI, (5.17)

whereΣsr is a well-conditioned matrix andα ∈ R. SubstitutingΣs = Σsr −
αI, we can represent the measurement error covariance matrix of (5.10) as, R̆t =

CtΣsrC
T
t +ζIMt

, whereζ = σ2
e−α and where we usedCtC

T
t = IMt

. Substituting
R̆t = CtΣsrC

T
t + ζIMt

in (5.13), the MSE matrix for the estimate of the non-
stationary component is given by

Mvt = [(HtMvt−1
HT

t +Qt)
−1+

CT
t (CtΣsrC

T
t + ζIMt

)−1Ct]
−1. (5.18)

Using the MIL, we have the following matrix identity

(Σ−1
sr +CT

t (ζIMt
)−1Ct)

−1 = Σsr

−ΣsrC
T
t (CtΣsrC

T
t + ζIMt

)−1CtΣsr, (5.19)

from which we can derive

CT
t (CtΣsrC

T
t + ζIMt

)−1Ct = Σ−1
sr

−Σ−1
sr (Σ−1

sr + ζ−1diag(wt))
−1Σ−1

sr , (5.20)

where we usedCT
t Ct = diag(wt). Substituting (5.20) in (5.18) we obtain the

following expression forMvt :

Mvt = [(HtMvt−1
HT

t +Qt)
−1 +Σ−1

sr

−Σ−1
sr (Σ−1

sr + ζ−1diag(wt))
−1Σ−1

sr ]−1. (5.21)

Next, substitutingΣs = Σsr − αI in the inverse of the right most term of (5.16)
and usingCtC

T
t = IMt

, we obtain

Mst = Σs −ΣsC
T
t (CtΣsrC

T
t + ζIMt

)−1CtΣs. (5.22)

Substituting the identity (5.20) into (5.22), we obtain the following expression of
Mst :

Mst = Σs −ΣsΣ
−1
sr Σs

+ΣsΣ
−1
sr (Σ−1

sr + ζ−1diag(wt))
−1Σ−1

sr Σs. (5.23)
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Note that, the expression of (5.23) avoids the inversion of an ill-conditionedΣs.
Here, we only need to invert the well-conditionedΣsr.

In this work, we consider the overall MSE as a performance metric for sensor
placement, i.e,g(wt) as mentioned in (5.4a). This is given by

g(wt) = tr(Mvt) + tr(Mst)

= tr[X− F[F+ ζ−1diag(wt)]
−1F]−1 + tr[Y]

+ tr[ZT [F+ ζ−1diag(wt)]
−1Z], (5.24)

whereX = (HtMvt−1
HT

t +Qt)
−1+Σ−1

sr , F = Σ−1
sr , Y = Σs−ΣsΣ

−1
sr Σs, and

Z = Σ−1
sr Σs. Note that the matricesX, F, Y, andZ are all independent ofwt. To

modelΣsr andF+ζ−1diag(wt) as positive definite matrices we need0 < α < σ2
e .

The performance metric derived in (5.24) incorporates the MSE matrices of
the estimates of the non-stationary (vt) as well as the stationary (st) component
of the field, as explicit functions of the sensor location selection vectorwt. Note
that a formulation similar to (5.23), for the computation of the MSE matrix as
a function ofwt is proposed in [103], where the field is considered to be either
purely stationary or non-stationary.

5.6 KKF with Sensor Placement

In this section, we relax and reformulate the proposed sensor placement problem
(5.4) as a semidefinite programming (SDP) problem. Then we present the overall
KKF estimator followed by the sensor placement to dynamically monitor the field
using only the measurements from the selected sensing locations.

5.6.1 Sensor placement problem as an SDP

Solving for the best subset of sensing locations is a combinatorially complex prob-
lem. However, it can be relaxed to a convex problem [45], [101], [41]. As discussed
in Section 5.2.1, the sensor location selection vectorwt ∈ {0, 1}N acts as a weight-
ing vector for all theN candidate pixels. Following the main optimization problem,
i.e., (5.4), a sparsity-enforcing, low estimation error, and resource-constrained de-
sign ofwt can be obtained by solving

argmin
wt∈[0,1]N

g(wt) + λt‖wt‖1 (5.25a)

s.t. Kmin
t ≤ 1Twt ≤ Kmax

t , (5.25b)
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where the expression ofg(wt) is given by (5.24). Here, we have relaxed the
non-convex Boolean constraintwt ∈ {0, 1}N of (5.4) to a convex box constraint
wt ∈ [0, 1]N . The resource constraint of (5.25b) is affine and thus convex. Some
comments regarding the formulation of the proposed sensor placement problem of
(5.25) are presented next.

• First of all, let us consider the non-convex version of the optimization prob-
lem of (5.25) withλt = 0. This is given as

argmin
wt∈{0,1}N

g(wt) (5.26a)

s.t. Kmin
t ≤ 1Twt ≤ Kmax

t . (5.26b)

In this case, the MSE cost will be minimum, i.e, the best estimation perfor-
mance is achieved, when we select the maximum number of available candi-
date locations or in other words, when1Twt = Kmax

t . Then, there is no way
to reduce the number of selected locations belowKmax

t and the constraint
1Twt ≥ Kmin

t becomes redundant. In the aforementioned case, it is difficult
to reduce the number of selected sensing locations belowKmax

t .

• Notice that, dropping the resource constraint (5.25b) and increasingλt will
reduce the number of selected sensing locations. But, there is no explicit re-
lation betweenλt and1Twt, i.e., it is difficult to directly control the resource
allocation (i.e.,Kmax

t ) throughλt.

• We mention that the proposed formulation of (5.25) is not a direct MSE min-
imization problem but it attains a specific MSE along with enforcing sparsity
in spatial sensor location selection through the second summand of (5.25a).
The sparsity enforcement is lower bounded by the minimum number of sens-
ing locations to be selected at anyt, i.e.,Kmin

t . It should be noted that for an
arbitrary selection ofλt, the minimum number of selected sensing locations
will always beKmin

t .

• Lastly, it should be noted that a sparsity-enforcing design ofwt can be
achieved by retaining only the second summand of the objective function of
(5.25a) and using a separate performance constraint given asg(wt) ≤ γt,MSE

[103], [41]. The desired performance thresholdγt,MSE can be time-varying
or independent oft based on the application. But in many practical scenar-
ios, it could be difficult to set the performance thresholdγt,MSE a priori for
everyt.
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Based on the aforementioned arguments, we advocate the proposed design ap-
proach (5.25) that lowers the MSE along with enforcing sparsity in sensorplace-
ment satisfying a flexible resource allocation constraint.

After solving (5.25), we obtain̂wt ∈ [0, 1]N which can be converted to a
Boolean selection vectorwt ∈ {0, 1}N . This can be performed by either deter-
ministic or stochastic rounding procedures as discussed below.

• The simplest approach could be to set the non-zero entries ofŵt to 1. How-
ever, there can be a huge difference between the magnitudes of any two
non-zero elements in̂wt. Considering the fact that the indices of the high
magnitude (close to1) elements of̂wt signify a more informative sensing lo-
cation,ŵt can be sorted in ascending order of magnitude [45] and a selection
threshold (γ) can be selected based on the magnitudes of the elements of the
sortedŵt. The entries of the Boolean selection vector can be computed as
[wt]j = 1 if [ŵt]j ≥ γ else[wt]j = 0, for j = 1, . . . , N .

• Another approach could be a stochastic approach, where every entry of ŵt is
assumed to be the probability that this sensing location is selected at timet.
Based on this, multiple random realizations ofwt ∈ {0, 1}N are generated,
where the probability that[wt]j = 1 is given by[ŵt]j , for j = 1, . . . , N .
Then the realization that satisfies the constraints and minimizes the estima-
tion error, i.e.,g(wt) is selected [41].

