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Optimisation of Dynamic 
Heterogeneous Rainfall 
Sensor Networks in 
the Context of Citizen 
Observatories

Precipitation drives the dynamics of flows 
and storages in water systems, making its 
monitoring essential for water management. 
Conventionally, precipitation is monitored 
using in-situ and remote sensors. In-situ 
sensors are arranged in networks, which 
are usually sparse, providing continuous 
observations for long periods at fixed points 
in space, and due to the high costs of such 
networks, they are often sub-optimal. To 
increase the efficiency of the monitoring 
networks, we explore the use of sensors 
that can relocate as rainfall events develop 
(dynamic sensors), as well as increasing 
the number of sensors involving volunteers 

(citizens). This research focusses on the 
development of an approach for merging 
heterogeneous observations in non-stationary 
precipitation fields, exploring the interactions 
between different definitions of optimality for 
the design of sensor networks, as well as 
development of algorithms for the optimal 
scheduling of dynamic sensors. This study 
was carried out in three different case 
studies, including Bacchiglione River (Italy), 
Don River (U.K.) and Brue Catchment (U.K.) 
The results of this study indicate that optimal 
use of dynamic sensors may be useful for 
monitoring precipitation to support water 
management and flow forecasting.
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Summary 

Precipitation drives the dynamics of flows and storages in the water system, and therefore its 

monitoring is essential for efficient water management. The understanding of the dynamics of 

the water system have wide social impacts, as water is a central element in many areas that 

range from agricultural productivity, hydropower and risk management. By understanding the 

dynamics of the water system, it is possible to design politics regarding the use (allocation) of 

water resources, flood and drought protection, and the development of water safety plans, 

among other activities. 

 

Precipitation is conventionally monitored using (in-situ) and remote sensors. In-situ sensors are 

(usually) sparsely located in the catchment, providing point observations for long periods of 

time. In contrast, remote sensors provide spatial estimations of precipitation at the cost of 

accuracy. As consequence, these two observation methods are seemed as complementary and 

in practice, merging both information sources have proven a positive synergy. However, the 

reach of operational remote sensors (such as radar and microwave links) is limited, as its 

implementation costs are often high. 

 

Leaving out remote sensors, the alternatives to improve the precipitation monitoring can come 

by either increasing the number of in-situ sensors or by using alternative techniques for 

monitoring. Focusing in the former, the best possible scenario includes the availability of an 

infinite amount of in-situ sensors, which is fundamentally sub-optimal as precipitation events 

have both temporal and spatial structure. Considering the latter, it is envisioned that the 

continuous relocation of “in-situ” sensors (dynamic), may be a more efficient way to monitor 

precipitation than static in-situ sensors, as it can actively exploit its spatio-temporal structure. 

 

To increase the efficiency of the conventional monitoring networks, this work explores the use 

of sensors that can travel to different locations as rainfall events develop (dynamic sensors), as 

well as scaling the number of sensors with the help of volunteers (citizens). To this end, several 

challenges, identified and addressed in this thesis, need to be addressed first, such as 1) how to 

estimate precipitation fields using heterogeneous observations? 2) how to optimally design 

static sensor networks? and 3) how to schedule the position of dynamic sensors (when and 

where they have to be located)?  

 

This research focus on the development of a method for merging heterogeneous observations 

in non-stationary precipitation fields, exploring the interactions between different definitions of 

optimality for the design of static sensor networks, and the development of algorithms for the 

optimal scheduling of dynamic sensors. In addition, a generic framework for monitoring 

network design is proposed, as a step forward in the integration and consensus of existing 

methods.  
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The results of this study indicate that using dynamic sensors are useful for monitoring 

precipitation, under some conditions. First, using dynamic sensors do not always yield positive 

results (but never negative) in the precipitation measurement, as the uncertainty in the 

precipitation in a given time interval grows exponentially with respect to the time that the 

dynamic sensor remains in the target position (hence displacement). Second, the availability of 

in-situ sensors should be enough to detect the precipitation events as they occur, so it is possible 

to signal the dynamic sensors to engage. Third, the dynamic sensors should respond as 

requested by the scheduling algorithm, indicating that the areas of interest can be reached in the 

prescribed time frame. 
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Samenvatting 

