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ABSTRACT

Part of Information Retrieval evaluation research is limited by the

fact that we do not know the distributions of system efectiveness

over the populations of topics and, by extension, their true mean

scores. The workaround usually consists in resampling topics from

an existing collection and approximating the statistics of interest

with the observations made between random subsamples, as if

one represented the population and the other a random sample.

However, this methodology is clearly limited by the availability of

data, the impossibility to control the properties of these data, and the

fact that we do not really measure what we intend to. To overcome

these limitations, we propose a method based on vine copulas for

stochastic simulation of evaluation results where the true system

distributions are known upfront. In the basic use case, it takes

the scores from an existing collection to build a semi-parametric

model representing the set of systems and the population of topics,

which can then be used to make realistic simulations of the scores

by the same systems but on random new topics. Our ability to

simulate this kind of data not only eliminates the current limitations,

but also ofers new opportunities for research. As an example, we

show the beneits of this approach in two sample applications

replicating typical experiments found in the literature. We provide a

full R package to simulate new data following the proposed method,

which can also be used to fully reproduce the results in this paper.
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1 INTRODUCTION

Much research on Information Retrieval (IR) investigates alternative

methods to better evaluate systems. Some of these seek a higher cor-

relation between oline system measures and online user measures,

more power to discriminative between systems, or reduction of

judgment pool incompleteness. In this type of research we typically

ask łwhat if" questions, like what if we use non-expert relevance
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assessors Bailey et al. [5], what if we use a diferent parameteriza-

tion of DCG [20], or what if we evaluate on a diferent document

collection [24]?

One class of such problems is concerned with the reliability of

our evaluation experiments and its trade-of with eiciency [29],

that is, the extent to which evaluation results can be replicated,

maybe under budget restrictions. Typical questions in this class

are what if we change the topic set [37], what if we use P@10

instead of AP [8], what if we use the Wilcoxon test instead of the

t-test [32], or how many topics will we need to achieve a certain

level of conidence [12]? Unfortunately, research questions of this

nature pose fundamental problems that make it impossible to ind

a direct answer or, at the very least, limit our ability to do so:

• Finite data. Evaluation research is often of empirical nature and

uses existing data from archives like TREC. However, these data

are limited to dozens of systems and topics for a given task,

so the precision and generalizability of our results are severely

constrained. We usually overcome this limitation by resampling

the existing data, as a way to simulate new topic sets.

• Unknown truth. In many cases the researcher needs to know

some underlying property of the systems, such as their true mean

score and variance over the possibly ininite population of topics,

which are of course impossible to know. The workaround usually

consists in making random splits of the topic set, considering

one as representing the population of topics and the other one

as a random sample from it. However, and because of the limited

amount of data, these splits are not really independent samples.

• Lack of control. Very often we want to study systems of prede-

ined characteristics, such as systems with the same mean or

variance, or with a certain degree of dependence. But we can not

control these properties: the systems and topics in the existing

data are what they are; we can not change them. Sometimes

we work around this limitation with artiicial modiications of

the efectiveness scores, but they result in unrealistic data (eg.

shifting scores by some quantity).

Consider for instance the problem of choosing an appropriate

number of topics for a new test collection [30]. The IR literature

contains data-based approaches that repeatedly split the topic sets

to calculate some statistic like Kendall τ [8, 25, 40]. Extrapolating

to larger topic sets, we ind empirical results on the reliability of

various topic set sizes. However, these studies are clearly limited

by the small data sources, they calculate statistics between two

samples of topics as opposed to between a sample and a popula-

tion, and in the end we do not have full knowledge of the true

system distributions anyway, so we can not really assess whether

the extrapolation is accurate or not. There are also statistical ap-

proaches that make various assumptions like normal distributions

or homoskedasticity, which clearly do not hold in IR evaluation

data [12, 23, 31]. Still, the extent to which these assumptions pose
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a practical problem, remains largely unknown because we can not

control these properties of the data.

These limitations, however unfortunate, are present in our ev-

eryday research. As a consequence, one may wonder the extent

to which past and current results really hold in practice. It is our

irm believe that the IR community should seek experimentation

methods that help us remove these barriers and allow us to study

this kind of questions directly and under desired conditions. For

this, we propose the use of stochastic simulation for the generation

of evaluation data to serve as input in evaluation research. The

idea of using simulation in IR research is of course not new. In the

early days simulation was attempted to build collections, and in

particular simulate judgments [14, 28]. More recent work has been

devoted for instance to simulating queries [3], document scores [22]

and various aspects of user interaction [4].

For problems pertaining to reliability we ind few cases, such

as [9, 10] and [30], which do simulate efectiveness scores. However,

simulations therein are rather limited. In the former the scores

are drawn from Beta and Uniform distributions without adjusting

parameters and correlations based on existing data. The latter work

does this to some degree, but the resulting simulations are still

unrealistic in terms of support (eg. they are only continuous) and

still do not allow us to have full control over system properties.

Building upon these works, in this paper we propose a method

for the stochastic simulation of efectiveness scores that efectively

avoids the three limitations discussed above. The general idea is

to build a model for the joint distribution of system scores given

by some efectiveness measure, such that we can simulate end-

lessly from it. It is important to note that we do not aim at cre-

ating a model of the systems that generated the given data, but

rather a realistic model of a set of systems similar to those. For

this model to be realistic, we implement several alternatives to

model the marginal system distributions in a way that the under-

lying properties of the measure are preserved (eg. the support),

as well as several alternatives to model the full dependence struc-

ture among systems. By fully specifying the efectiveness distribu-

tions, the model is also useful because we have complete knowl-

edge of properties of the data such as the expected mean and

variance. Furthermore, by separating the modeling of margins

from the modeling of dependencies, we have a high level of cus-

tomization that allows us to control aspects such as the levels of

homoskedasticity and correlation. A full implementation of the

proposed method is open-sourced as an R package, available at

https://github.com/julian-urbano/simIReff. The results of

the paper can be fully reproduced with data and code available at

https://github.com/julian-urbano/sigir2018-simulation.