Let us now transform the optimization problem of (5.25) into an SDP. From
the expression of (5.24), it is clear that minimizingg(wt) w.r.t. wt is equivalent
to minimizing the expressiontr[X − F[F + ζ−1diag(wt)]

−1F]−1 + tr[ZT [F +

ζ−1diag(wt)]
−1Z] as the matrixtr[Y] is independent ofwt. In the first step, we

represent the optimization problem of (5.25) in an epigraph form [46, p. 134], [45,
Eq. (25)-(26)] which is given by

argmin
wt∈[0,1]N ,V∈SN ,B∈SN

tr[V] + tr[B] + λt‖wt‖1 (5.27a)

s.t. V � [X− F[F+ ζ−1diag(wt)]
−1F]−1, (5.27b)

B � ZT [F+ ζ−1diag(wt)]
−1Z, (5.27c)

Kmin
t ≤ 1Twt ≤ Kmax

t , (5.27d)

where we introduce the auxiliary variablesV ∈ S
N andB ∈ S

N . We notice
that the epigraph form (5.27) is well-posed since by choosing0 < α < σ2

e in
(5.17) the matrix[F+ ζ−1diag(wt)] is always positive definite and symmetric. In
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addition, also the matrix[X − F[F + ζ−1diag(wt)]
−1F] is also positive definite

by construction as derived in (5.18)-(5.21).
The epigraph form (5.27) is not a strictly convex program, in the sense that there

are multipleV andB matrices that achieve the minimal cost value. This is due to
the inequality constraints of (5.27b) and (5.27c). At optimality, the eigenvalues of
V andB must be equivalent to their lower bounds in (5.27b) and (5.27c). Hence,
an optimizer of the problem isV = [X − F[F + ζ−1diag(wt)]

−1F]−1 andB =

ZT [F+ ζ−1diag(wt)]
−1Z.

We proceed by simplifying the constraint (5.27b). Let us introduce another
auxiliary variableA ∈ S

N and substitute (5.27b) with two constraints

V � [X−A]−1, (5.28)

A � F[F+ ζ−1diag(wt)]
−1F. (5.29)

With this in place, the optimization problem (5.27) can be formulated as

argmin
wt∈[0,1]N ,V,A,B∈SN

tr[V] + tr[B] + λt‖wt‖1 (5.30a)

s.t. V � [X−A]−1, (5.30b)

A � F[F+ ζ−1diag(wt)]
−1F, (5.30c)

B � ZT [F+ ζ−1diag(wt)]
−1Z, (5.30d)

Kmin
t ≤ 1Twt ≤ Kmax

t , (5.30e)

It can be claimed that the optimization problem (5.30) is equivalent to (5.27) given
that it yields a decision variablewt with the same optimal cost of (5.27). To prove
this, let us choose an arbitrarywt say w̄. For a fixed yet arbitrarȳw verifying
(5.30e), the optimization problem (5.30) minimizes bothV andB. This means that
due to (5.30b) it minimizes alsoA: in fact, asV � [X − A]−1 the lower bound
for V is minimal if the positive definite matrix[X − A] is maximal, that isA is
minimal. Therefore,A must attain its lower bound. As mentioned earlier, there are
multiple optimizers, yet one isA = F[F + ζ−1diag(wt)]

−1F. In addition,V =

[X −A]−1 = [X − F[F + ζ−1diag(w̄)]−1F]−1 at optimality, as well. The same
reasoning holds also forB, which at optimality isB = ZT [F+ ζ−1diag(w̄)]−1Z.
Since this reasoning is valid for any feasiblew̄, it is also valid for an optimal one
and therefore the equivalence claim follows. It should be noted that a similar argu-
ment was also presented in [104], where only the issue of correlated measurement
noise is considered.
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Using the Schur complement lemma the constraints (5.30b) and (5.30c) can be
equivalently represented by the linear matrix inequalities (LMI) :

[

X−A I

I V

]

� 0 (5.31a)

[

A F

F F+ ζ−1diag(wt)

]

� 0 (5.31b)

The constraint (5.30c) can be equivalently represented by an LMI using the
Schur complement [46]. In other words, using the fact that[F+ζ−1diag(wt)] ≻ 0,
we obtain

[

B ZT

Z F+ ζ−1diag(wt)

]

� 0. (5.32)

Finally, an SDP representation of the overall optimization problem of (5.27)
can be expressed as

argmin
wt∈[0,1]N ,A,B,V∈SN

tr[V] + tr[B] + λt‖wt‖1, (5.33a)

s.t. LMIs in (5.31a), (5.31b), (5.32) (5.33b)

Kmin
t ≤ 1Twt ≤ Kmax

t (5.33c)

The solution of the aforementioned SDP is a selection vectorŵt ∈ [0, 1]N .

5.6.2 Spatial sensor placement for stationary field estimation

Let us consider the effect of the stationary component of the fieldst for any t.
In this case, we consider thatvt = 0. In this case, the measurement model
of (5.1) is given byyt = Ctst + et. Exploiting the prior information regard-
ing st, i.e., st ∼ N (µs,Σs) an LMMSE estimator ofst can be presented by
ŝt = µs+ΣsC

T
t (CtΣsC

T
t +σ2

eIMt
)−1(yt−Ctµs). The performance of the afore-

mentioned estimator is given by the MSE matrixMst = [Σ−1
s + σ−2

e CT
t Ct]

−1 =

Σs − ΣsC
T
t (CtΣsC

T
t + σ2

eIMt
)−1CtΣs. Considering the fact thatΣs can be

ill-conditioned, following the formulation of (5.23), the expression ofMst can be
expressed as a function ofwt as

Mst = Y + ZT [F+ ζ−1diag(wt)]
−1Z, (5.34)

whereY = Σs−ΣsΣ
−1
sr Σs,Z = Σ−1

sr Σs, andF = Σ−1
sr . Note that the matricesF,

Y, andZ are all independent ofwt. Consideringg(wt) = tr[Mst ] and following
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the same SDP formulation of Section 5.6.1, the proposed sensor placement problem
of (5.4) can be represented as

argmin
wt∈[0,1]N ,B∈SN

tr[B] + λt‖wt‖1, (5.35a)

s.t.

[

B ZT

Z F+ ζ−1diag(wt)

]

� 0, (5.35b)

Kmin
t ≤ 1Twt ≤ Kmax

t . (5.35c)

The optimization problem of (5.35) gives the spatial sensor placement pattern for
any snapshott, when the field is stationary over space. However, if the field is also
temporally stationary then the sensor placement problem of (5.35) can be extended
to blocks of multiple snapshots. In this case, the performance metric can be com-
puted using the same approach as [103]. In the simulation section, we show the
effects of spatial correlation on sensor placement.

5.6.3 Sparsity-enhancing iterative design

In order to eschew the effect of the magnitude dependencies of the elements of ŵt,
we individually weigh each element ofwt. In this case, we consider a vector form
for the regularization parameter :λt ∈ R

N . The weight associated to the each
element ofwt is the corresponding element ofλt ∈ R

N . We iteratively refine
the weighting vectorλt in the ℓ1 minimization term of the problem (5.33) [56].
Using this approach, higher weights are applied on the smaller elements ofwt to
push them towards0 and the magnitudes of the larger elements are maintained by
applying a smaller weight. In this way, a sparser solution can be obtained com-
pared to the standard sparsity-promoting method. The iterative algorithm canbe
summarized as

• Initialize i = 0, weight vectorλ0
t = 1N , ǫ, and maximum number of itera-

tionsI.

