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To the wonderful world of science and technology...

“....The woods are lovely, dark and deep,
But | have promises to keep,

And miles to go before | sleep,

And miles to go before | sleep.”

-Robert Frost, Stopping by Woods on a Snowy Evetiing






Summary

Reliable prediction and monitoring of dynamically changing environments are es
sential for a safer and healthier society. Sensor networks play a sagificle

in fulfilling this task. The two fundamental aspects of environmental sereter n
works (ESNs) include the need for accuracy as well as low-complexitgnargy-
efficient sensing modalities. One of the wonted challenges of ESNs is lighure
tion environment monitoring in the presence of sensing overheads (suchréer

of sensors, battery life, maintenance). Limiting the number of sensingreesoyet

still guarantee a desired resolution of the unknown environmental fiekebegtates
resource-efficient sensing framework. On the other hand, the @hymsbavior of
many environmental fields can be predicted using statistical models. Cogaizan
of the physical properties of environmental fields motivates opportunistiscs
placement to dynamically monitor the environment. In this thesis, we present sig-
nal processing methods for resource-efficient environment monitesiptpiting

the physical properties of environmental fields. We mainly focus on argktclass

of environmental fields that obey standard physical properties (sudhiffasion,
advection) responsible for the spatio-temporal evolution of the field.

We first discuss different mathematical representations to link the senser me
surements with the unknown field intensities. Statistical characterizations-of dif
ferent physical properties of environmental fields such as space-timelation
and the dynamics of field propagation are also discussed. A comprehemsi-
ronment monitoring framework is presented that encompasses sens@ameaTH,
measurement accumulation, and field estimation.

We propose a spatio-temporal sensor management method which can be ap-
plied for stationary as well as non-stationary environmental fields. Wauiate
a unified optimization framework that provides the number and the most informa-



tive sensing locations to deploy sensors guaranteeing a desired estinetion a
racy in terms of the mean square error (MSE). The main objective is to implement
“sparse-sensing” in an environment monitoring perspective while als@\ang

a prescribed accuracy. We also propose different strategies toteely@oposed
optimization problem for both online and offline applications.

We present a practical example of environment monitoring, i.e., dynamic rain-
fall monitoring using rain-induced attenuation measurements from commercial mi-
crowave links. We describe different methods to incorporate some thysimp-
erties of rainfall (such as the physics behind the rainfall propagatiatizs effects
such as sparsity, correlation etc.) in the dynamic monitoring setup. We also com-
pare the estimation performance of the developed technique with stantiard-es
tors such as an extended Kalman filter (EKF).

We extend the proposed sparsity-enforcing spatio-temporal sensageraent
method for a broader class of environmental fields consisting of a combinatio
of both stationary and non-stationary components. We develop an algdathm
sensor placement followed by field estimation using a kriged Kalman filter (KKF)
which is used for the estimation of the aforementioned type of field.

We also consider the scenario, where the prior physical knowledgediag
the environmental field is either unavailable or inaccurate. In these circocesta
we discuss some methods to estimate the underlying dynamics of the field, i.e.,
the state/process model using the observed measurements. While estimating the
process model, we consider both the scenario, where the true valuglgrath of
the field is known as well as the scenario where it is unknown.
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Chapter

Introduction

uman interests to know more about the spatial and temporal diversity of

H environmental fields motivate the development of sophisticated environ-
ment monitoring systems. In this era of drastic change of earth environmént a
expeditious urbanization, advanced environment monitoring is of pararirgar
est. The fundamental necessities of such a monitoring system mainly include co
rect prediction of environmental conditions and disaster management, satisfy
both economical and societal needs. In this thesis work, we use statigical s
processing tools to develop opportunistic environment monitoring method$ whic
efficiently utilize the available sensing resources as well as maintain a sgecifie
monitoring accuracy. To accomplish the aforementioned task we exploitateve
physical properties of the environmental fields.

In this chapter, we first elaborate the motivation of the research. Then we
present a brief literature survey of the application of signal processigitnods
in the state-of-the-art environment monitoring techniques. We finally illustnate
outline of the thesis work highlighting the major contributions.

1.1 Motivation

Sensor networks are omnipresent in our everyday life. They arelusah in the
form of wired or wireless and micro or macro sensor netwdrks [2], Byecifi-
cally, wireless sensor networks (WSNs) are popular because of tidiwility in
terms of their deployment and useé [2]. Environment monitoring is an impontant a
plication of wireless sensor networks. Environment monitoring can bemeed

1



by two types of sensor networks. Firstly, a homogeneous sensor ketveor a
network of dedicated sensors to monitor any specific type of environmigsithl

such as a temperature monitoring network, which only consists of thernsdrsen
Secondly, a heterogeneous sensor network [4], which consistsfefedit types

of fixed/mobile sensors to monitor a single type or multiple types of environmen-
tal fields. An example of a heterogeneous sensor network could beipifaton
monitoring network, where the precipitation is measured using the data collected
from rain gauges, radar measurements, microwave link (used for celhiamu-
nication) attenuations [5] and reactions of general people in social msofial
sensing).

» Design challenges: Sensor networks, homogeneous as well as heteroge-
neous, confront some traditional challenges in terms of their design and im-
plementation. The usual problems include constraints related to the sens-
ing resources (cost, power, life-time of sensor nodes), bandwidtkireeq
ments (to communicate between the sensor nodes and the data fusion cen-
ter/processing unit and/or inter-sensor communication), memory requitemen
(for high resolution field estimation applications), and maintenance of dedi-
cated sensors (in case of remote deployment).

» Cognizance of physical properties and smart placemédite plausible so-
lution of all the aforementioned problems could be minimization of the total
number of sensors by optimizing their locations. This can be achieved by a
smart sensor placement methodology that maintains the monitoring accuracy
and also saves sensing resources.

For environmental field estimation, the aforementioned cost-effectiv@sens
deployment method can be improved by the proper knowledge of some phys-
ical properties of the field. These properties could be related to the spatio-
temporal variability of the field. Based on these properties, the prior knowl-
edge can be modelled statistically. When the prior knowledge is already
available through a statistical model then the sensor deployment method can
be viewed as anodel-driverapproach. When the statistical characteristics of
the field are estimated from the available data/measurements then the sensor
deployment method can be termed adata-drivenapproach. The avail-
able/estimated statistical properties of the field can also be utilized in the
estimation of the field from the measurements collected from the deployed
sensors in the selected locations.
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Design of a fesource-efficient environmental sensor netwaskhe main motiva-
tion of this thesis work. The major research questions addressed in this dhes
mentioned below.

« How to design a parsimonious (sparse over space and time in terms of
sensing resources) environmental sensor network that offera desired
monitoring accuracy?

« How to estimate an environmental field with a pre-specified
spatio-temporal resolution, using a limited number of sensing resages
exploiting the physical properties of the field?

« How to efficiently exploit the prior information regarding the environ-
mental field for sensor placement as well as estimation, in both the
model-driven and the data-driven approach?

We mainly exploit tools from statistical signal processing and linear algelsiave
the opportunistic sensor placement and environmental field estimation problems

The types of environmental fields can be diverse such as precipitatids fie
(rain, snow), air pollution, concentration of some specific gas/aerostleirat-
mosphere, chemical vapor from volcanic eruption, surface temperahaeva-
ter vapor concentration, ground layer ozone. The types of hetezogersensing
equipments can be static sensors like weather radar, rain gauges, mitoka,
dedicated fixed sensors for air quality measurement and mobile sensaoobliitie
sensors, sensors mounted on bikes, smart phone sensors, rebpeople in so-
cial media (facebook, twitter etc.). A pictorial representation of the déverssi-
ronmental fields and some heterogeneous sensing equipments are sliagurén
[L.1.

The research work performed in this thesis work is partly sponsoredebith
Delft project “Sensing Heterogeneous Information Network Envirorirt@®HINE)”
[6]. The main objective of this project was the self-organization of therbgee
neous sensing resources for environment monitoring.

1.2 Signal processing and environment-monitoring: a brief
survey

The task of monitoring the spatio-temporal evolution of an environmental feeld u
ing the measurements from homogeneous/heterogeneous sensorssimialve



Figure 1.1: Diverse environmental fields and heterogeneous sensidglities
(image courtesy: Google images).

branches of electrical and computer engineering. Statistical signat§siog is
one of the important tools which can be very useful for modelling, predicésti-
mation, noise reduction and outlier rejection for environmental signals.eTiber
huge plethora of research work available regarding the statistical @afysnvi-
ronmental data [7]. Here, we mention a few contributions related to the ajpqfica
of signal processing in environment monitoring. However, the detailedtlitera
reviews based on the specific problem statements are presented inlexgtgrc

The infrastructure and importance of homogeneous as well as hetemgen
environmental sensor networks are presentedlin [4]. Challengesctfigal en-
vironment monitoring methods are mentioned[inh [8] in the context of the “Sen-
sorScope” project [9]. Practical problems related to the environmeitt asl es-
timating the spatio-temporal concentration of radioactive substances in the atmo-
sphere due to nuclear experiments can be modelled as a regularizee iprars
lem [10]. Signal processing tools can be exploited for outlier rejection m no
Gaussian noise scenarios in inverse problems related to the atmo$phetedd
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tional signal processing tools like weighted least squares (WLS) anctbeded
Kalman filter (EKF) can be used for spatio-temporal rainfall monitoring, reehe

the data are collected from the rain-induced attenuation measurements of the mi-
crowave links used for wireless communication/[12],/[13]. Environmentimon
toring can be viewed as a field estimation problem, where the detection of the
field-generating source (if unknown) and the estimation of the spatio-teingisr
tribution of the field are equally important. In many cases, the source gegera

a diffusive field (such as some gas vapor, pollutants, hazardous @igmidhe
mathematical analysis of the detection and estimation of the location of these types
of sources is presented in [14]. In[15], the source estimation as wdiffasive

field reconstruction methods are presented.[ In [16] a data assimilatioritiahgor

for advection models for cloud motion analysis are developed.

The exploitation of prior statistical knowledge, resulting in Bayesian methods,
is also highly cultivated for environment monitoring [17]. Statistical knowtedg
regarding the spatial variability of the environmental field can be exploitedein th
interpolation of the field magnitude at the unobserved locations [18]. Pfamnira-
tion regarding the dynamics of the field can be combined with the spatial variability
in order to monitor the field dynamically [19], [20]. Statistical knowledge remey
the space-time variability can also be exploited in the design of network pistoco
fora WSN [21].

In [22], it is shown that in some circumstances the mathematical tool of com-
pressive sensing (CS) [23] can be applied for environment monitofihg. prior
knowledge regarding the sparse behavior of the source can be edjtoiiéfusive
field estimation problems [24].

1.3 Outline of the thesis

Chapter 2:

In this chapter, we first discuss the mathematical representation of the nigdels
which the data/measurements and the environmental field to be measured are re
lated. We also present an overview of the different statistical modellingpappes

of some physical properties of the environmental fields, which can lzbassprior
information. As the physical properties of a general class of envirotahields,

we include correlation over space and time, dynamics of the field and soie spa
properties. Finally, we present a generalized environment monitoringefrark

that encompasses all the objectives of this thesis. Also, the connectitoveebe



the objectives of the chapters and the presented environment monit@neviork
are discussed in this chapter.

Chapter 3:

In this chapter, we present opportunistic sensor placement methodspaee and
time for environmental field estimation. We develop a unified framework to manage
the sensing resources when the environmental field is spatio-temporallyatgtio
as well as non-stationary.

The main contributions of this chapter are given below.

» We first present a general time-varying linear measurement model tioat in
porates the spatio-temporal selection of the locations to deploy the sensors.
We discuss how to select at any time the most informative set of sensbrs suc
that some predefined estimation accuracy is achieved.

» We present the statistical characterization of a general class of emérdal
fields for both stationary and non-stationary types. Resorting to the Bayes
philosophy, we develop a generalized performance metric (in terms of mean
square error (MSE)) that can be used for sensor placement, whéalthis
stationary as well as non-stationary.

» We discuss a mathematical framework to efficiently exploit the spatio-temporal
correlation information of the environmental field in order to optimize the
number of sensing locations.

» We propose a first-order iterative saddle-point method that enfepagsity
in the selection of the informative sensing locations over space and time. We
study the spatio-temporal constellation of the selected sensing locations with
different statistical characterizations of the field such as a high/lowleerre
tion and a time-varying/time-invariant dynamic model.

The contributions of this chapter are published as

* V. Roy and G. Leus, “Correlation-aware sparsity-enforcing seplsaement
for spatio-temporal field estimation,” iRroc. IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICAB88Hane, Aus-
trallia, April 2015, pp. 340-343.

* V. Roy, A. Simonetto, and G. Leus, “Spatio-temporal sensor management
for environmental field estimationElsevier Signal Processingol. 128,
November 2016, pp. 369-381.
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Chapter 4:

In this chapter, we present a practical example of environmental field ¢stmma
We consider the application of spatio-temporal rainfall monitoring. Stanplad
cipitation monitoring techniques are generally rain gauges or weather rdelid,
we focus on a recently developed method for rainfall monitoring which isdas
the attenuation measurements from microwave links used for wireless communica
tion.

The contributions of this chapter are presented below.

« We first describe the measurement model that represents the mapping be-
tween the attenuation measurements and the spatial rainfall distribution (with
a predefined resolution) in an area. Because of the measurement gpe, th
model is non-linear, underdetermined and time-varying.

» To estimate the rainfall field from the aforementioned measurement setup we
develop a framework that exploits some physical properties of the field suc
as spatial sparsity (in a suitable representation basis) and non-negativity

* We develop a sparsity regularized and non-negativity constrainec:sgal
estimator for dynamic rainfall monitoring. The representation basis for the
sparsity and the tuning parameter that regulates the amount of sparsity are
dynamically tuned for every snapshot.

 Finally, we evaluate the performance of the developed algorithm and also
compare it with an ordinary EKF. By several simulation studies, we show
that the proposed method outperforms an ordinary EKF, when the rainfall
dynamics are not perfectly known.

The contributions of this chapter are published as

* V. Roy, S. Gishkori, and G. Leus, “Spatial rainfall mapping from patver-
aged rainfall measurements exploiting sparsityPmc. IEEE Global Con-
ference on Signal and Information Processing (GlobalSIRdanta, USA,
December 2014, pp. 321-325.

* V. Roy, S. Gishkori, and G. Leus, “Dynamic rainfall monitoring using mi-
crowave links,”"EURASIP Journal on Advances in Signal Processirg.
2016, no. 1, December 2016, pp. 1-17.



Chapter 5:

In this chapter, we propose a spatio-temporal sensor placement follynadesti-
mation method for a general class of environmental fields which is the comlminatio
of a non-stationary and a stationary component. A typical approach tnagally
monitor these types of fields is the kriged Kalman filter (KKF), which is a com-
bination of kriging (for the estimation of the stationary component) and a Kalman
filter (for the estimation of the non-stationary component).

The contributions of this chapter are discussed below.

» We address the fact that when the environmental field has both a stgtionar
and non-stationary component, the stationary component acts as a spatially
correlated noise term while estimating the non-stationary component. We
also consider the situation, where the spatial covariance matrix of the sta-
tionary component can be highly ill-conditioned.

» We present an analytical formalism to develop a combined performance met-
ric for the estimation of the stationary as well as the non-stationary compo-
nent of the field. We use this metric for sparsity-enforcing sensor platteme
using a KKF. The proposed methodology tackles the aforementioned situa-
tions of correlated noise and an ill-conditioned spatial covariance matrix.

* Finally, we present a semidefinite programming (SDP) approach fasigpar
enhancing sensor placement that incorporates a flexible resoursteaion
The selected sensing locations over time are used for field estimation using a
simple KKF.

The contributions of this chapter are submitted as

» This chapter is submitted as: V. Roy, A. Simonetto, and G. Leus, “Spatio-
temporal field estimation using kriged Kalman filter (KKF) with sparsity-
enforcing sensor placement, submittedstnsorsApril, 2018.

Chapter 6:

In the aforementioned chapters, we mainly discuss sensor placemengldnekfi
timation methods assuming that the prior statistical information regarding the field
is perfectly known. But in many practical scenarios this is not the casé¢hidn
chapter, we discuss some methods by which we can estimate the prior knewledg
regarding the field using the measurements.

The contribution of this chapter are given below.



1.4. Related contributions 9

* We consider the dynamics/process model of the field as prior information,
which we need to estimate from the available measurements. We consider
both the scenarios, where the true value/ground truth of the field is ggrfec
known and unknown.

* We consider the measurement model to be linear and develop a sparsity-
leveraging method for the estimation of the process model. The estimated
process model is then used for prediction in the sequential estimation of the
field using a Kalman filter.

Chapter 7:

We review the key contributions of the thesis and present the conclusidhisin
chapter. Finally, the future research directions are highlighted.

1.4 Related contributions

In this thesis, we have mainly considered the application of environmentaégeld
timation. But the developed framework of sensor management can beleoiy
applied for localizing a target. We have used a similar framework as dedcribe
in Chaptef B for sensor selection for direction of arrival (DOA) estimatiGme
example application of this technique is the off-line selection of antennas, while
planning stations for radio astronomy in which resources like the numbeterfia
nas, available aperture etc. are already known, and are generally limited.

The aforementioned work is briefly described below.

* We propose a method for array design for a linear array with fixectager
and inter-element spacing.

« We formulate the array design as a sensor selection problem, whereahe ar
element selection is performed such that it achieves a desiredeGiRao
bound (CRB) for estimating the DOA of a single source.

« The sidelobes generated due to the nonuniformity of the sensor selesion a
suppressed in a specified angular sector via sensor selection.

« We cast the aforementioned problems as a combined semidefinite program-
ming (SDP) problem.

The work is published as
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* V. Roy, S. P. Chepuri, and G. Leus, “Sparsity-enforcing sensiecton for
DOA estimation,” inProc. IEEE Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAR3aint Martin, December 2013, pp. 340-
343.



Chapter

Environmental Field Estimation:
The Signal Processing Perspective

One of the principle objectives of any environmental sensor networki {43, [9]

is to extract meaningful information from the observed data. The ohsemgeor
measurements are generally collected over space and time by homogemdous a
heterogeneous sensing equipments. Spatio-temporal measurementscteitbete

in a centralized or distributed manner are corrupted by different kindwises
incurred in the measurement process. Statistical signal processing &wolsec
leveraged to model the sensor measurements, to estimate the field from these mea
surements, and also to model the prior knowledge about the physica&rpespof

the field to be estimated. Further, the modelled prior knowledge along with the
collected measurements can be exploited to dynamically monitor the field in an
efficient manner.

In this chapter, we describe the mathematical representations of the mliffere
types of measurement models used in this thesis work. We also present a brie
review of the existing modelling approaches of the spatio-temporal variakildy a
dynamic models for a general class of environmental fields. Finally, wesksz
generalized spatio-temporal field monitoring framework, which can be diasa
backbone of all the spatial/temporal/spatio-temporal field estimation setupsused
the rest of the chapters of this thesis.

The outline of the chapter is as follows. In Section] 2.1, we discuss differen
types of measurement models. The different statistical modelling appoémhe
the prior information regarding the environmental field are presented itio8ec

11
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[2.2. The concept of hierarchical modelling of the data and the prior infiomés
presented in Sectidn 2.3. In Sectionl 2.4, we present the architecturen¢eatjzed
dynamic environment monitoring framework.

2.1 Measurement models

We denote the unknown physical field@gx), which is a continuous function of
the location index € R? andt € R is a time index. We consider a uniform spatial
discretization of the entire service area of interest into a séY afpatial points
given by{xi,...,xx}. These points are considered as the points of interest (POlI),
where we would like to estimate the field. The overall unknown field vector at time
t is denoted byu; = [us(x1),...,u(xy)]’. The aforementioned representation
can be used to represent a uniform tessellation of the entire serviceviiera the
set of N points given by{x;, ..., xy} definesN pixels of the same area. The area
of a pixel is decided by the required spatial resolution. We also make amptisn
that the magnitude of the field is the same everywhere within a pixel.

The measurements/observations collected by the sensors can be related to th
physical field vector by a measurement/data/observation model. Mathematcally,
generalized measurement model can be represented by

Yit = ¢i,t(uj,t) + €ity 1= 17 .. ‘7M) .7 = 17 ce ‘7N7 (21)

wherey; ; is thei-th spatial measurement angl; = u(x;) = [u]; is the magni-

tude of the field at locatior; at timet. The functiong; (-) describes the mapping
between the true value of the field and thih measurement at time The param-
etere; , is the noise incurred in the measurement process, which is assumed to be
additive in nature.

2.1.1 Linear measurement model

A simplification of the generalized measurement mode[of| (2.1) is a linear mea-
surement model. Considering all thé measurements at timeas mentioned in
(2.1), a linear measurement model can be represented in matrix vectoagorm

vyt = Prug + ey, (2.2)

wherey, € RM represents thd/ measurements at time The M x N matrix
®; is generally termed as the measurement/observation/sensing matrix. The noise
components associated with thé measurements are given by ¢ R, Based
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on the number of available measurememtt) @nd the dimension of the unknown
field vector (V), a linear measurement model can be underdetermined/i€, N

or overdetermined, i.e}/ > N. Depending upon the application, the elements of
the measurement matrix could be real or complex.

One simple example of a linear measurement modd,isc {0, 1}"*V, In
this case, iff®;];; = 1 for some; and[®,];; = 0 for the other;’s, where;j =
1,..., N, then it can be considered that thth measurement is a noisy version of
the field value at thg-the pixel. A more general representation of the measurement
matrix assumes thab, € RM>N_ |n this case, the rows ob, are modelled
as real regression vectors to representittie measurement as a weighted linear
combination of the elements af.

2.1.2 Non-linear measurement model

The non-linear version of the generalized measurement model bf (2 beceep-
resented as

ye = ®i(w) + ey, (2.3)

where®,(-) : RV — RM is a non-linear mapping between the true field values and
the measurements. In the context of environment monitoring applicationscté pr
cal example of a non-linear measurement model is measuring the rainfdilidep

a given area, where the measurements are computed using the raindiathece-
ations of the microwave links present in that afea [12] [25]. A detailedrgg®n

of the aforementioned measurement model is presented in Chapter 4.

2.1.3 Measurement noise

The collected observations from different sensing equipments ovee spal time
are corrupted by errors. These errors in the measurement praeegsreerally
modelled as measurement noise. The measurement noise can originatéefrom e
tronic noise, calibration errors of the data collecting devices, weathdedeia-
pairments (for outdoor monitoring networks), maintenance related issusgrh
related errors, etc. Due to the lack of knowledge regarding the true megnitu
and uncertain behavior of these noise components, they are generatyledaab
stochastic processes [7].

It is generally assumed that the measurement noise is independent ofethe tru
field to be estimated. But the noise components can be correlated overaspace
time [26] or spatio-temporally uncorrelated. In this thesis, we have corsidth
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of the aforementioned types of measurement noises. The probability distnibu
function (pdf) of the measurement noise can vary with the type of the nerasat
procedure.

2.2 Prior information regarding environmental fields

The knowledge regarding the physical properties of the environmeatds fcan

be statistically modelled as prior information. This prior information can be ex-
ploited for the field estimation as well as for placing the sensors in the inforenativ
locations. Generally, the field is modelled as a random process and ¢atelgas

a spatio-temporally stationary or non-stationary process. Howevesjgathynfor-
mation can also be exploited, when it is assumed that the field is deterministic.

2.2.1 Spatial and temporal variability

Let us consider that the field at timiés represented by aN dimensional discrete
random procesa; = [uy(x1), ..., u(xx)]7. In order to interpolate the field at all
the N POls over time, information regarding the space-time variability of the field
can be exploited along with the measurements. The spatio-temporal natuee of th
field in a specified geographic area can be characterized by the tréideespace-
time interaction of the field between different regions of the given areasdban

be modelled as the first and the second order statistics of the field. The mean a
the covariance of the field can be represented as,

Elug(x)] = pe(x5), (2.4)
covlug, (X;), uty (X5)] = E(ut, (%) — pey (%)) (uey (X5) — pa (%5)]
= f(xi,%j5t1,12), (2.5)
wherei,j = 1,...,N. The functionf(x;,x;;t1,t2) is defined as a covariance

function which can be modelled as a parameterized function. It shouldted no
that the parameters of(x;,x;;¢1,t2) or the value ofcov(uy, (x;), us, (x;)] can

be empirically estimated from the available data. The covariance functionecan b
separable as well as non-separable in space and time dimerisions [24ldA v
covariance functiorf (x;, x;; t1, t2) needs to satisfy some mathematical conditions
[27], [7].
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Spatio-temporal stationarity

A field is considered to be spatio-temporadigcond order stationary / weakly sta-
tionary / wide sense stationary (WSSidisotropicif the following conditions are
satisfied[[28],[[7]:
E[Ut(X])} = H, vt,j=1,...,N (26)
covlug, (xi), ue, (x5)] = f(llxi — xjll23 81 — t2). (2.7)

The notion of stationarity can also be defined individually for space or fithe [7

Variogram and covariance

In spatial statistics, one important measure of spatial variability for a WS&tksc
spatial random processg(x;) can be expressed by the variogram(x;, x;), or
semi-variogramy(x;,x;), forall 4,5 = 1,..., N. This metric is widely used in
spatial prediction or krigind [29]. Mathematically, the variogram can benddfas

2 (%, %) = varfuy(x;) — ug(x))] = E[(us(xi) — (%)%, (2.8)

The semivariogram can also be related to the spatial covariance betvedlecah
tionsx; andx; as

s 1) = gvarfi o) = ;)
= SE{(u(xs) — 1))+ SE{(uex5) — )] — El(ua(xi) — ) o 355) — )]
= 02 — cov(us(x;), ur(X;))- (2.9)

Here, we consider that the variance of the stationary field is giver} By E[(u;(x;)—
1)) = El(ui(x)) — w)?).

One common example of a semivariogram is a spherical semivariogram func
tion used for modelling precipitation [30] [31]. Considering spatial statityand
isotropy, the spherical semivariogram model can be expressed as
Ny + So [%—%} if0<h<d,

No + So if h >d,

y(h) = (2.10)

whereh £ ||x; — x;l|2 is the distance between two locations. The parameters
that characterize a variogram model are the §jl+ S, of the variogram+(h)
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Figure 2.1: Spherical semivariogram and the covariance funclign= 0, Sy =
5.3328 (for rainfall field the unit ismm2), d=17km.

for h — o0) with Sy as the partial sill, the nuggeY, (non-zero value ofy(h)
for h — 0), and the rangéd (value ofh for which the variogram reaches the sill).
Assuming second-order stationarity, as discussed before, the cwafianction
can be expressed as a functionfoby cov(h) = (No + So) — v(h) [28]. An
example of a spherical variogram and the corresponding covariamogidn is
plotted in Fig[2.211.

2.2.2 Dynamic models

The spatio-temporal evolution of the environmental processes can tébeeksby
different dynamic models. There are both deterministic as well as stochpstic a
proaches to model the dynamics of the environmental fields.

Partial differential equation (PDE) based modelling

Different physical phenomena responsible for the spatio-temporaltexo of en-
vironmental fields can be mathematically expressed by PDEs. Some examples of
these phenomena are diffusion, advection, convection and their conddfeets.

