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Abstract
To mitigate the risk posed by extreme rainfall events, we require statistical mod-
els that reliably capture extremes in continuous space with dependence. However,
assuming a stationary dependence structure in such models is often erroneous, par-
ticularly over large geographical domains. Furthermore, there are limitations on the
ability to fit existing models, such as max-stable processes, to a large number of loca-
tions. To address these modelling challenges, we present a regionalisation method
that partitions stations into regions of similar extremal dependence using clustering.
To demonstrate our regionalisation approach, we consider a study region of Australia
and discuss the results with respect to known climate and topographic features. To
visualise and evaluate the effectiveness of the partitioning, we fit max-stable mod-
els to each of the regions. This work serves as a prelude to how one might consider
undertaking a project where spatial dependence is non-stationary and is modelled on
a large geographical scale.
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1 Introduction

The impacts of extreme rainfall and associated flooding can be observed on a scale
that covers hundreds of kilometres. For example, the 2011 floods in Australia affected
an area the size of France and Germany (Queensland Floods Commission of Inquiry
2012). Flooding on this scale is also not unprecedented, with further evidence that
extreme rainfall and associated flooding can occur across large geographical scales
given in Fig. 1. These historical instances establish the need to understand the spatial
range of potential impacts from extreme rainfall. However, for many countries this
understanding is lacking, particularly on daily and sub-daily scales.

Statistical models can be used to assess the spatial range of dependence between
rainfall extremes, with a summary of some common statistical methods given in
Davison et al. (2012). Of particular interest are max-stable processes, which provide
a natural extension of univariate extreme value theory to extremes in continu-
ous space with dependence (de Haan 1984; Schlather 2002). Modelling rainfall
extremes in continuous space is desirable as the risk at locations without stations
can be assessed. Max-stable processes also have strong mathematical justification for
extrapolating outside the range of the observed data. Given this, these processes
have been used in several studies of extreme rainfall (Dombry and Eyi-Minko 2013;
Saunders et al. 2017).
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Fig. 1 For the given year, the plot shows the locations of stations at which the wettest annual maximum
was observed (blue) and the driest (red). The years selected are the top three wettest (1946, 1955 and
1974) and top three driest (1944, 1967 and 2002) by proportion of stations. Note that observational periods
do vary between stations. Stations are often clustered tightly in a given colour. These clusters can occur
across large geographical scales
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However, the parametric dependence structure of the max-stable process is often
assumed fixed across a given domain for computational and mathematical simplicity
(Oesting et al. 2017). Depending on the domain, a fixed dependence structure may be
a reasonable modelling assumption. For a large geographical domain however, this
assumption is likely to be poor. For example, Australia is one of the largest countries
by area, with a diverse climate and complex topographic features (Stern et al. 2000;
Risbey et al. 2009). Assuming a fixed parametric dependence structure is unlikely
to yield meaningful results. This presents an obstacle to creating a parsimonious sta-
tistical model and reliably identifying which regions are likely to experience similar
impacts from extreme rainfall.

Promising extreme value approaches are emerging that model non-stationarity
within the dependence as a function of covariates (Huser and Genton 2016; Castro-
Camilo et al. 2018, 2019). However, these methods are mathematically and com-
putationally complex. As such they are prohibitive for many applied researchers in
climatology and hydrology. To understand how the spatial range of dependence varies
for rainfall extremes, a solution is therefore desired in which the method can be
quickly implemented and in which the results lead to a simple interpretation.

To address this, we present a method for creating regionalisations of rainfall
extremes, in which the regions are identified based on extremal dependence. Vari-
ations in the size and shape of these regions will indicate the spatial range of the
dependence and whether the dependence behaviour is anisotropic. This knowledge
can then be translated into insights for assessing and mitigating the potential impacts
of extreme rainfall.

Regionalisations are common in flood frequency analysis and studies of hydrolog-
ical extremes. Examples of different approaches to regionalisation based on extreme
rainfall are given in Hosking and Wallis (1997), Carreau et al. (2017), Asadi et al.
(2018) and Rohrbeck and Tawn (2020). For Australia, a regionalisation specific to
rainfall extremes does not exist. However, there are regionalisations formed using
topography and mean climate (Stern et al. 2000; CSIRO and Bureau of Meteorology
2015).

The regionalisation presented here is based on the clustering method presented
in Bernard et al. (2013). In this method, a rank-based distance measure is used to
cluster stations. This distance measure is related to bivariate extremal dependence
via the F-madogram (Cooley et al. 2006). Using a rank-based distance is powerful,
as no information about climate or topography is required to form spatially homo-
geneous clusters. This circumvents the challenge of variable selection. Additionally,
we are free from distributional assumptions as the F-madogram can be estimated
non-parametrically from raw maxima.