• for i = 0, . . . , I

ŵi
t = argmin

wt∈[0,1]N ,A,B,V∈SN
tr[V] + tr[B] + (λi

t)
Twt, (5.36a)

s.t. LMIs in (5.31a), (5.31b), (5.32) (5.36b)

Kmin
t ≤ 1Twt ≤ Kmax

t (5.36c)
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• [λi+1
t ]j =

1
ǫ+[ŵi

t]j
, for everyj = 1, . . . , N

• end;

• setŵt = ŵI
t .

After solving the above algorithm, we still obtain̂wt ∈ [0, 1]N . We convert this to
a Boolean selection vectorwt ∈ {0, 1}N using a deterministic/stochastic rounding
method as mentioned in Section 5.6.1.

5.6.4 KKF algorithm with sensor placement

The informativeMt locations to deploy/move the sensors at anyt is denoted by
supp(ŵt), where1T ŵt = Mt. The noisy measurements collected from the afore-
mentionedMt locations are stored inyt. The sensing matrixCt is constructed
by removing the all-zero rows ofdiag(ŵt) at everyt. This measurement matrix
is used for the estimation of the non-stationary and the stationary components by
(5.11) and (5.14), respectively. Then the overall field estimate at timet is computed
by ût = v̂t+ ŝt. Note that the estimation steps, i.e, (5.11) and (5.14) do not require
the computation of the inverse ofΣs. The error covariance of the non-stationary
component can be updated by (5.13), which also does not require the inverse ofΣs.
At everyt, the overall estimation performance can be computed by the expression
of (5.24). The best case performance, i.e, the performance with all the locations
selected can also be computed by the expression of (5.24) by usingwt = 1N .

In many practical environmental fields (such as rainfall), the field is generally
non-negative. To achieve a non-negative estimate at everyt, the estimates of the
stationary and non-stationary components can be projected onto the non-negative
orthant, i.e., the negative values are set to zero. This is obtained by adopting

ût = [v̂t + ŝt]+. (5.37)

However, in this case, the performance metricstr[Mvt ] andtr[Mst ] are only the
approximations.

5.7 Simulation results

In this section, we perform some numerical experiments to exhibit the practicality
of the developed sparsity-enforcing sensor placement followed by the KKF estima-
tion method. We select a service area of6× 6 square km with1 square km spatial
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Figure 5.6:Field distribution att = 0 with a single source:K = 1, ρ1 = [1.5, 1.5]T ,
s1 = 2, d1 = 1.

resolution as illustrated in Fig. 5.2. The spatial distribution of the non-stationary
component at timet = 0, i.e,v0, is generated by the following exponential source-
field model

[v0]j =
K
∑

k=1

sk exp(−dk‖xj − ρk‖2), j = 1, . . . , N, (5.38)

whereK is the number of field-generating points/sources. The parametersρk, sk,
anddk are the location, amplitude, and the spatial decaying factor of thek-th source
at timet = 0. Based on this function, we generate the non-stationary component of
the field at timet = 0, i.e.,v0 ∈ R

N using the parametersK = 1, ρ1 = [1.5, 1.5]T ,
s1 = 2, andd1 = 1. The spatial distribution ofv0 in the specified service area is
shown in Fig. 5.6.

The state model of the non-stationary componentvt is modelled by (5.8). The
state transition matrix is modelled by the Gaussian kernel function given by (5.9).
For the sake of simplicity, we consider a spatially invariant translation parameter
and spatio-temporally invariant dilation parameters given asa

ij
t = at andDij

t =

D, respectively, fori, j = 1, . . . , N . The elements of the state transition matrix are
given by

[Ht]ij = νexp[−(xi − xj − at)
TD−1(xi − xj − at)]. (5.39)
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The spatio-temporal evolution of the true value of the field, i.e.,ut = vt + st is
generated in the following two ways.

In the first case, we consider a pure advective process, i.e., we select a very
low dilation parameter given byD = 10−4I2 for all t = 1, . . . , 8 andν = 0.8.
It is assumed that the temporal resolution is1 minute. The translation vectors,
i.e., at, are assumed to be changing everyt as[1, 1]T , [−1,−1]T , [1, 1]T , [0, 0]T ,
[1, 1]T , [−1,−1]T , [0, 1]T , and [−1,−1]T . It is assumed that att = 0, vt is
generated by the source as shown in Fig. 5.6. The different states ofvt for
t = 1, . . . , 8 are generated by the state model of (5.8). The spatially colored yet
temporally uncorrelated process noise is characterized byqt ∼ N (0N ,Q), where
[Q]ij = 10−4 exp(−‖xi − xj‖2). The stationary componentst is modelled by
st ∼ N (1N ,Σs). The parameters of the squared exponential covariance function
of (5.7) are given byσ2

s = 0.001 andθ = 1. Note that increasing the value ofθ, the
field becomes spatially more correlated and the condition number ofΣs increases.
However, as mentioned earlier, our proposed formulation, i.e., both the selection
and the estimation, does not involve the inversion ofΣs. A highly spatially corre-
latedst is considered in the next case. For the first case, the true fieldut = vt + st

for t = 1, . . . , 8 can be simulated as shown in Fig. 5.7.

In thesecondcase, we considerD = I2 for all t = 1, . . . , 8 and the translation
parameters are fixed asat = [0.4, 0.4]T for t = 1, . . . , 4, and no translation for the
last4 snapshots, i.e.,at = [0, 0]T for t = 5, . . . , 8. The state ofvt at t = 0 is the
same as before. The scaling parameter is given byν = 0.35. The process noise
qt is the same as before. In this case, we assume that the stationary component
st is spatially more correlated than the last case. The parameters of the covariance
function (5.7) are taken asσ2

s = 0.01 andθ = 4, which generates an ill-conditioned
Σs (Fig. 5.4). Using these, the true field, i.e.,ut = vt+st for t = 1, . . . , 8 is shown
in Fig. 5.8.

5.7.1 Sensor placement followed by field estimation using KKF

We select the optimal sensing locations and use them to estimate the field fort =

1, . . . , 8 snapshots for the two different scenarios of the spatio-temporal evolution
of the field, as mentioned in the previous section. We use the same service area
shown in Fig. 5.2, where the centroids of theN = 36 pixels are the candidate
sensing locations. We assume that the measurement noise variance is givenby
σ2
e = 0.001. We solve the optimization problem of (5.36) with the parameters

I = 2 and ǫ = 10−6. The weighting vectors are initialized asλ0 = 1N . The
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Figure 5.7:Spatio-temporal evolution ofut in a6× 6 square km area; Spatial resolution:
1× 1 square km; Time varyingHt for t = 1, . . . , 8; strength of spatial correlation:θ = 1.
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Figure 5.8:Spatio-temporal evolution ofut in a6× 6 square km area; Spatial resolution:
1× 1 square km; Time varyingHt for t = 1, . . . , 8; strength of spatial correlation:θ = 4.
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resource constraints are given asKmax
t = 30 andKmin

t = 25 for all t. To extract
the Boolean solutionwt ∈ {0, 1}N from ŵt ∈ [0, 1]N , we adopt the randomized
rounding method. We use the software CVX [105] (parser CVX, solver SeDuMi
[53]) to solve the SDP problem (5.36). Following the above simulation setup, the
selected sensing locations for the first and the second scenario are shown in Fig. 5.9
and Fig. 5.10, respectively for the8 snapshots. The indices of the pixel midpoints
(vertical axis) are the same as in Fig. 5.2. The main observations from the selected
locations are listed below.