Sections 2 and 3 discuss how to model system dependencies

and score distributions. Section 4 evaluates the proposed method,

and Section 5 presents two application uses cases replicating past

experiments. Section 6 presents the conclusions and future work.

2 MODELING SYSTEM DEPENDENCIES

In order to make realistic simulations, we need to build a joint

stochastic model for the efectiveness of a set of systems. An appro-

priate model should relect the behavior of the individual system
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Figure 1: Sample bivariate copulas itted to the AP scores of

two TREC 2010 Web Ad hoc systems, and sample distribu-

tions of nDCG@20 and P@10 scores. Original data in grey.

scores as well as the dependence among them. But classical multi-

variate models like the multivariate Gaussian distribution are not

lexible enough to describe the kind of data we have in IR evalu-

ation (see Figure 1 for examples). A solution to this problem are

copula models [19], which allow us to separate the modeling of mar-

ginal distributions (i.e. the individual distribution of each system,

regardless of the others), and the dependence among systems.

Denote the efectiveness of system s on some topic by Xs , the

marginal distribution of system s by Fs , and the joint distribution

of allm system scores as

F (x1, . . . ,xm ) = P(X1 ≤ x1, . . . ,Xm ≤ xm ). (1)

By Sklar’s theorem [27], we can decompose this distribution as

F (x1, . . . ,xm ) = C
(

F1(x1), . . . , Fm (xm )
)

. (2)

The function C is called the copula of F , and it captures the depen-

dence between systems. It is a distribution function of the random

vector (U1, . . . ,Um ), where Us = Fs (Xs ) → Us ∼ Uniform. Taking

the derivative on both sides of (2) gives us a decomposition of the

corresponding joint density:

f (x1, . . . ,xm ) = c
(

F1(x1), . . . , Fm (xm )
)

· f1(x1) · · · fm (xm ), (3)

where f1, . . . , fm are the marginal densities and c is the density

corresponding to the copula C .

A convenient property of copulas is that they can be itted sepa-

rately from the margins. The most common procedure is:

(1) Fit the marginal distributions Fs of each system.

(2) Use the itted margins to transform the observed scores Xs to

pseudo-observations of the copula:Us = Fs (Xs ).

(3) Fit the copula model to the pseudo-observations.

The procedure to simulate the scores on a new random topic is:

(1) Generate a pseudo-observation (R1, . . . ,Rm ) from the copula.

(2) Compute Ys = F−1s (Rs ).

By construction then, we have Ys ∼ Fs . In reality, a copula models

the dependence between quantiles of the margins (the pseudo-

observations), not the actual raw observations. This way, the same

copula can be used to describe the dependence among systems, but

we retain full control over individual system distributions just by

plugging diferent margins into the copula.

2.1 Gaussian Copulas

There is a variety of parametric models for the copula C , the most

popular of which is the Gaussian copula [19]. It is derived from the

multivariate Gaussian distribution by inversion of (2):
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Figure 2: An R-vine tree sequence for four systems.

Cgaussian(u1, . . . ,um ) = ΦΣ

(

Φ
−1(u1), . . . ,Φ

−1(um )
)

, (4)

where Φ is the univariate standard Gaussian cumulative distribu-

tion function, and ΦΣ is the distribution function of a multivariate

Gaussian with mean 0 and correlation matrix Σ. Since the Gaussian

copula is parameterized by Σ, it allows to control the strength of de-

pendence between each pair of variables. This is a major advantage

over other parametric families such as Archimedean copulas [19],

which only have 1 or 2 parameters in total.

2.2 Vine Copulas

Because the Gaussian copula is derived from the multivariate Gauss-

ian distribution, the dependence between each pair of variables is

constrained to be highly symmetric. In reality though, dependence

is often asymmetric (see Figure 1-left for an example). The depen-

dence may be stronger for small values of the system scores and

weaker for large values, or the other way around. An even more

lexible class of copula models are vine copulas [1]. A vine copula

model is graphically represented as a set of linked trees where the

edges of tree i are the nodes of tree i + 1. The full dependence

structure is built with individual two-dimensional copulas attached

to each of the edges.

A special kind of vine are regular vines or R-vines, where two

edges in tree i are joined by a node in tree i + 1 only if they share a

common node. An example on four systems is shown in Figure 2.

The vertices in the second tree are the edges in the irst tree. For

instance, the edge {4, 1} encodes the dependence between X4 and

X1. The edge {{4, 1}, {1, 2}} encodes the dependence between X4

and X2 conditional on X1.
1 This edge is then represented in tree

3 with the vertex {4, 2|1}. The combination of all conditional pair-

copulas in the vine fully determines the dependence structure of

the vector (X1, . . . ,X4).

The concept of vine copulas naturally extends to higher dimen-

sions. One merely has to attach an edge with a new vertex to each

tree in the R-vine. The trees are not restricted to be paths as in

Figure 2 (e.g. vertex {3} could be connected to vertex {1} instead of

{2}), but the edge sets have to fulill certain conditions that ensure

that the vine copula results in a valid and fully speciied dependence

structure [6]. An algorithm for selecting an appropriate structure

in a data-driven manner was introduced by Dissmann et al. [16].

