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Abstract

This thesis addresses the portfolio allocation problem within a financial market featuring
one riskless asset and a risky asset exhibiting rough Bergomi volatility. The objective is
to maximize the expected utility of terminal wealth with respect to power utility. The
volatility process in the model is driven by fractional Brownian motion and does not fit
within the Markovian or semimartingale frameworks. To address this issue, we explore
Markovian approximations for fractional processes and apply them to the rough Bergomi
model, resulting in a multi-factor stochastic volatility model. This approach facilitates
the development of a practical simulation scheme employing Gaussian quadrature and
Cholesky decomposition, and allows us to address the portfolio optimization problem
within a Markovian context. We solve the optimization problem using the Hamilton-
Jacobi-Bellman equation, deriving an implicit solution for the case where volatility and
stock return are driven by correlated Brownian motions, and providing an explicit solution
for the case where they are uncorrelated. The validity of these results is further confirmed
through a numerical study.
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Introduction

A fundamental problem in mathematical finance is determining an optimal trading strat-
egy that maximizes an agent’s expected utility from terminal wealth. Merton’s pioneering
work [49] addressed this problem within a continuous-time framework, considering a
financial market with one riskless asset and one risky asset following geometric Brownian
motion. Using stochastic control methods, Merton derived closed-form solutions for both
the value function and the optimal portfolio strategy, assuming a utility function of
constant relative risk aversion (CRRA) type. His methodology involved transforming the
original stochastic optimal control problem into solving a nonlinear deterministic partial
differential equation (PDE), namely the Hamilton-Jacobi-Bellman (HJB) equation.

Following Merton’s seminal paper, the portfolio optimization problem has been extensively
studied in financial markets subject to imperfections. For example, Karatzas et al. [39]
introduced the possibility of bankruptcy; Fleming and Zariphopoulou [23] examined the
impact of transaction costs; and Grossman and Zhou [28] explored portfolio constraints.
In these studies, stock prices follow a geometric Brownian motion, and the authors
characterize the value function as the unique smooth solution to the associated nonlinear
HJB equation.

A key aspect of the portfolio optmization problem is modeling the behavior of the
underlying risky asset. Empirical studies have highlighted the stochastic nature of
volatility, leading to extensive investigation into portfolio optimization under stochastic
volatility and semimartingale models. To accommodate more general price processes and
relax the Markov assumption required by the Bellman approach, martingale methods
were introduced by Karatzas et al. [40]. However, characterizing the optimal portfolio
within this framework requires a representation theorem for martingales, with explicit
solutions typically available only in specific cases. Moreover, in the context of incomplete
markets, one typically needs to solve a dual optimization problem, which, within the
Markovian framework, also yields a nonlinear partial differential equation.

Although Markovian models of volatility have traditionally been the focus ([23], [28], [39],
[40] to name just a few), recent evidence suggests that non-Markovian models offer a
more accurate description of market data. Gatheral et al. [25] demonstrated that realized
volatility fluctuates more rapidly than Brownian motion across various time scales and
markets, with log-volatility dynamics resembling those of a fractional Brownian motion
with a small Hurst parameter H of order 0.1. Additionally, the implied volatility skew for
short maturities is notably steeper than that predicted by classical diffusion models. As
maturity decreases, the slope of the at-the-money implied volatility skew follows a power
law that diverges at zero. This behavior is accurately reproduced by volatility models
involving the fractional kernel KH(t − s) = (t − s)H−1/2 with Hurst index H < 1/2,
commonly referred to as rough stochastic volatility models [8], [20], [24].
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These empirical findings are further substantiated by micro-structural analyses, which
show that rough volatility models naturally arise as scaling limits of micro-structural
pricing models incorporating self-exciting features driven by Hawkes processes [21]. This
understanding has spurred the exploration and development of various rough volatility
models, including the rough fractional stochastic volatility model [25], the rough Bergomi
model [8], and the fractional and rough Heston models [18], [21].

A pertinent question is how the roughness of market volatility influences investment
demands. Models that incorporate rough volatility, due to the presence of the fractional
kernel, are generally neither Markovian nor semimartingales, which complicates both
their theoretical analysis and practical tasks such as simulations and derivative pricing.
Consequently, the literature on portfolio optimization under rough volatility models is
still in its early stages. Recent research has started to address this gap, focusing on
the rough Heston volatility model [5], [31]. These studies examine a financial market
consisting of a bond S0 and one risky asset S respectively evolving according to

dS0
t = rtS

0
t , S0

0 > 0,

dSt = St(rt + λVt)dt+ St

√
VtdB

S
t , S0 > 0, (1)

where rt > 0 is the deterministic bounded risk-free rate, the parameter λ ̸= 0, and
BS = (BS

t )t≥0 is standard Brownian motion. The variance process V = (Vt)t≥0 is
a continuous, adapted R+-valued process. It is generally non-Markovian and not a
semimartingale, with its specific form dependent on the particular version of the rough
Heston model being considered.

In [31], Han and Wong consider a Volterra Heston model for the variance process

Vt = V0 + k
∫ t

0
K(t− s)(ϕ− Vs)ds+

∫ t

0
K(t− s)σ

√
VsdB

V
s , (2)

where K denotes the convolution kernel, BV = (BV
t )t≥0 is a standard Brownian motion

correlated to BS, and the parameters V0, k, ϕ, σ are positive constants. The rough
Heston model presented in [21] is a special case of (2) with K(τ) := τH−1/2/Γ(H + 1/2),
H ∈ (0, 1/2) and Γ being the Gamma function. To address the challenges posed by the
non-Markovian and non-semimartingale nature of the Volterra Heston model, the authors
utilize the martingale optimality principle [40] and devise a trial solution, known as Ansatz,
drawing on both the martingale distortion transformation [63] and exponential-affine
representations [3]. They present explicit solutions for the case of correlated Brownian
motions between stock and volatility.

The importance of this approach lies in its applicability beyond Markovian processes,
effectively addressing the challenges posed by the non-Markovian nature of the Volterra
Heston model, which limits the use of the HJB equation. However, increasing model
complexity with this method proves challenging, as it heavily depends on specific param-
eter definitions and assumptions during solution derivation, ultimately limiting model
flexibility. Bäuerle and Desmettre [5] propose a more adaptable approach to accommodate
additional complexities, such as drift uncertainty and multi-factor models.
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In their work, Bäuerle and Desmettre [5] consider a variance process of the form V = a(ν)
where a : R → R+ is a sufficiently smooth function and the process ν = (νt)t≥0 is based
on the Marchaud fractional derivative:

νt = ν0 + Zt
t−2H

Γ(1 − 2H) + 2H
Γ(1 − 2H)

∫ t

0

Zt − Zs

(t− s)2H+1ds, (3)

with

dZ = k(θ − Zt)dt+ σ
√
ZtdB

Z
t , Z0 ≥ 0.

Here, BZ = (BZ
t )t≥0 is again a standard Brownian motion correlated to BS and the

parameters ν0, k, θ, σ are positive constants. Since the Marchaud fractional derivative
is defined for Hölder α-continuous functions with 2H < α ≤ 1, and the paths of Z are
almost surely α-Hölder continuous with α < 1/2 [5, Lemma 7.1], the Hurst index H

is restricted to the interval (0, 1/4). This interval still covers the most relevant case,
H ≈ 0.1, as found in empirical studies [8], [25].

To solve the portfolio optimization problem using the HJB equation, Bäuerle and
Desmettre consider a Markovian representation of the fractional part of the process ν (3).
Inspired by theoretical works on the approximation of fractional processes [15], [16], [33],
they approximate this Markovian representation effectively. The solution to the original
optimization problem is then obtained as the limit of the approximated problem.

Fractional processes, including fractional Brownian motion and Riemann-Liouville pro-
cesses, can be represented as linear functionals of infinite-dimensional Markov processes.
Carmona and Coutin introduced a practical and versatile method for approximating these
processes within a Markovian framework [15]. Their approach is based on the observation
that the fractional kernel KH associated with these processes is completely monotone on
(0,∞), i.e. KH is infinitely differentiable on (0,∞) and satisfies (−1)nK

(n)
H ≥ 0 for all

n ≥ 0.

According to the Bernstein-Widder theorem (Theorem A.2), a completely monotone
kernel K̃ can be represented through its Laplace transform. This implies the existence of
a measure µ on the positive half-line such that:

K̃(τ) =
∫ ∞

0
e−xτµ(dx), τ > 0. (4)

This representation is particularly relevant for the fractional kernel K characterizing
rough volatility models, where K(τ) = τH−1/2/Γ(H+ 1/2) with H ∈ (0, 1/2). Let us now
consider a Riemann-Liouville process BH = (BH

t )t≥0. Substituting the Laplace transform
of the fractional kernel and applying the Stochastic Fubini theorem (Theorem A.1) yields:

BH
t =

∫ t

0
K(t− s)dBs =

∫ t

0

∫ ∞

0
e−x(t−s)µ(dx)dBs

=
∫ ∞

0

∫ t

0
e−x(t−s)dBsµ(dx) =

∫ ∞

0
Y x

t µ(dx),
(5)
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where Y x is an Ornstein-Uhlenbeck process. Therefore, (5) expresses BH as a mixture
of Ornstein-Uhlenbeck processes, each with speed of mean reversion x ∈ (0,∞) and
dynamics:

dYt = −xYtdt+ dBt, Y0 = 0. (6)

The representation of BH given in (5) is a Markovian representation, meaning that
BH is Markov in the infinite dimensional process Yt = (Y x

t )t≥0,x>0. This representation
lends itself to a finite-dimensional approximation. The approach involves approximating
the nonnegative measure µ, which has infinite support, by a finite weighted sum of
Dirac measures: µ̂ = ∑N

i=1 wiδxi
where (wi)N

i=1, (xi)N
i=1 are positive weights and nodes,

respectively. As a result, we can approximate the integral representation of completely
monotone kernels given in (4) with:

K̂(τ) =
N∑

i=1
wie

−xiτ . (7)

Consequently, the Riemann-Liouville process BH in (5) can be approximated by:

B̂H
t =

∫ t

0
K̂(t− s)dBs =

∫ t

0

N∑
i=1

wie
−xi(t−s)dBs

=
N∑

i=1
wi

∫ t

0
e−xi(t−s)dBs =

N∑
i=1

wiY
xi

t .

In this case, with µ finitely supported by N points (x1, . . . , xN ), the process B̂H = (B̂H
t )t≥0

is Markov in N -dimensions (Y 1, . . . , Y N). Note also that the factors (Y i)N
i=1 share the

same dynamics (6) but mean-revert at different speeds (xi)N
i=1.

The convergence of B̂H to BH , as the number of factors N increases, relies on how well
the approximated kernel K̂ converges to the true kernel K. This, in turn, is influenced
by the choice of nodes (xi)N

i=1 and weights (wi)N
i=1. One effective method for constructing

such point sets and corresponding weights was proposed by Carmona and Coutin [16]
and has been adopted in subsequent works [2], [4], [5]. They approach the problem by
truncating the positive half-line, where the measure µ is defined, to a finite interval
[ξ0, ξN ]. Within this interval, they generate the auxiliary node set (ξi)N

i=0 by further
dividing [ξ0, ξN ] into geometrically spaced subintervals. The weights and nodes are then
determined as follows:

wi =
∫ ξi

ξi−1
µ(dx), xi = 1

wi

∫ ξi

ξi−1
xµ(dx), for i ∈ {1, . . . , N}.

Alternatively, Harms [32] employs a Gaussian quadrature rule of level m for spatial
approximation. By considering a geometric sequence (ξi)N

i=0, Harms uses Gaussian
quadrature to determine the m nodes (xj)m

j=1 and the corresponding weights (wj)m
j=1 such

that
K̂(τ) =

m∑
j=1

wje
−xjτ ≈ K(τ) =

∫ ξi+1

ξi

e−xτµ(dx), (8)
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where i = 0, . . . , n− 1. This method achieves strong convergence rates of arbitrarily high
polynomial order, with the discretization error being at most of order n−2Hm/3, where
n = N/m denotes the number of spatial quadrature intervals.

However, as noted by Bayer and Breneis [6], although Harms achieves convergence of
arbitrary order, selecting a sufficiently large value for m is crucial to attain a significant
order when H is small, such as H ≈ 0.1. This requirement may introduce additional
challenges, as the constants in the error bound are likely to increase with m. Furthermore,
Harms does not specify which value of m should be chosen based on a given N , and his
results are demonstrated specifically for the Riemann-Liouville process BH in (5) rather
than more general fractional processes.

Motivated by these limitations, Bayer and Breneis [6] propose a refined version of the
point set used in [32] to approximate K with K̂ as in (8). They achieve strong convergence
results with an error bound of the form exp(−c

√
N), where c > 0, and N is the total

number of nodes. Their method extends to a broader class of processes, specifically
solutions of stochastic Volterra equations of the form:

Vt = V0 +
∫ t

0
K̃(t− s)b(Xs)ds+

∫ t

0
K̃(t− s)σ(Xs)dBs, (9)

where V0 ∈ Rd, the coefficients b : Rd → Rd and σ : Rd → Rd×d are Lipschitz continuous,
K̃ is a completely monotone convolution kernel and B is a d-dimensional standard
Brownian motion. They obtain strong convergence results for approximating K̃ with
K̂, and thus for approximating V in (9) with V̂ as established in [4, Prop. 3.2]. They
consider both the case of the fractional kernel K(τ) = τH−1/2/Γ(H + 1/2) [6, Theorem
2.1] and more general completely monotone kernels [6, Theorem 2.11].

Stochastic Volterra equations of the form (9) include the specific case of the Riemann-
Liouville process (5). Furthermore, strong uniqueness results for the equation (9) are
guaranteed [2, Lemma 5.29], as are convergence results for its approximation, such as
those presented in [6, Theorem 2.1]. These results are particularly pertinent for the
rough Bergomi model, where the volatility depends on a Riemann-Liouville process. In
this model, the stock price evolves according to the dynamics specified in (1), and the
volatility process is given by:

Vt = ξ(t) exp
(
η
√

2H
∫ t

0
(t− s)H−1/2dBV

s − η2

2 t
2H

)
,

where ξ(t) denotes the forward variance curve, η > 0, H ∈ (0, 1/2), and BV is a standard
Brownian motion correlated with BS, the Brownian motion driving the stock price.

In the case of the rough Heston volatility (2), the presence of the square root term
precludes the process from satisfying Lipschitz conditions. So far, only weak solutions for
the Volterra square root process have been established [2, Theorem 6.11]. Nonetheless,
the rough Heston model is classified as an affine process. Specifically, as demonstrated in
[21], the characteristic function of log(St/S0) can be expressed in terms of the solution
to a fractional Riccati equation:

E exp(z log(St/S0)) = exp
(∫ t

0
F (z, ψ(t− s, z))g(s)ds

)
,
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where
g(t) = V0 +

∫ t

0
K(t− s)θ(s)ds,

and ψ(·, z) is the unique continuous solution to the fractional Riccati equation

ψ(t, z) =
∫ t

0
K(t− s)F (z, ψ(s, z))ds, t ∈ [0, T ], (10)

with
F (z, x) := 1

2(z2 − z) + (ρνz − λ)x+ ν2

2 x.

Given that equation (10) needs to be solved numerically, only a semi-explicit formula for
the characteristic function of log(St/S0) is available. By approximating the fractional
kernel K with a kernel K̂ of the form (7), Jaber [1] developed a multi-factor Markovian
approximation of the rough Heston model, termed the lifted Heston model. For compre-
hensive details on existence, uniqueness, and convergence results of this model, we refer
the reader to [2, Chapter 7].

Both the rough Bergomi and rough Heston models can be analyzed within the general
framework of stochastic Volterra equations. By employing the Markovian approximation
previously discussed, simplified multi-factor models can be constructed for both, which
facilitate tasks such as simulation, option pricing, and solving stochastic control problems.

The objective of this thesis is to address the portfolio allocation problem within a financial
market featuring a bond S0 with a deterministic, bounded risk-free rate rt, and a risky
asset S, evolving according to

dS0
t = rtS

0
t , S0

0 > 0,

dSt = Stµtdt+ St

√
VtdB

S
t , S0 > 0,

where µt is a predictable bounded process and BS is standard Brownian Motion. The
stock price volatility V is a rough Bergomi volatility of the form

Vt = V0 exp
(
η
√

2H
∫ t

0
(t− s)H−1/2dBV

s − η2

2 t
2H

)
,

where the parameters V0, η > 0, H ∈ (0, 1/2), and BV is Brownian motion correlated to
BS. We apply the Markovian approximation to the process V , developing a multi-factor
model, which allows us to use the HJB equation in the resulting finite-dimensional
Markovian framework, as outlined in [5].

We address the portfolio problem for power utility functions, by leveraging the martingale
distortion representation, detailed in [63], to express the value function in terms of the
solution to the a linear parabolic equation. When the stock price and rough volatility are
driven by correlated Brownian motion, we derive an implicit solution to the approximated
optimization problem, which requires to be solved numerically. Conversely, in the
uncorrelated case, we derive an explicit solution (Theorems 4.1 and 4.2). The solution to
the original problem, featuring rough Bergomi volatility, is then obtained as the limit of
the approximated problem (Theorem 4.3).
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Regarding the numerical experiments, we adopt an m-point Gaussian quadrature to
determine the positive weights and nodes for the fractional kernel approximation, following
[6, Theorem 2.1]. The system of equations, derived from the Markovian approximation,
is discretized in time and then simulated using Cholesky decomposition. We conduct
simulations of the rough Bergomi model under various parameter settings and visualize
the optimal terminal wealth in the uncorrelated scenario, illustrating the effect of rough
volatility on the optimal terminal wealth process.

This thesis makes two primary contributions. First, it addresses the portfolio optimization
problem under the rough Bergomi model, solving it through the HJB equation. The
rough Bergomi model is chosen because existing literature on portfolio optimization has
solely focused on the rough Heston model. The optimization problem is approached
using a Markovian approximation of the rough model for its flexibility and tractability.
This approximation is widely applicable to stochastic Volterra equations and, for rough
volatility models, enables the development of manageable multi-factor models that are
well-suited for simulations, pricing, hedging, and stochastic control.

Second, in both our theoretical results and numerical experiments related to the con-
trol problem, we use a Gaussian quadrature rule to approximate the fractional kernel.
Gaussian quadrature provides fast convergence rates and is especially effective for ap-
proximating complete monotone kernels.

The thesis is structured as follows. Chapter 1 lays the groundwork for portfolio opti-
mization within a Markovian framework. It starts with a review of stochastic differential
equations (SDEs) and the Feynman-Kac formula, tailored for financial applications.
The chapter then delves into controlled diffusion processes and employs partial differ-
ential equation techniques, particularly the HJB equation, to tackle stochastic control
problems. It transitions to portfolio optimization, presenting it as an application of
optimal stochastic control theory in finance. Additionally, the chapter outlines the market
model considered in the thesis and concludes by presenting the martingale distortion
transformation, which simplifies the second-order nonlinearity of the HJB equation for
certain utility functions.

Chapter 2 delves into the Markovian representation and approximation of fractional
Brownian motion (fBm), which is essential for developing rough volatility models. The
chapter introduces fBm, covering its properties and integral representations, with a focus
on the Mandelbrot-van Ness representation and Riemann-Liouville processes. It further
explores the infinite-dimensional Ornstein-Uhlenbeck processes required to exploit the
Markovian representation of fBm. Lastly, the chapter addresses the approximation of
stochastic Volterra equations with completely monotone kernels, including a detailed
error analysis and the application of Gaussian quadrature to specific fractional kernels.

Chapter 3 explores rough volatility models, emphasizing their effectiveness in capturing
the fluctuations of realized volatility and the stylized features of the implied volatility
surface seen in financial markets. It begins with an overview of these models and
then examines the rough Bergomi model, addressing the challenges posed by its non-
semimartingale and non-Markovian characteristics. We derive a Markovian representation
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and approximation for the rough Bergomi model and present a comprehensive simulation
scheme. This scheme employs Gaussian quadrature to approximate the fractional kernel
and uses Cholesky decomposition for simulation. We validate its accuracy through
comparisons with established literature. The chapter concludes with visualizations of the
simulations across different parameter settings.

In Chapter 4, we address the portfolio optimization problem within a financial market that
includes a bond and one risky asset modelled with the rough Bergomi model. We solve this
problem by considering the multi-factor rough Bergomi model, derived from the Markovian
approximation, which allows us to apply partial differential equation techniques effectively.
The chapter presents the solution to the finite-dimensional optimization problem using
the HJB equation, presenting both an implicit solution for the case where the stock and
volatility Brownian motions are correlated and an explicit solution for the uncorrelated
scenario. We then derive the solution to the original rough volatility problem as the limit
of the finite-dimensional approximation. The chapter concludes with simulations of the
optimal terminal wealth.

We conclude by highlighting the contributions and implications of this research and
suggesting avenues for future exploration. Future studies might investigate a comparative
analysis of the rough Heston and rough Bergomi models within the framework of
portfolio optimization, utilizing Gaussian quadrature and PDE techniques. Empirical
validation with real market data could refine the methodologies introduced in this thesis.
Additionally, enhancing Gaussian quadrature convergence rates and exploring alternative
numerical techniques could be valuable areas for further investigation.



1
Portfolio Optimization

The objective of this chapter is to provide the essential background knowledge and
conceptual framework to address the portfolio optimization problem within a Markovian
setting. We will apply these tools to a financial market comprising a risk-free asset and
a stock price driven by rough volatility, after developing a Markovian approximation for
the volatility process, which is neither Markovian nor a semimartingale. The chapter
is organized as follows: the first section addresses stochastic optimization problems in
continuous time, while the subsequent section delves into the specifics of the portfolio
optimization problem.

In Section 1.1, we revisit the fundamental concepts of stochastic differential equations
(SDEs) and introduce a generalized formulation of the Feynman-Kac formula tailored for
financial applications, as developed in [34]. We then explore controlled diffusion processes
and define the corresponding control problem. To tackle this problem, we utilize partial
differential equation (PDE) techniques, focusing specifically on the Hamilton-Jacobi-
Bellman (HJB) equation. We derive the HJB equation using the Dynamic Programming
Principle (DPP) and present the verification theorem, which, under suitable conditions,
establishes the equivalence between the solution to the HJB equation and the solution to
the control problem. This theorem provides a systematic method for solving the control
problem in a Markovian setting through the HJB equation.

In Section 1.2, we introduce the portfolio optimization problem as a specific financial
application of optimal stochastic control theory. We clarify the rationale behind our
choice of the financial market model and formulate the control problem to be addressed
using the HJB equation. Finally, we present the martingale distrortion transformation
from the seminal work of Zariphopoulou [63] that allows us to eliminate the second-order
nonlinearity of the HJB equation for specific types of utility functions.

11
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1.1. Stochastic Optimal Control

1.1.1. Introduction
We now outline the fundamental structure of a stochastic optimization problem in
continuous time, with detailed solutions to be provided later. Typically, a stochastic
optimization problem is defined by the following features:

• State of the system: we consider a dynamic system characterized by its state at
any time and evolving in a probability space (Ω,F ,P). We denote the state of the
system at time t in a world scenario ω ∈ Ω as Xt(ω). The dynamics of the state
system, represented by the mapping t → Xt(ω) for all ω, are described through a
stochastic differential equation (SDE).

• Control: the evolution of the system’s dynamics t → Xt is affected by a control
process α = (αt)t≥0, with its value determined at each time t in function of the
available information. The control α must adhere to certain constraints and is
called an admissible control. We denote by A the set of admissible controls.

• Performance criterion: the objective is to maximize (or minimize) over all admissible
controls a functional J(X,α) defined as

J(X,α) = E
[∫ T

0
f(Xt, αt)dt+ g(XT )

]
on a finite time horizon T < ∞,

and as

J(X,α) = E
[∫ ∞

0
e−βtf(Xt, αt)dt

]
on an infinite time horizon.

The function f represents the running profit, g is a terminal reward function, and
β > 0 is a discounting factor. The maximum value, referred to as the value function,
is given by:

v = sup
α∈A

J(X,α).

The main goal in a stochastic optimization problem is to find the maximizing control
process attaining the value function to be determined.

To further elucidate the conditions under which the state process X exists and to provide
the framework for solving stochastic control problems, we review some basic results of
SDE theory.

1.1.2. Strong Solution of SDEs
Let (Ω,F ,F = (Ft)t∈T,P) be a filtered probability space, where T = [0, T ] and F satisfies
the usual conditions. A filtration F = (Ft)t∈T meets the usual conditions if it is right
continuous, i.e. Ft+ := ∩s≥tFs = Ft, ∀t ∈ T, and if it is complete, i.e. F0 contains the
negligible sets of FT . The right-continuity of Fs intuitively means that by observing all
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the available information up to time t inclusive; no further information is gained from an
infinitesimal observation just beyond t. The completion of the filtration means that if an
event is impossible, this impossibility is recognized from time 0.

Let B = (Bt)t∈T be a d-dimensional Brownian motion, B = (B1, . . . , Bd), adapted with
respect to F, let also b : T × Rn × Ω → Rn and σ : T × Rn × Ω → Rn×d be measurable
functions. As usual, we suppress the dependence on ω in the coefficients processes b and
σ for clarity in notation. Consider then the SDE valued in Rn of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = ξ, (1.1)

which must be interpreted as the stochastic integral equation (SIE)

Xt = ξ +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs, ∀t ∈ T. (1.2)

We now explain what it means for a stochastic process X = (Xt)t∈T to be a solution
of the SIE in (1.2). For an n × 1 column vector v in Rn, let |v| denote the Euclidean
norm of v, and for a matrix n× d, let ∥σ∥2 denote the Hilbert-Schmidt norm, given by
∥σ∥2 = ∑n

i=1
∑d

j=1 σ
2
i,j.

Definition 1.1. [42, Definition 10.3.1] A jointly measurable stochastic process X =
(Xt)t∈T is called a solution of the SIE (1.2) if it satisfies the following conditions:

(i) The stochastic process σ(t,Xt) belongs to Lad(Ω, L2([0, T ])) (see Notation 1.1), so
that

∫ t
0 σ(s,Xs)dBs is an Itô integral for each t ∈ T.

(ii) Almost all sample paths of the stochastic process b(t,Xt) belong to L1([0, T ]).
(iii) For each t ∈ [0, T ], Equation (1.2) holds almost surely.

Notation 1.1. Lad(Ω, L2([a, b])) denotes the space of stochastic processes f(t, ω) satisfy-
ing: f is adapted to the filtration F and

∫ b
a |f(s)|2ds < ∞ almost surely.

We remark that there exists another concept of solution to the SDE (1.1), called weak,
where the filtered probability space and the Brownian motion are part of the unknown
of the SDE, in addition to X. Thus, a weak solution is not necessarily adapted to the
Brownian filtration.

Concerning the coefficients b and σ, we primarily consider two types of situations:

• b and σ are deterministic Borelian functions b(t, x), σ(t, x) of t and x, and we refer
to SDE (1.1) as a diffusion process. If b and σ do not depend on time, we refer to
SDE (1.1) as a (time-homogeneous) diffusion.

• The random coefficients are of the form b̃(x, αt(ω)), σ̃(x, αt(ω)), where b̃, σ̃ are
deterministic Borelian functions on Rn × A. Here, A is a subset of Rk, and
α = (αt)t∈T is a progressively measurable process valued in A. In this case, we say
that the SDE (1.1) is a controlled diffusion by α.
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Now, we imppose conditions on the functions b(t, x), σ(t, x) in order to ensure the
existence of a unique non-explosive solution of the SIE (1.2). The following theorem
provides sufficient conditions on b and σ.

Theorem 1.1. [42, Theorem 10.4.1] Let b(t, x) and σ(t, x) be measurable functions.
Assume that there exist constants K,C > 0 such that for all t ∈ T and x, y ∈ Rn the
Lipschitz and linear growth conditions in x are satisfied, i.e.

|b(t, x) − b(t, y)| + ∥σ(t, x) − σ(t, y)∥ ≤ K|x− y|, (1.3)
|b(t, x)| + ∥σ(t, x)∥ ≤ C(1 + |x|). (1.4)

Let ξ be a random vector which is independent of the σ-algebra generated by B and such
that E(|ξ|2) < ∞. Then the stochastic integral equation (1.2) has a unique continuous
solution X.

Remark 1.1. If b(x) and σ(x) are time-homogeneous, the linear growth condition
(1.4) automatically follows from the Lipschitz condition (1.3). To see this, consider the
Lipschitz condition for b(x): |b(x) − b(y)| ≤ K|x− y|. It implies that

|b(x)| ≤ |b(x) − b(0)| + |b(0)| ≤ K|x| + |b(0)| ≤ C(1 + |x|),

where C = max{K, |b(0)|}.

