
Training a Machine-Learning Model for Optimal Fitness
Function Selection with the Aim of Finding Bugs

Stoyan Dimitrov
Supervisor(s): Annibale Panichella, Mitchell Olsthoorn, Pouria Derakhshanfar

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
To ensure that a software system operates in the correct way,
it is crucial to test it extensively. Manual software testing is se-
verely time-consuming, and developers often underestimate its
importance. Consequently, many tools for automatic test gen-
eration have been developed during the past decade. EvoSuite
is a state-of-the-art tool for automatic generation of unit tests.
It can produce test suites based on chosen coverage criteria,
also known as a fitness function. Previous studies have widely
assessed the performance of the different fitness functions avail-
able in EvoSuite. However, the combination of various coverage
criteria has not been considered. In this paper, we assess the ef-
fectiveness of the combination of Branch coverage and Output
diversity fitness functions. We compare it to two of the most
popular fitness functions in EvoSuite - Branch coverage and the
Default configuration (combines eight coverage criteria) to es-
timate its performance. We developed a machine learning tool
that determines which fitness function will achieve better re-
sults based on class characteristics. The assessment criteria we
consider are branch coverage and fault detection, represented
by mutation score. We further examined how the time limit
affects the performance of the considered fitness functions. The
results have shown that the combination of Branch coverage
and Output diversity outperforms the Default configuration
significantly in branch coverage but has worse performance
in fault detection capabilities. We have also found that the
Branch and Output diversity coverage criteria achieve better
results when compared with only using Branch coverage in
terms of mutation score. Additionally, the static software met-
rics, especially CBO, LCOM* and LOC, are highly correlated
with the performance of the fitness functions and can predict
which coverage criteria will achieve better results.

1 Introduction
Software testing is an important activity for assuring the
quality of software systems. Test development requires pro-
ducing various program inputs that cover as much the po-
tential use cases of the system as possible, as well as validat-
ing the obtained output results. However, this is an effort-
intensive task and requires a significant time budget [44],
[9]. Nowadays, as the complexity of modern applications is
increasing, it is essential to produce meaningful tests that
achieve high code coverage. Many developers underestimate
the effort needed for software testing [11]. As a consequence,
the testing produced by software developers is usually inef-
fective. Subsequently, there is a need for automation of test
generation. Such optimisation can decrease the effort and
time required for testing [44], [51]. Following the need for
reliable automatic test generation, during the past decade,
various techniques and tools for test case generation have
been developed. Furthermore, recent research show that

Artificial Intelligence performs better when compared to
developer-written tests in the case of code coverage [2], [41].
EvoSuite is a state-of-the-art tool for automatic genera-

tion of unit test cases in Java. It is able to produce various
test suites, based on the selection of fitness functions, with
high code coverage [16], [17]. The EvoSuite fitness functions
compute the distance of the generated test suites to cover
the desired test targets [41]. The test targets are represented
by various coverage criteria, such as branch coverage, line
coverage and weak mutation coverage. Furthermore, as it
requires only code that compiles the EvoSuite tool allows in-
vestigation of its performance on many popular open-source
projects containing large sets of software systems, such as
SF-110 corpus [17].

In recent years, many different fitness functions have been
added to EvoSuite [47]. However, as individual fitness func-
tions have been created to satisfy various coverage criteria,
it is currently unclear what is their contribution in case of
finding bugs [3]. Moreover, as in previous research, the ef-
fect of choosing various single fitness functions has been
widely assessed, there is a need for further investigation into
the performance of the combination of different coverage
criteria [18], [49].

Previous studies have shown that the Branch coverage cri-
teria in EvoSuite achieves the best results among all possible
fitness functions in EvoSuite [18], [49]. Output diversity is
a black-box technique that maximises differences between
observed output. Previous research has shown that output
diversity is a promising new black-box testing criterion, and
test suites selected to satisfy this criterion are often more
consistent in detecting faults when compared to the one
selected from white-box criteria [4].

This research will focus on creating a model based on em-
pirical results that predict which fitness functions are best
suited for the class under test. In particular, we will investi-
gate the possible benefits of using the combination of Branch
coverage and Output diversity as a fitness function for test
generation when compared to the Branch coverage fitness
function and the EvoSuite Default configuration, which com-
bines eight different coverage criteria. In this paper, we will
abbreviate the fitness functions as follows: DC for the De-
fault configuration, BC for Branch coverage and BO for the
combination of Branch coverage and Output diversity.

To that end, the main research question is:

• When and how does Output diversity affect the
number of bugs detectedwhen combinedwithBranch
coverage?

The corresponding sub-questions are:



• How does the Output diversity in combination with
Branch coverage affect the branch coverage in compari-
son with using only Branch coverage/ Default configu-
ration fitness functions?

• How does the Output diversity in combination with
Branch coverage affect the fault detection in comparison
with using only Branch coverage/ Default configuration
fitness functions?

• How does the time budget affect the achieved branch cov-
erage, when using the combination of Output diversity
and Branch coverage, in comparison with using Branch
coverage/ Default configuration fitness functions?

Our results showed a correlation between specific static
class analysis metrics and the performance of the different
EvoSuite fitness functions. In general, the results have shown
that the combination of Output diversity and Branch cover-
age achieves better results when compared to Branch cover-
age in terms of fault detection capabilities. However, it has
worse performance than the DC fitness function. In terms of
achieved branch coverage, the BO significantly outperforms
the DC criteria and obtains almost identical results as the BC
fitness function. However, based on various class analysis
metrics, different fitness functions may be more appropriate
in specific cases. The time limit positively affects the fitness
functions’ performance in the range of 1 to 3 minutes. After
the third minute, the increase becomes almost insignificant.
Additionally, adding more coverage criteria to a fitness func-
tion can lead to worse performance in many cases, in the
interval of 3 to 5 minutes.
The research paper has the following structure. Section

2 introduces the background of the research and related
work. Section 3 describes the research methodology and ex-
plains what approach we have chosen to answer the research
question/ sub-questions and why we decided to follow this
method. In section 4, we present the results of the experiment.
In section 5, we reflect on the research findings. Section 6 is
dedicated to the ethical aspects of our research and its repro-
ducibility. In the final Section 7, we provide our conclusions
and discuss open issues and possible improvements.

2 Background
2.1 Search-based Software Testing
Search-based Software Testing, also known as SBST, com-
bines automatic test case generation and search techniques
[23]. Previous studies have considered SBST techniques on
different testing levels [33]. For instance, Fraser et al. [16]
examined SBST for unit testing, while Derakhshanfar et al.
[14] considered search-based testing on the integration test
level. In this study we focus on Search-based unit testing.
Search-based unit testing is one of the topics that has been
extensively studied in previous research [2], [17], [47]. In the
automatic unit test generation, the search process consists of
generating various test suites that satisfy different coverage

criteria. In SBST, these coverage criteria are also known as
fitness functions. The purpose of the fitness functions is to
guide the search to promising areas of the search space by
evaluating candidate solutions, in our context – test cases.
The fitness function is problem-specific and should be de-
fined when considering new problem, in our case - the class
under test (CUT) [34].