Neerslag drijft de dynamiek van stromingen en opslag binnen het water systeem, en het 

monitoren daarvan is daarom essentieel voor efficiënt waterbeleid. Het begrijpen van de 

dynamiek van een water systeem heeft wijde sociale gevolgen, omdat water een centraal 

element is in verschillende gebieden, bijvoorbeeld agrarische productiviteit, waterkracht en 

risicomanagement. Door de dynamiek van een watersysteem te begrijpen is het mogelijk om 

beleid in te richten met betrekking tot, onder andere, gebruik (toewijzing) van watervoorraden, 

bescherming tegen overstromingen en droogte, en de ontwikkeling van 

waterveiligheidsplannen. 

  

Neerslag is conventioneel gemonitord met behulp van in-situ- en afstandssensoren. In-situ 

sensoren zijn (gewoonlijk) schaars gelegen in een stroomgebied, en verstrekken punt 

observaties over langere periodes. Tegenstellend, afstandssensoren geven ruimtelijke 

schattingen van neerslag ten koste van de nauwkeurigheid. Deze twee observatie methodes 

lijken complementair en uit de praktijk blijkt dat het samenvoegen van beide informatie 

bronnen synergetisch kan zijn. Maar het bereik van operationele afstandssensoren (zoals radar 

en straalverbindingen) is gelimiteerd omdat de implementatie kosten vaak hoog zijn. 

  

Zonder de afstandssensoren zijn de alternatieven voor het verbeteren van het monitoren van 

neerslag ofwel het aantal in-situ sensoren verhogen of door gebruik te maken van alternatieven 

technieken. Het beste scenario voor de eerst genoemde methode is de beschikbaarheid van een 

oneindige hoeveelheid in-site sensors. Dit is fundamenteel suboptimaal omdat neerslag 

gebeurtenissen zowel een temporale als een ruimtelijke structuur hebben. Voor het 

laatstsgenoemde alternatief, een continue verplaatsing van de ‘in-situ’ sensoren (dynamisch) 

een efficiëntere manier van neerslag monitoren kan zijn, vergeleken met statische sensoren, 

omdat deze techniek actief de spatiotemporele structuur kan benutten. 

  

Om de efficiëntie van conventionele meetnetwerken te verbeteren onderzoekt dit werk het 

gebruik van sensoren die zich kunnen verplaatsen naar verschillende locaties terwijl een 

regenbui zich ontwikkeld (dynamische sensoren) en het opschalen van het aantal sensoren met 

behulp van vrijwilligers (burgers). Hiervoor zijn een aantal uitdagingen geïdentificeerd en 

aangepakt in deze thesis, waaronder 1) hoe kunnen neerslag velden ingeschat worden met 

behulp van heterogene observaties? 2) hoe kan een statisch meetnetwerk optimaal ontworpen 

worden en 3) hoe kan de positie van dynamische sensoren gepland worden (waar moeten ze 

wanneer zijn geplaatst)? 

  

Dit onderzoek legt de nadruk op het ontwikkelen van een methode voor het samenvoegen van 

heterogene observaties in niet-stationaire neerslag velden, het onderzoeken van de interacties 

tussen verschillende definities van optimaliteit voor het ontwerp van statische meetnetwerken, 

en het ontwikkelen van algoritmes voor het optimaal plannen van dynamische sensoren. Een 
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generiek kader voor het ontwerp van een meetnetwerk is voorgesteld, als een stap voorwaarts 

richting integratie en consensus over bestaande methodes. 