In Theorem 1.1, the linear growth condition (1.4) can be relaxed further. It suffices to
require the existence of a real-valued process κ such that for all t ∈ T and x ∈ Rn

|b(t, x)| + ∥σ(t, x)∥ ≤ κt +K|x|,

with
E
[∫ t

0
|κs|2ds

]
< ∞, ∀t ∈ T. (1.5)

Under the Lipschitz conditions (1.3), a natural choice for κ is κt = |b(t, 0)| + ∥σ(t, 0)∥
once it satisfies the condition (1.5) since

|b(t, x)| + ∥σ(t, x)∥ ≤ κt + |b(t, x) − b(t, 0)| + ∥σ(t, x) − σ(t, 0)∥ ≤ κt +K|x|.

Let x ∈ Rn and s ∈ [0, T ], we denote by Xs,x = {Xs,x
t , s ≤ t ∈ T} the strong solution to

the SDE (1.1) starting from x at time s. When s = 0, we simply write Xx = X0,x.

We recall that any strong solution to the SDE (1.1) satisfies the Markov property: the
future behaviour of the process given what has happened up to time t is the same as the
behaviour obtained when starting the process at Xt. Before stating the related theorems,
we introduce some standard notation used in the context of Markov processes.

Let Qx denote the probability law of a given (time-homogeneous) Itô diffusion (Xt)t∈T

when its initial value is X0 = x ∈ Rn. The expectation with respect to Qx is denoted by
Ex. Hence, we have

Ex[f1(Xt1) · · · fk(Xtk
)] = E[f1(Xx

t1) · · · fk(Xx
tk

)]
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for all bounded Borel functions f1, . . . , fk and all times t1, . . . , tk ≥ 0 with k = 1, 2, . . .,
where E denotes the expectation with respect to the probability law P = P0 for (Bt)t∈T

when B0 = 0. We let F = (FB
t )t∈T be the filtration generated by B, namely, the σ-algebra

FB
t is defined by FB

t = σ{B(s); s ≤ t}.

Theorem 1.2. [52, Theorem 7.1.2] For any Borelian bounded function f : Rn → R and
for t, h ∈ T, the time-homogeneous Itô diffusion X satisfies the Markov property

Ex[f(Xt+h)|FB
t ](ω) = Ex[f(Xt+h)|Xt](ω),

and is also stationary Markov

Ex[f(Xt+h)|Xt](ω) = EXt(ω)[f(Xh)].

Here, the r.h.s. means the function φ(y) = Ey[f(Xh)] evaluated at y = Xt(ω).

Remark 1.2. In Theorem 1.2, X is assumed to be a time-homogeneous Itô diffusions,
the general case of time dependent coefficients can be reduced to this situation [52,
Chapter 10].

It can be proved that the Itô diffusion X satisfies a stronger version of the Markov property.
Loosely speaking, the strong Markov property states that Theorem 1.2 continues to hold if
the time t is replaced by a finite stopping time τ(ω) with respect to the filtration generated
by the Brownian motion B [42, Definition 5.4.1]. Let Fτ be the σ-field generated by
{Bs∧τ ; s ≥ 0}.

Theorem 1.3. [52, Theorem 7.2.4] Let f be a bounded Borel function on Rn, τ a
stopping time w.r.t. FB

t = σ{B(s); s ≤ t} such that τ < ∞ a.s. Then

Ex[f(Xτ+h)|Fτ ](ω) = EXτ [f(Xh)], for all h ≥ 0.

1.1.3. Feynman-Kac formula
Consider the SDE (1.1) with deterministic coefficients b(t, x) and σ(t, x). For all t ∈ T,
we introduce the second order differential operator Lt, called the infinitesimal generator
of the diffusion process (1.1):

(Ltφ)(x) = b(t, x)Dxφ+ 1
2tr

(
σ(t, x)σT(t, x)D2

xφ
)
, φ ∈ C2(Rn),

where Dx and D2
x are the gradient and Hessian operators and Ck denotes the class of

functions f whose first k derivatives f ′(x), f ′′(x), . . . , f (k)(x) all exist and are continuous.
The component-wise expression of Lt is given by:

(Ltφ)(x) =
n∑

i=1
bi(t, x) ∂φ

∂xi

(t, x) + 1
2

n∑
i=1

m∑
j=1

σi,j(t, x) ∂2φ

∂xi∂xj

(t, x), φ ∈ C2(Rn). (1.6)

Let now C1,2([0, T ) × O) denote the space of real-valued functions f on [0, T ) × O, where
O is an open set of Rn, and whose partial derivatives up to second order exist and are
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continuous on [0, T ). If these partial derivatives of f ∈ C1,2([0, T ) × O) can be extended
by continuity on [0, T ] × O, we write f ∈ C1,2([0, T ] × O).

On a finite horizon interval T = [0, T ], we aim to find a (real-valued) function v(t, x) of
class C1,2 on T × Rn that satisfies the Cauchy problem:−∂v

∂t
− Ltv + cv = f, on [0, T ) × Rn,

v(T, ·) = g, on Rn,
(1.7)

where f (resp. g) is a continuous function from [0, T ] × Rn (resp. Rn) into R and c is a
continuous non-negative function. The Feynman-Kac formula, exploiting the intimate
connection between SDEs and parabolic PDEs, provides the solution to (1.7) in terms of
the solution to an SDE naturally associated with the Cauchy problem.

We assume that there actually exists a solution v to (1.7) and fix a point in time t and a
point in space x. We apply the Itô formula to the process M̃t := e−c(t,Xt)v(t,Xt):

M̃t = M̃0 +
∫ t

0
e−
∫ s

0 c(u,Xu)du
(
∂v

∂t
+ Lsv − cv

)
(s,Xs)ds

+
∫ t

0
e−
∫ s

0 c(u,Xu)duDxv
T(s,Xs)σ(s,Xs)dBs,

and note that the process

Mt := M̃s −
∫ t

0
e−
∫ s

0 c(u,Xu)du
(
∂v

∂t
+ Lsv − cv

)
(s,Xs)ds

= v(0, X0) +
∫ t

0
e−
∫ s

0 c(u,Xu)duDxv
T(s,Xs)σ(s,Xs)dBs (1.8)

is a continuous local martingale. If the integrand of the stochastic integral in (1.8) is
sufficiently integrable and we take expected values on both sides of the equation, the
stochastic integral will vanish. The initial value Xs = x and the boundary condition
v(T, x) = g(x) will eventually leave us with the Feynman-Kac representation formula.
The following theorem presents a simplified version of it.

Theorem 1.4. [53, Theorem 1.3.17] Let v be a function C1,2([0, T )×Rd)∩C0([0, T ]×Rd)
with bounded derivative in x and solution to the Cauchy problem (1.7). Then v admits
the representation

v(t, x) = E
[
g(X t,x

T )e−
∫ T

t
c(u,Xt,x

u )du +
∫ T

t
e−
∫ s

t
c(u,Xt,x

u )duf(s,X t,x
s )ds

]
(1.9)

for all (t, x) ∈ [0, T ] × Rd.

The proof of the theorem relies on the observation that when v has a bounded derivative
in x, the integrand of the stochastic integral (1.8) lies in Lad(Ω, L2[0, T ]) (see Notation
1.1). Hence, M is a (square integrable) martingale and the representation (1.9) is
simply derived by writing that E[MT ] = E[Mt]. We may also obtain this Feynman-Kac
representation under other conditions on v, for example with v satisfying a quadratic
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growth condition. We will show such a result in the more general case of controlled
diffusion, see Remark 1.4.

The application of Theorem 1.4 requires the existence of a smooth solution v to the
Cauchy problem (1.7). This type of result is typically obtained under an assumption of
uniform ellipticity on the operator Lt, boundedness conditions on b, σ, and polynomial
growth condition on f and g. However, many financial applications do not satisfy these
restrictive assumptions imposed by standard results. For instance, b and σ may be
unbounded or grow faster than linearly.

In this context, we present a broader-reaching result by Heath and Schweizer [34] which
provides sufficient conditions on X, its domain, and coefficients, as well as on the functions
g, c and f , to guarantee that the function v satisfies (1.7) and admits representation
(1.9).

The ensuing theorem combines analytic and probabilistic assumptions that still allow us
to derive (1.7) while being general enough to be applicable in a number of applications.

Theorem 1.5. [34, Theorem 1] Let T = [0, T ] be a fixed time horizon and D a domain
in Rn, i.e., an open connected subset of Rn. Suppose that the following conditions hold:

(A1) The coefficients b and σ of the process X with dynamics 1.1 are on [0, T ]×D locally
Lipschitz-continuous in x, uniformly in t, i.e., for each compact subset F of D,
there is a constant KF < ∞ such that

|b(t, x) − b(t, y)| ≤ KF |x− y|, ∥σ(t, x) − σ(t, y)∥ ≤ KF |x− y|

for all t ∈ [0, T ] and x, y ∈ F .

(A2) For all (t, x) ∈ [0, T ) ×D, the solution X of (1.1) neither explodes nor leaves D
before T , i.e., P[sup0<s<T |Xs| < ∞] = 1 ∧ P[Xs ∈ D, ∀s ∈ [0, T ]] = 1.

(A3) There exists a sequence (Dn)n∈N of bounded domains contained in D such that
∪∞

n=1Dn = D and such that for each n, the PDE

−∂G

∂t
− LtG+ cG = f, on (0, T ) ×Dn,

with boundary condition G(t, x) = v(t, x) on (0, T ) × ∂Dn ∪ T ×Dn has a classical
solution Gn(t, x).

Then v satisfies the Cauchy problem (1.7). In particular v ∈ C1,2 and there exists a
unique classical solution to (1.7).

To make (A3) more platable one can verify a set of conditions (A3′). Before introducing
them, we provide the definition of Hölder continuity that will be employed.

Definition 1.2. A function f(x) defined on a bounded closed set S of Rn is said to be
Hölder continuous of exponent α (0 < α < 1) if there exists a constant K such that

|f(x) − f(y)| ≤ K|x− y|α (1.10)
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for all x, y ∈ S. The smallest K for which (1.10) holds is called the Hölder coefficient.

If the function f depends on a parameter t, i.e., f = f(t, x), and the Hölder coefficient
is independent of t, then we say that f(t, x) is Hölder continuous in x, uniformly with
respect to t.

(A3′) There exists a sequence (Dn)n∈N of bounded domains with Dn ⊆ D such that
∪∞

n=1Dn = D, each Dn has a C2-boundary and for each n,

(A3′a) b and σ are on [0, T ] ×Dn Lipschitz-continuous in x, uniformly in t,
(A3′b) a(t, x) = σ(t, x)σT(t, x) is uniformly elliptic on Rn for (t, x) ∈ [0, T ) ×Dn,

i.e., ∃ εn > 0 such that yTa(t, x)y ≥ εn|y|2 for all y ∈ Rn,
(A3′c) c is on [0, T ] ×Dn Hölder-continuous in x, uniformly in t,
(A3′d) f is on [0, T ] ×Dn Hölder-continuous in x, uniformly in t,
(A3′e) v is finite and continuous on [0, T ] × ∂Dn ∪ {T} ×Dn.

Remark 1.3. In cases where a smooth solution to the Cauchy problem (1.7) does not
exist, the PDE can be formulated using the concept of a weak solution, known as a
viscosity solution. The theory of viscosity solutions is beyond the scope of this thesis,
and we refer the reader to [53, Chapter 4] for further reading.

1.1.4. Controlled Diffusion Processes
Consider a control model where the state of the system is governed by a stochastic
differential equation (SDE) valued in Rn:

dXt = b(Xt, αt)dt+ σ(Xt, αt)dBt, (1.11)

where b : Rn × A → Rn, σ : Rn × A → Rn×d and B is a d-dimensional Brownian motion
on the filtered probability space (Ω,F ,F = (Ft)t∈T,P), T = [0, T ]. Here, the control α,
which is valued in A ⊂ Rk, is a parameter whose value we can choose in the given Borel
set A at any instant t in order to control the process X. We denote by a the value of the
control at a certain time, and with α the mapping αt = α(t,Xt).

Our first modeling problem concerns the class of admissible control processes. Since our
decision at time t must be based upon what has happened up to time t, the function
ω → α(t, ω) must (at least) be measurable with respect to F, i.e., the process α must be
adapted. We will require a strictly stronger property that is α progressively measurable.

Definition 1.3. [53, Definition 1.1.3] A process (Xt)t∈T is progressively measurable
(with respect to F) if for any t ∈ T, the mapping (s, ω) → Xs(ω) is measurable on [0, t]×Ω
equipped with the product σ-field B([0, t]) ⊗ Ft.

One natural way to obtain an adapted control process is by choosing a measurable
function g : T × Rn → A and then defining the control process α by αt = g(t,Xs,x

t ). For
mnemo-technical purposes it is common to denote control laws by α(t, x), rather than
g(t, x), and write αt = α(t,Xt). In this case we say that α is a Markovian control because
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with such α the corresponding process X (1.11) becomes an Itô diffusion, in particular,
a Markov process [52]. Indeed, α does not depend on the starting point y = (t, x); the
value we choose at time t only depends on the state of the system at that time.

We can now define the class of admissible control laws.

Definition 1.4. A is a class of admissible control laws if

(i) α is a progressively measurable (with respect to F) process, valued in A ⊂ Rk.

(ii) For any given initial point (t, x) the SDE (1.11) has a unique solution.

For the remainder of this section, we require the coefficients b and σ to satisfy a uniform
Lipschitz condition in A: ∃ K > 0 such that for all x, y ∈ Rn and a ∈ A,

|b(x, a) − b(y, a)| + ∥σ(x, a) − σ(y, a)∥ < K|x− y|. (1.12)

Moreover, we denote by A the set of control processes α such that

E
[∫ T

0
|b(0, αt)|2 + ∥σ(0, αt)∥2 ds

]
< ∞. (1.13)

Conditions (1.12) and (1.13) are the counterpart of conditions (1.3) and (1.5), thus, they
ensure for all α ∈ A and for any initial condition (t, x) ∈ T × Rn, the existence and
uniqueness of a strong solution to the SDE (with random coefficients) (1.11) starting
from x at s = t. Consequently, A is a class of admissible control laws.

We then denote by X t,x
s , t ≤ s ≤ T the solution with a.s. continuous paths starting from

x at s = t and recall that under the specified conditions on b, σ and α, we have

E
[

sup
t≤s≤T

|X t,x
s |2

]
< ∞. (1.14)

We now proceed to define the objective function of the control problem. Consider as
given a pair of measurable functions f : [0, T ] × Rn × A → R and g : Rn → R. We
suppose that:

(Hg) (i) g is lower-bounded
or (ii) g satisfies a quadratic growth condition: |g(x)| ≤ C(1 + |x|2),

∀x ∈ Rn, for some constant C independent of x.

For (t, x) ∈ [0, T ] × Rn, we denote by A(t, x) the subset of controls α in A such that

E
[∫ T

t

∣∣∣f(s,X t,x
s , αs)

∣∣∣ds] < ∞,

and we assume that A(t, x) is not empty for all (t, x) ∈ [0, T ] × Rn. Under (Hg) the
performance function is defined by:

J(t, x, α) = E
[∫ T

t
f(s,X t,x

s , αs)ds+ g(X t,x
T )

]
,
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for all (t, x) ∈ [0, T ] × Rn and α ∈ A(t, x). The objective is to maximize over admissible
control processes the performance function J . The associated value function is:

v(t, x) = sup
α∈A(t,x)

J(t,X, α).

The performance function J(t, x, α) represents the expected utility of employing the
control law α over the time interval [t, T ], starting from state x at time t. The optimal
value function provides the optimal expected utility over [t, T ] under the same initial
conditions. Equivalently, the value function represents the maximum value of the objective
functional, varying with the initial states.

For an initial condition (t, x) ∈ [0, T ) × Rn, we designate α∗ ∈ A(t, x) as the optimal
control if

v(t, x) = J(t, x, α∗).
We also note that, as for any optimization problem, the optimal law may not exist; see
[52, Example 11.2.6].

1.1.5. The Hamilton-Jacobi-Bellman Equation
Given an optimal control problem, two fundamental questions emerge: does an optimal
control law exist? Secondly, assuming its existence, how can it be determined? We
will primarily focus on the second question, utilizing dynamic programming, which is a
fundamental tool in the context of controlled diffusion processes and, more generally, for
controlled Markov processes. For a fixed pair (t, x) we now define the following control
problem.

Definition 1.5. The control problem P(t, x) is defined as the problem to maximize

J(t, x, α) = E
[∫ T

t
f(s,X t,x

s , αs)ds+ g(X t,x
T )

]
(1.15)

over α, given the dynamics of X t,x and the constraints α ∈ A(t, x), ∀(s, y) ∈ [t, T ] × Rn.

Observe that we use the notation s and y above because the letters t and x are already
used to denote the fixed chosen point.

To solve the control problem P(t, x) using the dynamic programming method, we first
define the value function associated with it. Next, we derive an analytic characterization
of the value function in terms of a partial differential equation known as the Hamilton-
Jacobi-Bellman (HJB) equation. The control problem is then equivalent to finding a
solution to the HJB equation [11, Section 19.3].

We define the value function associated to (1.15) by

v(t, x) = sup
α∈A(t,x)

E
[∫ T

t
f(s,X t,x

s , αs)ds+ g(X t,x
T )

]
, (t, x) ∈ [0, T ] × Rn. (1.16)

The derivation of the PDE satisfied by the value function (1.16) relies on the dynamic
programming principle (DPP), specifically its infinitesimal version. The DPP essentially
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states that: if the state process is optimally controlled from any time τ (t ≤ τ ≤ T ) until
T , then optimizing the control from t until τ , will ensure an optimal decision over the
entire interval [t, T ] [53, Section 3.3]. Notably, the DPP holds for any stopping time τ
valued in [t, T ].

Assumption 1.1. We assume the following.

1. There exists an optimal control law α∗ ∈ A(t, x).
2. The optimal value function v is regular; v ∈ C1,2([0, T ) × Rd) ∩ C0([0, T ] × Rd).

We fix (t, x) ∈ (0, T ) × Rn and select a real number h such that t + h < T . Then, we
choose a fixed but arbitrary control law α ∈ A(t, x), and define the control law α by

α(s, y) =
α(s, y), (s, y) ∈ [t, t+ h] × Rn,

α∗(s, y), (s, y) ∈ (t+ h, T ] × Rn.

In other words, if we use α then we use the arbitrary control α during the time interval
[t, t+h], and then we switch to the optimal control law during the rest of the time period.

The infinitesimal version of the DPP boils down to the following procedure.

• First, given the point (t, x) as above, we consider the following two strategies over
the time interval [t, T ]: Strategy I implements the optimal law α∗, while Strategy
II utilizes the control law α defined above.

• We then compute the expected utilities obtained by the respective strategies.
• Finally, using the fact that Strategy I by definition has to be at least as good as

Strategy II, and letting h tend to zero, we obtain our fundamental PDE.

We now carry out this program.

The expected utility for Strategy I is straightforward to determine. By definition, the
utility is the optimal one, given by J(t, x, α∗) = v(t, x). On the other hand, the expected
utility for Strategy II requires a different approach. We divide the time interval [t, T ]
into two parts, the intervals [t, t+ h] and (t+ h, T ] respectively.

• The expected utility, using Strategy II, for the interval [t, t+ h) is given by

E
[∫ t+h

t
f(s,X t,x

s , αs)ds
]
.

• In the interval [t+ h, T ] we observe that at time t+ h we will be in the (stochastic)
state Xt+h. Since, by definition, we will use the optimal strategy during the entire
interval [t+ h, T ] we see that the remaining expected utility at time t+ h is given
by v(t+ h,Xt+h). Thus the expected utility over the interval [t+ h, T ], conditional
on the fact that at time y we are in state x, is given by

E
[
v(t+ h,X t,x

t+h)
]
.
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Thus the total expected utility for Strategy II is

E
[∫ t+h

t
f(s,X t,x

s , αs)ds+ v(t+ h,X t,x
t+h)

]
.

We now go on to compare the two strategies, and since by definition Strategy I is the
optimal one, we must have the inequality

v(t, x) ≥ E
[∫ t+h

t
f(s,X t,x

s , αs)ds+ v(t+ h,X t,x
t+h)

]
. (1.17)

We also note that the inequality sign is due to the fact that the arbitrarily chosen control
law α which we use on the interval [t, t + h] need not be the optimal one. We have
equality in (1.17) if and only if the control law α is an optimal law α∗.

Since, by assumption, v ∈ C1,2 we now use the Itô formula to obtain

v(t+ h,X t,x
t+h) = v(t, x) +

∫ t+h

t

(∂v
∂t

+ Lav
)
(s,X t,x

s )ds

+
∫ t+h

t
Dxv

T(s,X t,x
s )σ(s,X t,x

s )dBs,

(1.18)

where La is the second-order differential operator associated to the diffusion (1.11) for
the control α

(Lav)(x) = b(x, a)Dxv + 1
2tr

(
σ(x, a)σT(x, a)D2

xv
)
. (1.19)

The assumptions α ∈ A(t, x) ⊂ A and v ∈ C1,2([0, T ) × Rd) ensure that the stochastic
integral in (1.18) is a martingale, because the integrability conditions on its integrand
are satisfied.

We then insert (1.18) into the inequality (1.17) to obtain

0 ≥ E
[∫ t+h

t

(∂v
∂t

+ Lav
)
(s,X t,x

s ) + f(t,X t,x
s , a)ds

]
.

We divide it by h and let h tend to 0. Assuming enough regularity to allow us to take
the limit within the expectation, using the fundamental theorem of integral calculus, and
recalling that Xt = x, we get by the mean-value theorem

0 ≥ ∂v

∂t
(t, x) + Lav(t, x) + f(t, x, a),

where a denotes the value of the law α evaluated at (t, x), i.e. a = α(t, x).

Since the control law α was arbitrary, this inequality will hold for all choices of a ∈ A,
and we will have equality if and only if a = α∗(t, x). We thus have the following equation

−∂v

∂t
(t, x) − sup

a∈A
[Lav(t, x) + f(t, x, a)] = 0. (1.20)

During the discussion the point (t, x) was fixed but chosen arbitrarily; therefore, equation
(1.20) holds for all (t, x) ∈ [0, T ) × Rn. We have a (nonstandard type of) PDE, and
we obviously need some boundary conditions. One such condition is easily obtained,
recalling that v(T, x) = g(x) for all x ∈ Rn.
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Theorem 1.6. [11, Theorem 19.5] Under Assumption 1.1, the following hold:

(i) v satisfies the HJB equation.
−∂v

∂t
(t, x) − sup

a∈A
[Lav(t, x) + f(t, x, a)] = 0, ∀(t, x) ∈ [0, T ) × Rn,

v(T, x) = g(x), x ∈ Rn.

(ii) For each (t, x) ∈ [0, T ] × Rn the supremum in the HJB equation above is attained
by a = α∗(t, x).

It is important to note that this theorem has the form of a necessary condition. It asserts
that if v is the optimal value function and α∗ is the optimal control, then v satisfies the
HJB equation, and α∗ realizes the supremum in the equation.

Equally significant is determining whether this theorem provides also a sufficient condition:
if at each point (t, x) we find a = α(t, x) such that Lav(t, x) + f(t, x, a) is maximal and
this maximum is 0, will α(t, x) be an optimal control? The next result confirms that this
is indeed the case.

1.1.6. Verification Theorem
The crucial step in the classical approach to dynamic programming involves proving
that, given a sufficiently regular solution to the HJB equation, this candidate solution
coincides with the value function. This result, known as the verification theorem, also
allows us to identify an optimal Markovian control as a byproduct.

The specific assertions regarding the sufficient conditions may vary slightly from one
problem to another and should be adapted to the context of the particular problem under
consideration. We present a general version of the verification theorem.

Theorem 1.7. [53, Theorem 3.5.2] Let G be a function C1,2([0, T )×Rn)∩C0([0, T ]×Rn),
and satisfying a quadratic growth condition, i.e. there exists a constant K such that

|G(t, x)| ≤ K(1 + |x|2), ∀(t, x) ∈ [0, T ] × Rn.

(i) Suppose that G satisfies
−∂G

∂t
(t, x) − sup

a∈A
[LaG(t, x) + f(t, x, a)] ≥ 0, ∀(t, x) ∈ [0, T ) × Rn,

G(T, x) ≥ g(x), x ∈ Rn.

(1.21)

Then G ≥ v on [0, T ] × Rn.

(ii) Suppose further that G(T, ·) = g and there exists a measurable function α∗(t, x),
(t, x) ∈ [0, T )×Rn, valued in A. For each fixed (t, x) the supremum in the expression

−∂G

∂t
(t, x) − sup

a∈A
[LaG(t, x) + f(t, x, a)]
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is attained by a, the value of α∗(t, x) at time t, and the SDE

dXs = b(Xs, α
∗(s,Xs))ds+ σ(Xs, α

∗(s,Xs))dBs,

admits a unique solution, denoted by X̂ t,x given an initial state (t, x). Then, the
optimal value function v to the control problem is given by

v(t, x) = G(t, x) on [0, T ] × Rn,

and α∗ is an optimal Markovian control.

Proof.

(i) Since w ∈ C1,2([0, T ) × Rn), we have for all (t, x) ∈ [0, T ) × Rn, α ∈ A(t, x),
s ∈ [t, T ), and any stopping time τ valued in [t,∞), by Itô’s formula

G(s ∧ τ,X t,x
s∧τ ) = G(t, x) +

∫ s∧τ

t

(∂G
∂t

+ LauG
)
(u,X t,x

u )du

+
∫ s∧τ

t
DxG

T(u,X t,x
u )σ(X t,x

u , αu)dBu.

We choose τ = τn = inf{s ≥ t :
∫ s

t |DxG
T(u,X t,x

u )σ(X t,x
u , αu)|2du ≥ n}, and we

notice that τn ↗ ∞ when n goes to infinity. The stopped process{∫ s∧τ

t
DxG

T(u,X t,x
u )σ(X t,x

u , αu)dBu, t ≤ s ≤ T
}

is then a martingale, and by taking the expectation, we get

E[G(s ∧ τn, X
t,x
s∧τ )] = G(t, x) + E

[∫ s∧τn

t

(∂G
∂t

+ LauG
)
(u,X t,x

u )du
]
.

Since G satisfies (1.21), we have

∂G

∂t
(t,X t,x

u ) + LaG(t,X t,x
u ) + f(X t,x

u , αu) ≤ 0, ∀α ∈ A(t, x),

and so

E[G(s ∧ τn, X
t,x
s∧τ )] ≤ G(t, x) − E

[∫ s∧τn

t
f(X t,x

u , αu)du
]
, ∀α ∈ A(t, x). (1.22)

We have ∣∣∣∣∫ s∧τn

t
f(X t,x

u , αu)du
∣∣∣∣ ≤

∫ T

t
|f(X t,x

u , αu)|du,

and the right-hand-side term is integrable by the integrability condition on A(t, x).
Since G satisfies a quadratic growth condition, we have

|G(s ∧ τ,X t,x
s∧τ )| ≤ C(1 + sup

s∈[t,T ]
|X t,x

s |2),
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and the right-hand-side term is integrable from (1.14). We can then apply the
dominated convergence theorem, and send n to infinity into (1.22):

E[G(s,X t,x
s )] ≤ G(t, x) − E

[∫ s

t
f(X t,x

u , αu)du
]
, ∀α ∈ A(t, x).

Since G is continuous on [0, T ]×Rn, by sending s to T , we obtain by the dominated
convergence theorem and by (1.21)

E[g(X t,x
t )] ≤ G(t, x) − E

[∫ T

t
f(X t,x

u , αu)du
]
, ∀α ∈ A(t, x).

From the arbitrariness of α ∈ A(t, x), we deduce that G(t, x) ≤ v(t, x), for all
(t, x) ∈ [0, T ] × Rn.

(ii) We apply Itô’s formula to G(u, X̂ t,x
u ) between t ∈ [0, T ) and s ∈ [t, T ) (after an

eventual localization for removing the stochastic integral term in the expectation):

E[G(s, X̂ t,x
s )] = G(t, x) + E

[∫ s

t

(∂G
∂t

+ Lα∗(t,x)G
)
(u, X̂ t,x

u )du
]
.

Now, by definition of α(t, x), we have

∂G

∂t
+ Lα∗(t,x)G(t, x) + f(t, x, α∗(t, x)) ≤ 0, ∀α ∈ A(t, x),

and so
E[G(s, X̂ t,x

s )] = G(t, x) − E
[∫ s

t
f(X̂ t,x

u , α∗(u, X̂ t,x
u ))du

]
.

By sending s to T , we then obtain

G(t, x) = E
[∫ s

t
f(X̂ t,x

u , α∗(u, X̂ t,x
u ))du+ g(X̂ t,x

T )
]

= J(t, x, α∗).

This shows that G(t, x) = J(t, x, α∗) ≤ v(t, x), and finally that G = v with α∗ as
an optimal Markovian control.

Remark 1.4. In the particular case where the control space A is reduced to a singleton
{a0}, this verification theorem is a version of the Feynman-Kac formula: it states that if
G is a function in C1,2([0, T ) × Rd) ∩ C0([0, T ] × Rd) with a quadratic growth condition
and is the solution to the Cauchy problem (1.7), then G admits the representation

G(t, x) = E
[∫ T

t
f(X t,x

s , α0)ds+ g(X t,x
T )

]
.