• First of all, it is clearly seen that the selected sensing locations depend on
the dynamics. Note that, Fig. 5.9 gives the optimal placement pattern,
whenHt is changing everyt (different at on everyt). Fig. 5.10 shows
the optimal sensing locations when we have the sameHt for t = 1, ..., 4

(at = [0.4, 0.4]T ) and anotherHt for t = 5, ..., 8 (at = [0, 0]T ).

• WhenHt is changing everyt, i.e., the spatio-temporal evolution of the field
is guided by the time-varying spatial translation parameterat (Fig. 5.2), the
optimal selection pattern also depends upon this translation (Fig. 5.9).

• In the second scenario, we have assumed a very low and fixed translation, i.e,
at = [0.4, 0.4]T for the first4 snapshots andat = [0, 0]T , i.e, no translation,
for the last4 snapshots (Fig. 5.8). It is seen that almost the same set of sen-
sors are selected in the last4 snapshots of Fig. 5.10. In general, whenHt is
not changing with time, the estimation error of the non-stationary component
reaches a steady state after a number of snapshots and the same set of sensors
are selected everyt.

The overall estimation performance using the measurements from the selected
locations of Fig. 5.9 and Fig. 5.10 is shown in Fig. 5.11 and Fig. 5.12, respectively.
In these figures, we exhibit the pixel-wise comparison of the estimates forT = 8

snapshots, i.e, the estimation performance of36×8 = 288 pixels. We initialize the
KKF iterations withv̂t = 1N andMvt = 0.001IN at t = 0.

5.7.2 Performance analysis

We compare the estimation performance of the developed sensor placement method
by comparing the performance metric, i.e,g(ŵt) = tr[Mst ] + tr[Mvt ] with a
random sensor placement (with the sameMt, i.e.,‖ŵt‖0 = Mt as for the developed
method) and with the best case performance (i.e.,Mt = N or wt = 1N ). For
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Figure 5.9: Selected sensing locations to estimate the field with the first scenarioof
the true value.
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Figure 5.11: Comparison of the KKF estimate with the true value (Fig. 5.7) with
the measurements from the selected locations shown in Fig. 5.9.
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Figure 5.13: Comparison of the performance metric for the random placement,
proposed method, and the best case.

the random placement, we generate100 different realizations ofwt ∈ {0, 1}N at
everyt with the sameMt as for the proposed method. Theng(wt) is computed
for everywt and their average is considered. Similarly, we compute the best case
performance, i.e,g(1N ) for everyt and in this caseMvt is updated withwt = 1N .
We use the same set of parameters as mentioned in the first case of Section 5.7.1.
Only the resource allocation constraint is simplified as1Twt = 15, i.e, we fix that
only 15 sensing locations will be selected everyt. The performance comparison is
shown in Fig. 5.13. It is seen that the proposed approach slightly outperforms the
random placement. However, the random placement of sensors does not optimize
any performance criterion.

5.7.3 Spatial sensor placement for stationary field estimation

In this section, we show the effects of different spatial correlation patterns on sen-
sor placement assuming the field is purely stationary. We solve the optimization
problem of (5.35), for two different spatial covariance matrices (Σs). In the first
case, we consider thatΣs is generated by the squared exponential function (5.7)
with θ = 2 andσ2

s = 0.01 (Fig. 5.14). In the second case, we consider a randomly
generatedΣs (Fig. 5.15). The resource allocation constraint is the same as before,
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Figure 5.14: Spatial covariance matrix generated by the squared exponential func-
tion (σ2

s = 0.01, θ = 2)

i.e, Kmin
t = 25, andKmax

t = 30. We solve the optimization problem of (5.35),
with the iterative approach of (5.36) with the same parameters as mentioned in the
previous section. The selected locations (marked by black squares where the blue
dots are the candidate locations as shown in Fig 5.2) to deploy sensors are shown
in Fig. 5.16 and Fig. 5.17 for the spatial covariance matrices shown in Fig. 5.14
and Fig. 5.15, respectively.

First of all, it is observed that the spatial distribution of the optimal sensing
locations depends upon the correlation pattern of the field. It is seen that when
Σs is generated by a squared exponential covariance (stationary) function then the
optimal sensor placement pattern is more or less symmetrically and uniformly dis-
tributed over the entire service area. But for a random spatial covariance matrix the
optimal sensing locations do not follow any specific pattern.

5.8 Conclusion and Future work

In this chapter, we have developed a sparsity-enforcing sensor placement followed
by a field estimation technique using a KKF. The proposed methodology selectsthe
most informative sensing locations over space and time in a specified servicearea
of interest. Along with minimizing the estimation error, the developed method also
economizes the sensor placement (in terms of resources) at every temporal inter-
val. The salient features of the proposed method include handling a general class of
spatial covariance matrices and tackling correlated measurement noise. Numerical
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Figure 5.17: Sensor placement pattern for theΣs as shown in Fig. 5.15.

analysis shows the feasibility of the method. The effects of the dynamics and spa-
tial correlation of the field in spatio-temporal sensor placement are discussed with
numerical experiments.

In this chapter, we have considered the fact that the prior knowledge regard-
ing the spatial variability and the dynamics are perfectly known a priori. In that
case, the performance of a clairvoyant Kalman setup with Gaussian measurement
and process noise is optimal. But in many practical scenarios, the aforementioned
spatio-temporal prior information may not be accurate and we require more infor-
mation regarding the unknown field in the estimation step. Future research is envi-
sioned to incorporate the effects of model imperfections in the developed method.
Another future research area could be using distributed algorithms to applythe
developed method for large scale sensor network applications. It will alsobe inter-
esting to tailor the recent progress in time-varying optimization [106] to solve the
SDPs in a tracking fashion, rather than at optimality at each sampling time.
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Chapter 6
Dynamic Model Estimation

Followed by Field Estimation

The spatio-temporal evolution of an environmental field can be estimated by the
predictions of a state model followed by the corrections by the available measure-
ments. It is already seen in Chapter 4, that the sensitivity of the estimation perfor-
mance strongly depends upon the accuracy of the available state model. Standard
state estimation methods (such as a Kalman filter) can produce inaccurate estimates,
if the state model is incomplete or inaccurate. However, there are also other factors
like the number of available measurements, magnitude of the measurement noise
etc. which can create a major impact on the estimation performance. It should be
noted that in the previous chapters it is assumed that the state model is perfectly
known in most of the cases.

In this chapter, we assume that the state model is unknown and present some
methods to estimate the state model. We describe two approaches to estimate the
state model. In the first case, it is assumed that the true value/ground truth ofthe
environmental field is completely known. In the second case, it is assumed that the
ground truth of the field is unknown but some prior information regarding thestate
model is available. Simulations are presented for both synthetic data and realdata
(gauge adjusted radar rainfall data) scenarios.

The outline of the chapter is as follows. A brief survey of similar research
works along with the main topics of this chapter is presented in Section 6.1. In
Section 6.2, the measurement model and the main problem statement are illustrated.
The estimation of the state model incorporating the knowledge regarding the true
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value of the field is described in Section 6.3. In the next section, Section 6.4 itis
assumed that the true value of the field is not available but some prior information
regarding the state model is available. Both Sections 6.3 and 6.4 are accompanied
by simulation results. The chapter is concluded in Section 6.5.