The main advantage of vine copulas is that one can select from

a large variety of parametric copula families for each pair-copula,

symmetric and asymmetric ones. This makes the models very lexi-

ble, but also very complex. A vine copula onm systems consists of

m(m − 1)/2 pair-copulas, and each of them requires us to select a

family and estimate its parameters. Fortunately, it is possible to do

1The conditioning variable is found by intersecting node indexes: {4, 1}∩{1, 2}= {1}.

this sequentially, one pair-copula at a time (for details, see Aas et al.

[1]). In higher dimensions (m ≥ 10), it is common to truncate the

model [7]: only the pair-copulas in the irst few trees are speciied,

and all subsequent pairs are considered independent. This allows

us to it and select a vine copula model in a matter of seconds, even

in high dimensions, using mainstream computing resources.

3 MODELING SYSTEM
EFFECTIVENESS DISTRIBUTIONS

As discussed in the previous section, we can model the marginal

system efectiveness distributions separately from their dependence.

The obvious choice would be to use the empirical distribution of

the given data, but then a value that has not occurred in these

data would never come up in a simulation. Instead, in this section

we describe various parametric and non-parametric alternatives

to model the margins. The irst distinction we make is between

continuous and discrete distributions. In principle, all measures are

discrete because they calculate a score based on a inite document

list, a inite set of judgments and a discrete relevance scale, so the

possible set of outcomes is also inite. This is evident in measures

like P@10, where only 11 diferent values are possible. However,

for more ine-grained measures likeAP or nDCG , the set of possible

outcomes is fairly large and we can comfortably assume they follow

a continuous distribution.

In the following, let us change notation and refer to the set of

scores for a system over n topics as {X1, . . . ,Xn }.

3.1 Continuous Distributions

When assuming a continuous distribution of efectiveness, we have

simple and well-known options such as the Normal or Beta distribu-

tions. However, they are fairly restricted as to the shape that their

density function can take, so we also consider kernel smoothing.

Next, we present four alternatives to model a continuous distribu-

tion of efectiveness, based on the Normal and Beta.

3.1.1 (Truncated) Normal Distribution (N). One of the simplest

choices to model continuous data is the Gaussian or Normal distri-

bution, parameterized by the mean µ and variance σ 2. However, a

Normal distribution is supported on (−∞,+∞), while efectiveness

scores are typically supported on [0, 1]. To solve this issue we can

truncate the distribution. Let f , F and F−1 be the density, distribu-

tion, and quantile functions of some distribution (Gaussian in our

case). The corresponding distribution truncated between a and b is

ftrunc(x) =
f (x)

F (b) − F (a)
, (5)

Ftrunc(q) =
F (q) − F (a)

F (b) − F (a)
, (6)

F−1trunc(p) = F−1
(

p (F (b) − F (a)) + F (a)
)

, (7)

where a = 0 and b = 1 for our purposes. Note that no assump-

tions are made about the original distribution, other than it being

continuous. Therefore, we can follow the same idea to truncate

other distributions and maintain the support of interest. For the

Truncated Normal, µ and σ 2 are typically estimated numerically

by maximizing the log-likelihood of the given data. Finally, the



expected value and variance are [17]:

E[X ] = µ +
ϕ(a′) − ϕ(b ′)

Φ(b ′) − Φ(a′)
σ (8)

Var[X ] = σ 2

[

1 +
a′ϕ(a′) − b ′ϕ(b ′)

Φ(b ′) − Φ(a′)

]

− (E[X ] − µ)2 (9)

a′ = (a − µ)/σ , b ′ = (b − µ)/σ .

Figure 1 shows a truncated Normal (N) itted to real TREC data.

3.1.2 Beta Distribution (B). A natural alternative for bounded

data is the Beta distribution, which is already supported on the

unit interval. In addition to a bell shape, its density function can

also have J and U shapes, with custom degrees of asymmetry. It

is typically described with two shape parameters α , β > 0, and its

expectation and variance are

E[X ] =
α

α + β
, (10)

Var[X ] =
αβ

(α + β)2(α + β + 1)
. (11)

There is no close form solution for maximum likelihood estimation

of the parameters, so they are typically estimated via numerical

optimization. Figure 1 shows a Beta (B) itted to real TREC data.

3.1.3 (Truncated) Normal Kernel Smoothing (NKS). Even though

Normal and Beta distributions are simple and well-known, they are

restricted to certain shapes. A more lexible alternative is Kernel

Smoothing. In its general form, a kernel-smoothed density estimator

is parameterized by a bandwidth b > 0 that controls the degree of

smoothing, and a kernel k , which is a non-negative function that

integrates to one. The kernel-smoothed distribution is deined as

f (x) =
1

nb

∑

i

k

(

x − Xi

b

)

, (12)

F (x) =
1

n

∑

i

K

(

x − Xi

b

)

. (13)

In our case, the kernel is k = ϕ and K = Φ, that is, the standard

Normal. In general, there is no close form expression for the quantile

function F−1. However, because F is continuous and monotonically

increasing, a quantile p can be computed numerically by inding

the solution to F (x) = p.

In order to select the bandwidth parameter b, we use the auto-

matic procedure by Wand and Jones [34]. As with the Normal, we

truncate the distribution between 0 and 1 following (6). The ex-

pected value and variance are calculated via numerical integration

of the quantile function:

E[X ] =

∫

x f (x) dx =

∫ 1

0
F−1(x) dx , (14)

Var[X ] =

∫

(x − E[X ])2 f (x) dx =

∫ 1

0
F−1(x)2 dx − E[X ]2. (15)

The irst expressions are the text-book formulas for a continuous

random variable, but because we will ultimately simulate new data

through the quantile functions, we use the second expressions for

higher numerical precision. Figure 1 shows a truncated Normal

Kernel-Smoothed (NKS) itted to real TREC data.

