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Abstract

This research investigates how biases in datasets in-
fluence the outputs of decision-making algorithms,
specifically whether these biases are merely re-
flected or further amplified by the algorithms. Us-
ing the Adult/Census Income dataset 1 from the
UCI Machine Learning Repository2, the research
explores biases through the lens of three machine
learning models: Logistic Regression, Decision
Tree, and Random Forest. The analysis reveals
that all models exhibit varying degrees of bias, de-
pendent on the fairness metrics applied: Demo-
graphic Parity, Disparate Impact, Equal Opportu-
nity, Equalized Odds. It has been found that higher
accuracy does not necessarily equate to fairness.
The findings emphasize the complex nature of algo-
rithmic bias and the challenge of achieving fairness
in automated decision-making systems. This re-
search contributes to the understanding of bias am-
plification in algorithms and underscores the need
for continued efforts to develop fairer decision-
making systems in various sectors.
Key terms: bias amplification, decision-making al-
gorithms, fairness metrics

1 Introduction
In the context of computer systems, bias refers to “computer
systems that systematically and unfairly discriminate against
certain individuals or groups of individuals in favor of oth-
ers” [1]. In today’s digital age, there is an increasing re-
liance on automated decision-making systems in diverse sec-
tors such as, but not limited to, housing [2], employment [3],
social welfare [4, 5], healthcare [6] and justice [7–10]. De-
spite the benefits of automated systems, recent instances have
highlighted that algorithms can replicate or even amplify so-
cietal biases present in their training datasets [11, 12]. For
instance, in the housing market, there are ethnicity biases in
AI-based mortgage application approval systems that lead to
applicants of certain ethnicities to be declined mortgages that
would otherwise be approved to white applicants [2]. Prior
research also indicates that bias is amplified when using AI-
based decision support systems [2], or when using an algo-
rithm to allocate limited medical resources [6]. These biases
can have far-reaching consequences, especially when these
systems are used to make crucial decisions that affect human
lives.

Previous work in the area has laid a strong foundation for
understanding and measuring algorithmic bias [1, 6, 13]. Sig-
nificant research has been focused on identifying and miti-
gating biases in specific cases, but a comparative analysis be-
tween the biases inherent in datasets and those present in the
algorithm outcome has not been carried out extensively.

1Adult/Census Income dataset available at:
https://archive.ics.uci.edu/dataset/2/adult

2UCI Machine Learning Repository available at:
https://archive.ics.uci.edu/

The core of this research focuses on exploring how the bias
present in the data used by decision-making algorithms com-
pares to the bias in the outputs of these algorithms. Specif-
ically, the research seeks to determine whether these algo-
rithms only reflect the existing biases in the data or if they
exacerbate them further. The main question guiding this re-
search is : “How does the amplification of bias in decision-
making algorithms compare to the inherent biases present
within their training datasets?”. This main question is sup-
ported by several sub-questions aimed at addressing the vari-
ous dimensions of algorithmic bias:

• What characteristics of datasets most significantly con-
tribute to bias in algorithms?

• How do different algorithms respond to sensitive or bi-
ased data?

• How do different fairness metrics compare when applied
to the same decision-making system?

• Which fairness metrics are most effective in identifying
bias amplification?

In addressing these questions, the research aims to show
how bias is replicated and potentially amplified by algo-
rithms. By systematically comparing the biases in datasets
with those in algorithmic outputs, the research will provide
empirical evidence on the extent of bias amplification by
decision-making algorithms.

The paper is structured as follows: Section 2 reviews
the related work, providing context on bias within decision-
making algorithms and outlining sensitive attributes, types of
bias and fairness metrics. Section 3 presents the method-
ology, detailing the dataset selection, preprocessing steps,
model training process and the bias measurement approach.
Section 4 describes the experimental setup and preprocessed
dataset analysis, revealing insights into data distribution and
inherent biases. Section 5 reports the results, focusing on
model training outcomes and bias measurement using fair-
ness metrics. Section 6 discusses responsible research prac-
tices, including ethical considerations and reproducibility.
Section 7 engages in a comprehensive discussion and outlines
limitations. Finally, Section 8 concludes the research, sum-
marizing findings and suggesting directions for future work.

2 Related Work
This section delves into prior research focusing on bias within
decision-making algorithms. It outlines historically sensitive
attributes that have been misused in decision systems, con-
tributing to unfair outcomes, and discusses the various types
of biases that can occur in data-driven environments and the
different approaches to measuring fairness.