Theorem 1.7 suggests a method for solving the optimization problem 1.5. Laid out
explicitly, the approach can be delineated as follows.
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1. Consider the HJB equation as a PDE for an unknown function G:
−∂G

∂t
(t, x) − sup

a∈A
[LaG(t, x) + f(t, x, a)] = 0, ∀(t, x) ∈ [0, T ) × Rn,

G(T, x) = g(x), x ∈ Rn.

(1.23)

2. Fix an arbitrary point (t, x) ∈ [0, T ] × Rn and solve, for this fixed choice of (t, x),
the static optimization problem

max
a∈A

[LaG(t, x) + f(t, x, a)].

Note that in this problem a is the only variable, whereas t and x are considered to
be fixed parameters. The functions f, µ, σ and G are considered as given.

3. The optimal choice of a, denoted by a∗, will depend on our choice of t and x, but
it will also depend on the function G and its partial derivatives. To highlight these
dependencies we write a∗ as α∗ = α∗(t, x;G).

4. The function α∗(t, x;G) is our candidate for the optimal control law, but since
we do not know G this description is incomplete. Therefore, we substitute the
expression for α∗ into the HJB equation (1.23).

5. We solve the resulting PDE (see Remark 1.5) and substitute the solution G into
expression α∗(t, x;G). Using the verification Theorem 1.7 we can now identify G
as the optimal value function v, and α∗ as the optimal control law.

Remark 1.5. The essence of dynamic programming involves addressing the highly
nonlinear partial differential equation outlined in step 5 above. Due to the absence of
general analytic methodologies, instances of optimal control problems with an analytically
derived solution are exceedingly rare. In practice, one typically endeavors to propose a
solution by formulating trial answer, commonly referred to as Ansatz, for G, parameterized
by a finite set of parameters. Subsequently, the partial differential equation is employed
to determine these parameters. The formulation of an Ansatz, is often facilitated by
the intuitive observation that if an analytical solution exists, G likely exhibits certain
structural attributes inherited from both the boundary function g and the instantaneous
utility function f [11, Remark 19.4.1].

1.2. The Portfolio Optimization Problem

1.2.1. Introduction
Consider a financial market comprising a risk-less asset with price process S0, representing
a savings account, and m risky assets with price process S, representing the stocks. An
agent can invest in this market at any time t, holding a number of shares αt in the m
risky assets. The agent’s decisions does not affect market prices, thus categorizing him
as a “small investor”. By denoting the agent’s wealth at time t as Wt, the number of
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shares invested in the savings account at time t can be calculated as (Wt − αtSt)/S0
t .

The self-financed wealth process evolves according to:

dWt = (Wt − αtSt)
dS0

t

S0
t

+ αtdSt, W0 > 0. (1.24)

Here, the control process, denoted by α, is valued in A, a subset of Rm. The portfolio
allocation problem involves choosing the optimal investment in the financial market.

Classical models for describing the behavior and preferences of agents and investors
include the mean-variance and expected utility criteria. The mean-variance criterion,
introduced by Markowitz [47], assumes that an agent’s preferences depend solely on the
expectation and variance of his random incomes. The criterion’s advantage lies in its
simplicity and minimal requirement of probability knowledge, specifically expectations
and covariances of random variables. However, it is criticized for measuring risk solely
based on the variance of portfolio returns. The symmetric nature of variance limits
both potential losses and gains. To address this issue, it is more appropriate to consider
asymmetric preferences, which are typically represented using utility functions according
to the von Neumann-Morgenstern theory [51].

In the expected utility criterion, the agent evaluates random incomes with known
probability distributions. The agent’s preferences are expressed through the expectation
of a utility function, denoted by U . A random income W is preferred to a random income
W if

E[U(W )] ≥ E[U(W )].

The utility function U is non-decreasing, reflecting a preference for greater wealth, and
concave, indicating the agent’s risk aversion. For a risk-averse agent, the certainty of
receiving E[W ], the expected value of a random return W , is preferred over the uncertain
return itself. This preference is formalized by Jensen’s inequality, U(E[W ]) ≥ E[U(W )],
which is valid exclusively for concave functions.

For a risk-averse agent with concave utility function U , the risk premium associated with
a random portfolio return W is defined as the positive amount the agent is willing to
pay to secure a certain gain. This premium satisfies: U(E[W ] − π) = E[U(W )]. Let
µ = E[W ] denote the expected return. If the portfolio return W has low risk, the risk
premium π can be approximated by:

π ≈ −1
2
U

′′(µ)
U ′(µ) Var(W ) = 1

2η(µ)Var(W ),

where η(x) = −U ′′(x)/U ′(x) is the local absolute risk aversion at the return level x [54].
This approximation indicates that the variance of a portfolio return is a key indicator
of its risk, with η(µ) representing the factor by which an economic agent with utility
function U weights the risk.

If we express the random return W as W = µ(1 + ε), where ε represents the relative
deviation from the expected return, the relative risk premium ρ is defined such that
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U(µ(1 − ρ)) = E[U(W )] = E[U(µ(1 + ε))]. The relative risk premium ρ indicates the
proportion of the return that the investor is willing to forgo to obtain a certain gain. An
approximation for ρ is given by:

ρ ≈ 1
2γ(µ)Var(ε),

where γ(x) = −xU ′′(x)/U ′(x), is the relative risk aversion at level x [54].

Two commonly studied classes of utility functions that illustrate these concepts are those
with Constant Absolute Risk Aversion (CARA) and Constant Relative Risk Aversion
(CRRA). In the CARA framework, the absolute risk aversion η(x) is constant, η > 0, and
the utility function can be represented as U(x) = 1 − e−ηx. Under CRRA, the relative
risk aversion γ(x) is constant, where γ ∈ [0, 1) and utility function is given by:

U(x) =
x

γ/γ, 0 < γ < 1,
ln x, γ = 0.

(1.25)

These utility functions adhere to the Inada conditions, which stipulate that the utility
function U : (0,∞) → R is continuously differentiable, strictly increasing and strictly
concave on (0,∞), and satisfies:

U
′(0) := lim

x↓0
U

′(x) = ∞, U
′(∞) := lim

x→∞
U

′(x) = 0.

Note that the decreasing marginal utility U ′(x) (due to the strict concavity of U) indicates
that the agent is risk-averse, while the assumption U

′(0+) = ∞ guarantees that the
constraint WT ≥ 0 on terminal wealth will never be active.

The use of stochastic control and dynamic programming methods for continuous-time
portfolio optimization was pioneered by Merton in his seminal work [49]. He applied
techniques and results from stochastic control theory to a financial setting, using the
HJB equation to derive explicit solutions for specific cases.

In Merton’s model, the bond price S0 grows at the constant interest rate r > 0, and the
stock price S evolves according to the Black-Scholes model:

dS0
t = rS0

t dt, S0
0 > 0,

dSt = µStdt+ σStdBt, S0 > 0,

where µ, σ > 0 are constants, and B is a Brownian motion on a filtered probability
space. The non-negative wealth process W is controlled by the proportion α, invested
in the risky asset and valued in R, and is governed by the diffusion dynamics (1.24).
The investor’s objective is to maximize over portfolio strategy α his expected utility of
terminal wealth at a finite horizon T . The value function for this control problem is
defined by

v(t, w) = sup
α∈A

E[U(WT )],

where U is an increasing and concave function on R+ := [0,∞) and w = Wt.
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Merton considered both CRRA and CARA utility functions. However, as he noted in
his work, CARA utility functions are “behaviorially less plausible than constant relative
risk aversion” [49]. Unlike the CRRA case where the proportion of wealth allocated to
the risky asset remains constant, the optimal portfolio for a CARA function is inversely
proportional to wealth. Thus, in the limit, as W → ∞, one invests all wealth in the
risk-free asset.

1.2.2. Motivations for Model Choice
We consider a financial market consisting of one risk-free asset and one risky asset. This
model can be extended to a market with m risky assets. The coefficients of the stock price
process depend on N stochastic processes, denoted in vector form as Y = (Y 1, . . . , Y N),
which we will refer to as the stochastic factor. This factor is driven by a single Brownian
motion that is correlated with the Brownian motion driving the stock price. Each Y i

with i = 1, . . . , N is a diffusion process.

As the stochastic coefficients in the stock process are influenced by the latent factor Y ,
the considered financial market is incomplete. Incompleteness arises when the number
of stocks is strictly less than the number of Brownian motions (m < d); in our case
m = 1 and d = 2. Under this condition, it is typically impossible to construct a portfolio
consisting of the bond and the m available stocks that can fully hedge the risk associated
with these coefficient processes. In our setting, the stochastic factor is a non-tradable
instrument that prevents the investor from effectively hedging risk.

A pivotal consideration revolves around the information available at decision time points.
It seems natural to examine a market where agents can solely observe the stock price
process S only. The stock price process contains enough information to filter the evolution
of the Brownian motion driving the stock price and Y from it. This stems from the fact
that the quadratic variation of the stock price process (1.28)

⟨S, S⟩t =
∫ t

0
S2

uσ
2(u,Y u)du (1.26)

can be observed and thus, if σ is bijective, Y can also be inferred (for more details, see
[55, Lemma 3.1]). Consequently, we assume that the agent knows the evolution of the
Brownian motion driving the stock price and Y up to time t. Or, what is equivalent, at
time t he knows his current wealth and Y .

Individual preferences are modeled using a power utility function U(x) = xγ/γ, with
trading occurring over a finite horizon. The power utility function is chosen because, in
the limit case when the risk-aversion parameter γ → 0, it converges to the log utility
function U(x) = log(x), see (1.25). As already mentioned, the power utility is a CRRA
function and, as such, is considered more plausible than CARA functions. Moreover,
It allows us to express the value function as a specific power of the solution to a linear
parabolic equation. As we will discuss, this exponent, known as the distortion power,
depends solely on the risk aversion coefficient and the correlation between the Brownian
motions driving the stock price and the stochastic factors.
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1.2.3. The Financial Market
Consider a financial market under (Ω,F ,F = (Ft)0≤t≤T ,P), with T < ∞, consisting of
one risk-less asset S0 and one risky asset S respectively evolving according to

dS0
t = rtS

0
t dt, S0

0 > 0, (1.27)
dSt = µ(t,Y t)Stdt+ σ(t,Y t)StdB

S
t , S0 > 0, (1.28)

where rt > 0 is a deterministic bounded risk-free rate and Y = (Y 1, . . . , Y N) is a
stochastic factor assumed to satisfy

dY t = c(t,Y t)dt+ d(t,Y t)dBY
t , Y 0 ∈ RN . (1.29)

The processes BS and BY : [0, T ] → R are correlated F-Brownian motions with correlation
coefficient −1 < ρ < 1. The initial prices S0

0 , S0 and the initial values Y 0 are deterministic
constants. The coefficients µ, σ, c, d are functions of time and the factor Y , and they are
assumed to satisfy all the required regularity assumptions to guarantee the existence of a
unique solution to (1.28) and (1.29).

It is reasonable to assume that at time t the agent has knowledge of the stock price and,
and, consequently, its quadratic variation (1.26). Thus, at time t, the agent knows the
evolution of BS and Y up to that point. Therefore, we assume that the filtration F is
generated by BS and BY , i.e. Ft = σ(BS

s , B
Y
s , s ≤ t).

The investor rebalances his portfolio dynamically by choosing at any time t, for t ∈ [0, T ],
a proportion αt of his wealth to be invested in the stock account S. 1 − αt is then the
fraction of wealth invested in the bond S0. Note that αt is not restricted to the interval
[0, 1]: αt < 0 means that the stock is sold short and αt > 1 means that money is borrowed
from the bank at the interest rate r. The investor faces the portfolio constraint that at
any time t, αt is valued in A, a closed convex subset of R. We denote by A the set of
F-progressively measurable processes α valued in A, and such that∫ T

0
α2

tσ
2(t,Y t)dt < ∞ a.s.

This integrability condition ensures the existence and uniqueness of a strong solution to
the SDE governing the wealth process controlled by α ∈ A (cf. Definition 1.4).

Given a portfolio strategy α ∈ A, we denote by W t,w the corresponding wealth process
starting from an initial capital Wt = w > 0 at time t, evolving according to:

dWs = Wsαs
dSs

Ss

+Ws(1 − αs)
dS0

s

S0
s

= Ws[rs + αs(µ(s,Y s) − rs)]ds+Wsαsσ(s,Y s)dBS
s (1.30)

for t ≤ s ≤ T . This linear stochastic differential equation can be solved explicitly and
the solution for t ∈ [0, T ] is given by

W t,w = w exp
(∫ T

t

[
rs + αs(µ(s,Y s) − rs) − 1

2σ
2(s,Y s)α2

s

]
ds+

∫ T

t
σ(s,Y s)αsdB

S
s

)
.



1.2. The Portfolio Optimization Problem 31

The investor’s objective is to maximize his expected utility of terminal wealth:

J(t, w,y) = Et,w,y[U(WT ,Y T )],

where by Et,w,y we denote the conditional expectation, emphasizing that at time t, we
are given Wt = w > 0 and Y t = y ∈ RN . The value function of the investor for t ∈ [0, T ]
is then defined by

v(t, w,y) = sup
α∈A

Et,w,y[U(WT ,Y T )].

The HJB equation together with the terminal condition of the stochastic control problem
for a sufficiently regular function G ∈ C1,2([0, T ) × R+ × RN) ∩ C0([0, T ] × R+ × RN))
are: 

−∂G

∂t
(t, w,y) − sup

a∈A
[LaG(t, w,y)] = 0 ∀(t, w,y) ∈ [0, T ) × R+ × RN ,

G(T,w,y) = U(w,y), w ∈ R+,y ∈ RN .

(1.31)

Here, La is the operator associated with the state process X = (W,Y ) for the control α
(cf. (1.19)). The state process X has as its first component the controlled diffusion W ,
while the remaining N components are the diffusion processes Y i for i = 1, . . . , N . For
clarity we rewrite the dynamics of X in matrix form

d

[
Ws

Y s

]
=
[
Ws[rs + αs(µ(s,Y s) − rs]

c(s,Y s)

]
ds

+
[
Wsαsσ(s,Y s) 0
d(s,Y s)ρ d(s,Y s)

√
1 − ρ2

] [
dB1

dB2

]
,

where we identify the Brownian motion driving the wealth process W with BS ≡ B1

and the Brownian motion driving the stochastic factor Y with BY ≡ ρB1 +
√

1 − ρ2B2,
where B1, B2 are independent.

We omit the verification that B1 and B2 are Brownian motions and instead demonstrate
that they are independent. We begin by noting that the differential forms of BS and BV

are
dBS = dB1, dBV = ρdB1 +

√
1 − ρ2dB2.

Therefore,
dBSdBV = ρdt+

√
1 − ρ2dB1dB2.

Since BS and BV are correlated with coefficient ρ, i.e. dBSdBV = ρdt, the term√
1 − ρ2dB1dB2 must vanish. Given that ρ ∈ (−1, 0) ∪ (0, 1), it follows that dB1dB2 = 0.

Thus, B1 and B2 are uncorrelated, and since uncorrelated Gaussian random variables
are independent, we conclude that B1 and B2 are independent.

The HJB equation reads in this case

0 = Gt + sup
a∈A

{
w[r + a(µ(t,y) − r)]Gw +

N∑
i=1

c(t, yi)Gyi

+ 1
2w

2a2σ2(t,y)Gww +
N∑

i=1
waσ(t,y)d(t, yi)ρGyiw + 1

2

N∑
i=1

N∑
j=1

d2(t, yi)Gyiyj

}
.

(1.32)
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The goal herein is to find a smooth solution G to (1.31), verify that it coincides with the
value function v, and determine the optimal investment strategies α∗ when the utility
function is of power utility type

U(x) = xγ

γ
, x ≥ 0, γ ∈ (0, 1).

The specific form of these utilities, combined with the linearity of the wealth dynamics
with respect to the state and control processes (see (1.30)), allows us to represent the
value function in a separable form. Specifically, the value function can be written as
v(t, w,y) = wγ/γ Φ(t,y), where Φ is generally unknown, as it solves a nonlinear equation
for which no closed-form solutions are available. However, with a simple transformation,
it is possible to eliminate certain non-linearities that arise due to the stochastic factor,
as the following result will demonstrate.

1.2.4. The Distortion Power
When considering exponential, power, or logarithmic utility functions, the investor’s
utility takes the form U(W,Y ) = U(W )h(Y ) here W is the investor’s wealth and Y

is a random factor, not perfectly correlated with the market [62]. The value function
becomes separable as well: v(t, w,y) = U(w)Φ(t,y).

Remarkably, it is found that Φ can be represented as a power δ of the solution to a linear
parabolic equation. The power δ, referred to as the distortion power, depends solely on
the risk aversion parameter γ and the degree of correlation between the stock price and
the stochastic factor. The following proposition by Zariphopoulou [63] addresses this
result, specifically for the case where the utility function is U(w, y) = wγ/γ h(y) and the
stochastic factor Y is one-dimensional.

Proposition 1. [63, Proposition 2.1]

(i) The value function v is given by

v(t, w, y) = xγ

γ
φ(t, y)δ

where δ = 1−γ
1−γ+ρ2γ

and φ : [0, T ] × R → R+ solves the linear parabolic equation
φt + 1

2d
2(s, y)φyy +

[
c(t, y) + ρ

γ(µ(t, y) − r)d(t, y)
(1 − γ)σ(t, y)

]
φy

+γ(1 − γ + ρ2γ)
1 − γ

[
r + (µ(t, y) − r)2

2σ2(t, y)(1 − γ)
]
φ = 0

with terminal condition φ(T, y) = h(y).
(ii) The optimal policy α∗ is given in Markovian form α∗ = α∗(s, Ŵs, Ys), t ≤ s ≤ T ,

where the function α∗ : [0, T ] × R+ × R → R is defined by

α∗(t, w, y) =
[

ρ

(1 − γ) + ρ2γ

d(t, y)φy(t, y)
σ(t, y)φ(t, y) + 1

1 − γ

µ(t, y) − r

σ2(t, y)

]
w
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with Ŵ being the state wealth process given by (1.30) when the policy α∗ is being
used.

The above proposition is rigorously proved in [63] using tools from the theories of
stochastic control and viscosity solutions of the HJB equation. Here, we outline a
procedure on how to prove result (i) when h(y) ≡ 1 while considering an N -dimensional
stochastic factor. This procedure will be adopted in Chapter 4.

1. Consider a candidate solution for (1.32) of the form G(t, w,y) = wγ

γ
Φ(t,y) satisfying

the terminal condition G(T,y) = 1, and substitute G directly into Equation (1.32).
2. Formally apply the first-order conditions to the obtained equation to determine α∗.
3. Insert α∗ and the transformation Φ(t,y) = φ(t,y)δ, where φ satisfies φ(T,y) = 1

and the parameter δ is not yet determined, into the previously obtained equation.
4. Determine δ so that the the resulting equation becomes linear parabolic.



2
Markovian Approximation of Fractional
Processes

Rough volatility models have garnered significant attention due to their efficacy in
replicating both realized volatility and the stylized features of the implied volatility surface
observed in financial markets. A stochastic process is termed rough if its sample paths
are less Hölder continuous than those of Brownian motion. Unlike traditional stochastic
volatility models driven by standard Brownian motion, rough volatility models employ
fBm (fBm) with a small Hurst index H. For H < 1/2, fBm is a continuous yet less regular
process than standard Brownian motion. Its non-Markovian and non-semimartingale
nature further complicates both theoretical analysis and practical applications.

This chapter delves into the Markovian representation (Section 2.1) and approximation
(Section 2.2) of fBm, both of which are essential for developing stochastic volatility models
that approximate rough volatility models while preserving a Markovian structure. This
approximation not only facilitates simulation but also enables the use of PDE techniques
to address portfolio optimization problems, as will be further discussed in this thesis.

In Section 2.1, we introduce fBm, detailing its properties and integral representations.
We focus particularly on the Mandelbrot-van Ness representation and Riemann-Liouville
processes, which are commonly encountered in rough volatility models. We then present
infinite-dimensional Ornstein-Uhlenbeck (OU) processes and explore the Markovian
representation of Riemann-Liouville processes, which turn out to be a mixture of these
infinite-dimensional OU processes, as thoroughly discussed in [33]. Lastly, we provide
an overview of the more general case of stochastic Volterra equations, which encompass
Riemann-Liouville processes. Under appropriate conditions on their convolution kernel,
any solution to the stochastic Volterra equation can be represented as an infinite-
dimensional system of processes that share the same Brownian motion and exhibit
mean-reverting behavior at different rates [2].

34
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In Section 2.2, we address the approximation of stochastic Volterra equations with
completely monotone kernels and Lipschitz coefficients. We start by presenting theoret-
ical results on the error between the stochastic Volterra equation and any multifactor
Stochastic Differential Equation (SDE) approximation, drawing from [4]. Following this,
we examine the strong error analysis, i.e. L2-error, between fractional kernels of the form
K(τ) = τH−1/2/Γ(H + 1/2) with H ∈ (0, 1/2) and Γ being the Gamma function, and
their approximation using Gaussian quadrature rules, as detailed in [6].

2.1. Markovian Representation of Fractional Processes

2.1.1. Introduction
Fractional Brownian motion and the associated Riemann-Liouville processes are long-
memory Gaussian processes distinguished by dependent increments and rough sample
paths. The non-Markovian and non-semimartingale nature of these processes poses
theoretical and practical challenges. To mitigate these issues, it is advantageous to
represent them as linear functionals of an infinite-dimensional Markov process (cf. Remark
2.8). This Markovian representation facilitates the development of efficient algorithms
for their approximation.

The key idea, originating from Carmona and Coutin [15], is to represent the fractional
integral associated with these processes using a Laplace transform. For each H < 1/2,
by the stochastic Fubini theorem A.1,∫ t

0
(t− s)H−1/2dBs ∝

∫ t

0

∫ ∞

0
e−x(t−s) dx

xH+1/2dBs =
∫ ∞

0

∫ t

0
e−x(t−s)dBs

dx

xH+1/2 ,

where, for each x, Y x
t =

∫ t
0 e

−x(t−s)dBs is an OU process.

In this section, we will delve into the above representation in detail. We begin by reviewing
the key properties that make fBm particularly appealing for financial applications.

2.1.2. Fractional Brownian Motion
Fractional Brownian motion (fBm), introduced by Kolmogorov in 1940, is a Gaussian
process that generalizes standard Brownian motion. The term “fractional Brownian
motion” was coined by Mandelbrot and Van Ness in 1968, when they provided a stochastic
integral representation of the process using a two-sided standard Brownian motion [45].
Due to its self-similarity and long-memory properties, fBm is well-suited as input noise
in various models where standard Brownian motion falls short.

Definition 2.1. [10, Definition 1.1.1] Let H be a constant belonging to (0, 1). A
fractional Brownian motion (BH

t )t≥0 of Hurst index H is a continuous and centered
Gaussian process with covariance function

E[BH
t B

H
s ] = 1

2
(
|s|2H + |t|2H − |t− s|2H

)
, s, t ≥ 0. (2.1)
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To specify the distribution of a Gaussian process, it is sufficient to specify its mean
and covariance function [19, Chapter 12]. Therefore, for each fixed value of the Hurst
parameter H, the distribution of BH is uniquely determined by the above definition. The
existence of the fBm follows from the general existence theorem of centered Gaussian
processes with given covariance functions [19, Theorem 12.1.3].

Observe that for H = 1/2, the covariance function is E[B1/2
t B1/2

s ] = t ∧ s, meaning B1/2

is a standard Brownian motion. This justifies the name “fractional Brownian motion”:
BH is a generalization of Brownian motion obtained by allowing the Hurst parameter to
differ from 1/2.

By Definition (2.1) we obtain that a standard fBm BH starts from zero, BH
0 = 0 almost

surely, and enjoys the following properties:

(i) Stationary increments. Consider the process (Yt)t≥0 = (BH
t+s −BH

s )t≥0. Since

E[(BH
t −BH

s )2] = |t− s|2H , s, t ≥ 0,

it follows that the covariance function of Y is the same as that of BH . As both
processes are centered Gaussian, the equality of covariance functions implies that
(Yt)t≥0

d= (BH
t )t≥0. Thus, the probability distributions of its increments remain

invariant under a shift in time, and for this reason, BH is said to have stationary
increments.

(ii) Self-similarity. Now consider, for a fixed a > 0, the process (Zt)t≥0 = (BH
at)t≥0.

From (2.1), it is apparent that Z has the same covariance, and hence the same
distribution, as aHBH . This property is called H-self-similarity, indicating the
scale-invariance of the process: the probability distribution remains unchanged
within each time interval under appropriate spatial scaling.

(iii) Dependence of increments. For H = 1/2, BH is a standard Brownian motion;
hence, in this case the increments of the process are independent. On the contrary,
for H ̸= 1/2 the increments are not independent. More precisely, by Definition
(2.1) we know that the covariance E[(BH

t+h −BH
t )(BH

s+h −BH
s )] with s+ h ≤ t and

t− s = nh is

ρH(n) = 1
2h

2H
[
(n+ 1)2H + (n− 1)2H − 2n2H

]
,

= 1
2h

2H
[(

(n+ 1)2H − n2H
)

−
(
n2H − (n− 1)2H

)]
.

Specifically, noting that the function g(x) = x2H is concave for H ∈ (1/2, 1) and
convex for H ∈ (0, 1/2), we observe that two increments on disjoint time intervals
are positively correlated when H > 1/2 and negatively correlated when H < 1/2.

The dependence of increments of fBm naturally leads to its long-memory property: the
covariance between far apart increments decrease to zero as a power law.
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Definition 2.2. [10, Definition 1.4.1] A stationary sequence (Xn)n∈N exhibits long-range
dependence if the autocovariance functions ρ(n) := Cov(Xk+n, Xk) satisfy

lim
n→∞

ρ(n)
cn−α

= 1

for some constant c and α ∈ (0, 1). In this case, the dependence between Xk and Xk+n

decays slowly as n tends to infinity and ∑∞
n=1 ρ(n) = ∞.

We immediately observe that the incrementsXk+n := BH
k+n−BH

k+n−1 andXk := BH
k −BH

k−1
of BH have the long-range dependence property for H > 1/2. Applying Taylor’s theorem
to the second order with a small x = 1/n, we obtain the following as n → ∞

ρH(n) = 1
2h

2H
[
(n+ 1)2H + (n− 1)2H − 2n2H

]
∼ H(2H − 1)n2H−2.

In particular,
lim

n→∞

ρ(n)
H(2H − 1)n2H−2 = 1.

Summarizing, we have

• ∑∞
n=1 ρH(n) = ∞, for H > 1/2,

• ∑∞
n=1 |ρH(n)| < ∞, for H < 1/2.

Thus far, we have observed that the Hurst index governs the dependence structure and
long-memory properties of fBm. It also serves as a practical measure of the roughness of
fBm paths.

According to the Kolmogorov criterion (for processes on R) [52, Theorem 2.2.3], a process
X = (Xt)t∈R admits a continuous modification if there exist positive constants α, β, and
K > 0 such that

E
[
|Xt −Xs|α

]
≤ K|t− s|1+β, ∀s, t ∈ R.

We recall that a stochastic process X̃ is a modification (or a version) of X if, for each t,
P(X̃t = Xt) = 1 [42, Definition 3.3.5].

Theorem 2.1. [10, Theorem 1.6.1.] Let H ∈ (0, 1), the fBm BH admits a version whose
sample paths are almost surely Hölder continuous of order strictly less than H.

Proof. A function f : R → R is Hölder continuous of order 0 < γ ≤ 1, and write
f ∈ Cγ(R), if there exists M > 0 such that

|f(t) − f(s)| ≤ M |t− s|γ,

for every s, t ∈ R. Since BH
t −BH

s is centered Gaussian with variance |t− s|H , we have
for any α > 0

E
[
|BH

t −BH
s |α

]
= Kα|t− s|αH .

Therefore, taking any α > 1/H, we get the existence of continuous modification. We also
get the Hölder continuity of the modification with exponent γ ∈ (0, H − 1/α). Choosing
α sufficiently large, we arrive at the desired statement.
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Finally, two well-known features of fBm are that it is neither a Markov process nor
a semimartingale. The first feature arises from fBm’s long memory property, which
inherently precludes it from being a Markov process, as demonstrated in [36]. The second
one holds significant implications: it indicates that defining a stochastic integral of a
random process with respect to a fBm is not feasible. Therefore, standard Itô calculus
cannot be directly applied to fBm. The proof that fBm is not a semimartingale for
H ̸= 1/2 can be found in [58].

We further explore integral representations of fBm and assume the reader is familiar
with Wiener processes and Itô stochastic calculus. It is often useful to represent BH for
0 < H < 1 as a linear functional of Brownian motion [56]. Specifically, we seek a kernel
KH(t, s) such that the Wiener integral

BH
t =

∫
KH(t, s)dBs, (2.2)

is a fBm. Due to the properties of the Wiener integral, the process (2.2) is a centered
Gaussian process. Therefore, to verify that this representation defines a fBm, it is
sufficient to show that it has the same covariance function.