As before, let us consider that(x) represents a spatio-temporally continuous
and deterministic envtironmental field. The diffusion phenomenon can then be
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expressed as
Oug(x)
ot

= V- [DVu(x,t)], (2.11)

whereV = [Z, %] is the gradient operatoP) € S?%_ is the diffusion coeffi-
cient/diffusivity, and- is the vector dot product or inner product. Similarly, the
advection phenomenon, i.e, the transition of some field (e.g. some particle, pollu
tant, some specific gas, water vapour) due to the influence of some velecitrv
field [7] (e.g., wind) can be represented by

ou(x,t)
ot

+a-Vau(x,t) =0, (2.12)

wherea is the velocity vector field, which is considered to be solenoidalVi.e,=
0. The combined effect of both diffusion and advection phenomena calndseved
in many environmental fields (e.g., movement of pollutants, rainfall [32]).

The aforementioned modelling of the dynamics can also be represented in a
stochastic framework, where the field can be modelled as a stochastideanab
arandom noise term (also known as a stochastic forcing term) is addedRDEwe
2.13), (2.12)[[32]. In such scenarios, the dynamic model is a stochzestiial
differential equation (SPDE) [33], [32].

Integro-difference equation (IDE) based modelling

When the field dynamics are modelled using a PDE as mentioned in the previous
section, it is generally considered that the field is spatio-temporally consnuou
Another modelling approach, where it is considered that the field is spat@ily ¢
tinuous but temporally discrete is the integro-difference equation (IDE@ddy-
namical model[[34][35]. A discrete time IDE with a stochastic process naise te
can be represented by

w(x) = / h(x,x';0)u;—1(x)dx' + ¢:(x), x' € ACR? (2.13)
A

whereg,(x) is generally modelled as a spatially coloured yet temporally white pro-
cess noise term. The functidiix, x’; @) models the spatio-temporal interaction of
the field which is parameterized by a set of time-varying or time-invariant-deter
ministic or random parametefs The parameters of the interaction function can
also depend on the temporal sampling interval.
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Spatio-temporally discrete process model

Let us consider that the field is spatially discrete aVapixels as well as temporally
discrete. Attime, the spatial field distribution is represented by #eimensional
field vectoru;. In this case, a generalized discrete-time process model can be
written as

w = Hy(u—1) +qy, (2.14)

whereH,(-) : RN — R¥ is a non-linear mapping representing the spatio-temporal
interaction of the field. A simplified version df (2]14) is a linear state modeigive
by w, = H,u,_1 + q;, whereH, € RV*V is also known as a propagator ma-
trix/state transition matrix and; € R” is the process noise vector. The elements
of the state transition matrix can be perfectly known a priori or estimated frem th
data or modelled by some parametric function (e.g., Gaussian dispersal [R&in
whose parameters can be either deterministic or random. Possibly, the siexplest
ample of a linear process model can be a scaled Gaussian random walk mode
whereH; = aly with a < 1 a scaling parameter. It should be mentioned here that
the maximum eigenvalue @; should be less thahto avoid an explosive growth

of the process [7].

Markov property

While modelling the spatio-temporal evolution of a stochastic process, a common
assumption is the Markov assumption. Let us consider that the joint pdf of the
spatio-temporally discrete stochastic procegsfor ¢ = 0,...,T shapshots is
given by p(uy,...,ur). The joint pdf can be expressed in terms of the condi-
tional dependencies of the states at different times by the following chkdrofu
probabilities, which can be derived from Bayes’ theorem. This is gigen a

p(ug,...,ur) =plurlur—_1,...,ug)p(ur_i|ur_s,...,ug)...p(usjug)p(ug).

(2.15)
The first-order Markov property simplifies the above joint pdf by assurttiag
the state at time is solely conditioned by the state at time- 1 [7] as was also
assumed in(2.14). This givegur|ur_1,...,uy) = p(ur|ur—;). Based on this
assumption, the chain rule in (2]15) can be simplified as

p(uo, ..., ur) = p(urlur—1)p(ur—1jur_z) ... p(alug)p(uo)

T
= p(uo) [ [ p(uus-s). (2.16)
t=1
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The Markov assumption is a common assumption to stochastically model the dy-
namics of a complex environmental process where the joint pdf is computétiona
intractable.

Characterization of the process noise

The process noise is generally considered to be a zero mean spatiallydcpédr
temporally white component and indepedendent of the field. Howeveendemg
on the field it can also be non-zero mean. In that case, if the mean is knewit th
can be subtracted fromg,. If the spatial covariance matrix of; is given byQ then
assuming spatial isotropy and stationarity of the random progeghe elements
of Q can be represented by the Mat covariance function as,

zil(Z[WIIX; lelz] (f!X; X;b)

Qli; = ; (2.17)
whereI'(-) is the Gamma functioni<,,(-) is the modified Bessel function of the
second kind, and is a positive shaping parameter [7]. Wjth— oo andp = 1/2,
(2.17) becomes the squared exponential and exponential covariamtt@h, re-
spectively i.e.[Q];; = oZexp (—7I|Xi;/§j“%>, and[Q];; = o2 exp (—7”&::(]'“2).
The process noise covariance matrix can also be time-varying.

Estimating the dynamic model

In many real circumstances, the underlying dynamics of the proces#tze un-
known or guided by the combination of many complicated physical procebses
these cases, the dynamic model can be estimated using the available meatsuremen
Mathematical tools from the field afystem identificatiof86] can be used to com-
pute the process model using the measurements. The process of modelling the
dynamics can be broadly classified into two types whichgaey boxand black

box approaches. In gray box modelling, some physical knowledge reggatiaén
evolution of the process is known but in black box modelling it is assumed ¢that n
prior knowledge about the dynamics is available [36]. In a Bayesian s&tup
parameterized state model, if the prior pdf of the parameters are alredthbbaa

then the posterior pdf can be computed and a Markov chain Monte CarlM@)C
method can be used to calculate the model paraméters [7], [32] (useddetlimg

the dynamics of rainfall).
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2.2.3 Other prior information

In the previous sections, we discussed the statistical modelling of the ¢mmesla
over space and time as well as some dynamic models for a general clagsafi-en
mental fields. Beyond these information, there are many other physiqaé nbies

of the environmental fields which can be exploited as prior information in e es
mation procedure. In this section, we mention two properties of the envirdamen
signals which are extensively used in this thesis.

Sparsity

At any time, the environmental field can be assumed to be a sparsely distributed
environmental field over the entire service area. Otherwise, spatiaitypaan
also be introduced by representing in a sparsity-promoting complete or over-
complete dictionary? [37]. Some examples of complete orthonormal dictionaries
include a wavelet, discrete cosine transform (DCT), and Fourier bBsinoting
u; = ¥z, (i.e.,z; = ¥ 'u, in case of a complete dictionary) sparsity is measured
by the number of non-zero entrieszp i.e., ||z;||o. Sparsity can also be exploited
over time as well, where the field has zero or very low intensity over multiple
shapshots.

The aformentioned prior information can be exploited after a convex riabexa
i.e., ||z¢||1, as a sparsity-promoting prior in the field reconstruction problem for a
underdetermined measurement sefup [23], [38]. It has already eeadpthat
an/; regularized reconstruction method is very helpful, when the number of mea-
surements is much smaller than the dimension of the unknown sparse signal. This
has been successfully implemented in many fields such as image procesisng, s
mology, localization and tracking, radar applications| [23]. The use df gorior
can also be viewed in a Bayesian perspective, where the prior pdf g is
assumed to be a Laplace distribution![38].

Non-negativity

In many environmental applications, the unknown field to be estimated can be as
sumed to be non-negative (such as a rainfall field). In this case, theigiooma-
tion u; > Oy (element-wise inequality) can be used as a constraint to restrict the
solution to remain in the non-negative orthant. This helps to avoid the gemeratio
of an unrealistic estimate and helps maintaining the accuracy of a sequetitial es
mator, where the estimate of the current snapshot is predicted by thespasite
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and corrected by the measurement.

2.3 Hierarchical modelling

In the aforementioned sections, we have briefly illustrated different methbd
data collection, i.e., measurement models. We have also discussed differdnt
elling approaches of the prior information regarding the environmentatfieit

of these can be represented in a hierarchical fashion, where at anynstaace

t, the available measurements are giverypythe unknown stochastic field vector
is given byu,, and the prior information regarding the field is characterized by a
stochastic or deterministic parameter vedr For example, the process model
in (2.13) is parameterized by the set of paramefert should be noted that the
measurements are conditioned on the unknown field and the field is conditioned
the parameters governing the field, @2, Depending on the statistical nature of
the parameter8,, i.e, stochastic or deterministic, there are two types of hierarchi-
cal modelling approaches which are Bayesian hierarchical modelling (Baiid
empirical hierarchical modelling (EHM), respectively [7] [39] .

2.4 Sensor management and environment monitoring

As discussed in Chapter 1, one of the most wonted problems of dynamic envi-
ronmental monitoring using an ESN is the handling of the resource related con
straints. These include the sensing hardware cost, memory requiremesntisnéf
related issues, bandwidth etc. Under these circumstances, efficienttiatilipd

the sensing resources is desirable in order to perform the monitoring tisla w
desired accuracy using a limited number of resources. We proposdralizeil
multi-step approach for dynamic environment monitoring with opportunistic sen-
sor placement.

2.4.1 Description of the proposed environment monitoringfamework

The overall block diagram of the proposed environment monitoring fraories
presented in Fig. 212.

Inputs:

The inputs to the proposed monitoring framework are
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Figure 2.2: Proposed framework for dynamic environment monitoring

* measured spatio-temporal data,
e measurement noise statistics, and

« available prior information regarding the field.

Outputs:

The outputs of the proposed monitoring framework are
» estimated field with a desired resolution,
« informative sensing locations, and

* physical properties of the field
(if the measurements are used to estimate the process model).

It should be noted that the two principle objectives of the presented moelel a
spatio-temporal sensor placemeridfield estimation These two aforementioned
tasks can be performed either osiagle snapshdbasis or on anultiple snapshot
basis depending upon the availability of the data and the computationaleesour
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2.4.2 Mapping of the developed framework to the chapters of th the-
sis

The blockdiagram shown in Fid._2.2 encompasses the objectives of theediff
chapters of the thesis. The links between the chapters and the diffenetibhs of
the models are presented as follows.

« Spatio-temporal sensor managemenChapter 3.

» Dynamic field (rainfall field) estimation exploiting prior informatien Chap-
ter 4.

» Dynamic field estimation using only the measurements from the selected
sensing locations> Chapter 5.

» Estimation of the process model followed by field estimatisrChapter 6.
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Chapter

Spatio-Temporal Sensor
Management for Environmental
Field Estimation

Monitoring an environmental field, e.g., humidity, precipitation, surface tem-
perature, pollution concentration is generally performed by a networkditdted
sensors deployed in an intelligent constellation. The sensitivity of the estimation
performance depends strongly on the sensor deployment (static) omant/&dy-
namic) strategies. In a centralized framework, due to the resourceerelate
straints of the sensors (e.g., life-time and bandwidth), it is always destmbte a
limited number of sensors to perform the sensing task with a predefinechagcu

In this chapter, we develop spatio-temporal sensor management methods en
forcing sparsity over space as well as time in terms of sensing resoureest-
aging the space-time stationarity, an environmental field can be estimated with a
desired spatio-temporal resolution based on recorded measuremehnésfidtd is
non-stationary, it can be monitored dynamically based on the collected raeasur
ments and predictions can be made through a state model, if known a priori. We
develop algorithms to implement sparse sensing, i.e., sensing only the most infor
mative locations in space and time for both spatio-temporally stationary and non-

This chapter is published as: V. Roy, A. Simonetto, and G. Leus, “Spattiporal sensor man-
agement for environmental field estimatioRf5sevier Signal Processingol. 128, November 2016,
pp. 369-381.
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stationary field monitoring applications. The selected sensing locations foum-a
derdetermined measurement model which can be used to estimate the field exploit-
ing the prior knowledge regarding the space-time variability of the field. T8ledfa
locating the most informative sensing locations can be performed for both haultip
snapshots and a single snapshot based on the availability of prior kryenguhce-

time correlation and dynamics) regarding the field, available computing powler a
the application. We formulate the centralized sensor placement problems &s-th
timation of both stationary and non-stationary fields as relaxed convex optiiomza
problems, constrained by static or dynamic performance criteria.

The outline of the chapter is as follows. In Secfion 3.1, we present a lrief s
vey of related works and the main contributions of this chapter. The measuate
model and the main problem statement are presented in Sécfion 3.2. In Section
[3.3, the statistical characterizations of the environmental field are dedciie
generalized mean square error (MSE) matrix of a linear minimum mean square
error (LMMSE) estimator is derived in Sectign 3.4 for both stationary ant no
stationary field estimation problems. In Secfiod 3.5, we formally address thersen
placement problems for both stationary and non-stationary field estimatidin app
cations. An iterative saddle point method is formulated in Se¢fioh 3.6 to solve
the proposed sensor placement problems. To enhance the spatio-tespposiy
in sensor placement, we combine the aforementioned saddle point method with
an iterative reweighted;-norm minimization algorithm. The iterative sparsity-
enhancing saddle point method is presented in Selction 3.7. Simulation stualies ar
presented in Sectidn 3.8. The final conclusions are presented in Se&ion 3

3.1 Prior art and contributions

Sensor selection promoting sparsity both for linear as well as non-lineaumea
ment models is extensively studied for field estimation [40], localization [41], a
tracking [42] problems. Specifically for spatial field estimation, sparsitgraw
kriging [43] and correlation-aware sensor placeméent [44] promotiagsiy are
also proposed. The problem of performance-aware sensor selectistrained by
the number of resources has been well-formulated as a convex probjé§j,ifor
statistical A, D, and E optimality criteria [46]. Also a distributed implementation
of the sparsity inducing sensor selection problem is presented|in [4&]piTiblem
of sensor placement for field estimation has also been solved using taolsaéte
work and information theory. 11 [48], information theoretic approachesdopted
for placing sensors to estimate Gaussian processes, where the subityodiuibe
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mutual information between the sensor locations is exploited. To monitor a dy-
namic process, periodic sensor activation and deactivation is optimai fofinite

time horizon [49], and it is shown to be approximately optimal for a finite time
window [50]. In [51], a sparsity-enforcing sensor scheduling metikgqatesented
and applied to monitor a dynamic field.

Computational complexity is an issue for realistic sensor placement problems,
where the service area is quite large. As mentioned earlier, the acaoasirained
sensor selection problem can be formulated as a convex problem aed sising
off the shelf solvers like CVX[[52] and SeDuMi[53]. But to select sagdoca-
tions over a large service area and/or multiple time snapshots these solvés ca
computationally inefficient. In_[40] and [51], alternating direction method of-mu
tipliers (ADMM) and accelerated proximal gradient method (APGM) algorithms
are used to improve the speed of the sensor selection process.

In this work, we select the most informative sensing locations for the estimation
of a general class of environmental fields. The main difference of thik with
the standard sensor selection literature (like [41]] [45]] [47], [54thes primary
measurement model, which we consider to be underdetermined. Resortirg to th
Bayesian philosophy, we exploit the available prior statistical knowledgprdeng
the unknown field. In the first case, we model the field apatio-temporally sta-
tionary stochastic process. The spatio-temporal covariance structure is emutsid
to be known as prior information. In the second case, the field is conditietze
non-stationary where the prior knowledge comes from the known dynamics. For
a non-stationary field, we specifically model the spatio-temporal evolutimg us
a state model incorporating some common physical phenomena present in many
environmental processes like diffusion and advection [7].

The estimation of the field intensities with a prescribed resolution can be per-
formed offline based on recorded measurements at different locatiensaltiple
shapshots if the field is spatio-temporally stationary. If the field is non-stagiona
then first and second order statistics can be computed multiple snapshats ahe
based on the available prior statistics and the dynamics of the field. This atiows f
dynamic estimation of the non-stationary field multiple snapshots ahead.

In both of these scenarios, it is always useful to know the best time/platse to
ploy the sensors in order to reduce the number of sensors to economaethé
processing time and power. The importance of sensor placement for atgtaoTd
non-stationary environmental field estimation applications is briefly elucidated in
the next paragraph.

One plausible application of sensor placement for stationary field estimation
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could be the deployment of rain gauges in an area for long term precipitaton
itoring, where stationarity is a valid assumptionl[55]. A dynamic deployment of
sensors is needed for spatio-temporal field tracking applications likeéicst@msor
networks, social sensing, and mobile sensor networks (sensoryeeémo vehi-
cles, bikes) for environment monitoring as well as disaster managememhafyr
such applications, it is essential to know the locations where to deploy/move the
sensors in the next snapshots. For the aforementioned applicationgleassiap-
shot or multiple snapshots ahead sensor placement method can be appiied fo
sensor deployment over upcoming snapshots, if the dynamics for the frtap-
shots are known a priori.

The main contributions of this chapter are summarized below.

» Sensor placement problems for both spatio-temporally stationary and non-
stationary environmental field estimation are formulated as convex optimiza-
tion problems with similar structures but with different Bayesian perfor-
mance metrics.

« A mathematical framework to efficiently utilize the spatial/temporal corre-
lation information of the environmental field is developed to optimize the
required number of sensing locations.

« A first-order iterative sparsity-enhancing saddle-point method islojesd
to solve the sensor placement problems.

To enforce sparsity in selecting the optimal sensing locations and time instamces
follow the iterative reweighted; minimization technique [56]. Numerical experi-
ments are carried out to select the optimal sensing locations for diffdetiotrery
and non-stationary environmental field models.

3.2 Measurement model and problem statement

3.2.1 Measurement model

We assume a finite uniform pixelation of the entire service area of interesiiinto
pixels, where we would like to estimate the field intensities. The field intensity at
pixels at time index = 1,2, ... can be represented ly € RY. Itis assumed that
the field intensities are the same everywhere within a pixel. The elementsaoé
given by[u]; = w(x;), forj =1,..., N, whereu,(x) is the continuous function
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representing the field at timteat any arbitrary positiox € R? andx; € R? is the
centroid of thej-th pixel.

The measurements are given py € R, collected fromA/; sensing loca-
tions (pixels) of the aforementioned service area. Only a single dimensonisf
measured by a sensor deployed at any offhpixels. The measurement model is
underdetermined a¥/; < N. Thelinear time-varying underdeterminedeasure-
ment model can be constructed as

yt = Crus + ey, (3.1)

where the measurement mat€y < {0, 1}MtXN mapsM; measurements fromy

pixels iny;. The measurement matrix can be constructedpy= diagy (w¢),
wherew; = [wy1, ..., wv]T € {0,1}Y is thesensor location selection vecttor
time ¢, anddiag y (w;) removes the all zero rows frodiag(w;). It signifies that

if we have[w,]; = 1(0), then thej-the field location is selected (not selected) for
sensor deployment at tinte The measurement matrf¥; is related to the sensor
location selection vectow; by the relations

cl'c, = diag(wy); C,Cl =1,,,. (3.2)

The M; measurements are corrupted by additive spatio-temporally white Gaussian
noisee; ~ N(0,021,;,), whereo? is the noise variance. Further, we also assume
thate; is uncorrelated withu,.

Any spatio-temporal distribution of the field, i.e., the field intensities at the
N pixels for any observation window dfs snapshots, can be represented by the
vectory = [uf,...,uf, v _;]* € RV, In this case, the overall measurement
model to estimate the field &f locations over anyVs snapshots can be expressed
as

vt = Ciliy + &, (3.3)

whereC; = blkdiag(Cy, ..., Ciin,_1) € {0, 1}MxNNs with N, = SN0t My,
and blkdiag(-) denoting a block diagonal matrix. The measurements are given
asy: = [yf,...,yl n.1)7 of length M, and the noise components at all snap-
shots are represented by the veatpr= [/ ... e[,y _,]” of the same length
asy;. The noise vectog; is spatio-temporally white and characterizeddyy~

N (0,7, 021 ). By using the relatior({32), we obtain

CI'C, = blkdiag(diag(wy), . . ., diag(Wiyn.—1)) (3.4)
= diag(wy), (3.5)
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wherew; = [w{,...,w{ \ _;]" is the sensor location selection vector for fiie
locations in all thelV; snapshots.

3.2.2 Problem statement

The optimal placement of the sensors at the informative locations can ne-for
lated as asensor location selectioproblem, i.e., the design of a selection vector
w; € {0,1}Ns, However, generally choosing the best subset of sensing loca-
tions achieving some desired estimation performance is a combinatorially complex
problem. A standard approach to tackle this problem is to relax it into a convex
problem, which can be efficiently solved in polynomial timel[45]./[47].! [414.

this case, a sparsity-enforcing, performance-constrained design cén be ob-
tained by solving

wy = argmin {||W¢l|1, s.t. g(W¢) <7}, (3.6)

wiel0,1]V s

whereg(w;) is a performance metric expressed as a function of the selection vec-
tor, and~ is the desired threshold on the performance. After sohMing (3.6), we
obtainw; e [0,1)NN. To generate a Boolean selection vecfar € {0,1}""

from w; € [0,1]V", we can adopt the randomized rounding techniqué df [41] or
a simple thresholding. The randomization is done by simply generating random
realizations ofw, with the probability thafw,], = 1 specified by[w,];, where

k =1,...,NN;. The realizations satisfying(w;) < ~ are selected and the mini-
mum/{y norm realization is picked up, whose support denotes the sparsest loptima
sensor placement scheme.

3.3 Statistical characterization of the field

In this work, two statistical characterizations of the field veceipare considered.

Stationary field

In the first case, we consider the elementsugfi.e., [w]; = wu(x;) for j =
1,..., N, tobe Gaussian random variables. We further assume they are realization
of a spatio-temporally (second-order) stationary isotropic pro¢eswifiilmean
Elut(x;)] = pus forall t andj = 1,..., N. The spatio-temporal covariance matrix

is derived from a space-time separable exponential covariance fandfmr any
temporal lagr, i.e., the time difference between the snapshgtandu;_, and
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correlation

Figure 3.1:Plot of the space-time variation of the covariance funclion= 5; s, =
5, 02 =1).

any two spatial locationg;, x;, with d;; = ||x; — x;]|2, the elements of the spatial
covariance matrix for lag, which is denoted aF -, are modelled as

[T-1ij = [Bl(w — pel ) (we—r — psdn) )i

_ o2 eXp[—Slhdij _ ;m]. 3.7)
Here,E[(ut(x;) — ps)?] = o2 andsy, s, are the positive correlation parameters
representing the strengths of the spatial and the temporal correlatispectieely.
Increasing (or decreasing), ands,, we model higher (or lower) spatial and tem-
poral correlations, respectively. We assume that the parameless ands, are
all known a priori. The nature of the covariance function[of](3.7) withedéht
lags over space and time is shown in Figl 3.1. The overall spatio-tempai-co
ance matrix can be expressedias= E[(&; — fu;) (i, — f1)"] € SY2°, where
e = E[u] = ps1yn,. The diagonal and off-diagonal blocks Bf are given by

Iy . P—Ns+1
Tne1 ... T

It should be noted that, if the field is spatio-temporally uncorrelated then gti@sp
temporal covariance matrix is simply givenBs= o2Iyy..
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Non-stationary field

In the second case, we considgrto be a non-stationary environmental field. The
spatio-temporal evolution of the environmental field can be described inyesymo-
difference equation (IDE) [7]. For a specific sampling inter¥al(i.e., the time
duration between two consecutive time indices) the discrete time IDE can be rep
resented as,

ug(x) = - Fx, Xy (x)dx" + qi(x), (3.9)
whereR, C R? is the service area of interest. The spatio-temporal evolution of
u(x) is modelled by the functiorf (x, x’). Here,¢(x) is the Gaussian process
noise which can be spatially coloured but is temporally white. The space-time in-
teraction functionf(x, x’) can be modeled as a time-varying parameterized kernel
function f(x,x’) = vhi(x,x’, 6;), where the parameters of the function, i#.,
can be deterministic or random. The parametey a positive scaling parameter to
ensure the stability of the process|[35]. In this case, the IDE is given as

up(x) = y/ he(x,x'; 0y us—1 (X)) dx" + q:(x). (3.10)

It should be noted that, the state model$inl(3.9) And|(3.10) are infinite dimehsion
One way to approximate these to finite dimensional models is by using a spectral
representation off (-) or h(-), andw(-) using a known orthonormal basis and
selecting only thex dominant coefficients [19].

However, here we have considered a finite uniform spatial discretizattitbre
field into IV pixels. A spatio-temporally discrete process model can be represented
as

N
up(xi) = v Y ha(xi, x5 0)ue1(x;) + qu(xi), (3.11)
j=1
wherei = 1,..., N. Here, we assume that the parameters of the kernel function,

i.e., 6, are perfectly known and deterministic. It should be noted that the parame-
ters of the kernel function can depend upon the temporal sampling infgrval

Spatial phenomena like advection and diffusion can be modelled by chang-
ing the translation and dilation parameters of a Gaussian kernel [32], [85ie
specifically, we consider a time-varying 2D Gaussian kernel

hi(xi,x5) = exp[—(x; — x5 — at)TD;l(xi —x; —ay)], (3.12)

where the translation parameter ¢ R? and the dilation parametdd; < S%r N
model the advection and the isotropic/anisotropic diffusion, respectivelyhis
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case, the parameter vector of the kernel function, 8,ein (3.11), contains the
elements ok, andD;. Here, we modeh; as the time-varying displacement and
D; as the time-varying diffusion in ever§j; seconds. Note thah; andD; can
also be varied over space in order to model more complicated dynamics of the
field [35]. The directions of anisotropy of diffusion can be incorpataterough
D,. Otherwise, isotropic diffusion can be modelledas= «.I,, with x; > 0. For
example, like[(3.12), modelling the functidn(-) as aGaussian dispersal kernel
can be used for short term rainfall predictionl[32]. The above amiraecan be
generalized to describe the dynamics of many environmental phenomdnassuc
the distribution of pollutants, movement of aerosols, vapour concentragdns
that possess properties like advection, diffusion, etc.

Let us now assume a state transition/propagator mafrixxc RV>*Y which is
modelled using a simple 2D Gaussian kernel whose elements are giyEn|by=
vh(x;,x;). After proper vectorization of the field intensities and the process noise
for the NV pixels, the overall state model can be represented as

u; = Htut_l + q;- (313)

Here,q: ~ N (0, Q) is the spatially colored yet temporally white Gaussian pro-
cess noise. In Fid._3.2, an example of the spatio-temporal evolution of ttasfie
shown with a time-invariant isotropic diffusion and a time-varying advectidre T
initial state ofuy, i.e., the state at= 0 is generated by a simple Gaussian function.
In Fig. [3.2, it is seen that the field is isotropically diffused as well as shifted in
different directions given by the advection vecigrchanging with time.