2.1 Sensitive Attributes
Protected or sensitive attributes, also referred to as variables,
are disproportionately less likely to be positively classified
[14]. Haeri and Zweig [15, p.1] observe that “historically,
sensitive attributes of individuals were exploited to abuse the
rights of individuals, leading to unfair decisions”. As a con-
sequence, legal frameworks like the Fair Housing Act (FHA)



and the Equal Credit Opportunity Act (ECOA) [16] have been
developed to prevent discrimination and to include provisions
that prohibit the use of certain sensitive attributes such as
race, sex, national origin, and others in decision-making sys-
tems that could lead to discriminatory outcomes.

2.2 Types of Bias
Castelnovo et al. [17, p.3] observe that “most sources of bias
in data-driven decision making lie in the data itself and in
the way in which they are collected”. Mehbrabi et al. [18]
present different types of biases in data that might result in
biased algorithmic outcomes when used by machine learning
algorithms, such as, but not limited to:

• Representation Bias: occurs when the data does not ac-
curately represent the real-world demographics.

• Aggregation Bias: occurs when conclusions about indi-
viduals are derived from aggregated data, which might
not hold true at the individual level.

2.3 Measuring Fairness
Berk et al. [19, p.1] have highlighted it is “impossible to max-
imize accuracy and fairness at the same time and impossi-
ble simultaneously to satisfy all kinds of fairness”, indicating
an expected variance in performance across different fairness
metrics.

For the purpose of this research, group fairness metrics,
meaning treating different groups equally [18], were con-
sidered. Caton and Haas [14] categorize these metrics into
parity-based, confusion matrix-based, and calibration-
based types. For this study, Demographic Parity and Dis-
parate Impact were selected as parity-based metrics, while
Equal Opportunity and Equalized Odds were chosen from the
confusion matrix-based group.

Parity-based metrics
Parity-based metrics consider the predicted positive rates
across different groups [14].

Demographic Parity defines fairness as “an equal probabil-
ity of being classified with the positive label” [14, p.7] with
the following formula:

P (Ŷ = 1|G = priv.) = P (Ŷ = 1|G = unpriv.)

where P denotes probability, Ŷ is the predicted outcome, and
G represents the group, indicating whether an individual be-
longs to the privileged (priv.) or unprivileged (unpriv.) group.

For this research, Demographic Parity Difference was em-
ployed as the difference in the probability of positive out-
comes between the privileged and unprivileged groups. A
value of 0 indicates perfect parity.

Disparate Impact “considers the ratio between unprivi-
leged and privileged groups” [14, p.7] with the following for-
mula:

P (Ŷ = 1|G = unpriv.)

P (Ŷ = 1|G = priv.)

where P denotes probability, Ŷ is the predicted outcome, and
G represents the group, indicating whether an individual be-
longs to the privileged (priv.) or unprivileged (unpriv.) group.

For this research, Disparate Impact Ratio was employed
as the proportion of positive outcomes for the unprivileged
group to that of the privileged group. A value of 1 indicates
no disparate impact, and values less than 0.8 are often used
as a threshold to indicate potential discrimination [14]. Con-
versely, a value greater than 1.25 indicates that the propor-
tion of positive outcomes for the unprivileged group is signif-
icantly higher than for the privileged group.

A shortcoming of Demographic Parity and Disparate Im-
pact is that a fully accurate classifier might still be deemed
unfair if the proportion of actual positive outcomes differ sig-
nificantly between groups [20].

Confusion matrix-based metrics
Confusion matrix-based metrics “consider additional aspects
such as True Positive Rate (TPR), True Negative Rate (TNR),
False Positive Rate (FPR), and False Negative Rate (FNR)”
[14, p.8].

Equal Opportunity considers “potential differences in the
groups being compared” [14, p.8] by promoting that the TPR
is the same across different groups, with the following for-
mula:

P (Ŷ = 1|Y = 1, G = unpriv.) = P (Ŷ = 1|Y = 1, G = priv.)

where P denotes probability, Ŷ is the predicted outcome, Y
is the actual outcome, and G represents the group, indicat-
ing whether an individual belongs to the privileged (priv.) or
unprivileged (unpriv.) group.

For this research, Equal Opportunity Difference was em-
ployed as the difference in TPR between unprivileged and
privileged groups. A value of 0 indicates that both groups
have the same TPR.