2.2 EvoSuite for automatic test generation
EvoSuite is a Search-based Software Testing tool that auto-
matically generates unit test suites for Java classes based on
chosen code coverage criteria, such as branch coverage, line
coverage and others. It uses an evolutionary approach based
on a genetic algorithm to derive test suites. In the context of
SBST, each coverage criterion is considered a fitness func-
tion that guides the unit test generation to achieve optimal
code coverage for that particular criterion [38]. This study fo-
cuses on Branch coverage, Output diversity and the EvoSuite
Default configuration fitness functions. The Default configu-
ration in EvoSuite combines eight coverage criteria. In par-
ticular, it combines – Branch coverage (BC), Direct Branch
Coverage, Line coverage, Exception coverage, Method cov-
erage, Method coverage (Top-Level, No Exception) - MNEC,
Output coverage/ diversity and Weak Mutation coverage
[19], [42].

2.3 Combining coverage criteria
For the first time, Rojas et al. [47] combined multiple cov-
erage criteria for SBST. The results showed that when com-
bining different fitness functions, the test generation perfor-
mance does not suffer. Furthermore, in some aspects com-
bining various coverage criteria can boost the performance
of SBST. Later Gay et al. [18] provided evidence that multi-
objective suite generation could be more effective than single
coverage criteria. However, there is still a need to understand
how and when a combination of various fitness functions
could outperform the single coverage criteria.

3 Methodology
To answer the research questions mentioned in Section 1, we
developed a machine learning data analysis tool that aims to
find the extent to which the combination of Output diversity
and Branch coverage affects the branch coverage and the
fault detection capability of the test suites generated by Evo-
Suite. To assess the effect of this combination, we compared
its performance to two fitness functions - Branch coverage
and Default configuration in EvoSuite. A good model for
determining the fault detection effectiveness of fitness func-
tions is mutation score [36]. Mutation score is a quantitative
measurement of the test quality based on the ability of the
test suites to detect faults [63], [31]. Thus, in this paper we
will use mutation score to measure the fault detection capa-
bility of the generated tests.

2



In this research, we strive to find a correlation between
specific program characteristics and the performance of the
different fitness functions. To discover such characteristics,
we rely on static software metrics and machine learning. The
tool we have developed uses a pre-determined set of static
software metrics to decide in which cases it is better to use a
combination of Branch coverage and Output diversity (BO),
only Branch coverage (BC) or the Default configuration (DC).
As the general structure of the machine learning system is
the same, its configurations and parameters vary for the
different datasets (based on the two functions that we are
comparing and what we are examining - branch coverage or
mutation score). The formation of the datasets is described
in Section 3.1.

3.1 Data Collection
For the research, we collected data for different classes from
the open source projects SF110 Corpus 1 and Apache Com-
mons2. Following the same methodology as Panichella et al.
[41], we chose 346 Java classes for analysis. For every class
we obtained 49 static code metrics by using the CK tool [6].
The EvoSuite tool uses evolutionary algorithms to gener-
ate test suites, that are by definition stochastic algorithms.
Hence, the produced test suites may vary when running
the tool multiple times with the same configuration/setting.
Therefore, we ran the tool ten times per class to address
the stochastic nature of the tool. For every class and fitness
function, we considered the branch coverage and mutation
score achieved by the generated test suites. Following the
approach of Derakhshanfar et al. [15] and Olsthoorn et al.
[39], we run EvoSuite with three different search budgets
(time out for the generation process) of 60s, 180s and 300s for
the branch coverage. This is because the runtime of EvoSuite
has a significant effect on the overall coverage achieved by
the generated tests. As computing mutation score is highly
time-expensive, we considered only the 60s time limit for
the fault detection capabilities.
3.2 Statistical analysis
After obtaining the ten test results per class, we performed
statistical analysis. We first applied the normality test on the
ten test runs for every fitness function configuration. As we
ran the test on only ten observations, we used Shapiro–Wilk
normality test, which has good performance on distributions
with a small sample size [45], [50]. The null hypothesis of
the normality tests states that data follows the normal distri-
bution when the 𝑝-value is greater than some predetermined
value [1]. Opposite, when the 𝑝-value is smaller or equal to
the chosen threshold value, the null hypothesis is rejected.
In this research, we decided to set the 𝑝-value to 0.05, which
is commonly used in studies [54]. Based on the normality
of the data, we compared the scores of the different fitness
1https://www.evosuite.org/experimental-data/sf110/
2https://commons.apache.org/

function configurations using the t-test orWilcoxon test [60]
accordingly. T-test has a good performance for establishing
significant differences when the data is normally distributed,
while the Wilcoxon is appropriate when the data is not nor-
mally distributed [12]. When the 𝑝-value obtained from the
t-test/ Wilcoxon test is lower than 0.05, the two distributions
in the comparison are significantly different. Following the
results from the statistical test, we saved for consideration
only the classes that have a significant difference for every
configuration. Despite using different fitness functions, most
of the classes had very similar branch coverage and mutation
score. Consequently, the resulting datasets for analysis were
minimal. The full results from the statistical significant test
can be observed in Table 1, 2.
In this study, we are not just interested in the statistical

significance but also in the magnitude of the differences
between the results (coverage and mutation scores) achieved
by the different fitness functions. To this aim, we applied the
Vargha-Delaney effect size (Â12 statistics) [59], [53]. The full
results of the Â12 statistics are presented in Appendix A.

To determine for which classes one fitness function would
achieve better results than the other, we apply a supervised
machine learning model [37]. Hence, for binary classification
we built a dataset where the class metrics are the features,
while the labels to predict are {0, 1}. Based on the Â12 sta-
tistics, if the combination of Branch and Output coverage
performs better, we labelled the class with "1". Opposite,
when the Default configuration or Branch coverage func-
tions achieve a higher score, we labelled the CUT with "0".
When the magnitude of the effect size test for the class is
"negligible" or "small", the difference in the performance of
the two fitness functions is not significant enough to bring
some meaningful information. Therefore, we did not con-
sider these classes in the analysis. The code we used for
the Vargha-Delaney effect size test is from an open-source
project 3, and represents an adapted Python version of the
Vargha-Delaney effect size test from the R package "effsize"
[56].

From the Vargha-Delaney test results, we observed a large
class imbalance for some datasets. In particular, these are all
sets comparing BO and DC. Additionally, there is a signifi-
cant class imbalance for all datasets resulting from assess-
ing the fault detection capabilities of the fitness functions.
Such differences in the number of observations for the dif-
ferent classes and, in general, the small size of the datasets
may lead to inaccurate predictions when using the machine
learning approach. Thus, we decided to manually validate
the obtained results from the data analysis tool for these
datasets. Furthermore for the comparison of BO and DC in
terms of branch coverage we performed qualitative analysis,
presented in Appendix C.

3https://gist.github.com/f9b19d65b7f16603c837024d5f8c8a65.git
3



3.3 Data analysis tool
The data analysis tool consists of three main stages: data pre-
processing, classification and evaluation. Figure 1 represents
the general structure of the tool. For every step on Figure
1 we performed parameter tuning. Then for every different
configuration, we evaluated its performance and chose the
one with the highest accuracy for the data analysis. For the
tool development, we used the Scikit-learn library in Python
[43].