In this case, the field is statistically characterized by the dynamics as

p(ut]ut_l) ~ N(Htut_l, Qt) (314)

The Ng snapshots ahead first and second order statistics of the field canvszlder
using the state model. In this case, tNig snapshots ahead mean and covariance
matrix, i.e.,ji; = E[&;] andT; = E[(t, — fi;) (i, — f&;)”] can be computed in the
following way. Using[(3.1B), the mean can be computed as

HtE[utfl] Ht
~ Ht—l—lHtE[ut—l] i1
= . = . (3.15)
H, n_1Hin—2.. HE[w_4] it N,—1

The time-dependent covariance matrix for aysnapshots, i.eL; is given by

Ty =Ry — fufif (3.16)
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Figure 3.2: Spatio-temporal evolution of the field inl0 x 10 square km
area; Spatial resolution:1 x 1 square km; D, = Io; v = 04; q ~
N (0100, 10~3I100); Displacement due to advection, i.a;,on every snapshot is given by
[0.5,0.5]7, [1.5,1.5], [0,2]7, [0,2]7, [1.5,—1.5]", [0.5,—1.5]T, [1.5,—1.5]T where
t=1,...,7min.

where the correlation matriR; = E[a,a/ | is given by
E[uuf] e E[utuf+Ns_1}

Elugn—1uf] ... Elagn—iuf, v ]
The diagonal blocks dR; are given as

Riyr = E[utJrTutTJrr] = Ht+TRt+T71Hg‘+T + Qttrs (3.18)

wherer = 0,..., Nys—1. The general form of the right and left off-diagonal blocks
of R, can be given for any two temporal lags andr,,, wherer,, =0, ..., Ny—1,
o = 0,..., Ny — 1 andr,, # 7,. The right off-diagonal blocksr,, < 7,,) are
given as

E[ut+fmutT+T = Rt+TmHt+Tm+1 Ht—I—Tn—lHt—l-T ’ (3.19)

and the left off-diagonal block&,,, > 7,,) are given as

Eluyr,ufy, ] =Her, Her 1o Hypr Ry (3.20)
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whereR,. ., andR;,, can be computed by the recursive relationships of (3.18).

Substituting[(3.117) intd (3.16) and using the expression 0f [3.15) only tigexia
blocks of; can be recursively represented as

Tiyr = E[(wirr — pthtgr) (W7 — Mt+r)T] (3.21)
=Hyr (Ropr—1 — orr—1#i )B4+ Qupr (3.22)
=My Topr HY .+ Qur, (3.23)

wherer =0,..., Ny — 1.

Note that, at any time, the N, snapshots aheafirst and second order statis-
tics of the field can be precomputedBfu;_;|, I'v—1, Hyyr, and Q- for 7 =
0,...,Ns — 1are all known a priori. One way to estimate the first and second or-
der statistics ofi;_; is to use a “sequential minimum mean square error (MMSE)
estimator”, i.e., a standard Kalman filter [57] that uses the previous measueme
up to timet — 1. Let us assume that this estimate is givenipy;, with an estima-
tion error covariance matrix; 1,i.e.,X; 1 = E[(u;—1 — ;1) (u;—1 — ;_1)7].

We use these as the first and second order statistics of theustatd.e., u;—1 ~
N (-1, 3-1).

3.4 Estimation performance metric

In this section, the performance metric, igw;) as mentioned i (3]6) is derived
for both stationary and non-stationary field estimation problems. In the neeasur
ment model of[(3.3), the unknown parametgris statistically characterized by
i, ~ N(fi;,T;). The mean and the covariance matrix can be computed for both
the stationary and the non-stationary fields as mentioned in the previousisectio
The unknown parameter; can be estimated using an LMMSE estimaltori [57],
ie,u = fi + 0 2T + 0.2CTC)CT (3; — Cyifaz). The MSE matrix, i.e.,
E[(@; — u;) (6, — u,)7] is then given by

Et(Wt, N ,WtJrNS,l) = (f‘;l + O'e_2cftrét)_l. (324)

We mention that[(3.24) is considered as the generalized expressioroffosta-
tionary and non-stationary field estimation) of the MSE matrix in this work. The
performance metric to estimate the field¥aiocations overVs snapshots is quan-
tified astr[X;(wy, . .., Weyrn—1)] Or tr[2;(Wy)]. By using the relation of (315), the
performance metric in (3.24) can be written as

(Wi, Wepng-1) = (T + o 2diag(wy)) (3.25)
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Figure 3.3:MSE variation withs;, ands.; (N = 25, Ns=4, 02 =1, 02 = 0.1).

Here, we assume that, is well-conditioned and accurately invertible. We will
come back to this issue later on in this section.

Remark (Recursive performance metrid)Vhen the field is non-stationary as
mentioned in the previous section, we can use; ~ A (;_1, ;1) to com-
pute theN, snapshots ahead first and second order statisticgd.@ndT;. The
expression of the MSE matrix df (3125) can be evaluated by substituting ~
N (-1, X_1) in the recursive relationship of (3123). After the aforementioned
substitutions, fofNy = 1, the performance metric df (325), i.&;(w;), becomes
3 (wy). This is given as

Si(we) = [(HiZe1 (w1 HY + Qi) +0,2C{C !
= [(H:Z 1 (Wi )H] + Qi)' + 0, *diag(w;)] . (3.26)

This expression is the same as the single snapshot ahead update of thee-state
ror covariance matrix of a simple Kalman filter and is an explicit function of the
selection vectors at time indexandt — 1.

We can see that, for a large service area (la¥gand/or highVy, the computa-
tions of f; andT’; as derived in[(3.15) anf (3116), respectively, can be cumbersome
from thereal time monitoringperspective. However, in the simulation section we

solve both the single snapshot and the multiple snapshots ahead sensorguiic
problems.
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3.4.1 Effect of spatio-temporal correlation

The parameters;, ands, control the strength of the spatial and temporal correla-
tions, respectively. Increasing these values, the field becomes moetated over
space and time. Also for a fixed noise power, the MSE with all the candidate loc
tions equipped with sensors, i.e:[¥;(1y,...,1x)], reduces as;, ands; jointly
increase as shown in Fig, 8.3. From the aforementioned analysis, it caidtbat

to achieve a desired estimation performance, less sensors are req@istichizie a
highly space-time correlated field than to estimate a lightly correlated field.

3.4.2 Highly correlated fields

For highly space-time correlated fields the spatio-temporal covariance roatrix

be ill-conditioned[[58], meaning that; in (3.28) is close to singular. In that case,
the MSE matrixX; can be computed using the alternate expressidn of](3.25) given
by = (wy, ..., Wiin,—1) = Iy — T,CT (C,T,CT + aEIMt)—létf‘t which is ob-
tained by applying the matrix inversion lemma (MIL) ¢n(3.25). It should bedote
that the alternate expression of the MSE can be used to compute the MSE without
inverting (;), but it is difficult to express it as an explicit function ef,.

We leverage the matrix inversion lemma (MIL) and a special regularization pa-
rameter to remove the ill-conditioning, as follows. Assuming a nonzero saabar ¢
stantg € R, the ill-conditioned matri>f‘t can be regularized to a well-conditioned
matrix S as

S =T, + Iy, (3.27)
We now substitutd’; = S — BINnn, in the middle inverse of the right-most term
of the aforementioned alternate expressioefwy, ..., wn,—1) and using the

fact thatC,C! =1 11,» We obtain
E (Wi, Wi Ng-1)
=Ty - T,C{ (C,SC] + (07 — B)I ;) 'CiT. (3.28)
Using the MIL we can write
(S + (o2 =) ICTCy) !
=8 —SC/(C;SC] + (07 — B)I ;) 'CiS. (3.29)
Using [3.29), we have the following matrix identity
Cl(CSCT + (o2 — B)I ;) ' Cy
=SS — (S71+ (o2 - p)tCICy) s (3.30)
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Substituting [(3.30) intd(3.28), the error expressior®hfwy, ..., w; y.—1) €an
be viewed as a function of the space-time sensor location selection veistens g

by

(Wi, Wipne1) =Ty = T87S — (87! + (07 — 8)7'C{ Cy) 1Sy
= A+ B[S+ (07 - §) 'diag(Ws)] 'B, (331

where the matriced = I'; — I';S™!T; andB = ST are independent of the
selection vectors, and therefore known a priori.

We notice that the MSE matriX;(wy, ..., w;n.—1) computed as in(3.31)
does not involve any inversion of the possible ill-conditiodidd The only inver-
sions are of the regularized, and thus well-conditioned mé&trix

Here we comment that, the regularizationin (3.27) is valid for any nonzero
B € R if Sis only desired to be invertible. However, to maintain the positive
definiteness o8 as well agS—! + (02 — B)~'diag(w;)], we specifically choose
0 < B < o2. The aforementioned restriction in the selectionodlso helps to
formulate the general sensor placement problem as a convex optimizaitdarnr

which is detailed in the Sectidn 3.5.

3.4.3 Uncorrelated fields

We mainly target the application of spatio-temporal monitoring of environmental
fields like pollutant concentrations in the atmosphere, concentrations oftsmne
ardous gas, rainfall, ground layer ozone, humidity, etc. Generallye thagds are
spatio-temporally correlated. But in some scenarios the spatial/temporalacorr
tion may be very small. In these cases, the off-diagonal elemeilisa close to

0. For a spatio-temporally uncorrelated fielt), can be modeled a&; = 21y,
Then the MSE matrix is given by

Et(Wt, e ,WtJrNS,l) = (0'7:2INNS + O'E_QC?CI‘/)_I
= (0, Inn, + o, 2diag(wy)) L. (3.32)

Note that, if the field is uncorrelated the estimation error is mainly characterized
by the signal to noise ratio (SNR) of the system, iz&./o2. In this case, the term

o, *Inn, acts both as a regularization term ensuring the computability_of1(3.32)
and as a scaling term for the MSE. For the current measurement mo@eBpfto
estimate an uncorrelated field (with the samjeover space and time) the number
of sensors is more relevant for the estimation performance than their tatiste

as long as the MSE is considered to be the performance criterion.
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3.5 Generalized sensor placement problem

A generalized performance metric to estimate both stationary and non-stationary
fields can be formulated as[%;(w;)], whereX;(w,) is the generalized MSE ma-

trix (8.24). Following the main optimization problem ¢f(B.6), an offline selection
of sensing locations fronV locations overVs snapshots can be performed by solv-
ing the following optimization problem

W = argmin {[IWell1, st tr[Ee(wy)] <4}, (3.33)
wie[0,1]V Vs

where’ is a threshold on the estimation performance. An extra set of affine con-
straints can be added to the problem[of (B.33), to restrict the minimum number of
sensing locations to be selected at every time ind&his is given as

HW?H—T”l > D, T = 0, N 7NS —1. (334)

This constraint enforces at legssensors to be selected at every snapshot. This
is an optional design constraint to efficiently utilize the available sensorseiy ev
shapshot. Spatial selection of sensing locations can be performed in effiment
manner by employing a structural constraint e, - like group sparsity. The
evolution ofw; can also be controlled by using a smoothing penalty in the cost
function of (3.38), where the sensing locations are selected on a sirapssit
basis[59].

Considering the general form of the performance metric, [.e..|(3.31),gtie o
mization problem of(3.33) can be formulated as a semidefinite program (EbBiP)
the NV candidate sensing locations, the performance constraint can besegees
N linear matrix inequalities (LMIs) [46]/[45]. If the column vectors of the matrix
B are given byb;, wherej = 1,..., N, then the SDP is given by

w; = argmin | Wel|1,
\X/tG[O,l}N,VGRN
v; b”
s.t. J J o =0, j=1,...,N (3.35)
b S+ (02 — )" diag ()
1Tv <4/ —tr(A), (3.36)
where we use the auxiliary variable = [vy,...,vx]?. The set of N LMls in

(3:3B) signify the fact that; > b1 [S™! + (o2 — )~ 'diag(w;)]~'bj, wherej =
1,..., N (using the Schur complement of the bld8k! + (02 — 3)~Ldiag(wy)).
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The solution of the aforementioned optimization problem gives the senserplac
ment patterns achieving the desired estimation performahdeis clear that low-
ering~/, i.e., putting a tighter threshold on the performance, more sensing locations
need to be selected.

In practical scenarios, the performance threshold can generallyivedl&om
the application, i.e., the nature of the field to be estimated, required resolution,
etc. In the present work, we calculate the thresholds by scaling the dsestice.,
sensors are deployed in all candidate locations. In other words, we consider
v = ¢tr[E:(1nn,)], where¢ > 1 is a positive scaling parameter.

3.6 lterative saddle point method for sensor placement

From the above discussions, the structure of the general optimizatioleprale.,
(3.33) with the performance metric (3131), can be formulated as,

w = argmin {||w||; s.t. tr[BT(S7! 4 (62 — B)"diag(w))"'B] — 4" < 0}
welo,1]F

(3.37)
whereqy” = 4 — tr(A), and the matriceA and B are independent of. In
this section, we user instead ofw, for the sake of notational simplicity. For the
generalized sensor placement problem (i.e., stationary/non-statiotfeygngth
of the selection vector is given ds= N N;. In this work, we consider the fact that
the spatio-temporal covariance matrix is accurately invertible, i.e, weiake),
B =1, andA = 0;.;. Using these the optimization problem bf (3.37) can be
given as

W = argmin {||w||; s.t. tr[Z7 + o 2diag(w)] ! — v < 0}, (3.38)
welo,1]F
where the matri¥Z is the spatio-temporal covariance matrix. We define a function
h(w) as
h(w) = tr[Z7 + o, 2diag(w)] ™! — 7. (3.39)

However, as mentioned earlier, the convex problem {3.38) can be easityf
lated as an SDP and solved far using off-the-shelf solvers like CVX [52] and
SeDuMi [53]. The complexity of standard SDP problems are discusse@lin [
But for a large service area and/or many snapshots the number ofwin&r{b),
i.e., the number of LMIs becomes increasingly high. In this case, SDP lagsed
proaches using standard solvers can be time consuming. In this sectipropese
an alternative approach to solve the optimization problem13.38) directly.
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3.6.1 Primal-dual iterations

We use an iterative saddle-point method| [61], to solve the optimization problem
(3.:38). We adopt first-order methods rather than Newton’s method sedéew-
ton’s method requires the expression of the Hessian and also its invdrigdy w
increases the computational complexity and leads to storage issues. Ritstvef
define the dual variable associated with the inequality constfaini (3.38)sder
convexity and Slater’s condition (which holds for (3.38), given the ahofey), we
can prove that the dual variablelives in a bounded compact sgt \ax] [61,
Lemma 3]. The value oh,.x > 0 is easily computable a priori, given any
Slater’s vector. Let us now define the compact constraint 3ets, [0, 1]% and

D € [0, Amax] for the primal and the dual variables € X, and\ € D, respec-
tively. The Lagrangian functioff(w,\) : X x D — R, for the optimization

problem [[3.3F) is given by,
L(w,\) =1Tw + X h(w). (3.40)
The primal-dual iterations far> 0 can be given as,

Wil = Py — aVy LW, A7), (3.41)
AL = PN 4 aVaL(wh )], (3.42)

wherePx andPp are the projection operators onto the sétandD, respectively.
The scalare > 0 is the step size. We defiré,,(-) and V(-) as the gradients
w.r.t. w and\, respectively. Note that, the primal-dual iterations actually minimize
L(w, \) w.r.t. w and maximize it w.r.f in order to achieve the saddle po{, \)
[61]], which satisfies

LW, ) < LW, A) < L(w,)), YweX,\eD. (3.43)

The expressions of the gradients, (-) andV,(-) are computed in the Appendix.
They are given as

VLW N =17 + Mo 2diag(—[Z7" + o 2diag(w')]2) (3.44)

VAL(W N = tr[Z7! + o, 2diag(w")] ! — . (3.45)

Due to compactness of the s&étsandDD and the invertibility ofZ, it can be proven
that the gradients are bounded. And, in particular, we can write

max{||Vw LW, A, [[VALW,N)|} < C, VYweX \eD, (3.46)
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whereC' > 0 is a constant. With this in place, due to Propositions 1 and 2 of [61],
the iterates{w*, ):i} converge weakly (in the ergodic mean sense) to a neighbor-
hood of the saddle point of the Lagrangian (3.40). The size of the neighbd

(i.e., the asymptotical error bound) is proportionakt6. In addition, conver-
gence goes a9(1/i«), i being the iteration counter. A similar result is also valid
for the amount of constraint violation. In practice, in the simulation resultsyile
select the step size to trade-off convergence speed and asymptotical error. The
stopping criteria will be based either on a maximum number of iterations, or on a
required tolerance on the value [{w*)|.

3.7 lterative reweighted/;-norm minimization algorithm
to improve sparsity

The well-known convex approximation of the non-convgxnorm is the sought-
after /,-norm. However, there are better functions to model a sparsity-promoting
cost like a sum of logarithms or a sum of inverse squared exponentiafertn
nately both of these functions are non-convex.

For example, in the optimization problem 6f (3.6), the objective function can
be replaced by a sparsity-promoting non-convex cost,Eéﬂ1 In(e+[w];). Here,
e > 0 is used to maintain the stability of the sum of the logarithm cost. As men-
tioned in [56], such a log-concave function can be well approximated Hyrsts
order linear approximation. This means that minimizﬁi1 In(e + [w];) can be
approximated by iteratively minimizing its linear approximation, i.e.,

L

) w

argvf’mn E H[[jé]ﬁ’ (3.47)
=1

wherew/ is the estimate of in the j-th iteration [56]. Following the derivation of
[56], the optimization probleni (3.6), can be formulated as the iterative réxeslg
£1-norm minimization given by

« Initialize j = 0, weight vectorz® = 1, ¢, and maximum number of itera-
tionsJ.

e forj=0,...,J

W/ = argmin {(z/)"w, st. g(w) <~}
welo,1]L
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o [gitl], — 1 _ _
[ZJ ]l_€+[\3/jh’forl_]‘7"'7L

* end

. setw = w”/.

The aforementioned algorithm is envisaged to avoid the dependenteoaf
the magnitude of its elements. Using this iterative approach, a higher weigitt is p
on the smaller elements of to push them toward8, enhancing the sparsity in
w. On the other hand, it maintains the magnitude of the larger elements by putting
a smaller weight. However, after this “sparsity-enhancing” iterative #hyarwe
still havew € [0, 1]%. After the computation ofv from the above iterative algo-
rithm we computew € {0, 1}* using simple thresholding and randomized round-

ing.

3.7.1 Primal-dual iterations with the iterative reweighted ¢;-norm min-
imization

The sparsity-enhancing iterative algorithm mentioned in the previous segtion
be implemented in combination with the saddle-point method. In this case, the
Lagrangian can be formulated as

LW, ) = (/)T + X h(w?), (3.48)

wherez’ is the weighting vector of thg-th iteration of the iterative algorithm. As
before, we can compute the saddle-point iterates with this new Lagrangigh

(for the same reasons as mentioned in Sed¢fion13.6.1) will converge weakly to a
saddle point up to a bounded error.

In Algorithm[3, the saddle-point iterations for the reweighfganinimization
are presented. The overall algorithm is implemented using two nested looge w
the inner loop (indexed by) is used for the primal-dual iterations and the outer
loop (indexed byj) is used for the iterative reweightéd algorithm.

To place the sensors dynamically every snapshot, the same Algaiithm 3 is im-
plemented fot = 1,...,T snapshots withiVs = 1, i.e., L = N. The estimation
error is initialized as2 att = 0. After estimatingw, at anyt, the estimation error,

i.e., X;(w;) is updated based on the recursive relatiorf_ of (3.26). We refer to this
algorithm as Dynamic Iterative Sparsity-Enhancing Sensor PlacemeBEER).
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Algorithm 1 Saddle point iterations enhancing sparsity

1: Initialize: j = 0, weight vectorz® = 1, a, I, J, tol, ande.
2. forj=0,...,J

3 solvethe saddle point iterations

4: while i < I or |h(w)| > tol

Wi+1’j = PX[WZ'U‘ B CXVW[(Zj)TWiVj + S‘Lj h(vAVZJ)H’

NitLd — PD[;\i,j +aV,\[(zj)Tvizi’j 4 NI h(‘;vi,j)]]

5 end while
6.  updatethe weight vector byz'/*1]; = m wherel =1,..., L.
7: end for

8 w=w’.

3.8 Simulation result

In this section, we perform some numerical experiments for both statiomary a
non-stationary field estimation applications using the developed sensomgatce
method. Let us assume a service aretlof 10 square km which is discretized into

N = 100 pixels of sizel square km. The service area and the centroids of the pixels
are shown in Figl_3]4. We assume that all of these centroids are candidategs
locations. They are row-wise indexed from top to bottom as shown i Fig. 3.4

3.8.1 Sensor placement for stationary field estimation

Firstly, we assume that the environmental field is spatio-temporally stationary.

We consider to havéVs = 3 snapshots. In this case, the size of the spatio-
temporal covariance matrid() is 300 x 300. The temporal lags are = 0,1, 2
asNs = 3. The diagonal and off-diagonal blocks Bf are given byl'y € Sfﬂ
andTI',, Ty, T'_1,T_, € SI%, respectively. The elements of these matrices are
generated by the exponential covariance function mentionédin (3. A/dBEc3)
with parameters? = 1,5, = 5,5, = 2. Thed;; parameters are computed from
the distance matrix (matrix of all possible pair-wise Euclidean distances) of the
pixel centroids as shown in Fif_3.4. Based on th&5ds a symmetric, positive-
definite and block-toeplitz matrix.

The measurement noise variance is assumed te?be 1. The performance
thresholdy’ is computed by scaling the best case MSE (€2, (1300)]) by ¢ = 2.
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The parameters of the sparsity-enforcing iterative algorithm ard 0—% and.J =

5. A constant step-size @f = 0.1/(INNs) is used in the saddle point algorithm
and the algorithm is iterated until a desired tolerance lews) or the maximum
number of iterationsl) is achieved. Here, we takel = 10~* andI = 300N N,.

The estimated sensor location selection vectorsNor= 3 snapshots, i.e.,
w1, Wo, w3 before and after the randomized rounding are shown in[Eig. 3.5 and
Fig.[3.6, respectively. In the next case, we keep the sdimgt assume that the field
is spatio-temporally more correlated than the last time. In this case, wg, us@
ands. = 3. The resulting selected sensing locations, ig., wo, w3 before and
after the randomized rounding are shown in Eig] 3.7 andEig. 3.8, resglgcti

It is observed that less sensors are needed to achieve a desired estpaatio
formance, when the field is highly correlated over space and/or time. Wiaaee
in Fig.[3.8 less sensing locations are selected than inEiy. 3.6. This obserngatio
consistent with the fact that the Bayesian MSE is reduced as the corretaton
space/time is increased, as shown in Eigl 3.3.

We study space-time sensor placement patterns for a simple exponendid cov
ance function (uniformly decaying with increasing spatial/temporal lagsante
conjectured that for such a covariance function the optimal sensornpéaatas
more or less uniform over space and time. However, different sefhaoempent
patterns can be observed for different spatio-temporal covarianceesai.e. I';.

3.8.2 Sensor placement for non-stationary field estimation

In this section, we consider that the environmental field is non-stationar\con
sider that the dynamics, i.&]; for ¢t = 1,...,7 snapshots (minutes) are assumed
to be known a priori. We present two scenarios. First, we solve the multipfe sn
shots ahead sensor placement problem. We solve this only once withoupany
dating although this could be considered as well. In the next case, wethelve
single snapshot ahead sensor placement problem, where the pexdermatric is
updated every snapshot. We consider the same service area as strogviBid.

Multiple snapshots ahead sensor placement

We considerN; = 3 snapshots. The parameters of the state transition matrix are
given byr = 0.4, D; = D = I, which is an isotropic diffusion, and; =

a = [0.5,0.5]7 for H;, Hy, H3. We assume that the initial distribution of the
field is given asug ~ N (po,Ty), where we takquy = 1199 and the elements

of Ty € S are given by[(3]7) with parametess = 1, s, = 1, s, = 0,
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Figure 3.4: Service area with the candidate sensing locations.
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Figure 3.5:Sensor placement patters),(= 5; s, = 2) (before randomization).
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Figure 3.8:Sensor placement pattersy,(= 7; s, = 3) (after randomization).
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Figure 3.9: Multiple snapshots ahead sensor placement pattern fostatienary field
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Figure 3.10:Multiple snapshots ahead sensor placement pattern fostationary field
(after randomization).

i.e, [To]i; = exp[—d;;] fori,j = 1,...,100. The process noise is characterized
by q;: ~ N(0100,0.0011;¢9) for all t. The diagonal, right and left off-diagonal
blocks of R; are computed using (3.18), (3119), ahd (8.20), respectively. Finally,
the overall space-time covariance matrix is computed by R; — fi;j1 , where

1, andR, are computed using the expressions[of (8.15) Bnd](3.17), respectively
The measurement noise variance is assumed to be same as befosg, &e1.

The parameters of the iterative saddle point algorithm are also maintainedh® be
same as before. In this case, we again adopt the performance threg'sypktaling

the best MSE by = 2. The sensor location selection vectors, ive;, wa, w3
(before and after randomization) are shown in Eigl 3.9 andFig] 3.1@ectsely.

It is seen that when the field is non-stationary, the selected sensing lacation
are less uniformly distributed than for the stationary field case. It is alsothaé
when a non-stationary field is to be estimated jointly using the measurements from
multiple snapshots then measurements from alternate snapshots are mona-4infor
tive than measurements from consecutive snapshots. This makes saessars
in alternate snapshots are less correlated and the values for the middibctram
be easily predicted. The dependence on the dynamics is even more clesatyexd
in the next case, where we update the performance metric every shapsho
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Single snapshot ahead sensor placement

In this case, we select the sensing location for every snapshot, i.e.,nga&eo
N, = 1. To avoid the computation df; we update the performance metric every
snapshot based on (3126), i.e., we use the developed DISESP dppreationed

in Sectior 3.7.11.

Considering the same service area shown in[Eid. 3.4, we would like to choose
the sensing locations every snapshot dynamically. Note that, for eweeycom-
putew; (with the prior knowledge oH;, Q;, and the estimation error covariance
of the previous snapshot, i.€5;_1) whose support gives the locations where to
move/place the sensors to estimate the field for the current snapshot. athe sc
ing and diffusion parameters of the state transition matrix are givem by 0.4
andD; = D = I,, which are the same as before. For the advection, we con-
sider two scenarios. In the first case, we assumedhad fixed for all ¢, i.e.,
we haveH; = H. In the next case, we change every minute. In that case,
the values ofa; for t = 1,...,7 are given ag0.5,0.5]7, [1.5,1.5]7, [0,2]7,
[0,2)7, [1.5,—1.5]T, [0.5,—1.5]T, [1.5,—1.5]T. Here, we mention that the pa-
rameters of the matrik; are chosen in such a way that the maximum eigenvalue of
H; is always less thah, in order to assure the stability of the model. The measure-
ment noise variance is assumed toe= 1, for all . The process noise is chosen
to be the same as before. i.g;,~ N (0190, 0.00111¢) for all t. We assume that at
time ¢ = 0 the estimation error covarianceXy = I199. The performance thresh-
old v/ is dynamically computed by scaling the best case MSE, tic€%;(1100)],
by ¢ = 1.3 on everyt. We performJ = 3 iterations of the iterative algorithm at
every snapshat In order to improve the speed, the selected sensing locations are
computed by thresholding w.r.Q (i.e., setting the non-zero elementslforather
than performing randomization on every snapshot.