  

De resultaten geven aan dat het gebruik van dynamische sensoren kan werken voor het 

monitoren van neerslag, onder bepaalde condities. Eerst, het gebruik van dynamische sensoren 

levert niet altijd positieve (maar nooit negatieve) resultaten op, omdat de onzekerheid in de 

neerslag over een gegeven tijdspan exponentieel groeit met de tijd dat een dynamische sensor 

in de beoogde positie blijft. Ten tweede, de beschikbaarheid van in-situ sensoren zou genoeg 

moeten zijn om neerslag gebeurtenissen te detecteren, dus is het mogelijk om een waarschuwing 

te sturen voor de dynamische sensoren om deel te nemen. Ten derde, de dynamische sensoren 

zouden moeten reageren zoals gevraagd door het planning algoritme, aangevend dat het 

interessegebied kan worden bereikt in de aangegeven tijdsspanne. 
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1. Introduction 

1.1 Background 

Optimal design of sensor networks is a key procedure for improved water management in a 

wide sense, as it provides information about the states of any water system. For example, in 

relation to the river basin or catchment scale, design of sensor networks is (and has been) a 

relevant topic since the beginning of the International Hydrological decade between 1965 and 

1974 (TNO 1986), until today (Pham and Tsai 2016, Chacon-Hurtado et al. 2017). During this 

period, the scientific community has not yet arrived to an agreement about a unified 

methodology for sensor network design due to the diversity of cases, criteria, assumptions, and 

limitations. This is evident from the range of existing reviews on hydrometric network design, 

such as those presented by WMO (1972, 2008), TNO (1986), Nemec and Askew (1986), Knapp 

and Marcus (2003), Pryce (2004), NRC (2004), Mishra and Coulibaly (2009), and Chacon-

Hurtado et al. (2017).  

 

The design of rainfall and streamflow sensor networks depends to a large extent on the scale of 

the processes to be monitored and the objectives to address (TNO 1986, Loucks et al. 2005, 

Loucks and van Beek 2017). Therefore, the temporal and spatial resolution of measurements 

are driven by the measurement objectives. For example, information for long-term planning 

does not require the same level of temporal resolution as for operational hydrology (WMO 

2009, Dent 2012). On the global and country scale, sensor networks are commonly used for 

climate studies and trend detection (Cihlar et al. 2000, WMO 2009, Environment Canada 2010, 

Marsh 2010, Whitfield et al. 2012, Grabs and Thomas 2001) and denoted as National Climate 

Reference Networks (WMO 2009). On a regional or catchment-scale, applications require 

careful selection of monitoring stations, since water resources planning and management 

decisions, such as operational hydrology and water allocation, require high temporal and spatial 

resolution data (Dent 2012).  

 

1.2 Motivation 

Most of the greatest devastating natural phenomena are water-related. This considers floods, 

landslides, storms and tsunamis. This situation have been compiled by several studies, including 

Barredo (2009), Di Baldassarre et al. (2010) and Jonkman (2005), which shows that especially 

flood events have been increasing consistently during the last years, reason why this problem 

is more acute than ever.  

 

“Between 1998 and 2009, Europe suffered over 213 major damaging floods, including the 

catastrophic floods along the Danube and Elbe rivers in summer 2002. Severe floods in 2005 
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further reinforced the need for concerted action. Between 1998 and 2009, floods in Europe 

have caused some 1126 deaths, the displacement of about half a million people and at least €52 

billion in insured economic losses” (EU Commission 2012) 

 

To confront this situation, various governmental agencies have tried to implement mechanisms 

to provide a framework that allows the mitigation of this kind of events. In Europe, the E.U. 

has implemented several regulations in order to minimise the impact that these events might 

have, including the Directive 2007/60/EC on the assessment and management of flood risks. 

This Directive now requires Member States to assess if all water courses and coast lines are at 

risk from flooding, to map the flood extent and assets and humans at risk in these areas and to 

take adequate and coordinated measures to reduce this flood risk. With this Directive also 

reinforces the rights of the public to access this information and to have a say in the planning 

process (EU Commission 2012). 

 

As a product of this initiative, projects such as FLOODsite and CRUE ERA-NET provided 

methodological approaches to direct and promote the integration at a technical and scientific 

level among all the member states. Several other projects also follow these general action lines, 

such as KULTURisk, FloodProbe, UrbanFlood, and WeSenseIt, among others. 

 

In these projects, the use of monitoring and information systems is seen as one of the key 

elements to cope with the difficulties related to flood management. The main approach is 

centred on model-based operational hydrological forecasting systems, which use monitoring 

systems as a starting point. These monitoring systems are usually composed by remote sensing 

observations and hydrometric sensor networks. The former consists of indirect observations 

coming mainly from Earth observation satellites and weather radar. The latter encompasses all 

the in-situ observations such as rain gauges, soil moisture probes and streamflow gauges. 