With this in mind, we introduce and briefly compare the Mandelbrot-Van Ness represen-
tation of fBm and Riemann-Liouville processes, as they are frequently encountered in
the financial literature.

Definition 2.3. [45, Definition 2.1] Let H ∈ (0, 1), and let b0 be an arbitrary real
number. For t ≥ 0, the Mandelbrot-Van Ness representation of fBm is defined by

BH
t = b0 + 1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dB′

s +
∫ t

0
(t− s)H−1/2dB′

s

}
,

where B′ = (B′
t)t∈R is two-sided Brownian motion.

Remark 2.1. We recall that the Gamma function, Γ(α) : (0,∞) → (0,∞), is defined by

Γ(α) =
∫ ∞

0
e−yyα−1dy. (2.3)

and that a two-sided Brownian motion B′ = {B′(t) : t ∈ R} is a continuous random
process such that B′(0) = 0 almost surely, and B′ = {B(t) : t ≥ 0} and B′ = {B(−t) :
t ≥ 0} are independent standard Brownian motions on [0,∞) [61].

Remark 2.2. The Mandelbrot-Van Ness representation of fBm in Definition 2.3 can
also be expressed in the form (2.2). To achieve this, we use the fractional kernel

KH(t, s) := 1
C ′

(
(t− s)H−1/2

+ − (−s)H−1/2
+

)
, s, t ∈ R, with

C ′ :=
(∫ ∞

0

(
(1 + s)H−1/2 − sH−1/2

)2
ds+ 1

2H

)1/2

,

and a two-sided standard Brownian motion as integrator. Here, xa
+ = xa ·1(0,∞)(x), where

x, a ∈ R [38].
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Definition 2.4. Let t ≥ 0 and H > 0, the Riemann-Liouville process is defined as

BH
t = 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dBs, (2.4)

where B = (Bt)t≥0 is standard Brownian motion.

Remark 2.3. The constant (Γ(H − 1/2))−1 in front of the stochastic integral (2.4) is
not unique: changing this constant does not alter the properties of the process, as these
are determined by the fractional kernel K(τ) = τH−1/2.

Remark 2.4. In the literature, the Riemann-Liouville process is known by several names:

• Lévy’s definition of fBm, named after Lévy who introduced it in [43],
• Volterra Brownian motion, as it belongs to the family of Volterra Gaussian processes,
• Type 2 of fBm, due to its similarity with type 1 of fBm defined earlier in 2.1. This

convention and further details on the comparison between type 1 and 2 of fBm are
discussed in [46].

By computing the covariance function of the Mandelbrot-Van Ness representation of fBm
(Definition 2.3), we can show that it coincides with the covariance function in Definition
2.1 [38, Theorem 3.4]. This confirms that the Mandelbrot-Van Ness representation is
indeed fBm, inheriting all its associated properties: stationary increments, self-similarity,
and long memory.

In the Mandelbrot-Van Ness representation of fBm, the filtrations generated by BH

and B′ do not coincide, classifying it as a non-canonical representation. To address
this issue, Molchan and Golosov [50] constructed fBm as a Wiener integral process
with respect to a one-sided standard Brownian motion. This formulation established
a canonical representation of fBm and laid the foundation for the family of Volterra
Gaussian processes, which includes Riemann-Liouville processes (Definition 2.4). More
precisely, the Volterra Gaussian process is a generalization of the Molchan and Golosov
representation by allowing arbitrary integrand kernel functions.

Definition 2.5. A kernel zX ∈ L2
loc([0,∞)2), i.e. ∀T, S > 0,

∫ T
0
∫ S

0

(
zX(t, s)

)2
dsdt < ∞,

is called a Volterra kernel if it satisfies

zX(t, s) = 0, 0 < t ≤ s < ∞.

Definition 2.6. [38, Definition 6.1] A Gaussian process (Xt)t≥0 is called Volterra if
there exists a standard Brownian motion (Bt)t≥0 and a Volterra kernel zX ∈ L2

loc([0,∞)2),
such that for t ≥ 0

Xt =
∫ t

0
zX(t, s)dBs, a.s.

Among the Volterra Gaussian processes, we focus on the specific instance of the Riemann-
Liouville process, given by:

BH
t =

√
2H

∫ t

0
(t− s)H−1/2dBs. (2.5)
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With the choice of the constant
√

2H in front of the stochastic integral (cf. Remark 2.3),
the variance of this process coincides with that of type 1 fBm (cf. Remark 2.4):

E
[(√

2H
∫ t

0
(t− s)H−1/2dBs

)2
]

= E
[
2H

∫ t

0
(t− s)2H−1ds

]
= t2H .

Despite this, the covariance function of the process (2.5) does not align with Definition
2.1, and its increments are non stationary [46, Section 3], indicating that it does not
qualify as fBm.

There are several reasons why the Riemann-Liouville process remains of interest. As a
Volterra gaussian process, it exhibits self-similarity [38, Section 6.1], and the filtrations
generated by BH and B coincide. It effectively models the long-memory property and
the roughness of paths: although it is defined for H > 0, for a fixed H ∈ (0, 1), the
Riemann-Liouville process exhibits the same Hölder continuity of type 1 fBm, and its
paths are sufficiently similar to those of fBm [56, Theorem 17].

2.1.3. Infinite-Dimentional OU Processes

The one-dimensional Gaussian Ornstein-Uhlenbeck (OU) process Ỹ = (Ỹt)t≥0 can be
defined as the solution to the stochastic differential equation

dỸt = x(m− Ỹt)dt+ σdBt, Ỹ0 > 0, (2.6)

where x,m and σ ≥ 0 are real constants, B is a standard Brownian Motion, and Ỹ0
is a given random variable, taken to be independent of B [44]. The parameter m can
be formally eliminated from (2.6) by considering Y := Ỹ − m rather than Ỹ . In our
discussion, we will disregard m and set σ = 1, focusing on the SDE:

dYt = −xYtdt+ dBt, Y0 ≥ 0. (2.7)

Alternatively, we could define Y in terms of a stochastic integral:

Yt = Y0e
−xt +

∫ t

0
e−x(t−s)dBs, t ≥ 0. (2.8)

It is easily verified that Y as defined by (2.8) satisfies (2.7) for any x and choice of Y0,
and that Y is the unique strong Markov solution to (2.7) (cf. Theorems 1.1 and 1.2).

Noting that the stochastic integral in (2.8) is a well-defined Wiener integral, basic
properties of Y are derived. In particular, and assuming that Y0 has finite variance, Y is
Gaussian with expectation function and covariance functions given by

E[Yt] = e−xtE[Y0], t ≥ 0,

and
Cov(Yu, Yt) = 1

2x(ext − e−xt) + e−x(u+t)Var(Y0), u ≥ t ≥ 0.

We now introduce infinite-dimensional OU processes and present key results in Proposition
2 and Theorem 2.2 concerning their Markovian structure and integrability, which are
essential for the Markovian representation of the fractional processes that we will discuss
next.
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Definition 2.7. [33, Definition 2.1] Given a collection of F0-measurable R-valued
random variables Y x

0 indexed by x ∈ (0,∞), let for each t ≥ 0

Y x
t = Y x

0 e
−xt +

∫ t

0
e−x(t−s)dBs, (2.9)

and let (Y x
t )x>0,t≥0 denote the collection of OU processes indexed by the speed of mean

reversion x.

Remark 2.5. Observe that the random field Y (t, x, ω) : [0,∞) × (0,∞) × Ω → R is a
measurable map

Y : Ω → C([0, T ], C∞((0,∞),R)),

and for each x ∈ (0,∞), (Y x
t )t≥0 is a one-dimensional OU process that solves (2.7).

Proposition 2. [15, Proposition 1] The collection of OU processes (Y x
t )x>0,t≥0 is an

infinite dimensional Markov process.

Proof. Let τ be an almost surely finite stopping time with respect to Ft = σ{B(s); s ≤ t}.
Then, B̃ = (B̃t = Bt+τ −Bτ )t≥0 is a standard Brownian motion independent of (Bu, u ≤ τ)
and, for each x > 0, (Y x

t+τ )t≥0 is the solution of the SDE

dY x
t+τ = −xY x

t+τdt+ dB̃t, Yτ ≥ 0. (2.10)

Therefore,
Y x

t+τ = e−xtY x
t+τ +

∫ t

0
e−x(t−s)dB̃t.

Since for each x > 0, the process (Y x
t+τ )t≥0 is the solution of the time-homogeneous

diffusion (2.10), it satisfies the strong Markov property (cf. Theorem 1.3). Thus, for any
bounded measurable function f ,

E[f((Yt+τ )t≥0)|Fτ ] = EYτ [f(Yt)t≥0)]. (2.11)

Here, (Yt)t≥0 refers to the collection of OU processes (Y x
t )x>0,t≥0, i.e. x is not fixed. The

right hand side of (2.11) means the function Ey[f(Yt)t≥0] evaluated at y = Yτ (ω) where

Ey[f(Yt)t≥0] = E[f((Y x,y(x)
t )x>0,t≥0)],

and for fixed x, (Y x,y
t )t≥0 is the OU process driven by B, of parameter x, starting from

y.

We now move on to the integrability conditions of the infinite-dimentional OU process.

Theorem 2.2. [33, Theorem 2.4] Let µ be a σ-finite measure on (0,∞) such that for
each t > 0 ∫ ∞

0
(1 ∧ x−1/2)µ(ds) < ∞. (2.12)

and let Y0 ∈ L1((0,∞), µ), i.e.
∫∞

0 Y0µ(dx) < ∞. Then the process (Yt)t≥0 has a
predictable L1((0,∞), µ)-valued version and is Gaussian.
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2.1.4. Markovian Representations
The goal is to obtain a Markovian representation of fBm in terms of a infinite-dimentional
OU process (Definition 2.7) for H ∈ (0, 1/2). We omit from our discussion the case
H ∈ (1/2, 1), as in the next chapters we will consider fractional processes whose paths are
“rougher” than standard Brownian motion. We will first focus on the Mandelbrot-Van
Ness representation (Definition 2.3) and then on Riemann-Liouville processes (Definition
2.4).

Assumption 2.1. Let (Y x
t )x>0,t≥0 denote the collection of OU processes, as given in

Definition 2.7, with initial value

Y x
0 =

∫ 0

−∞
esxdBs,

and let µ be the σ-finite measure on (0,∞) for H < 1/2 defined as follows:

µ(dx) := cHx
−H−1/2dx, cH := 1

Γ(H + 1/2)Γ(1/2 −H) . (2.13)

Remark 2.6. The constant cH in the definition of µ (2.13) is not unique: if H < 1/2,
then µ may be multiplied by any positive constant without affecting the validity of the
statements below [33, Remark 3.3].

Theorem 2.3. [33, Theorem 3.5] Under Assumption 2.1, the Mandelbrot-Van Ness
representation of fBm (Definition 2.3) admits the Markovian representation

BH
t = b0 +

∫ ∞

0
(Y x

t − Y x
0 )µ(dx), for H < 1/2, (2.14)

where (Y x
t − Y x

0 ) is a continuous process in L1((0,∞), µ).

Proof. The function τ → τH− 1
2/Γ(H + 1/2) appearing in the definition of BH is the

Laplace transform (cf. Theorem A.2) of the measure µ, i.e. for each τ > 0,

L(µ)(τ) =
∫ ∞

0
e−τxµ(dx) = τH−1/2

Γ(H + 1/2) .

Equivalently, we can use the definition of gamma function (2.3), and by setting y =
τx, α = 1

2 −H, we obtain

Γ
(1

2 −H
)

=
∫ ∞

0
(τx)−H−1/2e−τxτ dx,

which implies

τH−1/2

Γ(H + 1/2) =
∫ ∞

0
e−τxx−H−1/2 1

Γ(H + 1/2)Γ(1/2 −H)dx =
∫ ∞

0
e−τxµ(dx).

We recall that the Mandelbrot-Van Ness representation of fBm is given by

BH
t = b0 + 1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dBs +

∫ t

0
(t− s)H−1/2dBs

}
.
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Therefore,

BH
t = b0 +

∫ 0

−∞

∫ ∞

0
(e−x(t−s) − e−x(−s))µ(dx)dBs +

∫ t

0

∫ ∞

0
e−x(t−s)µ(dx)dBs.

By the Stochastic Fubini Theorem A.1,

BH
t = b0 +

∫ ∞

0

∫ 0

−∞
(e−x(t−s) − e−x(−s))dBsµ(dx) +

∫ ∞

0

∫ t

0
e−x(t−s)dBsµ(dx). (2.15)

Condition (A.2) of Fubini’s theorem guarantees that for almost all ω ∈ Ω and for all
t ∈ [0, T ] ∫ 0

−∞
(e−x(t−s) − e−x(−s))dBs and

∫ t

0
e−x(t−s)dBs ∈ L1((0,∞), µ)

and that we can interchange the order of integration in the double integral.

In our case, condition (A.2) is satisfied because∫ ∞

0

√∫ 0

−∞
(e−x(t−s) − e−x(−s))2dsµ(dx) =

∫ ∞

0

1 − e−tx

√
2x

µ(dx) ≤
∫ ∞

0

√
1 − e−2xt

x
µ(dx)

∫ ∞

0

√∫ t

0
e−2x(t−s)dsµ(dx) =

∫ ∞

0

√
1 − e−2xt

2x µ(dx) ≤
∫ ∞

0

√
1 − e−2xt

x
µ(dx)

where we used 1 − e−tx ≤
√

1 − e−tx. Moreover,∫ ∞

0

√
1 − e−2xt

x
µ(dx) ≤

(
1 ∨ (2t) 1

2
) ∫ ∞

0

(
1 ∧ x− 1

2
)
µ(dx) < ∞,

where we used the inequality

k1(x, τ) := 1 − e−τx

x
≤ (1 ∨ τ)(1 ∧ x−1). (2.16)

The function k1(·, τ) is decreasing in x for all τ > 0, as its derivative w.r.t. x is strictly
negative for each x ∈ (0,∞): ∂xk1(x, τ) = (e−τxxτ − 1 + e−τx)/x2 < 0. The inequality
(2.16) follows from

lim
x→∞

k1(x, τ) = 0, lim
x→0+

k1(x, τ) = τ.

Inserting initial value Y x
0 and the expression for Y x

t given in (2.9) into (2.15) yields the
Markovian representation (2.14):

BH
t = b0 +

∫ ∞

0
(e−xt − 1)Y x

0 µ(dx) +
∫ ∞

0

∫ t

0
e−x(t−s)dBsµ(dx)

= b0 +
∫ ∞

0
(Y x

t − Y x
0 )µ(dx).

Lastly, the expressions

(e−xt − 1)Y x
0 and

∫ t

0
e−x(t−s)dBs

define continuous L1((0,∞), µ)-valued processes: the first expression has majorant
(1 ∨ t)(1 ∧ x)Y x

0 in L1((0,∞), µ), which allows one to apply the dominated convergence
theorem, and the second expression is treated in [33, Theorem 2.11].
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We now turn to the Riemann-Liouville process, as defined in Definition 2.4.

Theorem 2.4. Let Y = (Y x
t )x>0,t≥0 denote the collection of OU processes, as given

in Definition 2.7, with a constant initial value Y x
0 = 0, and µ as given in (2.13). The

Riemann-Liouville process (Definition 2.4) admits the Markovian representation

BH
t =

∫ ∞

0
Y x

t µ(dx), for H < 1/2. (2.17)

Proof. In analogy to the previous theorem, the function τ → τH− 1
2/Γ(H+1/2) appearing

in the definition of BH is the Laplace transform of the measure µ. Therefore,

BH
t = 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dBs

=
∫ t

0

∫ ∞

0
e−x(t−s)µ(dx)dBs =

∫ ∞

0

∫ t

0
e−x(t−s)dBsµ(dx),

where in the last step we used the Stochastic Fubini Theorem A.1; for justification, refer
to the preceding theorem. Lastly, from Equation (2.9), where Y x

t =
∫ t

0 e
−x(t−s)dBs with

Y x
0 = 0, we obtain the Markovian representation (2.17).

The following lemma guarantees that there exists a version Y which is continuous in the
temporal variable and smooth in the spatial variable.

Lemma 1. [32, Lemma 1] Let Y = (Y x
t )x>0,t≥0 denote the collection of OU processes,

as given in Definition 2.7, with a constant initial value Y x
0 = 0, and µ as given in (2.13).

Then, Y is a measurable mapping

Y : Ω → C([0, T ], C∞((0,∞),R) ∩ L1((0,∞), µ)).

Remark 2.7. Lemma 1 is a slightly variation of [32, Lemma 1]: we are considering Y
as given in Definition 2.7, with a constant initial value Y x

0 = 0, and µ as given in (2.13)
instead of

Y x
t = 1

Γ(1/2 −H)

∫ t

0
e−x(t−s)dBs ∀t ∈ [0,∞), x ∈ (0,∞)

and µ(x) = x−H−1/2dx. In light of Remarks 2.3 and 2.6, altering the constants in front
of Y and µ do not affect the stated result.

Remark 2.8. When we say that the Riemann-Liouville process BH is a linear functional
of Y , we mean that ∀t ∈ [0, T ],

BH =
∫ t

0
(t− s)H−1/2dBs =

∫ ∞

0
Y x

t µ(dx), a.s.

with µ as given in (2.13).
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2.1.5. Markovian Representation of SVE
We now aim to elucidate the relationship between the Markovian representation of fBm
and stochastic Volterra equations (SVE), with a focus on the class of affine Volterra
processes.

Consider a one-dimensional stochastic Volterra equation of convolution type

Vt = ξ0(t) +
∫ t

0
K(t− s)b(Vs)ds+

∫ t

0
K(t− s)σ(Vs)dBs, (2.18)

where B is a d-dimensional Brownian motion, and the convolution kernel K, the function
ξ0 and coefficients b and σ satisfy suitable regularity conditions.

Setting K ≡ 1 and ξ0 ≡ V0 for some constant initial condition V0, one recovers the
stochastic integral equation (1.2) for n = 1 with time-independent coefficients. Conse-
quently, stochastic Volterra equations extend standard stochastic differential equations
allowing for more flexibility in modeling. However, they do not fall in general in the
semimartingale and Markovian frameworks. We can easily see this by considering the
Riemann-Liouville process (Definition 2.4) Vt =

∫ t
0 KH(t− s)dBs where the kernel KH is

defined by KH : τ → τH−1/2, H ∈ (0, 1/2).

The existence of strong and weak solutions of the form (2.18) can be established analo-
gously to stochastic differential equations. By an abuse of terminology, we say that the
stochastic Volterra equation (2.18) admits a weak solution if there exists a stochastic
basis (Ω,F ,F = (Ft)t∈T,P) that satisfies the usual conditions, supports a Brownian
motion B, and includes an adapted continuous process V such that (2.18) holds. We call
V a strong solution if it is also adapted to the filtration generated by B.

Remarkably, existence results have been proved under mild assumptions on the kernel
and coefficients in [2]. We place particular emphasis on affine Volterra processes, as they
effectively characterize the affine and Markovian structures of rough volatility models,
such as the rough Heston model, which will be discussed in the next chapter.

V is an affine Volterra process when b(x) and σ2(x) are affine in x. This definition
naturally generalizes to higher dimension: if b(x) is a vector and σ(x) a matrix, and one
then requires b(x) and σ(x)σT(x) > 0 to be affine in x. In the one-dimensional affine
case:

b(x) = β − λx and σ2(x) = α + ax (2.19)

for some real parameters β, λ, α and a such that α + aVt ≥ 0 for all t ≥ 0.

Theorem 2.5. Consider the equation (2.18) with coefficients b(x) and σ(x) as in (2.19)
and kernel K ∈ L2

loc(R+), i.e. ∃M > 0 such that
∫M

0 (K(τ))2dτ < ∞.

(i) Assume that α ≥ 0 and a = 0. Then there exists a pathwise unique strong solution
V for any initial condition ξ0 ∈ R; the Volterra OU process.

(ii) Assume that β ≥ 0, α ≥ 0, a > 0, and that K is strictly positive and com-
pletely monotone (Definition A.1). Assume also that there is γ ∈ (0, 2] such
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that
∫ h

0 (K(τ))2 dτ = O(hγ) and
∫ T

0 (K(τ + h) − K(τ))2 dt = O(hγ), for every
T < ∞. Then, there exists a unique in law R+-valued weak solution V for any
initial condition ξ0 ∈ R+; the Volterra square-root process.

In either case, the trajectories of V are Hölder continuous of any order less than γ/2.

Remark 2.9. In light of Theorem 2.5, the Rienman-Liouville process (Definition 2.4) is
then a strong solution of (2.18) with b = 0 and σ2 = α, where α is a constant.

To circumvent the fact that the process V in (2.18) is generally neither a Markov process
nor a semimartingale, one seeks a Markovian representation for V . The perspective
we have adopted for fBm, viewing it as a mixture of (possibly infinite) mean-reverting
processes, applies also in this more general context.

Assume that the kernel K is the Laplace transform of some measure µ:

K(τ) =
∫ ∞

0
e−xτµ(dx), τ ≥ 0. (2.20)

If µ is a positive measure, then K is completely monotone on (0,∞). Conversely, if K
admits the representation (2.20), it is completely monotone as a result of the Bernstein-
Widder theorem (Theorem A.2). To understand how (2.20) can lead to (possibly infinite)
mixture of mean-reverting processes, we assume ξ0 = 0 and substitue (2.20) into (2.18)
with ξ0 = 0. A formal interchange of the time integrals and µ integrals yields the
representation

Vt =
∫ t

0
K(t− s)

(
b(Vs) ds+ σ(Vs) dBs

)
=
∫ ∞

0

∫ t

0
e−x(t−s)

(
b(Vs) ds+ σ(Vs) dBs

)
µ(dx)

=
∫ ∞

0
Ut(x)µ(dx) (2.21)

where we have defined, for all t ≥ 0,

Ut(x) =
∫ t

0
e−x(t−s)b(Vs)ds+

∫ t

0
e−x(t−s)σ(Vs)dBs.

Crucially, each process (Ut(x))t≥0 is a semimartingale, even if V is not. To determine its
dynamics, we move e−xt outside the integrals and apply the Itô formula to obtain

dUt(x) = (−xUt(x) + b(Vt))dt+ σ(Vt)dBt, U0(x) = 0.

Plugging (2.19) and (2.21) into this expression gives

dUt(x) =
(

− xUt(x) + β − λVt

)
dt+

√
α + aVtdBt

=
(

− xUt(x) + β − λ
∫ ∞

0
Ut(x)µ(dx)

)
dt+

√
α + a

∫ ∞

0
Ut(x)µ(dx)dBt. (2.22)

As x ranges through the support of µ, (2.22) defines a (possibly infinite) coupled system
of mean-reverting processes, and (2.21) expresses V as a mixture of these processes. Note



2.2. Approximation of Completely Monotone Kernels 47

that for a = 0, Ut(x) is Gaussian. If additionally b = 0, i.e. β = λ = 0, and σ = α = 1,
we retrieve the infinite-dimensional OU process (Definition 2.7); Ut(x) ≡ Y x

t .

We emphasize that the representation (2.21) provides a natural Markovian approximation
of V , which is suitable for numerical purposes. When the measure µ is replaced by an
approximation µ̂ that is supported by finitely many points x1, . . . , xN , the dynamic (2.22)
becomes a system of N SDEs, corresponding to the dynamics of the N -dimensional
Markov process (Ut(x1), . . . , Ut(xN))t≥0. This system can then be used to approximate
the affine Volterra process V [41].

In the next section, we will establish stability results for the Markovian approximation of
d-dimensional stochastic Volterra equations. Our analysis extends beyond the Gaussian
and OU cases, as considering the more general scenario does not significantly complicate
the discussion.

2.2. Approximation of Completely Monotone Kernels

2.2.1. Introduction
Consider a d-dimensional stochastic Volterra equation of the form

Vt = v0 +
∫ t

0
K(t− s)b(Vs)ds+

∫ t

0
K(t− s)σ(Vs)dBs, (2.23)

where v0 ∈ Rd, and b : Rd → Rd, σ : Rd → Rd×d are Lipschitz continuous, i.e. ∃L > 0 s.t.

|b(x) − b(y)| + ∥σ(x) − σ(y)∥ ≤ L|x− y|, ∀x, y ∈ Rd.

We recall that |·| denotes the Euclidean norm of Rd, while ∥·∥ denotes the Hilbert–Schmidt
on Rd×d : ∥σ∥2 = ∑d

i=1
∑d

j=1 σ
2
i,j. Moreover, B is a d-dimensional Brownian motion, and

the kernel K : R+ → Rd×d satisfies the conditions:

K ∈ L2
loc(R+) and there is γ ∈ (0, 2] such that

∫ h
0 (K(τ))2 dt = O(hγ) and∫ T

0 (K(τ + h) −K(τ))2 dτ = O(hγ), for every T < ∞.
(2.24)

Then, we can apply the following theorem, which guarantees the existence and uniqueness
of a strong solution to (2.23).

Theorem 2.6. [2, Theorem 6.10] Under the kernel condition (2.24), if b and σ are
Lipschitz continuous, (2.23) admits a unique continuous strong solution V .

We are interested in approximating the solution of (2.23) when there exists a measure µ
on (0,∞) satisfying

K(τ) =
∫ ∞

0
e−xτµ(dx) < ∞, ∀τ > 0. (2.25)

In the one-dimensional case, such a kernel K is completely monotone by the Bernstein-
Widder Theorem A.2.
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The principle of the approximation involves replacing the measure µ with a finite
discrete measure µ̂ := ∑N

i=1 wiδxi
where δx is the Dirac measure on x, and (wi)N

i=1, (xi)N
i=1

are positive weights and nodes, respectively. Consequently, the kernel in (2.25) is
approximated by the finite sum

K̂(τ) :=
N∑

i=1
wie

−xiτ , (2.26)

which leads to the approximation

V̂t = v0 +
∫ t

0
K̂(t− s)b(V̂s)ds+

∫ t

0
K̂(t− s)σ(V̂s)dBs, (2.27)

of the stochastic Volterra equation in (2.23).

The following proposition shows that the approximation V̂ in (2.27) reduces to an
N -dimensional ordinary stochastic differential equation.

Proposition 3. [4, Proposition 2.1] Assume that µ̂ = ∑N
i=1 wiδxi

with wi ≥ 0 and
xi ≥ 0 where x1 < . . . < xN . Let v1

0, . . . , v
N
0 ∈ Rd be such that ∑N

i=1 wiv
i
0 = v0. Then

the solution to (2.27) is given by ∑N
i=1 wiV

i
t , where (V 1

t , . . . , V
N

t ) is the solution to the
(N × d)-dimensional SDE defined by

V i
t = vi

0 −
∫ t

0
xi(V i

t − vi
0)ds+

∫ t

0
b
( N∑

j=1
wjV

j
s

)
ds+

∫ t

0
σ
( N∑

j=1
wjV

j
s

)
dBs. (2.28)

Proof. By assumption, the SDE (2.28) has Lipschitz coefficients and therefore has a
unique strong solution (cf. Theorem 1.1 and Remark 1.1). Since

d
(
exit(V i

t − vi
0)
)

= exitb
( N∑

j=1
wjV

j
s

)
dt+ exitσ

( N∑
j=1

wjV
j

s

)
dBt,

we get

V i
t = vi

0 +
∫ t

0
exi(t−s)b

( N∑
j=1

wjV
j

s

)
ds+

∫ t

0
exi(t−s)σ

( N∑
j=1

wjV
j

s

)
dBs.

We left multiply this equation by wi and then sum over i to obtain that ∑N
i wiV

i
t solves

(2.27).

Remark 2.10. Proposition 3 presents a slight modification of the statement in [4]. In the
original paper, the theorem allows the kernel K to admit a signed measure. For instance,
K could take the form K(τ) = e−τ − 2e−3τ , though not being completely monotone
enters in this framework. To establish this broader result, it is necessary to assume the
existence of a bounded measurable function M : R+ → Rd×d such that

K(τ) =
∫ ∞

0
e−xτM(x)µ(dx), for τ ∈ [0,∞).
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2.2.2. Strong Error Analysis
To analyse the error between the stochastic Volterra equation (SVE) (2.23) and its
approximation (2.27), we proceed in two steps. First, we analyze the truncation error
incurred when replacing the kernel (2.25) with the truncated kernel Ktr, which is
obtained by truncating the measure µ from (0,∞) to [0,M ], with 0 < M < ∞. Second,
we evaluate the discretization error between the SVE with the truncated kernel Ktr and
the approximating kernel K̂ in (2.26), where µ has been discretized.

For any M > 0, the truncated kernels Ktr : R+ → Rd×d are defined as follows:

Ktr(τ) =
∫ M

0
e−xτµ(dx), for all τ ≥ 0.