Equalized Odds is similar to Equal Opportunity, but also
considers FPR, with the following formula:

P (Ŷ = 1|Y = 1, G = priv.) = P (Ŷ = 1|Y = 1, G = unpriv.)
and

P (Ŷ = 1|Y = 0, G = priv.) = P (Ŷ = 1|Y = 0, G = unpriv.)

where P denotes probability, Ŷ is the predicted outcome, Y
is the actual outcome, and G represents the group, indicat-
ing whether an individual belongs to the privileged (priv.) or
unprivileged (unpriv.) group.

Equalized Odds was developed to overcome the disadvan-
tages of Demographic Parity and Disparate Impact [20].

For this research, Equalized Odds Difference was em-
ployed as a measure of the largest difference in TPR and FPR
between the privileged and unprivileged groups. A value of
0 indicates that both groups have the same TPR, TNR, FPR,
and FNR.

3 Methodology
This research employed a quantitative analysis approach to
compare the level of bias in the dataset and the outputs of
decision-making algorithms. The experiment was carried out
in three stages:

1. Dataset Selection and Preprocessing: a dataset was
selected and several dataset cleaning and preprocessing



operations were performed, and the results were anal-
ysed.

2. Model Training: various machine learning algorithms
were trained on the preprocessed data and the perfor-
mance was evaluated using standard metrics.

3. Bias Measurement: fairness metrics were employed to
measure bias and assess amplification from training set
to prediction for each of the chosen algorithms.

The analysis was conducted using Python3, with the help of
libraries such as pandas4 and numpy5 for data manipulation,
scikit-learn6 for machine learning model implementation and
fairlearn7 for fairness metrics computations. The results were
plotted using matplotlib8 and seaborn 9.

4 Experimental Setup
This section describes the selection and preprocessing of the
dataset, and the analysis performed on the resulted data.

4.1 Dataset Selection and Preprocessing
The publicly available Adult/Census Income dataset, sourced
from the UCI Machine Learning Repository, was chosen due
to its common use in fairness-related studies [18]. It contains
information from the 1994 U.S. Census Bureau database by
Ronny Kohavi and Barry Becker [21] regarding characteris-
tics of people such as age, education, occupation, race and
sex, with the aim of determining whether a person makes over
$50K a year.

The dataset initially contains 32,561 entries in the training
set and 16,281 entries in the test set, with 15 features—6 nu-
merical and 9 categorical. The cleaning and preprocessing
steps included, in this order:

• Dropping the ’education’ column due to its redundancy
with ’education-num’, and removing the ’fnlwgt’ col-
umn as it was not useful for the analysis.

• For entries where the individual had never worked (as
determined by the ’workclass’ column), setting the ’oc-
cupation’ to ’None’ (previously a missing value repre-
sented by ’?’) for logical consistency.

• Replacing missing values (represented by ’?’) in ’work-
class’, ’occupation’, and ’native-country’ columns with
NaN (Not a Number).

• Identifying and removing 24 duplicate entries and the re-
maining 2,399 entries with missing values (represented
by NaN after previous steps) from the training set.

• Implementing one-hot encoding for categorical features
and scaling numerical features to ensure consistent data
input formats for machine learning models.

3Python available at: https://www.python.org/
4pandas available at: https://pypi.org/project/pandas/
5numpy available at: https://numpy.org
6scikit-learn available at: https://scikit-learn.org/stable/
7fairlearn available at: https://fairlearn.org/
8matplotlib available at: https://matplotlib.org/
9seaborn available at: https://seaborn.pydata.org/

• Converting the target variable ’income’ to a binary nu-
meric value, where 1 is for individuals with an income
above $50K and 0 is for individuals with an income be-
low $50K.

• Applying the same preprocessing operations on the test
set and ensuring that it is appended with columns to
match the training set.

The aforementioned operations resulted in 30,146 entries
with 90 features in the training set and 15,055 entries with
90 features in the test set, as can be seen in Table 1.

Dataset Stage Entries Features

Training Set Before Preprocessing 32,561 15
After Preprocessing 30,146 90

Test Set Before Preprocessing 16,281 15
After Preprocessing 15,055 90

Table 1: Dataset Before and After Preprocessing for Both Training
and Test Sets.

4.2 Preprocessed Dataset Analysis
Analysis performed on the preprocessed data revealed:

• The dataset is imbalanced concerning the income vari-
able, with a larger proportion of individuals earning be-
low $50K (Appendix A.1).

• The age distribution is right-skewed, indicating a higher
concentration of younger individuals in the dataset.
Adults (26-45) and middle-aged (46-65) groups dom-
inate the workforce in both income categories. The
young (17-25) and seniors (66-99) show significantly
fewer high-income earners (Appendix A.2).