Where this paper extends the work of Bernard et al. (2013) is in the choice of
unsupervised learning algorithm. In the original application, K-medoids was used
for clustering. However, K-medoids is sensitive to point density. Additionally if
there are too few clusters, K-medoids produces spurious clusters when used with
the F-madogram distance. We demonstrate these undesirable features using sim-
ple examples. For station networks with varying point density, such as Australia,
K-medoids is therefore ill-suited.
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We propose using hierarchical clustering instead with the F-madogram distance.
This ensures the clusters obtained are not affected by station density and are well
informed by extremal dependence. The hierarchical nature of the algorithm also has
an interpretation in terms of the changing strength of dependence. We demonstrate
how the different clustering methods perform using daily rainfall stations in Aus-
tralia. We show the serious consequences of incorrectly using K-medoids comparing
with the results from the more robust hierarchical clustering. We also perform an
additional classification step. This step converts the clusters from F-madogram space
into a Euclidean space, giving a more intuitive spatial interpretation.

The resulting regionalisation generates valuable insights into the dependence of
Australian rainfall extremes. We demonstrate this through a range of examples, high-
lighting features of climate and topography. We also show how the regions defined
using a measure of partial dependence translate to the full dependence of spatial
extremes. We achieve this by fitting max-stable models to the stations in each region.
The results improve our understanding of the spatial range of extreme rainfall events,
and how this range varies with increasing dependence strength.

The paper structure is as follows. In Section 2, the data are introduced. In
Section 3, the clustering method is given, along with a discussion about how both
the algorithm and dissimilarity affect the regionalisation. In Section 4, the classifica-
tion step is outlined. In Section 5, max-stable processes are introduced and so are the
steps needed to visualise the spatial range of extremal dependence. The regionalisa-
tion method is applied to Australian stations in Sections 6 and 7 highlights practical
considerations for users.

2 Data

In this paper, we use the network of daily rainfall stations in Australia. These sta-
tions are mainly located near large cities and along the Eastern Australian coast,
Fig. 2. In inland and more remote areas, there are far fewer stations. The station
data are obtained from the quality controlled GHCN-Daily dataset (Durre et al. 2008,
2010 and can be accessed via the R package, rnoaa (Chamberlain 2017). However,
we acknowledge the quality control, while thorough, is of a general design and is
not targeted at identifying errors amongst extremal observations (Saunders 2018).
For example, caution should be exercised when excluding observations flagged as
outliers, as these observations may be extremes.

The Australian observations within GHCN-Daily are available via a reciprocal
agreement with the Australian Bureau of Meteorology. The period we consider is
restricted from 1910 to 2017. Prior to 1910 recording practices were not standardised
throughout Australia.

The analysis is performed using the observed annual maximum rainfall. In extreme
value approaches, this is referred to as block maxima. This is in contrast to peaks
over threshold, where we are unconcerned with the date of the maxima within the
yearly block. To ensure the quality of the observed maxima, we have restricted the
data by only considering years which are 90% complete and stations at which there is
a minimum of 20 years of observed maxima. This is necessary to ensure the quality
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Fig. 2 The plot shows the number of stations within each one degree grid cell that have observations
spanning the given time period

of any extreme value assumptions (eg. Coles 2001) and to limit the effects of missing
maxima (eg. Haylock et al. 2000).

3 Clusteringmethod

In the following section, we outline how to perform the clustering for the region-
alistion. This includes describing the choice of the dissimilarity and choosing an
appropriate clustering algorithm.

3.1 Clustering dissimilarity

A notion of dissimilarity (or similarity) between two points is required to apply
clustering algorithms, with the type of dissimilarity chosen determining the cluster
structure. For this application, following Bernard et al. (2013), we have chosen to use
the F-madogram distance (Cooley et al. 2006)1. The F-madogram distance has an
interpretation in terms of the pairwise dependence strength of extremes. The resulting
cluster structure therefore inherits a meaningful, physical interpretation.

1The dissimilarity used in clustering can be a distance, but it does not necessarily need to satisfy the
triangle inequality (Hastie et al. 2009).
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3.1.1 F-madogram

The F-madogram (Cooley et al. 2006) links ideas of dependence in spatial statistics
and dependence in extreme value theory. In spatial statistics a variogram (eg. Cressie
2015) is commonly used to understand the dependence between two locations in a
stochastic process. However, for extremes the variogram is often undefined, as the
distributions can be heavy-tailed and the variance is not finite. In contrast, the F-
madogram, which is conceptually similar, is defined for heavy-tailed distributions.

Let S ⊂ R
2 and let {x1, x2, . . . , xn} be the set of station locations for clustering.

For xi ∈ S, define Mi as the random variable that represents the annual maximum of
the daily rainfall at that station. Let the distribution function associated with Mi be
Fi(z). We can estimate Fi(z) empirically via

F̂i(z) = 1

|Yi |
∑

y∈Yi

I

(
M

(y)
i < z

)
,

where M
(y)
i is the annual maximum at station xi in year y and Yi is the set of all

years for which there are annual maximum observations at xi .
For stations xi ∈ S and xj ∈ S, the F-madogram is given by the mean abso-

lute difference (MAD) between two distribution functions and can be estimated
non-parametrically using

d̂(xi, xj ) = 1

2|Yij |
∑

y∈Yij

∣∣∣F̂i

(
M

(y)
i

)
− F̂j

(
M

(y)
j

)∣∣∣ ,

where Yij is the set of years when both stations xi and xj have annual maximum
observations. Note that Yi and Yij may differ depending on missing observations.