Thus, the kernel Ktr approximates the kernel K defined by (2.25) as M → ∞. We
assume Ktr satisfies conditions (2.24), ensuring the validity of Thorem 2.6 for the
solution (V tr

t )t∈[0,T ] to the stochastic convolution equation associated given by:

V tr
t = v0 +

∫ t

0
Ktr(t− s)b(V tr

s )ds+
∫ t

0
Ktr(t− s)σ(V tr

s )dBs. (2.29)

Proposition 4. [4, Proposition 3.1] Let µ be a positive measure such that

r(M) :=
∫ ∞

M

∫ ∞

M

1
x1 + x2

µ(dx1)µ(dx2) < ∞, ∀M > 0. (2.30)

Then, for any T > 0, there exists a constant C > 0 that depends on T, µ, L, |b(0)| and
∥σ(0)∥ such that

E
[
|Vt − V tr

t |2
]

≤ Cr(M), ∀t ∈ [0, T ].

We now turn to the approximation of the truncated kernel Ktr by K̂. The following
result demonstrates that the L2-error between V tr and the Markovian approximation V̂

on a finite interval [0, T ] is controlled by the L2-error between Ktr and K̂.

Proposition 5. [4, Proposition 3.2] Let T > 0. Suppose that for any M > 0, there
is a kernel Ktr : [0, T ] → Rd×d satisfying (2.24). Then, there exists a constant C > 0,
depending on T, L, |v0|, |b(0)|, ∥σ(0)∥, such that

E
[
|V̂t − V tr

t |2
]

≤ C
∫ t

0

∥∥∥K̂(s) −Ktr(s)
∥∥∥2
ds, ∀t ∈ [0, T ].

Combining Propositions 4 and 5, we obtain the following comprehensive result.

Theorem 2.7. [4, Theorem 3.2] Let us assume that µ satisfies (2.30) and that Ktr :
[0, T ] → Rd×d satisfies (2.24). Then, there exists a constant C > 0 such that

E
[
|V̂t − Vt|2

]
≤ C

(
r(M) +

∫ t

0

∥∥∥K̂(s) −Ktr(s)
∥∥∥2
ds
)
, ∀t ∈ [0, T ].
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The term r(M) and the integral in the right hand side correspond respectively to the
truncation and discretization error.

The choice of positive weights (wi)N
i=1 and nodes (xi)N

i=1 in (2.26) is essential for ensuring
the accuracy of the approximation. Specifically, they must be chosen such that∥∥∥K̂ −K

∥∥∥
2,T

→ 0, as N → ∞,

where ∥·∥2,T is the L2([0, T ]) norm. As suggested by [32] and [6], we adopt an m-point
Gaussian quadrature rule to determine weights and nodes for approximating K in (2.25)
with K̂ in (2.26).

2.2.3. Strong Error Analysis under Gaussian Quadrature

We now determine the weights (wi)N
i=1 and nodes (xi)N

i=1 necessary for the approximating
kernel K̂ in (2.26) by means of Gaussian quadrature. For the delicate task of selecting
optimal point sets and weights, we focus on the specific class of fractional kernels

K(τ) := τH−1/2

Γ(H + 1/2) , (2.31)

with parameter H ∈ (0, 1/2) and satisfying

K(τ) =
∫ ∞

0
e−xτµ(dx) = cH

∫ ∞

0
e−xτx−H−1/2dx. (2.32)

We have set µ(dx) := ν(x)dx, where for x > 0 the weight function ν is defined as

ν(x) := cHx
−H−1/2, cH := 1

Γ(H + 1/2)Γ(1/2 −H) . (2.33)

Remark 2.11. The fractional kernel K (2.31) satisfies conditions (2.24) with γ = 2H.
Indeed, it is locally square integrable, and we have

∫ h
0 (K(τ))2dτ = h2H/(2H) as well as∫ T

0
(K(τ + h) −K(τ))2dt ≤ h2H

∫ ∞

0

(
(τ + 1)H−1/2 − (τ)H−1/2

)2
dτ

where the constant on the right-hand side is bounded by 1
2H

+ 1
2−2H

[2, Example 5.3].

Remark 2.12. It should be noted that analogous results, regarding the selection of
optimal point sets and weights by means of Gaussian quadrature, can be achieved for
completely monotone kernels K, not necessarily of the form (2.31) (cf. [6, Section 2.2]).

The measure µ appearing in the integral representation of K (2.32) is approximated by
a weighted sum of Dirac measures (µ̂ := ∑N

i=1 wiδxi
). Specifically, for each n ∈ N, we

truncate the positive half-line on which µ is defined to a finite interval [ξ0, ξn]. This
interval is then divided into subintervals by a sequence of auxiliary nodes (ξi)n

i=0. On each
subinterval [ξi, ξi+1] for i = 0, . . . , n− 1, the measure µ is approximated by an m-point
Gaussian quadrature rule. Thus, N = nm is the total number of nodes.
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Let Zn := {0 < ξ0 < . . . < ξn < ∞} denote the grid of auxiliary nodes, which we assume
satisfies the following conditions

(Hz) (i) ξ0 → 0 and ξn → ∞ for N → ∞,

(ii) ∆ := maxi=0,...,n−1|ξi+1 − ξi| → 0 for n → ∞,

(iii) Zn ⊂ Zn+1.

We adopt a geometric grid as suggested in [16], [32] and [6]. This choice satisfies (Hz)
and simplifies the error analysis compared to more complex subdivisions that aim to
distribute the error more uniformly. However, a better rate of convergence might be
achievable with a more strategic selection of intervals.

By geometric grid, we mean that the sequence (ξi)n
i=0 follows a geometric progression.

Its definition is provided below.

Definition 2.8 (Geometric grid). An interval of length L exhibits a geometric partition
if is divided into n subintervals Ik such that the ratio Ik+1/Ik = q for k = 0, . . . , n− 1,
where q is known as the common ration. The length of each subinterval can be expressed
as cqk for k = 0, . . . , n− 1, where c > 0 is a constant, and the total length of the interval
is given by:

L =
n−1∑
k=0

cqk =


cn, for q = 1,

c
1 − qn

1 − q
, otherwise.

Notation 2.1. For the remainder of this section, we will denote a ≈ b for a ∈ N and
b ∈ R if |a− b| < 1, meaning that a can be obtained from b by rounding b to the nearest
integer.

We now describe the nodes and weights used in our approximation of the kernel K in
(2.32), which is the approximation adopted in [6, Theorem 2.1]. Let N ∈ N be the
total number of nodes and α, β, a, b ∈ (0,∞) be parameters of the scheme. Let also
A = AH := ( 1

H
+ 1

3/2−H
)1/2, where 0 < H < 1/2 denotes the Hurst index. With these

parameters, we define
m ≈ β

A

√
N, n ≈ N

m
,

and the sequence of auxiliary nodes
ξ0 := a exp

(
− α

(3/2 −H)A
√
N
)
, ξn := b exp

( α

HA

√
N
)
,

ξi := ξ0

(
ξn

ξ0

)i/n

, i = 0, . . . , n.
(2.34)

Subsequently, we establish the Gaussian rule of type (H,N, α, β, a, b) as the set of nodes
(xi)nm

i=1 with corresponding weights (wi)nm
i=1 derived from the Gaussian quadrature rule of

level m. This rule is applied to the intervals [ξi, ξi+1] for i = 0, . . . , n− 1 with respect to
the weight function ν as defined in (2.33). In addition, we set x0 = 0 and

w0 := cH

∫ ξ0

0
x−H−1/2dx = cH

1/2 −H
ξ

1/2−H
0 . (2.35)
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The approximation of K in (2.32) is then given by

K̂ :=
nm∑
i=0

wie
−xit. (2.36)

Remark 2.13. The positivity of the weights wi is ensured by the non-negativity property
inherent to the weights obtained by Gaussian quadrature. A reminder of Gaussian
quadrature is provided in Appendix B.

Remark 2.14. In geometric Gaussian rules, we have four parameters that can be freely
chosen: α, β, a, b. These parameters are interpreted as follows:

• The parameter α determines the cutoff point ξn of the integral in (2.32), meaning
we approximate the integral only over the interval [0, ξn].

• The parameter β sets the level of the Gaussian quadrature rule.
• The parameter a specifies the size of the initial interval [0, ξ1], which is crucial due

to the singularity in the weight function ν.
• The parameter b allows for fine-tuning the results.

In particular, parameter α primarily controls the approximation error on the interval
[ξn,∞). Parameter β is mainly responsible for managing the error on [ξ1, ξn] and
parameter a governs the error on [0, ξ1].

Remark 2.15. The partition defined in (2.34) is a geometric grid: we can identify the
constants c and q in Definition 2.8 with

Ik+1 − Ik = ξ0

(ξn

ξ0

) 1
n

− 1
(ξn

ξ0

) k
n

= cqk, k ∈ {0, . . . , n− 1}.

The following theorem demonstrates that the L2-error between V tr and its approximation
V̂ (2.27) has an error bound of the form exp(−α

√
N/A), when K̂ in (2.36) is adopted.

Theorem 2.8. [6, Theorem 2.1] Let v0 ∈ Rd, and let b : Rd → Rd and σ : Rd×d → Rd×d

be globally Lipschitz continuous functions. Let V tr be the solution of (2.29), and let V̂
be the solution of (2.27), where we use the Gaussian rule of type (H,N, α, β, 1, 1) with
α := 1.06418 and β := 0.4275. Then,

E
[
|V̂T − V tr

T |2
]

≤ Cc2
H

(
T 3

(3/2 −H)2 + 3
2H2 (2.37)

+ 5π3

48 (eαβ − 1)2A
2−2HT 2H

β2−2HH
N1−H

)
exp

(
−2α
A

√
N
)
, (2.38)

where C is the constant from Proposition 5.

Remark 2.16. [6, Remark 2.2] Theorem 2.8 is not only valid for the specific values
of α and β given above, but for an entire set Γ ⊂ R2

+ of pairs (α, β). Specifically, the
theorem asserts that (1.06418, 0.4275) ∈ Γ. While these values represent optimal choices
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for the theorem, practical applications may achieve even better results with alternative
selections of (α, β).

Remark 2.17. [6, Remark 2.5] The bound in Theorem 2.8 is completely non-asymptotic.
In the proof, m and n are assumed to be real-valued, rather than integer-valued. One
can still take the suggested point set of the theorem by simply rounding m and n. As
the theorem appears to overestimate the quadrature error, resulting in artificially small
intervals [ξ0, ξn], it is convenient to round m up to the next integer.

Remark 2.18. The positivity of the weights (wi)N
i=1 is ensured by the non-negativity

property inherent to the weights obtained by Gaussian quadrature. A reminder of
Gaussian quadrature is provided in Appendix B.

In [6, Remark 2.7], it is suggested to use a weight w0 different from that is (2.35), which
was employed in Theorem 2.8, to simplify the proof. The following proposition provides
the exact L2 error representation for K̂ and Ktr, necessary to analyze the optimal w0.

Proposition 6. [6, Proposition 2.12.] Consider K̂(t) = ∑N
i=0 wie

−xit, where x0 = 0 and
xi > 0 for i = 1, . . . , N. Then,

∫ T

0
|K̂(t) −Ktr(t)|2dt = T 2H

2HΓ(H + 1/2)2 + w2
0T + 2w0

N∑
i=1

wi

xi

(1 − e−xiT )

+
N∑

i=1

N∑
j=1

wiwj

xi + xj

(1 − e−(xi+xj)T ) − 2w0T
H+1/2

Γ(H + 3/2)

− 2
Γ(H + 1/2)

N∑
i=1

wi

x
H+1/2
i

∫ xiT

0
tH−1/2e−tdt.

(2.39)

Remark 2.19. [6, Remark 2.13] The expression (2.39) is almost explicit, except for the
last integral term on the right-hand side. However, this term is a (lower) incomplete
gamma function, which can be computed efficiently. The sum of the lower and upper
incomplete gamma functions, referred to as “incomplete” because they integrate over
only part of the region defined by the Gamma function, yields the Gamma function.

Remark 2.20. [6, Remark 2.14] The right hand side of (2.39) is a quadratic polynomial
in w0. The optimal w0 is the one that minimizes (2.39). This choice of w0 will be used
in the numerical application instead of the w0 specified in Theorem 2.8.



3
Markovian Approximation of the Rough
Bergomi Model

Stochastic volatility models, characterized by continuous yet less regular trajectories
than Brownian motion and known as rough volatility models, have garnered significant
attention in mathematical finance. These models, featuring fractional kernels, are well-
suited to capture the stylized features of realized volatility time series and the implied
volatility surface.

Recent statistical studies indicate that realized volatility oscillates more rapidly than
Brownian motion across multiple time scales and markets [25]. The dynamics of the log-
volatility are close to that of a fractional Brownian motion with a small Hurst parameter
H of order 0.1. Additionally, the implied volatility skew for short maturities is notably
steeper than that predicted by classical diffusion models. As maturity decreases, the slope
of the at-the-money (ATM) implied volatility skew follows a power law that diverges at
zero. This behavior is accurately reproduced by rough volatility models [8], [20], [24].
Empirical findings are further supported by micro-structural considerations as rough
volatility models naturally emerge as scaling limits of micro-structural pricing models
with self-exciting features driven by Hawkes processes [21].

Such insights have driven the exploration of various rough volatility models in the
literature, including the rough fractional stochastic volatility model [25], the rough
Bergomi model [8], and the fractional and rough Heston models [18], [21]. The absence
of semimartingale and Markov properties in these models complicates fundamental tasks
such as simulation, pricing and control problems. To address these challenges, and
drawing from the Markovian representation of fractional processes discussed in Chapter
2, we can develop tractable multi-factor stochastic volatility models that approximate
rough volatility models while maintaining a Markovian structure.

In this chapter, we introduce rough volatility models (Section 3.1), with a particular
focus on the rough Bergomi model, which serves as the central model of this work. We
derive its Markovian representation and approximation (Section 3.2) and present the
simulation scheme for the model based on the established Markovian approximation
(Section 3.3).

54
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In Section 3.1, we present rough volatility models, discussing the motivations behind
their development and their suitability for modeling historical volatility dynamics as well
as replicating the behavior of the implied volatility surface. We specifically focus on the
rough Heston model, a specific instance of affine Volterra processes [3]. Thus, as outlined
in the previous chapter, we can establish a Markovian approximation for this model,
which leads to a multi-factor model known as the lifted Heston model [1].

In Section 3.2, we examine the rough Bergomi model and derive its Markovian approxi-
mation. Initially, we represent the fractional component of the rough Bergomi volatility
as a linear functional of an infinite-dimensional Ornstein-Uhlenbeck process to obtain its
Markovian representation. Next, we discretize this representation to derive the associated
approximation, and establish an ad hoc convergence result in Theorem 3.1.

In Section 3.3, we outline the simulation scheme for the rough Bergomi model. This
involves calculating the positive weights and nodes using Gaussian quadrature to ap-
proximate the fractional kernel in the model. We then use these weights and nodes to
simulate the Markovian approximation of the rough Bergomi model. The accuracy of the
implementation is validated by computing the L2 error for the Riemann-Liouville process
approximation and comparing it with existing literature results. Finally, simulations of
the rough Bergomi model are performed across various parameter settings.

3.1. Rough Volatility Models

3.1.1. Introduction
Financial derivatives are products that are based on the performance of some underlying
assets such as stocks, interest rates, or commodity prices. The fundamental pricing
partial differential equation for valuing European options on stocks, a type of derivative,
is the renowned Black-Scholes equation, introduced by Black and Scholes in 1973 [12].
In their model, Black and Scholes consider a stock price S that follows an Itô diffusion,
described by:

dSt = bStdt+ σStdB
S
t , S0 > 0,

where b is the drift parameter, σ denotes the volatility parameter and BS represents a
standard Brownian motion. While this model facilitates efficient pricing and hedging
of European options, it does not accurately reflect real-world market conditions. One
significant limitation of the Black-Scholes model is the assumption of constant volatility,
which fails to capture the implied volatility smile observed in many financial markets.

European options are often quoted in terms of their implied volatilities. The implied
volatility, or Black-Scholes implied volatility denoted as σBS, is the unique volatility value
that, when inserted as a parameter in the Black-Scholes option pricing model, matches
the market price of the option. Numerical inversion of the Black-Scholes equation, based
on market option prices for different strikes and a fixed maturity time, exhibits the
so-called implied volatility skew or smile.
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Figure 3.1a presents typical implied volatility shapes found in financial market data
quotes, where the implied volatility is plotted against the strike price, K. Figure 3.1b
depicts a typical implied volatility surface across both strike price (or moneyness) and
time dimensions, demonstrating that the surface also varies over time. This variation is
referred to as the term-structure of the implied volatility surface.

(a) Implied volatility shapes. (b) Implied volatility surface.

Figure 3.1: (a) Typical implied volatility shapes: smile and skew for
fixed values of T . (b) Implied volatility surface exhibiting a pronounced
smile for short maturities and a pronounced skew for longer maturities T .

To address the limitations of the Black-Scholes model, a new class of models known as
stochastic volatility models has emerged. In these models, the volatility V follows its
own stochastic differential equation:

dVt = a(t, Vt)dt+ c(t, Vt)dBV
t , V0 > 0,

where the coefficients a and c are some functions of V , and BV is a Brownian motion
correlated with BS. Stochastic volatility models, such as the Bergomi model or the
Heston model, accurately reproduce the term structure of at-the-money skew (i.e., skew
at the stike price K = 0) for long maturities. However, they fall short in explaining the
observed behavior for very short maturities.

Specifically, let σBS(k, τ) represent the (Black-Scholes) implied volatility of an option
with log-moneyness k = logK/St and time to maturity τ = T − t. The term structure of
at-the-money skew is defined as:

ψ(τ) :=
∣∣∣∣∣∂σBS(k, τ)

∂k

∣∣∣∣∣
k=0

.

In conventional stochastic volatility models, the ATM volatility skew ψ(τ) is constant for
short dates and inversely proportional to τ for long dates [8]. However, empirical studies
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indicate a power-law decay of the ATM skew of option prices, with an explosion when τ
approaches zero.

In [24], it is demonstrated that the term structure of a stochastic volatility model, where
the volatility is driven by a fractional Brownian motion with Hurst parameter H, is
given by ψ(τ) ∼ τH−1/2, when τ ↓ 0. As shown in Figure 3.2, we observe that ψ(τ) is
proportional to τ−α for some 0 < α < 1/2 over a wide range of expirations.

Figure 3.2: The black dots are non-parametric estimates of the S&P
index at-the-money volatility skews as of August 14, 2013; the curve is the
power-law fit ψ(τ) = Aτ−0.407 with τ measured in years [8, Figure 1.2].

The use of fractional Brownian motion was initiated by Comte and Renault [18], who pro-
posed a log-volatility model based on the Mandelbrot-van Ness representation (Definition
2.3) of fractional Brownian motion:

BH
t = b0 + 1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dBs +

∫ t

0
(t− s)H−1/2dBs

}
,

where H ∈ (0, 1) is the Hurst parameter governing the regularity of trajectories and the
dependence structure of the increments of BH , and B is a two-sided Brownian motion.
The sample paths of BH are Hölder continuous of any order strictly less than H (Theorem
2.1) and for H > 1/2 the increments of BH have the long-range dependence property
(Section 2.1). Comte and Renault chose the Hurst parameter H > 1/2 to ensure long
memory. However, Gatheral et al. demonstrate in [25] that the log-volatility behaves
essentially as a fractional Brownian motion with Hurst parameter H around 0.1.

This observation has sparked growing interest in rough volatility models, as they can
replicate the power-law decay of the ATM skew [8], [20], [24]. The term rough volatility
models was coined to designate stochastic volatility models whose trajectories are con-
tinuous but exhibit rougher paths than those of a Brownian motion in terms of their
Hölder regularity. Specifically, these trajectories are considered rough when the Hölder
regularity is less than 1/2.

Moreover, rough volatility models appear more consistent with financial time series data.
Statistical evidence across multiple time scales supports the observation that realized
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volatility time series oscillate more rapidly than those modeled by Brownian motion
[25]. These insights are further supported by microstructural considerations, as rough
volatility models emerge as scaling limits of microstructural pricing models driven by
self-exciting dynamics driven by Hawkes processes [21], [37].

So far, the literature has examined various rough volatility models, including the rough
fractional stochastic volatility (RFSV) model [25], the rough Bergomi model [8], and the
rough Heston model [21]. A detailed exposition of the rough Bergomi model, which is
the primary focus of this thesis, will be presented in the next section. Here, we provide a
brief overview of the rough Heston model.

3.1.2. The Rough Heston Model
The rough Heston model, introduced by El Euch and Rosenbaum in [21], extends the
Heston model by incorporating a fractional kernel in the variance dynamics, thereby
serving as its rough analogue. In this model, the asset price S evolves according to:

dSt = St

√
VtdB

S
t , S0 > 0, (3.1)

while the instantaneous variance process V is given by:

Vt = V0 +
∫ t

0

(t− s)H−1/2

Γ(H + 1/2)
(
λ(θ − Vs)ds+ ν

√
Vs

)
dBV

s , (3.2)

where H ∈ (0, 1/2), the parameters V0, λ, θ and ν are positive constants and BS, BV are
correlated Brownian motions. When H = 1/2, the model reverts to the standard Heston
model.

Remark 3.1. Several variations of the rough Heston model have been developed since its
introduction. Guennoun et al. [29] proposed an alternative formulation using fractional
derivatives. Meanwhile, Jaber et al. [3] explored affine Volterra processes, leading to the
development of the Volterra Heston model, of which the rough Heston model is a specific
instance.

Similar to the Heston model, which is known for its closed-form expression of the
characteristic function of the log-price, the rough Heston model benefits from a semi-
closed formula for the same function. This facilitates fast pricing and calibration by
Fourier inversion techniques. As demonstrated in [21], the characteristic function of
log(St/S0) can be expressed in terms of the solution to a fractional Riccati equation:

E exp(z log(St/S0)) = exp
(∫ t

0
F (z, ψ(t− s, z))g(s)ds

)
,

where
g(t) = V0 +

∫ t

0
K(t− s)θ(s)ds,

and ψ(·, z) is the unique continuous solution to the fractional Riccati equation

ψ(t, z) =
∫ t

0
K(t− s)F (z, ψ(s, z))ds, t ∈ [0, T ], (3.3)
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with
F (z, x) := 1

2(z2 − z) + (ρνz − λ)x+ ν2

2 x.

Given that equation (3.3) needs to be solved numerically, only a semi-explicit formula is
available.

The same principles discussed in Section 2.2 apply here. We can approximate the
fractional kernel K underlying the processes (3.1) and (3.2) with a kernel K̂ of the form
K̂(t) = ∑N

i=1 wie
−xit. Consequently, a multi-factor approximation (Ŝ, V̂ ) of the rough

Heston model is obtained, the lifted Heston model, along with a semi-explicit formula for
the characteristic function of log(Ŝ/S0) [2, Section 7.4].

3.1.3. The Lifted Heston Model
The Volterra Heston model1 is an affine Volterra process X = (logS, V ) with state space
R × R+, where the price process S and its variance process V are described by:

dSt = St

√
VtdB

S
t , S0 > 0,

Vt = g0(t) +
∫ t

0
K(t− s)

(
− λVsds+ ν

√
Vs

)
dBV

s .
(3.4)

Here, K ∈ L2
loc(R+), BS and BV are two correlated Brownian motions, the parameters

λ, ν ∈ R+ and g0 : R+ → R is given by:

g0(t) = V0 +
∫ t

0
K(s)λθds, t ≥ 0, for some V0, θ ≥ 0.

Under conditions on the kernel and on the set of admissible input curves g0, the existence
of a weak unique solution (S, V ) valued in R2

+ of (3.4) is provided in [2, Theorem 6.1].
Given that S is determined by V , this result primarily hinges on the weak existence of V .

The volatility process V is itself a Volterra square root process. In the case of the rough
Heston volatility (3.2), where K(τ) = τH−1/2/Γ(H + 1/2), Theorem 2.5 ensures the
weak existence of V . As outlined in Remark 2.11, the fractional kernel K satisfies the
assumptions of the mentioned theorem.

The fractional kernel K is completely monotone (Definition A.1), thus, according to the
Bernstein theorem (Theorem A.2), K can be represented as the Laplace transform of a
positive measure µ

K(τ) =
∫ ∞

0
e−xτµ(dx), µ(dx) = x−H−1/2

Γ(H + 1/2)Γ(1/2 −H) .

Approximating the measure µ with a weighted sum of Dirac measures µ̂ := ∑N
i=1 wiδxi

,
where (wi)N

i=1 are positive weights and (xi)N
i=1 are nodes, yields the following approximation

for the kernel:
K̂(τ) =

N∑
i=1

wie
−xiτ ,

1More precisely, the extended Volterra Heston model, which allows arbitrary curves g0 as input.
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which, in turn, leads to a possible approximation of the rough Heston model
dŜt = Ŝt

√
V̂tdB

S
t , S0 > 0,

V̂t = ĝ(t) +
N∑

i=1
wiU

i
t ,

(3.5)

with

dU i
t = (−xiU

i
t − λV̂t)dt+ ν

√
V̂tdB

V
t , U i

0 = 0,

ĝ(t) = V0 +
∫ t

0
K̂(t− s)θ(s)ds.

This formulation has been coined as the lifted Heston model in [1].

According to [2, Theorem 7.3], (Ŝ, V̂ ) is the unique R2
+-valued strong solution of (3.5).

This result is analogous to Proposition 3, which establishes a strong uniqueness result
for the approximation V̂ when its coefficients are Lipschitz. However, this is not the case
for σ(x) = ν

√
x in (3.2), thus, [2, Theorem 7.3] requires a weaker regularity condition

(in terms of Hölder continuity) on σ.

The model (3.5) is Markovian and consists of N+1 state variables, including the spot price
Ŝ and the variance factors U = (U i)N

i=1. As the factors U are Markovian semimartigales,
V̂ represents the Markovian-semimartingale approximation of the volatility process V
(3.2) for a suitable choice of ĝ. This approximation is further supported by convergence
results, which ensure that (Ŝ, V̂ ) converges in law to (S, V ) [2, Theorem 7.7].

The convergence of (Ŝ, V̂ ) is contingent upon the convergence of the approximated kernel
K̂ to K. The choice of positive weights (wi)N

i=1 and nodes (xi)N
i=1, as well as the set

of auxiliary nodes (ξi)N
i=1, is critical in this context. When the weights and nodes are

defined as:
wi =

∫ ξi

ξi−1
µ(dx), xi = 1

wi

∫ ξi

ξi−1
xµ(dx), i ∈ {1, . . . , N}, (3.6)

[2, Proposition 7.5] provides the conditions for the convergence of K̂ to K in L2([0, T ]),
with a strong rate of convergence of order N−4H/5. When the weights and nodes are
derived using Gaussian quadrature, strong convergence is also assured, with an error
bound of the form exp(−a

√
N), as detailed in [6, Corollary 3.7].

3.2. Markovian Approximation of the Rough Bergomi Model

3.2.1. Introduction
The rough Bergomi model, introduced by Bayer et al. [8], has gained acceptance
for stochastic volatility modeling due to its alignment with the stylized features of
realized volatility time series and the implied volatility surface. However, the lack of
semimartingale and Markov properties in this model complicates even fundamental tasks
such as pricing European options. As discussed before, to overcome these difficulties, we
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approximate the rough Bergomi model with a simpler, more practical version suitable
for pricing, simulation, and stochastic control. Our primary focus is on the latter two
applications.

Building on the Markovian representation from the previous chapter and inspired by prior
works [2], [33], we introduce the rough Bergomi model and develop a finite Markovian
approximation in two steps. First, we establish a suitable Markovian representation for
its fractional component by expressing it as superposition of infinitely many Ornstein-
Uhlenbeck processes, resulting in the Markovian representation (S, V ) of the model
(Definition 3.2). Next, we discretize this representation to derive the corresponding
Markovian approximation (Ŝ, V̂ ) (Definition 3.3).

As S is determined by V , or more precisely by (
∫ t

0 Vsds,
∫ t

0
√
V sdB

S
s ), see (3.16), Ŝ is

likewise determined by V̂ . Therefore, when establishing convergence results our primary
focus is on the approximated volatility V̂ . Concerning the portfolio optimization problem,
we establish the requisite convergence result in Theorem 3.1. This theorem demonstrates
the almost sure monotone convergence of V̂ to V , where these processes share the same
distributions as V̂ and V , respectively. The process V̂ is constructed using the fractional
kernel K̂, which employs Gaussian weights and nodes.

3.2.2. The Rough Bergomi Model
Building on the foundational work on rough volatility [25], Bayer et al., in their paper
‘Pricing Under Rough Volatility’ [8], illustrate how the rough fractional stochastic volatility
(RFSV) model provides a natural framework for option pricing. We now outline the main
steps leading to the development of the rough Bergomi model.