• Most individuals have an education level of high school
graduation (9-10 years), some college or bachelor’s (12-
13 years), and few reach higher education levels (14-16
years). Education levels ≥ 13 generally correspond to
higher income (Appendix A.3).

• Capital gain is highly concentrated at zero with very few
entries showing higher gains (Appendix A.4).

• Similar to capital gains, most individuals report no capi-
tal loss, with a very small number showing higher losses
(Appendix A.4).

• The distribution of hours worked per week is strongly
peaked around 30-40 hours, typical of full-time employ-
ment. Higher income earners are more likely to work
more hours, with significant counts in the 40-60 hour
range (Appendix A.5).

• ’White’ dominates both income categories, with other
races showing considerably fewer counts (Figure 1).

• ’Male’ dominates the higher income category compared
to ’Female’ (Figure 2 and Table 5).

• Proportionally, income above $50K is significantly less
frequent among minority groups (Table 4, Table 5, Fig-
ure 1 and Figure 2).

https://www.python.org/
https://pypi.org/project/pandas/
https://numpy.org/
https://scikit-learn.org/stable/
https://fairlearn.org/
https://matplotlib.org/
https://seaborn.pydata.org/


• Individuals in the ’Private’ sector constitute the majority
(Appendix A.6).

• Married individuals show a higher rate of earning above
$50K. (Appendix A.7).

• Single or individuals who have never been married pre-
dominantly earn below $50K (Appendix A.7).

The dataset exhibits a clear representation bias, as it shows
an over-representation of certain demographic groups, which
does not accurately reflect the general population. For in-
stance, the dataset indicates a much higher proportion of
individuals identified as ’White’ at 85.97%, compared to
’Black’ at 9.35%, ’Asian-Pac-Islander’ at 2.97%, ’Amer-
Indian-Eskimo’ at 0.95%, and ’Other’ at 0.77%. (Figure 1
and Table 3). Additionally, there is a significant gender im-
balance, with ’Male’ individuals constituting 67.57% of the
dataset, while ’Female’ individuals make up only 32.43%.
(Figure 2 and Table 2).

Sex Percentage in Training Set (%)
Male 67.57

Female 32.43

Table 2: Percentage of Males Compared to Females in the Training
Set.

Race Percentage in Training Set (%)
White 85.97
Black 9.35

Asian-Pac-Islander 2.97
Amer-Indian-Eskimo 0.95

Other 0.77

Table 3: Percentage of Each Race in the Training Set.

Race ≤50K (%) >50K (%)
Amer-Indian-Eskimo 88.11 11.89
Asian-Pac-Islander 72.26 27.74

Black 87.01 12.99
Other 90.90 9.10
White 73.62 26.38

Table 4: Percentage Income Distribution by Race.

Sex ≤50K (%) >50K (%)
Female 88.62 11.38
Male 68.61 31.39

Table 5: Percentage Income Distribution by Sex.

Furthermore, grouping individuals into broader categories
such as ’Amer-Indian-Eskimo’ and ’Asian-Pac-Islander’ can
likely introduce aggregation bias, as it masks the diversity
and potential disparities within these broadly defined groups.
Races and ethnicities are inherently diverse with significant
cultural, economic, and social differences and can have sig-
nificantly different employment rates or average incomes.

Figure 1: Count Income Distribution by Race.

Figure 2: Count Income Distribution by Sex.

5 Results
This section outlines the training of the machine learning
models and explains how different fairness metrics were used
to measure and compare biases in the model outputs, based
on sensitive attributes.

5.1 Model Training
Three machine learning models were trained to predict in-
come levels: Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF). The models were selected for their suit-
ability in handling sparse data resulting from one-hot encod-
ing and their ability to model both linear and non-linear rela-
tionships. The overall accuracies of the models can be found



in Table 6.
The hyperparameters were not specifically tuned for the

models in the experiment. The classifiers were initialized
with their default hyperparameters, with only minor adjust-
ments for Logistic Regression (max iter=1000) and setting
the random state for the Decision Tree and Random Forest
classifiers (random state=42). The reason for the maximum
iterations adjustment was to ensure convergence, while for
random state it was to ensure reproducibility.

Model Accuracy (%)
LR 84.74
RF 84.07
DT 81.13

Table 6: Overall Accuracies of the Chosen Classfiers.