3.1.4 Beta Kernel Smoothing (BKS). The kernel function can also

be based on the Beta distribution to naturally bound the support.

Here we use the kernel proposed by Chen [13], which yields the

density function

f (x) =
1

n

∑

i

fBeta

(

Xi ;
x

b + 1
,
1 − x

b + 1

)

. (16)

Note that the above expression is not a valid density because it

is not guaranteed to integrate to one, but this is easily solved by

normalization over the full support. The distribution and quantile

functions are once again calculated numerically, and the expectation

and variance are computed following (14) and (15). The bandwidth

parameter is set to b = n−2/5 by default [13]. Figure 1 shows a Beta

Kernel-Smoothed (BKS) itted to real TREC data.

3.2 Discrete Distributions

The typical method to it a discrete distribution is to assign an in-

teger rank to each possible value of the support, it a well known

distribution such as the Binomial or Poisson, and convert back to

the original support when simulating new data. Let f be a proba-

bility mass function with support {s1, . . . , sz }. The corresponding

cumulative distribution and quantile functions, as well as the expec-

tation and variance, are easily calculated from their very deinitions

for a discrete distribution:

F (q) =
∑

s≤q
f (s), (17)

F−1(p) = inf{s : F (s) ≥ p}, (18)

E[X ] =
∑

s · f (s), (19)

Var[X ] =
∑

f (s) · (s − E[X ])2. (20)

Below we propose a parametric and a non-parametric alternative.

3.2.1 Beta-Binomial (BB). The Beta-Binomial distribution is the

Binomial distribution in which the probability of success in each

trial is not ixed, but distributed according to a Beta. Similarly,

its mass function can have several shapes, making it a suitable

candidate for discrete data. It is parameterized by the α , β > 0

parameters of the underlying Beta, and the number of trialsm > 0

of the underlying Binomial. The support is {0, 1, . . . ,m}, so the

original efectiveness scores need to be transformed into integers.

For instance, a P@k score X would be transformed to k · X . In

general,the i-th support value is transformed into i − 1.

Parameters are estimated by numerical optimization of the log-

likelihood. However, note that m can be ixed to the size of the

original support set minus one. In the case of P@k , there are only

k +1 possible outcomes which correspond to the number of suc-

cesses inm = k trials. Therefore, only α and β need to be estimated.

Figure 1 shows a Beta-Binomial (BB) it to real TREC data.

3.2.2 Discrete Kernel Smoothing (DKS). The kernel-smoothed

distributions in (12) and (16) can be adapted to discrete variables

by using a kernel function with a discrete support [35]:



f (x) =
1

n

∑

i

k (x ,Xi ,b), (21)

k(x ,Xi ,b) =

{

(1 − b) Xi = x
1
2 (1 − b) · b |Xi−x | otherwise.

The kernel function k is designed for the case where Xi is integer

valued. The discrete kernel smoother is not a proper probability

mass function because it usually does not sum up to one, but this can

easily be corrected by normalization. The bandwidth parameter b

can be selected automatically by least-squares cross-validation [35].

The discrete kernel-smoothed distribution is very appealing for

measures with non-standard support, such as Reciprocal Rank. In

the typical case with an evaluation cutof k = 1, 000, the support

of an RR score is {0, 1/1000, 1/999, . . . , 1/1}. Most values are thus

concentrated near 0, so a parametric model like the Beta-Binomial

will not provide a good it. The kernel-smoothed distribution in

(21) is lexible enough to adapt, but it can easily overit with rare

supports like this. To alleviate this issue we introduce a bandwidth

multiplier h > 1 such that the actual bandwidth is bh ≤ 1. Figure 1

shows the Discrete Kernel Smoothing (DKS) it with the initially

selected bandwidth (i.e. h = 1), and the variant with h = 2 (DKS-2).

3.3 Model Selection

Each of the above distribution models can be itted for a given set

of efectiveness scores, so in practice we will need to choose the

best distribution from a set of candidates. An obvious criterion for

selection is the log-likelihood (LL)

LL =
∑

i
log f (Xi ), (22)

which is maximized by the best model. However, the log-likelihood

can bemade arbitrarily large bymaking themodel more complex, so

it favors distributions that overit the data. The Akaike Information

Criterion [2] and the Bayesian Information Criterion [26] are two

classical criteria that correct for this by penalizing the number of

parameters θ of a model. They are deined as

AIC = −2LL + 2θ , (23)

BIC = −2LL + θ log(n), (24)

where n is the sample size (the number of topics in our case). The

best itting model minimizes the AIC or BIC. If n > 8, the BIC puts

a stronger penalty on the number of parameters, so it favors more

parsimonious models.

For the parametric distributions, the number of parameters is

straightforward: the Normal, Beta and Beta-Binomial distributions

have two parameters each (recall that m is ixed upfront). For

nonparametric distributions the number of parameters is not de-

ined, but there is an equivalent concept called efective degrees

of freedom that can be used in the formulas of AIC and BIC. The

most common deinition arises from the concept of linear estima-

tors [18, 21]: for any density estimator that can be written in the

form f (x) =
∑

i д(x ,Xi ), the efective degrees of freedom are

edf =
∑

i

д(Xi ,Xi )
∑

j д(Xi ,X j )
. (25)

This is possible to calculate for all three kernel-smoothed distribu-

tions presented in the previous sections.