6.1 Prior art and contributions

The estimation of the state model of a dynamic process is similar to a system iden-
tification problem [36]. In case of environmental field estimation there are several
non-Bayesian and Bayesian methods to estimate or approximate the model param-
eters [7]. Spatio-temporal variability of an environmental field can be modelled
by a time-varying covariance function which can be approximated by a Gaussian
smoothing kernel [33]. The approach of using a kernel representation to model
the spatio-temporal evolution of an environmental process can also be applied to
non-Gaussian fields [35]. In [32], a parametric Gaussian dispersal kernel is used
for short-term prediction of the rainfall field. The parameters of this kernel can be
estimated using a Bayesian or non-Bayesian method [7], [32].

In this chapter, we describe two methods to estimate the underlying dynamics
of an environmental field. In the first case, we estimate the dynamics incorporating
the fact that the true field intensities are known. In the next case, it is assumed
that the true field estimates are unknown but we consider that we have some prior
information regarding the dynamics.

The main contributions of the chapter are listed below.

• A generalized dynamic model estimation problem is formulated as an under-
determined system of linear equations. The aforementioned system is solved
as a sparsity-cognizant linear regression problem. It is considered that the pa-
rameters related to the state transition matrix can be represented as a sparse
vector using an orthonormal sparsifying basis.

• Simulations are carried out using both synthetic and real data. The envi-
ronmental field is estimated using a Kalman filter, where the estimated state
model is used for prediction. The estimation performance is compared with
the true value of the field.
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6.2 Measurement model and problem statement

We consider a spatially continuous yet temporally discrete environmental fieldrep-
resented byut(x), wherex ∈ R

2 is the location andt is the time index similar
to Chapter 4. We assume that the entire service area of interest is uniformly dis-
cretized intoN square pixels and the field within any pixel is constant everywhere.
The overall field in the service area at anyt is characterized by anN -dimensional
unknown parameter vectorut ∈ R

N . Following the same notations of Chapter 4,
the elements ofut are given by[ut]j = uj,t = ut(xj), wherexj = [xj , yj ]

T is the
centroid of thej-th pixel of the service area, wherej = 1, . . . , N . The discretized
service area along with the pixel centroids are shown in Fig. 6.1. Note that, we
follow a row-wise vectorization of the field magnitudes of theN pixels in the field
vectorut.

6.2.1 Measurement model

We consider a linear underdetermined measurement model

yt = Φtut + et, t = 1, . . . , T, (6.1)

where the vectoryt ∈ R
Mt collects theMt spatial measurements at timet. It should

be noted that, the elements of the generalized measurement matrixΦt ∈ R
Mt×N ,

(Mt < N ) of (6.1) can be designed based on the sensing modality. The observa-
tions at timet are corrupted by noise incurred by the measurement process or due
to the imperfections in the measuring equipment. At anyt, due to the uncertainty
regarding the knowledge of this measurement noise, we model it as a Gaussian
random process characterized byet ∼ N (0Mt

,Rt), whereRt is an accurately
invertible noise covariance matrix. It is also assumed thatet is uncorrelated with
ut.

6.2.2 State model

The dynamics of the environmental field can be represented by the linear state
model

ut = Htut−1 + qt, t = 1, . . . , T, (6.2)

whereHt ∈ R
N×N is the state transition matrix or the propagator matrix that mod-

els the spatio-temporal evolution of the field from the(t−1)-th snapshot to thet-th
snapshot. The vectorqt ∈ R

N models the spatially colored yet temporally white
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Figure 6.1: Discretized service area withN = 64 pixels.

process noise characterized byqt ∼ N (0,Q), which is assumed to be uncorrelated
with ut as well aset.

6.2.3 Problem statement

It is assumed that the elements of the state transition matrixHt are unknown. The
estimation of the elements of the state transition matricesHt for t = 1, . . . , T

snapshots can be viewed as a linear system identification problem [36]. Weestimate
Ht for the following two scenarios.

• In the first case, it is assumed that the set of model inputs, i.e., the true field
values{ut}Tt=1, first and second order statistics of the measurement and pro-
cess noise, i.e.,{qt, et}Tt=1, the outputs, i.e., the measurements{yt}Tt=1, and
the measurement matrices{Φt}Tt=1 are all known. The overall model can be
compactly represented as in Fig. 6.2. For this scenario, the only unknown is
{Ht}Tt=1.

• In the next case, we assume that the model inputs{ut}Tt=1 are unknown. But
we assume that the first and second order statistics of the measurement noise
{et}Tt=1 are known. We also assume some prior information regarding the
structure of the state transition matrixHt. This approach is similar to the
“gray box modelling” in system identification problems [36].
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Figure 6.2: Overall system model with inputs and outputs.

6.3 Estimation ofHt using the known true value

In the first case, it is assumed that the true field values{ut}Tt=0 are known. The
state transition matrices, i.e.,{Ht}Tt=1 are unknown. One simplification of the
system modelut = Htut−1 + qt could be a time invariant state transition matrix,
i.e, Ht = H for t = 1, . . . , T . Based on this assumption, a linear model can be
constructed, which can be used to estimate the elements ofH. This is given as

ũ = Xvec(H) + q̃, (6.3)

whereũ = [uT
1 , . . . ,u

T
T ]

T ∈ R
NT , q̃ = [qT

1 , . . . ,q
T
T ]

T ∈ R
NT , and the overall

measurement matrix is given by

X =













uT
0 ⊗ IN

uT
1 ⊗ IN

...
uT
T−1 ⊗ IN













, (6.4)

where the dimension ofX is given byNT × N2. When we have sufficient snap-
shots, i.e.,NT ≥ N2, andX is well-conditioned, a simple least squares estimate
X†ũ can give us the maximum likelihood solution in case of Gaussian process
noise.

In many practical environmental monitoring scenarios however we haveNT ≪
N2, which makes (6.3) an underdetermined noisy system of linear equations, which
has an infinite number of solutions for the elements ofH. So, a suitable regular-
ization is required in order to achieve a stable solution for the underdetermined
system. Here, we use a regularization exploiting the sparsity of the elements ofH

when represented in a sparsifying basis.
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Let us consider the unknown asvec(H) = h ∈ R
N2

. Let us also consider
a sparse representation ofh asz, wherez = Ψ−1h. Here,Ψ is an orthonormal
dictionary (such as a DCT basis as mentioned in Chapter 4). Exploiting the fact
thatΨ−1h has a sparse representation a sparsity regularized least squares solution
for the elements ofH can be obtained as

ĥ = argmin
h

‖ũ−Xh‖22 + λ‖Ψ−1h‖1, (6.5)

whereλ is a tuning parameter. After solving the optimization problem (6.5) the
time-invariant state transition matrix is given byĤ = vec−1(ĥ), where thevec−1()

operator reshapes theN2 × 1 vectorĥ to anN ×N matrix Ĥ.

6.3.1 Simulation results

We perform some numerical experiments with synthetic data for the first scenario
of the problem statement mentioned in Section 6.2.3. It is assumed that the number
of pixels areN = 36 and the number of snapshots of interest areT = 8. The
set of true values which isu0 and{ut}T=8

t=1 are shown in Fig. 6.3 and Fig. 6.4,
respectively. The true values are simulated using the similar method mentioned in
Section 5.7 of Chapter 5. In this case, the state transition matrix is kept fixed for all
the snapshots.

In order to estimate the elements ofHt = H, first we construct the matrixX
from 6.4 using the knowledge of the true field values. The optimization problem
(6.5) is solved and the estimates of the elements ofH, i.e., ĥ are estimated. Here,
we considerΨ to be a DCT matrix and for the sparse representation and we take
λ = 2. The software CVX [52] (parser CVX, solver SeDuMi [53]) is used tosolve
the convex optimization problem (6.5).