 

Hydrometric sensor networks provide data about hydrological variables of interest for a specific 

purpose. Traditionally, these networks consist of sensors that remain fixed in selected locations 

during long time periods. These sensor networks are conventionally expensive to install and 

maintain, therefore, they are generally sparse and insufficient (Mishra and Coulibaly 2009). To 

complement these data sources, alternatives such as remote sensors and citizen observatories 

have been developed in the recent years. 

 

Remote sensors have become relevant as information sources for many hydrological systems 

(WMO 2008). However, these remote observations are not yet able to replace in-situ 

measurements due to the relatively high error, and the need for ground verification to correct 

its estimations (Yilmaz et al. 2005, Espinosa et al. 2015). Additionally, not all of the variables 

of interest in the hydrological cycle can be measured accurately enough by remote sensors. Due 

to these reasons, the use of in-situ sensor networks is still necessary. 

 

Alternatively, citizen observatories are an emerging option for the monitoring of environmental 

variables, which is characterised by the collection of data by the general public. By including 

citizens in the data collection process, the communication between modellers and citizens 
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change from a one-directional channel, into a two-directional interaction (Wehn et al. 2015). 

One of the ways to allow this interaction, consists in letting the citizens making measurements 

using relatively low-cost, and usually portable sensors (Lanfranchi et al. 2014, Alfonso et al. 

2015, Huwald et al. 2016). Citizen-based monitoring, with the help of inexpensive personal 

sensors, still does not play a significant role despite of the potential benefits that they might 

bring in terms of coverage and public engagement. It is envisioned that the synergies between 

these two monitoring paradigms may be of use in the near future. 

 

This portable (dynamic) sensors are characterised by the fact that they do not remain in the 

same position over long time periods. Including dynamic sensors to complement the established 

hydrological monitoring networks may be seen as an attractive cost-effective alternative to 

extend the capabilities of a sensor networks. These sensors support adaptive strategies of data 

collection, providing flexibility which enables the network to accommodate to different 

precipitation events and diverse measurement objectives. 

 

The data coming from citizens can be collected in the three different temporal frames: as pre-

event, post-event or in real-time data. Pre-event data consists in the use of information coming 

from citizens of variables that may influence hydrological processes such as blockages in rivers, 

or characterisation of land use cover (Tserstou et al. 2017). Post-event data refers to information 

which is gathered after an event occur (McDougall and Temple-Watts 2012). Real-time data 

consists in data which is directly transmitted once it is collected (Huwald et al. 2016). 

 

The use of dynamic precipitation sensors that transmit real-time data may be of interest in the 

context of operational hydrology (Terakawa 2003). The use of real-time data has been essential 

in flood management, early warning systems, hydropower production and water management 

during the last decades (NOAA 1998, de Haij and Wauben 2010). It has also been shown that 

there are potential benefits in using dynamic sensors for activities such as precipitation 

monitoring for flood forecasting (Chacon-Hurtado et al. 2016). 

 

Some of the limitations of using dynamic sensors for monitoring precipitation are related to the 

difficulties using the acquired information, reliability of the measurements, and absence of 

conceptual development for integration. Data coming from dynamic sources may lead to an 

increase in uncertainty, with respect to data coming from conventional sensors, and it is difficult 

to quantify it, as this type of sensors are relatively new and usually do not operate over 

controlled conditions. Additionally, the systematic framework to integrate observations from 

dynamic sensors into conventional data streams is lacking. There are some experiences 

documented related to integration of dynamic sensors for different applications, as described in 

Ballari et al. (2012), Dantu et al. (2005) and Haberlandt and Sester (2010). However such 

studies and applications are still quite limited. 

 

One of the benefits of using dynamic sensors for precipitation monitoring is the expected 

increase in network efficiency which will help reducing the large costs associated with the 

operation and maintenance of sensor networks. Costs of deployment and maintenance of 

hydrometric sensor networks constitute the single most expensive part in an operational 
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hydrologic system, usually associated with the cost of equipment, maintenance and replacement 

in case of malfunction, among others. Due to this, reduction of monitoring networks is not a 

new subject, and generally follows economic limitations, as can be demonstrated on an example 

of the New Zealand’s monitoring network (Pearson 1998), and the Canadian hydrometric 

network (Environment Canada 2010).  