3.3.1 Data pre-processing. Asmentioned above, the train-
ing and analysis dataset has shrunk drastically after the sta-
tistical significance test. To that end, to develop a reliable
machine learning tool, we should consider the risk of over-
fitting. Overfitting is the use of models or procedures that
violate parsimony. In other words, include more terms than
are necessary or use more complicated approaches than are
necessary [21]. To mitigate the risk of overfitting as much as
possible, we performed feature selection on the static class
analysis metrics. We used L1-based or Tree-based feature
selection, based on the dataset’s properties [62], [48]. To
assess which of these models performs better, we added var-
ious feature selection techniques (Linear SVC, DecisionTree,
RandomForest and others) as the first term in the pipeline
- Figure 1, which performance we examined following the
approach in Section 3.3.3.

Figure 1. Pipeline of the data analysis tool

Another technique that we investigated and could enhance
the performance of the data analysis tool is outlier removal.
For this task, we decided to use Isolation Forest, which is
a reliable algorithm for anomaly detection [28]. Then, we
removed the detected outliers (anomalies) from the training
data. However, for some datasets, this technique did not
improve the classifier’s performance. For this reason, we
added it as the second term in the pipeline - Figure 1, and
it was included only when it increased the accuracy of the
classifier.
As there was a class imbalance in the datasets, we per-

formed class balancing. There are two main techniques for

class balancing - oversampling and undersampling. In gen-
eral, undersampling refers to removing observation samples
from the dominating class. Oversampling is the opposite -
adding additional samples from the minority class by repeat-
ing observations from the dataset or creating artificial ones
[35]. As our data is limited, we are not able to remove sam-
ples. Consequently, we used oversampling. In particular, we
assessed two methods - Random Over Sampling and SMOTE.
The first one adds random observations from the data set un-
til the class is balanced, while the second one adds artificial
samples [10]. We added both techniques as the third term in
the pipeline - Figure 1, as their performance varies for the
different datasets.

3.3.2 Classifier. As the datasets are very small, we were
able to examine the performance of multiple classifiers. From
Osisanwo et al. [40] and Althnian et al. [5], we have seen that
SVM, Naive Bayes, Random Forest, Decision Tree and Ad-
aBoost have good performance when trained on limited data.
Consequently, as a final term in our pipeline, we included
Gaussian Naive Bayes, Support Vector Machine, Decision
Tree, Random Forest, and three boosting algorithms - Ad-
aBoost, XGBoost and GradientBoost. In his research, Gómez-
Ríos et al. [20] presents more information about AdaBoost,
XGBoost and GradientBoost and their similarities and differ-
ences. Additionally, we considered Logistic Regression, as it
is a simple and efficient method for binary classification [52].
As stated above, there is a severe risk of overfitting. Hence,
we did not consider Neural Network classifiers as they are
prone to overfitting because of their complexity [57].
To further boost the classifier algorithms, we performed

hyper-parameter tuning. The classifier parameter tuning
could often be more important than the choice of machine
learning algorithms [26]. Therefore, we assessed many differ-
ent parameters for every classification model. Additionally,
we considered various parameters for all data pre-processing
techniques. We have to mention that only the data balancing
model and the classifier were tuned after the train-test split,
using grid search. In total we considered more than 900 0004
different combinations of pre-processing techniques and clas-
sifiers. For every dataset we chose the best combination of
classifier and pre-processing techniques and used it for the
data analysis.

3.3.3 Evaluation of the system. To reliably assess the
performance of the machine learning system, we decided
to use a cross-validation strategy. We used the Nested-CV
model, as it provides unbiased performance estimates even
for data with a limited sample size. Nested CV is performed
in two layers to obtain the training and validation set [58].
In the first layer, we use a K-fold CV split with k=5. Thus we
split the data into five equal segments, and on every iteration,

4Feature selection - 18 configurations; Outlier removal - 5 configurations;
Data Balancing - 14 configurations; Classifiers - 733 configurations.

4



different segments are used for validation [46]. On the sec-
ond layer, we used grid search with 5-fold cross-validation
to assess the performance of the pipeline. To measure the
performance of the classifiers, we used F1 score, which com-
bines the precision and recall into a single metric by taking
their harmonic mean. It is commonly used to assess the per-
formance of machine learning algorithms [27].

Dataset All classes Classes with significant
difference

BO/BC - branch
coverage 60s 346 33

BO/DC - branch
coverage 60s 346 60

BO/BC - branch
coverage 180s 346 25

BO/DC - branch
coverage 180s 346 73

BO/BC - branch
coverage 300s 346 24

BO/DC - branch
coverage 300s 346 70

Table 1. Classes with significant difference for all datasets
considering branch Coverage

Dataset All classes Classes with significant
difference

BO/BC -mutation
score 60s 346 81

BO/DC - muta-
tion score 60s 346 98

Table 2. Classes with significant difference for all datasets
considering mutation Score

4 Results
In this section, we will discuss the obtained results and how
they answer each of the research questions introduced in
Section 1.

From Table 1, 2 we observe that out of the 346 classes we
have selected for analysis, the classes with significant differ-
ence are just a small fraction. Thus, we can say that in most
of the cases there will not be a considerable difference in the
efficiency of using the combination of Branch coverage and
Output diversity or Default configuration/ Branch coverage
as a fitness function.

4.1 RQ1
• RQ1: How does the Output diversity in combination with
Branch coverage affect the branch coverage in compari-
son with using only Branch coverage/ Default configu-
ration fitness functions?

For assessing the effect of BO on the branch coverage we
considered six different datasets. For each couple of fitness

functions that we compare (BO and BC; BO and DC), we
consider three time limits of 60s, 180s and 300s. Due to space
limitation the results and the analysis for the 300s datasets
is presented in Appendix D.
The Branch coverage fitness function achieves better re-

sults in all examined timeframes. However, the class distri-
bution is almost even for the 180s and 300s. BO achieves a
better score for almost all classes in all possible timeframes
when compared with DC, in terms of branch coverage. From
Appendix A, we see that there are too few classes for which
the performance of DC fitness function is better. Because of
this significant class imbalance, using the data analysis tool
could be unreliable. For the 60s dataset there are only two
classes in favour of DC. Thus for this timeframe we analysed
the data only manually. As for the 180s and 300s datasets,
we obtained results from the data analysis tool, which we
validated through manual analysis and further performed
qualitative manual analysis, which is presented in Appen-
dix C. The top ten configurations, their parameters and the
selected features, as well as all of the results from the data
analysis tool are presented in Appendix B. On Table 3 we
have presented the best classifier for every dataset and the
achieved F1-score.

Dataset Best performing classifier F1-score
BO/BC - branch
coverage 60s XGBClassifier 0.899

BO/BC - branch
coverage 180s LogisticRegression 0.84

BO/DC - branch
coverage 180s GradientBoostingClassifier 0.922

BO/BC - branch
coverage 300s DecisionTree 0.947

BO/DC - branch
coverage 300s DecisionTree 0.904

BO/BC -mutation
score 60s RandomForestClassifier 0.925

BO/DC-mutation
score 60s GradientBoostingClassifier 0.887

Table 3. Best classifiers and F1-score for every considered
dataset

4.1.1 60s. Figure 6 depicts top 10 best performing esti-
mators for the 60s time limit. We note that all of the best
performing configurations have the same feature selection
technique - DecisionTree and the same set of features used
for training. This provides a clear evidence that the static
software metrics have a significant correlation with the per-
formance of the fitness functions. Furthermore, from our
observation of the results, we noted that the LCOM* (Lack of
Cohesion of Methods) [22] metric is selected by the feature
selection techniques in 88% of all combinations. This shows
that the Lack of Cohesion of Methods is strongly correlated

5



to the performance of BO and BC fitness functions when
considering branch coverage. From Table 3 you can see that
the best performing classifier is XGBoost, with accuracy of
around 90%. Its resulting decision tree is represented in Fig-
ure 7. The tree shows that LCOM* and the number of private
fields decide which fitness function is better. It shows that
BO performs better when the LCOM* ranges between 0.597
and 0.74 or when LCOM* is more than 0.74, but the number
of private fields is more than five.