TheMt = M measurements in every snapshot are computed using (6.1), where
theM×N measurement matrixΦt = Φ is randomly generated. The structure ofΦ

is the same as mentioned in Section 5.2, i.e, it is constructed by randomly selecting
M rows of the identity matrixIN . The number of measurements areM = 33. The
measurement noise is characterized aset ∼ N (0M , 10−4IM ). Finally, a simple
Kalman filter is used to estimate the states{ût}8t=1. The pixel-wise comparison of
the estimates and the true value is presented in Fig. 6.5.

6.4 Estimation ofHt using prior information

The problem formulation mentioned in Section 6.3 has the following bottlenecks.



6.4. Estimation ofHt using prior information 127

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.5

1

1.5

2

2.5

3

3.5

x (km)

y
(k
m
)

u0

Figure 6.3:Field distribution att = 0.
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Figure 6.5: Estimation comparsion forN = 36 pixels forT = 8 snapshots.

• It is assumed that the true values, i.e.,{ut}Tt=1 are all known. But in many
practical scenarios the true field values are difficult to obtain.

• For a high resolution field estimate, the number of pixels, i.e.,N (Fig. 6.1)
can be quite high and in that case, the dimension of the unknownh is ex-
tremely high (N2). In this case, the system of linear equations (6.3) will
become highly underdetermined.

• For a practical environmental field monitoring application, the assumption
that the state transition matrix is time-invariant (Ht = H) may not be realis-
tic.

In this section, we propose a method, where we assume some structure inHt and
estimate the elements ofHt on everyt. The estimatedHts are then again used to
estimate the states using a simple Kalman filter.

6.4.1 Modelling assumption ofHt

Modelling the state model using some prior information regarding the structure of
the state transition matrix is similar to the gray box modelling in system identifica-
tion [36]. Prior information regardingHt could be the rank ofHt or some specific
structure ofHt like Toeplitz or Hankel [107].

One well-known approach to model the state transition matrix, specifically for
environmental fields, is to discretize an integro-difference equation (IDE) based
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dynamic model [7]. In this way, a kernel models the spatio-temporal evolutionof
the field. The kernel parameters can be obtained using a non-Bayesian or Bayesian
framework. As mentioned in Chapter 4, a Gaussian dispersal kernel canfor in-
stance be used to model the dynamics of the rainfall field. It should be notedthat to
incorporate complex phenomena like anisotropic diffusion and advection [32] the
state transition matrix should be assymetric, i.e.,[Ht]ij 6= [Ht]ji. The structure of
a Gaussian dispersal kernel is given as

[Ht]ij = νtexp[−(xi − xj − at)
TD−1

t (xi − xj − at)], (6.6)

where the translation parameterat ∈ R
2 and the dilation parameterDt ∈ S

2
++

can be used to model the advection and the diffusion of the field, respectively. The
scalarνt ∈ (0, 1] is used as a scaling parameter to avoid the explosive growth of the
field [35], [32]. Note that the parametersat andDt can vary spatially (for every
element ofHt), as well as temporally. For spatially varyingat andDt overN
pixels, at anyt, the total number of parameters that characterizesHt is given by
6N2+1, as the total number of elements inat andDt are 6 and one scalarνt. One
simple abstraction of (6.6) could beDt = I2 (for all t and the elements ofHt) and
at = 02. This can model the dynamics with less parameters but it is symmetric
in nature and may not capture all the space-time effects [32]. In order to introduce
asymmetry, in the state transition matrix we propose a decomposition of the state
transition matrix as a multiplication of a symmetric matrix and a diagonal matrix.
This is given as

Ht = Bdiag(ht), (6.7)

whereht ∈ R
N models an asymmetricHt. The motivation behind the afore-

mentioned decomposition is to model an asymmetric and time-varyingHt whose
parameters (i.e.,ht in this case, assumingB is fixed on everyt) can be estimated by
solving a linear inverse problem on everyt (discussed in the following sub-section).
Also, the structure ofB is chosen in such a way that it incorporates an isotropic dif-
fusion. We compute the elements of the symmetric matrixB by a Gaussian kernel,
i.e., (6.6), withat = 0 andDt = I2 given by

[B]ij = νexp[−‖xi − xj‖22]. (6.8)

Note thatB can be used as a valid state-transition matrix but being symmetric
it has some drawbacks as mentioned in [32]. The next step is to estimateht for
everyt.
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6.4.2 Estimation ofHt

Let us assume that an estimate ofût−1 is available att. Then the measurement
equation (6.1) can be written as

yt = Φt(Htût−1 + qt) + et

= ΦtBdiag(ht)ût−1 + ĕt

= ΦtBdiag(ût−1)ht + ĕt

= Atht + ĕt, (6.9)

where the measurement noise vectorĕt in the modified measurement equation (6.9)
is characterized as̆et = Φtqt + et with ĕt ∼ N (0, R̆t), whereR̆t = ΦtQtΦ

T
t +

Rt. Note that at any timet the matrixAt = ΦtBdiag(ût−1) ∈ R
Mt×N is perfectly

known. It should also be noted that the dimension of the system in (6.9), i.e.,
Mt×N is much less underdetermined than (6.3), i.e.,Mt ×N2. In order to achieve
a stable solution of the underdetermined system of linear equations (6.9) forht, we
impose some regularizations onht. They are as follows.

1. The first constraint is a non-negativity constraint onht, i.e.,ht ≥ 0. The
motivation behind using this constraint is to model the elements ofHt =

Bdiag(ht) as non-negative, which is one of the properties ofHt using a
Gaussian kernel based modelling.

2. We use a regularization on the elements ofht assuming thatht can be sparsely
represented using an orthonormal basisΨ. We exploit the fact that the trans-
formed vectorΨ−1ht has a sparse representation.

To utlize this sparse representation, we use anℓ1 regularization onΨ−1ht, while
solving the underdetermined system (6.9). We estimateht on everyt using the
following ℓ1 regularized non-negativity constrained weighted least squares (WLS)
problem:

ĥt = argmin
ht≥0N

‖yt −Atht‖2R̆−1

t
+ γ‖Ψ−1ht‖1, (6.10)

Ĥt = Bdiag(ĥt). (6.11)

Here,γ is a tuning parameter for the sparsity promoting regularization in (6.10).
After the estimation ofht, the state transition matrix can be estimated using the
relation of (6.7). To achieve asymptotic / bounded input bounded output (BIBO)
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stability, we ensure that the maximum eigen value ofĤt, i.e.,λmax[Ĥt] must be
less than 1. This can be achieved by selecting a proper scaling factorν ∈ (0, 1].
In this case, first it is checked that ifλmax[Ĥt] is already less than 1. If that is the
case, then we simply chooseν = 1. Otherwise, we manually select aν ∈ (0, 1) in
order to avoid the explosive growth of the system.