 

Yet another benefits of using dynamic sensors is the possibility of reconfigure the network for 

different precipitation events under different management objectives. In this direction, the 

sensor networks can adjust to a given precipitation event as it develops, but the deployment 

strategy follows its final objective. For example, flood management requires sensor networks 

that are suitable to capture the magnitude of the precipitation events in detail, while water 

allocation activities may require sensor networks which are adequate to obtain spatially accurate 

information. In other words, networks serve a purpose, and depending on it, the design of the 

optimal sensor network has to be chosen or adopted accordingly. 

 

In this direction, the design of monitoring networks is an inductive-reasoning problem (from 

particular observations to general assessments), as data is usually limited to few locations, and 

therefore, the problem of optimal design naturally is ill-posed. As a consequence, a large 

number of candidate solutions, which are close to each other in terms of quality are generated 

(objective space). From a practical point of view, one might argue that the best measurements 

are those that make predictions closer to the observable truth, which suggests a fit to the purpose 

approach (I-optimality). This situation might seem ideal, but uncertainties in the chain from 

data to decisions, lead to a high number of optimal (or close-to-optimal) solutions in the 

objective space, which do not necessarily converge to similar network configurations (decision 

space). 

 

Moreover, uncertainty in measurements and models makes the definition of optimality quite a 

complex issue, especially in dynamic and non-stationary fields. This situation suggests that 

optimal location of sensors in these conditions cannot be unique or static (i.e. found once and 

for all). In other words, optimal observations can only be achieved by using dynamic sensors 

in dynamic environments. This is a recognised issue, and the reason why adaptive modelling 

arises as one of the research directives in the Hydroinformatics Chair at IHE Delft (Solomatine 

2012). 

1.3 Innovation 

To make use of these new potential sources of information, the WeSenseIt project worked on 

the development of citizen observatories of water, which had among its objectives to enhance 

environmental monitoring and forecasting. This was tackled by changing the information flow 

paradigm, "from sensors to citizens", to a two-way communication stream, enabling the active 

participation of these subjects in the modelling process. This participation, even if it is not 

massive, provides additional valuable information which cannot be captured by the established 

monitoring networks, leading to more reliable estimates of the environmental variables. 
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Two of the most important objectives of the WeSenseIt project were to develop low-cost 

sensors to effectively measure and retrieve information about different hydrological variables, 

and to provide a platform in which the observations coming from observing citizens become 

available. This research work, as a particular part of the WeSenseIt project, addresses the 

optimal location (when and where) of dynamic sensors for precipitation monitoring to improve 

the state of knowledge of the water system. 

 

From the perspective of the natural process, the optimal sensor location in dynamic, noisy, and 

heterogeneously observed environments, is a challenge due to a number of aspects: the 

definition of optimality, assumptions in modelling tools, limited displacement capabilities of 

the sensors, and the intermittency of data streams (random location at a random time) coming 

from citizen observations. 

 

In this respect, this thesis innovates in the modelling of precipitation fields and the design of 

static and dynamic sensor networks. First, methodologies for the merging of heterogeneous data 

into common data streams for modelling of non-stationary precipitation fields are developed. 

By doing so, the basis for using the citizen data in precipitation is established. Second, features 

and techniques for the design of static sensor networks are presented, offering a wide and 

comprehensive view on these topics. Finally, we propose and test methodologies for the design 

of dynamic sensor networks for monitoring precipitation, aiming to exploit the development 

and use of citizens’ observations. 

1.4 Objectives 

1.4.1 Main Objective 

Develop and improve methods for optimal design of dynamic rainfall sensor networks with 

varying physical topology, in heterogeneous data environments for operational hydrological 

systems. 

1.4.2 Specific Objectives 

1. Formulate a generic framework for the design of precipitation sensor networks. 

2. Improve geostatistical methods for interpolation of precipitation fields, allowing for 

intermittent heterogeneous measurements under non-stationary conditions. 

