
Byzantine-Resilient Real-Time Reliable Broadcast on
Partially Connected Topology Cases

Thom Breugelmans
Supervisor(s): Jérémie Dechouchant, Bart Cox

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract—Increasing digitalisation of society due to technical
advancement has increased the appearance and size of cyber-
physical systems. These systems require real-time reliable control,
which comes with its challenges. These systems need reliable
communication despite the presence of attacks or faulty processes
and bad connections, which can disrupt the timeliness and
correctness of these applications. Furthermore the scale of these
systems are becoming increasingly larger as such the cost of
connecting all processes that make up these systems become very
high. This paper addresses the issues of reliable communication
in these conditions while allowing for networks to be partially
connected. We show that the protocol discussed can meet real-
time requirements of these systems even under conditions of bad
connections and low network connectivity.

Index Terms—real-time distributed systems, reliable broadcast,
byzantine resilience, partially connected networks

I. INTRODUCTION

Many of our physical structures get monitored by automated
systems or are being automated. These structures are called
cyber-physical systems (CPS) [1] and often consist of sensors,
actuators and computing devices. These devices are connected
over networks, often wireless, and bring with them a fair
share of problems. In this paper we will emphasise on the
communication aspect of these CPS and focus on the problems
of reliable communication (RC) over faulty networks and real-
time communication.

Networked systems especially wireless systems bring uncer-
tainties with them. Links connecting two nodes in a network
can fail and as a result hamper timeliness of messages due to
delay or corrupting/dropping the message. Another problem
with networked systems is that they are liable to process faults
of other nodes on the system, these faults can range from
software errors or bugs to malicious intent from an unknown
party.

Both of these problems have been subject of research in
the past as they are often occurring problems. The Byzantine
Generals Problem [2] models the problem of having reliable
communication and reaching a consensus in a network despite
the presence of adversaries. What we are looking for is not
consensus, however, but broadcast. Previous research on RC
gave solutions to the problems that networks bring with them.
However these solutions either cannot perform under time
constraints, cannot take adversaries in a network into account
or simply have high network requirements by needing a fully
connected network.

As such in this paper we will present a protocol that is
capable of real-time performance and can guarantee the reliable
delivery of messages in partially connected networks that
are subject to faults (i.e., one third of the processes being
Byzantine and high message loss rates). Specifically we extend
upon the research of Kozhaya et al. namely their presented
protocols, RT-ByzCast [3] and PISTIS [4]. We explore the
network connectivity requirements these protocols, and show
the performance implications of varying degrees of connectivity.
Furthermore we propose an alteration to the protocol that
reduces the bandwidth by lowering the amount of messages
sent using probabilities.

The paper is structured as follows. Section II will elaborate
on previous studies similar to this paper, what their contri-
butions are and why they differ from our paper. Section III
contains a model of our system. Section IV shows an overview
of the underlying principle of the protocols of PISTIS and
RT-ByzCast. Section V discusses how the protocols perform in
partially connected networks. Section VI shows and discusses
our proposed method for reducing bandwidth. Section VII
contains the analysis of the results and how those results
were gathered and realised. Section VIII we will discuss our
ethics while working on this paper. Lastly section IX states
some future work and improvements and in section X we will
conclude.

II. RELATED WORK

Reliable communication (RC) especially in networks with
byzantine properties has been subject of research before.
Evidence of this is the existence of the Byzantine Generals
Problem (BGP) and the existence of protocols that solve this
problem. Such as Bracha’s [5] and Dolev’s [6] protocols.

Both protocols solve BGP, however they do not fully conform
to our specifications. Bracha states the requirement of a fully
connected network to function [5], which conflicts with our
requirements and goals. Dolev, however, has no need for a
fully connected network [6]. The problem with Dolev being
that it cannot adhere to timing constraints and thus can run for
an undefined amount of time. As such, while both protocols
solve BGP, they cannot be replaced by our protocol as they
have specifications that conflict with our requirements.

RT-ByzCast [3] and PISTIS [4], both by Kozhaya et al., are
two protocols that work very similarly and both solve BGP
under real-time constraints. The main difference between the
two is that PISTIS is an improvement on the former and is
event-based in contrast to RT-ByzCast, which is round-based
[4]. These protocols work similar to Bracha, however they
aggregate signatures in the messages to verify the contents
and that it has been received by said node. These protocols,
however, state the necessity for a fully connected network.