Consider the simple RFSV model initially proposed in [25], which assumes the following
dynamics for the increments of log-volatility

log σt+∆ − log σt = ν(BH
t+∆ −BH

t ), (3.7)

for H < 1/2 and ν > 0. The adopted integral representation for BH
t is a slight

modification to the Mandelbrot-Van Ness representation given in Definition 2.3. By
setting the initial condition b0 = 0, it is given by:

BH
t = CH

{∫ t

−∞
(t− s)H−1/2dBs −

∫ 0

−∞
(−s)H−1/2dBs

}
, (3.8)

where

CH :=
(

2HΓ(3/2 −H)
Γ(H + 1/2)Γ(2 − 2H)

)1/2

. (3.9)

The constant CH is chosen to ensure that the representation (3.8) defines a fractional
Brownian motion, a mean-zero Gaussian process with the covariance function given in
Definition 2.1.
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Letting Vt = σ2
t and substituting equation (3.8) into (3.7), yields, for t ≥ u,

log Vt − log Vu = 2νCH

{∫ t

−∞
(t− s)H−1/2dBs −

∫ u

−∞
(u− s)H−1/2dBs

}
= 2νCH

{∫ t

u
(t− s)H−1/2dBs +

∫ u

−∞

(
(t− s)H−1/2 − (u− s)H−1/2

)
dBs

}
= 2νCH {Mu(t) + Zu(t)} ,

where the notation Mu(t) indicates that M = (Mt)t≥u. We observe that the process Z
is Fu-measurable, where Fu denotes the filtration supporting the two-sided Brownian
motion B, while the process M is independent of Fu.

Introducing the Riemann-Liouville process (cf. Definition 2.4)

B̃H
u (t) :=

√
2H

∫ t

u
(t− s)H−1/2dBs,

we define η := 2νCH/
√

2H, leading to

log Vt − log Vu = ηB̃H
u (t) + η

√
2HZu(t),

and
Vt = Vu exp

(
ηB̃H

u (t) + η
√

2HZu(t)
)
.

Thus, since V and Z are Fu-measurable, we obtain

E[Vt | Fu] = Vu exp
(
η
√

2HZu(t)
)
E
[
exp

(
ηB̃H

u (t)
)]
. (3.10)

As a consequence,

Vt = Vu exp
(
ηB̃H

u (t) + η
√

2HZu(t)
)

= E[Vt | Fu] exp
(
ηB̃H

u (t) − 1
2η

2E
[
|B̃H

u (t)|2
])
.

Summarizing, Bayer et al. [8] proposed the following model, for t ≥ u:
dSt = St(µtdt+

√
VtdB

S
t ), Su > 0,

Vt = E[Vt | Fu] exp
(
ηB̃H

u (t) − 1
2η

2E
[
|B̃H

u (t)|2
])
,

(3.11)

where BS is another Brownian motion, which is correlated to the Brownian motion B

driving Z, and where µ is an appropriate drift term.

In the original paper, the model (3.11) is not employed for pricing purposes as it is
framed under the real probability measure, P. Therefore, it is reformulated with respect
to the risk-neutral measure: Q ∼ P on [u, T ]. Considering the change of measure
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dBs = dBQ
s + λ(s)ds2, where λ(s) is assumed to be a deterministic function of s, the

rough Bergomi model is then expressed as follows, for u ≤ t ≤ T :
dSt = St

√
VtdB

S,Q
t , Su > 0,

Vt = ξu(t) exp
(
ηB̃Q

u (t) − 1
2η

2E
[
|B̃Q

u (t)|2
])
.

(3.12)

Here, ξu(t), termed forward variance, is defined as the expectation under the pricing
measure of the instantaneous variance, that is ξu(t) = EQ[Vt|Fu], and it holds that
ξt(t) = Vt. Specifically, the forward variance has the form

ξu(t) = EQ[Vt|Fu] = E[Vt|Fu] exp
(
η
√

2H
∫ t

u
(t− s)H−1/2λ(s)ds

)
.

The term E[Vt|Fu] as given in (3.10) depends on the history of the driving Brownian
motion B, with this dependency encapsulated in the reliance of the process Z on the
entire history of B. The second term involving λ(s), alter the marginal distribution of
V . Although the conditional distribution of V under P is lognormal, it is not generally
lognormal under Q.

Since our focus is not on pricing, the rough Bergomi model we will use is derived from
(3.11). Prior to defining it, we reformulate the rough Bergomi volatility to align its
expression with existing literature that employs the Markovian approximation of the
rough Bergomi model [4], [6], [64]. We set the simulation’s origin at u = 0, assume
E[Vt|F0] ≡ V0 > 0 for t ≥ 0, and use standard notation for stochastic processes:
B̃H = (B̃H

t )t≥0 and BV = (BV
t )t≥0. The volatility process in (3.11) then becomes:

Vt = V0 exp
(
η
√

2H
∫ t

0
(t− s)H−1/2dBV

s − η2

2 t
2H

)
, V0 > 0. (3.13)

where we have used the Itô isometry to compute

E
[
(B̃H

t )2
]

=
∫ t

0
2H(t− s)2H−1ds = t2H . (3.14)

Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a stochastic basis, and let the Hurst index H ∈ (0, 1/2).
We define the rough Bergomi model as follows.

Definition 3.1. The rough Bergomi stochastic volatility model takes the form
dSt = Stµtdt+ St

√
VtdB

S
t , S0 > 0,

Vt = V0 exp
(
η
√

2H
∫ t

0
(t− s)H−1/2dBV

s − η2

2 t
2H

)
, V0 > 0,

(3.15)

where the parameter η = 2νCH/
√

2H with CH defined as in (3.9).
2In our notation, expectations and stochastic processes without a superscript refer to the probability

measure P. Superscripts are used exclusively for the martingale measure Q.
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Here, BS, BV : [0, T ] → R are two correlated standard Brownian motions supported by
the filtration F with correlation coefficient ρ ∈ (−1, 1), typically negative. The process
µ : [0, T ] × Ω → R is a predictable bounded process. The Hurst parameter H governs
the decay of the term structure of volatility skew for very short expirations and is usually
around 0.1, more information on how to choose these parameters can be found in [8].

Remark 3.2. Note that the volatility V in Definition 3.1 is given explicitly, ensuring
its existence. Furthermore, its uniqueness follows from the fact that it is an injective
function of a Riemann-Liouville process (Definition 2.4). The Riemann-Liouville process,
being a Gaussian process with a specified covariance and mean, is unique [26]. Although
the dynamics of the stock price in the definition do not satisfy the linear or quadratic
growth condition due to the term

√
V , the existence of the solution S is assured from its

explicit expression (3.16). For further details on existence and pathwise uniqueness of
the rough Bergomi model, we refer the reader to [35].

Remark 3.3. The solution to the stock price’s SDE in Definition 3.1 can be obtained
through the standard procedure consisting of applying the Itô formula to logS, and it is
given by:

St = S0 exp
(∫ t

0

(
µs − 1

2Vs

)
ds+

∫ t

0

√
VsdB

S
s

)
, S0 > 0. (3.16)

Now, we aim to find the Markovian representation and approximation for the fractional
component appearing in the rough Bergomi volatility (3.13). Since the fractional part is
a Rienmann-Liouville process (Definition 2.4), its Markovian representation is a linear
functional of infinitely many Ornstein-Uhlenbeck processes Y x

t with varying speed of
mean reversion x (Theorem 2.4). The Markovian approximation will follow from the
discretization of this representation.

3.2.3. Markovian Representation and Approximation
From Definition 3.1 and Theorem 2.17, we formulate the Markovian representation of
the rough Bergomi model. We replace the Rienmann-Liouville process appearing in the
rough Bergomi volatility (3.13) with its Markovian representation:∫ t

0
(t− s)H−1/2dBs = Γ(H + 1/2)

∫ ∞

0
Y x

t µ(dx)

= Γ(H + 1/2)
∫ ∞

0

∫ t

0
e−x(t−s)dBsµ(dx),

(3.17)

recalling that µ(dx) = ν(x)dx, where for x > 0

ν(x) = cHx
−H−1/2, cH = 1

Γ(H + 1/2)Γ(1/2 −H) .
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Motivated by (3.14), we also rewrite the term t2H appearing in (3.13) as follows:

t2H = 2H
∫ t

0
(t− s)2H−1ds = 2HE

[(∫ t

0
(t− s)H−1/2dBs

)2]

= 2HΓ(H + 1/2)2E
[(∫ ∞

0
Y x

t µ(dx)
)2
]

= 2HΓ(H + 1/2)2E
[(∫ ∞

0

∫ t

0
e−x(t−s)dBsµ(dx)

)2]
,

where in the second last step we have used (3.17). Applying the stochastic Fubini
Theorem A.1 and the Itô isometry yields

t2H = 2HΓ(H + 1/2)2E
[(∫ t

0

∫ ∞

0
e−x(t−s)µ(dx)dBs

)2]

= 2HΓ(H + 1/2)2
∫ t

0

(∫ ∞

0
e−x(t−s)µ(dx)

)2
ds.

Definition 3.2. The Markovian representation of the rough Bergomi model (S, V ) is
given by

dSt = Stµtdt+ St

√
VtdB

S
t , S0 > 0,

Vt = V0 exp
(
C1

∫ ∞

0
Y x

t µ(dx) − C2

∫ t

0

(∫ ∞

0
e−x(t−s)µ(dx)

)2
ds
)
, V0 > 0,

where C1 := η
√

2HΓ(H + 1/2), C2 := η2HΓ(H + 1/2)2, the parameter η = 2νCH/
√

2H
with CH defined as in (3.9).

Given the representation in Definition 3.2, we now proceed with its discretization.
The measure µ appearing in Definition 3.2 is approximated by a weighted sum of
Dirac measures µ̂ := ∑N

i=1 wiδxi
, where (wi)N

i=1 are positive weights and (xi)N
i=1 are the

corresponding nodes.

Definition 3.3. The Markovian approximation of the rough Bergomi model (Ŝ, V̂ ) is
given by

dŜt = Ŝtµtdt+ Ŝt

√
V̂tdB

S
t , S0 > 0,

V̂t = V0 exp
(
C1

N∑
i=1

wi

∫ t

0
e−xi(t−s)dBV

s − C2

∫ t

0

( N∑
i=1

wie
−xi(t−s)

)2
ds

)
, V0 > 0,

where C1 := η
√

2HΓ(H + 1/2), C2 := η2HΓ(H + 1/2)2, the parameter η = 2νCH/
√

2H
with CH defined as in (3.9).

Remark 3.4. It is important to note that neither S nor Ŝ can be simulated exactly;
both require time discretization of (3.16) that define S and Ŝ, respectively. The same
applies to V and V̂ . So far, a comprehensive weak error analysis of the Euler-Maruyama
scheme for S is still lacking [6, Remark 3.4].



3.2. Markovian Approximation of the Rough Bergomi Model 66

We are now left to justify the convergence of (Ŝ, V̂ ) to the Markovian representation
(S, V ) and, thus, to the original rough model. Since Ŝ is determined by V̂ ,

Ŝt = S0 exp
(∫ t

0

(
µs − 1

2 V̂s

)
ds+

∫ t

0

√
V̂sdB

S
s

)
, S0 > 0,

our focus lies on establishing convergence results for the approximated volatility V̂ .

The following theorem ensures the monotone almost sure convergence of V̂ to V. The
processes V̂ and V share the same distribution of V̂ and V , more precisely they are
the representations of V̂ and V we can construct using the Skorokhod representation
theorem (Theorem A.3). Here, V̂ is the approximated volatility process when its kernel
K̂ is constructed using Gaussian weights and nodes as described in Section 2.2.

Remark 3.5. In our thesis, we will focus on the convergence of V̂ to V only within the
conditional expectation, cf. Theorem 4.3. Therefore, establishing the convergence of V̂
to V suffices for our purposes.

Theorem 3.1. Let V be the rough Bergomi volatility in (3.13), and V̂ the approximated
volatility given in Definition 3.3 and obtained using Gaussian quadrature. On some
probability space, there exist processes V̂ and V distributed as V and V̂ , such that V̂
converges almost surely to V and this convergence is monotone: for 0 ≤ t ≤ T ,

V̂t ↑ Vt a.s., as N → ∞. (3.18)

Proof. We start by proving that, as N → ∞,

K̂(τ) =
N∑

i=1
wie

−xiτ ↑ K(τ) =
∫ ∞

0
e−x(τ)µ(dx), (3.19)

for τ ∈ [0, T ]. Both the monotonicity and the pointwise convergence of K̂ to K follow
from the properties of Gaussian quadrature, as presented in Appendix B.

According to Section 2.2, we approximate K using an m-point Gaussian quadrature rule:

K̂(τ) =
nm∑
i=1

wie
−xiτ ,

where m ≈ C
√
N for C > 0 and n ≈ N/m. We round m to the next integer and select

n such that nm is as close as possible to N . Specifically, we truncate the domain (0,∞)
of the measure µ to [ξ0, ξn]. For each subinterval [ξi, ξi+1] where i = 0, . . . , n − 1, we
apply the Gaussian quadrature rule to approximate

K(τ) =
∫ ξi+1

ξi

e−xτµ(dx) with K̂(τ) =
m∑

j=1
wje

−xjτ ,

for τ ∈ [0, T ], with µ(dx) = ν(x)dx = CHx
−H−1/2dx and CH > 0, as given in (3.9).

Theorem B.2 ensures monotonicity. To apply this theorem, we need to verify the
assumption on the function f , specifically that the derivative of order 2m, f (2m), is
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continuous and non-negative, where m denotes the level of the quadrature rule. In our
case, this condition is met because in the expression for K̂ we have f(x) = e−xτ , which
is of class C∞ w.r.t x.

The pointwise convergence of K̂ to K is an immediate consequence of the definition of
the integral as a limit of Riemann-Stieltjes sum (Definitions B.1 and B.2). Theorem B.3
allows us to demonstrate that the Gaussian quadrature rule is a Riemann-Stieltjes sum.
To apply the theorem, we need to verify the strict positivity of the weight function ν(x)
for x ∈ [a, b]. This assumption is met because, for x ∈ [ξ0, ξn] we have ν(x) = CHx

−H−1/2

with CH > 0 as given in (3.9).

Consequently, on each subinterval [ξi, ξi + 1] for i = 0, . . . , n− 1, there exist numbers yj

for j = 0, . . . ,m where

ξi = y0 ≤ x1 ≤ y1 ≤ x2 ≤ . . . ≤ xm ≤ ym = ξi+1,

such that
wj =

∫ yj

yj−1
ν(u)du for j = 1, . . . ,m.

Thus, on each subinterval [ξi, ξi + 1], K̂ is a Riemann-Stieltjes sum:

K̂(τ) =
m∑

j=1
e−xjτ

∫ yj

yj−1
ν(u)du =

m∑
j=1

e−xjτ [F (yj) − F (yj−1)],

where F denotes the primitive of ν. Since ν(x) for x ≥ 0 is monotonic and f(x) = e−xτ is
continuous w.r.t. x, f is Riemann integrable with respect to F on [ξi, ξi +1] [60, Theorem
6.9]. Therefore, for i = 0, . . . , n− 1, K̂ converges to K on each subinterval

lim
m→∞

m∑
j=1

e−xjτ
∫ yj

yj−1
ν(u)du =

∫ ξi+1

ξi

e−xτν(u)du

and (3.19) follows.

Recalling that for t ∈ [0, T ], V0 > 0

V̂t = V0 exp
(
C1

∫ t

0

N∑
i=1

wie
−xi(t−s)dBV

s − C2

∫ t

0

( N∑
i=1

wie
−xi(t−s)

)2
ds

)
,

Vt = V0 exp
(
C1

∫ t

0

∫ ∞

0
e−xi(t−s)µ(dx)dBV

s − C2

∫ t

0

(∫ ∞

0
e−x(t−s)µ(dx)

)2
ds
)
,

we begin by considering the first term in the exponent of V̂t and Vt. We write∫ t

0

N∑
i=1

wie
−xi(t−s)dBV

s =
∫ t

0
K̂(t− s)dBV

s ,∫ t

0

∫ ∞

0
e−x(t−s)µ(dx)dBV

s =
∫ t

0
K(t− s)dBV

s ,

and note that,

E
[(∫ t

0
K̂(t− s)dBV

s −
∫ t

0
K(t− s)dBV

s

)2]
= E

[∫ t

0

(
K̂(t− s) −K(t− s)

)2
ds
]

→ 0,
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due to the Itô isometry and the monotone convergence of K̂ to K on the product space
Ω × [0, T ]. Therefore, ∫ t

0
K̂(t− s)dBV

s
L2
−→

∫ t

0
K(t− s)dBV

s .

Since L2 convergence implies convergence in probability, which in turn implies convergence
in distribution [30, Theorem 3.1], the Skorokhod representation Theorem A.3 guarantees
that, on a suitable probability space we can find two random variables Ŷ and Y distributed
as
∫ t

0 K̂(t− s)dBV
s and

∫ t
0 K(t− s)dBV

s , such that

lim
N→∞

Ŷ = Y a.s.

Regarding the second term in the exponent of V̂ we have the pointwise limit

lim
N→∞

∫ t

0

(
K̂(t− s)

)2
ds =

∫ t

0

(
K(t− s)

)2
ds,

justified by monotone convergence (3.19). We can combine the above results to obtain:

lim
N→∞

V̂t = lim
N→∞

V0 exp
(
C1Ŷ − C2

∫ t

0

(
K̂(t− s)

)2
ds
)

= V0 exp
(
C1Y − C2

∫ t

0

(
K(t− s)

)2
ds
)

= Vt.

Here, for 0 ≤ t ≤ T , V̂ and V denotes the two processes that share the same distribution
as V̂ and V on some probability space.

Remark 3.6. If the approximation of K̂ is not done using Gaussian quadrature, but
instead with the choice of weights and nodes ([2], [4], [5]) given by

wi =
∫ ξi

ξi−1
µ(dx), xi = 1

wi

∫ ξi

ξi−1
xµ(dx) for i ∈ {1, . . . , N}

for an appropriate choice of the auxiliary nodes (ξi)N
i=0 satisfying (Hz), the convergence

of K̂ to K is still monotone and pointwise [5, Lemma 3.1].

3.3. The Simulation Scheme

3.3.1. Introduction
In the context of rough volatility, simulation becomes particularly challenging due to
the model’s non-Markovian nature. There is no consensus on a standardized method
for approximation and simulation [48]. For the rough Bergomi model, one strategy
employs the hybrid scheme developed by [9], which uses the power-law component of the
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kernel without error for a certain number of κ steps near the origin, approximating it
as piecewise constant otherwise. Alternatively, as explored in the previous chapter, the
fractional kernel can be approximated as a sum of exponentials, a method implemented
by [32]. Hybrid methods that combine the strengths of both approaches, such as the
hybrid multifactor scheme introduced by [59], are also available.

A comprehensive comparison of these methods is currently lacking in the literature.
However, [32] demonstrates that its scheme is less effective in terms of complexity
compared to the hybrid scheme of [9], which is further improved by the multifactor
scheme of [59]. In this work, we build on [6] by adopting the approach of approximating
the fractional kernel as a sum of exponentials. This method, inspired by [32], improves
upon it by enhancing the rate of convergence. However, the scheme in [6] has not yet
been compared with the hybrid scheme of [9] or the hybrid multifactor scheme of [59].
Notably, further developments to the approach in [6] are presented in [7].

The simulation scheme consists of two main parts: first, we compute the positive (wi)N
i=1

weights and nodes (xi)N
i=1 using Gaussian quadrature, second, we simulate the Markovian

approximation of the rough Begormi model given in Definition 3.3 with the computed
Gaussian weights and nodes.

Given a finite interval [a, b], a continuous weight function ν : [a, b] → [0,∞), and a
function f : [a, b] → R that we wish to integrate, the m-point Gaussian rule quadrature
establishes the weights and nodes such that:∫ b

a
f(x)ν(x)dx ≈

m∑
i=1

wif(xi). (3.20)

More precisely, the Gaussian quadrature rule of level m is the unique choice of nodes and
weights that integrates all polynomials of degree at most 2m− 1 exactly. This means
that for all polynomials of degree at most 2m− 1, we have equality in (3.20). A summary
of Gaussian quadrature can be found in Appendix B.

Specifically, we are interested in the approximation:

K(τ) =
∫ b

a
e−xτν(x)dx ≈ K̂(τ) =

m∑
i=1

wie
−xiτ . (3.21)

Since, in practice, we must truncate the domain of the measure µ(x) = ν(x)dx from
(0,∞) to a finite interval [ξ0, ξn], in this section we refer to the volatility process

Vt = V0 exp
(
C1

∫ ξn

ξ0
Y x

t µ(dx) − C2

∫ t

0

(∫ ξn

ξ0
e−x(t−s)µ(dx)

)2

ds
)
,

with V0 > 0 and Y x
t =

∫ t
0 e

−x(t−s)dBV
s . We also drop the superscript denoting the

truncated non-approximated processes introduced in Section 2.2. We refer to K instead
of Ktr, BH instead of BH,tr and V instead of V tr for less cumbersome notation.

After calculating the Gaussian weights and nodes via the Golub-Welsh algorithm, we
proceed to simulate the Markovian approximation of the rough Bergomi model using
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Cholesky decomposition. The time-homogeneous grid allows us to simulate the model
through a single Cholesky decomposition of the covariance matrix of the associated
Gaussian vector. Subsequently, we conduct multiple simulations of the rough Bergomi
model (3.3) across various parameter settings.

We validate the correctness of our implementation by computing the L2 error for the
approximation of the Riemann-Liouville process, as given in Definition 2.4. This error
is compared with the results obtained in [6], varying the total number of nodes. A
Python implementation is made available at: https://github.com/gbifronte/thesis_
simulation_scheme.

3.3.2. The Gaussian Quadrature
We implement the Gaussian rule of type (H,N, α, β, 1, 1) detailed in Theorem 2.8. We are
given a finite interval [ξ0, ξn] on the positive half-line, which is divided into subintervals
by a sequence of auxiliary nodes (ξi)n

i=0. This interval represents the truncated domain
of the measure µ(dx) = ν(x)dx, where for x > 0, the weight function ν is given by

ν(x) = cHx
−H−1/2, cH = 1

Γ(H + 1/2)Γ(1/2 −H) . (3.22)

On each subinterval [ξi, ξi+1] for i = 0, . . . , n− 1, the measure µ is approximated by the
discrete measure µ̂ = ∑m

i=0 wiδxi
, obtained from an m-point Gaussian quadrature rule.

Across the entire interval [ξ0, ξn], this discretisation results in a total of N = nm nodes
with corresponding positive weights.

Given the total number of nodes N and the Hurst index H ∈ (0, 1/2), we define the
parameters A,α, β, a and b in accordance to the setting of Theorem 2.8, along with the
level m of the quadrature and the number n of intervals into which [ξ0, ξn] is divided. It
is important to note that m is rounded up to the next integer (see Remark 2.17), while
n is chosen such that nm is as close as possible to N . After initializing the geometric
grid (ξi)n

i=0, we proceed with the implementation of the Gaussian quadrature.

To compute Gaussian nodes and weights for the setting described in (3.20), one begins
by finding orthogonal polynomials pn of degree n, where the orthogonality is defined
with respect to the scalar product:

⟨f, g⟩ =
∫ b

a
f(x)g(x)ν(x)dx.

These orthogonal polynomials can be efficiently obtained using the three-term recurrence
relation:

pn+1(x) =
(
x− ⟨xpn, pn⟩

⟨pn, pn⟩

)
pn(x) − ⟨pn, pn⟩

⟨pn−1, pn−1⟩
pn−1(x), (3.23)

for n = 0, 1, . . . , where p−1(x) ≡ 0 and p0(x) ≡ 1. Subsequently, the nodes for the
m-point quadrature rule are determined by the m roots of pm. Once the nodes are found,
the weight wi, corresponding to the node xi, can be computed [57].

https://github.com/gbifronte/thesis_simulation_scheme
https://github.com/gbifronte/thesis_simulation_scheme
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Numerical challenges may arise when computing nodes and coefficients for general weight
functions ν, as is the case in our study. An efficient algorithm for computing these nodes
and weights, accommodating general weight functions, is the Golub-Welsch algorithm,
developed in [27]. Rather than implementing the Golub-Welsch algorithm ourselves, we
define a function gaussian_QR1 that utilizes two functions available in the NAG library:
dim1_gauss_recm and dim1_gauss_wrec.

Given the 2m+1 moments of the weight function ν in (3.22), dim1_gauss_recm generates
the recursion coefficients of an underlying three-term recurrence formula (3.23). These
coefficients are then used by dim1_gauss_wrec to compute the weights (wi)m

i=1 and nodes
(xi)m

i=1 of the Gaussian quadrature rule using the Golub-Welsch method.

We then add the node x0 = 0 and the weight w0 that minimizes the quadratic polyno-
mial from Proposition 6, instead of the w0 provided in the setting of Theorem 2.8, as
recommended in [6]. Following this, we proceed with the simulation of the rough Bergomi
model (3.3).

3.3.3. The Simulation Scheme

Given the positive weights (wi)N
i=0 and nodes (xi)N

i=0, we aim to simulate the system:

Y i
t =

∫ t

0
e−xi(t−s)dBs, Y i

0 = 0,

V̂t = V0 exp
(
C1

N∑
i=0

wiY
i

t − C2

∫ t

0

( N∑
i=0

wie
−xi(t−s)

)2
ds

)
, V0 > 0,

Ŝt = S0 exp
(∫ t

0

(
µs − 1

2 V̂s

)
ds+

∫ t

0

√
V̂sdB

S
s

)
, S0 > 0,

(3.24)

where each Y i for i ∈ {0, . . . , N} is an Ornstein-Uhlenbeck process (Definition 2.8) with
speed of mean reversion xi, C1 := η

√
2HΓ(H + 1/2), C2 := η2HΓ(H + 1/2)2, and the

parameter η is equal to η = 2νCH/
√

2H with CH defined as in (3.9).

Let 0 = t0 < · · · < tk = T be a uniform partition with step size ∆t = T/k. We discretize
the system (3.24) in time and initialize the N + 3 components (Y i)N

i=0, V , S by:

Y i
t = 0, V t = V0, St = S0.

We then simulate for time tj, where j = 0, . . . , k − 1, the Gaussian vector underlying
system (3.24):(∫ tj+1

tj

e−x0(tj+1−s)dBs, . . . ,
∫ tj+1

tj

e−xN (tj+1−s)dBs, Btj+1 −Btj
,

)
(3.25)

by computing a Cholesky decomposition of its covariance matrix Σ. Since the grid is
chosen uniformly in time, the distribution of this vector is independent of j, requiring us
to compute the Cholesky decomposition only once.

https://nag.com/nag-library/
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Remark 3.7. The algorithm employed by Bayer et al. [6] to simulate the rough Bergomi
model (3.12), consists in discretizing the time interval [0, T ] into k time steps and
simulating the Gaussian vector(∫ tj+1

tj

(tj+1 − s)H−1/2dBs, Btj+1 −Btj

)
.

for j = 0, . . . , k − 1, by computing a Cholesky decomposition of its covariance matrix.
Note that the rough kernel is therein not approximated.

We now provide a detailed explanation of how the simulation process works.

Let Z be a vector of N + 2 uncorrelated standard normal random variables, meaning
Z ∼ N(0, IN+2), where In is the identity matrix of order n. By applying an affine
transformation X = A+BZ, the resulting vector X has distribution X ∼ N(A,BBT),
since

E[A+BZ] = A+BE[Z] = A,

and

E[(X − A)(X − A)T] = E[BZZTBT] = BE[ZZT]BT = BIN+2B
T = BBT.

In our case, we identify X with the Gaussian vector (3.25), resulting in A = 0 and
BBT = Σ. Applying the Cholesky decomposition to Σ provides a suitable matrix B,
allowing us to simulate X ∼ N(0,Σ).

It is useful to note that the covariances within (3.25) are analytical and have to be
computed with Itô’s isometry and numerical integration. The covariance matrix Σ, of
order N + 2, is given by

Σ =


Σ0,0 Σ0,1 . . . Σ0,N+1
Σ1,0 Σ1,1 . . . Σ1,N+1

... ... . . . ...
ΣN+1,0 ΣN+1,1 . . . ΣN+1,N+1

 ,

where Σi,j = Σi,j = Cov(Xi, Xj) = E[XiXj ] for i, j = 0, . . . , N + 1, with Xi denoting the
i-th component of X in (3.25). We compute this covariance matrix once for the time
interval [t0, t1], addressing three different cases.

(i) For i = 0, . . . , N and j = 0, . . . , N ,

Σi,j = Cov(Xi, Xj) = E[
∫ t1

t0
e−xi(t1−s)dBs

∫ t1

t0
e−xj(t1−s)dBs]

=
∫ t1

t0
e−xi(t1−s)e−xj(t1−s)ds = 1

xi + xj

(
1 − e−(xi+xj)(t1−t0)

)
.

(ii) For i = 0, . . . , N and j = N + 1,

Σi,N+1 = Cov(Xi, XN+1) = E[
∫ t1

t0
e−xi(t1−s)dBs

∫ t1

t0
dBs]

=
∫ t1

t0
e−xi(t1−s)ds = 1

xi

(
1 − e−xi(t1−t0)

)
.
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(iii) If i = N + 1 and j = N + 1,

ΣN+1,N+1 = Cov(XN+1, XN+1) = E[
∫ t1

t0
dBs

∫ t1

t0
dBs] = t1 − t0.