3.4 Ensuring Expectations

Asmentioned above, there are many situations in which researchers

want to experiment with systems whose expected values difer by

some predeined amount, or systems that have the same expected

value but a test collection says otherwise. In some other cases we

may want a itted distribution to have the same expected value as

the observed mean score in the know data. Unfortunately, these re-

strictions are now guaranteed by construction in the above models.

Let F be a cumulative distribution function with mean µ. A natu-

ral way to ensure a expected value µ∗ is to shift all observations by

subtracting µ − µ∗, but this has two problems: the resulting distribu-

tion would not be bounded by [0, 1], and if it is discrete, the shifted

observations are not guaranteed to have a correct support anymore.

For instance, a P@10 score of 0.2 could easily become something

like 0.17, which is clearly an invalid value for that measure. We

propose an alternative way to modify F that ensures that the new

mean is µ∗ and the support remains unchanged.

For any increasing function T : [0, 1] → [0, 1], the function

F̃ (x) = T (F (x)) is again a distribution function and has the same

support as F . The goal is to ind a transformation T such that

the resulting mean of F̃ is µ̃ = µ∗. To this end, we irst restrict

the transformation to the family of Beta distribution functions

B = {FB(· ; α̃ , β̃)} : α̃ > 0, β̃ > 0}. Then we can solve numerically

for a combination of α̃ and β̃ , such that µ̃ = µ∗ according to (14).

This gives us a new distribution F̃ that has the desired mean µ∗,

and whose distribution functions are:

f̃ (x) = fB
(

F (x) ; α̃ , β̃
)

· f (x), (26)

F̃ (q) = FB
(

F (q) ; α̃ , β̃
)

, (27)

F̃−1(p) = F−1
(

F−1B
(

p ; α̃ , β̃
) )

. (28)

Essentially the same procedure may be used to ensure a pre-

deined variance instead of mean, thus allowing us to control the

homoskedasticity of the model. If on the other hand we want to

enforce both mean and variance, the parametric models could be

instantiated to already meet the constraints because they have pre-

cisely two parameters. In the general case, bivariate optimization

can be attempted, but this goes beyond the scope of this paper.

4 EVALUATION

In this sectionwe evaluate the proposed simulationmethod from the

perspectives of the efectiveness distributions, the copulas, and the

simulated data. In particular, we will build and evaluate distribution

and copula models using data from the Ad hoc submissions to the

TREC Web track between 2010 and 2014. Each of these collections

contains about 50 topics and between 30 and 88 systems, for a total

of 12,924 system-topic pairs. In terms of efectiveness measures,

we use Average Precision, nDCG@20 and ERR@20 as exemplars

of measures with continuous support, and Reciprocal Rank, P@10

and P@20 as exemplars of measures with discrete support.

4.1 System Efectiveness Distributions

The irst step towards a successful simulation is to it a model to

each of the marginal system efectiveness distributions, following

the principles in Section 3. Therefore, our irst point of interest

is which of the various alternatives provide the best it to real
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evaluation data. For each collection and measure, we start from

the n ×m matrix with the scores by allm systems on all n topics.

For measures with continuous support we it 4 diferent models:

truncated Normal (N), Beta (B) truncated Normal Kernel Smoothing

(NKS), and Bounded Kernel Smoothing (BKS). For measures with

discrete support we it up to 5 diferent models: Beta-Binomial (BB),

Discrete Kernel Smoothing with multiplier h = 1 (DKS), and DKS

with multiplier h ∈ {2, 5, 10} (DKS-h)2.

A grand total of 5,425 models were itted for all 1,572 combina-

tions of measure and system. For each combination, the best model

was selected according to LL, AIC and BIC (see Section 3.3). Fig-

ure 3 shows the distributions of best models for each efectiveness

measure and before µ-transformation. Across measures we can see

that log-likelihood favors the more complex non-parametric models

NKS andDKS. With continuous measures, the parametric modelsN

and B are chosen only about 25% of the times, and the discrete BB

is in fact never selected by the log-likelihood criterion. As expected

though, AIC and BIC penalize this complexity and tend to select

the simpler models. The exception is Reciprocal Rank, where the

BB model is still never selected because it is not able to adapt to

the non-standard support as well as the non-parametric DKS. What

we do appreciate in this case is the selection of DKS-h by AIC and

BIC, because of the lower efective degrees of freedom.

As discussed in Section 3.4, we often need to transform system

distributions to make sure their expectation equals some predeined

value. In principle, the best model before transformation is not

necessarily the best one after transformation, so we attempted to

transform all 5,425 models such that their expected values equal the

mean score observed in the given data (within a 10−5 threshold),

and then performed model selection again. The transformation was

2Not all DKS-h models can be itted in all cases. Whether a particular value of h
produces a valid it depends on the pre-selected bandwidth b .
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Figure 5: LL (higher is better), AIC and BIC (lower is better)

of the itted Gaussian vs. R-vine copulas.

successful in 5,003 cases (92%), and Figure 4 shows the distributions

of selectedmodels. Compared to the untransformed case, we can see

that non-parametric models are almost always selected because of

their lexibility. In fact, the most successful model in the continuous

case is BKS, which was seldom selected before.

Although these results do not tell us in and on themselves about

the quality of the itted models, they suggest that the best options

are generally those that are neither too complex like kernel smooth-

ing, nor too simple like basic Normal or Beta distributions. Further-

more, they suggest that there is no single best model for all cases,

not even within measures, and that if transformations are required,

model selection should be performed afterwards.

4.2 Copulas

The second step towards a successful simulation is to it a copula

model to the pseudo-observations, following the principles in Sec-

tion 2. Therefore, our second point of interest is which alternative

provides the best dependence model to real evaluation data.