Figure 3 illustrates the performance of the same classifiers
across ’Male’ and ’Female’ groups. The results indicate that
all classifiers achieve higher accuracy for females compared
to males, with Logistic Regression slightly outperforming the
others. Specifically, Logistic Regression achieves an accu-
racy of 93% for females and 81% for males, indicating a
considerable performance gap. Decision Tree, although less
accurate overall, follows a similar trend with a more pro-
nounced disparity between sexes. Random Forest maintains
consistent performance close to Logistic Regression for fe-
males and marginally better than Decision Tree for males.

Figure 3: Accuracy Comparison of Classifiers across Different Sex
Groups.

Figure 4 illustrates the performance of the aforementioned
classifiers across different racial groups. While Logistic
Regression consistently maintains high accuracy across all
groups, the Decision Tree classifier exhibits significant vari-
ability, particularly underperforming for the ’Amer-Indian-
Eskimo’ and ’Asian-Pac-Islander’ groups. In contrast, Ran-
dom Forest demonstrates relatively stable performance, out-
performing Decision Tree in almost all cases and occasionally
surpassing Logistic Regression, particularly for the ’Black’
and ’Other’ racial groups.

5.2 Bias Measurement
After preprocessing and training the classifiers on the dataset,
the fairness metrics presented in Section 2.3 were employed

Figure 4: Accuracy Comparison of Classifiers across Different
Racial Groups.

to quantitatively assess fairness in the algorithmic outcomes.
The sensitive attributes of ’sex’ and ’race’ were retained in
the analysis, the specific choice being motivated by the infor-
mation provided in Section 2.1.

Sensitive Attribute ’sex’
Figure 5 shows the metrics values with ’sex’ as the selected
protected attribute, where ’sex Female’ is the unprivileged
group and ’sex Male’ is the privileged group.

Figure 5: Comparison of Algorithm Fairness Metrics for Sensitive
Attribute ’sex’.

Negative values for Demographic Parity Difference across
all models suggest that females are less likely to receive
favourable outcomes compared to males. This aligns with
the representation bias observed in the dataset, where males
are more likely to be in the higher income category. This
finding points to a significant disparity that persists across the
different algorithms.

Values significantly less than 1 for Disparate Impact Ratio
(ranging from 0.30 to 0.41) indicate a strong disparity against
females. According to legal standards, a value below 0.8 typ-
ically signifies potential discrimination. All three models ex-
hibit values well below this threshold, highlighting a severe
fairness issue.

The Equal Opportunity Difference values for the three
models (ranging from 0.03 to 0.10) suggest that there are dis-
crepancies in the likelihood of correctly identifying positive
outcomes for each sex. This metric reveals that the models
are less likely to correctly identify positive cases for females
compared to males.



The Equalized Odds Difference values for all models (ap-
proximately 0.09 to 0.10) indicate that there are noticeable
differences in how each model predicts positive outcomes and
errors for males and females. This suggests that these models
are not equally accurate across different sexes, thereby rein-
forcing existing biases.

Sensitive Attribute ’race’
Figure 6 shows the Demographic Parity Difference values
with ’race’ as the selected protected attribute across all clas-
sifiers. For each race comparison pair, the first group is con-
sidered unprivileged, while the second is privileged.

Figure 6: Demographic Parity Differences by Race Across Classi-
fiers.

The largest disparities exist when comparing the ’Amer-
Indian-Eskimo’ race with other races, particularly with
’Asian-Pac-Islander’, where the Logistic Regression model
shows a large negative value of -0.23, indicating a substan-
tially higher positive rate for the ’Asian-Pac-Islander’ group.
This group receives higher values than all others, followed by
’White’.

For the ’Black’ vs. ’White’ and ’Black’ vs. ’Asian-
Pac-Islander’ comparisons, the Demographic Parity Differ-
ence is consistently negative across all classifiers, suggesting
the ’White’ and ’Asian-Pac-Islander’ groups tend to have a
higher positive rate.

Figure 7 shows the Disparate Impact Ratio values with
’race’ as the selected protected attribute across all classifiers.
For each race comparison pair, the first group is considered
unprivileged, while the second is privileged.

Similar to Demographic Parity Difference, the largest dis-
parities are observed when comparing ’Amer-Indian-Eskimo’
with ’Asian-Pac-Islander’. The Logistic Regression model
shows a very high ratio of 5.8, indicating the ’Amer-Indian-
Eskimo’ group has a much lower positive rate compared
to ’Asian-Pac-Islander’. A comparable pattern is seen for
’White’ vs. ’Amer-Indian-Eskimo’, where the Logistic Re-
gression model has a ratio of 4.6, suggesting the ’White’
group has a significantly higher positive rate.