Non-parametric estimation of the F-madogram avoids distributional assumptions
and model fitting. This makes using this distance for clustering particularly powerful,
as no external information about climate or topography is required and there is no
need for variable selection. However, this assumes that annual maxima are stationary
in time. It may be necessary to remove trends depending on the application, such as
in the case of temperature extremes (Bador et al. 2015).

3.1.2 Bivariate extreme value distribution

The link between the F-madogram and extreme value theory provides the cluster
structure with a physical interpretation in terms of the dependence of extremes. For
any pair of stations, xi and xj , if the distribution of (Mi, Mj ) is well approximated
by a bivariate extreme value distribution then

P
(
Mi ≤ zi, Mj ≤ zj

) = exp

{
−Vij

( −1

logFi(zi)
,

−1

logFj (zj )

)}
, (1)

where the exponent measure Vij (a, b) is given by

Vij (a, b) = 2
∫ 1

0
max

(
w

a
,
1 − w

b

)
dHij (w),
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and Hij is any distribution function on [0, 1] with expectation equal to 0.5 (eg.
Resnick 1987; de Haan and Ferreira 2006).

In the special case where zi = zj = z, the bivariate extreme value distribution of
Eq. 1 reduces to

P(Mi ≤ z, Mj ≤ z) = [
P(Mi ≤ z)P(Mj ≤ z)

]Vij (1,1)/2
,

where

Vij (1, 1) = θ(h)

and θ(h) is the extremal coefficient, with h = ‖xj − xi‖ (eg. Naveau et al. 2009).
The range of θ(h) is [1, 2], where the lower bound of the interval corresponds to
dependence of Mi and Mj , and the upper bound conversely indicates independence.
The value of θ(h) therefore provides an indication of the partial dependence between
the maxima at the two locations xi and xj when zi = zj = z.

The F-madogram dissimilarity can be expressed as a function of the extremal
coefficient (Cooley et al. 2006)

d(xi, xj ) = θ(h) − 1

2(θ(h) + 1)
,

where the range of d(xi, xj ) is [0, 1
6 ]. Therefore when it is suitable to approximate

the pairwise distribution of annual maxima with bivariate extreme value distributions,
clusters formed using the F-madogram distance will have an interpretation in terms
of partial dependence of extremes.

Equally, we could have used θ(h) for the clustering dissimilarity. However, the F-
madogram as a mathematical object can be estimated independently of distributional
assumptions and therefore of extreme value assumptions. As such, it offers a more
flexible choice for the dissimilarity.

3.1.3 Practicalities of missing dissimilarities

All pairwise dissimilarities are required for clustering. However, unlike gridded
datasets, observational periods at two stations may not overlap due to missing data.
Additionally, if the number of overlapping years is small, the F-madogram dis-
tance cannot be estimated reliably. Therefore to increase the amount of station data
available, particularly in sparse regions, missing distances were interpolated.

At large Euclidean distances, we expect the maximum rainfall observed at pairs
of stations to be close to independent. Given this, these missing dissimilarities were
interpolated as 1

6 . This is a reasonable assumption and greatly reduces the miss-
ing dissimilarities. Also, for a station that has been renamed, the Euclidean distance
between stations may be 0 and then the missing F-madogram distance is interpolated
as 0.

For the remaining missing dissimilarities we fit regional linear models to the loga-
rithm of the Euclidean distance. From this model we predicted missing distances, and
while these predictions do not approximate local dependence well, they do serve as a
reasonable approximation of overall dependence. At very small Euclidean distances
predictions could take negative values, so the maximum of the predicted F-madogram
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distance and zero was taken. Given the missingness present in our data and based
on basic diagnostics, we were satisfied with the variance-bias trade off between
including more stations using interpolation compared with only using F-madogram
distances based on overlapping station data. We do acknowledge that more sophis-
ticated interpolation methods are possible, but we do not expect them to change the
overall result.

3.2 Clustering algorithm

In the previous section, we provided the necessary information about estimating the
F-madogram distances and understanding the physical meaning behind the clustering
structure. In the following section, we discuss the choice of clustering algorithm. We
contrast cluster structures generated using K-medoids and hierarchical clustering,
highlighting subtle features of these different algorithms. In particular, we discuss
the suitability of these algorithms for our application.

3.2.1 K-medoids

In the clustering application of Bernard et al. (2013), K-medoids clustering was
applied with the F-madogram distance. In K-medoids, the goal is to find K clus-
ters such that the sum of dissimilarities relative to a representative point within
each cluster is minimised. This representative point is known as the medoid. Denote
the medoids {mk | k = 1 . . . , K} and their associated clusters {Ck | k = 1 . . . , K},
where K ≤ n. To partition the points we can use the PAM algorithm (Kaufman and
Rousseeuw 1990), see Algorithm 1.

Like many clustering algorithms, PAM converges to a local minimum, but not nec-
essarily the global minimum. It is therefore advisable to repeat PAM with different
initialisations of medoids to help ensure the consistency within the performance of
the algorithm. We do not discuss how to select K optimally for K-medoids here, but
implementations of various methods can be found in Charrad et al. (2014).