III. SYSTEM MODEL

Since we extend upon the work of the PISTIS and RT-
ByzCast protocols our system model will be very similar to
theirs.

Processes. The system is modelled as a distributed system
where each entity of the system is a process. Processes in the
system are denoted by pi and the system as a whole as the
set Π = p0, p1, ..., pN − 1 of N > 1 processes. Processes are
able to be uniquely identified and processes themselves are
able to use signatures to sign messages. A signature of process
pi is denoted by σi. A process should have full knowledge of
the topology of the network in which it resided, this means
knowledge of (approximated) link failure, all processes in the
network and which edges or links are connected to which
processes. Processes can be faulty or byzantine as a result of
which they violate timing constraints or modify messages of a
broadcast.

2

Clock. Processes have access to local clocks that contain
negligible drift from real time.

Communication. Processes are connected to other processes
through the use of links. A pair of processes is connected
through two uni-directional links, e.g. processes pi and pj are
connected with a link from pi to pj and vice versa. These links
have a probability P (linkfailure) to correctly deliver the
message from pi to pj within a maximum delay d (d is known
to the process). A link fails to correctly deliver a message if
the message is either delivered after the maximum delay d
or if the message is altered in the process of delivering the
message.

Network. A network is comprised of the set Π of processes
and their links. The network has the ability to function with
up to f byzantine nodes. In order to function the system must
have a size N ≥ 3f + 1 and each process must have at least
f + 1 links.

IV. PROTOCOL OVERVIEW

Both the RT-ByzCast and PISTIS protocols have very similar
underlying working principles with the main difference being
that RT-ByzCast is round-based [3] and PISTIS event-based [4].
Both protocols send messages at intervals, with RT-ByzCast
being every round r and PISTIS after every delay d denoted
by t. Since the principles are so similar we use the notation
of r for the explanation of the protocols.

A. Overview

Processes in the network regularly send out heartbeats to
indicate liveliness denoted as HB messages. These messages
contain the heartbeat of the process itself and the heartbeats
the process has gathered from its surroundings. If a process
does not receive 2f + 1 heartbeats in an interval of R rounds
the process will move into the DeadState as to not implicate
the timeliness of the network. A process in the DeadState
does not send any messages.

When a process starts broadcasting a message or receives a
broadcast it will start sending out ECHO messages containing
the content of the broadcast, signatures of itself and the
signatures of other processes of said broadcast it has received,
and the heartbeats it has gathered. A process aggregates
signatures from the ECHO messages it receives and passes
it along in their next ECHO. A process will start sending
ECHO messages every round when it has been made aware of
a broadcast. As a result it will no longer send HB messages,
however, the heartbeats will be included in the ECHO messages.

If a process has received 2f + 1 signatures the process will
start delivering the message by sending DELIVER messages.
These messages also contain the content of the broadcast and
all aggregated signatures, however, heartbeats are no longer
present in the message. The process will deliver the message for
2R rounds. The broadcast is successful if all correct processes
in the network are delivering the message.

V. EXTENDING TO THE PARTIAL TOPOLOGY

PISTIS and RT-ByzCast state a requirement of a fully
connected network to function, e.g. in a system with N nodes
each node has N − 1 links, however thanks to the use of
signatures this requirement can be lowered to f + 1. In this
section we will test innate ability of both protocols to perform
in partial networks and what the performance implications are
when the protocol executes in a partially connected network
versus a fully connected network.

A. Explanation

Firstly to understand why the reduction is possible we first
need to know the reason for reducing to f + 1 and not lower
or higher. We know the system contains N processes where
N ≥ 3f + 1 and we know that the system can support up to
f byzantine processes. What we want to achieve is a minimal
network with the property that each process can still reliably
send and receive messages and know if a message has been
tampered with. As such each process must have at least a single
path to another process that passes no byzantine processes.
Thus each process in the network must have at least one
neighbour that is not byzantine. This does not automatically
result in the f + 1 as certain distributions of the byzantine
processes in a network still allow for this constraint, however
if we want to guarantee the ability to deliver a message a set
of constraints must be given that allow for message delivery
unrelated to the distribution of processes in a network. As a
result the constraint must take into account the probability that
all byzantine processes have a common neighbour and that
neighbour must still have a link to a non-byzantine process,
hence the f + 1.