The resulting sensor placement patterns for the fixed and time-vaijrage
shown in Fig[3.I11 and Fi§. 3.112, respectively. The y-axis representadites of
the selected sensing locations indexed as shown i Fib. 3.4. The x-aréseafs
the time in minutes. In Figl_3.11, it is seen that more or less the same subset of
sensing locations are selected with increasing time as the state error cogaian
verges to the steady state. The number of required sensing locationdifaal iral
snapshots is also decreasing with time due to the reduction of the state error.

On the contrary, in Fig._3.12 different sensing locations are selected with time
due to the time-varying state transition matEl. It is seen that the number and
position of the optimal sensing locations, achieving a prescribed estimatitam-per
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Figure 3.11:Sensor deployment pattern fBr, = H.

mance are guided by the dynamics of the field, as well as the requiredrarfoe
(which is also dependent on the noise level) of the system.

3.8.3 Analysis of the performance metric

In this section, we compare the performance of the developed sensemaat
algorithm with random sensor placement in terms of their respective meanesqu
errors for different measurement noise varianegd.( For every noise variance,
100 random realizations of the selection vectar € {0, 1}V s are generated with

the same number dfs generated by the proposed approach. The average MSE
of all these realizations are compared with the achieved MSE using thesgapo
algorithm.

We consider two scenarios. In the first case, we consider the spaigdrse
placement problem, i.€Y; = 1, to estimate a stationary field in the service area
shown in Fig[ 3.4, i.e.N = 100. The elements of the spatial covariance ma-
trix I'; are generated using the exponential covariance function mentiorfied)in (3.7
with s;, = 5. The comparison of the MSE for the proposed approach and the av-
erage MSE of random sensor placement for different noise vasaacown in
Fig.[3.13. The standard deviation of the MSEs for different realizati6tiseoran-
dom placement are also shown for eve@( In the second case, we consider the
field to be non-stationary with the sark® = H as mentioned in Sectidn 3.8.2.

In this case, we considéY = 25 (5 x 5 square km service area wifty pixels),
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Figure 3.12:Sensor deployment pattern for a time-varying advectioapatera;.

Ng = 3 and solve forw; € {0, 1}75, i.e, in a multiple snapshots ahead fashion.
The comparison of the MSE with random placement is shown in[Eig] 3.14. In the
last two cases, we considére= 2 and{ = 1.5, respectively.

In the third case, we consider the single snapshot ahead sensor ptapeote
lem, i.e., the performance metric is updated every iteration. WeZXix= 1 and
¢ = 2. Everyt, the MSE of the proposed approach and the average MSH)for
different realizations ofv; € {0,1}" (with the same number dfs generated by
the proposed approach) are compared. We consider the same setuptiasede
in Sectior 3.82. The performance comparison is shown inEig] 3.15.

First of all, it is observed that the achieved MSE using the proposedagipr
is lower than randomly placing the sensors for a given number of availabsng
locations. It is also seen that when the field is stationary with a smoothly varying
spatial covariance function, on average random placement perfogethsTive rea-
son behind this is that a uniform placement is close to optimal in order to estimate
a stationary field as observed in Fig.13.6 and Eig] 3.8. So, the perforngapds
not significant in this case, as long as the average MSE of the uniformdypdom
realizations is concerned. But there could be some realizations prodadiin
MSE, as seen by the standard deviation plot.

But when the field is non-stationary, the optimal sensor placement patterns a
non-uniform over space and time as shown in Figured B.10, 3.11, andtb8hail-
tiple snapshots and single snapshot ahead sensor placements, velpettiey
are mainly guided by the dynamics of the field. In this case, the performafce g
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Figure 3.13:MSE comparison with random sensor placement (stationdd; fié = 100,
Ny =1).

between the proposed approach and a random placement is significant.

3.9 Conclusion

We have presented sparsity-enforcing sensor placement methods é&stitimation
of both stationary and non-stationary spatio-temporal environmental.fidltle
developed methodologies can be used for both offline and online field estimatio
applications. They exploit the space-time correlation information as well alythe
namics of the field to deploy sensors at the most informative locations oaee sp
and time. We have also developed a sparsity-enforcing iterative first apgproach
to select the sensing locations that achieve a prescribed estimation gdnueams
of the MSE. We further compared the performance of the developedrsgiase-
ment approach with random sensor placement.

Itis observed that for an exponentially decaying stationary covariamegion,
the higher the spatio-temporal correlation the less sensing locations dexinéer
a non-stationary field, the number and the position of the selected sensatigihac
are controlled by the dynamics of the field, the required estimation accumagy,
the noise level. If the dynamics are not changing with time then the same set of
sensors are selected with time once the posterior error covarianceseasteady
state.
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Figure 3.14:MSE comparison with random sensor placement (non-statidiedd; N =
25, N, = 3).

-=-MSE with random placement
15¢ ~-MSE with all sensors
MSE with selected sensing locati

3. 4 5 6 7
time index ¢)

Figure 3.15:MSE comparison with random sensor placement (non-statidiedd; N =
100, 02 = 1).
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3.10 Appendix
In this section, we compute the derivatives of the Lagrangian which & ins
(3.41) and[(3.42). The derivatives wwtand\ are given as
VwL(w,\) =1 + AVyh(w), and (3.49)
VaL(w,A) = h(w), (3.50)

respectively. To comput¥y,h(w) we use the following identities for the differen-
tiation of a scalar function of matrix and vector variables [62]. They are

Of(X(w) _ tr[(3f<X<W>>>T0X<W>], nd

Owl; X (w) Owl;
Otr[X 1] B —o\T
Tox o - X
wherel = 1,..., L. Now using the above identities we can compute,
Vwh(w) = Vw[t[Z7! + o7 2diag(w)] ™!
= o, diag(—[Z7" + o, ?diag(w)]?). (3.51)

Extended derivation: We considg(X (w)) = h(w), whereX(w) = [Z~! +

o, ?diag(w)]. Now, we compute the elements of the vec%%w = % =

Viwh(w) by,

oI _ (24K 2K
o[w; X (w) d[w];

= tr[~[Z7" + o, *diag(w)] %0, 2 A4,

whereA; is anL x L matrix with only one non-zero element @t, 1) given as
[A1]11 = 1. Similarly,

OfX(w) _ | (9fX(w)\" oX(w)
oW [( o)) a[wh] (8:52)
= tr[—[Z7" + o 2diag(w)] %0, %AL), (3.53)

whereA is anL x L matrix with only one non-zero element @, L) given as
[Ar]rr = 1. So, the overall gradient is computed as

af (X(w)) 3f(X(W))]T
owh 7 owlL |

Substituting the elements we haVig, h(w) = o, 2diag(—[Z~'+o_ 2diag(w)] ~2).

(3.54)

Vuh(w) = |
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Chapter

Spatio-Temporal Environmental
Field Estimation Exploiting Prior
Information

Dynamic estimation of the spatio-temporal evolution of an environmental field
using limited number of sensing resources is a challenging task. As didcusse
in Chapter 2, depending upon the sensing modality and the required resolutio
of the estimate, the observations can be modelled as linear/non-linear etaderd
mined/overdetermined measurement models. In these circumstances, mnior inf
mation regarding the field can be exploited in order to estimate the field accurately
In this chapter, we focus on a practical example of environmental field miogto
i.e., spatio-temporal rainfall monitoring. We describe a dynamic rainfall moni-
toring methodology using rain-induced attenuation measurements from mieowa
links exploiting some physical properties of rainfall.

Spatial rainfall mapping from the measurements of rain-induced attenuations
collected from microwave links (used by cellular telecommunication networks) is
an emerging technology which can serve as an alternative to traditiornalcaes
like rain gauges and weather radar [5]. The motivation behind this methmdolo
is to utilize existing systems such as cellular networks to improve the quality of

Part of this chapter is published as: V. Roy, S. Gishkori, and G. L&madmic rainfall moni-
toring using microwave links, EURASIP Journal on Advances in Signal processimg. 2016, no.
1, pp. 1-17, December 2016
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rainfall estimates using rain gauges and radar, as well as to use it aspemuEnt
rainfall measuring unit in areas, where traditional measuring modalitiesaress

To estimate the rainfall intensity dynamically from a limited number of non-linear
measurements, we exploit the physical properties of rainfall such talsgarsity

and non-negativity along with the dynamics of the rainfall intensity. We develo
a dynamic state estimation algorithm, where the aforementioned spatial proper-
ties are utilized as prior information. The developed methodology is applied to
dynamically monitor the rainfall field intensity in an area with a specified spatial
resolution. The proposed methodology can be generalized for anynilytie|d
reconstruction, where the limited number of non-linear measurements armfield
tensities integrated over a linear path.

The outline of the chapter is as follows. In Section 4.1, the previous works in
this field along with the main contributions of this chapter are presented. The mea
surement model for the dynamic rainfall mapping from microwave link attenuation
measurements is presented inl 4.2. In Sedtioh 4.3, spatial and temporailitsariab
of the rainfall field are presented. The dynamic rainfall monitoring algorigxm
ploiting the physical information regarding the rainfall field is described ittiSe
4.4. In Section§ 415 arid 4.6, the methods for dynamic selection of the “sparsi-
fying” basis and the selection of the tuning parameter regulating the spamsity a
described. The simulation results for different scenarios (e.g., knownlmown
spatio-temporal prior information) are presented in Seétioh 4.7. Finally,c¢he c
cluding remarks along with the challenges are presented in Séction 4.8.

4.1 Prior art and contributions

One of the main motivations behind “rainfall monitoring using microwave link at-
tenuation” is to utilize existing systems such as microwave links in the cellular
networks to improve the quality of rainfall estimates using rain gauges aad rad
It can also be used as an independent rainfall measuring unit. Thedee G-
plied mainly in the areas, where traditional measuring modalities are scaree. Th
attenuation measurements from microwave links can also be used for monitoring
snowfall, fog and humidityi [63]. However, practicability of spatio-tempoaaifall
monitoring is exhibited inJ1] by comparing its performance with rain gauges and
radar. In Fig[ 411, the comparison of the estimates of rainfall intensity (mmfhr) o
rain-gauge, radar, and microwave link based estimates are preseht&aifinal
works in this domain include tomographic rainfall mappingl [64], and a stdichas
implementation of the microwave tomographic inversion technique (MTIT) [65].



4.1. Prior art and contributions

59

Rainfall intensity (mm/hr)

bt LTI

WA

— T T
""" Rain gauge

Cellutar link

+ Waathar radar

0L N ; v A . A |
9:00 11.00 13:00 15:00 17:00 19:00 21:00 23:00 1:.00 3:00 5:00 7:00

Time

Figure 4.1: Rainfall intensity (mm/hr) measured by microwave linksnrgauges, and
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Recently, it has been observed that signal processing algorithms like ifiedod
weighted least squares method can be implemented to spatially map the rainfall
intensity on a regular grid, using microwave link attenuation measurements [12]
Also, a direct spatial reconstruction from non-linear measurements asuagi-

able grid size is exhibited in_[66]. The robustness of a practical application
“rainfall monitoring using microwave link attenuation” is illustrated|in[67], wier

a country-wide (The Netherlands) rainfall mapping is shown to be possdite

link attenuation measurements using a data sé¢2 afays (with a temporal resolu-

tion of 15 minutes). However, in order to achieve some desired spatial resolution of
the rainfall field estimate (in terms of number of pixels), the number of microwave
links, i.e., the number of attenuation measurements is always much smaller than
the number of pixels in a given service area. In this case, to dynamically monito
the rainfall intensity, physical properties of rainfall like spatial sparsitg aon-
negativity can be exploited as extra information.[In/[68], a sparse staation of

the rainfall field from a limited number of non-linear measurements is presented
In [69], a sparsity- as well as a ridge-penalized, non-negativitytcaingd, ordi-

nary least squares method is used to estimate the spatial rainfall map from linea
path-averaged rainfall intensities, albeit for a single snapshot. Fortner incor-
porating the non-linearity of the measurements as well as a state-space eodel,
spatio-temporal rainfall monitoring method using an extended Kalman filter JEKF
is described in[13]. Recently, a linear Kalman filter is used for the reaqetgin

of rainfall maps inspired by object tracking algorithms|[70]. Howevemenof

the above dynamic rainfall monitoring methods exploits structural propefttas o
rainfall field like sparsity or non-negativity.

Commingling the concepts of the aforementioned literature, estimating a spatio-
temporally evolving rainfall field can be viewed as a dynamic sparse field estima
tion problem, where the spatial sparsity of the rainfall field can be tailoree oy
resenting it as a sparse signal in a suitable “sparsifying” basis [3X], Buch a
dynamic estimation of sparse signals, also known as sparsity-aware Kaltean fi
ing, is a well-studied problem in the field of signal processing with quite a numbe
of applications like target tracking, video coding etc. Next to the spatiabipa
also the temporal sparsity can be exploited in the state estimation [72]. Sparsity
penalties lead to a faster convergence than a clairvoyant Kalman filter, &s illu
trated in [72]. Also, a non-negativity constrained sparsity-aware Kalfitien is
applied to the target tracking problem in [73]. [n_[74], the “dynamic filteting
is implemented by introducing an iterative re-weightedpenalty. In that work,

a Bayesian hierarchical model is used for the dynamically varying spaesé-
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cients of the signal. Also, in [75], the convergence of the aforementiappbach
has been illustrated, formulating it as a basis pursuit denoising (BPD)gono
Another notable approach of tracking a sparse signal in an underdetsl mea-
surement scenario is viewing sparsity as a pseudo-measurement and inmtpigme
a parallel state and covariance update scheme for this extra measur@fjem [
the Bayesian paradigm, a sparsity-aware state estimation can be formulaed as
constrained maximum a posteriori estimator (MAP) [77].

In this work, we assume that the spatial rainfall intensity can be represaste
a sparse environmental signal. We assume two scenarios for the spatmraémp
evolution of the rainfall field. In the first case, we assume that the dynarhibe
rainfall field are perfectly known. In this case, we use a linear but tinmgivg
dynamical model for the space-time evolution of the rainfall event, whichrpgeo
rates physical phenomena like advection, diffusion and convection [B3] In
the second case, we assume that the information regarding the dynamics are
perfectly known. In this case, we approximate the spatio-temporal evologien
simple Gaussian random walk model.

We develop a complete structured framework to dynamically monitor the rain-
fall intensity exploiting the prior knowledge regarding the spatial sparsidg- n
negativity and the dynamics of the rainfall field. The overall dynamic rlinfan-
itoring setup is pictorially represented in Figlrel4.2. The proposed setgpisc
attenuation measurements, in a given service area at any given snfipshthe
operating links, whose geometry and operating frequencies are kimgomulat-
ing these non-linear measurements, the spatial rainfall intensity in the gixanes
area is computed in a centralized approach with a specified resolution.eVak d
oped dynamic rainfall monitoring algorithm has the following salient features:

¢ Anon-linear, underdetermined, and time-varying measurement model-is co
sidered here. A dynamic linearization, followed by a state estimation is per-
formed, where sparsity and non-negativity are exploited, in order tewseh
a stable solution from the underdetermined measurement setup.

* The tuning parameter regulating the sparsity can be dynamically updated on
every estimation step.

« The algorithm is generalized to dynamically select the representation basis
that minimizes the mutual coherence between the basis matrix and the mea-
surement matrix at a particular time instance, which represents the geometry
of the available link measurements at that time instance.
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4.2 Measurement model

The topology of the network of microwave links deployed by any telecommunica
tion service provider in any service area is fixed. These links can beedias a
fixed network of sensors to monitor rainfall since the received signal [&SL)
measurements related to these links depend on the rainfall. It should be noted
that the signal attenuation on a microwave link is not only due to rainfall bat als
depends on other atmospheric effects like humidity, wet-antenna attenuatibn,
propagation loss. For simplicity, we assume that the attenuation caused by thes
other effects (except precipitation) can be pre-computed e.g., dunggédiods”,

and subtracted from the recorded RSL measurements. In this way, dotiveff
measurements only include the rain-induced attenuation. The conventiopiai-e

cal relationship between the rain-induced specific attenuation and theyertged
rainfall rate is given byy, = ar?, whereys is the specific attenuation of the link
(dB/km), andr is the path-averaged rainfall rate over the link (mm/hour) [79]. If
L is the length (km) of the microwave link, then the total rain-induced attenuation
over the link isy = ysL = ar’L dB. Parametera andb are related to the drop
size distribution (DSD) of the rain, the polarization and frequency of thestra
mitted electromagnetic wave, the length of the link, the ambient temperature, etc.
It has been extensively studied and shown in several works thativagaof the
aforementioned environmental and non-environmental parameters theesti-
mate of the path-averaged rainfall rate. A quantitative analysis of DSBedela
errors in estimating the path-averaged rainfall from direct rain-indattethuation
measurements is illustrated in_[80], [81]. It can be observed that the atienu

for links operating in frequencies arouBd GHz can be treated as a linear mea-
surement of the path-averaged rainfall rate [80]. A detailed analyshedéffects

of the frequency, DSD, link length, and temporal sampling in estimating the path-
averaged rainfall rate has been presented_ih [82], [83]. Also, in a siderage
area the link (measurement) availability in different hours of the day may signifi
cantly vary. All of these aforementioned studies advocate a dynamic tufithg o

a andb coefficients in order to better monitor the rainfall from link attenuation.

The non-linear attenuation measurements from the microwave links in any
given service area for a fixed time can be used to estimate the spatial rateail
sity over the same area. Let us consider a uniform discretization of tlvifiegde
service aread (square) intaV pixels where we would like to estimate the rainfall
intensity. Here, we make the assumption that the rainfall intensity is constairt with
any pixel. This assumption is flexible as any resolution can be attained by tailoring
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the areas of the square pixels. Let us assume that ther® dneks in the given
service area. The length of thh link can be written ag,; = Z;V:l l;j, wherel;;
is the length of the-th link passing through thgth pixel, wherei = 1, ..., M. If
thei-the link does not pass through tleh pixel thenl;; = 0, otherwise it is com-
puted by the link and the pixel coordinates. The total attenuation over a linkea
modelled as the sum of the attenuations over the link-segments [12]. Usintéhis,
attenuation over theth link at timet¢ can be expressed gs; ~ Zj.vzl yijt, Where

yi5,¢ IS the attenuation over the link-segment of lenggh Using the power-law re-
lationship for the attenuations over the link-segments, the measurement randel ¢

be constructed in the following way,

N

yie=aie Y urilytew, i=1,...,M, (4.1)

j=1

wherey; ; is the attenuation measurement of ki link, andw,; ; is the intensity
of the rainfall field in thej-th pixel at timet. The power-law coefficients of the
i-th link at timet¢ are given bya,; andb; ;. The measurement model in (4.1) is
a generalized time-varying non-linear tomographic measurement model. In this
work, we consider the fact that all the links are operated in the same frequency
and that the other environmental conditions (e.g., DSD, temperature) adefdix
all t. Based on these assumptions, the aforementioned measurement model can b
simplified as

N
Yit = aZug’tlzj +ei, t=1,...,M. (4.2)
j=1

The measurement noise incurred at#k link measurement at timeis given
by e; ;. The measurements are corrupted by errors which are mainly due to quan-
tization but also there are other sources of noise. A more detailed destmbtio
the statistical nature of the measurement noise can be foundlin [12]. Feakbe
of simplicity, let us assume that; is zero-mean spatio-temporally white Gaussian
noise with variance2. Further, we assume that; is uncorrelated with; ;.

Combining all the measurements from thelinks at timet, we can construct
the following non-linear measurement model at titne

yi = ®(w) + ey, 4.3)

wherey, € RM stacks the measurements from thelinks at timet, whereas
e; € RM does the same for the noise. The veaipre RY gathers the rainfall
intensities for all of theV pixels at timet, i.e, it is the parameter to be estimated
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dynamically. The non-linear mapping between the rainfall intensities and the at-
tenuation measurements is given®y: RV — RM and it is assumed to be per-
fectly known. The elements ai; are given by[u|; = u;; = w(x;), where
uy(x) represents the continious rainfall field at any arbitrary location R? and

x; = [z;,y;]7 is the centroid of thg-th pixel of the service area. The measurement
noise components associated with fielink measurements are characterized by
e; ~ N(0,R;), whereR; = R = 021, whereco? is the measurement noise
variance which is assumed to be known a priori.

4.3 Spatio-temporal variability of rainfall

4.3.1 Spatial variability of u,

At any snapshot, the spatial rainfall intensity,(x;), for j = 1,..., N can be
viewed as a wide-sense stationary (WSS) random process. In spatisfics,
ui(x;) is WSS (or second-order stationary) if it satisfigie, (x;)] = u, (for all

j =1,..., N in the service area), and if the spatial covariance between any two
points is dependent only on the distance between them (i.e., isotropic) T84].
parametey., is the mean/trend of the rainfall field. As mentioned in SedfionP.2.1, a
variogram model can be used to represent the spatial variations. aBgregveral
variogram models are used as it is computationally hard to calculate the spatial
dependency for every lag distanke Some statistical functions like a Gaussian,
exponential or empirically fitted models like spherical functions are ofted ase
variogram models [7]. From the analysis 0f[30], the spherical vaaimgmodel is
seen to be an appropriate model to describe the spatial variability of raiffadl.
mathematical expression of a spherical variogramnik)) or semivariogram~{((h))

is given in [2.10).

The advantage of the spherical variogram model is that the parameters tha
charachterizes a spherical variogram, i.e., iy ¢- Sp), partial sill (Sp), nugget
(Vy), and range{) can be approximated in hourly scales for a specific day of the
year [30]. Now, the spatial covariance functioh(h) can be defined as,(h) =
Ef(u(xi) — pee)(ue(x;) — pe)]. As mentioned in2.2]11, using the second-order
stationarity of the random procesgx;), the semivariogram can be related to the
spatial covariance functiof, (k) by the relationy(h) = (No + So) — Cy(h)

[84]. Now, the elements of the spatial covariance makixcan be computed as
[Eu]ij = CU(HXZ - Xj”?)! Vi, j € {17 RRE N}
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4.3.2 State model

The spatio-temporal evolution of rainfall is a complicated phenomenon ingplvin
many physical processes like diffusion, advection etc. In the followiogse we
present two approaches of modelling the dynamics of rainfall.

A Kernel-based state model

One standard approach of modelling the spatio-temporal evolution of &irpen
mental field is based on the integro-difference equation (IDE) [7]. Themen-
tioned approach is similar to Sectibn13.3 . Following this approach, the dynamics
of the rainfall field for any specific temporal sampling inter¥atan be modelled

as the following discrete time IDE

ut(x)—Ag(x,x/;B)ut_l(x’)dX’—i—qt(x). (4.4)

Here,g(x,x’; 8) is the space-time interaction function parameterized byhich
can be deterministic or random and dependent on the temporal samplinginterv
The quantityy (x) is the process noise which is generally modelled as independent
in time but correlated over space.

The space-time interaction functigri-) can be modelled as a parameterized
Gaussian dispersal kernel which captures the underlying physicaeégses be-
hind the spatio-temporal evolution of rainfall, i.e., diffusion, advection ammi c
vection [32], [78]. In this case, the space-time interaction function isngag
g(x,x;wy, D, a) = a exp[—(x — x' — wy)) D7} (x — x' — wy)], i.e., a Gaus-
sian kernel. The translation parameter of the kernel, wg.,c R? models the
time-varying advective displacement, i.e., the spatial drift of the rain stordnthen
dilation parameter of the kernel, i.d) € S?H, models the diffusion. Note that,
w; can also vary with space but we assume that it is averaged over the eaéire a
and fixed. The diffusion coefficiedD can be used to model isotropic as well as
anisotropic diffusion. The amount and the directions of the spatial anfgotan
be introduced byD. The parameteD can also vary with time but this is not con-
sidered here. The scalar scaling parameterR, , is used to control the stability
(i.e., to avoid the explosive growth) of the dynamic process.

Here the entire service area is uniformly discritized iMixels. We assume a
state transition matri¥l; ¢ RY*" whose elements are modelled by the aforemen-
tioned simple 2D Gaussian kernel. After proper vectorization of the fieldsittes
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and state noise fav pixels we obtain
u; = Hyuy 1 +qp, (4.5)

where the elements of the state transition méakfixare given byH;|;; =
a exp[—(x; — x; — w¢)TD7L(x; — x; — wy)], andq; is the spatially colored yet
temporally white Gaussian state noise vector. The quawtitis the advective dis-
placement during the temporal sampling intesalvhich can be represented more
precisely asv; = v:d;, wherev, is the advection velocity. Note that the aforemen-
tioned model is non-stationary when the advection vestpchanges with time,
which happens in many real scenarios [32]. If there is no advectionwi,e= 0
andD = I, the model is stationary and isotropic. We assume that the dynamic
model, i.e., the state transition mati¥; is perfectly known through the parame-
tersw;, D, anda which are considered to be deterministic and known. Without
loss of generality, we follow the assumptions|ofl[32] and [33] that the digidh
of q; is given byq; ~ N (0y, Q;). But this assumption is not true in practical sce-
narios because the rainfall process cannot be negative. In the simuatiton,
after generatingy; using the sate model df (4.5), we set the negative elements of
u, t0 0. This is a modelling approximation.

One notable advantage of the modellin/ [32] is the linear relation of the rainfall
intensities in one snapshot with the ones in the previous snapshot.

Gaussian random walk model

In the last section, we assume that the parameters of the state model atiyerf
known. But in many practical scenarios for a laye it can be computationally
intractable to estimate th&2 elements of the state transition matFi using the
available data. In this case, without any prior knowledge regarding treera
terization of H;, one way to approximate the dynamics is by assuming that the
process follows a Gaussian random walk model [85]. In this case, sueresthat

H; = H = I and the process model is given by

W = U1 + Q.- (4.6)

The benefit of a Gaussian random walk model is that it has very few npadel
rameters rather than a parameterized process model as mentioned in thasprev
sub-section.

Note that the parameterized state modelofl(4.5) can be viewed as a random
walk model by incorporating negligible diffusion, i.d), = €I, wheree <« 1 and
no advection, i.ew; = 0. In this case, we havH; ~ T assumingy = 1.
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Structure of the state error covariance matrix

It is assumed that the state error, i, is a spatially colored but temporally white
Gaussian process. Assuming spatial isotropy and stationarity of the stategr
the elements of the covariance mai@x = Q can be represented using the Matern
covariance function as,

L2 [mnxi—xj-ug] (mmV xﬂb), (4.7)

s T(p) v

Qlij =

whereTI'(-) is the Gamma functionis,(-) is the modified Bessel function of the
second kind, and is a positive shaping parameter [7]. Wjth— co andp = 1/2,
(4.2) becomes the squared exponential and the exponential covafiemutens,

a2 X .
i.e.,[Qlij = 02 exp (—%) and[Q];; = o2 exp (—M) respectively.

4.4 Dynamic rainfall mapping

We dynamically estimate the rainfall intensities at iNepixels, i.e.,u; att =
1,...,T snapshots from the attenuation measuremgptstt = 1,...,7. The
measurement and state models can be represented in the following forms

Yy = @(ut)—l—et (48)
u = Htut_1+qt. (49)

A standard practice to estimate the rainfall intensityat every timet =

., T from the measurement and state equation§ of (4.8)[and (4.9) is the non-
linear semblance of the standard Kalman filter, i.e., the extended Kalman filter
(EKF) [57]. Note that we have non-linearity only in the measurements.