For the 60s timeframe, we observed that only two classes
achieved better scores when using Default configuration
as a fitness function. Furthermore, one of the classes has a
medium difference; thus, its coverage is very close to the one
achieved by BO. Therefore, we performed manual analysis
following the procedure in Appendix C - C.1. From the man-
ual analysis of the code, we cannot say that the two classes
have some unique characteristics. Both classes contained
only one complex method and many straightforward ones.
As we could not collect any insights from the script why
these two classes are anomalies, the class metrics provided
some understanding.
In previous studies, Badri et al. [7, 8] showed that class

metrics correlate with the testing effort. In particular, the
metrics WMC, RFC, LCOM and LOC can predict the testing
effort. In consequence, we firstly took a look at these class
metrics. WMC represents McCabe’s complexity [32], while
LOC considers lines of codes, LCOM - lack of cohesion of
methods and RFC counts the number of unique method in-
vocations in a class. We observed that the average WMC is
more than five times smaller than the mean for the whole
dataset. Furthermore, the average LCOM for the two outlier
classes is 3, while for the whole set is 1514.1. Additionally,
the score for LOC, quantity of "return", loop, try-catch blocks,
parenthesized expressions, numbers, assignments and math-
ematical operations is significantly lower than the average
for all classes. In Appendix C, Figure 26 we have provided
a table with specific class metrics, the average of these met-
rics for all significant classes under test and the average for
the outlier classes. The classes in yellow have a "medium"
difference.
Previous research has shown that LCOM is correlated

to the complexity of classes [30]. Moreover, LOC and the
number of assignments, mathematical operations, numbers,
expressions and loops could be considered an indirect indica-
tion of the complexity of the classes. These values are much
lower than the average for the classes where the DC fitness
function performs better. As two classes are not enough to
make reliable conclusions, from our observations, we can
say that Default configuration will perform better for the
60s time limit only if the classes have very low complexity.

4.1.2 180s. The logistic regression classifier performs best
for the 180 seconds time limit, when comparing BO and
BC, with accuracy of 0.84 - Table 3. The best performing

feature selection functions are Select from Percentile, with
chi-squared as the scoring method [29] and XGBoost. Out of
the ten best configurations, shown in Appendix B, in nine,
the feature selection technique selected LOC, WMC and
LCOM for training.

On Figure 9, in Appendix B you can see the coefficients and
the interception of the obtained Logistic regression estimator.
For the interpretation of the results we used the function
presented in Figure 9 [25]. From these results, we can see
that classes with a high number of mathematics operations
and fields, as well as a high value of CBO (Coupling between
objects), will be labelled as "1", and thus, the BO will achieve
better coverage than the BC fitness function. Conversely, for
the classes with high values of CBO (Modified), RFC and
"return" quantity, the BC fitness function will perform better.
Another factor we assess is that LCOM and LOC usually get
very high values (a couple of hundreds or even thousands).
Therefore, for the classes with many lines of code, the BO
will choose better test suites, while for the classes with high
LCOM, we should choose the BC fitness function for optimal
results. Additionally, other coefficients could affect choosing
the better fitness function, such as NOSI, WMC, number of
parenthesized expressions and others, presented in Figure 9,
but their influence is marginal.
For the feature selection, nine of the ten best configura-

tions used DecisionTree, when comparing BO and DC. The
only class metric present in all sets of selected features is
the "number" quantity. The rest of the selected class met-
rics are "static field" quantity, number of comparisons, loops,
maths operations and visible methods. To obtain the deci-
sion boundary of the GradientBoost - Table 3, we plotted and
examined every DecisionTree, used as an estimator by the
GradientBoosting. In total, we considered 100 different trees.
We decided to study only the conditions that were present
in ten or more different trees (at least 10% of all trees) to
mitigate the randomness and extract only the essential rules.
Eight conditions passed the 10% requirement - Appendix
B, Figure 13. Then we analysed every condition manually,
as some were very similar. After manually validating the
decision tree results, we reduced the obtained conditions to
five - Figure 14. We have found that DC outperforms BO in
branch coverage when the number of loops is lower or equal
to 4, the number of static fields is between 2 and 16, and the
number of comparisons is between 2 and 131. At least two
of these three conditions should be satisfied for the DC to
outperform BO. Additionally, we performed manual analysis
for this dataset, which is presented in Appendix C - C.2.

4.1.3 300s. Because of space limitations, the analysis for
the 300s is in Appendix D. The decision trees for the compar-
ison of BO and BC, and BO and DC are presented on Figure
11, 16.

To sum up, the combination of Branch and Output diver-
sity performs better when compared to DC. For less than

6



180s, the complexity can affect the fitness function’s perfor-
mance; thus, for the classes with very low complexity, the
Default configuration would achieve higher branch coverage.
Specific software metrics determine which fitness function
performs better for the datasets for three and five minutes
and when comparing BO and BC.

4.2 RQ2
• RQ2: How does the Output diversity in combination with
Branch coverage affect the fault detection in comparison
with using only Branch coverage/ Default configuration
fitness functions?

For the mutation score, we observed much more classes
with significant differences than when considering branch
coverage. From our observation of the effect size results, pre-
sented in Appendix A, we can say that BO is performing
much better than the BC fitness function when consider-
ing fault detection capabilities. However, DC outperforms
significantly BO.
In Appendix C, Figure 17 shows the top performing con-

figurations and the selected features of the data analysis
tool for comparing BO and BC in terms of mutation score.
Only one class metric is present in the selected features for
all top ten classifiers - LCOM*. The classifier with the best
performance is RandomForest - Table 3. We plotted every
tree in the forest and extracted the most common decision
points. The conditions that were present in most trees were
LCOM*<=0.78 and LCOM*<=0.77, which proved the impor-
tance of the LCOM* metric. Because of the small number of
classes in favour of BC, we further checked the conditions
manually. In some cases, where there were similar decision
points, such as LCOM*<=0.78 and LCOM*<=0.77, we com-
bined them based on our manual analysis. The established
conditions are presented on Figure 18. We found that for
the BC fitness function to outperform BO, the conditions
LCOM*>0.77, CBO>3 and "number" quantity greater than
twelve, should always be satisfied. When the condition for
methods quantity is not satisfied (the number of methods
is less than 25), the requirement for the number of unique
words (unique words quantity more than 87) should be satis-
fied. The opposite holds for the rest of the classes. The classes
and its metrics are presented on Figure 19. In Figure 20 we
have presented a decision tree that combines all discovered
dependencies.
Figure 21 shows the best performing configurations for

the mutation score dataset, when comparing BO and DC
fitness functions. From Figure 21, Table 3 we can see that the
best performing estimator is the GradientBoosting classifier,
with accuracy of around 89%. Four class metrics are present
in all top ten configurations. In particular, these are - the
number of private fields, comparisons, assignments and DIT
(Depth Inheritance Tree). To interpret the GradientBoosting
classifier, we used the approach described in Section 4.1.2
when we compared BO and DC in terms of branch coverage.