In order to study whether Gaussian copulas are appropriate to

model the dependence among systems, we irst it bivariate copulas

between every pair of systems in the same collection, selecting the

best candidate according to log-likelihood. From the total of 39,627

system pairs, Gaussian copulas are selected only in 2.7% of the cases,

thus evidencing that simple correlation is not enough to model the

dependence found among real systems. The most common copula

is the BB8 copula, selected 30% of the times, followed by the Tawn 1

(16%), Tawn 2 (16%), BB7 (12%), t (9%), BB1 (4.8%), Clayton (4.2%),

Frank (4%) and others. Figure 1-left shows an example.

We then it full Gaussian and R-vine copulas to all systems and

topics in an efectiveness matrix, performing selection based on LL,

AIC and BIC. Suggested by the previous results on pair-copulas,

we irst check whether the extra complexity of vine copulas ac-

tually helps us capture the full dependence structure in a better

way. Figure 5 shows the goodness of it of all 30 Gaussian copulas

compared to their R-vine counterparts. According to all selection

criteria, R-vine copulas do indeed provide a signiicantly better it.

Another aspect to analyze is the possibility to truncate the vines

in order to speed up the itting process at the cost of reducing the

goodness of it. One indicator to decide whether to continue to

the next vine level or not, is the Kendall τ correlation observed

in the pair-copulas of the current level: if the correlation is low,

we may decide to stop and truncate, and if the correlation is high

we may decide to continue because there appears to be some de-

gree of dependence to further incorporate into the vine. Figure 6
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Figure 6: Mean and maximum absolute value of the Kendall

τ (log-scaled) at each truncation level (log-scaled) of the R-

vine copulas. Lines represent within-collection means.

shows the mean and maximum absolute value of the τ correla-

tion scores at each level of the R-vine copulas. In the irst level

we can see very high correlations, but already in the second level

they drop signiicantly. The average correlation remains around

0.1 throughout truncation levels, but the maximum decreases very

slightly between 0.3 and 0.2 until nearly the end, indicating that

some speciic pair-copulas are still capturing a relevant amount of

dependence. Overall, these results suggest that there is no obvious

point to truncate the vines, and that in any case the truncation level

of course depends on the number of systems. Even though the num-

ber of pair-copulas itted in a full vine grows quadratically with the

number of systems, a mainstream computer itted the full models

in under one minute each, so our suggestion is not to truncate.

4.3 Simulated Scores

The third and inal step towards a successful simulation is to gener-

ate random pseudo-observations from the copula, and from there

the inal efectiveness scores via the marginal distributions. The

mean and variance of the simulated scores should meet the values

predeined in these distributions. This is the ultimate goal of using

the proposed method: simulating new data from a model for which

we know the full characteristics in advance.

We start with the marginal distributions and copulas itted in

the previous section, and proceed as follows. For each copula we

simulate 1,000 random observations, and record the observed mean

and variance for each of them systems. This is repeated 1,000 times,

yielding 1, 000 ·m sample means and sample variances. For each of

these we compute the deviation from the expected values, that is,

µ − X and σ 2 − s2. Over repetitions, we expect these deviations to

be centered at zero, meaning that the simulated scores are unbiased.

Figure 7 shows at the top the distributions of deviations. We can

irst appreciate that all distributions are indeed centered at zero,

indicating that the simulated scores are not biased and therefore

the µ and σ 2 scores predeined by the margins can be trusted. We

can also observe higher variability in the discrete measures, be-

cause their support is much less ine-grained than the continuous

measures, leading to less stability [8]. In terms of magnitude of the

deviations, we can see that in most cases they are within 0.01 of

the mean and 0.002 of the variance.

We note that these are deviations for samples of size 1,000 topics;

larger samples have of course smaller deviations. For comparison,

the bottom plots in Figure 7 show the distributions of deviations for

Copula
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Figure 7: Deviations from the mean (left) and variance

(right), in samples of size 1,000 simulated from the R-vines.

The bottom plots show similar statistics for simulations of

standard distributions as implemented in R.

various random number generators in the statistical software R. In

particular, we simulated 100,000 samples of 1,000 observations each,

and similarly recorded the deviations from the theoretical mean

and variance. The data are simulated from three distributions with

a random selection of parameters such that the simulated scores

have dispersion similar to the original TREC data: Gaussian with

σ ∈ [0.15, 0.2], Beta with α , β ∈ [1, 20], and Beta-Binomial with

m = 10 and α , β ∈ [1, 6] (normalized to the unit interval)3. As the

plots show, the distributions of deviations in base R are indeed

similar to the deviations in the simulated evaluation data.

Finally, Figure 8 (left) shows as an example the Spearman corre-

lation matrix among the Web 2010 systems, as per nDCG@20. The

second matrix presents the observed correlations in 500 random

topics simulated with the Gaussian copula. As expected, they are

very similar because the Gaussian copula models linear correlations.

The third matrix presents the correlation in 500 topics simulated

from the R-vine copula without truncation, which is much more

faithful to the original data at least with respect to correlation (re-

call that vine copulas model dependence structures more complex

than simple correlation). The last matrix shows similar results from

an R-vine truncated at level 2, showing that even if we truncate

this early the bulk of the dependence structure is accounted for.

Overall, the results suggest that the simulated data behaves as

expected within reasonable precision bounds, and that it is indeed

capable of capturing the dependence underlying the existing data.

These models efectively provide an endless supply of realistic

evaluation data with known and predeined characteristics, which

can prove to be a very valuable resource for IR evaluation research.