As one of the criteria for the optimal behavior of the Kalman fiter, we as-
sume that the measurement and the state noise statistics are completely known.
The measurement and the state noises are characterizgd-by\'(0,,, R) and
a: ~ N(0x,Q), respectively. The dimension of the measurement noise covari-
ance matrix depends on the number of the available measurements atAisthe
state model is a linear function af, the standard Kalman fiter prediction steps are
given by,

U1 = Hydy g (4.10)
M1 = HM, 1, H +Q, (4.11)
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where the prediction ofi; from the last — 1 observations is given bi,;_; with
the error covariance matrid,;_; = E[(u; — Gy )(ur — ﬁt|t,1)T] [57]. The
termsa,_,,_, andM,_,,_, are calculated in the previous time step.

The prediction based on the state model is corrected by the measurements. Bu
here we have a non-linear measurement model. To linearize that modelingbus
duce theM x N Jacobian matrix computed af = t;;_; asJ: =

The elements of the Jacobian matrix are givenhy;; = abl;; [ﬁﬂt_l];’fl, with
i1=1,...,M,andj = 1,...,N. Afirst order Taylor series expansion of the non-
linear measurement function aroudg, _; is then given a(u;) ~ ® (i) +
Ji[uy — ). Substituting this in[(418), we obtain the following linearized mea-
surement equation:

v = Jus + ey, (4.12)

wherey; = y; — ®(;,—) + J¢,,—;. Note that here we have less observations
than unknowns, i.e., the number of link&/{ is much smaller than the number of
pixels (V), i.e., the dimension ofi;. Hence, in the correction step, to utilize the
measurements along with the state model, we need to solve the underdetermined
system[(4.1?) in order to updatg,_, leading tod,,. After the dynamic lineariza-

tion, the state estimates can be obtained using a standard Kalman filter. In &his cas
both the expressions for the state estimatg and its state error covariandd,,

can be obtained in closed forim [57].

4.4.1 Limitations of standard EKF

The estimation ofn; from only M measurements using an ordinary EKF has the
following uncertainties.

« First of all, the quality of the estimate strongly depends on the degree of
non-linearity and the accuracy of the linearization! [57]. Also, for a highly
underdeterminedM < N) and unpredictable measurement matrix (many
rows of J; can be zero for anyi,;_;) the solution can be highly inaccu-
rate and dependent mainly on the predictions using the state model and the
initialization.

* In the above case, if the available information regarding the dynamics are
incomplete or imperfectly known then the prediction using the state model
will be inaccurate. In this case, an ordinary EKF may produce unrealistic
estimates in the presence of high measurement noise.
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« Also, there is no guarantee that an ordinary EKF will always prodwece n
negative estimate ai,;. For instance, let us assume that an element of the
predicted value, i.e[ji;;_1]; (predicted using (4.10)) is less tharat anyt.

In that case, if;; # 0 we may have an imaginafy,|;; = abl;; [ﬁt‘t_l];’.*l,
if b— 1is a fractional quantity. As mentioned in [79], the standard values for
b mainly lie in the interval of) < b < 2.

In these circumstances, any further prior information akgubeyond the dy-
namics) is desirable to achieve a stable and more accurate solution.

4.4.2 Available prior knowledge regarding rainfall field

Prior information abouti; can be acquired from the physical properties of rainfall
such as sparsity and non-negativity. In a given area, the rainfallsityeitself

can be assumed to be a sparsely distributed environmental field over the entir
service area [86] [68]. But sparsity can also be introduced bysemtingu; in an
orthonormal basi®¥,, which can in principle be time-varying. When rainfall itself

is sparse we simply hawe; = 1. Denotingu; = W¥,z;, sparsity is measured by
the number of non-zero entriesap, i.e., ||z||o.

As the rainfall intensity cannot be negative, another prior knowledgatat; is
the non-negativity of the rainfall field. F@¥ pixels, thisis represented as > 0.

Comment Here we mention that the prior information regarding sparsity and
non-negativity along with the measurements can be efficiently utilized to monitor
the rainfall over multiple snapshots. For this we do not need any informadion r
garding the dynamics. This can be implemented for both lifedr [69] as well as
non-linear [68] measurement models. However, one limitation of this dynamics-
agnostic method is that the rainfall events should occur in areas wherenaiu&o
links are present for accurate estimation. Otherwise, the effect of theunszaent
noise can be dominant. In this case, we need other spatial/temporal information
(e.g., covariance structure, dynamics) to interpolate the rainfall fieldtbeesntire
service area.

In the next section, we illustrate iterative approaches to dynamically estimate
the state ofi, fort = 1,...,T, exploiting sparsity, non-negativity as well as dy-
namics.
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4.4.3 Estimation ofu,

A simple Kalman estimation step without the sparsity and the non-negativity con-
straint can be formulated as the following weighted least squares optimization p
lem [87]:

N . ~ 2 ~ 2
Uy = argmin |Gy — utHMt_\tI 1 + |y — Jewg|| g -1- (4.13)
u -

This estimation step is not aware of sparsity or non-negativity. The spariity
mation can be incorporated in the optimization problem_of (4.13), by adding an
£1-penalty that enforces sparsity. Note that here we usé;tiirm as a convex
relaxation of the non-convefy norm. Using the sparse representatiorugfi.e.,

z;, the optimization problem of (4.13) can be formulated as a sparsity and non-
negativity constrained optimization problem. This can be given as,

2 =argmin |y — Wizel5 1+ 1§ — TeWizel[j0 + Mzl (4.14)
‘I’tthON t‘tfl

Uy =Wz, (4.15)

where)\; is the tuning parameter that controls sparsity. The standard error covari-
ance update ofi,; for the estimation step (4.1.3) is given B, = M, —
My I (Re 4+ I My IT) 1T My = (Mt—‘t{1 +JI'R;13,) ! [B7]. This
expression oM, can be used to update the covariance of the estimate of (4.14)
but is an approximation as it is not aware of the sparsity and the non-viggati
constraint. If we do not consider to propagate the second order statiftioe
estimate, like in the traditional Kalman filter, the state noise minimization term in
(4.14) can also be regularized 6y instead ofM,;_,. This can be viewed as a
weighted least squares problem to estimateising the measurement (4112) and
the state equatiofi (4.9) constrained by sparsity and non-negativity. lcetgs the
simple iterative state estimates are given by,

Uy =Hpy g, (4.16)

z; = argmin |G, — \Iltth2Q,1 + ||y — Jt‘I’tZtH%lfl + Mel|ze|1, (4.17)
W.z:>0pN

gy =02 (4.18)

Note that this is a suboptimal approach to dynamically estimate the stad@sid-

ing the computation oM, ;. As mentioned in[[72], different penalties (like or

/1) can be applied to the state error minimization terniin (4.17) depending on the
nature of the sparse state ] and/or the state noise).
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4.4.4 Constrained MAP estimator foru,

Using the representation of, in the ¥, = ¥ domain, the measurement and state
equation of[(4.12) and (4.9) can be written as,

yi = JiPz +e (4.19)
7z, = Wiz 1+, (4.20)

whereH, = $"H,¥, q, = ¥7q;, andq; ~ N(0,%7QW¥), whereq; ~
N (0, Q). From the above measurement and state equations, we can derive-the con
ditional probability density functions(y;|z;) ~ N (J; ¥z, R) andp(z;|z;—1) ~
N(H;z,_,, #TQW). Using Bayes’ rule, the posterior pgfz|y;) can be given
asp(z¢|y:) < p(yi|z:)p(z¢|z—1). So, a MAP estimator foz, can be formulated
as

arg max [In p(¥¢|z¢) + In p(z¢|ze—1)], (4.21)

Zt
wherez,;_1 is computed from the previous time step. However, there is no guar-
antee that the estimator in_(4121) will produce a sparse estimatg. oOn the
other hand, the representatiomnfin the ¥ domain is targeted to exploit sparsity.
So, the estimator of (4.21) can be formulated as a constrained MAP estimator by
adding the sparsity and non-negativity constraint in the optimization probfem o
(4.21). After substituting the pdfs, following the same approach as us&dlid)(
the sparsity and non-negativity constrained MAP estimator can be given as

N . ~ 2 ~ -
Z; = argmin ||Zt - tht_1||(\IlTQ\Il)71 + Hyt — Jt‘I,ZtHf{—l =+ )\tHZt”L (422)
‘I’ZzZON t

where \; controls the sparsity in the estimaze. From the solution of({Z.22),
the state estimate is given ag, = ¥z;. It is seen that resorting to a Bayesian
paradigm, the developed constrained MAP estimatdr of(4.22) has a sérgatu
ilar to the optimization problem of (4.17).

4.5 Selection of the representation basis

If the spatial rainfall distribution is physically sparse, then we simply solvefe
timization problem of[(4.17) fo@; = I. But in the absence of physical sparsity,
which is a more general case in many practical scenarios, we use alhadgie-
visiting the celebrated theory of compressive sampling, we know that sothe of
properties of both¥; andJ,, (or ®, = J,¥,) like mutual coherence, restricted



72

isometry property (RIP), etc. are important in the framework of sparsenre
struction [71]. Let us denote the quantjty®,) as the mutual coherence of the
matrix ©,, which is the maximum absolute inner product of different columns of
O, [88]. Without the state error minimization term and the non-negativity con-
straint in [4.17), the problem is a simple basis-pursuit denoising (BP Di\bigm.

As derived in [89], if a suitable sparse representation;0 possible, which is
given by||z:[lo < 3(1 + ;&,7), then a “stable” solution with the standard BPDN
algorithm can be obtained with a bound on the estimation error. Along the same
lines, the cost function of (4.17) can be viewed as a BPDN problem by anting

the measurement and the state noise minimization terms into a single least squares
term [75]. In [75], the convergence guarantees of the aforememtiBREN prob-

lem are also derived based on some assumptions on the dynamics and theemeas
ment matrix (herd,).

In our application, the design of the measurement mdiyixn every snapshot,
is dictated by the link locations and the predicted state estimaigs ). So, to
maximally exploit the sparsity information of the rainfall field, we focus mainly on
a suitable sparse representation of the stateStandard orthonormal bases such
as a discrete cosine transform (DCT) baSisr wavelet basi3V are quite popular
in sparse signal representation for communications as well as image gingces
Also, a Gaussian basis function can be used to sparsely repres@onarental
signals [22]. However, an orthonormal basis can also be construstiad the
spatial covariance matrix of the rainfall field. An orthonormal basis candme
structed by the spatial covariance matiy, described in Sectidn 4.3.1, by simply
choosing¥; = U, whereX, = UAUT is the eigenvalue decomposition Bf,
with UTU = I and A a diagonal matrix. In this case; = U”u, is similar to
applying a Karhunen-Loeve transform (KLT), which is also advocaked sparse
representation technique |37].

We choose a basi¥,, that has a minimum mutual coherence with the mea-
surement matrixJ;. Mutual coherence can be measured for the overall dictio-
nary ®; = J;¥,. In this caseu(®;) can be quantified as the maximum mag-
nitude off-diagonal element d»; = ©7©,, where®, is obtained by normal-
izing the columns 0#®,. In this case, the mutual coherence can be defined as
p(Je®y) = () = maxy i, 12 | [De]i x| [90]. So, given a seif of U sparsifying
basis matrices, the minimal coherence basis matrix at tiwen be selected by
solving the following optimization problem,

¥, = argmin w(Je ) s.t. Wy € U. (4.23)
w,y
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Note that to optimally select the basis we need to solve this optimization problem
on every snapshot as the matdx is recomputed at every time stép In our
simulations, we specifically ugé = {C, U}.

4.6 Selection of the tuning parameter

The sparsity regulating parametgrin the optimization problem of (4.17), can be
adapted dynamically. It can also be kept fixed for multiple snapshots foitoniowg

a short period of rainfall, within which the sparsity pattern can be assumied to
fixed. An upper bound on\; is given by \; = A***, which gives the sparsest
solution, i.e.,z; = Oy or u; = ¥;z; = Opn. Note that the cost function of
(4.17) is non-differentiable but convex fay > 0. So, following the methodologies
of [73] and [91], we use a subdifferential based approach to comgtité. The
subgradient of the non-differentiable cost[of (4.17) with respezt tan be written
as,

Vi f (2e) = 2(— 97 Q' (uye1 —Wy2y)— 0] IR (v, —J1®20))+- M Vi, ||z |

(4.24)
where?zt is the subgradient operator towargs Using the first order optimality
condition we have,

. o /\t [th‘ > 0,
2%/ Q (g1 — Cyz) + T/ IR Ny, — I ®z))]; € — N [z:]; <0,
[t Al [z =0,

wherej = 1,...,N. Now, let us consider the case = 0. Substituting
this in the above equation the optimal value)jt** can be selected ag"** =
12087 Q My —1 + ¥FITR yy)|l- I this way, a useful range foy; is given
by [0, A=)

Traditional approaches to select the tuning parameter faof qenalized re-
gression problem are cross-validation and generalized cross-vatid@i@v) [38].
Recent methods suggest information theoretic approaches like Mallowtgpep
criterion [92], Akaike information criterion (AIC) [23], Bayesian infortian cri-
terion (BIC) [94] etc. to find an optima);. In all of these approaches, the optimal
tuning parameter is selected that minimizes a cost function which depends upon
the estimate ofy; using a set of \f} X, where the length of the search grid for
¢ is K. In this case, we need to solve the optimization probler of (4K fiines
in every iteration and select the optimdl that minimizes any of these aforemen-
tioned model selection criteria. After thdf, (4.17) needs to be solved agaitheith
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selected\}, in order to estimata;. This seems to be computationally unrealistic
for an online application of the dynamic rainfall monitoring over a large servic
area (largelV). To circumvent this problem, th& optimization problems can be
solved once and the selectédcan be used for multiple snapshots for a short term
monitoring application.

It is clear that increasing the value &f, i.e., the term)|z;||; becomes smaller

approx

and vice versa. So, if an approximationzf i.e., z; , is available, it can be
related to the tuning parameter By o« 1/|/z;**"**||;. Following this, a coarse
but relatively fast approach to dynamically tukgcould be selecting a tuning pa-
rameter given by\, = v(|[®7a,,_1]l1)~", wheret,,_; can be regarded as an
approximation ofty, andv > 0 is a proportionality constant. In our simulations,
we usev = 1.

For the sake of completeness, we summarize the steps of the two proposed
dynamic rainfall monitoring algorithms. In algorithim 2, we follow the standard
steps of dynamic state estimation, but we do not update the second ordéicstatis
of the estimate. In algorithin 3, we use the approximate approach, whersewe u
the standard Kalman covariance update (unaware of sparsity ancegativity).

The performance of both these algorithms strongly depends upon the initial-
ization . One should avoid initializations like an all zero vector or &,
that consists of negative elements. If we consider the initializaiign = Oy, it
will produceJ; = Oprxn, sty g = Hyligp = Oy. Itis mentioned in([79], that
the standard values férmainly lie in the interval of0 < b < 2. It should also
be noted that, fob < 1 (for frequencies in the range— 3 GHz, or frequencies
above 40 GHZz[79, Table I1]) the Jacobi@h|;; = abl;; [ﬁt‘t_l]z’fl is undefined if
[Gy¢—1]; = 0, if we havel;; # 0. This problem can be circumvented by replacing
the0 rainfall scenario by a very small value (close to zero) like in the ordéfof
mm denoting a no rainfall event, and the non-negativity constraint caepeced
by u; > 10~*1 in the optimization problems. However, in our simulations we
useb > 1.

4.7 Simulation results

In this section, we present some simulation results to test the developed methodo
gies to dynamically monitor the rainfall in a given area. Here we perform nigaie
experiments for three scenarios.

In the first casewe assume that the dynamics/state model,Hg.is perfectly
known through the parametetis D, andw.
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Algorithm 2 : Dynamic rainfall monitoring (with no covariance update)

1: Initialize t = 0, g
2. fort=1,...,T
3 givena,b, l;, (i=1,...,.M; j=1,....,N),y, R;, H, Q

4. Predict ty,_y = Hyly_qp—1.

5. ComputeJy, y;

6: Select®, (using [4.28))

7. Select\, = (|| ]ty ]l) "

8 Solvez, = argming,,,>ol[|Gy—1 — ‘I’tth?Q—l + [y _Jt‘I'tzt”%tZl +
Atl|zt][1]

9: Compute i, = ¥,z

10: end for

11: end

In the second cas&e consider that the dynamics are not perfectly known and
we assume that the state model is a Gaussian random walk.

In the third casewe consider the scenario where we do not have any informa-
tion regarding the state model/dynamics. The simulations for these threeissenar
are presented below.

4.7.1 Ground truth with known dynamics

The ground truth is used from a practical rainfall event in an ar@a ef25 square
kilometers in Amsterdam, The Netherla||1ds . We take one spatial mamahutes
gauge adjusted radar rainfall depth (mm) of the same area of the dayl 211,
which is shown as the first state, i, in the Figurd 4.3.

We assume that the state transition matrix, ;,and the process noise co-
variance matrix, i.e.Q; = Q is perfectly known in this case. The parameters of
the state transition matrikl; = H are given asv; = w = [1,0]7, a = 0.33,
andD = I (isotropic diffusion) for allt = 2,...,T snapshots, wher& = 8.
We assume the temporal sampling interval, ide.= 15 minutes. The parameter
w represents a constant advective displacemelni minutes. The covariance ma-
trix of the state noise, i.eQ is assumed to have an exponential structure given as
[Qli; = oZexp (—M) with 02 = 1073 and~y = 3.33. The state noise
vector q; at every snapshot is generated from the distributipr~ N (0x, Q).

Data courtesy: Royal Netherlands Meteorological Institute (KNMI), Rle¢herlands
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Algorithm 3 : Dynamic rainfall monitoring (with standard Kalman covariance up-
date)

1: Initialize ¢ = 0, G|, My)o

2 fort=1,...,T

3 givena,b, li;, (i=1,...,M; j=1,....N),y, Ri, H, Q

Predict ty;_1 = Hyly_yj_q, My—1 = UM,y H] +Q

Compute Jy, y¢

Select¥, (using [4.28))

Select\; = (H‘I'?ﬁtu—l”l)il

Solvez; = argmin\I,tZtZO[Hﬁt‘t_l — ‘PtZtHi/If_“l 1 + [lye — Jt\IltZt|];;1 +
Atllzel1]

9:  Compute vy, = ¥z
10:  Update M, = (Mﬂth + IR It
11: end for
12: end

© N o g k&

After generating the states of; using the state model df (4.5), we set the nega-
tive elements oix, to 0. This is a modelling approximation adopted to avoid the
generation of the negative rainfall values for very low rainfall intensities

The total number of pixels is given @8 = 25 x 25 = 625, each of size
1 square km. Using this we generate the staigs. . ug using the state model
mentioned in[(4)55). Based on these parameters, the space-time evolutioriaif ra
overt =1,...,8 snapshots (each @b minutes, i.e. in total 20 minutes) is shown
in Figure[4.8. The unit of the rainfall field is millimeter (mm).

4.7.2 Ground truth with unknown dynamics

In this section, we consideY consecutive snapshots o5 minutes radar rainfall
depths of the same day and area as mentioned in the previous sectighsiidge

shots of tharue gauge adjusted radar rainfall deptlase shown in Figure 4.4. In

this case, we have no information regarding the state model. We assume that the
state model is a Gaussian random walk, E&.,= I. The process noise covariance
matrix Q is assumed to be the same as before.
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z (Km) 2 (Km) 2 (Km) © 2 (Km)
Figure 4.3:Spatio-temporal evolution of the rainfall (mm) (known dymias);
The matriced; = H fort = 2,...,8 are known and given in Sectign 4.I7.1. The states

are generated using the state model.

u
25 T Hl\ T

z (Km)

Figure 4.4: Spatio-temporal evolution of the rainfall (mm) (unknownndynics). The
states are generated using the ground truth.
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4.7.3 Measurements

In this work, we simulate the measurements using the locations of the microwave
links from a network ofl 51 microwave links. The total number of measurements
forallt = 1,...,8is M = 151. The locations of the microwave links in the
service area along with the équare km) pixels, where we would like to estimate
the rainfall intensities, are shown in Figlrel4.5.

We would like to mention that most of the microwave links in the Netherlands
(specially in the urban areas) are operated&GHz. In that caseb ~ 1, i.e.,
the measurement model becomes linear. To check the estimation perforniance o
the developed algorithms in a non-linear measurement framework, we intahtion
chooseb # 1. In this case, we assume that the rain temperature fhewhich
corresponds td_[79, Table 1l]. We select the operating frequencye tthllGHz,
with @ = 3.28 x 1072 andb = 1.173. Using these, we simulate the measurements
at 8 snapshots, i.e{y:}>_,, using the non-linear measurement model[of](4.2),
whereu;;'s are the true values for = 1,...,625, andt = 1,...8 as mentioned
in the previous section. It is assumed that flemeasurements are collected in
every 15 minutes interval which are corrupted by additive white Gaussian noise
characterized bg; ~ N(0y,021,/). Here we user? = 0.001. The parameters
L; andl;; are known from the geometry of the links as shown in Figure 4.5.

Here, we generate two different sets of measurements. The first setanf
surements is for th@ snapshots, i.e{y:}}_,. These measurements are computed
using the ground truth where the dynamics, ité;,,= H for¢t = 2,...,8 are per-
fectly known (Figuré 413). The second set of measurements are comysiethe
exact radar rainfall maps (Figure %.4) fosnapshots, i.jy: }?_, whose dynamics
are unknown.

4.7.4 Dynamic rainfall monitoring

The noisy sets of measurements are used to estimate the rainfall depths 625
pixels overT" = 8 snapshots. In this section, we perform simulations for two
different scenarios which are perfectly known dynamics and a Gaussilom
walk dynamics.

Perfectly known dynamics

The measurementSy; }8_, are computed using the true values shown in Figure
43, ie.,{u}? ,. Here, we user? = 1073. These measurements are used to
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Figure 4.5: Locations of th&/ microwave links from where the measurements
are collected (area: Amsterdam, The Netherlands).

estimate the stategy; }$_,. The parameters of the spherical variogram model are
computed for the particular day of the year, i.e., June 11, 2011 [30],tpote

.. The sill (Sg) and the ranged) parameters are computed using (11)[ofi [30],
whose parameters are taken from[ofl[30, Table 5]. Theninutes time interval is
rescaled in hourly scales, i.€.25 hrs. We assume that the nuggefNig = 0. The
value of the ranged) is 17.4675 km and the sill £y) is 5.3328 mm?.

Based on the predictions and the available link locations, it is seen that the
DCT matrix exhibits minimal coherence with, in every iteration. We initialize
u;; = ply, wherefi is computed by empirically averaging the ground truth of
the first statax; over NV pixels for both algorithms. In a real application, an appro-
priate initialization can be computed using the trend of the rainfall field, which is
generally available from the climatological information of the area. For Algarith
3, we initializeM,;; = Iy. We use the software CVX[52] (parser CVX, solver
SeDuMi [53]) to solve the convex optimization problems (i.e, (4.17) for Athan
and [4.14) for AlgorithniI3).

In Figured 4.6 and 417, we show the reconstructed spatial rainfall maheor
stateqi, andig, respectively using the Algorithid 2. The same estimates are shown
in Figured 4.B and 419, respectively using the Algorifim 3.

We plot the pixel-wise comparisons of the estimates with the true values for all
the7 snapshots, i.e., a total 625 x 7 = 4375 pixels for the Algorithms 2 and 3 in
Figure[4.10 and Figuile 4111, respectively. The dark black lines in theef@ a0
and Figuré 4.111 represent the= z line. Itis observed that Algorithm 3, i.e., using
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0.2

Figure 4.6: Estimate of the spatial rainfall (mm) map)X with perfectly known
dynamics (Figuré413); (Algorithm 2).

the standard Kalman covariance update exhibits better estimation perforthance
Algorithm 2, where the second order statistics are not updated.

10 20 25

z (km)

Figure 4.7: Estimate of the spatial rainfall (mm) mag) with perfectly known
dynamics (Figuré413); Algorithm 2.
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Figure 4.8: Estimate of the spatial rainfall (mm) map ) with perfectly known
dynamics (Figuré_4]3); Algorithm 3.

N
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T (kr].T_S]) 20 25

Figure 4.9: Estimate of the spatial rainfall (mm) mag) with perfectly known

dynamics (Figuré4l13); (Algorithm 3).

Gaussian random walk

In this section, the state model is considered to be a Gaussian random walk, i.e
H; =1Ifort =1,...,8. The process noise statistics are considered to be same
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Figure 4.10: Pixel-wise comparison of the estimates [Algorithm 2 (knownrmdyna
ics)].

= N
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True valte (mrﬁ) “0 ’
Figure 4.11: Pixel-wise comparison of the estimates [Algorithm 3 (knownrmdyna
ics)].

as before. The measurements fosnapshots, i.e{y;}>_, are generated using
thetrue radar rainfall depthshown in Figuré€ 4]4, using the meaurement model of
(4.2) with the same, b coefficients as the previous case. The measurements are
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Figure 4.12: Estimate of the spatial rainfall (mm) map)(with unknown dynam-

ics (Figurd 4.1).

different from the previous known dynamics case as the true valu{astpﬁzl, i.e,

the true radar rainfall depths (as shown in Figure 4.4) are differethidrcase, the
measurement noise variance is reducetfte- 10~°. Due to better estimation per-
formance (as seen in the case of perfectly known dynamics), we sétguitAm 3

to estimate the statdsi; }?_, using the measurements generated by the true radar
rainfall depths.

In this case, as the predictions using the sate model are not accurate asthis c
we do not perform the tuning of; based on the predictions. However, the tuning of
¢, in this case can be performed using the standard methods mentioned in Section
[4.8. In the current setup, to exploit the sparsity prior on every snapshdix
A+ = A = 2 for the sake of simplicity. The initializations are given @yl = i1y
andM0|0 =1Iy.

In Figured 4.1P and 4.13, we show the estimated spatial rainfall maps of the
statesi; andug, respectively assuming that the state model is a Gaussian random
walk. In Figure[4.T4, we compare the estimation performance of the estimates of
the 625 pixels overs snapshots, i.e., a total 625 x 8 = 5000 pixels with the true
gauge adjusted radar rainfall depths.

The following inferences can be drawn from the aforementioned simulation
studies.
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2 (krlrS]) 20 25

Figure 4.13: Estimate of the spatial rainfall (mm) mag)(with unknown dynam-
ics (Figurd4.1).

Estimated value (mm)
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Figure 4.14: Pixel-wise comparison of the estimates [Algorithm 3, (Gausaian r
dom walk)]; Performance comparison on real data.
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* The estimation performances in the first two cases are highly depement o
the accuracy of the state model, availability of the measurements in any re-
gion, and the initialization of the algorithm. In Figure 4.9, the estimate of the
statetig is much better than the same estimate in Figurel4.13, as the dynam-
ics are perfectly known in the first case. Also, the estimation performance is
improved with time as the state error is minimized with temporal iterations

(Figure[4.9).