From the 100 analysed trees, the 10% requirement was sat-
isfied by twelve conditions, shown in Figure 23. After the
manual validation, we reduced them to six - Figure 22. We
found that for BO to outperform DC, the number of com-
parisons should be between 14 and 34, while DIT should be
lower or equal to 1. Additionally, the estimator suggested
that the number of private fields should be less than or equal
to 5, LOC should be less than 568, and the "return" quantity
should be more than 12. At least four of these conditions
should be satisfied for the class under test, in order BO to
outperform DC.

4.3 RQ3
• RQ3: How does the time budget affect the achieved branch
coverage, when using the combination of Output di-
versity and Branch coverage, in comparison with us-
ing Branch coverage/ Default configuration fitness func-
tions?

In Figure 2 we have presented the average branch cover-
age for all considered fitness functions and classes for three
time limits - 1, 3 and 5 minutes. In the interval of 1 - 3 min-
utes, the achieved branch coverage when using the BC or
BO increases by around 3% on average. However, after the
third minute, the improvement in the coverage is marginal -
less than 1%. As the average coverage percentage of the DC
fitness function increases at the almost same rate as the other
two in the interval of 1 - 3 minutes, its coverage decreases
after that time. Oppositely, we can see that, on average, the
Branch coverage function continues to improve after the
third minute. At the same time, BO has almost no visible
improvement after the third minute. From Appendix A, we
can see that the tendency when comparing the classes for
the different fitness functions with the effect size test is very
similar to the one in Figure 2. Consequently, we can claim
that there is a correlation between the number of coverage
criteria used as a fitness function and the achieved branch
coverage. In particular, using more coverage criteria could
lead to smaller branch coverage.

Figure 2. Average branch coverage achieved for different
time limits

7



In terms of mutation score, we noted that the Default
configuration fitness function did not manage to generate
test results for the class com.soops.CEN4010.JMCA.JParser
.JavaParser. This class distinguishes itself with its very high
complexity; itsWMC is 3301. However, BO and BC generated
test suites and reported branch coverage for the class. As
the Default configuration combines eight different coverage
criteria, we suppose that it will not be able to produce results
for very complex classes and short available time. In these
cases, it will be better to use simpler fitness functions that
are more effective. As BO performs much better than the
BC fitness function, we suggest using BO for very complex
classes and limited time. However, this claim is based on only
one class observation and could be exclusion. Thus, further
investigation to prove the claim is required.

5 Discussion and Threats to validity
Previous research has shown a correlation between static
software metrics and testing effort [7], [8]. In our study, we
observed a significant relationship between the class metrics
and the achieved branch coverage/ mutation score by the
different fitness functions. In particular, we have seen that
the combination of Branch coverage and Output diversity
performs much better than the Default configuration fitness
function in terms of branch coverage. Additionally, it has
significantly better results when compared to Branch cover-
age in terms of fault detection capabilities. However, in most
cases, the mutation score of the DC fitness function is better
than the one of BO. A study showed that the "Weak mu-
tation" coverage criteria (WMC) could significantly impact
the mutation score [55]. Therefore, the good mutation score
achieved by the Default configuration could be explained by
the fact that "weak mutation" is one of the eight coverage
criteria that DC combines.
We observed that, on average, BO achieves almost iden-

tical results as BC for all time limits in terms of branch
coverage. However, in terms of fault detection capabilities,
BO dominates BC significantly. Therefore, for a tradeoff of
less than one percent on average of the achieved branch
coverage BO will provide significantly more extensive fault
detection testing. Thus we suggest using the combination of
Branch coverage and Output diversity instead of only using
Branch coverage as a fitness function.
The class metrics CBO, LCOM* and LOC correlate sig-

nificantly with the various fitness functions discussed in
this paper. Previous research has shown that high values for
WMC, LCOM and CBO increase the complexity and affect
the testability of the classes [24]. Therefore, we can claim
that the complexity of the CUT affects the performance of
the fitness functions. However, the important class metrics
and their values vary when comparing the various fitness
functions and depend on the time limit. Additionally, we
observed that, on average, the increase in the time limit after

the 180s has a negative effect on the fitness functions that
combine many coverage criteria when considering branch
coverage.
Limitations to the current approach are mostly related

to the data analysis tool. We should mention that different
pre-processing configurations and classifiers may perform
better than the one presented in Appendix B and used for
analysis. Furthermore, we did not examine all possible tun-
ing parameters because of the need for high computational
power and time limitations. Consequently, there could be
a combination of parameters that achieve higher accuracy
than the one presented in Appendix B and Table 3. Another
limitation of our tool is that despite taking all of the measures
stated above to mitigate the risk of overfitting, our model
could still be prone to overfitting because of the minimal size
of some datasets. Additionally, the predictions may not be
reliable for the datasets with high class imbalance because
of the small data available for the minority class. In terms of
manual analysis, it has to be noted that the results are subject
to human bias and depend on the researcher’s interpretation
of the obtained statistical results.

6 Responsible Research
There are no significant ethical issues related to our research.
No sensible or confidential information was used in this
study. All of the data is from open-source projects, and the
method followed for its collection is described in [41]. Re-
producibility is an essential part of the research that ensures
validity and credibility. To ensure that our study is legitimate,
we should be transparent. To that end, we have provided the
Python code corresponding to the development of the data
analysis tool on Github 5. Github supports version control
and, in general, is a great tool for transparency [13]. Addi-
tionally, we added all data preparation and extraction scripts
to the Github repository.
Another factor to consider for reproducibility is the ran-

dom factor involved in the machine learning algorithms for
pre-processing and classification. Due to the small sample
size of the training sets, the randomness can cause fluctua-
tions in the performance of the data analysis tool. Further-
more, despite the fact that we used a Nested CV for the
evaluation described in Section 3.3.3, there is still a random
factor in the K-fold split used for the first layer of the Nested
CV [61]. This randomness affects the obtained accuracy of
the data analysis tool and can lead to slightly different re-
sults in future recreation. We presented the top ten best
performing configurations and their machine learning tun-
ing parameters in Appendix B. All data pre-processing and
classifier parameters that were not provided correspond to
the default ones used by Scikit-learn.

5https://github.com/Stoyan4050/Training-a-Machine-Learning-Model-for-
Optimal-Fitness-Function-Selection-with-the-Aim-of-Finding-Bug

8



7 Conclusions and Future Work
We have shown that static software metrics correlate with
the performance of the fitness functions for branch coverage
and mutation score. The metrics we established as most sig-
nificant for choosing test coverage criteria are CBO, LCOM*
and LOC. As all of these metrics could be considered a rep-
resentation of the complexity of the classes, we state that
when choosing a fitness function for automatic test gener-
ation, the complexity of the classes to be tested should be
considered. BO significantly outperforms BC in mutation
score and achieves almost the same results for branch cov-
erage. Therefore, it is more appropriate to use BO instead
of BC, as it will provide better fault detection testing and
almost identical branch coverage. DC performs poorly when
considering branch coverage, but it achieves a much better
mutation score than BO and BC. Considering the time bud-
get, increasing the time limit to more than three minutes
leads to a decrease in the achieved branch coverage when
adding more coverage criteria. However, increasing the time
budget from 60s to 180s significantly improves the achieved
branch coverage for all fitness functions.