However simply needing f + 1 neighbours is not enough
as processes still need to verify a quorum has received the
message, which is realised through the use of signatures. The
processes need a way to verify a quorum has received a message
that cannot be tampered with. If there is a way to tamper
with the verification process, then the byzantine processes
can exploit this method and broadcast arbitrary messages.
Signatures indicate a message has been sent and received by a
process. If the signature method is cryptographically secure,
then byzantine processes cannot tamper with the signature and
the content.

As a result of the f + 1 neighbours and the signatures a
process can then ultimately confirm a quorum has received the
message.

B. Testing the Partial Topology

As discussed in V-A theoretically RT-ByzCast and PISTIS
should support partial topologies and simulations confirm this
hypothesis. Using the public simulation code of PISTIS 1 and
our own code we tested the innate ability to work under partial
topologies. We tested the protocols on various network sizes and
with varying probabilities of link failure. What we found was
that all processes in these networks were able to successfully

1https://github.com/vrahli/pistis

3

obtain 2f + 1 signatures, confirming our hypothesis of the
protocols being able to perform in a partial topology.

C. Implications

Failure to reach a quorum is the biggest implication of
reducing the amount of links, however this can be mitigated by
increasing the parameter R for RT-ByzCast and T for PISTIS.
These parameters represent the amount of time or rounds that
can pass before a process enters the so-called DeadState [3,
4]. Doing this allows the processes a longer time frame to
send messages to reach the specified 2f + 1 signatures in the
first R rounds or T time. If not enough signatures are received
after this time, as specified by the protocols, a process should
enter the DeadState [3, 4]. The problem with this is that
the performance of the protocol will suffer due to this as the
time frames become longer. Both protocols state that, with
negligible chance at failure, all non-Byzantine processes will
reach a byzantine quorum within 3R rounds for RT-ByzCast
[3] and 3T for PISTIS [4] and since we are extending this
parameter as such the time within which the protocols state a
quorum is reached is also lengthened.

In section VII these implications will be explored and
discussed along with an analysis of the performance of the
protocol on the partially connected topology versus the fully
connected topology.

VI. IMPROVING PERFORMANCE

To increase performance we examine two possibilities,
improve performance by reducing the time the protocol takes
to attain a successful broadcast or by reducing the bandwidth
requirement by decreasing the amount of messages sent or
decreasing the size of the messages. Improving performance
by reducing the time is the most optimal solution, the only way
to achieve this, however, is to reduce the amount of intermediary
processes between two processes. The reason being that with
more connections less processes need to be traversed to go
from A to B, ultimately lowering the minimal amount of
rounds needed to succeed and thus lowering the time. This
means that the performance can be improved by increasing
the number of links a single process has, which is exactly
the opposite of the goal of this paper. The next best option is
to reduce the bandwidth the protocol needs by reducing the
amount of messages that are being sent or reducing the size
of the messages.

To reduce the bandwidth and thus improve performance a
method of calculating the probability a process has received
a message and signature will be used. With this information
a decision will be made on whether to send a message or to
not send a message, decreasing the amount of messages sent.
This method will be discussed in VI-A and the implementation
details of the method will be discussed in VI-B.

A. Overview

Our proposed improvement keeps track for each process
whether it has received and signed the message of the
broadcast. With this information a process can then calculate

the probability a neighbour has received the message and
whether it has received a specific signature. If a neighbour
of a process has received all currently known signatures, and
thus also the actual message, with a probability higher than
some specified threshold d, then the process will stop sending
ECHO messages to that neighbour.

To calculate the probability a neighbour has received a
signature we make use of the fact that the topology of the
network is known as specified in Section III. As a result of
the topology being known we can compute the shortest path
from any process to any other process. If a process pi knows
that process pk has signed the message at a time t0, e.g. by
having received the signature, then using the shortest distance
we can compute the probability a neighbour pj has received
that signature from pk. The equation would look as follows:

Preceived =

{
1− P (linkfailure)t−t0 , if t− t0 ≥ dist

0, otherwise

where P (linkfailure) is the probability of a link failing to
adhere to the constraints of timeliness and correctness, t is the
current time/round and dist is the minimal distance between
pj and pk.