Algorithm 4 Dynamics estimation followed by rainfall monitoring

1: Initialize t = 0, û0|0 = u0, M0|0

2: for t = 1, . . . , T

3: givenΦt = Φ, Ψ, yt, σ2
eIMt

, Qt = Q, γ, ν.
4: Dynamics estimation:

ẑt = argminht≥0N
[‖yt −Atht‖2R̆−1

t
+ γ‖Ψ−1ht‖1],

Ĥt = Bdiag(ht).
5: Selectν; Ĥt = νĤt.
6: Predict:

ût|t−1 = Ĥtût−1|t−1, Mt|t−1 = ĤtMt−1|t−1Ĥ
T
t +Q

7: Correct:
Gt = Mt|t−1Φ

T (ΦMt|t−1Φ
T +Rt)

−1, ût = [ût|t−1+Gt(yt−Φût|t−1)]+
8: Covariance update:

Mt|t = (IN −GtΦ)Mt|t−1 = (M−1
t|t−1 +ΦTR−1

t Φ)−1

9: end for
10: end

6.4.3 Dynamics estimation followed by state estimation

In this section, we describe the overall algorithm for the dynamics estimation tech-
nique proposed in the previous section followed by field estimation. We use a
simple Kalman filter to estimate the states ofut. In many practical scenarios, the
environmental field to be monitored (such as rainfall, concentration of pollutants,
humidity) is non-negative. To incorporate this fact, at anyt, we set any negative
elements of the estimatêut to 0. We denote the estimate ofut at t, using the mea-
surements up to timet − 1 andt asût|t−1 andût|t, respectively. The estimation
error covariances of the estimatesût|t−1 andût|t are denoted byMt|t−1 andMt|t,
respectively. The overall algorithm is presented as Algorithm 4. Here, we com-
ment that the covariance update of the Kalman filter is approximate, as we set the
negative elements of the estimateût to 0.
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6.4.4 Simulation results

In this section, we present some simulation results to exhibit the feasibilty of the
proposed algorithm.

Ground truth

The ground truth or the true value of the rainfall intensities is given by15 minutes
guage adjusted radar rainfall depths. We show a total of9 snapshots of rainfall
maps over an area of approximately625 square kilometer. The spatial resolution is
1 × 1 square kilometer. The gauge adjusted radar rainfall depths of9 snapshots at
625 pixels are shown in Figs. 6.6 and 6.7, respectively (data courtesy : KNMI).

Measurements

We estimate the statesT = 8 snapshots of15 minute rainfall intensities using
the measurements of151 microwave links in an area of25 × 25 square km. The
locations of the links and theN = 625 pixels are shown in Fig. 6.8 (data courtesy:
KNMI). It is assumed that the links are all operated at35 Ghz and the temperature
is 20o C. Based on this, we take the power law coefficients asa = 0.235 and
b = 1.009 ≈ 1(see Table II of [79]). The measurements atT = 8 snapshots are
computed using the measurement model of (6.1), where the measurement matrixis
computed as[Φ]ij = alij , and the length of the link segments are computed using
the location of the links and the pixels as shown in Fig. 6.8. The measurement
noise variance is assumed to beσ2

e = 10−4.

Results

Using the above measurement setup, we estimate the states ofut for t = 1, . . . , 8

using Algorithm 4. As mentioned earlier, we initialize the algorithm withû0|0 =

ζ1N , whereζ = 1
N

∑N
k=1[u0]k, i.e, the sample mean of the true value att = 0. We

assume that the process noise has the same structure as mentioned in Section 4.7.1.
The motivation behind assuming a process noise having a covariance matrix com-
puted using an exponential function is to introduce a smooth temporal transition.
The error covariance matrix is initialized asM0|0 = 0.001IN . The regularization
parameter is fixed asγ = 2.

The estimated rainfall maps for all the8 snapshots, i.e,̂ut for t = 1, . . . , 8 are
shown in Fig. 6.9. The pixel-wise comparison of the estimates forT = 8 snapshots
for N = 625 pixels is also shown in Fig. 6.10.
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Figure 6.6: Initial stateu0 at t = 0, which is used to initialize Algorithm 4, i.e.,
û0|0 = u0.
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Figure 6.7:True spatio-temporal evolution of the rainfall field (mm).
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Figure 6.8: Locations of theM microwave links from where the measurements
are collected.
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Figure 6.10: Estimation comparsion forN = 625 pixels forT = 8 snapshots.

6.5 Conclusion

We have presented two different methods to estimate the spatio-temporal evolution
of an environmental field. In the first method, it is assumed that the true values of
the field over different snapshots are known. In the second method, thetrue field
values are assumed to be unknown. In this case, some prior information regarding
the structure of the state transition matrix (inspired by physics) is exploited. Fi-
nally, a simple Kalman filter is used to estimate the field over every snapshot using
the estimated state model along with the measurements. The performance of both
the methods are analysed by comparing the estimates with the true values. Simula-
tion results show that dynamics of a physical field can be estimated from the mea-
surements with some prior information regarding the nature of the spatio-temporal
evolution. However, a more accurate knowledge regarding the field propagation
over space and/or time will improve the estimation performance.
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Chapter 7
Conclusion and Future Research

Directions

In this chapter we conclude the thesis. We also mention related contributions and
future research directions.

7.1 Conclusions

In this thesis, we have developed a spatio-temporal environment monitoring frame-
work that encompasses sensor management as well as dynamic monitoring ofthe
environmental field. We have presented several methods to efficiently utlizethe
prior information regarding the physical properties of the environmental field both
for the deployment of sensors as well as for monitoring the field.

We have discussed the representations of the linear/non-linear measurement
models for dynamic environment monitoring. The different statistical modelling
approaches of the physical properties of the environmental fields (such as correla-
tion over space and time, dynamics of the field etc.) are also discussed. We have
also presented a generalized environmental field estimation framework that incor-
porates sparse-sensing, dynamic field reconstruction exploiting prior information,
and estimation of the physical properties of the field (if unknown/inaccurate).

We have developed a unified framework for spatio-temporal sensor manage-
ment, when the environmental field is spatio-temporally stationary as well as non-
stationary. A generalized expression for the performance metric (for stationary as
well as non-stationary fields) is derived, which can efficiently utilize the prior infor-
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mation regarding the environmental field (such as a highly correlated field) inorder
to deploy the sensors over space and time. It is seen that less sensing locations are
selected if the spatio-temporal correlation is strong. From a dynamic sensorplace-
ment perspective, the sensor deployment strongly depends upon the nature of the
evolution of the field.

We have presented a practical example of environmental field estimation, i.e.,
dynamic rainfall monitoring using the attenuation measurements of commercial
microwave links. We have described how the physical information regarding the
rainfall field (such as spatial sparsity and non-negativity) can be exploited in dy-
namic rainfall monitoring using a traditional Kalman setup. We have also presented
cases, where the rainfall dynamics are inaccurately known or unknown. We have
exhibited the performance improvement of a sparsity-aware method over a simple
extended Kalman filter (EKF).

We have extended the spatio-temporal sensor management method for a more
general class of environmental fields, leading to a combination of stationaryand
non-stationary components. We have described the spatio-temporal sensor man-
agement for a kriged Kalman filter (KKF) estimator. We used the selected sensing
locations for the estimation of the field using KKF. The combined effect of spatial
phenomena as well as field dynamics on the sensor placement are presented.

We have also presented some methods to estimate the state model responsible
for the evolution of an environmental field. We have described how the statemodel,
i.e., the elements of the state transition matrix can be estimated exploiting prior
information regarding the nature of the evolution of the field. It is also seen that
using a partial prior information regarding the dynamics of the field, the state model
can be estimated without the knowledge of the true field intensities.

7.2 Future research directions

In this thesis, we have presented signal processing methods for opportunistic sensor
placement as well as dynamic monitoring of the spatio-temporal evolution of an
environment field. Some future research directions are presented below.

1. First of all, we have mainly focused on model-driven methods that enforce
sparsity in deploying sensors over space/time achieving some desired accu-
racy. An extension of the proposed method to a fully data-driven approach
could be a future direction.

2. It is observed that, MSE-optimal sensor deployment can be designed tobe



7.2. Future research directions 139

resource-efficient availing the prior physical information of spatio-temporal
correlation and dynamics. But as described in Chapter 4, environmental
fields exhibit sparsity (either naturally or using a representation basis). It
could be interesting to develop an optimal measurement matrix, which is
jointly MSE-optimal and guarantees the criteria for a stable solution [89] in
a sparse reconstruction framework.