Figure 7: Disparate Impact Ratios by Race Across Classifiers.

Several race comparisons involving ’Amer-Indian-
Eskimo’ as the unprivileged group exhibit Disparate Impact
ratios well below 0.8 across all classifiers, indicating a
significantly lower positive rate compared to other races
like ’Asian-Pac-Islander’ (0.17), ’Black’ (0.51), and ’White’
(0.22) with Logistic Regression.

Figure 8 shows the Equal Opportunity Difference values
with ’race’ as the selected protected attribute across all clas-
sifiers. For each race comparison pair, the first group is con-
sidered unprivileged, while the second is privileged.

Figure 8: Equal Opportunity Differences by Race Across Classifiers.

The largest disparities are observed when compar-
ing ’Amer-Indian-Eskimo’ with ’Asian-Pac-Islander’, with
Equalized Odds Difference values of 0.41 and 0.38 for Lo-
gistic Regression and Random Forest, respectively. This
suggests significant differences in true and false positive
rates between these two groups. Comparisons involving the
’Amer-Indian-Eskimo’ group generally exhibit higher Equal-
ized Odds differences across all classifiers, indicating poten-
tial biases in the model’s predictions for this group.



The Random Forest classifier tends to have slightly higher
Equalized Odds Difference values compared to Logistic Re-
gression and Decision Tree for certain race comparisons, such
as ’Amer-Indian-Eskimo’ vs. ’Asian-Pac-Islander’ (0.38)
and ’Amer-Indian-Eskimo’ vs. ’Black’ (0.3). Comparisons
involving the ’Black’ race group generally exhibit moder-
ate Equalized Odds differences, with values ranging from
0.062 (’White’ vs. ’Black’) to 0.3 (’Amer-Indian-Eskimo’
vs. ’Black’) for the Random Forest classifier.

Figure 9 shows the Equal Opportunity Difference values
with ’race’ as the selected protected attribute across all clas-
sifiers. For each race comparison pair, the first group is con-
sidered unprivileged, while the second is privileged.

Figure 9: Equalized Odds Differences by Race Across Classifiers.

Equal Opportunity Difference has much of the same val-
ues as Equalized Odds Difference for Logistic Regression and
Random Forest, meaning that in those cases the maximum be-
tween the TPR and the FPR differences was the former. This
suggests that the TPR difference is the more dominant fac-
tor compared to the FPR difference when these metrics are
applied, meaning that ensuring that true positives are equal
across groups is more challenging than balancing false pos-
itives. Some differences exist in a number of cases for De-
cision Tree where the values are slightly lower, for exam-
ple, when ’Asian-Pac-Islander’ is taken as the unprivileged
group.

6 Responsible Research
By identifying biases in algorithms, this research aims to
contribute positively towards the development of fairer au-
tomated decision-making systems. All data used were
anonymized and publicly available, adhering to privacy
norms and ethical research standards. However, it is worth
noting that sensitive data often includes information about
vulnerable populations who might not have the power to con-
sent or withdraw their data.

To support the reproducibility of the results, all methods
and procedures were documented in detail. The machine

learning models, data preprocessing steps, and fairness met-
rics used are explicitly described to enable others to replicate
the research. The software and libraries used in the analysis
are open-source.

7 Discussion
How does the amplification of bias in decision-making al-
gorithms compare to the inherent biases present within their
training datasets? Similar to prior work on analysing bias in
prediction tasks [13], the research demonstrates that decision-
making algorithms can indeed amplify inherent biases present
in their training datasets. All three models, Logistic Regres-
sion, Decision Tree, and Random Forest, showed varying de-
grees of bias amplification depending on the fairness metric
used: Demographic Parity, Disparate Impact, Equal Opportu-
nity, Equalized Odds.

What characteristics of datasets most significantly con-
tribute to bias in algorithms? The imbalances and representa-
tion biases in the dataset significantly contribute to bias in the
algorithm outputs. The Adult/Census Income dataset used in
this study exhibited clear representation biases, with certain
demographic groups (e.g., ’White’ and ’Male’) being over-
represented. Additionally, aggregation bias is also present,
where racial classifications could obscure meaningful vari-
ations within groups like ‘Asian-Pac-Islander’ and ’Amer-
Indian-Eskimo’, potentially leading to misleading conclu-
sions about the extent and nature of bias. This imbalance was
reflected and, in some cases, amplified by the algorithms. For
instance, the Demographic Parity Difference and Disparate
Impact Ratio revealed that females and some minority races
were less likely to receive favourable outcomes compared to
their ’Male’ and ’White’ counterparts. However, it is note-
worthy that outcomes for the ’Asian-Pac-Islander’ group of-
ten appeared more favourable compared to other groups, even
the over-represented ’White’ category. This is likely due to
the fact that in the training set, ’Asian-Pac-Islander’ is the
only racial group with a distribution of incomes similar to the
’White’ group, in fact with a slightly higher percentage of
high income earners (Table 4).