The Cholesky decomposition of a real positive-definite matrix Σ is a decomposition of the
form Σ = BBT, where B is a real lower triangular matrix with positive diagonal entries.
However, our Σ is semi-definite rather than positive-definite, rendering the Cholesky
decomposition non-unique.

To address this, we implement the function chol_mod, which applies the modified
Cholesky algorithm of Cheng and Higham [17] to perturb the input covariance matrix
slightly, rendering it positive-definite. Instead of implementing the algorithm from
scratch, we utilize two functions from the NAG library: real_modified_cholesky and
real_mod_chol_perturbed_a.

Given the symmetric semi-definite matrix Σ, the function real_modified_cholesky
finds the Cheng-Higham modified Cholesky factorization

PT(Σ + E)P = LDLT.

Here, L is a unit lower triangular matrix, specifically the lower triangular part of Σ, P is
a permutation matrix, D is a symmetric block diagonal matrix with minimum eigenvalue
δ, and E is a perturbation matrix of small norm chosen so that such a factorization can
be found. The output is then passed to real_mod_chol_perturbed_a to compute the
symmetric positive definite matrix Σ +E. We then apply the Cholesky decomposition to
the perturbed matrix and simulate the Gaussian vector (3.25) as described above.

Then, we set for j = 0, . . . , k − 1,

Y i
tj+1

= e−xi∆tY i
tj

+
∫ tj+1

tj

e−xi(tj+1−s)dBs, Y i
0 = 0,

V tj+1 = V0 exp
(
C1

N∑
i=0

wiY
i
tj+1

− C2

∫ t

0

( N∑
i=0

wie
−xi(t−s)

)2
ds

)
,

Stj+1 = Stj
exp

(µtj
− 1

2V tj

)
∆t+

√
V j

(
ρ(B̃tj+1 − B̃tj

) +
√

1 − ρ2(Btj+1 −Btj
)
),

with V0 > 0 and S0 > 0. We note that the deterministic integral in the exponent of V
can be computed in closed form and that B and B̃ are independent Brownian motions.

3.3.4. Validation and Visualization of the Simulation Scheme
To validate the correctness of our implementation, we compute the L2 error of the
Riemann-Liouville process BH , as given in Definition (2.4), and its approximation B̂H :

BH
t = 1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2dBs, (3.26)

B̂H =
N∑

i=1
wi

∫ t

0
e−xi(t−s)dBs.

https://nag.com/nag-library/
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We compare our results with those presented in [6, Table 1].

We identify BH as the solution of a one-dimensional stochastic Volterra equation (2.29)
with v0 = 0, b = 0, σ = 1, and fractional kernel K(τ) = τH−1/2/Γ(H+1/2). As previously
mentioned, the domain of the measure µ is truncated from (0,∞) to [ξ0, ξn]. Hence, the
Riemann-Liouville process referred to as BH in (3.26) is the truncated process BH,tr,
consistent with the statements of Theorem 3.25 and Proposition 6.

We set T = 1, and choose w0 to minimize the quadratic polynomial from Proposition 6.
We vary N within the set {1, 2, 4, 8, 16, 32, 64, 128}. The parameters H,n,m, the values
of ξ0 and ξn are determined based on the following corollary:

Corollary 1. [6, Corollary 3.1] For H = 0.1, consider the approximation with N + 1
nodes, including x0 = 0, as suggested in the setting of Theorem 2.8. Let N = nm, where
m is the level of the Gaussian quadrature rule and n is the number of intervals. Choose

m ≈ 0.1306
√
N, n = N/m,

and
ξ0 = 4.3679N0.1135e−0.2322

√
N , ξn = 0.1421N−1.5889e3.2511

√
N .

Then, we have
E
[
|BH,tr

T − B̂H
T |2

]
≤ 33.6483N0.3178e−0.6502

√
N .

Remark 3.8. Corollary 1 directly follows from Proposition 5, where the constant C is
set equal to 1, and [6, Theorem 2.15] with this specific choice of C. Theorem 2.15 in [6]
is a variation of Theorem 2.8, which requires a Gaussian rule of type (H,N, α, β, a, b),
with a = b = 1. In Theorem 2.15, the values of a and b are chosen as the solution
an optimization problem. The proof of this result is technical and can be found in [6,
Appendix C].

From Proposition 5 we recall that the L2 error between BH,tr and B̂H is controlled by
the L2 error of their respective kernels. We compute the L2 error among Ktr and K̂

using Proposition 6 and compare our values with those in [6, Table 1]. Note that in
practice the level m of the Gaussian quadrature is rounded up to the next integer, and n
is chosen such that nm is as close as possible to N . The comparison is detailed in Table
(3.1), confirming the accuracy of our implementation.

Next, in Table 3.2, we compare the L2 error among Ktr and K̂ (associated to the Riemann-
Liouville process BH,tr and its approximation B̂H) under the settings of Theorem 2.8 and
Corollary 1; see Remark 3.8. This comparison is of interest since we adopt the setting
of Theorem 2.8 for the simulations of the model 3.24. For N = 52, we achieve an error
tolerance of 0.1; thus, we will use this number of nodes for the simulations displayed in
Figure 3.3.
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Bayer and Breneis This work
N m n Error Bound Error
1 1 1 0.996490 4.190757 0.99649093
2 1 2 0.975001 4.089250 0.97500068
4 1 4 0.899764 3.773728 0.89935636
8 1 8 0.757286 3.218395 0.75729121
16 1 16 0.571030 2.455046 0.57102870
32 1 32 0.372303 1.599424 0.37230131
64 2 32 0.195570 0.833625 0.19557919
128 2 64 0.075222 0.316916 0.07521947

Table 3.1: L2-approximation errors for different values of N,m and n of
the Riemann-Liouville process given in (3.26). We set T = 1 and H = 0.1,
with ξ0 and ξ1 as suggested in Corollary 1. The “Error” columns show the
actual errors for these values, computed using Proposition 6. The “Bound”

column presents the error bounds from Corollary 1.

N m n Error T2.8 Error C1
1 1 1 0.77070377 0.99649093
2 1 2 0.68196321 0.97500068
4 1 4 0.56639290 0.89935636
8 1 8 0.43226404 0.75729121
16 1 16 0.29506523 0.57102870
32 1 32 0.17211350 0.37230131
64 2 32 0.08015850 0.19557919
128 2 64 0.02729483 0.07521947

Table 3.2: L2-approximation errors for different values of N,m and n of
the Riemann-Liouville process given in (3.26). We set T = 1 and H = 0.1.

The “Error T2.8” and “Error C.1” columns show the actual errors for
these values, computed under the settings of Theorem 2.8 and Corollary 1.



3.3. The Simulation Scheme 76

We illustrate the rough behavior of the model 3.24 in Figure 3.3. This figure displays
sample paths of the rough Bergomi volatility process along with the corresponding stock
price process for H ∈ {0.10, 0.25, 0.45} and N = 52. The remaining model parameters
are set as follows:

T = 1, ∆t = 0.001, η = 1.9, µ = 0, ρ = −0.7, S0 = 1, V0 = 0.2352.

Figure 3.3: Sample paths of the rough Bergomi stock price and volatility
for H ∈ {0.10, 0.25, 0.45}. The roughness of the paths increases as H

approaches its minimal possible value of 0.



4
Solution to the Portfolio Optimization
Problem

In this final chapter, we solve the portfolio optimization problem in a financial market
comprising a bond and a risky asset featuring rough Bergomi volatility, as given in
Definition 3.1. Specifically, we find the solution to the optimization problem as the
limit of the approximated problem where the multi-factor rough Bergomi model given
in 3.3 is considered. This approximation of the rough Bergomi model restores the
Markovian property that the original model lacks, enabling us to use PDE techniques
from classic dynamic programming, i.e. the Hamilton-Jacobi-Bellman equation, to solve
the associated portfolio problem.

In Section 4.1 we briefly revisit our model choices, which are discussed in detail in Section
1.2, and outline the financial market setting. The market comprises one risk-free asset and
one risky asset, whose coefficients are influenced by a stochastic factor Y = (Y 1, . . . , Y N )
driven by a Brownian motion that is correlated with the one driving the stock price.

In Section 4.2, we solve the approximated optimization problem, aiming to maximize the
expected utility of terminal wealth with respect to a power utility function. We derive the
HJB equation to address the optimization problem. When the Brownian motion driving
the stock price and the Brownian motion driving the stochastic factor are correlated
(ρ ̸= 0) we find an implicit solution, which we further simplify using the martingale
distortion transformation [63]. For ρ = 0, an explicit solution is derived (Theorems 4.1
and 4.2). The solution to the original rough path problem is then established in Theorem
4.3.

In Section 4.3, we visualize the the optimal terminal wealth process for different choices
of the Hurst index. The process is simulated according to the approximation scheme
described in Section 3.3. Gaussian quadrature is used to determine the nodes and
weights for the fractional kernel approximation, and the simulations are performed using
a Cholesky decomposition.

77
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4.1. The Financial Market

4.1.1. Introduction
For a detailed exposition of our model choices and assumptions, we refer the reader to
Section 1.2. Here, we provide a brief overview.

The market comprises one risk-free asset and one risky asset whose coefficients are
influenced by a stochastic factor Y = (Y 1, . . . , Y N). The stochastic factor Y is driven
by a Brownian motion B, which is correlated with the Brownian motion BS driving the
stock price. Each Y i is a diffusion process, specifically an Ornstein-Uhlenbeck process,
which mean reverts at speed xi. Due to the influence of the latent factor Y on the stock
process’s coefficients, the market is incomplete, i.e., it is impossible to fully hedge risk
with just the bond and the available stock.

Regarding the information available, the agent observes only the stock price process.
However, given that the stock price process contains sufficient information to infer the
evolution of BS and Y through its quadratic variation, see Remark 4.1, it is reasonable
to assume that the agent knows his wealth (driven by BS) and the latent factor Y at
any time t [5, Remark 2.2].

Lastly, preferences are modeled using a power utility function U(x) = xγ/γ with γ ∈ (0, 1),
enabling the value function to be expressed as a power of the solution to a linear parabolic
equation, as seen in Proposition 1. The power exponent, or distortion power, depends on
the risk aversion coefficient and the correlation between the Brownian motions driving
the stock price and the stochastic factor.

4.1.2. The Financial Market
Consider a financial market under (Ω,F ,F = (Ft)0≤t≤T ,P), with T < ∞, consisting of
one risk-less asset S0 and one risky asset Ŝ respectively evolving according to

dS0
t = rtS

0
t dt, S0

0 > 0,

dŜt = µtŜtdt+
√
V̂tŜtdB

S
t , S0 > 0, (4.1)

where rt ≥ 0 is a deterministic bounded risk-free rate, BS : [0, T ] → R is an F-Brownian
motion, µ : [0, T ] ×R+ × Ω → R is a predictable bounded process and is assumed to be a
continuously differentiable function of t and V̂ , we write µt = µ(t, V̂ ). The approximated
rough Bergomi volatility V̂ is as given in Definition 3.3:

V̂t = V0 exp
(
C1

N∑
i=1

wi

∫ t

0
e−xi(t−s)dBV

s − C2t
2H

)
, V0 > 0.

Here, BV : [0, T ] → R is an F-Brownian motion correlated to BS with correlation
coefficient ρ ∈ (−1, 1), H is the Hurst index belonging to (0, 1/2), (wi)N

i=1 are positive
weights and (xi)N

i=1 are the corresponding nodes. The constants C1 and C2 are given
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by C1 = η
√

2HΓ(H + 1/2) and C2 = η2HΓ(H + 1/2)2, where the parameter η reads
η = 2νCH/

√
2H with CH defined as in (3.9).

To underscore the dependence of V̂ on the stochastic factor Y = (Y 1, . . . , Y N), i.e.
V̂ = V̂ (t,Y ), we align with the notation used in Section 1.2 and we rewrite V̂ as follows:

V̂t = V0 exp
(
C1

N∑
i=1

wiY
i − C2t

2H
)
, V0 > 0. (4.2)

Each component Y i of the stochastic factor Y is an Ornstein-Uhlenbeck process (cf.
Equation (2.8)) of the form

Y i
t =

∫ t

0
e−xi(t−s)dBV

s , with Y i
0 = 0, (4.3)

and is the strong unique solution to the SDE

dY i
t = −xiY

i
t dt+ dBV

t , Y i
0 = 0. (4.4)

Remark 4.1. It is reasonable to assume that at time t the agent has knowledge of the
stock price and, consequently, of its quadratic variation

⟨Ŝ, Ŝ⟩t =
∫ t

0
Ŝ2

uV̂udu.

Thus, at time t, the agent is aware of the evolution of BS and Y up to that point
[5, Remark 2.2]. We assume that the filtration F is generated by BS and BV , i.e.
Ft = σ(BS

s , B
V
s , s ≤ t).

The investor rebalances his portfolio dynamically by choosing at any time t, for t ∈ [0, T ],
a proportion αt of his wealth to invest in the stock account Ŝ. The remaining proportion
1 − αt is invested in the bond S0. Note that αt is not restricted to the interval [0, 1]. If
αt < 0, the stock is sold short, and if αt > 1, money is borrowed from the bank at the
interest rate rt.

The investor faces the portfolio constraint that at any time t, αt is valued in A, a closed
convex subset of R. We denote by a the value of the control at a certain time, and with
α the mapping αt = α(t,Xt). Let A be the set of F-progressively measurable processes
α valued in A and satisfying the condition∫ T

0
α2

uV̂udu < ∞ a.s., (4.5)

Defined as such, A represents a class of admissible control laws. See Remark 4.2 for
details.

Given an admissible portfolio strategy α ∈ A, we denote by Ŵ = (Ŵt)t∈[0,T ] the
corresponding wealth process starting from an initial capital Ŵt = w > 0 at time t. For
t ≤ s ≤ T it evolves according to:

dŴs = Ŵsαs
dŜs

Ŝs

+ Ŵs(1 − αs)
dS0

s

S0
s

= Ŵs[rs + αs(µs − rs)]ds+ Ŵsαs

√
V̂sdB

S
s . (4.6)



4.2. Solution to the Portfolio Optimisation Problem 80

The integrability condition (4.5) combined with the existence and uniqueness of a strong
solution to the SDE (4.1) ensures the existence and uniqueness of the controlled wealth
process. The stochastic differential equation (4.6) can be then solved explicitly and the
solution for t ∈ [0, T ] is given by

Ŵt = w exp
(∫ t

0

[
rs + αs(µs − rs) − 1

2 V̂sα
2
s

]
ds+

∫ t

0

√
V̂sαsdB

S
s

)
, w > 0. (4.7)

Remark 4.2. According to Definition 1.4, A is a class of admissible controls if: (i)
each element α ∈ A is a progressively measurable process, valued in A ⊂ R, and (ii) for
any given initial point the SDE of the state process has a unique solution. While the
first condition is straightforward, the second warrants further explanation. The state
process X = (Ŵ ,Y ) consists of the controlled diffusion Ŵ with dynamics (4.6), for
which we have just verified existence and uniqueness. The remaining N components, Y i

for i = 1, . . . , N , are Ornstein-Uhlenbeck processes, each of which is the strong unique
solution of SDE (4.4). Consequently, given an initial point (w,y), where w ∈ R+ and
y ∈ RN , the state process X admits a unique strong solution, as each of its components
is well-defined.

The investor’s objective is to maximize his expected utility of terminal wealth:

J(t, w,y) = Et,w,y[U(ŴT ,Y T )],

where by Et,w,y we denote the conditional expectation, emphasizing that at initial time
t, we are given Ŵt = w > 0 and Y t = y ∈ RN . The utility function U we consider is a
power utility of the form

U(x) = xγ

γ
, x ≥ 0, 0 < γ < 1.

The value function of the investor for t ∈ [0, T ] is then given by

v(t, w,y) = sup
α∈A

Et,w,y[U(ŴT ,Y T )]. (4.8)

4.2. Solution to the Portfolio Optimisation Problem

4.2.1. Introduction
Solving the portfolio optimization problem (4.8) involves finding, for each (t, w,y) in
[0, T ] × R+ × RN , the value v(t, w,y) and the admissible control α∗ ∈ A such that

v(t, w,y) = sup
α∈A

Et,w,y[U(ŴT ,Y T )] = Et,w,y[U(Ŵ ∗
T ,Y T )],

where Ŵ ∗ denotes the wealth process (4.7) when the optimal control α∗ is employed.
As discussed in Section 1.1, finding a solution to the Hamilton-Jacobi-Bellmann (HJB)
equation is equivalent to solving the optimization problem.
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To solve the finite-dimensional optimization problem, we derive and solve the associated
HJB equation. The second-order nonlinearities of the PDE are then eliminated using the
distortion power δ, according to Proposition 1. An implicit solution is found when the
Brownian motion BS driving the wealth process and the Brownian motion BV driving
the stochastic factor are correlated (ρ ̸= 0). When ρ = 0, an explicit solution is derived.

We establish in Theorem 4.1 that the explicit solution is sufficiently smooth using the
main result from [34], presented in Theorem 1.5. As a byproduct, we deduce that this
solution can be represented as the Laplace transform of the integrated volatility process.
Subsequently, in Theorem 4.2, we verify that it indeed corresponds to the value function.

By taking the limit of the finite-dimensional problem (4.8), we obtain the solution to the
original optimization problem featuring rough Bergomi volatility:

v(t, w,y) = sup
α∈A

Et,w,y[U(WT ,Y T )], (4.9)

where W denotes the wealth process when considering the rBergomi volatility V as given
in Definition 3.1 instead of its approximation V̂ in (4.2). This result is the main finding
presented in Theorem 4.3.

4.2.2. Solution to the Finite Dimensional Optimisation Problem
We now solve the optimisation problem (4.8) using the HJB equation. The state process
X = (Ŵ ,Y ) has as its first component the controlled diffusion Ŵ with dynamics (4.6),
while the remaining N components, Y i for i = 1, . . . , N , are the diffusion processes
evolving according to (4.4). Each Y i is a Ornstein-Uhlenbeck process that mean-reverts
with speed xi. For clarity, we rewrite the dynamics of X in matrix form

d

[
Ŵs

Y s

]
=
[
Ŵs[rs + αs(µs − rs)]

−xY s

]
ds+

Ŵsαs

√
V̂s 0

1ρ 1
√

1 − ρ2

 [dB1
s

dB2
s

]
, (4.10)

where with x we denote the vector of nodes x = (x1, . . . , xN) and with 1 the vector
consisting of N ones. We identify the Brownian motion driving the wealth process
Ŵ with BS ≡ B1 and the Brownian motion driving the stochastic factor Y with
BV ≡ ρB1 +

√
1 − ρ2B2; where B1, B2 are independent (cf. Section 1.2).

The HJB equation together with the terminal condition of the stochastic control problem
for a sufficiently regular function G ∈ C1,2([0, T ) × R+ × RN) ∩ C0([0, T ] × R+ × RN))
are given by:

−∂G

∂t
(t, w,y) − sup

a∈A
[La

tG(t, w,y)] = 0 ∀(t, w,y) ∈ [0, T ) × R+ × RN ,

G(T,w,y) = 1
γ
wγ, w ∈ R+.

(4.11)

Here, La
t is the second-order differential operator associated with the state process

X = (Ŵ ,Y ) for the control α:

(La
tG)(x) = b(t, x, a)DxG+ 1

2tr
(
σ(t, x, a)σT(t, x, a)D2

xG
)
,
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where x = (w,y), b and σ are the coefficients of the state process X in (4.10); b is a
vector with N + 1 components and σ is a (N + 1) × 2 matrix.

To solve the finite-dimensional optimization problem we carry out the following procedure.

1. We fix an arbitrary point (t, w,y) ∈ [0, T ] × R+ × RN and solve, for this fixed
choice of (t, w,y), the static optimization problem supa∈A[LaG(t, w,y)] = 0, where
a is the only variable.

2. The optimal choice of a, denoted by a∗, will depend on our choice of t, w and y,
but it will also depend on the function G and its partial derivatives. To highlight
these dependencies we write a∗ as α∗ = α∗(t, w,y;G).

3. We insert the separable Ansatz for G, i.e. G(t, w,y) = 1
γ
wγΦ(t,y), in the HJB

equation and in α∗(t, w,y;G).
4. We simplify the non-linearities of the HJB equation utilizing the distortion power.
5. In the verification step (Theorem 4.2), we identify G as the optimal value function
v (4.8), and α∗ as the optimal control law.

Fixed an arbitrary point (t, w,y) ∈ [0, T ] × R+ × RN , the static optimization problem
reads

0 = sup
a∈A

{
w
[
(rt + a(µt − rt)

]
Gw +

N∑
i=1

(−xi)yiGyi

+ 1
2w

2a2V̂tGww +
N∑

i=1
wρa

√
V̂tGyiw + 1

2

N∑
i=1

N∑
j=1

Gyiyj

}
.

(4.12)

Maximizing this expression in a leads to our candidate for the optimal control law
α∗ = α∗(t, w,y;G):

α∗(t, w,y;G) = − 1
w

Gw

Gww

µt − rt

V̂t

− ρ√
V̂t

N∑
i=1

1
w

Gyiw

Gww

. (4.13)

Now, we substitute the separation Ansatz G(t, w,y) = 1
γ
wγΦ(t,y) with Φ(T,y) = 1 in

the HJB equation and divide by 1
γ
wγ,

0 = Φt + sup
a∈A

{[
rt + a(µt − rt)

]
γΦ +

N∑
i=1

(−xi)yiΦyi

+ 1
2a

2V̂t(γ − 1)γΦ +
N∑

i=1
ρa
√
V̂tγΦyi

+ 1
2

N∑
i=1

N∑
j=1

Φyiyj

}
.

(4.14)

Substituting the Ansatz also in α∗ (4.13) results in the following optimal trading strategy

α∗
t = µt − rt

1 − γ

1
V̂t

+ ρ

(1 − γ)
1√
V̂t

∑N
i=1 Φyi

Φ . (4.15)



4.2. Solution to the Portfolio Optimisation Problem 83

Inserting the maximum point (4.15) into (4.14) yields

0 = Φt +
(
rt +

[
µt − rt

1 − γ

1
V̂t

+ ρ

(1 − γ)
1√
V̂t

∑N
i=1 Φyi

Φ

]
(µt − rt)

)
γΦ

+
N∑

i=1
(−xi)yiΦyi

+ 1
2

N∑
i=1

N∑
j=1

Φyiyj

− 1
2

[
µt − rt

1 − γ

1
V̂t

+ ρ

(1 − γ)
1√
V̂t

∑N
i=1 Φyi

Φ

]2
V̂t(1 − γ)γΦ

+
N∑

i=1
ρ
[
µt − rt

1 − γ

1
V̂t

+ ρ

(1 − γ)
1√
V̂t

∑N
i=1 Φyi

Φ

]√
V̂tγΦyi

.

(4.16)

We expand the products and reorder the terms of the PDE (4.16)

0 = Φt +
N∑

i=1

(−xi)yi + (ρ− 1) γ

1 − γ

µt − rt√
V̂t

Φyi

+ 1
2

N∑
i=1

N∑
j=1

Φyiyj
+
(
rtγ

δ
+ 1

2
γ

δ(1 − γ)
(µt − rt)2

V̂t

)
Φ

+ 1
2ρ

2 γ

1 − γ

1
Φ
( N∑

i=1
Φyi

)2
.

(4.17)

Unfortunately, PDE (4.17) is rather involved and has to be solved numerically. However,
we can further reduce its complexity by eliminating the second-order terms through the
application of the distortion power introduced in [63], see Proposition 1. We define a
function φ such that

φ(t,y)δ = Φ(t,y), with δ = 1 − γ

1 − γ + ρ2γ
,

and satisfying the terminal condition φ(T,y) = 1. We substitute φδ and the derivatives

Φt = δφδ−1φt,
N∑

i=1
Φyi

= δφδ−1
N∑

i=1
φyi

,

N∑
i=1

N∑
j=1

Φyi,yj
= δφδ−1

N∑
i=1

N∑
j=1

φyiyj
+ δ(δ − 1)φδ−2

( N∑
i=1

φyi

)2
,

in (4.17). Dividing by δφδ−1, we obtain the linear parabolic equation

0 = φt +
N∑

i=1

(−xi)yi + (ρ− 1) γ

1 − γ

µt − rt√
V̂t

φyi

+ 1
2

N∑
i=1

N∑
j=1

φyiyj
+
(
rtγ

δ
+ 1

2
γ

δ(1 − γ)
(µt − rt)2

V̂t

)
φ.

(4.18)
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We remark again that the terms
(∑N

i=1 φyi

)2
vanishes because the power distortion δ is

chosen to nullify the coefficient of this term

1
2φ

−1
[
(δ − 1) + ρ2 γ

1 − γ
δ
]( N∑

i=1
φyi

)2
.

The following theorem establishes that the PDE (4.18), when ρ = 0 =⇒ δ = 1, admits
a unique solution φ, which can be expressed as a Laplace transform of an integrated
volatility via the Feynman-Kac theorem. In the proof, we use the main result of [34],
presented in Theorem 1.5, which gives sufficient conditions to ensure that the function
φ ∈ C1,2 is the unique solution to the Cauchy problem−∂φ

∂t
− Ltφ+ cφ = 0, on [0, T ) × RN ,

φ(T,y) = 1 on RN ,
(4.19)

where the PDE is exactly (4.18). The Feynman-Kac theorem, Theorem 1.4, then provides
the representation formula

φ(t,y) = E
[
e−
∫ T

t
c(u,Xt,x

u )du
]
.

Theorem 4.1. A solution of the HJB equation (4.17) exists on a certain time interval
[0, T ] and, for t ∈ [0, T ], w ∈ R+,y ∈ RN , it is given by

G(t, w,y) = 1
γ
wγφ(t,y)δ, with δ = 1 − γ

1 − γ + γρ2 .

Specifically, φ ∈ C1,2([0, T ) × RN) ∩ C0([0, T ] × RN) satisfies the Cauchy problem (4.19)
and it can be written as

φ(t,y) = Et,w,y

[
exp

{∫ T

t

(
rtγ

δ
+ 1

2
γ

δ(1 − γ)
(µs − rs)2

Ṽs

)
ds
}]
, (4.20)

where Ṽt = V0 exp
(
C1
∑N

i=1 wiỸ
i − C2t

2H
)
, V0 > 0. In the uncorrelated case ρ = 0, we

have V̂ = Ṽ .

Proof. The existence of a classical solution for PDE (4.18) and its representation (4.20)
follow from a direct application of Theorem 1.5. We let [0, T ] be the time horizon and
D = RN the domain. The diffusion process we consider is X = Ỹ , where each component
Ỹ i for i = 1, . . . , N is an Ornstein-Uhlenbeck process of the form (4.3) and evolving
according to (4.4). Each Ỹ i is driven by the same Brownian motion B, but with different
speed of mean reversion xi:

dỸ s = −xỸ sds+ 1dBs.

We identify the coefficient function c : [0, T ] × RN → RN , in front of φ in (4.18), as

c(t, ỹ) = −
(
rtγ

δ
+ 1

2
γ

δ(1 − γ)
(µt − rt)2

Ṽt

)
.
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We now show that conditions (A1), (A2) and (A3) of Theorem 1.5 are satisfied.

In our case, b : RN → RN is given by b(Ỹ ) = −xỸ , while σ is the N -dimensional
vector of ones. Therefore, b does not depend on t and is C1 in ỹ on RN , and σ does not
depend on t nor ỹ. Since continuously differentiable implies locally Lipschitz-continuous,
assumption (A1) is satisfied.

Each components of X is the unique strong solution to SDE (4.4). Therefore, X never
explodes before T , ensuring that (A2) is also satisfied.

Lastly, in order to verify (A3) via (A3′), we take as domains Dn = (−n, n)N with
smoothed corners so that they satisfy (A3′). Because b and σ are uniformly Lipschitz,
(A3a′) is obvious, so is (A3b′): since a = σσT = N , we can choose ϵn = N to verify that
a is uniformly elliptic on RN .

We note that the approximated volatility

Ṽ (t, ỹ) = V0 exp
(
C1

N∑
i=0

wiỹi − C2t
2H
)
, V0 > 0,

is C1 in ỹ, rt does not depend on ỹ, the process µt = µ(t, Ṽ ) is assumed to be a
continuously differentiable function of Ṽ , thus,

∂µ(t, Ṽ )
∂ỹ

= ∂µ(t, Ṽ )
∂Ṽ

∂Ṽ (t, ỹ)
∂ỹ

and µt is C1 in ỹ. Moreover, the derivative of c with respect to ỹ is

∂c

∂ỹ
= 1

2
γ

δ(1 − γ)
1

Ṽ 2(t, ỹ)

[
2(µ(t, Ṽ ) − r)∂µ(t, Ṽ )

∂ỹ
Ṽ (t, ỹ) − (µ(t, Ṽ ) − r)2∂Ṽ (t, ỹ)

∂ỹ

]
.