3. Enhance methods for the efficient design of static precipitation sensor networks for 

streamflow simulation. 

4. Develop a methodological approach for optimal scheduling of dynamic sensor 

networks, which include data from dynamic physical sensors with varying uncertainty, 

and from citizen observatories. 
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1.5 Layout of this thesis 

This thesis explores several aspects of the design of precipitation monitoring networks with 

dynamic sensors as shown in Figure 1.1. First, a literature review on sensor network design is 

carried out, and a generic framework for design is suggested, as presented in Chapter 2. Second, 

the case studies are introduced in Chapter 3. Next, a set of developed tools for incorporating 

heterogeneous observations, coming from citizens and dynamic gauges in non-stationary fields, 

are presented in Chapter 4. Following, several aspects of the static sensor networks design are 

explored in Chapter 5, such as the effect of the coordinate systems in posing the optimisation 

problem, the relationship among objective functions, the solutions of the optimisation problem, 

and evaluation of the solutions’ robustness, using model-based and model-free approaches. 

Finally, three strategies for scheduling of dynamic sensor for monitoring, which are rooted in 

the methods developed in Chapter 4, and the lessons learned of Chapter 5, are presented in 

Chapter 6, and applied in all the case studies. The topical structure of this thesis is presented in 

Figure 1.2. 
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Figure 1.1 Methodology of this dissertation 
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Figure 1.2 Layout of the this dissertation 

 

1.6 Highlights 

In this thesis we may highlight the following points: 

 

 A generic framework for sensor network design is proposed. 

 Methods for the integration of observations coming from heterogeneous sources 

(dynamic and citizen observations) are developed. 

 Geostatistical methods for the interpolation of non-stationary fields are developed and 

tested. 

 Comparison of methods for the design of static precipitation sensor networks is carried 

out.  

 Diverse deployment strategies, for scheduling the position of dynamic precipitation 

sensor networks that complement conventional networks are developed and tested. 

 





 

2. Literature review and 

proposed framework 

2.1 Introduction 

The main objective of this thesis requires establishing a generic, literature-based framework to 

optimally design rainfall sensor networks and to identify current knowledge gaps. In particular, 

different challenging aspects emerge from the addition of dynamic components (such as the 

citizen observatories) to the network design, data heterogeneity and quality.  

 

The review includes current techniques for the measurement of precipitation, including in-situ, 

remote, and social sensors. Then, it introduces the concepts of modelling spatially distributed 

variables in order to establish the geostatistical models used in the simulation of precipitation 

fields and identifying their limitations. Subsequently, the chapter expands with concepts of 

hydrological modelling, specifically lumped conceptual models used in the simulation of 

discharge estimates. After, the chapter explores the current approaches for designing sensor 

networks and proposes a classification and a generic framework.  

2.2 Sensors and sensor networks 

A sensor is defined as a device that responds to a physical stimulus (as heat, light, sound, 

pressure, magnetism, or a particular motion) and transmits a resulting impulse (as for 

measurement or operating a control) (Merriam-Webster's 2013). This definition establishes 

that the use of a sensor allows gathering information from the surrounding environment, 

abstracting it into a certain impulse. Examples of sensors are precipitation gauges, level gauges, 

flow meters, sight, smell, etc. 

 

Sensors provide data about a certain variable of interest, and in most of cases, only a spectrum 

of it, due to the limitations on each sensing technique (Hart and Martinez 2006). These limited 

sensing capabilities are justified by the expected utility of the measurements, accuracy, 

information processing capabilities and scale of the process that is to be addressed. As an 

example, the human visible spectrum goes from wavelengths of approximately 390 nm to 

720 nm (Schubert 2006), even though electromagnetic radiation wavelengths can be 

significantly higher or lower in regular conditions, as UV rays or heat among many others types. 

This example of the human eye represents the sensing element as a tool for a given purpose (in 

this case, survival), while in the cases of other species the visual spectrum is different, adapting 

the sensor to other conditions to fulfil the same purpose, improve survival chances. 
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In the case of environmental monitoring, the purpose of sensors is to abstract numerical 

information of certain variables in order to be used by models to produce information about the 

current states of the hydrological system, or to forecasts other variables of interest. Different 

types of sensors are used for the measurement of the same variable, advocating desirable 

properties with regards to its coverage, resolution, uncertainty and reliability, among others 

(Khalleghi et al. 2013). 