3. In the dynamic rainfall monitoring scenario (Chapter 4), it is consideredthat
the state model is linear. Furthermore, we only consider spatial sparsity. As-
suming a non-linear dynamic model and exploiting temporal sparsity could
be possible future extensions of this work. With both nonlinear state and
measurement models, studying the performance of an unscented Kalman fil-
ter (UKF), particle filtering based algorithms, or other heuristic approaches
could be possible future research directions.

4. A direct application of the proposed sensor management method could be
the real-time selection of the most informative attenuation measurements,
i.e., the links (in order to reduce the processing load and computational com-
plexity).

5. Extensions of the proposed sparsity-leveraging sensor placement, field esti-
mation and dynamics estimation techniques for highly correlated non-Gaussian
measurements open different modelling challenges.
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Samenvatting

Als we onze steeds veranderende omgeving beter kunnen observerenen voor-
spellen, dan leidt dit tot een veiligere and gezondere samenleving. Sensornetwerken
spelen hierbij een belangrijke rol. De twee fundamentele aspecten van zulke sen-
sornetwerken zijn de nauwkeurigheid en energiezuinigheid. Daarom zoeken we
naar manieren om de kosten van sensornetwerken te verlagen (het aantal sensoren,
hun energieverbruik, het onderhoud) zonder nefaste impact op de prestatie van
het sensornetwerk. Dit kan bijvoorbeeld door de fysische eigenschappen van de
omgeving uit te buiten via stochastische omgevingsmodellen. In deze thesis stellen
we signaalverwerkingstechnieken, voor die gebruik maken van zulke stochastische
omgevingsmodellen om het aantal sensoren in een sensornetwerk te verlagen zon-
der een al te grote impact op de kwaliteit van de resultaten. We richten ons hierbij
op een klasse van omgevingsmodellen die voldoet aan typische fysische eigen-
schappen (zoals diffusie en advectie) verantwoordelijk voor de spatiotemporele
evolutie van het omgevingsveld.

We ontwikkelen eerst een wiskundig model dat de sensorobservaties verbindt
met de intensiteit van het omgevingsveld. Op basis van dit model stellen we
daarna een uitgebreid omgevingsobservatiesysteem inclusief sensormanagement
voor, voor het vergaren van de metingen, en het schatten van de spatiotemporele
evolutie van de veldintensiteit.

De ontwikkelde sensormanagement techniek kan zowel gebruikt wordenvoor
stationaire als niet-stationaire omgevingsvelden. Deze techniek is gebaseerd op het
oplossen van een optimalisatieprobleem en geeft aan hoeveel sensorener nodig zijn
en waar/wanneer die moeten geactiveerd worden om een bepaalde prestatie te be-
halen in de zin van gemiddelde kwadratische fout. Dus het belangrijkste doel van
deze sparse-sensing techniek is om zo min mogelijk sensoren te activeren zonder
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een al te groot prestatieverlies. Verschillende methodes om het hierboven vermelde
optimalisatieprobleem op te lossen worden voorgesteld, zowel voor offlineals on-
line toepassingen.

We presenteren verder een praktische toepassing, namelijk een regenradar
gebaseerd op de verzwakking van microgolfverbindingen. We beschrijven
verschillende manieren waarop de fysische eigenschappen van regenval in het
wiskundig model kunnen worden opgenomen. We vergelijken daarna de prestatie
van ons systeem met klassieke methodes, zoals hetextendedKalman filter.

We breiden ons systeem ook uit naar een bredere klasse van omgevingsvelden waar-
bij we zowel stationaire als niet-stationaire componenten van het veld in reken-
ing kunnen brengen. Hiervoor ontwikkelen we een sensormanagement systeem
(plaatsing van sensoren in ruimte en tijd) en veldschattingsalgoritme op basis van
het zogenaamdekrigedKalman filter.

We behandelen ook het scenario waarbij de fysische voorkennis vanhet omgev-
ingsveld ontbreekt of onnauwkeurig is. In dat geval moeten de onderliggende dy-
namische karakteristieken van het veld worden geschat. Hierbij kan worden veron-
dersteld dat het echte omgevingsveld gekend is of niet.



Propositions

1. Cognizance of the statistical nature of the spatio-temporal variability of the
environmental field is instrumental for future smart weather monitoring sys-
tems.

2. It is often better to have accurate a-priori knowledge about the environment
than additional measurements in an environmental sensor network.

3. More correlation over space and time of an environmental field allows for
less measurements for the same estimation performance. So, a highly cor-
related environmental field is a good platform for the implementation of
“sparse sensing”.

4. Rainfall monitoring using cellular networks can be engineered as robust as
the state-of-the-art monitoring systems (such as gauge-adjusted radar)by ex-
ploiting spatial and/or temporal properties of rainfall.

5. To solve an underdetermined tracking scenario, a suboptimal Kalman filter
leads to a viable solution.

6. Philosophically, compressive sampling (CS) can be viewed as a subsetof
Bayesian learning.

7. Cost and feasibility of a practical implementation are as important as the sci-
entific novelty for the acceptance of an application-specific signal processing
paper.

8. For an ideal society, “politics” and “religion” should be strongly uncorre-
lated.

9. The climate of The Netherlands is one of the motivating factors behind the
sportive nature of Dutch people.
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10. A cat is a better pet than a dog for a PhD student.

11. “The only thing I know, is that I know nothing”- Socrates
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Notations

x Scalarx.

x Vectorx.

x̂ Estimate of vectorx.

xT Transpose of vectorx.

[x]i i-th entry of the vectorx.

X Matrix X.

X−1 Inverse of matrixX.

[X]i,j (i, j)-th element of the matrixX.

vec(X) Column-wise vectorization of the elements of matrixX.

IN Identity matrix of sizeN ×N .

1M×N M ×N matrix with all components one.

0M×N M ×N matrix with all components zero.

⊗ Kronecker product.

diag(x) Diagonal matrix with the elements ofx on the main diagonal.

diag(X) Vector with the elements of the main diagonal ofX.
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diagX(x) Diagonal matrix with the elements ofx on the main diagonal
without any all-zero rows.

blkdiag(·) Block diagonal matrix with the matrix blocks in its argument on
the main diagonal.

||x||p ℓp-norm ofx, i.e.,(
∑N−1

i=0 |[x]i|p)1/p.

tr(X) Trace of matrixX, i.e, sum of its diagonal elements.

E[x] Statistical expectation ofx.

(x)+ (x)+ = x iff x > 0 otherwise(x)+ = 0.

R Set of real numbers.

R+ Set of non-negative real numbers.

R
N Set ofN -length vectors with real elements.

R
M×N Set of matrices of sizeM ×N with real elements.

S
N Set of symmetric matrices of sizeN ×N .

S
N
+ Set of symmetric positive semidefinite matrices of sizeN ×N .

S
N
++ Set of symmetric positive definite matrices of sizeN ×N .

Abbreviations

ADC analog-to-digital converter

BHM Bayesian hierarchical modelling

BIBO bounded input bounded output

CRB Craḿer-Rao bound

CS compressive sensing

DCT discrete cosine transform

DOA direction of arrival

EKF extended Kalman filter
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EHM empirical hierarchical modelling

IDE integro-difference equation

KLT Karhunen-Loeve transform

LMMSE linear minimum mean square error

MCMC Markov chain Monte Carlo

MIL matrix inversion lemma

MSE mean square error

PDE partial differential equation

PDF probability density function

POI point of interest

SNR signal to noise ratio

SPDE stochastic partial differential equation

UKF unscented Kalman filter

WLS weighted least square

WSN wireless sensor network
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