Future workmay include analysing different combinations
of fitness functions available in EvoSuite. Additionally, fur-
ther analysis into the factors that influence the performance
of the coverage criteria could be performed. Additional study
with more data may provide more insights into what factors
lead to the observed branch coverage and fault detection
capability performance of the combination of Branch cov-
erage and Output diversity fitness function. Further inves-
tigation into other model parameters and configurations of
pre-processing techniques and estimators could be tested to
enhance the data analysis tool.

References
[1] Nor Aishah Ahad, Teh Sin Yin, Abdul Rahman Othman, and Che Ro-

hani Yaacob. 2011. Sensitivity of normality tests to non-normal data.
Sains Malaysiana 40, 6 (2011), 637–641.

[2] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and
Janis Benefelds. 2017. An industrial evaluation of unit test generation:
Finding real faults in a financial application. In 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP). IEEE, 263–272.

[3] Hussein Almulla and Gregory Gay. 2022. Learning how to search: Gen-
erating effective test cases through adaptive fitness function selection.
Empirical Software Engineering 27, 2 (2022), 1–62.

[4] Nadia Alshahwan and Mark Harman. 2014. Coverage and fault de-
tection of the output-uniqueness test selection criteria. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis.
181–192.

[5] Alhanoof Althnian, Duaa AlSaeed, Heyam Al-Baity, Amani Samha,
Alanoud Bin Dris, Najla Alzakari, Afnan Abou Elwafa, and Heba Kurdi.
2021. Impact of dataset size on classification performance: an empirical
evaluation in the medical domain. Applied Sciences 11, 2 (2021), 796.

[6] Maurício Aniche. 2015. Java code metrics calculator (CK). Available in
https://github.com/mauricioaniche/ck/.

[7] Linda Badri, Mourad Badri, and Fadel Toure. 2011. An empirical
analysis of lack of cohesion metrics for predicting testability of classes.

International Journal of Software Engineering and Its Applications 5, 2
(2011), 69–85.

[8] Mourad Badri and Fadel Toure. 2012. Empirical analysis of object-
oriented design metrics for predicting unit testing effort of classes.
(2012).

[9] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and
Shin Yoo. 2014. The oracle problem in software testing: A survey. IEEE
transactions on software engineering 41, 5 (2014), 507–525.

[10] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard.
2004. A study of the behavior of several methods for balancingmachine
learning training data. ACM SIGKDD explorations newsletter 6, 1 (2004),
20–29.

[11] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaid-
man. 2015. When, how, and why developers (do not) test in their IDEs.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. 179–190.

[12] Patrick D Bridge and Shlomo S Sawilowsky. 1999. Increasing physi-
cians’ awareness of the impact of statistics on research outcomes:
comparative power of the t-test and Wilcoxon rank-sum test in small
samples applied research. Journal of clinical epidemiology 52, 3 (1999),
229–235.

[13] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012.
Social coding in GitHub: transparency and collaboration in an open
software repository. In Proceedings of the ACM 2012 conference on
computer supported cooperative work. 1277–1286.

[14] Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy
Zaidman, and Arie van Deursen. 2020. Generating Class-Level Integra-
tion Tests Using Call Site Information. arXiv preprint arXiv:2001.04221
(2020).

[15] Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie
Van Deursen, and Annibale Panichella. 2020. Good things come in
threes: Improving search-based crash reproduction with helper objec-
tives. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 211–223.

[16] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite
generation for object-oriented software. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. 416–419.

[17] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of
automated unit test generation using evosuite. ACM Transactions on
Software Engineering and Methodology (TOSEM) 24, 2 (2014), 1–42.

[18] Gregory Gay. 2017. The fitness function for the job: Search-based gen-
eration of test suites that detect real faults. In 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST). IEEE,
345–355.

[19] Gregory Gay. 2017. Generating effective test suites by combining
coverage criteria. In International Symposium on Search Based Software
Engineering. Springer, 65–82.

[20] Anabel Gómez-Ríos, Julián Luengo, and Francisco Herrera. 2017. A
study on the noise label influence in boosting algorithms: AdaBoost,
GBM and XGBoost. In International Conference on Hybrid Artificial
Intelligence Systems. Springer, 268–280.

[21] Douglas M Hawkins. 2004. The problem of overfitting. Journal of
chemical information and computer sciences 44, 1 (2004), 1–12.

[22] Brian Henderson-Sellers, Larry L Constantine, and Ian M Graham.
1996. Coupling and cohesion (towards a valid metrics suite for object-
oriented analysis and design). Object oriented systems 3, 3 (1996),
143–158.

[23] Manju Khari and Prabhat Kumar. 2019. An extensive evaluation of
search-based software testing: a review. Soft Computing 23, 6 (2019),
1933–1946.

[24] Umesh L Kulkarni, YR Kalshetty, and Vrushali G Arde. 2010. Validation
of ck metrics for object oriented design measurement. In 2010 3rd in-
ternational conference on emerging trends in engineering and technology.

9



IEEE, 646–651.
[25] Michael P LaValley. 2008. Logistic regression. Circulation 117, 18

(2008), 2395–2399.
[26] Niklas Lavesson and Paul Davidsson. 2006. Quantifying the impact of

learning algorithm parameter tuning. In AAAI, Vol. 6. 395–400.
[27] Zachary Chase Lipton, Charles Elkan, and Balakrishnan

Narayanaswamy. 2014. Thresholding classifiers to maximize
F1 score. arXiv preprint arXiv:1402.1892 (2014).

[28] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation
forest. In 2008 eighth ieee international conference on data mining. IEEE,
413–422.

[29] Huan Liu and Rudy Setiono. 1995. Chi2: Feature selection and dis-
cretization of numeric attributes. In Proceedings of 7th IEEE Interna-
tional Conference on Tools with Artificial Intelligence. IEEE, 388–391.

[30] Yutao Ma, Keqing He, Dehui Du, Jing Liu, and Yulan Yan. 2006. A
complexitymetrics set for large-scale object-oriented software systems.
In The Sixth IEEE International Conference on Computer and Information
Technology (CIT’06). IEEE, 189–189.

[31] Lech Madeyski. 2010. The impact of test-first programming on branch
coverage and mutation score indicator of unit tests: An experiment.
Information and Software Technology 52, 2 (2010), 169–184.

[32] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on
software Engineering 4 (1976), 308–320.

[33] Phil McMinn. 2004. Search-based software test data generation: a
survey. Software testing, Verification and reliability 14, 2 (2004), 105–
156.

[34] Phil McMinn. 2011. Search-based software testing: Past, present and
future. In 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops. IEEE, 153–163.

[35] Roweida Mohammed, Jumanah Rawashdeh, and Malak Abdullah. 2020.
Machine learning with oversampling and undersampling techniques:
overview study and experimental results. In 2020 11th international
conference on information and communication systems (ICICS). IEEE,
243–248.

[36] Larry J. Morell. 1990. A theory of fault-based testing. IEEE Transactions
on Software Engineering 16, 8 (1990), 844–857.