How do different algorithms respond to sensitive or biased
data? Regarding how different algorithms respond to biased
data, Logistic Regression exhibited a consistent performance
across various demographic groups but showed signs of bias
amplification, particularly in terms of Disparate Impact and
Demographic Parity. Decision Tree displayed the most vari-
ability in performance, suggesting a sensitivity to the nuances
in the training data. Random Forest generally provided more
stable outcomes across different groups, but still reflected un-
derlying biases in the dataset.

How do different fairness metrics compare when applied
to the same decision-making system? The comparative effec-
tiveness of fairness metrics such as Demographic Parity, Dis-
parate Impact, Equal Opportunity, and Equalized Odds was
evaluated to assess how each metric highlights different facets
of fairness within the same decision-making systems. Demo-
graphic Parity and Disparate Impact, focusing on outcome-
based measures, were useful in identifying broad disparities
in treatment across groups but did not account for the correct-



ness of model predictions. Equal Opportunity and Equalized
Odds, which consider both the rate of positive predictions and
the accuracy of these predictions, provided a more nuanced
view that captured discrepancies in algorithmic performance
that affect fairness. This comparison highlights that, while
no single metric can fully account for fairness, a combina-
tion of outcome-based and error-based metrics can provide a
more comprehensive understanding of how biases manifest in
algorithmic decisions.

Which fairness metrics are most effective in identifying
bias amplification? To identify bias amplification effectively,
certain fairness metrics were more insightful than others in
specific cases. Demographic Parity and Disparate Impact can
indicate if one group is systematically favoured over another
in terms of positive outcomes, but do not capture whether
the decisions are correct or equally accurate across groups.
Equalized Odds and Equal Opportunity consider the correct-
ness of the predictions (TPR and FPR), revealing biases in
how accurately the classifiers perform for different groups.
As a consequence, Equalized Odds and Equal Opportunity
captured additional layers of bias not seen with Demographic
Parity and Disparate Impact alone. For example, the ’Amer-
Indian-Eskimo’ vs. ’Black’ and ’White’ vs. ’Asian-Pac-
Islander’ groups both received scores of approximately -0.02
for Demographic Parity in the Random Forest outcomes, sug-
gesting almost perfect parity. However, when computing the
Equalized Odds for the same pairs and classifier, the latter
pair got a score of approximately 0.02, indicating almost no
difference, the same as Demographic Parity suggested, while
the former pair got a score of approximately 0.3, signifying
considerable disparities. This example clearly illustrates how
Equalized Odds can capture biases in TPR or FPR that De-
mographic Parity might overlook.

Although the fairness metrics values seem to point to the
disadvantage of ’Female’ individuals, the accuracies for this
group are significantly higher than those for ’Male’ individu-
als across all classifiers. Having higher accuracy might seem
like an advantage at first sight, but this is likely due to the
fact that outcomes for ’Female’ individuals are more homoge-
nously distributed. In this context, this means that a higher
proportion of ’Female’ individuals are in the below $50K in-
come bracket and, as a consequence, the classifiers can pre-
dict a lower income with higher confidence for this group.
This finding reinforces the fact that higher accuracy does not
equate to fairness.

While Kamiran and Žliobaitė [22] attribute the higher av-
erage annual income of males compared to females to the fact
that females typically work fewer hours per week than males,
it is important to recognize that the number of hours an in-
dividual works each week could itself be a manifestation of
systemic biases. Societal pressures and norms often dictate
that women take on more significant caregiving responsibili-
ties, which can limit their availability for full-time work [23].
Therefore, the observed differences in working hours should
be considered a proxy for underlying systemic biases rather
than an independent variable. It is, however, not the case that
females are paid less because they work fewer hours, as the
Centre for Data Ethics and Innovation (CDEI) [24] used con-
ditional parity with working hours as a risk factor to demon-

strate that within the same bins of hours worked per week,
women still receive lower income scores than men. This in-
dicates that women working the same hours as men are still
less likely to be high earners. Similar patterns are observed
when grouping individuals by race, where disadvantaged de-
mographics are less likely to be high earners, even if they
work the same number of hours.