5 SAMPLE APPLICATIONS

In this section we describe two sample applications of the pro-

posed simulation method, showing how it can help us overcome

the discussed limitations in IR evaluation research. In particular,

3These simulations used the standard functions stats::rnorm, stats::rbeta and
extraDistr::rbbinom.



Figure 8: Spearman correlation matrices of the original Web 2010 nDCG@20 scores and 500 observations simulated with the

Gaussian copula, the R-vine copula without truncation, and truncated at 2 levels.

we repeat an experiment by Webber et al. [38] on the estimation of

the variability of between-system score deltas for the purposes of

power analysis, and an experiment by Voorhees [33] on hypothesis

testing. The selection of these two works is by no means intended

as criticism. On the contrary, they are selected as clear examples of

how researchers have to make do with the available data and work

around these limitations.

5.1 Statistical Power and Topic Set Size

A typical problem in IR evaluation is deciding an appropriate num-

ber of topics to compare two systems with a some degree of con-

idence. In Section 5.3 of [38] the authors describe an experiment

using the TREC 2004 Robust data, emulating a researcher who

builds a new test collection by iteratively adding new topics until a

certain level of statistical power is achieved. In particular, they use

only the 150 topics from TREC 6ś8 and the 78 not description-only

systems. Next we describe their original design and two alternatives

using our simulation method (Figure 9 presents an outline).

Original Design (O). Repeat the following experiment 100 times:

(1) Randomly select a system from the second quartile of runs and

another system from the top three quartiles.

(2) Compute the original per-topic system score deltas D1 . . .D150.

(3) Compute σ150 as the standard deviation observed inD1 . . .D150.

Assume σ150 is the true population standard deviation.

(4) Compute the target δ equal to the minimum detectable difer-

ence by a t-test, with power 80% and signiicance level 5%, if

using 100 topics.

(5) Repeat the following iterative process for i = 1 . . . B:

(a) Start with an empty topic set.

(b) Sample a new topic with replacement from the 150 available,

compute the standard deviation σ (i) with the current topic

set, and the detectable diference d assuming σ (i).

(c) Ifd > δ , go back to step 5.b. If not, stop and record the current

number of topics n(i) and σ (i).

(6) Record the mean number of topics and standard deviation over

the B = 1, 000 trials: nB =
1
B

∑

n(i) and σB =
1
B

∑

σ (i).

In this experiment, σB is intended to estimate the population

σ , which is set to σ150. Similarly, nB is intended to estimate the

required number of topics, set to 100. In their Figure 5 they plot

each σB versus the corresponding σ150, showing a clear bias. We

repeated their experiment with 200 system pairs; plot O) in Fig-

ure 10 shows the same results. The standard deviations are always

underestimated, by 5.3% on average, and the required number of
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Figure 9: Outline of the experimental designs to show the

efect of sequential testing: O) original design [38], A1) and

A2) alternatives with the proposed simulation method.

topics is also underestimated to 93. Essentially, this experiment

shows empirical evidence of the problem of sequential testing [39],

further demonstrated in subsequent IR works [11, 36].

However, this is a clear case in which researchers are restricted

by the available data and they have to make certain assumptions to

approximate the statistics of interest. Indeed, the ultimate goal of

this experiment was to see how much bias the iterative sampling of

topics introduces in the estimation of the true population σ . In step

(3), the σ150 observed in the available data is taken as the true popu-

lation σ , which is of course unknown in reality. The larger question

though, is not how biased σB is with respect to σ150, because it has

some degree of error itself, but with respect to the true σ .

Alternative Design 1 (A1). The irst alternative to overcome this

problem using our simulation methodology, modiies step (2) to:

(2) Fit the margins and bivariate copula from D1 . . .D150, thus set-

ting the true distribution F andσ . Simulate a new setD+1 . . .D
+

150
from the copula, which are used to compute σ150.

The A1) plots in Figure 10 show the results. First, we see that σB
is still always underestimating σ150 because of sequential testing,

but when compared to the true and known σ , the underestimation

is not as consistent. Still, on average σ is underestimated by 2.9%,

and the required number of topics is 97.

Alternative Design 2 (A2). However, the best way to make full

use of our proposed simulation methodology is to use the original

150 topics just to it the copula, and always simulate a brand new

topic from it in step (5.b). This allows us to compare σB with the true

and known σ over truly independent topic sets, thus eliminating the

limitations of the original design. In the A2) plot of Figure 10 we can

observe that the bias due to sequential testing is still clearly present,
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Figure 10: O)σB estimated via resampling vs. assumedσ150 from the original 150 topics (replication of Figure 5 in [38]). A1-left)

same but from 150 new topics simulated from a copula. A1-right) σB estimated via resampling vs. the true σ preixed by the

copula. A2) σB estimated via true random sampling from the copula vs. true σ preixed by the copula.

with an average underestimation of 2.9% on σ and an average of 97

topics required from the expected 100.

In summary, this irst use case allows us to pinpoint two limita-

tions in this kind of IR evaluation research, namely that we do not

know the true characteristics of systems (population σ ), and the lim-

ited availability of data (only 150 topics) that forces us to resample

and make assumptions. The proposed methodology for stochastic

simulation efectively eliminates these two limitations and allows

us to study the research question directly and precisely. Indeed, our

experiments reproduce the undesired efect of sequential testing.

5.2 Hypothesis Testing and Type I Errors

A recurring problem in IR evaluation concerns hypothesis testing

and Type I errors. A sample work on this topic is [33], where the

authors describe an experiment using the TREC 2004 Robust data.

In particular, they employed the 100 topics from TREC 7ś8, and

only the top 83 systems according to mean AP score over the entire

set. Next we describe their original design and three alternatives

using our simulation method.