» As seen in Figure 415, there are many regions without any microwave links/
measurements but where a rainfall field is present. In these regionss-the e
timates are mainly dependent on the predictions. On the other hand, if there
is no rainfall over any link, the rainfall can be overestimated or underesti-
mated in those regions, due to the effects of the measurement noise. This
effect severely impairs the estimation performance in the case when we do
not have an accurate prediction (or no prediction).

» There is always a trade-off between the estimation performance and the
“availability” of the measurements and/or the “accuracy” of the predictions.

¢ The reasons behind the scatter plots being not very symmetric are due to the
biased estimates in the measurement-void regions and the rainfall-void links.

4.7.5 Performance metrics

To compare the estimation performances of the developed methods we use some
performance metrics, which are described in the following part of this secTioe
performance of a rainfall monitoring method can be quantified by root nopsare

error ¢mse in mm), the mean biasnf{b in mm), and the correlation coefficient

(p) [66]. We quantify the overall estimation performances of all the abosearios

for IV pixels overT” snapshots using the aforementioned metrics. If the true value
and the estimate of the rainfall field at ahwre given byu, and;, respectively
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then the performance metrics can be defined in the following ways

1 T N
rmse =, | > (fly — [wdy)?, (4.25)
t=1 j=1
1 T N
mb = = > 0 ([l — [ud), (4.26)

, (4.27)
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wherefi = 7> YN [ty andp = 7 Y1, S0 [u]; are the sample
means of the estimated and the true values of rainfalM@ixels overl’ snapshots.

The performance metrics are computed for the estimates using Algorithm 3 for
the scenarios of perfectly known dynamics and Gaussian random wagrdgs.

For both of these scenarios, we also estimate the rainfall depths using aBikiple
without any sparsity and non-negativity constraint. To avoid the negasitimates
produced by the EKF, we set the negative estimatds toVhile computing the
performance metrics we fix the process and the measurement noise @artanc
02 =10"*ando? = 1073, respectively in all the cases.

When the dynamics are perfectly known then the performance metricsrare co
puted for the estimates 625 pixels for7 snapshots and averaged ogedifferent
measurement noise realizations. In Tdblg 4.1, we present the perfanmate
rics computed for Algorithm 3, and a simple EKF (with the thresholding) for the
perfectly known dynamics case.

In Table[4.2, we present the aforementioned performance metrics computed
for the estimates 0625 pixels for 8 snapshots using Algorithm 3 (with fixed
A+ = A = 2) and an EKF (with the thresholding), where the state model is assumed
to be a Gaussian random walk. Here, we also average the performatriss rioe
20 different measurement noise realizations. In all of these realizationmehe
surements are generated using the true radar rainfall depths as sheiyarei4.4.

From the above results it can be seen that

 For a perfectly known state model extra information like sparsity and non-
negativity does not play any significant role in terms of estimation accuracy.
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Table 4.1: Performance comparison with EKF (with thresholding); Perfectly
known dynamicsd? = 1074, 02 = 1073).

Performance metric Algorithm 3 EKF (with thresholding)

rmse (mm) 0.3167 0.3178
mb (mm) 0.0014 0.0023
p 0.8973 0.8963

Table 4.2: Performance comparison with EKF (with thresholding); Dynamics is
assumed to be a Gaussian random watk-¢ 1074, o2 = 1073).

e —

Performance metric Algorithm 3  EKF (with thresholding)

rmse (mm) 0.4719 0.6542
mb (mm) 0.2123 0.4334
p 0.5572 0.3034

This is clear from Table 1 where it is shown that the performance improve-
ment over a simple EKF (with setting the negative estimates to 0) is negligi-
ble.

* When the information regarding the state model is unknown and approxi-
mated as a Gaussian random walk model then the performance of a simple
EKF is very poor. In this case, the sparsity and non-negativity information
along with the measurements improve the estimation performance (Table 2).

« The last mentioned observation is quite useful in practical cases, wiere
availability of an accurate state model is scarce.

The computation times for both Algorithm 2 and 3 including the basis selection
part is less than a minute fdv¥ = 625 pixels using the aforementioned off-the-
shelf solvers. The computation time is increased/ifs higher than625. Algo-

rithm 2 is computationally simpler than Algorithm 3 because there is no covariance
update state. But the price we pay is in terms of the estimation performance. How
ever, the speed of the developed algorithms can be increased by usinigcten
subgradient method [95].
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4.7.6 Spatial rainfall mapping (no dynamics)

In this case, we assume that we do not use any prior information regahdinty-
namics. On every snapshot, we estimateising the measurements and exploiting
the prior information regarding the sparsity and the non-negativity. In #ss,dor
the sake of simplicity we assume that the measurement model is linear, i.e, the case
when the links are operated aroB®IGHz. Here we use, b = 1.

The linear measurement model is given y = Pu; + e;, wWherey;; =
Z;VZI ujlij +e; s, wherer = 1,..., M. On every snapshot, we solve the sparsity-
aware non-negativity constrained optimization problem given as

Z; = argmin”yt—@\Ilth%{_l + A||ze|)1 (4.28)
Yz, >0n
= WUz, (4.29)

However, this can be easily extended to a non-linear measurement maauti oty
ing an iterative linearization with respect to a suitable initial guess. Like in the
previous case, here we also fix= 2 and the used basis is DCT matrix on every
t. However, an upper bound oncan be easily computed in this case by using the
same methodology discussed in Secfion 4.6.

In Figured 4.1b and 4.16, we show the estimated stateendug by solving
the optimization problem of equation (4128). The measurement noise vaig@ance
setasr? = 107°.

In Figure[4.1¥, we compare the estimation performance of the estimates of total
625 x 8 = 5000 pixels with the true gauge adjusted radar rainfall depths.

4.8 Conclusion

We have developed a generalized dynamic rainfall monitoring algorithm lfrom

ited non-linear attenuation measurements by utilizing the spatial sparsity and non
negativity of the rainfall field. We have formulated the dynamic rainfall moimigpr
algorithm as a constrained convex optimization problem. The performartbe of
developed algorithm is compared with the standard approaches like an d&KF f
the scenarios, where we have both perfect knowledge about the stdét amal

an approximate state model. Numerical experiments show that the developed ap
proach outperforms a simple EKF in scenarios, where the state model igmot p
fectly known. The proposed methodology can be equivalently implemented fo
dynamic field tracking in tomographic applications like MRI, microwave tomogra-
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Figure 4.15: Estimate of the spatial rainfall (mm) map)(with unknown dynam-
ics (Figurd_4.1) (exploiting only sparsity and non-negativity).
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Figure 4.16: Estimate of the spatial rainfall (mm) mag)(with unknown dynam-
ics (Figurd_4.1) (exploiting only sparsity and non-negativity).
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Figure 4.17: Pixel-wise comparison of the estimates (exploiting only spargity an
non-negativity (no dynamics, linear model, performance comparisorebdatn)).

phy etc., where we can assume to have path-integrated measuremerpteddosu
Gaussian noise.

However, tackling more complicated dynamics of the rain (possibly non-linear
and highly time-varying), and non-Gaussian measurement noise coulusbible
future extensions of this work. In that case, both the state and the meesure
models are non-linear. This triggers one to use an unscented Kalman fiey,(U
particle filtering based algorithms, or other heuristic approaches. Estimétiba o
underlying dynamics of rainfall from the available ground truth and usifag real
time dynamic monitoring is also a part of the future research. A real time selection
of the most informative attenuation measurements from the available links auld b
interesting in order to reduce the processing time and computational complexity.



Chapter

Spatio-Temporal Sensor Placement
for Kriged Kalman Filter (KKF)

As mentioned in the earlier chapters, one of the most important applications of
a homogeneous/heterogenous wireless sensor network (WSN) is tthieagatio-
temporal evolution of an environmental field with a pre-prescribed acguiaif-
ferent types of environmental, geophysical and biological procesdebit com-
plicated spatial as well as temporal variability. Spatial and temporal variabilgty o
spatio-temporally stationary physical field can be modelled by its correlatien ov
space and time [7]. If the field is non-stationary then a suitable dynamic madel ¢
be used to model the spatio-temporal evolution of the fi€ld [7]. If the fieldbésh
both a stationary and non-stationary behavior over space and time thezidheafi
be dynamically monitored by the combination of kriging [7] and Kalman filtering,
i.e, a kriged Kalman filter (KKF) [96] or space-time Kalman filter|[19].

In this chapter, we propose a sensor placement method for spatio-téfgidra
estimation based on a kriged Kalman filter (KKF) using a network of static or
mobile sensors. The developed framework dynamically designs the optimal co
stellation to place the sensors. We combine the estimation error (for the station-
ary as well as non-stationary component of the field) minimization problem with
a sparsity-enforcing penalty to design the optimal sensor constellation iocan e

This chapter is published as: V. Roy, A. Simonetto, and Gsl.&spatio-temporal field
estimation using kriged Kalman filter (KKF) with sparsitgfercing sensor placement”,
Sensorsvol. 18, no. 6, pp. 1778, April, 2018.
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nomic manner. The developed sensor placement method can be directlipused
a general class of covariance matrices (ill-conditioned or well-conditjomea-
elling the spatial variability of the stationary component of the field, which acts
as a correlated observation noise, while estimating the non-stationary centpon
of the field. Finally, a KKF estimator is used to estimate the field using the mea-
surements from the selected sensing locations. Numerical results aréegroy
exhibit the feasibility of the proposed dynamic sensor placement followatdy
KKF estimation method.

The outline of the chapter is as follows. The prior research works in this fie
along with the main contributions of this chapter is presentdd ih 5.1. In Section
(.2, the measurement model and the main problem statement is presented. The
statistical nature of the stationary and the non-stationary components aflthis fi
presented in the Sectién 5.3. A simple KKF estimator is described in Séction 5.4.
In Sectior{ 5.5, the overall performance metric as a function of the sensaiido
selection vector is presented. The proposed sensor placement pfoliemed by
a KKF estimator is presented in Sectlon]5.6. The simulation results are shown in
Sectiori5.)7. The conclusion of the chapter along with the future resemections
are presented in Sectiobn b.8.

5.1 Prior art and contributions

The key idea behind the KKF is the liaison of krigirig [7] and Kalman filtering.
The unknown physical field is modelled as a combination of a non-statiooapy (
turing the dynamics) and a stationary (capturing the low magnitude spatieis3ffe
stochastic component. Assuming that the dynamics of the non-stationary compo-
nent and the second-order statistics of the stationary component (egriacce
structure) are perfectly known, KKF jointly estimates both of these field compo-
nents using the spatial observations at every time instant. The KKF par&adigm
been used for different applications like wireless communications (e.gtrape
sensingl[97] and path delay estimation/[98]) and field estimation [19].

One of the important overheads of dynamic field estimation using a WSN is
the lack of sufficient measurements at every time instant. This is related to the
shortage of sensor life time, availability of bandwidth, and other resaateted
economical constraints. In such scenarios, we need to efficiently place/ine
available sensors into the most informative locations over space and time. Dy-
namic sensor scheduling is a well-cultivated topic in the fields of signal psoug
as well as control theory [99], [51], [100]. Prior knowledge reljag the corre-
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lation of the field over space and time can be exploited in a multi-layer design
of sensor networks [21]. Selecting the most informative sensing locatambe
treated as a sensor selection problem, which can be formulated as a omtivex
mization problem[[45]. This can be solved for linear [101] as well as liv@ar
measurement models [41]. Sparsity-promoting approaches for selasernent
are also exhibited in [51]] [102], where the placement algorithm is fornulilase
ing the alternating direction method of multipliers (ADMM). In_[103], a general-
ized sparsity-enforcing and performance-constrained sensommgtenethod is
proposed, where the field can be either stationary or non-stationaswy.afbne-
mentioned method can be implemented for a single snapshot or multiple snapshot
ahead sensor placement and for a general class of spatio-temparaghnoe matri-
ces, which can either be ill-conditioned or well-conditioned. Seminal conitwits
on the convex formalism of sensor selection (likel [45]) assume that theuneeas
ment noise components are spatio-temporally uncorrelated. Howeverathtsec
an unrealistic assumption in some practical scenarids [26]. But even ia sces
narios, it has been shown that the sensor selection problem can bddtadas a
convex optimization problem [100], [104].

In this work, we develop a unified framework of sensor placement follidoye
a KKF estimator to dynamically monitor a physical field that exhibits both station-
arity and non-stationarity over space and time. In the first step, we sedectdbt
informative locations to deploy/move the sensors and in the second steftiwe es
mate the field by using the measurements from those selected locations. The key
contributions can be summarized as follows,

« The performance metrics to estimate the stationary as well as the non-stationary
components of the field are represented in closed form as an expliditdfanc
of the sensor location selection vector.

» The aforementioned analytical formalism tackles two important issues in the
sensor placement step. First, the developed method takes care of the fact
that the estimation of the non-stationary component of the field involves the
stationary component of the field as a spatially correlated observation noise
Second, the proposed method is applicable for a general class of gpatial
variance matrices of the stationary component of the field, even when they
are ill-conditioned or close to singular [58].

« The proposed sensor placement problem is formulated in a way that mini-
mizes a cost function that involves the sum of the mean square error (MSE)
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of the stationary and the non-stationary component of the field as well as
a spatial sparsity enforcing penalty. The overall optimization problem also
satisfies a flexible resource constraint at every time instant.

One of the aspects that distinguishes the proposed sensor placemerd matiho
the prior works in sensor placement for environmental field estimation is #e sp
cific statistical nature of the unknown physical field, which yields an adddou-
pling of stationary and the non-stationary components. Secondly, wédogeae
unified framework for the efficient utilization of the spatio-temporal variabiity

the field in order to design an opportunistic sensor placement method usimg a c
vex approach. We develop a parsimonious sensor placement algorltoweid by

a KKF estimator, which can be used to dynamically monitor a general class of en
vironmental fields (based on the assumed process model and spatial stafigte
field components). However, the developed approach is similar to [103}s tef

the primary measurement model, which is considered to be underdetermieed. W
emphasize that the proposed technique is a model-based centralizedpsaoso
ment method, where we resort to the Bayesian estimation philosophy. Waeassu
that the available prior statistical knowledge regarding the unknown piyfsetd

like spatial correlation information and dynamics are perfectly known aiptias

also assumed that for the current centralized setup the communicatiorofahge
sensors are sufficient to communicate with the fusion center, which cacdedo
inside/outside the given service area.

5.2 Measurement model and problem statement

5.2.1 Measurement model

Let us denote the spatially continuous fielddyx), at any discrete time indeix

and locationk € R?. We assume that the entire service area of interestifsrmly
discretizedover N pixels, where we would like to estimate the field intensities.
The field intensities of théV pixels at timet are represented by; € RV, Itis
assumed that the field intensity is the same everywhere within a pixel, and it can
be represented byy]; = u¢(x;), wherex; € R? is the centroid of thg-th pixel,
with j = 1,..., N. We consider a linear underdetermined measurement model

yt = Cruy + e (5.1)
= Ct(Vt + St) + €y, (52)
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wherev; € RY is the non-stationary component of the field ande RY is a
stationary component of the field capturing the non-dynamic spatial effédts
assumed that; ands; are mutually uncorrelated.

At any timet, the measurements are given y € RM: collected fromM,
(M; < N) sensing locations (pixels) of the entire service area. The construction
of the time-varying sensing or measurement matixe {0, 1}**" is same as
ChapteiB, i.e.C; = diagy (w;), Wwherew; = [wy1,...,win]T € {0,1}V is the
sensor location selection vectéor time ¢, anddiagy (w;) removes the all zero
rows fromdiag(w;). Similar to Chaptelr|3, we also hay®,]; = 1(0), when the
j-the field location is selected (not selected) for sensor deployment at.tidseng
these, we have

CIC; =diag(w;);  C;Cf =1, (5.3)

Note that the type of measurement matrix used in this work is similar to an in-
cidence matrix, which can be viewed as a flexible data collection method using
heterogeneous sensing equipments. In practice, when different afsessing
modalities are used, we may not know the process by which any of thersenso
gathers its measurement but only its recorded magnitude is important. Also, we
rigorously exploit the property of the structure ©f mentioned in[(5.3), later in
this chapter.

The error incurred by the measurement process is modelled theguglhich
is uncorrelated with botk; ands;, respectively. The spatio-temporally white mea-
surement noise; is characterized by, ~ N(0yy,, 521, ).

5.2.2 Main problem statement

The main problem is to design an optimal sensor placement pattern, i.e, to design
w;, whose support gives the optimal locations to deploy the sensors. At any
the design goal is to minimize the estimation error for both the stationary and the
non-stationary components of the field as well as to enforce sparsity,in.e,

to reduce the number of required sensing locations. If the estimation dritoe 0
stationary and non-stationary components of the field can be reprebgrasihgle
performance metrig(w;), the sensor placement problem can be represented by

arg min g(wWy) + Ae||we 1 (5.4a)
WtE{O,I}N
st KMt <1lw, < Kmex, (5.4b)

Atanyt, K/"i" and K/"* denote the lower bound on the number of available sen-
sors, and a given budget on the maximum number of available senspactigely.
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Sparsity is enforced through a sparsity-promoting penalty, i.ef; axorm of w;

in the second summand of the cost function (5.4a) with a time-varying recadariz
tion parameten; > 0 controlling the sparsity of the elementswf. A detailed
description regarding the structure of the objective function and the inmuertaf

the constraints in the optimization probleim {5.4) are discussed later in this chapte

5.3 Modelling of the spatio-temporal variability

5.3.1 Spatial variability

The spatial effects of the field are modelled through a spatially colorediygicte
rally white discrete random process~ N (s, £s), whereps € RY is the mean
andX; € Sﬁ’ . is the spatial covariance matrix ef. We assume that the process
is spatially second-order stationary as well as isotropic, which means that

ps = E[se] = psln, (5.5)
[Bslij = E[(se(xi) — ps) (se(x5) — ps)] = flIxi — x5l2), (5.6)
wherei,j = 1,..., N [7]. Note that here we follow the same spatial discretization

as mentioned in Sectidn 5.2.1. There are several empirical as well as pactame
model-based approaches to model the spatial covariance. In this wodssume
that the spatial covariance function is given by a simple squared exjirfenc-

tion: )
Ixi — x5

Fllxi = x4ll2) = 02 exp(—T), (5.7)
wheref > 0 is the parameter controlling the strength of the spatial correlation. The
covariance function mentioned in (5.7) is plotted in Hig.] 5.1 for increasingesalu
of the pairwise distance between the centroids of the pixels/;ies ||x; — x;||2
and the parametér. Note that the aforementioned covariance function belongs to
the family of Magrn covariance functions|[7], which are widely used to model the
spatial variability of a field in geostatistics and environmental sciences.

Using the squared exponential covariance function, the elements f thé/
spatial covariance matrix3};) can be constructed by the relatidn (5.6). Let us
consider a service area witN = 36 pixels. The centroids of thes¥ pixels,
which are also the candidate locations for sensor deployment are sh&igiin2.
These centroids are indexed from the top left to the bottom right. The elewfents
3, are shown in Fid.5]3. Note that based on the nature of the covarianctofun
(&.2), the spatial covariance mati is symmetric and based on the constellation
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of the candidate sensing locations (Fig.]15¥), is also a block Toeplitz matrix.
We assume that; andX; are perfectly known a priori.

5.3.2 State model

The spatio-temporal evolution of the non-stationary component of the ifield;;,
can be modelled by the following state model

vi = Hyvi_1 +qp. (5.8)

Here, the time-varying state transition/propagator matrix is giveHpy RY*V,

The process noise vectqy is assumed to be characterizeddyy~ N (0, Q;). The
elements of the state transition mathil act as spatial redistribution weights for
v;_1 for the temporal transition from— 1 to ¢ [7]. Note that the spatial redistribu-
tion can be dependent on the temporal sampling interval. Similar to Chapteds 3 an
[, we model the elements Bf; by using a parameterized Gaussian kernel function

[H]i; = vexp[—(x; —x; — &) D]} (xi —x; —a))], (5.9)

wherei, 7 = 1,..., N. and the spatio-temporally varying translation and dilation
parameters are representedajy € R?, andD}’ € S% ,, respectively. The scalar

v € (0,1) is a scaling parameter. In this work, we assume that the state transition
matrix H;, whose elements are parameterized{by} and {D%’} through the
function [5.9) is perfectly known a priori.

5.4 Simple KKF estimator and estimation error covari-
ance

Using the measurement and state model§ of (5.1)[anH (5.8), respectieetyath
estimateiy, for ¢ = 1,2,..., can be computed following the lines of a standard
KKF [19], [97]. First, a simple Kalman filter is used to track the dynamic compo-
nentv;, where the stationary componedtis interpreted as a noise term. In this
case, the measurement model is given by

Vi = Cyvy + &, (5.10)

wherey; = y; — Cius, € = C;8; + e, ands; = s; — ug. Furthermores; ~
N(0y, ), andé; ~ N'(0,r,, Ry), with R, = C;2,CT + 621, It can be easily
shown thatv; ande; are mutually uncorrelated as it is already assumed in Section
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Figure 5.1: Squared exponential covariance function for differalues of9 (vari-
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Figure 5.2: Service area witN = 36 candidate sensing locations.
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Figure 5.3: Spatial covariance matrix.

thatv, is mutually uncorrelated witlk; and e;, respectively. Now, using
the state model of (5.8) and the measurement modél of](5.10), the non-stationa
componentv; can be estimated following the lines of a simple Kalman filter [57].
In this case, the recursive state estimate at tinsagiven by

\A/t = Ht\Aft_l + Gt(}u’t — Cth\A/t_l), (511)
where the Kalman gaifx; can be expressed as
G = [H:My, Hf +Q/C{ x
[R; + C;(HM,, \H + Q,)CI~ . (5.12)

The MSE matrix of the estimate, at timet is given byE[(v; — v¢)(v: — fft)T] =
M,,, which is related to the MSE matrix of the estimate at timel, i.e., My, ,,
by the recursive relation [57]

M,, = [(HM,, H + Q) !+ CIR;'Cc] L. (5.13)

In the next stage, the estimatevgfin (5.11) is used to compute the stationary com-
ponents; using kriging, i.e, a simple linear minimum mean square error (LMMSE)
estimator([57]. The linear model is given py— C;v; = C;s; + e; and the related
estimator has the form

8t = ps + B CLH(CZ,CT + 021y) My — Ci¥p — Cips), (5.14)
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Figure 5.4: Plot of the condition number &f; vs. # with different number of
candidate sensing location¥’}.

where we use the prior informatien ~ N (us, ). The MSE matrix[[57] of the
estimates,, i.e, Mg, is given by

M, =[B! + 0. 2Cl eyt (5.15)

Finally, the overall field estimate at tintés given bya; = v; + $;.

5.5 Performance metrics as a function ofv,

In this section, we express the MSE matrices, M,, andMg, as functions o#w,.
First of all, we mention some facts regarding the structure of the erroriaoca
matrices presented in the expressidns (5.13)[and](5.15).

It should be noted that the measurement noise in{5.10) is correlatedoawer s
through the off-diagonal elements &;. Due to this fact, sensor selection ap-
proaches using the standard convex framework like [45], [41], [46B8][ i.e., de-
signing aw; by directly optimizing the expressiofi (5]13) is difficult due to the
presence of the off-diagonal elementsRyf. It should also be noted that the ex-
pression ofR, is a function of the measurement matfiy and thus the selection
vectorw;. However, we do not encounter this issue in the performance metric to
estimate the stationary componesnt i.e, (5.15), as the measurement naisas

assumed to be spatially uncorrelated in this case.
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Figure 5.5: MSE of the estimate ef vs. 6 for different numbers of candidate
sensing locationsX); M; = N; o2 = 1; The spatial resolution is increased by
representing one pixel of Fig. 5.2 Bypixels.

In the expression oM, i.e., [5.15), we assume thaL is well-conditioned,
i.e., accurately invertible. But this may not be the case in some scenarios. The
condition number of strongly depends on the correlation of the field, spatial
sampling distance, grid size etC. [58]. The variation of the condition numiber o
3 with different values of for both N = 36 and N = 144 is plotted in Fig.
[B.4. Itis seen that for a higher resolution or a strong spatial correldkierspatial
covariance matrix becomes increasingly ill-conditioned and thus close to singula
In such circumstances, we cannot compute the estimation error covanietiGe
M, using the expression_(5]15). In that cadd,, can be computed using the
alternate expression df (5]15) given by

M, = [ +0.°ClC] ™!
=3, - %,CT(C;2,CT + 5%1),,) 1 Ci X, (5.16)

which is obtained using the matrix inversion lemma (MIL). It should be noted that
the alternative expression of the MSE can be used to compute the MSE (iwithou
inverting X)), but it is difficult to express it as an explicit function of;.

In Fig.[5.3, we plottr[MS,,] for the best case, i.e., the MSE with all the pixel
centroids equipped with sensons,(= 15 or C; = Iy) for different values of
6, and for two different spatial resolutiond/(= 36 and N = 144) of the same
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6 x 6 square km service area. It is seen th@M,| decreases as the strength of
the correlation is increased by increasthg

To circumvent the effect of ill-conditioning as well as to handle the corrdlate
measurement noise in the expressiotvd§,, we propose the following approach.
We start by introducing the substitution

S = 5 + al, (5.17)

where X, is a well-conditioned matrix and € R. Substituting¥; = X, —
oI, we can represent the measurement error covariance matfix of (5,1R) a
C, X, CT +(1yy,, where( = o2—a and where we use@;C} = I,,,. Substituting
R, = C/ X C] + (Iyy, in (513), the MSE matrix for the estimate of the non-
stationary component is given by
Mvt = [(HtMthngﬂ + Qt)il"i_
cl(c,z,Cl + ¢Iy,) eyt (5.18)
Using the MIL, we have the following matrix identity
(le_r1 + C?(CIMt)_ICt)_l =X
— 2 C{ (CZaC + (Iy,) ' Ci 2y, (5.19)
from which we can derive
Cl(CZsCl + (Iyy,) ' Cr = 31
— 2 M=+ ¢ ldiag(wy)) e, (5.20)
where we usedC! C; = diag(w;). Substituting[[5.20) in[{5.18) we obtain the
following expression foMy,:
My, = [(HMy, Hf + Q)" + 3
— 3 HEt + Cldiag(wy)) 2L L (5.21)
Next, substituting®Z; = X, — oI in the inverse of the right most term &f (5]16)
and usingC;C! = I,;,, we obtain
Mg, = 2 — B,CT (C; X, CT 4 (Ipy,) 1 Cy 3. (5.22)
Substituting the identity (5.20) inté (5.22), we obtain the following expression of
Mg, :
M, = 3, — B35
+ B2 (L + ¢Cldiag(wy)) T LS. (5.23)
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Note that, the expression df (5]23) avoids the inversion of an ill-conditidied
Here, we only need to invert the well-conditionEg,.