3.2.2 Implicit assumptions

Within unsupervised learning there is no true structure, however, we often still have
implicit assumptions about the structure form. For our application, we have the
expectation that two stations that are far away in Euclidean space will be clustered
differently as the extremes at these stations are independent. We also have the expec-
tation that stations that are geographically close will be clustered together as they are
likely to be highly dependent.

Consider the two examples shown in Figs. 3 and 4. In each of these examples the
structure is known and there are two groups of points. However, K-medoids clus-
tering does not recover the two groups correctly. We have not used the F-madogram
distance in these examples. Instead, it is more intuitive to think in Euclidean space,
so the distance used is

d(xi, xj ) = max
(‖xj − xi‖, 1

)
,
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Algorithm 1 K-medoids clustering.

1: procedure PARTITIONING AROUND MEDOIDS

2: Choose the number of clusters, K
3: Randomly select K points in S as the initial medoids, {mk | k = 1 . . . K}
4: Determine the closest medoid to each point
5: Cluster points that share the same closest medoid
6: for k in 1, . . . , K do
7: Find the point within that cluster, Ck , such that

m∗
k = argmin

xi∈Ck

∑
xj ∈Ck

d̂(xi, xj ).

This point minimises the sum of
8: dissimilarities within that cluster.
9: if m∗

k �= mk then
10: Update the medoid so that mk = m∗

k

11: end if
12: end for
13: if Any of the medoids were updated then
14: Repeat steps 4. – 12.
15: end if
16: end procedure

where ‖ · ‖ is the Euclidean distance. Here the maximum value this distance can take
is restricted to 1, in order to mimic the finite range of the F-madogram distance.

The example in Fig. 3 shows that K-medoids clustering is sensitive to the spatial
density of points. The location of the medoids, the representative object within each
cluster, is biased toward regions of higher spatial point density. This causes points in

−1
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y

Example of Sensitivity to Point Density

Fig. 3 Example of K-medoids clustering showing that the assignment of points to clusters is sensitive to
the spatial density of points
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Fig. 4 Example of K-medoids clustering showing undesirable clustering behaviour when points are
equidistant from all medoids

the smaller group to be clustered in an undesirable way, as our implicit assumptions
is that points that are further away should be clustered differently. It is not until the
value of K is increased to four or more that the second group is identified and sep-
arated. Further, intelligent initialisation of medoids did not recover the two groups.
Under the optimisation this is not unexpected. If both medoids are posititioned in
the denser region then the overall contribution of dissimilarities to the cost function
is smaller than if a medoid was in each group. The points in the sparser region are
therefore less important under the optimisation. This implies for datasets where the
spatial density of points in F -madogram space varies, that the cluster structure will
not have a meaningful interpretation in terms of extremal. Gridded datasets would be
more resilient to this problem, provided proper consideration is given to land-sea and
domain boundaries.

Of greater concern is that K-medoids can produce spurious clustering, as shown
in the example of Fig. 4. Here, a circle of radius one is drawn around each medoid.
Points outside of these circles are of distance 1 to either medoid. Under the opti-
misation, these points can be assigned randomly to either cluster without penalty.
Insidiously, all these points are labeled the same due to a numeric ordering within
the standard algorithm. Groups of points can therefore appear to be clustered mean-
ingfully, even though they are not. Consequently, if there are too few medoids, points
will be assigned randomly. It is tempting to introduce a distance penalty to help pre-
vent this. Such a penalty would need to be considered relative to F-madogram space,
which becomes tricky as we do not know the underlying structure and weak depen-
dence can be present at large Euclidean distances. A distance penalty will also not fix
the issue of medoid locations being biased towards regions of higher point density.

These examples demonstrate that the selection of the clustering method needs
to be evaluated relative to the dataset to ensure the clustering is meaningful. Given
that the Australian station network is highly variable in terms of spatial point den-
sity, it is highly unlikely that a cluster structure obtained using K-medoids and the
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F-madogram distance will be informative in terms of extremal dependence. As such
an alternative method is needed for clustering.

Two of the other most common methods are K-means and hierarchical cluster-
ing. K-means however is subject to the same failings demonstrated in Figs. 3 and 4.
Further, K-means is also not an appropriate choice given Euclidean assumptions and
a standard algorithm implementation in terms of points not distances (Hastie et al.
2009). Hierarchical clustering in contrast, can be used with an F-madogram distance
to produce meaningful structures in terms of extremal dependence.

3.2.3 Hierarchical clustering

In hierarchical clustering an ordered sequence of partitions is created. This hierar-
chy of partitions has a natural intuition for our application, and can be interpreted
as partitions of points based on strong dependence to weaker dependence. Graphi-
cally, this ordered sequence of partitions can be represented using a dendrogram. Let
each point be its own cluster (leaf). Branches in the dendrogram are formed by suc-
cessively combining leaves and other branches until all points are grouped together.
For each merge, a new partition of the points is induced. The successive merging of
branches therefore creates the ordered partition of points.

To decide how branches should be merged the definition of distance needs to be
extended from between two points to include the distance between two groups of
points. This is known as the linkage criterion (Murtagh 1983, 2014). Let Ck and Ck′
be two different clusters of points. We use the average linkage criterion

d(Ck, Ck′) = 1

|Ck| |Ck′ |
∑

xk∈Ck

∑

xk′ ∈Ck′
d(xk, xk′).