To find t0 we could use the time process pi received
the signature, however that would not be a very accurate
representation of t0 and thus also widen the distance between
the actual probability of pj having received the signature of
pk and the computed probability. To accurately get t0 we will
need to store, in addition the the signature, the time a process
has signed the message.

In addition to using the probability pj has received the
signature from pk, we can also use the probability pj has
received the signature of pk from pi. In this case t0 will
become the time/round pi has received the signature of pk
and dist will become the shortest distance between pi and
pj . Combining these two probabilities we have an accurate
representation of the probability pj has received the signature
of pk.

With this information process pi can then compute the
probabilities of receival for each of its neighbours for all
known signatures. Then, if the probability of receival does not
reach the required threshold d, pi will retransmit the message
to that specific neighbour, else it will hold off on that message.

Holding off on messages however is dangerous as that
would also mean heartbeats are not sent. Since the underlying
protocol is very reliant on the heartbeats we will transform the
messages to be HB instead of ECHO or DELIVER as opposed
to simply dropping the message. That way heartbeats are
still passed around the network, preventing processes from
unnecessarily moving into the DeadState. This means that
we are not entirely dropping messages, but only reducing the
size of the message. This is sub-optimal, however, since we
are reducing the size, we are decreasing the bandwidth. If
these heartbeats can also be dropped we can further lower the
bandwidth requirements, which is a topic that is touched upon
in the future work Section IX.

4

This method of calculating the probability of receival for a
process pj is not perfectly accurate. The current method does
not take into account the other possible paths a message might
take to reach a process, which would increase the probability
process pj has received the message. As such this method
produces a lower probability than is actually the case in most
situations. This point is further discussed in section IX.

B. The Algorithm

Algorithm 1 should-send(pj, Σ, t) at process pi
1: Parameters:
2: pj : the neighbour process to send to or not
3: Σ: the aggregated signatures and their times as a tuple
4: t: the current round
5:
6: if |Σ| > 2f then
7: // the current process is delivering, thus only use the probability of

pj having received from the process itself
8: dist← distances[pi][pj
9: Preceived ← 1− P (linkfailure)t−tstart_delivering

10: return Preceived < threshold
11: else
12: for (σk, tk) ∈ Σ do
13: Preceived ← 0
14: // get the shortest distance from pk (process of signature) to pj

(neighbour process)
15: dist← distances[pk][pj]
16: if t− tk < dist then
17: Preceived ← 1− P (linkfailure)t−tk

18: end if
19:
20: if Preceived < threshold then
21: // a signature has not reached required threshold, so message

should be sent
22: return TRUE
23: end if
24: end for
25:
26: return FALSE
27: end if

Algorithm 2 send(Msg, pj, t) at process pi
1: Parameters:
2: Msg: the message to send
3: pj : the neighbour process to send to
4: t: the current round
5:
6: if Msg = HB then
7: Send Msg to pj
8: else
9: if should-send(pj, Σ, t) = FALSE then

10: // only send heartbeats
11: Send HB to pj
12: else
13: Send Msg to pj
14: end if
15: end if

The following algorithm, Algorithm 1, determines whether
or not to send the message or change the message to be a
heartbeat. The method of integrating it into the existing protocol
is shown in Algorithm 2. This method will be called instead of
the normal Send method and is called each time an attempt
at sending a message is made.

As stated before in addition to storing the signatures
the messages also need to contain the time of signing for
the method to work. Alongside this the process also needs
to have knowledge of the round it started delivering the
message, this variable is denoted by tstart_delivering in method
should-send in algorithm 1. As visible the should-send
method in algorithm 1 returns a truth value iff the process
should send the message to its neighbouring process pj . The
method it computes whether it should send or not differs
slightly if the process is echoing or delivering. When echoing
it uses the probability of pj having received from itself and
from the process that has signed the message. When process
pi is delivering it uses only the probability pj has received
the DELIVER message from itself. If the computed value has
not reached a specified threshold, then the process receives a
TRUE to indicate it should send a message.

VII. EVALUATION

In this section we evaluate the performance implications
the protocol has when executing in partial topologies, we also
examine the proposed method for reducing the amount of
messages.

To test the protocols and to generate data we made use
of the OMNeT++ 5.5.1 network simulator and our own
implementation of the protocols.