A significant limitation in the research is the reductionist
binary and oversimplified definition of categories such as sex
and race. The dataset’s categorization into broad groups (e.g.,
’Male’ and ’Female’, ’White’ and ’Black’) can mask under-
lying disparities within these groups [12]. This can also turn
into aggregation bias that can contribute to misleading con-
clusions about the extent and nature of bias.

Another limitation is the Formalism Trap [25], where the
focus on quantitative metrics and formal definitions of fair-
ness may obscure the underlying societal and ethical com-
plexities. Fairness metrics provide a mathematical way to
assess bias, but they may not fully capture the nuanced re-
alities of discrimination and inequity. This trap can lead to a
false sense of impartiality, where achieving favourable met-
ric values is mistaken for genuine fairness. Algorithms may
still perpetuate harmful biases not accounted for by the se-
lected metrics, and the sociotechnical context in which these
algorithms operate is often overlooked.

One other limitation is the temporal relevance of the
dataset. The Adult/Census Income dataset originates from
1994, and the socio-economic context has significantly
evolved since then. Demographic trends, income distribution,
and societal attitudes towards sex and race have all changed
over the past decades. As a consequence, the biases identified
in this research may not accurately reflect current realities,
and the findings might have limited applicability to contem-
porary datasets.

It is also important to acknowledge that some of the race
labels used in the dataset, such as ’Amer-Indian-Eskimo,’ are
considered archaic and inappropriate. These terms are not re-
flective of the current understanding and respect for the di-
versity and identity of these groups. Using such outdated
terms can perpetuate stereotypes and fail to recognize the pre-
ferred and more accurate terms. For example, ’Amer-Indian-
Eskimo’ can be more appropriately referred to as ’Indigenous
Peoples’ or by specific tribal affiliations if known. Similarly,
’Asian-Pac-Islander’ could be separated into ’Asian’ and ’Pa-
cific Islander’ to better represent these distinct groups [26].

8 Conclusions and Future Work
This research investigated the extent to which decision-
making algorithms amplify biases inherent in their training
datasets. Using the Adult/Census Income dataset and apply-
ing machine learning models like Logistic Regression, Deci-
sion Tree, and Random Forest, it was found that all models
displayed bias to varying degrees based on different fairness
metrics such as Demographic Parity, Disparate Impact, Equal
Opportunity, and Equalized Odds.

The findings indicate that achieving higher accuracy in pre-
dictions does not ensure fairness, as all models demonstrated
bias amplification. The varying degrees of bias amplifica-



tion observed across the different models suggest that a one-
size-fits-all approach to fairness is inadequate. Algorithm de-
signers should address the specific biases associated with the
datasets and the chosen models. Moreover, the amplification
of biases by decision-making systems also highlights the ne-
cessity for robust policy and regulatory frameworks. These
should require transparency in algorithmic processes and reg-
ular audits to ensure compliance with fairness standards.

Significant disparities were also revealed in how differ-
ent demographic groups are treated by algorithms, which can
have profound implications for affected individuals. For in-
stance, the observed biases against certain racial and gender
groups call for a reevaluation of the deployment of such al-
gorithms in critical areas like employment, housing, and jus-
tice, where biased decisions can exacerbate existing social in-
equalities.

Future research can include longitudinal studies that track
the impact of algorithmic decisions over time, thus reveal-
ing long-term biases and their consequences. Additionally,
deploying algorithms in real-world settings and continuously
monitoring their performance can help identify and address
biases that may not be evident in controlled environments.

On top of that, further work can also focus on develop-
ing new fairness metrics that can adapt to changing societal
norms and specific application contexts.

It is also worth considering that the issue of fairness in
automated decision-making is one that requires interdisci-
plinary research. Collaborations between computer scientists,
ethicists, sociologists, and policymakers can provide diverse
perspectives and solutions that are grounded in both technical
feasibility and ethical considerations.

All in all, this research highlights the intricate relation-
ship between dataset biases and their amplification through
decision-making algorithms. The findings underscore that
higher accuracy does not guarantee fairness, as biases can
persist or even intensify within algorithmic outputs. It is im-
perative for developers and policymakers to prioritize fairness
alongside accuracy in the development and deployment of
these systems. Future research should continue to explore and
address these complexities, ensuring that automated decision-
making tools contribute positively to society by promoting
equity and reducing bias.
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