Using the linkage criterion, we can construct an agglomerative dendrogram using
Algorithm 2.

Algorithm 2 Hierarchical clustering.

1: procedure AGGLOMERATIVE

2: Let each point form its own cluster
3: Merge the pair of clusters with the smallest dissimilarity (ties are broken

randomly)
4: Update the dissimilarities relative to the new cluster using the linkage

criterion
5: Repeat steps 2–4, until all points are combined in a single cluster
6: end procedure

To determine an assignment of points into clusters, we need to select one of
the partitions generated by the dendrogram. This can be done by cutting across the
tree at a height h, and assigning the points in same branch to the same the cluster.
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Equivalently, we can specify the number of clusters, K , and choose the cut height
that corresponds to this number of clusters.

The height of the cut should be made with reference to the desired strength of
association between the clusters, with the height at which the branches are fused
determining the strength of association between two clusters. Therefore for two
branches joined at the bottom of the tree, this suggests the points in these branches are
strongly associated. For branches joined at the top of the tree, this suggests a much
weaker association between the groups of points. Standard methods for choosing the
cut height, or equivalently the number of clusters, include the gap statistic (Tibshirani
et al. 2001). This method is not specific to hierarhcial clustering though and there-
fore should be used cautiously given the implicit clustering assumptions highlighted
earlier. Equally valid, is choosing a cut height based on user knowledge. We chose
the cut height by considering user knowledge in combination with visualising the full
extremal dependence, as detailed later in Sections 5 and 6.5.

In hierarchical clustering, using a different linkage criterion will induce a differ-
ent dendrogram and consequently different clusters. The average linkage criterion
successfully recovers the two groups shown in Figs. 3 and 4. However, this is not
the case for many standard linkage rules. Therefore a caveat of this method is that
caution is needed in selecting an appropriate linkage criterion for the application.

4 Classification

Hierarchical clustering is performed in F-madogram space, however for most appli-
cations the regions need to be defined in Euclidean space. As such, an additional
classification step is needed. This step is also necessary to classify locations without
a station and to identify boundaries between two clusters for predictive purposes.

We have used a weighted k-nearest neighbour classifier (wk-NN) (Dudani 1976)
to classify grid points covering our domain and to convert the clustering to a region-
alisation. We chose the wk-NN method as it is non-parametric, based on minimal
assumptions, and can form non-linear boundaries.

In standard k-nearest neighbour classification (k-NN) (eg Hastie et al. 2009),
points are classified similarly to the majority of their k-nearest neighbours without
using weights. However, the relationship between the F-madogram and Euclidean
distance is not linear, so a weighted classifier is more appropriate for this application
(Samworth 2012). Here we use an inverse weighted kernel. For classification details
see Algorithm 3.

There is a variance bias trade-off when selecting the number of nearest neigh-
bours, knn. However, when the clusters are well separated in Euclidean space there
are a large range of suitable knn values. Considerations for this specific application
are that we require knn, such that erroneously clustered stations do not impact the
classification, and smaller clusters of only a few stations are not engulfed by a larger
cluster and its label. It can be difficult to find an automated metric that will respect
this latter criteria. Given the large range of suitable values, through visualisation and
user knowledge, we used a value knn = 15.
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Algorithm 3 Classification.

1: The stations, S, from clustering will form the training points for the classification
2: For xi ∈ S, define l(xi) to be the label assigned with xi

3: Grid the domain for classification
4: procedureWEIGHTED k NEAREST NEIGHBOURS

5: Choose the number of nearest neighbours, knn, where knn ≤ n

6: for each grid point, g do
7: According to Euclidean distance, get the knn + 1 nearest neighbours

to g in S
8: Let the furthest of these neighbours be nf

9: Let the set, N , contain the other nearest neighbours, {nj | j = 1, . . . knn}
10: for each of the nearest neighbours, nj ∈ N do
11: Standardise the Euclidean distances between nj and g

s(nj ) = ‖g − nj‖
‖g − nf ‖ .

12: We used an inverse weighted kernel to weight each neighbour.
13: Get the associated weight for the neighbour, nj ,

w(nj ) = s(nj )
−1.

14: end for
15: Let C be the set of labels associated with the neighbours in N
16: Determine the label of the majority of the weighted knn nearest neigh

bours

l∗ = argmax
l∗∈C

⎛

⎝
∑

l∗∈C

knn∑

j=1

w(nj )I(l(ni) = l∗)

⎞

⎠ ,

17: Classify l(g) with the majority label, l∗
18: end for
19: end procedure

5 Visualising dependence

Part of our motivation for creating this regionalisation was to understand the range
of spatial dependence and scale of potential impacts from extreme rainfall. However,
the distance used only partially reflects the full extremal dependence. Therefore to
consider whether a partitioning forms an appropriate regional summary relative to
the full dependence structure, we will fit max-stable processes to the stations in each
region.