All our data points are gathered using R/T = 10t, except
for the information shown in figure 1 as there we wanted to
know the minimal required value of R/T. The data presented
in section VII-A are the average results of 10 or more
simulations. In section VII-B they are the average results of
1000 simulations.

A. Performance in Partial Topologies

Fig. 1. Performance of the protocol on different levels of connectivity on
increasing network sizes (N)

First of all, simulations show that the protocol works on
networks with connectivities as low as f+1. If no recovery from
the DeadState is allowed the protocol becomes dependent
on how low the R/T value is. Figure 1 shows that with
P (linkfailure) = 0.3 they need to be at least 10, this value
minimal value decreases as the connectivity goes up, visible
in figure 3, but lowers again when P (linkfailure) increases

5

Fig. 2. The minimal number R/T should be per P (linkfailure), with
f = 24

Fig. 3. The number of rounds the protocol needs until a successful broadcast,
f = 48

as visible in figure 2. In figure 2 we can also see that for
probabilities ≤ 0.7 the minimal number of rounds stays under
or around 10, increasing the probability more we see a spike
in the minimal number of rounds needed. The curve for fully
connected systems is similar to the curve for systems with
connectivity = f + 1, albeit flattened and lower.

When a recovery from DeadState is allowed, however, the
protocol will work on networks with lower values for R/T.

From this we can conclude that the protocol performs in
networks with connectivity ≥ f+1. From figure 2 we can con-
clude the protocol needs approximately twice as many rounds to
succeed when working in networks where connectivity = f+1
as opposed to networks where connectivity = 3f + 1. This
difference will stay the same when the probability of link
failure (P (linkfailure)) stays within acceptable ranges, below
approximately 80% chance of failure. Although this is a drastic
decrease in performance, from figure 3 we can see the required
amount of rounds stays approximately the same as the size
of the network increases. This means that even if the network
grows the latency until a successful broadcast stays roughly
the same. From these conclusions we can say that, although
slower, the protocol can meet the timing constraints of CPS
applications with lower connectivity. This means that a trade-
off can be made between the cost of network connectivity
versus the latency of delivering the message.

B. Decreasing Retransmissions

TABLE I
Performance of the proposed method, f = 49 and threshold = 0.1

P (linkfailure) messages sent #rounds
0.0 32450.00 8.00

non-optimised 0.3 34034.00 8.41
0.6 40462.00 9.91
0.0 20600.00 8.00

optimised 0.3 28342.10 8.60
0.6 40216.00 9.87

TABLE II
Average probability of successful broadcast for increasing threshold with

f = 49

threshold
P (linkfailure) 0.0 0.2 0.4 0.6 0.8

0.0 1.0 1.0 1.0 1.0 1.0
0.2 1.0 0.0 0.0 0.0 0.0
0.4 1.0 1.0 0.0 0.0 0.0
0.6 1.0 1.0 1.0 0.0 0.0
0.8 1.0 0.97 0.99 0.96 0.0

Fig. 4. Percentile message decrease for increasing threshold with
P (linkfailure) = 0.6 and f = 49

As visible in the table I there is a decrease in the messages
that are sent. The reported numbers of messages sent omit the
HB type messages as each time the should-send method
returns TRUE the message will be transformed in a HB
message, as such, if they were included, no difference in
messages sent would be found.

In table I we see that for P (linkfailure) = 0.0 there is an
approximately 36.5% decrease in the number of messages sent.
This value decreases when P (linkfailure) increases, that is
because the protocol requires 90% certainty (threshold = 0.1
that a neighbouring process has received the message. Therefore
to reach the necessary level of certainty the process will have
to retransmit the message more times. There is a drastic drop
when P (linkfailure) increases, when P (linkfailure) = 0.6
the decrease in messages only amounts to 0.6%, which is too
low to be of any significance.

6

However, figure II shows that even when lowering the
certainty value the protocol will still have approximately a
100% chance at success. The reasoning behind this is because
the certainty is calculated using an heuristic that is less accurate
than the actual value of process pj having received the message,
as such the certainty can be lowered to achieve better results.
Figure 4 shows that increasing the threshold also increases
the percentage with which the messages decrease.

We can conclude that our proposed method decreases the
messages sent by ≥ 20% depending on the chosen threshold
with high certainty of success.