In this work, we consider the overall MSE as a performance metric faosen
placement, i.eg(w;) as mentioned ir (5.4a). This is given by

g(wi) = tr(My, ) + tr(Ms,)
= tr[X — F[F 4 ¢ 'diag(wy)] 'F] ! + tr[Y]
+ tr[ZT[F + ¢ 'diag(w,)] ' 2], (5.24)

whereX = (HM,y, \H/ + Q) '+ LF =3, Y =%, - %35, and
Z = ¥_'3,. Note that the matriceX, F, Y, andZ are all independent of;. To
modelX, andF +¢~'diag(w;) as positive definite matrices we nelek o < o2.

The performance metric derived in_(5124) incorporates the MSE matrices of
the estimates of the non-stationamy; X as well as the stationarg) component
of the field, as explicit functions of the sensor location selection vegtorNote
that a formulation similar to[{5.23), for the computation of the MSE matrix as
a function ofw; is proposed in[[103], where the field is considered to be either

purely stationary or non-stationary.

5.6 KKF with Sensor Placement

In this section, we relax and reformulate the proposed sensor placenobigm
(5.4) as a semidefinite programming (SDP) problem. Then we present ttedl ove
KKF estimator followed by the sensor placement to dynamically monitor the field
using only the measurements from the selected sensing locations.

5.6.1 Sensor placement problem as an SDP

Solving for the best subset of sensing locations is a combinatorially compiex p
lem. However, it can be relaxed to a convex problem [45],[101],. [As]discussed

in Sectio 5.211, the sensor location selection vestoe {0, 1}V acts as a weight-
ing vector for all theV candidate pixels. Following the main optimization problem,
i.e., (5.4), a sparsity-enforcing, low estimation error, and resournst@ned de-
sign ofw; can be obtained by solving

arg min g(wi) + Mel|we 1 (5.25a)
WtE[O,].]N

st KPn < 1Tw, < Kmax, (5.25b)
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where the expression af(w;) is given by [5.24). Here, we have relaxed the
non-convex Boolean constraimt; € {0,1}"" of (5.4) to a convex box constraint
w; € [0,1]¥. The resource constraint ¢f (5.25b) is affine and thus convex. Some
comments regarding the formulation of the proposed sensor placemeldmrob
(5.25) are presented next.

* First of all, let us consider the non-convex version of the optimizatiobpro
lem of (5.25) with\; = 0. This is given as

arg min g(wy) (5.26a)
WtE{O,l}N
st K <1Tw, < gmax, (5.26Db)

In this case, the MSE cost will be minimum, i.e, the best estimation perfor-
mance is achieved, when we select the maximum number of available candi-
date locations or in other words, whéhw, = K%, Then, there is no way

to reduce the number of selected locations beloj¥** and the constraint
17w, > K™» pecomes redundant. In the aforementioned case, it is difficult
to reduce the number of selected sensing locations b&IBWK .

 Notice that, dropping the resource constrdint (5.25b) and increasingl
reduce the number of selected sensing locations. But, there is no explicit re
lation between\; and1”wy, i.e., itis difficult to directly control the resource
allocation (i.e.,K;"®) through;.

« We mention that the proposed formulation[of (5.25) is not a direct MSE min-
imization problem but it attains a specific MSE along with enforcing sparsity
in spatial sensor location selection through the second summahd of| (5.25a).
The sparsity enforcement is lower bounded by the minimum number of sens-
ing locations to be selected at any.e.,Ktmin. It should be noted that for an
arbitrary selection of\;, the minimum number of selected sensing locations
will always be KM,

« Lastly, it should be noted that a sparsity-enforcing desigrwegfcan be
achieved by retaining only the second summand of the objective function of
(5.254) and using a separate performance constraint givewas < v: Msg
[103], [41]. The desired performance threshgldsr can be time-varying
or independent of based on the application. But in many practical scenar-
ios, it could be difficult to set the performance thresheldisg, a priori for
everyt.



5.6. KKF with Sensor Placement 105

Based on the aforementioned arguments, we advocate the proposedagesig
proach [(5.2b) that lowers the MSE along with enforcing sparsity in sgrlaoe-
ment satisfying a flexible resource allocation constraint.

After solving [5.25), we obtainv; € [0,1]"Y which can be converted to a
Boolean selection vector; € {0,1}". This can be performed by either deter-
ministic or stochastic rounding procedures as discussed below.

» The simplest approach could be to set the non-zero entries td 1. How-
ever, there can be a huge difference between the magnitudes of any two
non-zero elements iw,. Considering the fact that the indices of the high
magnitude (close td) elements ofw; signify a more informative sensing lo-
cation,w; can be sorted in ascending order of magnitudeé [45] and a selection
threshold {) can be selected based on the magnitudes of the elements of the
sortedw;. The entries of the Boolean selection vector can be computed as
[we]; = 1if [wy]; > yelselwy]; =0,forj=1,...,N.

« Another approach could be a stochastic approach, where eveyyomiy is
assumed to be the probability that this sensing location is selected at.time
Based on this, multiple random realizationsvef € {0, 1}V are generated,
where the probability thaw;]; = 1 is given by[w,];, for j = 1,..., N.

Then the realization that satisfies the constraints and minimizes the estima-
tion error, i.e.g(wy) is selected [41].

Let us now transform the optimization problem bf (5.25) into an SDP. From
the expression of (5.24), it is clear that minimizipgw,) w.r.t. w, is equivalent
to minimizing the expressiotr[X — F[F + ¢~ !diag(w;)]"'F]~! + tr[ZT[F +
¢~ ldiag(w;)]~1Z] as the matrixr[Y] is independent ofv,. In the first step, we
represent the optimization problem bf (5.25) in an epigraph forrn [4634], 145,
Eq. (25)-(26)] which is given by

arg min tr[V] + tr[B] + M| w1 (5.27a)
w:€[0,1]N, VeSN BeSN

s.t. V= [X — F[F + ¢ diag(w,)] "'F] 7, (5.27b)

B = ZT[F + ¢ 'diag(w;)] "' Z, (5.27¢)

K < 17w, < Ko, (5.27d)

where we introduce the auxiliary variablas ¢ S andB € SV¥. We notice
that the epigraph forni(5.27) is well-posed since by choosing a < o2 in
(G.17) the matriXF + ¢~ !diag(wy)] is always positive definite and symmetric. In
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addition, also the matriXX — F[F + ¢~ 'diag(w;)]~'F] is also positive definite
by construction as derived in (5]18)-(5.21).

The epigraph formi(5.27) is not a strictly convex program, in the sensthra
are multipleV andB matrices that achieve the minimal cost value. This is due to
the inequality constraints df (5.27b) and (5.27c). At optimality, the eigensaitie
V andB must be equivalent to their lower bounds[in (527b) and (5.27c). Hence,
an optimizer of the problem i¥ = [X — F[F + ¢~ 'diag(w;)]"'F]~' andB =
ZT[F + ¢ diag(w;)] ' Z.

We proceed by simplifying the constraint (5.27b). Let us introduce anothe
auxiliary variableA € SV and substitute (5.27b) with two constraints

V- [X-Al, (5.28)
A = F[F + ¢ 'diag(w,)]"'F. (5.29)

With this in place, the optimization problefn (5127) can be formulated as

arg min tr[V] + tr[B] + \e|[we |1 (5.30a)
w:€[0,1]V,V,A BeSN

st. V= [X—-A] (5.30b)

A = F[F + ¢~ diag(w;)]"'F, (5.30¢)

B = ZT[F + ¢~ diag(w:)|"'Z, (5.30d)

Krin < 17w, < Ko, (5.30e)

It can be claimed that the optimization probldm (5.30) is equivalemt tol(5.2&hgi
that it yields a decision variabke; with the same optimal cost df (5.27). To prove
this, let us choose an arbitrasy; sayw. For a fixed yet arbitraryw verifying
(5.30¢), the optimization problem (5130) minimizes bdtlandB. This means that
due to [(5.30b) it minimizes alsA: in fact, asV = [X — A]~! the lower bound
for V is minimal if the positive definite matrikX — A] is maximal, that isA is
minimal. ThereforeA must attain its lower bound. As mentioned earlier, there are
multiple optimizers, yet one id = F[F + ¢~ !'diag(w;)]~'F. In addition,V =

[X — A]7! = [X — F[F + ¢ !diag(w)]"'F]~! at optimality, as well. The same
reasoning holds also fd8, which at optimality isB = Z”[F + ¢ ~'diag(w)] "' Z.
Since this reasoning is valid for any feasile it is also valid for an optimal one
and therefore the equivalence claim follows. It should be noted that a senga-
ment was also presented in [104], where only the issue of correlatediregaent
noise is considered.
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Using the Schur complement lemma the constraints (5.30bYand5.30c) can be
equivalently represented by the linear matrix inequalities (LMI) :

[X_A ! =0 (5.31a)
I VvV
A F
=0 5.31b
F F + (" ldiag(wy) ] - ( )

The constraint[(5.30c) can be equivalently represented by an LMy ubim
Schur complement[46]. In other words, using the fact fRat ¢ ~'diag(w;)] = 0,
we obtain
B VA
Z F + (¢ ldiag

) ] - 0. (5.32)

Finally, an SDP representation of the overall optimization probleni_of (5.27)
can be expressed as

arg min tr[V] + tr[B] + Ae|[we |1, (5.33a)

wi€[0,1]N,A,B,VesN
s.t. LMIs in (5.31a) G.31b) G.32) (5.33b)
Kmin < 17w, < gmax (5.33c)

The solution of the aforementioned SDP is a selection vegtor [0, 1]V.

5.6.2 Spatial sensor placement for stationary field estimain

Let us consider the effect of the stationary component of the §igfdr any ¢.

In this case, we consider that = 0. In this case, the measurement model
of (5.1) is given byy; = C;s; + e;. Exploiting the prior information regard-
ing s¢, i.e., st ~ N(us,Xs) an LMMSE estimator of; can be presented by
S = [.LS—FESC;(CtESC?—FO'gIMt)71(Yt_ctllzs). The performance of the afore-
mentioned estimator is given by the MSE mathik, = [;! + 0, 2CI'Cy]~! =

3 — BCH(CZCl + 021),) 1CXs. Considering the fact that, can be
ill-conditioned, following the formulation of(5.23), the expressiorMf, can be
expressed as a function ef; as

Mg, =Y + ZT[F + ¢ 'diag(w;)] ' Z, (5.34)

whereY = X~ 2.3 13, Z = '3, andF = X_!. Note that the matrices,
Y, andZ are all independent of,. Consideringy(w;) = tr[Ms,] and following
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the same SDP formulation of Sectlon 516.1, the proposed sensor placeot#atpr
of (5.4) can be represented as

arg min tr[B] + Ae||we |1, (5.35a)
WtE[O,I}N,BESN
B zT
.t. =0 5.35b
i Z F+ (¢ ldiagwy) |~ (5:35b)
Kmin < 1w, < Kmax, (5.35c)

The optimization problem of (5.85) gives the spatial sensor placementrpédter
any snapshat, when the field is stationary over space. However, if the field is also
temporally stationary then the sensor placement problem ofl (5.35) carndreled

to blocks of multiple snapshots. In this case, the performance metric cambe co
puted using the same approach(as [103]. In the simulation section, we show th
effects of spatial correlation on sensor placement.

5.6.3 Sparsity-enhancing iterative design

In order to eschew the effect of the magnitude dependencies of the déteofién,

we individually weigh each element ef;. In this case, we consider a vector form
for the regularization parameterX; € RY. The weight associated to the each
element ofw; is the corresponding element & € RY. We iteratively refine

the weighting vector\; in the /; minimization term of the probleni_(5.83) [56].
Using this approach, higher weights are applied on the smaller elemewistof

push them toward8 and the magnitudes of the larger elements are maintained by
applying a smaller weight. In this way, a sparser solution can be obtained com-
pared to the standard sparsity-promoting method. The iterative algorithrecan
summarized as

« Initialize i = 0, weight vector\? = 1, ¢, and maximum number of itera-
tionsI.

efori=0,...,1

Wi = arg min tr[V] + tr[B] + (A)Twy, (5.36a)
w:€[0,1]V, A B,VeSV
s.t. LMIs in (5.31a)(5.31D) (5.32) (5.36b)

K < 17w, < gmax (5.36¢)
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o A, = L foreveryj=1,...,N

e+wil;’

* end

s setw; = wy.
After solving the above algorithm, we still obta#y, € [0, 1]". We convert this to
a Boolean selection vecter; € {0,1}"" using a deterministic/stochastic rounding
method as mentioned in Section 516.1.

5.6.4 KKF algorithm with sensor placement

The informativeM; locations to deploy/move the sensors at any denoted by
supp(Wwy), where1l”w; = M,. The noisy measurements collected from the afore-
mentionedM; locations are stored igr;. The sensing matrixC; is constructed

by removing the all-zero rows afiag(w;) at everyt. This measurement matrix

is used for the estimation of the non-stationary and the stationary comporyents b
(5.11) and[(5.14), respectively. Then the overall field estimate attitimmeomputed

by 0, = v; +8;. Note that the estimation steps, ile, (5.11) and (5.14) do not require
the computation of the inverse &f;. The error covariance of the non-stationary
component can be updated by (3.13), which also does not require grsérnf:;.

At everyt, the overall estimation performance can be computed by the expression
of (5.24). The best case performance, i.e, the performance with all taddos
selected can also be computed by the expressidn ofl (5.24) by wsirgl y.

In many practical environmental fields (such as rainfall), the field is gdiger
non-negative. To achieve a non-negative estimate at ¢yehg estimates of the
stationary and non-stationary components can be projected onto thesgativa
orthant, i.e., the negative values are set to zero. This is obtained by agloptin

U = [V + 8¢ (5.37)
However, in this case, the performance mettigd1,,] andtr[Mg,] are only the
approximations.
5.7 Simulation results

In this section, we perform some numerical experiments to exhibit the priftgtica
of the developed sparsity-enforcing sensor placement followed byHKlredstima-
tion method. We select a service ared&of 6 square km withl square km spatial
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Figure 5.6:Field distribution att = 0 with a single sourceK = 1, p; = [1.5,1.5]7,
S1 = 2, dl =1.
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resolution as illustrated in Fidg. 5.2. The spatial distribution of the non-stationar
component attimeé = 0, i.e, vq, is generated by the following exponential source-
field model

K

volj = Y swexp(—dillx; — prll2), j=1,...,N, (5.38)
k=1

whereK is the number of field-generating points/sources. The parametess,
andd;, are the location, amplitude, and the spatial decaying factor df-thesource

at timet = 0. Based on this function, we generate the non-stationary component of
the field at timet = 0, i.e.,vo € RY using the parametess = 1, p; = [1.5,1.5]7,

s1 = 2, andd; = 1. The spatial distribution o in the specified service area is
shown in Fig[5.b.

The state model of the non-stationary componeris modelled by[(5.8). The
state transition matrix is modelled by the Gaussian kernel function givein By (5.9
For the sake of simplicity, we consider a spatially invariant translation paramete
and spatio-temporally invariant dilation parameters givea'as= a, andD? =
D, respectively, foi, j = 1,..., N. The elements of the state transition matrix are
given by

Hy];; = vexp[—(x; — x5 — at)TD_l(xi - x5 —ay)]. (5.39)
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The spatio-temporal evolution of the true value of the field, ue.= v; + s; is
generated in the following two ways.

In thefirst case, we consider a pure advective process, i.e., we select a very
low dilation parameter given bld = 10~*I, forallt = 1,...,8 andv = 0.8.
It is assumed that the temporal resolutionlisninute. The translation vectors,
i.e., a;, are assumed to be changing evens|[1,1]7, [-1,-1]7, [1,1]7, [0, 0]7,
(1,17, [-1,-17%, [0,1)%, and[-1,—1]T. It is assumed that at = 0, v; is
generated by the source as shown in Fig.] 5.6. The different states fof
t = 1,...,8 are generated by the state model[of](5.8). The spatially colored yet
temporally uncorrelated process noise is characterizeg by N'(0y, Q), where
[Qli; = 107%exp(—||x; — x,||2). The stationary componest is modelled by
st ~ N(1y,X5). The parameters of the squared exponential covariance function
of (5.7) are given by? = 0.001 andd = 1. Note that increasing the value @&fthe
field becomes spatially more correlated and the condition numhbeg afcreases.
However, as mentioned earlier, our proposed formulation, i.e., both thetisale
and the estimation, does not involve the inversioof A highly spatially corre-
lateds; is considered in the next case. For the first case, the truedjetdv; + s;

fort =1,...,8 can be simulated as shown in Hig.15.7.
In thesecondcase, we considdd = I, forall¢t = 1,...,8 and the translation
parameters are fixed ag = [0.4,0.4]7 fort = 1,...,4, and no translation for the

last4 snapshots, i.ea; = [0,0]” fort = 5,...,8. The state ok, att = 0 is the

same as before. The scaling parameter is given by 0.35. The process noise

q: is the same as before. In this case, we assume that the stationary component
s; is spatially more correlated than the last case. The parameters of the noearia
function [5.7) are taken ag = 0.01 andd = 4, which generates an ill-conditioned

Y (Fig.[5.4). Using these, the true field, i.a;,= v;+s; fort = 1,...,8is shown

in Fig.[5.8.

5.7.1 Sensor placement followed by field estimation using KK

We select the optimal sensing locations and use them to estimate the fiele-for
1,...,8 snapshots for the two different scenarios of the spatio-temporal evolutio
of the field, as mentioned in the previous section. We use the same sendce are
shown in Fig.[5.R, where the centroids of the = 36 pixels are the candidate
sensing locations. We assume that the measurement noise variance i®ygiven
02 = 0.001. We solve the optimization problem df(5]36) with the parameters
I = 2 ande = 1075, The weighting vectors are initialized &g = 1y. The
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resource constraints are given&g** = 30 and K™ = 25 for all t. To extract
the Boolean solutiom; € {0,1}" from w, € [0, 1]V, we adopt the randomized
rounding method. We use the software CVX [105] (parser CVX, solefubi
[53]) to solve the SDP probleri (5.36). Following the above simulation setap, th
selected sensing locations for the first and the second scenario areisHeig.[5.9
and Fig.[5.1D, respectively for tlesnapshots. The indices of the pixel midpoints
(vertical axis) are the same as in Hig.15.2. The main observations fromlédutesk
locations are listed below.

« First of all, it is clearly seen that the selected sensing locations depend on
the dynamics. Note that, Figl_5.9 gives the optimal placement pattern,
when H; is changing every (differenta, on everyt). Fig. [5.10 shows
the optimal sensing locations when we have the sifndor ¢t = 1,...,4
(a; = [0.4,0.4]T) and anotheH, for t = 5, ..., 8 (a; = [0, 0]T).

« WhenH; is changing every, i.e., the spatio-temporal evolution of the field
is guided by the time-varying spatial translation parametdFig. [5.2), the
optimal selection pattern also depends upon this translation[(Fig. 5.9).

« In the second scenario, we have assumed a very low and fixed tramsiatjo
a; = [0.4,0.4]" for the first4 snapshots ana; = [0,0]7, i.e, no translation,
for the last4 snapshots (Fid. 5.8). It is seen that almost the same set of sen-
sors are selected in the lassnapshots of Fig. 5.10. In general, wHdR s
not changing with time, the estimation error of the non-stationary component
reaches a steady state after a number of snapshots and the samerssirsf se
are selected eveny

The overall estimation performance using the measurements from the selected
locations of Fig[ 5.0 and Fig. 5.110 is shown in Hig. 5.11 and[Eig.]5.12, réeplgc
In these figures, we exhibit the pixel-wise comparison of the estimateés for8
shapshots, i.e, the estimation performancecot 8 = 288 pixels. We initialize the
KKF iterations withv; = 15 andM,, = 0.0011y att = 0.

5.7.2 Performance analysis

We compare the estimation performance of the developed sensor placertterd me
by comparing the performance metric, igw;) = tr[Mg,] + tr[My,] with a
random sensor placement (with the saigi.e.,||w;||o = M, as for the developed
method) and with the best case performance (\§.,= N or w; = 1y). For
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Figure 5.9: Selected sensing locations to estimate the field with the first scehario
the true value.
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Figure 5.10: Selected sensing locations to estimate the field with the second sce-
nario of the true value.
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Figure 5.11: Comparison of the KKF estimate with the true value (Eid. 5.7) with
the measurements from the selected locations shown i Fig. 5.9.
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Figure 5.12: Comparison of the KKF estimate with the true value (Eid. 5.8) with
the measurements from the selected locations shown i Fid. 5.10.
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Figure 5.13: Comparison of the performance metric for the random plad¢emen
proposed method, and the best case.

the random placement, we generat® different realizations ofv; € {0,1}" at
everyt with the same\/; as for the proposed method. The(w;) is computed

for everyw; and their average is considered. Similarly, we compute the best case
performance, i.eg(1y) for everyt and in this cas®/l1,, is updated withw; = 1.

We use the same set of parameters as mentioned in the first case of Secfiion 5.7
Only the resource allocation constraint is simplifiedldsv; = 15, i.e, we fix that

only 15 sensing locations will be selected everylhe performance comparison is
shown in Fig[5.13. It is seen that the proposed approach slightly oatpesfthe
random placement. However, the random placement of sensors doastinuize

any performance criterion.

5.7.3 Spatial sensor placement for stationary field estimain

In this section, we show the effects of different spatial correlation petten sen-

sor placement assuming the field is purely stationary. We solve the optimization
problem of [5.3b), for two different spatial covariance matrices)( In the first
case, we consider tha is generated by the squared exponential funcfion (5.7)
with § = 2 ando? = 0.01 (Fig.[5.13). In the second case, we consider a randomly
generate® (Fig.[5.15). The resource allocation constraint is the same as before,
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Figure 5.14: Spatial covariance matrix generated by the squared extjzdfienc-
tion (62 = 0.01,0 = 2)

i.e, KMt = 25, and K" = 30. We solve the optimization problem ¢f(5135),
with the iterative approach df (5.86) with the same parameters as mentioned in the
previous section. The selected locations (marked by black squares tineelnlue

dots are the candidate locations as shown il Figy 5.2) to deploy sensot®ane s

in Fig. [5.16 and Fig[(5.17 for the spatial covariance matrices shown i Eigl 5.1
and Fig[5.1b, respectively.

First of all, it is observed that the spatial distribution of the optimal sensing
locations depends upon the correlation pattern of the field. It is seen treat w
3, is generated by a squared exponential covariance (stationary) futiotio the
optimal sensor placement pattern is more or less symmetrically and uniformly dis-
tributed over the entire service area. But for a random spatial cocarimatrix the
optimal sensing locations do not follow any specific pattern.

5.8 Conclusion and Future work

In this chapter, we have developed a sparsity-enforcing sensonpatéollowed

by a field estimation technique using a KKF. The proposed methodology sktlects
most informative sensing locations over space and time in a specified sareae

of interest. Along with minimizing the estimation error, the developed method also
economizes the sensor placement (in terms of resources) at every & mper

val. The salient features of the proposed method include handling aajjetzess of
spatial covariance matrices and tackling correlated measurement norserikii
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Figure 5.15: Randomly generated spatial covariance matrix

6 ‘ ‘ ‘ ‘
] [ [ [ [ [
5, 4
(] ° o [e]
4t ]
gs (] o o] [ o [e] |
> = o o] [ o [e]
2, 4
(] ° ° [e]
1, 4
] [ [ [ [ [ef
0

0 1 2 3 4 5 6
X (km)

Figure 5.16: Sensor placement pattern for¥heas shown in Fig. 5.14.
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Figure 5.17: Sensor placement pattern for¥aeas shown in Fig. _5.15.

analysis shows the feasibility of the method. The effects of the dynamicspand s
tial correlation of the field in spatio-temporal sensor placement are destuggh
numerical experiments.

In this chapter, we have considered the fact that the prior knowledgede
ing the spatial variability and the dynamics are perfectly known a priori. Ih tha
case, the performance of a clairvoyant Kalman setup with Gaussian resesur
and process noise is optimal. But in many practical scenarios, the afarenesh
spatio-temporal prior information may not be accurate and we require mfore in
mation regarding the unknown field in the estimation step. Future research-is en
sioned to incorporate the effects of model imperfections in the developed anetho
Another future research area could be using distributed algorithms to #pply
developed method for large scale sensor network applications. It wilbalguter-
esting to tailor the recent progress in time-varying optimization|[106] to solve the
SDPs in a tracking fashion, rather than at optimality at each sampling time.
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Chapter

Dynamic Model Estimation
Followed by Field Estimation

The spatio-temporal evolution of an environmental field can be estimated by the
predictions of a state model followed by the corrections by the available meeasu
ments. It is already seen in Chafiér 4, that the sensitivity of the estimatiarperf
mance strongly depends upon the accuracy of the available state modelar8tan
state estimation methods (such as a Kalman filter) can produce inaccurate estimate
if the state model is incomplete or inaccurate. However, there are also atherst

like the number of available measurements, magnitude of the measurement noise
etc. which can create a major impact on the estimation performance. It sh®uld b
noted that in the previous chapters it is assumed that the state model iglperfec
known in most of the cases.

In this chapter, we assume that the state model is unknown and present some
methods to estimate the state model. We describe two approaches to estimate the
state model. In the first case, it is assumed that the true value/ground tri of
environmental field is completely known. In the second case, it is assumdteha
ground truth of the field is unknown but some prior information regardingthte
model is available. Simulations are presented for both synthetic data ardhtaal
(gauge adjusted radar rainfall data) scenarios.

The outline of the chapter is as follows. A brief survey of similar research
works along with the main topics of this chapter is presented in Selction 6.1. In
Sectiori 6.2, the measurement model and the main problem statement are illustrated
The estimation of the state model incorporating the knowledge regarding the tru
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value of the field is described in Sectionl6.3. In the next section, Sdctibn 6.4 it
assumed that the true value of the field is not available but some prior informatio
regarding the state model is available. Both Sections 6.8 ahd 6.4 are acéednpan
by simulation results. The chapter is concluded in Sectidn 6.5.

6.1 Prior art and contributions

The estimation of the state model of a dynamic process is similar to a system iden-
tification problem[[36]. In case of environmental field estimation there arerak
non-Bayesian and Bayesian methods to estimate or approximate the mode! para
eters [7]. Spatio-temporal variability of an environmental field can be matielle
by a time-varying covariance function which can be approximated by adizaus
smoothing kernel [33]. The approach of using a kernel representtdionodel

the spatio-temporal evolution of an environmental process can also bedafp
non-Gaussian fields [35]. In_[32], a parametric Gaussian dispeesakkis used

for short-term prediction of the rainfall field. The parameters of this ddecan be
estimated using a Bayesian or non-Bayesian method [7], [32].

In this chapter, we describe two methods to estimate the underlying dynamics
of an environmental field. In the first case, we estimate the dynamics inedinmp
the fact that the true field intensities are known. In the next case, it isna@ssu
that the true field estimates are unknown but we consider that we have simme p
information regarding the dynamics.

The main contributions of the chapter are listed below.

» A generalized dynamic model estimation problem is formulated as an under-
determined system of linear equations. The aforementioned system is solved
as a sparsity-cognizant linear regression problem. It is considerati¢hza-
rameters related to the state transition matrix can be represented as a sparse
vector using an orthonormal sparsifying basis.