[37] Vladimir Nasteski. 2017. An overview of the supervised machine
learning methods. Horizons. b 4 (2017), 51–62.

[38] Mitchell Olsthoorn, Pouria Derakhshanfar, and Annibale Panichella.
2021. HybridMulti-level Crossover for Unit Test Case Generation. In In-
ternational Symposium on Search Based Software Engineering. Springer,
72–86.

[39] Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. 2020.
Generating highly-structured input data by combining search-based
testing and grammar-based fuzzing. In 2020 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE,
1224–1228.

[40] FY Osisanwo, JET Akinsola, O Awodele, JO Hinmikaiye, O Olakanmi,
and J Akinjobi. 2017. Supervised machine learning algorithms: clas-
sification and comparison. International Journal of Computer Trends
and Technology (IJCTT) 48, 3 (2017), 128–138.

[41] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
2017. Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets. IEEE Transactions on
Software Engineering 44, 2 (2017), 122–158.

[42] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella.
2018. Incremental control dependency frontier exploration for many-
criteria test case generation. In International Symposium on Search
Based Software Engineering. Springer, 309–324.

[43] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Ma-
chine learning in Python. the Journal of machine Learning research 12
(2011), 2825–2830.

[44] Mauro Pezzè and Michal Young. 2008. Software testing and analysis:
process, principles, and techniques. John Wiley & Sons.

[45] Nornadiah Mohd Razali, Yap Bee Wah, et al. 2011. Power comparisons
of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling
tests. Journal of statistical modeling and analytics 2, 1 (2011), 21–33.

[46] Payam Refaeilzadeh, Lei Tang, and Huan Liu. 2009. Cross-validation.
Encyclopedia of database systems 5 (2009), 532–538.

[47] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and
Andrea Arcuri. 2015. Combining multiple coverage criteria in search-
based unit test generation. In International Symposium on Search Based
Software Engineering. Springer, 93–108.

[48] Yvan Saeys, Inaki Inza, and Pedro Larranaga. 2007. A review of feature
selection techniques in bioinformatics. bioinformatics 23, 19 (2007),
2507–2517.

[49] Alireza Salahirad, Hussein Almulla, and Gregory Gay. 2019. Choosing
the fitness function for the job: Automated generation of test suites
that detect real faults. Software Testing, Verification and Reliability 29,
4-5 (2019), e1701.

[50] Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of
variance test for normality (complete samples). Biometrika 52, 3/4
(1965), 591–611.

[51] Mozhan Soltani, Annibale Panichella, and Arie Van Deursen. 2018.
Search-based crash reproduction and its impact on debugging. IEEE
Transactions on Software Engineering 46, 12 (2018), 1294–1317.

[52] Abdulhamit Subasi. 2020. Chapter 3 - Machine learning techniques. In
Practical Machine Learning for Data Analysis Using Python, Abdulhamit
Subasi (Ed.). Academic Press, 91–202. https://doi.org/10.1016/B978-0-
12-821379-7.00003-5

[53] Gail M Sullivan and Richard Feinn. 2012. Using effect size—or why
the P value is not enough. Journal of graduate medical education 4, 3
(2012), 279–282.

[54] Matthew S Thiese, Brenden Ronna, and Ulrike Ott. 2016. P value
interpretations and considerations. Journal of thoracic disease 8, 9
(2016), E928.

[55] Daniela Toader. 2022. Machine-Learning for Optimal Fitness Function
Selection Using a Weak Mutation Branch Coverage Strategy with the
Aim of Finding Bugs. Unpublished.

[56] Marco Torchiano. 2016. Effsize - A package for efficient effect size
computation. https://doi.org/10.5281/ZENODO.1480624

[57] Jack V Tu. 1996. Advantages and disadvantages of using artificial
neural networks versus logistic regression for predicting medical out-
comes. Journal of clinical epidemiology 49, 11 (1996), 1225–1231.

[58] Andrius Vabalas, Emma Gowen, Ellen Poliakoff, and Alexander J Cas-
son. 2019. Machine learning algorithm validation with a limited sample
size. PloS one 14, 11 (2019), e0224365.

[59] András Vargha and Harold D Delaney. 2000. A critique and improve-
ment of the CL common language effect size statistics of McGraw and
Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000),
101–132.

[60] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods.
Biometrics Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/
3001968

[61] Tzu-Tsung Wong. 2015. Performance evaluation of classification algo-
rithms by k-fold and leave-one-out cross validation. Pattern Recognition
48, 9 (2015), 2839–2846.

[62] Xue Ying. 2019. An overview of overfitting and its solutions. In Journal
of Physics: Conference Series, Vol. 1168. IOP Publishing, 022022.

[63] Hong Zhu, Patrick AV Hall, and John HR May. 1997. Software unit
test coverage and adequacy. Acm computing surveys (csur) 29, 4 (1997),
366–427.

10

https://doi.org/10.1016/B978-0-12-821379-7.00003-5
https://doi.org/10.1016/B978-0-12-821379-7.00003-5
https://doi.org/10.5281/ZENODO.1480624
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968


A Appendix A: Effect size

Figure 3. Effect size results for Branch + Output/ Branch coverage, in terms of branch coverage

11



Figure 4. Effect size results for Branch + Output coverage/ Default configuration, in terms of branch coverage

12



Figure 5. Effect size results for mutation score

13



B Appendix B: Data analysis tool results

Figure 6. Hyper parameter tuning scores for the dataset BO/ BC fitness function comparison - 60s, in terms of branch coverage

Figure 7. Decision tree for the top performing classifier - BO/BC comparison for 60s, in terms of branch coverage

14



Figure 8. Hyper parameter tuning scores for the dataset BO/ BC fitness function comparison - 180s, in terms of branch coverage15



Figure 9. Interpretation of Logistic regression functions - BO/BC comparison for 180s, in terms of branch coverage

16



Figure 10. Hyper parameter tuning scores for the dataset BO/ BC fitness function comparison - 300s, in terms of branch coverage

Figure 11. Decision tree for the top performing classifier - BO/BC comparison for 300s, in terms of branch coverage

17



Figure 12. Hyper parameter tuning scores for the dataset BO/ DC fitness function comparison - 180s, in terms of branch coverage

18



Figure 13. All established conditions from the GradientBoosting classifier - BO/ DC comparison for 180s, in terms of branch coverage

Figure 14. Conditions from the GradientBoosting classifier after the manual validation - BO/ DC comparison for 180s, in terms of branch coverage

19



Figure 15. Hyper parameter tuning scores for the dataset BO/ DC fitness function comparison - 300s, in terms of branch coverage

Figure 16. Decision tree for the top performing classifier - BO/DC comparison for 300s, in terms of branch coverage

20



Figure 17. Hyper parameter tuning scores for the dataset BO/ BC fitness function comparison, in terms of mutation scores

Figure 18. Established conditions from the RandomForest classifier - BO/BC comparison, in terms of mutation score

21



Figure 19. Class metrics for the classes that achieve better mutation score when using Branch coverage as fitness function - BO/BC comparison, in terms of
mutation score

Figure 20. Suggested decision tree for mutation score, when comparing BO and BC fitness functions, in terms of mutation score

22



Figure 21. Hyper parameter tuning scores for the dataset BO/ DC fitness function comparison, in terms of mutation score

Figure 22. Conditions from the GradientBoosting classifier after the manual validation - BO/ DC comparison, in terms of mutation score

23



Figure 23. All established conditions from the GradientBoosting classifier - BO/ DC comparison, in terms of mutation score

24



C Appendix C: Manual qualitative analysis for the comparison of the combination of Branch
coverage and Output diversity and the Default configuration in terms of branch coverage

C.1 Manual qualitative analysis
For the classes that we analysed manually, we looked into the source code of these classes and their static analysis metrics, as
well as the results for every EvoSuite run. For the datasets with significant class imbalance, we analysed the minority classes
by looking for specific patterns and class characteristics to explain why those classes are exceptions. Thus, we strive to explain
the rare cases when it is more appropriate to use the fitness function corresponding to the minority class. In Appendix C, we
have presented the classes that we analysed manually for the 60s and 180s datasets when comparing BO and DC in terms of
branch coverage.