Max-stable process provide a natural extension from univariate extreme value
theory and the GEV distribution, to models for extremes in continuous space with
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dependence (de Haan 1984; Schlather 2002). The canonical example of these pro-
cesses is the Smith model (Smith 1990). This model offers an intuitive storm shape
interpretation, where a storm shape is scaled by a storm intensity and the point-
wise maxima over infinitely many of these scaled-storms forms a realisation of the
max-stable process. Mathematically

Z(x)
d= max

i≥1
ζiW(x − Ui; 0, �), x ∈ X ⊂ R

2,

where {ζi : i ≥ 1} are points from a Poisson process on (0, ∞) with intensity ζ−2dζ
and W(·; 0, �) is a two-dimensional Gaussian density, with mean zero and covari-
ance matrix �. Here, Ui are points of a homogeneous Poisson process defined on R2

that provide random translations of bivariate Gaussian density function. A visual rep-
resentation of this process in 1-dimension is given in Fig. 5. The univariate marginals
of this max-stable process are assumed to follow a standard Fréchet distribution.

The Smith model is used here due to its simplicity and as the dependence structure of
this process is Gaussian. We can therefore visualise the dependence in two-dimensional
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Fig. 5 This figure shows a visual example of each of the components that comprise the Smith model in
one-dimension. Figure (a) shows points simulated from the inhomogeneous Poisson process, {ζi}. Figure
(b) shows a standard Gaussian density subject to random translations given by Ui . Figure (c) shows the
product of figures (a) and (b), with an example carried through all figures shown in blue. The resulting
simulation of a max-stable process is shown in red, and is given by the pointwise maxima over all scaled
‘storm-shapes’ shown in gray. Here only finitely many simulations of the index i are shown, however, this
is all that is necessary to produce a simulated example from the Smith model (Schlather 2002)
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Euclidean space using ellipses. The direction and size of these ellipses has a natural
interpretation in terms of anisotropy and the range of the dependence.

For the Gaussian density, the probability of a point, x, lying within a radius, r , of
the mean is given by the chi-squared distribution with two degrees of freedom

P( ||x − μ|| < r) = 1 − exp

(−r2

2

)
.

For our elliptical curves, we have chosen r to correspond to the 1% level curve, for
which r ≈ 3. However, within the formulation of the Smith model the mean is zero
as the Gaussian is subject to random spatial translations. Therefore to centre our the
elliptical curves, we use the coordinate of the median longitude and median latitude
of all suitable stations in the region, x0. The parameterisation of the ellipses is then
given by

x = x0 + r(cos θ, sin θ)M,

where M is obtained from the Choleski decomposition of the covariance matrix,
� = MT M .

In general, if the partition is a good representative summary then we expect that the
ellipses will have minimal overlap. If the ellipses were to overlap, this could indicate
that points in the intersection could reasonably have been assigned to either cluster
and there may be too many clusters. If we have too few clusters, then more ellipses
could be added to summarise dependence.

To fit the Smith model we use composite likelihood, see Padoan et al. (2010) for
details. In composite likelihood, the product over bivariate likelihood functions is
optimised to obtain parameter estimates. Composite likelihood is used as it is not
possible to optimise the full likelihood in higher dimensions where there are large
numbers of stations (Castruccio et al. 2016; Huser et al. 2019). As we are primar-
ily interested in the dependence parameters, we first fit the marginal distributions
using standard maximum likelihood and standardise our marginals, prior to fitting
the dependence parameters using composite likelihood.

We acknowledge that the Gaussian storm shape in the Smith model is a crude
approximation of physical rainfall and there are other other max-stable processes we
could have chosen (see Dey and Yan 2016). However, as we wish to visualise the full
dependence, the Smith model serves as a useful exploratory tool. Additionally the
code for fitting a Smith model with anisotropy is readily available in the SpatialEx-
tremes package (Ribatet 2015), so the research and method is easily reproducible by
others. However, we caution that appropriate starting values are often necessary to
ensure convergence of the optimisation routine. We found fitting to different subsets
of stations and then comparing parameter estimates was useful for identifying mod-
els that did not converge and could then be used to provide intelligent estimates of
the starting values. In particular we were alerted to one of the dependence parameters
being very small and the optimisation routine becoming stuck at the boundary of the
parameter space.
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6 Results

6.1 Hierarchical clustering compared with K-medoids

To highlight the impact of the choice of clustering algorithm, we have clustered
stations in Southwest Western Australia using both hierarchical clustering and K-
medoids, Fig. 6. Under hierarchical clustering, we observe clearer separation of
the clusters in Euclidean space. This improved cluster cohesion is a benefit of the
hierarchical algorithm having an agglomerative (bottom up) approach.

We also note that under hierarchical clustering, clusters can consist of a single sta-
tion. Therefore to compare the clustering under the two different algorithms, we have
chosen realisations where there are 8 core clusters that contain 10 or more stations.
Single station clusters are an advantage of hierarchical clustering. In Fig. 6, clusters
containing a single station strongly suggest an issue with the underlying quality of
the station data. As these single station clusters can not be attributed to differences
in local topography or to weak dependence relative to the cut height, as might be the
case in sparse regions.