Consequently, the function c has continuous derivatives on the compact Dn, thus, is
Lipschitz-continuous in ỹ (i.e. Hölder-continuous with α = 1) with respect to t, ensuring
that condition (A3c′) holds.

Lastly, (A3d′) is apparent since f ≡ 0, and the finiteness condition (A3e′) is guaranteed
because φ does not have singularities.

Remark 4.3. In Theorem 4.1 we denoted with Ṽ the process whose N factors Ỹ i are
driven by a standard Brownian motion B. This process differs from the correlated
Brownian motion BV = ρB1 +

√
1 − ρ2B2 that drives the stochastic factor Y of the

approximated volatility V̂ as given in (4.2). Only when ρ = 0, we obtain V̂ = Ṽ .

Remark 4.4. Since φ ∈ C1,2([0, T )×RN )∩C0([0, T ]×RN ) and G(t, w,y) = 1
γ
wγφ(t,y)δ

with G(T,w,y) = 1
γ
wγ, Theorem 4.1 guarantees that G ∈ C1,2([0, T ) × R+ × RN) ∩

C0([0, T ] × R+ × RN).

Now we need to verify that a smooth solution to the HJB equation of the form G(t, w,y) =
1
γ
wγφ(t,y)δ indeed yields the value function.
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Theorem 4.2 (Verification). Suppose that G(t, w,y) = 1
γ
wγφ(t,y)δ with φ as in (4.20)

and satisfying the boundary condition φ(T,y) = 1. For t ∈ [0, T ], ρ = 0, the optimal
investment strategy α∗ is given by

α∗
t = µt − rt

1 − γ

1
V̂t

,

and the value function can be written as

v(t, w,y) = 1
γ
wγφ(t,y) = 1

γ
wγEt,w,y

[
exp

{∫ T

t

(
rsγ + 1

2
γ

1 − γ

(µs − rs)2

V̂s

)
ds
}]
. (4.21)

Proof. To obtain v = G, we show that for an arbitrary admissible investment strategy α
we have that

Et,w,y

[(ŴT )γ

γ

]
≤ G(t, w,y), (4.22)

and that for the optimal policy α∗ the equality in (4.22) is reached. Since Theorem (4.1)
guarantees that G ∈ C1,2, see Remark 4.4, we can apply Itô’s formula. For an admissible
investment strategy α, we obtain

G
(
T, ŴT ,Y T

)
= G(t, w,y) +

∫ T

t
GwŴsαs

√
V̂sdB

1
s +

∫ T

t

N∑
i=1

Gyi
dB2

s

+
∫ T

t

{
Gt +GwŴs

[
rs + αs(µs − rs)

]
+

N∑
i=1

Gyi
(−xi)Y i

s

+ 1
2Gww(Ŵs)2α2

sV̂s +
N∑

i=1
wρa

√
V̂tGyiw + 1

2

N∑
i=1

N∑
j=1

Gyiyj

}
ds

≤ G(t, w,y) +
∫ T

t
GwŴsαs

√
V̂sdB

1
s +

∫ T

t

N∑
i=1

Gyi
dB2

s ,

where we used (4.12) in the last line. We also remark that B1 and B2 are independent
Brownian motions, and that the stochastic integrals are well-defined since α is as
admissible portofolio and G ∈ C1,2([0, T ) × R+ × RN). The right-hand side is a local
martingale in T

LT = G(t, w,y) +
∫ T

t
GwŴsαs

√
V̂sdB

1
s +

∫ T

t

N∑
i=1

Gyi
dB2

s .

For γ ∈ (0, 1) we have G > 0 and LT is in particular a supermartingale. Indeed, by
taking the conditional expectation on both sides of the above inequality and using the
boundary condition φ(T,y) = 1, which yields G(T, ŴT ,Y T ) = Ŵ γ

T /γ, we obtain

Et,w,y

[
G
(
T, ŴT ,Y T

)]
= Et,w,y

[(ŴT )γ

γ

]
≤ G(t, w,y),

since
Et,w,y

[∫ T

t
GwŴsαs

√
V̂sdB

1
s

]
= Et,w,y

[∫ T

t

N∑
i=1

Gyi
dB2

s

]
= 0.
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Hence, relation (4.22) holds. When we consider the optimal strategy α∗, we get

G
(
T, Ŵ ∗

T ,Y T

)
= G(t, w,y) +

∫ T

t
GwŴ

∗
s α

∗
s

√
V̂sdB

1
s +

∫ T

t

N∑
i=1

Gyi
dB2

s ,

where we denoted with Ŵ ∗ the wealth process when the optimal policy is used. Taking
the conditional expectation on both sides and using the assumption yields

Et,w,y

[(Ŵ ∗
T )γ

γ

]
= G(t, w,y).

Now that we have solved the finite-dimensional optimization problem, we proceed by
taking its limit to find the solution of the original problem under the rough Bergomi
volatility V as given in Definition 3.1.

4.2.3. Solution to the Original Optimisation Problem
Theorem 4.3. Suppose ρ = 0, and a classical solution Φ of the partial differential
equation (4.17) with boundary condition Φ(T,y) = 1 exists for t ∈ [0, T ] and y ∈ RN .
The portfolio optimisation problem (4.9) has an optimal investment strategy given by

α∗
t = µt − rt

1 − γ

1
Vt

, (4.23)

and the value function can be written as

v(0, w,y) = wγ

γ
E0,y

[
exp

{∫ T

0

(
rsγ + 1

2
γ

1 − γ

(µs − rs)2

Vs

)
ds
}]
. (4.24)

Proof. The first result (4.23) directly follows from the fact that α is an admissible strategy
(see Definition 1.4), thus, is an F-adapted process and does not depend on N .

Recall that the approximated final wealth process starting at W0 = w > 0 is explicitly
given by,

ŴT = w exp
(∫ T

0

[
rs + αs(µs − rs) − 1

2 V̂sα
2
s

]
ds+

∫ T

0

√
V̂sαsdB

1
s

)
. (4.25)

Since α∗ is optimal, from Theorem 4.2 we obtain

E0,w,y

[(ŴT )γ

γ

]
≤ E0,w,y

[(Ŵ ∗
T )γ

γ

]
, (4.26)

where we denoted with Ŵ ∗ the wealth process when the optimal policy is used. Using
the Feynman-Kac result in Theorem 4.1 yields for the right-hand side of (4.26)

E0,w,y

[(Ŵ ∗
T )γ

γ

]
= wγ

γ
E0,y

[
exp

{∫ T

0

(
rsγ + 1

2
γ

1 − γ

(µs − rs)2

V̂s

)
ds
}]
. (4.27)
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By monotone convergence of V̂ to V from Theorem 3.1, and recalling that the processes
V̂ and V are distributed as V̂ and V , respectively, we obtain

lim
N→∞

E0,y

[
exp

{∫ T

0

(
rsγ + 1

2
γ

1 − γ

(µs − rs)2

V̂s

)
ds
}]

= lim
N→∞

E0,y

[
exp

{∫ T

0

(
rsγ + 1

2
γ

1 − γ

(µs − rs)2

V̂s

)
ds
}]

= E0,y

[
exp

{∫ T

0
rsγ + 1

2
γ

1 − γ

(µs − rs)2

Vs

)
ds
}]

= E0,y

[
exp

{∫ T

0
rsγ + 1

2
γ

1 − γ

(µs − rs)2

Vs

)
ds
}]
.

Let us now consider the left hand side of (4.26). Since we are taking the conditional
expectation of ŴT , we use V̂ and V instead of V̂ and V to establish the limit of ŴT as
N → ∞. Since by monotone convergence

lim
N→∞

E
[∫ T

0
(αs)2

(√
V̂s −

√
Vs

)2
ds

]
= 0,

applying the Itô isometry yields∫ T

0
αs

√
V̂sdB

1
s

L2
−→

∫ T

0
αs

√
VsdB

1
s ,

which, in turn, implies L1 convergence. Thus, the exponent of ŴT in (4.25) becomes

lim
N→∞

(∫ T

0

[
rs + αs(µs − rs) − 1

2 V̂sα
2
s

]
ds+

∫ T

0
αs

√
V̂sdB

1
s

)

=
∫ T

0

[
rs + αs(µs − rs) − 1

2Vsα
2
s

]
ds+

∫ T

0
αs

√
VsdB

1
s ,

where in the first term the exchange between limit and integral is again justified by
monotone convergence. Since L1 convergence implies convergence in probability, which in
turn implies convergence in distribution [30, Theorem 3.1], the Skorokhod representation
theorem (Theorem A.3) and the continuity of the exponential function guarantee that,
on a suitable probability space

lim
N→∞

Ŵt = lim
N→∞

w exp
(∫ T

0

[
rs + αs(µs − rs) − 1

2 V̂sα
2
s

]
ds+ αs

∫ T

0

√
V̂sdB

1
s

)

= w exp
(∫ T

0

[
rs + αs(µs − rs) − 1

2Vsα
2
s

]
ds+ αs

∫ T

0

√
VsdB

1
s

)
= Wt a.s.,

where the processes Ŵ and W share the same distributions as Ŵ and W , with the latter
being the wealth process while considering the rough Bergomi volatility V .

Noting that U(ŴT ) = (ŴT )γ/γ is a sequence of measurable non-negative functions, from
Fatou’s Lemma, we obtain for the left hand side of (4.26) that

lim inf
N→∞

E0,w,y

[(ŴT )γ

γ

]
≥ E0,w,y

[
lim inf
N→∞

(ŴT )γ

γ

]
= E0,w,y

[
lim inf
N→∞

(ŴT )γ

γ

]
= E0,w,y

[(WT )γ

γ

]
= E0,w,y

[(WT )γ

γ

]
,
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where we have used that, since the limit of Ŵ exists almost surely, lim inf Ŵt =
lim sup Ŵt = Wt as N → ∞. Finally, for all admissible strategies α

E0,w,y

[(WT )γ

γ

]
≤ wγ

γ
E0,y

[
exp

{∫ T

0

(
rsγ + 1

2
γ

1 − γ

(µs − rs)2

Vs

)
ds
}]
,

where the equality is met if the optimal strategy α∗ is adopted.

The optimal terminal wealth W ∗ on [0, T ] is then derived by substituting the optimal
portfolio strategy α∗ (4.23) into

WT = w exp
(∫ T

0

[
rs + αs(µs − rs) − 1

2Vsα
2
s

]
ds+

∫ T

0

√
VsαsdB

1
s

)
.

This substitution yields

W ∗
T = w exp

(∫ T

0

[
rt + (µt − rt)2 1 − 2γ

2(1 − γ)2
1
Vt

]
dt+

∫ T

0

µt − rt

1 − γ

1√
V t

dB1
t

)
, (4.28)

where we recall that we are considering the case ρ = 0, meaning the Brownian motion
B1 ≡ BS driving the wealth process and the Brownian motion BV driving the volatility
process are independent.

4.3. Simulation Results

In the case ρ = 0, we simulate the optimal terminal wealth W ∗ (4.28) using the parameters:

w = 1000, r = 0.02, µ = r + λVt, λ = 0.5, γ = −2,

and resulting in the following expression:

W ∗
T = w exp

(∫ T

0

[
r + λ2(1 − 2γ)

2(1 − γ)2 Vt

]
dt+

∫ T

0

λ

1 − γ

√
V tdB

1
t

)
.

Remark 4.5. The choices r = 0.02 and µ = r + λVt are admissible: r is a constant, and
µ is a continuously differentiable function of t and V . Therefore, the assumptions we
have made regarding these parameters in the financial market are satisfied.

The process is simulated based on the approximation scheme outlined in Section 3.3.
Gaussian quadrature is employed to determine the nodes and weights for the fractional ker-
nel approximation, and the simulations are conducted using the Cholesky decomposition
of the Gaussian vector underlying the approximated system.

We compare the optimal terminal wealth W ∗ with the wealth obtained from investing
solely in the safe asset S0, denoted as W , which is given W T = w exp(rT ) with w > 0.
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Figure 4.1: Rough optimal terminal wealth W ∗ for
H ∈ {0.10, 0.25, 0.45} compared the wealth W obtained

from investing solely in the safe asset.



Conclusions

This thesis addresses the challenge of solving the portfolio optimization problem within
a financial market framework comprising one risk-free asset and one risky asset featuring
rough Bergomi volatility. According to the definition of rough volatility processes, the
rough Bergomi volatility is governed by the fractional kernel K(τ) = τH−1/2 with Hurst
index H ∈ (0, 1/2). This specification forces the rough Bergomi model to leave both
semimartingale and Markovian frameworks, thereby complicating its theoretical analysis
and practical applications.

By leveraging Markovian approximations for fractional processes, as discussed in [16],
[33], and [32], we approximate the fractional component of the rough volatility process
and solve the associated optimization problem using PDE techniques. This method
ultimately enables us to find the solution to the original optimization problem involving
rough Bergomi volatility as the limit of the approximated problem, consistent with the
methodology outlined in [5]. The findings are further validated through a numerical
study utilizing Gaussian quadrature and Cholesky decomposition, based on the work [6].

The approximation involves two key steps: first, we represent the fractional component of
the rough Bergomi volatility as a linear functional of an infinite-dimensional OU process
to obtain its Markovian representation. Second, we discretize this representation, leading
to an approximation dependent on a finite-dimensional Markovian stochastic factor. In
the resulting approximated rough Bergomi model, the coefficients of the risky asset
are influenced by a stochastic factor Y = (Y 1, . . . , Y N), driven by a Brownian motion
correlated with the one driving the stock price. Each component of this factor shares
the same dynamics but mean reverts at different rates. Using the HJB equation, we
derive an implicit solution when the stochastic factor and the stock price are driven by
correlated Brownian motions, and provide an explicit solution for the uncorrelated case.

The numerical study focuses on simulating the rough Bergomi model. The simulation
scheme begins by approximating the fractional kernel of the rough volatility using
Gaussian quadrature to compute the positive weights and nodes. These weights and
nodes are then employed to simulate the Markovian approximation of the rough Bergomi
model through Cholesky decomposition of the underlying Gaussian vector. The accuracy
of this approach is validated by comparing the approximation error with results from
existing literature and by visualizing the rough Bergomi model across various parameter
settings.

91
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This thesis contributes to the field of portfolio optimization by addressing the rough
Bergomi model, thus filling a gap in the literature where analyses have been limited to
the rough Heston model. The Markovian approximation employed herein enables the
application of the HJB equation in a conventional manner, with its effectiveness further
supported by the convergence of the approximated model to the original rough Bergomi
model.

The approach of employing a Markovian approximation extends beyond the rough
Bergomi model and is not limited to portfolio optimization. Its versatility and practicality
effectively address the challenges posed by the non-Markovian and non-semimartingale
limitations of processes featuring a fractional kernel. This approximation’s effectiveness
has been validated within the broader framework of stochastic Volterra equations [2] and
has been applied to simulations, option pricing, and hedging problems, as discussed in
[8] and [1].

The Markovian approximation of fractional processes is fundamentally connected to
approximating their fractional kernels. In this thesis, we use Gaussian quadrature to
approximate the fractional kernel associated with the rough volatility process, as detailed
in [6]. The computational efficiency of this method has been validated in the same work,
where the authors compare the Gaussian quadrature rule with other choices of nodes
and weights for approximating the fractional kernel, including [32] and [4], which groups
with [16], [2], [5].

Future research could explore several promising avenues. One potential direction is
a comparative analysis of the rough Heston and rough Bergomi models in portfolio
optimization. This could involve employing a consistent kernel approximation method,
such as Gaussian quadrature, and applying PDE techniques to solve the portfolio
optimization problem. Further empirical validation with real market data could offer
deeper insights and refine the methodologies presented in this thesis. Additionally,
future work might focus on improving the convergence rates of Gaussian quadrature
approximations, as detailed in [7], or investigating alternative numerical techniques [48].

In terms of numerical implementation, particular attention could be given to the hybrid
multifactor scheme proposed by Rømer [59]. This scheme integrates the Hybrid method
developed by Bennedsen et al. [9], which advances the simulation of (truncated) Brownian
semistationary processes, with the multifactor approximation for completely monotone
kernels discussed in this thesis. By combining these methodologies, the hybrid scheme aims
to leverage the strengths of both approaches, thereby improving the overall effectiveness
and accuracy of numerical implementations.
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A
Auxiliary Results

The Stochastic Fubini Theorem
Let µ be a σ-finite measure on (0,∞), i.e. (0,∞) is a countable union of measurable
sets each with finite measure. Fix T ≥ 0 and denote by Pr the σ-algebra on [0, T ] × Ω
generated by all progressively measurable processes (Definition 1.3).

Theorem A.1. [33, Theorem 6.1] Let G : (0,∞) × [0, T ] × Ω → R be measurable with
respect to the product σ-algebra B(0,∞) ⊗ Pr. Define the processes ζ1,2 : (0,∞) × [0, T ] ×
Ω → R and η : [0, T ] × Ω → R by

ζ1(x, t, ω) =
∫ t

0
G(x, s, ω)ds, ζ2(x, t, ω) =

(∫ t

0
G(x, s, ·)dBs

)
(ω),

η(t, ω) =
∫ ∞

0
G(x, t, ω)µ(dx).

(i) Assume G satisfies for almost all ω ∈ Ω∫ ∞

0

∫ T

0
|G(x, s, ω)|dsµ(dx) < ∞. (A.1)

Then, for almost all ω ∈ Ω and for all t ∈ [0, T ] we have ζ1(·, t, ω) ∈ L1(µ) and∫ ∞

0
ζ1(x, t, ω)µ(dx) =

∫ t

0
η(s, ω)ds.

(ii) Assume G satisfies for almost all ω ∈ Ω

∫ ∞

0

√∫ T

0
|G(x, s, ω)|2dsµ(dx) < ∞. (A.2)

Then, for almost all ω ∈ Ω and for all t ∈ [0, T ] we have ζ2(·, t, ω) ∈ L1(µ) and∫ ∞

0
ζ2(x, t, ω)µ(dx) =

(∫ t

0
η(s, ·)dBs

)
(ω).
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The Bernstein-Widder Theorem
In real analysis, Bernstein’s theorem asserts that any real-valued function on the half-line
[0,∞) that is completely monotone can be expressed as a mixture of exponential functions.
More precisely, the Bernstein-Widder theorem, or Hausdorff-Bernstein-Widder theorem,
gives an integral characterization of completely monotone functions.

Definition A.1. [22, Definition 2.5.1] A function Ψ : [0,∞) → R which is in C[0,∞) ∩
C∞(0,∞) and which satisfies

(−1)nΨ(n)(t) ≥ 0, t > 0, n = 0, 1, 2, . . . ,

is called completely monotone on [0,∞).

Theorem A.2. [22, Theorem 2.5.2] A function Ψ : [0,∞) → R is completely monotone
on [0,∞) if and only if it is the Laplace transform of a finite non-negative Borel measure
µ on [0,∞), i.e., Ψ is of the form

Ψ(t) = Lµ(t) =
∫ ∞

0
e−txdµ(x).

The Skorokhod Representation Theorem
The Skorokhod’s representation theorem is a result that shows that weakly convergent
random variables can be represented as the distribution/law of a pointwise convergent
sequence of random variables defined on a common probability space. The theorem only
requires the support of the law of the limiting random variable to be separable.

Since we are interested in real-valued random variables and R is a separable metric space,
we consider the version of the theorem that applies to R. Before presenting the theorem,
we first review the definitions related to the convergence of random variables involved.

Definition A.2. [30, Definition 1.1] Xn converges almost surely (a.s.) to the random
variable X as n → ∞ if and only if

P ({ω : Xn(ω) → X(ω) as n → ∞}) = 1.

Notation: Xn
a.s.−−→ X as n → ∞.

Definition A.3. [30, Definition 1.4] Let C(FX) = {x : FX(x) is continuous at x} denote
the continuity set of FX , where FX is the distribution function of X. Then, Xn converges
in distribution to the random variable X as n → ∞ if and only if

FXn(x) → FX(x) as n → ∞, for all x ∈ C(FX).

Notation: Xn
d−→ X as n → ∞.
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Theorem A.3. [30, Theorem 13.1] Let {Xn, n ≥ 1} be random variables such that

Xn
d−→ X as n → ∞.

Then there exist random variables X̃ and {X̃n, n ≥ 1} defined on a Lebesgue probability
space, such that

X̃n
d= Xn for n ≥ 1, X̃

d= X, and X̃n
a.s.−−→ X̃ as n → ∞.

Remark A.1. In probabilistic language, the Lebesgue probability space corresponds to
a U(0, 1)-distributed random variable.



B
Gaussian Quadrature

Let [a, b] be a finite interval with 0 ≥ a ≥ b, let ν : [a, b] → [0,∞) be a continuous weight
function, and let f : [a, b] → R be a function that we wish to integrate. The aim of
quadrature theory is to compute an approximate value for the definite integral

Iν [f ] =
∫ b

a
f(x)ν(x)dx,

by means of a quadrature rule, that is a map Q, determined by (xi)m
i=1 (the nodes) that

lie in [a, b], and numbers (wi)m
i=1 (the weights) which assigns to a function f the value

Q[f ] =
m∑

i=1
wif(xi). (B.1)

If the xi and wi are chosen suitably, then Q[f ] is an approximation of I[f ]; this ap-
proximation is mathematically meaningful only if one has a good understanding of the
error

R[f ] := I[f ] −Q[f ].

We have a total of 2m degrees of freedom when selecting our nodes and weights. The
Gaussian quadrature rule of level m, QG

m, is the unique choice of nodes and weights that
integrates all polynomials of degree at most 2m− 1 exactly, i.e.

RG
m

[
P2m−1

]
= {0}.

We now outline how the Gaussian nodes and weights can be computed, drawing on the
exposition presented in [57]. Firstly, one needs to find orthogonal polynomials pn of
degree n. Orthogonality is defined with respect to the scalar product:

⟨f, g⟩ =
∫ b

a
f(x)g(x)ν(x)dx.

These orthogonal polynomials can be efficiently obtained using the three-term recurrence
relation:

p−1(x) ≡ 0,
p0(x) ≡ 1,

pn+1(x) = (x− an) pn(x) − bnpn−1(x), n = 0, 1, 2 . . .
(B.2)
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where

an = ⟨xpn, pn⟩
⟨pn, pn⟩

, n = 0, 1, . . .

bn = ⟨pn, pn⟩
⟨pn−1, pn−1⟩

, n = 1, 2, . . .

The polynomials defined by (B.2) are monic, i.e., the coefficient of their leading term
xn for pn(x) is unity. Moreover, the polynomial pn(x) can be shown to have exactly n
distinct real roots in the interval (a, b).

Finding all the roots of an orthogonal polynomial pn(x) is essential because the abscissas
of the m-point Gaussian quadrature formula (B.1) with the weighting function ν(x) over
the interval (a, b) correspond exactly to the roots of the orthogonal polynomial pn(x) for
the same interval and weighting function [14, Theorem 6.1.2].

Once the abscissas x1, . . . , xm , are determined, the next step is to compute the weights
wi for i = 1, . . . ,m. One method to evaluate the weights is given by the formula:

wi = ⟨pm−1, pm−1⟩
pm−1(xi)p′

m(xi)
,

where p′
m(xi) denotes the derivative of the orthogonal polynomial at the root xi.

The computation of Gaussian quadrature rules thus involves two distinct phases:

(i) the generation of the orthogonal polynomials p0, . . . , pm , i.e., the computation of
the coefficients an, bn in (B.2),

(ii) the determination of the zeros of pm(x), and the computation of the associated
weights.

For the case of the “classical” orthogonal polynomials (e.g. Legendre, Chebyshev,
Hermite), the recurrence coefficients an and bn are explicitly known, allowing us to
omit phase (i). Instead, when dealing with a “non classical” weight function ν(x), the
coefficients an and bn are unknown and constructing the corresponding set of orthogonal
polynomials becomes more complex. An efficient algorithm for computing Gaussian nodes
and weights, applicable even for non-standard weight functions, is the one developed by
Golub and Welsch in [27].

Moving forward, we highlight two fundamental properties of the Gaussian quadrature
rule: the strict positivity of the weights and the monotonicity property.

Theorem B.1. The weights (wi)m
i=1 of a Gaussian quadrature rule of level m, QG

m, are
strictly positive.

Proof. Consider the following polynomial of degree 2m− 2

p2m−2(x) =
m∏

j=1
j ̸=i

(x− xj)2

(xi − xj)2 ,
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where (xj)m
j=1 are the roots of the polynomial pm(x). Note that p2m−2(x) = (li(x))2, with

li(x) being the ith elementary Lagrange polynomial. Clearly, p2m−2(xj) = δi,j. Since the
degree of p2m−2 is less than 2m− 1 and QG

m is the unique choice of nodes and weights
that integrates all polynomials of degree at most 2m− 1 exactly, we obtain

Iν [p2m−2] = QG
m[p2m−2] =

m∑
j=1

wG
j p2m−2(xG

j ).

Moreover, as the nodes of QG
m coincide with the roots of p2m−2, we have:

m∑
j=1

wG
j p2m−2(xG

j ) =
m∑

j=1
wG

j δi,j = wG
i > 0,

where the strict positivity of wG
i comes from the fact that Iν [p2m−2] =

∫ b
a p2m−2(x)ν(x)dx

is strictly positive as its integrand is non-zero almost everywhere on [a, b].

Theorem B.2. [13] Let f (2m) denote the derivative of order 2m of f . If f (2m) is
continuous and non-negative, then

QG
m[f ] ≤ QG

n [f ], for m < n.

Proof. Consider a polynomial of order 2m− 1, such that

p2m−1(xG
i ) = f(xG

i ), i = 1, . . . ,m,
p′

2m−1(xG
i ) = f ′(xG

i ), i = 1, . . . ,m.

Since QG
m is exact for polynomials of order 2m− 1, i.e. RG

m[P2m−1] = {0},

I[f ] ≈ QG
m[f ] ↔ I[f − p2m−1] ≈ QG

m[f − p2m−1].

Consequently,

QG
n [f ] −QG

m[f ] = QG
n [f − p2m−1] −QG

m[f − p2m−1]

=
n∑

i=1
wG

i

[
f(xG

i ) − p2m−1(xG
i )
]

−
m∑

i=1
wG

i

[
f(xG

i ) − p2m−1(xG
i )
]

=
n∑

i=1
wG

i

[
f(xG

i ) − p2m−1(xG
i )
]

≥ 0,

where the latter inequality follows from the strict positivity of the Gaussian weights,
wG

i > 0 as seen in Theorem B.1, and the non-negativity of the residual representation

f(x) − p2m−1(x) = f (2m)(c(x))
(2m)!

m∏
j=1

(x− xj)2,

with c(x) being a point in (a, b). Here, p2m−1(x) is represented as an Hermite polynomial
and f(x) − p2m−1(x) is the Hermite interpolation error.
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Remark B.1. Theorem B.2 can be directly applied to the case of generalized Gaussian
quadrature with an arbitrary weight function ν [13].

We now present an additional result concerning the representation of Gaussian quadrature
as a Riemann-Stieltjes sum, stated without proof. This follows the definitions of the
Riemann-Stieltjes integral; for further details, we refer to [60].

Definition B.1 (Riemann-Stieltjes sum). Let [a, b] be a given interval. Define a partition
P of [a, b] to be a set of points x0, x1, . . . , xn where

a = x0 ≤ x1 ≤ . . . ≤ xn = b

and let ∥P∥ = max1≤i≤n |xi − xi−1| be the mesh. For each 1 ≤ i ≤ n, choose a point
to represent the subinterval [xi−1, xi]. A choice for the partition P is a finite set Y =
{y0, . . . , yn} of points with

xi−1 ≤ yi ≤ xi for each 1 ≤ i ≤ n.

The Riemann–Stieltjes sum with partition P and choice Y is

S(P, Y, f, α) =
n∑

i=1
f(ti) [α(xi) − α(xi−1)] .

Definition B.2 (Riemann-Stieltjes integral). A function f : [a, b] → R is said to be
Riemann integrable with respect to α on [a, b], denoted f ∈ R(α) on [a, b], if there exists
an I ∈ R such that

∀ ε > 0,∃ a partition Pε of [a, b] s.t. |S(P, Y, f, α) − I| < ε

for all partitions P of [a, b] finer than Pε,
i.e. P ⊂ Pε, and all choices Y for P .

If so, I is denoted by
∫ b

a f(x)dα(x) or
∫ b

a fdα and we write

lim
P
S(P, Y, f, α) =

∫ b

a
f(x)dα(x).

Theorem B.3. [14, Theorem 6.4.2] Let QG
m be a Gaussian quadrature rule with nodes

xG
i and weights wG

i , let ν : [a, b] → (0,∞) be a continuous weight function, and let
f : [a, b] → R be a function that we wish to integrate. Then there exist numbers yi with

a = y0 ≤ x1 ≤ y1 ≤ x2 ≤ . . . ≤ xn ≤ yn = b,

and
wG

i =
∫ yi

yi−1
ν(u)du.

This means than QG
m is a Riemann-Stieltjes sum, i.e.

QG
m[f ] =

m∑
i=1

f(xi)
∫ yi

yi−1
ν(u)du.
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