VIII. RESPONSIBLE RESEARCH

Work ethics are very important to take into account, espe-
cially with research. If not, then the integrity of the research
falls as the research might not be reproducible. To ensure
integrity and reproducibility data gathered must be of sufficient
volume and must not be tampered with by omitting data or
modifying data. In this section we present our efforts to ensure
the integrity of our research.

A. Integrity

The experiments performed in this research were created
and thought up so that the results of said experiments can
be reproduced. No data gathered and shown is ambiguous or
highly specific. All methods and code used for this paper is
publicly available such that it can be examined and used to
reproduce the presented data2.

All data presented in this paper is the result of multiple
experiments, as previously stated in section VII, to assure that
no bias is present in the data. This is especially important when
working with probabilistic systems such as the links in our
networks. Each data point presented is the average achieved
by at least ten iterations of experiments in order to reduce the
bias that might be present.

IX. FUTURE WORK

Although the research we presented has solid results im-
provements can be made. Specifically the method of lowering
the number of messages sent can be improved.

Right now the method makes use of the probability a
neighbour has received a signature from itself and from the
owner of the signature. The resulting probability is lower
that the actual probability since it does not take the different
paths a message can take into account. A way to improve this
accuracy is to keep track of all processes that you know have
received the signature and use all those processes to compute
the probability. This way you take more paths into account and
as more processes are known to have received the signature the
accuracy will increase. The biggest hurdle is to find a way to
get information on which process has received what signature
and in what round.

The method of reducing messages right now also simply
transforms a message to a HB message when the probability of

2https://gitlab.tudelft.nl/cse3000-2022-reliable-communications/thom-rtbrb-
in-partially-connected-networks

receival is high enough. As such heartbeats are always sent and
forwarded. If we can reduce the amount of times heartbeats
are sent the number of messages will drastically decrease and
so will the bandwidth. This could probably be achieved with
probabilities similar to the current method but it would require
some modifications as a heartbeat is only valid for R rounds
and a process needs at least 2f + 1 valid heartbeats within R
rounds.

X. CONCLUSION

In this paper we studied algorithms displaying byzantine
reliable broadcast. We examined how real-time byzantine reli-
able broadcast protocols, RT-ByzCast and PISTIS, performed
in partially connected topologies and how that affects the
reliablility of the protocols and the performance. We showed
that even if we decrease the connectivity of the network to
f + 1 the protocols are still capable of obtaining a successful
broadcast. We found that, although the drop in performance is
significant when lowering connectivity to f + 1 (50% slower
with probabilities of link failure ≤ 80%), the performance is
roughly constant with increasing network size. We concluded
that while the protocol might not meet certain timing restraints
when the connectivity is f+1 a trade-off can be made between
higher connectivity and higher performance.

Furthermore we presented a method to improve the band-
width of the protocols. This improvement, with the right pa-
rameters, is able to reduce the messages sent by approximately
20%. We also showed that this improvement is reliable and
that the protocol using the improvement succeeds with roughly
100% certainty.

REFERENCES

[1] J. R. Moyne and D. M. Tilbury. “The Emergence of Industrial
Control Networks for Manufacturing Control, Diagnostics, and
Safety Data”. In: Proceedings of the IEEE 95.1 (2007), pp. 29–
47.

[2] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals
Problem”. In: Concurrency: The Works of Leslie Lamport. New
York, NY, USA: Association for Computing Machinery, 2019,
pp. 203–226.

[3] D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo. “RT-
ByzCast: Byzantine-Resilient Real-Time Reliable Broadcast”. In:
IEEE Transactions on Computers 68 (3 Mar. 2019), pp. 440–454.

[4] D. Kozhaya, J. Decouchant, V. Rahli, and P. Esteves-Verissimo.
“PISTIS: An Event-Triggered Real-Time Byzantine-Resilient Pro-
tocol Suite”. In: IEEE Transactions on Parallel and Distributed
Systems 32 (9 Sept. 2021), pp. 2277–2290.

[5] G. Bracha. “Asynchronous Byzantine agreement protocols”. In:
Information and Computation 75 (2 Nov. 1987), pp. 130–143.

[6] D. Dolev. “Unanimity in an unknown and unreliable environ-
ment”. In: 22nd Annual Symposium on Foundations of Computer
Science (sfcs 1981). 1981, pp. 159–168.

7