Original Design (O). The following was repeated 1,000 times:

(1) Randomly split the 100 topics in two halves T1 and T2.

(2) For each pair of systems A and B, run a t-test on the scores over

T1 and another test on T2, both 2-tailed and at α = 0.05.

(3) Record which of the two tests are signiicant, and mark the pair

asminor conlict if the mean scores have diferent sign but only

one test is signiicant,major conlict if the means have diferent

signs and both tests are signiicant, or no conlict otherwise.

Similar experiments appear in the literature in reference to Type I

error rates, sometimes incorrectly approximating it with the frac-

tion of signiicant results that are in a conlict [15, 25, 32, 40]. In [33],

authors reported that 2.8% of the signiicant results where part of a

conlict when using AP , and 10.9% when using P@10. Other papers

report similar indings for AP , somewhat suggesting that the t-test

is too conservative with IR data and it makes about half as many

Type I errors as it should, or twice as many in the case of P@10.

Here we repeated the original experiment of [33] and found 2.91%

of conlicts with AP and 12% with P@10, thus conirming their

results to a large extent.

AlternativeDesign 1 (A1).This experiment is similarly constrained

by the limited amount of topics, which are repeatedly split in two

in order to simulate independent topic sets. This may introduce

bias because the two sets are not really independent and always

come from the same 100 topics. To assess the efect of this bias we

carried out a similar experiment, but instead of the random split in

step (1), we simulated two new random sets of 50 topics each from a

bivariate copula. This means that every single comparison between

a pair of systems is made with truly random and independent topic

sets. The observed conlict rates are 2.67% in AP and 15% in P@10.

Another limitation of the original design is that the conlict rate

is only a rough approximation to the Type I error rate, which is

the statistic we are really interested in. In fact, there is no way

of knowing if a test yielded a false positive or not because the

true system mean scores are unknown, that is, whether the null

hypothesis is true or not is unknown to begin with. Using our

proposed methodology based on simulation, we have two options

to avoid this limitation.

Alternative Design 2 (A2). The irst alternative ensures that both

systems have the same marginal distribution and hence the same

expected values, making the null hypothesis true by deinition. The

Type I error rate can now be empirically estimated as the fraction of

comparisons that yield a signiicant result. We proceed as follows.

Given the two systems A and B, we it the bivariate copula just like

in the previous example, but use the same marginal distribution

FA for both systems. This way we simulate from systems with the

same distribution but diferent dependence structure. For higher

precision, the experiment was repeated 10,000 times for each pair of

systems, and we found 4.88% of Type I errors with AP at α = 0.05,

and 0.9% at α = 0.01. With P@10 we found 4.94% and 0.96% of

errors respectively.

Alternative Design 3 (A3). The last alternative consists in using

diferent marginal distributions, but transformed such that they

have the same expected value (see Section 3.4). This presents a

more realistic scenario than the previous alternative. We proceed as

follows. Given a system A, we randomly select a system B from the

10 systems whose expected values are closest to A’s, and transform

FB such that its expected value is µA. This way we simulate from

systems with diferent distributions but same expected values, and

diferent dependence structure. The experiment was again repeated

10,000 times for each pair of systems, and we found 4.88% and 0.9%

of Type I errors with AP at α = 0.05 and α = 0.01. With P@10 we

found 5% and 0.96% of errors respectively.

In summary, this second use case serves us to pinpoint three

main limitations in this kind of IR evaluation research, namely the

limited availability of data (only 100 topics), the lack of control over

these data (truth of the null hypothesis), and inability to measure

the actual statistics of interest (Type I error rate). The proposed



methodology for stochastic simulation avoids these limitations

again and allows us to study the research question directly. In this

particular case, our experiments show that the empirical error rates

are kept at the nominal α level, showing that the t-test is not a

conservative test with IR data.

6 CONCLUSIONS

In this paper we make the case for stochastic simulation of evalua-

tion data to support research on IR evaluation without the known

limitations of current practice, namely the scarcity of real data for

large experimentation, the lack of control and customization over

these data, and the lack of full knowledge about certain properties

such as the true distributions of system efectiveness over popu-

lations of topics. We propose a method based on R-vine copulas

that rids of these limitations and allows us to simulate realistic data

about new and random topics, with full knowledge and control

over the underlying properties. As an example, we replicated two

typical experiments of IR evaluation research to show the beneits

of our proposal. In the irst experiment we obtained empirical re-

sults that reproduce and conirm the sequential testing problem,

and in the second experiment we carry out the irst empirical and

direct assessment of Type I error rates in IR experimentation.

However, the proposed method can be used only in a certain

class of evaluation problems. For example, we it and assume a

model for the distribution of scores produced by each measure, so

research questions involving the comparison of distributional prop-

erties of the measures can not be answered. Similarly. our method

simulates efectiveness directly, so research questions regarding

pooling methods can not be studied with our method either. In

both these cases we would need to simulate, not inal efectiveness

scores, but rather system runs and judgments; note that the content

of documents and topics is not needed for this. This is an exciting

topic we plan to study as well.

We have several other plans for further research in this line.

First, we will implement other alternatives to model the margins,

with special care of evaluation cutofs that produce censored data.

Second, we will study optimal structures for the vines to gain new

simulation capabilities such as simulating a new random system

for a given set of topics. Third, we will study the inclusion of a

third factor other than systems and topics. A ixed third factor such

as efectiveness measure seems straightforward to model just by

adding new dimensions to the model, but a random factor such

as assessor is more challenging. Last but not least, we plan on

replicating previous evaluation research to conirm results with

experiments free of the limitations discussed in this paper.
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