» Simulations are carried out using both synthetic and real data. The envi-
ronmental field is estimated using a Kalman filter, where the estimated state
model is used for prediction. The estimation performance is compared with
the true value of the field.
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6.2 Measurement model and problem statement

We consider a spatially continuous yet temporally discrete environmentatdigld
resented byu;(x), wherex € R? is the location and is the time index similar

to Chaptef 4. We assume that the entire service area of interest is unifasmly d
cretized intolV square pixels and the field within any pixel is constant everywhere.
The overall field in the service area at anig characterized by aiV-dimensional
unknown parameter vectar; € RYV. Following the same notations of Chagliér 4,
the elements ofy,; are given byju]; = u;+ = u(x;), wherex; = [z;,y;]T is the
centroid of thej-th pixel of the service area, wheje=1,..., N. The discretized
service area along with the pixel centroids are shown in Eigl. 6.1. Note tleat, w
follow a row-wise vectorization of the field magnitudes of tNepixels in the field
vectoru,.

6.2.1 Measurement model

We consider a linear underdetermined measurement model
yt:'itut—ket, t= 1,...,T, (61)

where the vectoy, € Rt collects thel/; spatial measurements at timet should

be noted that, the elements of the generalized measurement datexRM: <V,

(M; < N) of (&1) can be designed based on the sensing modality. The observa-
tions at timet are corrupted by noise incurred by the measurement process or due
to the imperfections in the measuring equipment. At grgue to the uncertainty
regarding the knowledge of this measurement noise, we model it as ai&auss
random process characterized &y ~ N (0,7, R¢), whereR; is an accurately
invertible noise covariance matrix. It is also assumed ¢has$ uncorrelated with

U.

6.2.2 State model

The dynamics of the environmental field can be represented by the lin¢éar sta
model
Uy :Htut—1+qt7 = 17"'7T7 (62)

whereH; € RY*V is the state transition matrix or the propagator matrix that mod-
els the spatio-temporal evolution of the field from {lhe- 1)-th snapshot to theth
snapshot. The vectay; € RY models the spatially colored yet temporally white
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Figure 6.1: Discretized service area with= 64 pixels.

process noise characterizeddpgy~ N (0, Q), which is assumed to be uncorrelated
with u; as well ase;.

6.2.3 Problem statement

It is assumed that the elements of the state transition mBiyiare unknown. The
estimation of the elements of the state transition matridedor ¢t = 1,...,T
shapshots can be viewed as a linear system identification problém [3&stiveate
H; for the following two scenarios.

« In the first case, it is assumed that the set of model inputs, i.e., the true field
values{u;}1 ,, first and second order statistics of the measurement and pro-
cess noise, i.e{q:, e;}._,, the outputs, i.e., the measuremefys}/_,, and
the measurement matricé®, }._, are all known. The overall model can be
compactly represented as in Hig.16.2. For this scenario, the only unknown is

{H:}_,.

« In the next case, we assume that the model input$’_, are unknown. But
we assume that the first and second order statistics of the measurement nois
{e;}L_, are known. We also assume some prior information regarding the
structure of the state transition matii¥;. This approach is similar to the
“gray box modelling” in system identification problenis [36].
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Figure 6.2: Overall system model with inputs and outputs.

6.3 Estimation of H; using the known true value

In the first case, it is assumed that the true field val{.ms}tT:0 are known. The
state transition matrices, i.e{Ht}tT:1 are unknown. One simplification of the
system model; = H;u;_1 + q; could be a time invariant state transition matrix,
ie, H, = Hfort = 1,...,T. Based on this assumption, a linear model can be
constructed, which can be used to estimate the elemeis ®his is given as

it = Xvec(H) + 4, (6.3)

wherea = [ul,...,ul)T € RN, q = [d],...,q}]" € RYT, and the overall
measurement matrix is given by

uf @Iy
ul @Iy

, (6.4)

u%_l R In

where the dimension &X is given by NT x N2. When we have sufficient snap-
shots, i.e.,NT > N2, andX is well-conditioned, a simple least squares estimate
X' can give us the maximum likelihood solution in case of Gaussian process
noise.

In many practical environmental monitoring scenarios however we Nave«
N2, which maked(6]3) an underdetermined noisy system of linear equatibics, w
has an infinite number of solutions for the element#ofSo, a suitable regular-
ization is required in order to achieve a stable solution for the underdetatmine
system. Here, we use a regularization exploiting the sparsity of the elemdts of
when represented in a sparsifying basis.
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Let us consider the unknown asc(H) = h € R, Let us also consider
a sparse representation lofasz, wherez = ¥~'h. Here, ¥ is an orthonormal
dictionary (such as a DCT basis as mentioned in Chapter 4). Exploiting the fac
that ¥ —'h has a sparse representation a sparsity regularized least squaties solu
for the elements oH can be obtained as

h = argmin || — Xh||3 + A& h|, (6.5)
h

where )\ is a tuning parameter. After solving the optimization probléml(6.5) the
time-invariant state transition matrix is given By= vec ' (h), where thevec ()
operator reshapes thé? x 1 vectorh to anN x N matrix H.

6.3.1 Simulation results

We perform some numerical experiments with synthetic data for the firsagoen

of the problem statement mentioned in Section 6.2.3. It is assumed that the number
of pixels areN = 36 and the number of snapshots of interest Are- 8. The

set of true values which igy and {u;}/5® are shown in Fig[6]3 and Fid. 6.4,
respectively. The true values are simulated using the similar method mentioned in
Sectiorl 5.7 of Chaptél 5. In this case, the state transition matrix is kept fixatl fo

the snapshots.

In order to estimate the elementsif = H, first we construct the matriX
from[6.4 using the knowledge of the true field values. The optimization problem
(.3) is solved and the estimates of the elemen pfe., h are estimated. Here,
we considen to be a DCT matrix and for the sparse representation and we take
A = 2. The software CVX[52] (parser CVX, solver SeDuMi [53]) is usedtdve
the convex optimization problern (6.5).

The M; = M measurements in every snapshot are computed using (6.1), where
the M x N measurement matri®, = ® is randomly generated. The structurelof
is the same as mentioned in Secfiod 5.2, i.e, it is constructed by randomly selecting
M rows of the identity matrid . The number of measurements are= 33. The
measurement noise is characterizedeas- N (0,7, 1074I,,). Finally, a simple
Kalman filter is used to estimate the stafés}?_,. The pixel-wise comparison of
the estimates and the true value is presented i Fig. 6.5.

6.4 Estimation of H; using prior information

The problem formulation mentioned in Sectlon]6.3 has the following bottlenecks.
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Figure 6.3:Field distribution at = 0.
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Figure 6.4:Spatio-temporal evolution af; in a6 x 6 square km area; Spatial resolution:
1 x 1 square km.
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Figure 6.5: Estimation comparsion fof = 36 pixels forT = 8 snapshots.

« Itis assumed that the true values, ifu,}._, are all known. But in many
practical scenarios the true field values are difficult to obtain.

* For a high resolution field estimate, the number of pixels, Me(Fig. [6.1)
can be quite high and in that case, the dimension of the unkioignex-
tremely high (V2). In this case, the system of linear equatidns](6.3) will
become highly underdetermined.

 For a practical environmental field monitoring application, the assumption
that the state transition matrix is time-invariabf,(= H) may not be realis-
tic.

In this section, we propose a method, where we assume some strucHiyeird
estimate the elements &f; on everyt. The estimated;s are then again used to
estimate the states using a simple Kalman filter.

6.4.1 Modelling assumption ofH;

Modelling the state model using some prior information regarding the structure o
the state transition matrix is similar to the gray box modelling in system identifica-
tion [36]. Prior information regardin§; could be the rank oH; or some specific
structure ofH, like Toeplitz or Hankel[[10/7].

One well-known approach to model the state transition matrix, specifically for
environmental fields, is to discretize an integro-difference equation)(li2ied
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dynamic model([7]. In this way, a kernel models the spatio-temporal evolofion
the field. The kernel parameters can be obtained using a non-Baye&ageasian
framework. As mentioned in Chapter 4, a Gaussian dispersal kerndbcam
stance be used to model the dynamics of the rainfall field. It should be i@ttt
incorporate complex phenomena like anisotropic diffusion and advecCt®jrilia
state transition matrix should be assymetric, {H,);; # [H;];;. The structure of
a Gaussian dispersal kernel is given as

[Hy]i; = vexp[—(x; — x5 — at)TDt_l(Xi —x; —a)], (6.6)

where the translation parameter € R? and the dilation parametdd;, € S%
can be used to model the advection and the diffusion of the field, resglgciihe
scalan, € (0, 1] is used as a scaling parameter to avoid the explosive growth of the
field [35], [32]. Note that the parametesis andD; can vary spatially (for every
element ofH;), as well as temporally. For spatially varyirmg and D, over N
pixels, at anyt, the total number of parameters that characterlgss given by
6N?2 + 1, as the total number of elementsanandD; are 6 and one scalay. One
simple abstraction of(6.6) could i®; = I, (for all ¢ and the elements d;) and
a; = 04. This can model the dynamics with less parameters but it is symmetric
in nature and may not capture all the space-time effects [32]. In ordetrtalirce
asymmetry, in the state transition matrix we propose a decomposition of the state
transition matrix as a multiplication of a symmetric matrix and a diagonal matrix.
This is given as

H; = Bdiag(h,), (6.7)

whereh; € RY models an asymmetriEl;. The motivation behind the afore-
mentioned decomposition is to model an asymmetric and time-vaBifinghose
parameters (i.eh; in this case, assumirig is fixed on every) can be estimated by
solving a linear inverse problem on eveéridiscussed in the following sub-section).
Also, the structure oB is chosen in such a way that it incorporates an isotropic dif-
fusion. We compute the elements of the symmetric marixy a Gaussian kernel,
i.e., (6.6), witha, = 0 andD, = I, given by

[Blij = vexp[—|lx; — x;[3]. (6.8)

Note thatB can be used as a valid state-transition matrix but being symmetric
it has some drawbacks as mentioned.in [32]. The next step is to esfimate
everyt.
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6.4.2 Estimation ofH,

Let us assume that an estimateigf ; is available at. Then the measurement
equation[(6.11) can be written as

yi = ®(Hyty—1 +q¢) + &
= ®,Bdiag(h;)a;—1 + &
= ®;Bdiag(ti;—1)h; + &
= Ahy + &, (6.9)

where the measurement noise ve&oin the modified measurement equation6.9)
is characterized a& = ®,q; + e, with & ~ A'(0, R,), whereR, = &,Q,®7 +

R;. Note that at any timethe matrixA; = ®;Bdiag(i;,_1) € RM*N is perfectly
known. It should also be noted that the dimension of the systern_ih (6.9), i.e.,
M; x N is much less underdetermined than{6.3), M., x N2. In order to achieve

a stable solution of the underdetermined system of linear equditiohs (618) foe
impose some regularizations bp. They are as follows.

1. The first constraint is a non-negativity constraintlgni.e.,h; > 0. The
motivation behind using this constraint is to model the elementd of=
Bdiag(h;) as non-negative, which is one of the propertieshfusing a
Gaussian kernel based modelling.

2. We use aregularization on the elementaissuming thah, can be sparsely
represented using an orthonormal bakiswWe exploit the fact that the trans-
formed vecton ~'h, has a sparse representation.

To utlize this sparse representation, we uséaregularization on¥ ~'h;, while
solving the underdetermined systelm [6.9). We estirhaten everyt using the
following ¢, regularized non-negativity constrained weighted least squares (WLS)
problem:

h, = argmin|ly, — Ash|% 1 + (| hy|ly, (6.10)
h:>0n ¢
H, = Bdiag(h,). (6.11)

Here,y is a tuning parameter for the sparsity promoting regularizatidnin(6.10).
After the estimation oh,, the state transition matrix can be estimated using the
relation of [6.7). To achieve asymptotic / bounded input bounded ouBiBQ)
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stability, we ensure that the maximum eigen valudhf i.e., /\max[I:It] must be
less than 1. This can be achieved by selecting a proper scaling faetof0, 1].

In this case, first it is checked thatif, .« [ﬂt] is already less than 1. If that is the
case, then we simply choose= 1. Otherwise, we manually selectac (0, 1) in
order to avoid the explosive growth of the system.

Algorithm 4 Dynamics estimation followed by rainfall monitoring

1: Initialize ¢t = 0, ﬁ0|0 = Uy, M0|0

2. fort=1,...,T
3 given®, =&, U, y;, 021, Q= Q, 7, v.
4: Dynamics estimation:

2y = argming, >o, [|lyt — AthtHiv{;l + 1@ 4],

I:It = Bdlag(ht)
5. Selectv; H; = vH;,.

: Predict:

o1 = Hety g0, My = HtMt—1|t—1HtT +Q
7:  Correct:

Gy = My 7 (PMy, 1 @7 +Ry) ™, 0y = [ty 1 + Gy — Ply1)]+
8. Covariance update:

My, = (Iv — Gy@)My, 1 = (M.
9: end for
10: end

+®TR;'®)!

6.4.3 Dynamics estimation followed by state estimation

In this section, we describe the overall algorithm for the dynamics estimatibn tec
nique proposed in the previous section followed by field estimation. We use a
simple Kalman filter to estimate the statesupf In many practical scenarios, the
environmental field to be monitored (such as rainfall, concentration of pothjta
humidity) is non-negative. To incorporate this fact, at anywe set any negative
elements of the estimaig to 0. We denote the estimate af at¢, using the mea-
surements up to time— 1 andt¢ asu,;,_; anduy,, respectively. The estimation
error covariances of the estimates,_; andu,, are denoted b, ,_; andM,,,
respectively. The overall algorithm is presented as Algorithm 4. Heeecam-
ment that the covariance update of the Kalman filter is approximate, as weset th
negative elements of the estimaigto 0.
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6.4.4 Simulation results

In this section, we present some simulation results to exhibit the feasibilty of the
proposed algorithm.

Ground truth

The ground truth or the true value of the rainfall intensities is givetbgninutes
guage adjusted radar rainfall depths. We show a tot&l sfiapshots of rainfall
maps over an area of approximatés square kilometer. The spatial resolution is
1 x 1 square kilometer. The gauge adjusted radar rainfall depthsoépshots at
625 pixels are shown in Fig§. 6.6 andB.7, respectively (data courtesy : KNMI

Measurements

We estimate the staté8 = 8 snapshots o5 minute rainfall intensities using

the measurements @b1 microwave links in an area &b x 25 square km. The
locations of the links and th& = 625 pixels are shown in Fig. 6.8 (data courtesy:
KNMI). It is assumed that the links are all operate@&iGhz and the temperature

is 20° C. Based on this, we take the power law coefficientsas 0.235 and

b = 1.009 = 1(see Table Il of[[79]). The measurementsiat= 8 snapshots are
computed using the measurement model of (6.1), where the measuremenisnatrix
computed as$®|;; = al;;, and the length of the link segments are computed using
the location of the links and the pixels as shown in Hig.] 6.8. The measurement
noise variance is assumed tode= 10~*.

Results

Using the above measurement setup, we estimate the staigs$aoft = 1,...,8
using Algorithml4. As mentioned earlier, we initialize the algorithm witfy, =
1y, where( = % fozl[ug]k, i.e, the sample mean of the true value at 0. We
assume that the process noise has the same structure as mentioned i . S&dtion 4
The motivation behind assuming a process noise having a covariance noatrix ¢
puted using an exponential function is to introduce a smooth temporal transition.
The error covariance matrix is initialized 34, = 0.0011y. The regularization
parameter is fixed ag = 2.

The estimated rainfall maps for all tBesnapshots, i.ej; fort =1,...,8 are
shown in Fig[6.B. The pixel-wise comparison of the estimate'fer 8 snapshots
for N = 625 pixels is also shown in Fid._6.10.
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Figure 6.7:True spatio-temporal evolution of the rainfall field (mm).
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Figure 6.8: Locations of th&/ microwave links from where the measurements
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Figure 6.9:Estimated spatio-temporal evolution of the rainfall fietang).
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Figure 6.10: Estimation comparsion faf = 625 pixels forT = 8 snapshots.

6.5 Conclusion

We have presented two different methods to estimate the spatio-tempordia@volu

of an environmental field. In the first method, it is assumed that the truesvafue

the field over different snapshots are known. In the second methottuihéeld
values are assumed to be unknown. In this case, some prior informatemalireg

the structure of the state transition matrix (inspired by physics) is exploited. Fi-
nally, a simple Kalman filter is used to estimate the field over every snapshot using
the estimated state model along with the measurements. The performance of both
the methods are analysed by comparing the estimates with the true values. Simula-
tion results show that dynamics of a physical field can be estimated from the mea
surements with some prior information regarding the nature of the spatio-teimpora
evolution. However, a more accurate knowledge regarding the fielcagadion

over space and/or time will improve the estimation performance.
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Chapter

Conclusion and Future Research
Directions

In this chapter we conclude the thesis. We also mention related contributidns an
future research directions.

7.1 Conclusions

In this thesis, we have developed a spatio-temporal environment monitcaimg-f
work that encompasses sensor management as well as dynamic monitdtieg of
environmental field. We have presented several methods to efficiently thtkze
prior information regarding the physical properties of the environmeraial fioth

for the deployment of sensors as well as for monitoring the field.

We have discussed the representations of the linear/non-linear meastireme
models for dynamic environment monitoring. The different statistical modelling
approaches of the physical properties of the environmental fieldk ésicorrela-
tion over space and time, dynamics of the field etc.) are also discussed.vé/e ha
also presented a generalized environmental field estimation framework ¢bat in
porates sparse-sensing, dynamic field reconstruction exploiting prammation,
and estimation of the physical properties of the field (if unknown/inaccurate

We have developed a unified framework for spatio-temporal sensorgeana
ment, when the environmental field is spatio-temporally stationary as well as non
stationary. A generalized expression for the performance metric (fiorséay as
well as non-stationary fields) is derived, which can efficiently utilize therpmfor-
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mation regarding the environmental field (such as a highly correlated fiebagier
to deploy the sensors over space and time. It is seen that less senstiankbage
selected if the spatio-temporal correlation is strong. From a dynamic sglaser
ment perspective, the sensor deployment strongly depends uponttine ofthe
evolution of the field.

We have presented a practical example of environmental field estimation, i.e.,
dynamic rainfall monitoring using the attenuation measurements of commercial
microwave links. We have described how the physical information regattim
rainfall field (such as spatial sparsity and non-negativity) can be ggglin dy-
namic rainfall monitoring using a traditional Kalman setup. We have also pesgben
cases, where the rainfall dynamics are inaccurately known or unkn@ééenhave
exhibited the performance improvement of a sparsity-aware method oirapke s
extended Kalman filter (EKF).

We have extended the spatio-temporal sensor management method for a more
general class of environmental fields, leading to a combination of stati@mary
non-stationary components. We have described the spatio-temporat seas-
agement for a kriged Kalman filter (KKF) estimator. We used the selectethgens
locations for the estimation of the field using KKF. The combined effect diapa
phenomena as well as field dynamics on the sensor placement are pfesente

We have also presented some methods to estimate the state model responsible
for the evolution of an environmental field. We have described how therstadel,

i.e., the elements of the state transition matrix can be estimated exploiting prior
information regarding the nature of the evolution of the field. It is also se&n th
using a patrtial prior information regarding the dynamics of the field, the stadeimo
can be estimated without the knowledge of the true field intensities.

7.2 Future research directions

In this thesis, we have presented signal processing methods for apipticteensor
placement as well as dynamic monitoring of the spatio-temporal evolution of an
environment field. Some future research directions are presented below

1. First of all, we have mainly focused on model-driven methods that emfor
sparsity in deploying sensors over space/time achieving some desired accu
racy. An extension of the proposed method to a fully data-driven approa
could be a future direction.

2. It is observed that, MSE-optimal sensor deployment can be desigred to
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resource-efficient availing the prior physical information of spatio-temipor
correlation and dynamics. But as described in Chdpter 4, environmental
fields exhibit sparsity (either naturally or using a representation badis). |
could be interesting to develop an optimal measurement matrix, which is
jointly MSE-optimal and guarantees the criteria for a stable solution [89] in
a sparse reconstruction framework.

3. In the dynamic rainfall monitoring scenario (Chapter 4), it is considévad
the state model is linear. Furthermore, we only consider spatial sparsity. As
suming a non-linear dynamic model and exploiting temporal sparsity could
be possible future extensions of this work. With both nonlinear state and
measurement models, studying the performance of an unscented Kalman fil-
ter (UKF), particle filtering based algorithms, or other heuristic appraache
could be possible future research directions.

4. A direct application of the proposed sensor management method could be
the real-time selection of the most informative attenuation measurements,
i.e., the links (in order to reduce the processing load and computational com-

plexity).

5. Extensions of the proposed sparsity-leveraging sensor placenatshiedti-
mation and dynamics estimation techniques for highly correlated non-Gaussian
measurements open different modelling challenges.
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Samenvatting

Als we onze steeds veranderende omgeving beter kunnen obsesrensyor-
spellen, dan leidt dit tot een veiligere and gezondere samenleving.r8etvgerken
spelen hierbij een belangrijke rol. De twee fundamentele aspecten vansank
sornetwerken zijn de nauwkeurigheid en energiezuinigheid. Daare@kemove
naar manieren om de kosten van sensornetwerken te verlagen (fatsaasoren,
hun energieverbruik, het onderhoud) zonder nefaste impact opedtape van
het sensornetwerk. Dit kan bijvoorbeeld door de fysische eigeppelmavan de
omgeving uit te buiten via stochastische omgevingsmodellen. In deze thesis stelle
we signaalverwerkingstechnieken, voor die gebruik maken van zulghagtische
omgevingsmodellen om het aantal sensoren in een sensornetwerk teuerta-
der een al te grote impact op de kwaliteit van de resultaten. We richten abg hie
op een klasse van omgevingsmodellen die voldoet aan typische fysisare eig
schappen (zoals diffusie en advectie) verantwoordelijk voor de spatotele
evolutie van het omgevingsveld.

We ontwikkelen eerst een wiskundig model dat de sensorobservatldadte
met de intensiteit van het omgevingsveld. Op basis van dit model stellen we
daarna een uitgebreid omgevingsobservatiesysteem inclusief senagemant
voor, voor het vergaren van de metingen, en het schatten van detepgarele
evolutie van de veldintensiteit.

De ontwikkelde sensormanagement techniek kan zowel gebruikt wemten
stationaire als niet-stationaire omgevingsvelden. Deze techniek is gelhapdest
oplossen van een optimalisatieprobleem en geeft aan hoeveel segisooeliy zijn
en waar/wanneer die moeten geactiveerd worden om een bepaaltdgipteshe-
halen in de zin van gemiddelde kwadratische fout. Dus het belangrijksteaine
deze sparse-sensing techniek is om zo min mogelijk sensoren te actioacsr z
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een al te groot prestatieverlies. Verschillende methodes om het hierberaelde
optimalisatieprobleem op te lossen worden voorgesteld, zowel voor cdilsnen-
line toepassingen.

We presenteren verder een praktische toepassing, namelijk eenadgenr
gebaseerd op de verzwakking van microgolfverbindingen. We bipgair
verschillende manieren waarop de fysische eigenschappen vanakipemet
wiskundig model kunnen worden opgenomen. We vergelijken daarnsed&ape
van ons systeem met klassieke methodes, zoakxdtendedalman filter.

We breiden ons systeem ook uit naar een bredere klasse van omgeldegsvaar-

bij we zowel stationaire als niet-stationaire componenten van het veld im-reke
ing kunnen brengen. Hiervoor ontwikkelen we een sensormanageystaes
(plaatsing van sensoren in ruimte en tijd) en veldschattingsalgoritme op basis va
het zogenaamderiged Kalman filter.

We behandelen ook het scenario waarbij de fysische voorkenntstamgev-
ingsveld ontbreekt of onnauwkeurig is. In dat geval moeten de onderldg dy-
namische karakteristieken van het veld worden geschat. Hierbij kashewmeron-
dersteld dat het echte omgevingsveld gekend is of niet.



Propositions

1. Cognizance of the statistical nature of the spatio-temporal variability of the
environmental field is instrumental for future smart weather monitoring sys-
tems.

2. Itis often better to have accurate a-priori knowledge about theamient
than additional measurements in an environmental sensor network.

3. More correlation over space and time of an environmental field allows for
less measurements for the same estimation performance. So, a highly cor-
related environmental field is a good platform for the implementation of
“sparse sensing”.

4. Rainfall monitoring using cellular networks can be engineered as tralSsus
the state-of-the-art monitoring systems (such as gauge-adjustedirpder)
ploiting spatial and/or temporal properties of rainfall.

5. To solve an underdetermined tracking scenario, a suboptimal Kalman filter
leads to a viable solution.

6. Philosophically, compressive sampling (CS) can be viewed as a safbset
Bayesian learning.

7. Cost and feasibility of a practical implementation are as important as the sci-
entific novelty for the acceptance of an application-specific signal psirg
paper.

8. For an ideal society, “politics” and “religion” should be strongly umeer
lated.

9. The climate of The Netherlands is one of the motivating factors behind the
sportive nature of Dutch people.
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10. A catis a better pet than a dog for a PhD student.

11. “The only thing I know, is that | know nothiikdSocrates
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Notations

Lyxn

Orrxn

diag(x)

diag(X)

Scalarz.

Vectorx.

Estimate of vectox.

Transpose of vectat.

i-th entry of the vectoxk.

Matrix X.

Inverse of matrixX.

(1, 7)-th element of the matriX.

Column-wise vectorization of the elements of maiXix
Identity matrix of sizeN x V.

M x N matrix with all components one.

M x N matrix with all components zero.

Kronecker product.

Diagonal matrix with the elements &fon the main diagonal.

Vector with the elements of the main diagonalof
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diag y (x)

Diagonal matrix with the elements &f on the main diagonal

without any all-zero rows.

blkdiag(-)

Block diagonal matrix with the matrix blocks in its argument on

the main diagonal.

1], ¢,-norm ofx, i.e., (N[ [P) /7.

tr(X) Trace of matrixX, i.e, sum of its diagonal elements.
E[z] Statistical expectation aof.

(x)+ (x)4 = xiff x > 0 otherwise(z); = 0.

R Set of real numbers.

R4 Set of non-negative real numbers.

RN Set of N-length vectors with real elements.
RMxN Set of matrices of siz&/ x N with real elements.

SN Set of symmetric matrices of siZé x N.

Sf Set of symmetric positive semidefinite matrices of Szex N.
S, Set of symmetric positive definite matrices of si¥ex N.

Abbreviations

ADC analog-to-digital converter

BHM Bayesian hierarchical modelling

BIBO bounded input bounded output

CRB Cranér-Rao bound

CS compressive sensing

DCT discrete cosine transform

DOA direction of arrival

EKF extended Kalman filter
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EHM
IDE
KLT

LMMSE
MCMC
MIL

MSE
PDE
PDF
POI
SNR

SPDE
UKF
WLS

WSN

empirical hierarchical modelling
integro-difference equation
Karhunen-Loeve transform

linear minimum mean square error
Markov chain Monte Carlo
matrix inversion lemma

mean square error

partial differential equation
probability density function

point of interest

signal to noise ratio

stochastic partial differential equation
unscented Kalman filter

weighted least square

wireless sensor network
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