The ability of hierarchical clustering to have clusters of smaller size means that
groups of stations with weaker dependence are not amalgamated into a larger groups
at the expense of the overall cluster cohesion (see Fig. 3). It also prevents the occur-
rence of stations being clustered spuriously (see Fig. 4). In Fig. 6, we observe the
effects of spurious K-medoids clustering as there is a large geographical separation

Hierarchical k =  10 K−medoids, k = 8
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Fig. 6 Comparison of hierarchical clustering and K-medoids clustering for a set of stations in Southwest
Western Australia
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between some stations and their respective medoids. For example, the blue triangles
at (116, -31) and the brown squares at (117, -35). For these reasons, we find hierar-
chical clustering superior for this application and use this method for the remainder
of the paper.

6.2 Classification

Figure 7 shows the classification from the hierarchical clustering for a value of knn =
15. Due to the quality of the original clustering in F-madogram space and separation
of clusters in Euclidean space there was very little difference for higher knn values.
However, classification does offer the advantage that we have regional boundaries
and do not need to visualise large numbers of points. The user may choose to omit
single stations clusters at this step if the underlying case is bad data quality, although
we have not done that here.

6.3 Ordered partitions

We mentioned earlier that one of the benefits of hierarchical clustering is that an
ordered sequence of partitions is generated. In Figure 8, we show the evolution
of these partitions for a range of cut heights for Southwest Western Australia. We
observe that at the lower cuts heights that the regions are small in size. While at
higher cut heights, where the dependence between clusters weakens, these smaller
regions are amalgamated to form larger regions. Visualising the evolution of these
ordered partitions helps our understanding of how the size of these regions changes
with increasing strength of extremal dependence.

Fig. 7 Weighted k nearest
neighbour classification showing
cluster boundaries from the
hierarchical clustering in Fig. 6
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Fig. 8 Different regionalisations of Southwest Western Australian created using different cut heights in
hierarchical clustering. The cut height is given in the facet label

Additionally the size and direction of the regions can then be interpreted relative
to known climate or topography. We observe here that coastal clusters are generally
smaller indicating that extreme rainfall is being driven by convective rainfall in these
areas (Risbey et al. 2009). Whereas further inland, the size of clusters is larger, par-
ticularly as dependence weakens, and orientation of these clusters is consistent with
the movement of frontal systems (Risbey et al. 2009).

6.4 Meaningful cut heights

While having the hierarchy of partitions is useful, often a single realisation of the
clustering is desired. In this instance, it is important to consider how cut heights in
F-madogram space translate to Euclidean space. Figure 9, shows a plot of Euclidean
distance against the F-madogram distance for all pairs of stations in Southwest West-
ern Australia. At low cut heights, the F-madogram distance changes rapidly relative
to very small changes in Euclidean distance. At high cut heights, large changes in
Euclidean distance are observed for small changes in F-madogram distance. There-
fore there is a range of moderate cut heights that will translate into meaningful
partitions of our stations in terms of extremal dependence in Euclidean space. For
Fig. 9, suitable cut heights might be between 0.1 and 0.15. The cut height should
therefore be chosen based on the desired application and the desired strength of
extremal dependence.

6.5 Visualisation of full dependence

To understand how our regionalisation is related to the full extremal dependence, we
have taken the additional step of fitting a Smith model. The full extremal dependence
of each region can then be visualised using elliptical level curves. Similarity of the
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Fig. 9 Plot of the F-madogram distance relative to Euclidean distance. Given the number of pairs we have
binned the data instead of showing a scatter plot. Note that the empirical estimator for the F-madogram
can take a value above the theoretical range of 1

6 , shown with the dotted line

elliptical curves in different regions indicates similarity of the estimated dependence
parameters.

An example of the elliptical level curves is shown in Fig. 10. We observe that the
ellipses have optimally partitioned the domain, as no further ellipses could be added
or removed. To be confident in this conclusion we have bootstrap sampled the stations
and repeated the fitting to visualise the uncertainty in our dependence parameters.
We found fitting max-stable models of this type to be useful in deciding the number
of clusters and to identify which regions can reasonably be modelled using the same
dependence structure. We also develop an intuition for which covariates would be
necessary if a non-stationary dependence structure was used and which pair weights
would be important in the optimisation.

6.6 Physical Interpretation

The example of Southwest Western Australia has served to highlight different aspects
that need to be considered when producing a regionalisation. For this same cut height,
we have shown the regionalisation for the whole of Australia in Fig. 11. Note we did
not attempt to classify locations that were far from station locations.

We would like to draw attention to specific aspects within this figure where the
regionalisation method has performed well. Figure 12 shows examples where the
clustering respects that stations are geographically separated by water. Figure 13
shows how the regionalisation performs relative to orography.
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Fig. 10 For a regionalisation
generated with a cut height of
approximately 0.13, the full
dependence is visualised using
elliptical level curves. The black
points show the median of the
stations in that region and
elliptical centres

Orographic features are known to strongly influence rainfall. In Australia there is
a mountain range that runs up the Eastern Australia coast. We see this orographic
feature respected in Fig. 13. There is a clear differentiation between clusters located
on the coastal side of the range and those inland. This again reflects differences in the
drivers between extremes in coastal areas compared with inland areas (Risbey et al.
2009).