C.2 Comparing BO and DC in terms of branch coverage - 180s
For the 180s dataset, eleven classes achieved higher branch coverage when using DC as a fitness function, while BO dominated
in 62. We first examined the static software metrics that we considered in the manual analysis for the 60s timeline, described in
Section 4.1.1. However, this time some classes did not match our conclusions in Section 4.1.1 from the analysis of the 60s time
limit. One such class is org.tartarus.snowball.ext.englishStemmer, which had a "medium" magnitude from the Vargha-Delaney
test. This is why we decided to manually look into the test results for each of the ten runs of EvoSuite. For BO, all the values
for the branch coverage varied between 0.806 and 0.82, while for the DC, they were between 0.81 and 0.82. Furthermore, in
general, the two distributions were very similar. In contrast, for the ioproject.server.network.ClientGroup class, the branch
coverage result for BO varies between 0.65 and 0.89, while for the DC, it is between 0.8 and 0.93. Consequently, we decided not
to consider org.tartarus.snowball.ext.englishStemmer in the analysis. All other classes with "medium" magnitude had notable
differences. The resulting table is showed in Appendix C, Figure 25. From our observation, again, we can say that the complexity
affects the performance of the fitness functions. The class jigl.image.levelSetTool.LevelSetNudge has a very high "numbers",
"assignments" and "mathematical operations" quantity. However, it has LCOM of zero andWMC and LOC of around three times
less than the average for the all classes in the dataset. The class com.yahoo.platform.yui.compressor.JavaScriptCompressor
does not correspond to the above assumptions; only the value of LCOM is low. Additionally, org.joda.time.DateTimeZone and
org.joda.time.MutableDateTime have a similar code structure. To sum up, as in the general case the assumption that DC will
perform better when the complexity of the classes is low holds, there are exceptions for the 180s time limit.

C.3 Comparing BO and DC in terms of branch coverage - 300s
For the 300s dataset, the above assumptions do not hold. It is interesting to note that org.joda.time.DateTimeZone and
org.joda.time.MutableDateTime are again in the classes with better performance for the DC fitness function. As both classes
are from the same project, their code structure does not contain any specific characteristics. Hence, we can propose that the
good performance of DC for these classes could be related to inheritance or some internal code structure, specific for the "joda"
project. However, no other common characteristics describing the five classes with better performance for the DC fitness
function were found.

25



Figure 24. Classes with higher branch coverage when using Default configuration as a fitness function in comparison with Branch + Output diversity for 180s

Figure 25. Classes with higher Branch coverage when using Default configuration as a fitness function in comparison with Branch + Output diversity
- differences comparison

26



Figure 26. Classes with higher Branch coverage when using Default configuration as a fitness function in comparison with Branch + Output diversity
- differences comparison

27



D Appendix D: Analysis for the comparison of combination of Branch coverage and Output
diversity and Branch coverage/ Default configuration fitness functions in terms of branch
coverage - 300s

D.1 BO/ BC
For the 300s time limit dataset, from Figure 10 we observe consistency with the selected features for the top ten best performing
configurations. However, for this dataset, the selected features are very different from the ones we observed from the data for
the one and three-minute time limit. The best performing classifier is the Decision tree, with an accuracy of around 0.95. The
obtained tree can be observed in Figure 11. The class metric FANOUT counts the number of output dependencies a class has,
i.e., the number of other classes referenced by a particular class [6]. From the obtained tree model, we can see that for FANOUT
more than eight and a number of string literals less than thirteen, it is better to choose BO as a fitness function. In the other
cases, the BC fitness function will achieve better coverage. Because the chosen class metrics have nothing in common with the
one established for the 60 and 180 seconds datasets, the accuracy is around 0.95, and the model is prone to overfitting, we also
checked the model manually. Interestingly, the decision tree correctly classifies all but one class and achieves an accuracy of
around 95%. Therefore, we can claim that for the 5-minute dataset, we can choose the better performing fitness function for
the class under test in terms of branch coverage using the proposed tree on Figure 11.

D.2 BO/ DC
For comparing BO and DC in terms of branch coverage, when the time limit is 300s, the best classifier is DecisionTree, with an
accuracy of around 90%. In Appendix B, Figure 15 shows the top ten classifiers and the selected features for every configuration
of the data analysis tool. From Figure 15 we can see that only the metrics considering lack of cohesion of methods are present
in all configurations on Figure 15. Thus, the LCOM/ LCOM* should be very important for choosing the optimal fitness function.
Because of the random factor in the Decision tree and the very imbalanced dataset, we run the data analysis tool for this set
several times. We obtained similar trees with a very high accuracy of around 90%. However, they still had some differences.
Therefore, after manually validating the trees, we combined their decision points into one tree, presented in Figure 16. From
the tree, we can see that the classes that perform well when using DC as a fitness function have high values for LCOM*, more
than 0.83. Also, the CBO of these classes is more than 11, while the number of loops is less than eight. The final condition
considers the lines of code and requires the classes to have LOC less than 624 in order for the Default configuration to perform
better than BO. If the classes satisfy all four conditions, DC will outperform BC for this dataset.

From our manual data analysis, we can claim that the decision tree on Figure 16 correctly classifies all available CUT. Hence,
the tree in Figure 16 can correctly predict which fitness function - BO or DC will achieve better branch coverage when the
time limit is 300s.

28


	Abstract
	1 Introduction
	2 Background
	2.1 Search-based Software Testing
	2.2 EvoSuite for automatic test generation
	2.3 Combining coverage criteria

	3 Methodology
	3.1 Data Collection
	3.2 Statistical analysis
	3.3 Data analysis tool

	4 Results
	4.1 RQ1
	4.2 RQ2
	4.3 RQ3

	5 Discussion and Threats to validity
	6 Responsible Research
	7 Conclusions and Future Work
	References
	A Appendix A: Effect size
	B Appendix B: Data analysis tool results
	C Appendix C: Manual qualitative analysis for the comparison of the combination of Branch coverage and Output diversity and the Default configuration in terms of branch coverage
	C.1 Manual qualitative analysis
	C.2 Comparing BO and DC in terms of branch coverage - 180s
	C.3 Comparing BO and DC in terms of branch coverage - 300s

	D Appendix D: Analysis for the comparison of combination of Branch coverage and Output diversity and Branch coverage/ Default configuration fitness functions in terms of branch coverage - 300s
	D.1 BO/ BC
	D.2 BO/ DC