7 Limitations

7.1 Dry regions

The F-madogram distance has interpretation in terms of the partial dependence of
extremes provided the extreme value theory assumptions are reasonable. However

Fig. 11 A regionalisation generated with a cut height of approximately 0.13. Here the colours serve only
to distinguish between regions
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Fig. 12 An example demonstrating that the clustering respects the geographical separation of stations by
water. The black lines show the regions, and the shape and colour of the points indicate which stations
were clustered similarly

for drier regions, such as parts of inland Australia and Northern Australia, where
there is less rainfall, these assumptions are generally invalid (Min et al. 2013). As a
consequence the clustering will lack the interpretation in terms of extremal depen-
dence, impacting the related visualisation of the clustering in Euclidean space, and we
observe this in Fig. 11. Therefore stations located in dry regions should be considered
critically in this kind of analysis.

7.2 Partial dependence

For a given regionalisation, it is tempting to assume that within each region we can
assume a fixed dependence structure in our statistical models. However, as acknowl-
edged, the F-madogram is only a measure of partial extremal dependence, not the full
extremal dependence. For regions that encompass orography, a single dependence
structure is unlikely to be appropriate (eg. Huser and Genton 2016; Oesting et al.
2017).

We observe this to be the case for regions in Tasmania, Fig. 14. At a higher cut
height (approximately 0.13), where partial dependence is weaker within clusters,
there is no consensus in the size and orientation of the ellipses for regions that encom-
pass orography. At the lower cut height however (approximately 0.11), where the
dependence within clusters is stronger, there is consensus in our fitted models. Cut
heights therefore need to be chosen with respect to the given application.

We also note that the location of cluster boundaries at the lower cut height better
respects the orography, Fig. 15. This regionalisation is consistent with assertions by
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Fig. 13 An example demonstrating that the clustering respects the location of the Great Dividing Range,
a mountain range in Australia. Here black lines show the regions and stations are shown as black points
for reference

Fig. 14 Visualisation of the full dependence for two different regionalisation. The left figure was generated
with a cut height of approximately 0.13 and the right figure with a cut height of approximately 0.11
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Fig. 15 The regionalisation of Tasmania at a cut height of approximately 0.11 overlaid on an elevation
map

Grose et al. (2010) that many small regions are needed for rainfall compared with the
East-West split advocated within the National ResourceManagement (NRM) clusters
(CSIRO and Bureau of Meteorology 2015).

8 Conclusions

Using hierarchical clustering with the F-madogram distance, we have created a
regionalisation based on the dependence of rainfall extremes. The clustering pro-
duced coherent partitions in Euclidean space. This was despite using only the
observed, daily annual maxima. Additionally the regions generated from the clusters
are broadly consistent with our understanding of climate and topographic features
(Stern et al. 2000; Risbey et al. 2009). Given its simplicity, the regionalisation method
we have presented is therefore very powerful.

Climate scientists, hydrologists and other researchers can use these regionalisa-
tions to improve their understanding about the behaviour of rainfall extremes. The
size and shape of the regions provides information about the range of dependence and
direction of anisotropy. Also, we can produce different regionalisations for differ-
ent cut heights, where different cut heights correspond to different levels of regional
detail relative to the desired strength of extremal dependence.



K.R. Saunders et al.

In addition to presenting the regionalisation, we highlighted key methodological
considerations when using the F-madogram distance for clustering. The F-madogram
distance can produce spurious clustering, depending on the underlying station net-
work and the clustering method used. For clustering algorithms that are sensitive to
point density this is of particular concern. Therefore for our application, K-medoids
was completely unsuitable. This motivated using hierarchical clustering.

In general, we would advocate using hierarchical clustering over K-medoids for
two reasons. The agglomerative implementation of hierarchical clustering improves
cluster cohesion. Additionally, the ordered partitions have an interpretation in terms
of dependence strength.

To understand the partitions relative to the full extremal dependence, we took
the additional step of fitting max-stable models. As the dependence structure of our
chosen max-stable model was Gaussian, we visualised the range of dependence and
direction of anisotropy using elliptical level curves. For our regionalisations, we
observed that there are many and varied dependence structures for rainfall extremes
in Australia. Even for small regions we found that assuming a single dependence
structure was not always suitable, but it depended on topographic features and the cut
height chosen.

There are many future directions of this research. Our approach to producing
regionalisations can be used to consider different maxima, such as monthly maxima,
or different variables, such as temperature. Additionally, here we have also assumed
stationarity, but we are curious as to how the dependence of rainfall extremes may
vary temporally, such as under different large scale climate drivers (Min et al. 2013;
Saunders et al. 2017) or under a changing climate (Westra et al. 2013; Alexander
and Arblaster 2017). We would be interested in comparing regionalisation from this
method under different time periods (Bador et al. 2015) and comparing regionalisations
generated using observations to those from gridded data sets (Jones et al. 2009).

Our future goal for this research is to use the insights to model rainfall extremes
on a continental scale, and to understand the impacts across large geographical dis-
tances. The regionalisations created can be used to help inform covariate selection
and model selection for max-stable processes with non-stationary dependence (Huser
and Genton 2016). When we started this research, this goal was aspirational. How-
ever, given the knowledge generated about the behaviour and dependence of rainfall
extremes in Australia, this is now a very tangible direction for future research.
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