 

In the case of environmental variables, sensors are characterised by being deployed into a 

specific site, where they remain for long time periods. To compensate for the lack of spatial 

representativeness of the measurements, the sensors are deployed into networks which carry 

out coordinated measurements, increasing the spatial coverage of the observations. As 

consequence, sensor networks provide a more complete picture of spatially distributed 

processes such as precipitation and temperature.  

 

Sensors (and therefore sensor networks) require to transmit the recorded data (measurements) 

to be used by, and then transformed into decisions. The transmission encompasses all the 

activities regarding with information retrieval from the sensor, to a data centre. The capacity 

recording information will vary within different sensor classes, and will affect the frequency, 

resolution and availability of the measurements, which are directly related with the 

measurement principle of the sensor. The data transmission can be as simple as manual readings 

(WMO 2008), or as elaborate as automatic data collection in real-time, being justified for the 

type of decisions to be made. 

 

Manual reading is based in an operator performing an observation of a gauge, which reading is 

going to be stored in an analogue format (paper) or digital media (SMS, picture, database entry, 

etc.). Afterwards, this information has to be transmitted to a central information centre where 

will be accessed by the user. These measurements are generally used to monitor large scale 

hydrological processes and large scale irrigation control (van Overloop et al. 2013). 

 

Automatic data collection is a powerful tool that provides continuous real-time data about 

environmental variables, and at the same time it removes human-induced errors in the 

measurement chain. The benefits include a more systematic assessment of the measurement 

quality, and error traceability. The features of automatic data collection are of great value in 

situations where the response time between actions and benefits are immediate, such as 

hydropower operation, small scale irrigation, and flood emergency management. The 

conditions for automatic data collection require autonomous sensors which can be located in 

isolated areas which, in some cases, may be far from electrical and communications grids. 

 

The installation of different data collection systems is subject to the available budget, the 

information use and the type of decision to make. This includes not only the selection of the 

technology, but also the operation and maintenance of the equipment. Additionally, the 

characteristics of the sensors have to correspond to the level of certainty which is expected from 

the measurements, so the measurements can be carried out in a cost-effective manner (Singh et 

al. 1986). 
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2.2.1 Conventional precipitation measurements 

Conventional precipitation measurements are carried out in in-situ by gauges similar to the 

described in the WMO in the guide for metrological practices (WMO 2008). This guide also 

provides guidelines for installation conditions and the reading procedures to ensure a common 

background for data sharing of standard meteorological observations. However, these 

guidelines only cover standard meteorological observations, and the use of different methods, 

procedures or variables is not supported by these recommendations. In this direction, the WMO 

(2008) have standardised most of the sensor design and installation requirements.  

 

According to WMO (2008), the instruments for rainfall measurement consists in a device that 

captures the precipitation droplets. Storage, weighing, floating and tipping-bucket type of 

gauges calculate the total volume of collected precipitation in a given time interval, while 

disdrometers and acoustic-type gauges characterise the droplets, not only providing 

measurements of precipitation, but also a drop size distribution. 

2.2.2 Dynamic sensors 

The use of dynamic gauges is currently in active development in applications such as airborne 

radar measurements, robotic vision and surveillance. The purpose of a mobile sensor is to 

overcome limitations of limited observability a sensor in a fixed location (Liu et al. 2005), 

especially in dynamic environments, or with dynamic targets. Additionally, the development of 

unmanned aircrafts (Witayangkurn et al. 2011) pose an interesting opportunity in data 

acquisition using dynamic sensors, and its integration is an important research focus in the 

future development of monitoring systems. 

 

The integration of dynamic sensors in operational meteorology is limited due to the difficulties 

in its deployment, and lack of the theory to support its use. This situation leads to only a few 

examples in the literature, where only conceptual approaches and small tests have been 

conducted. Haberdlandt and Sester (2010) and Veas et al. (2012)  agreed that the potential 

benefits of moving sensors in environmental applications are a promising field, but it requires 

to mature in the upcoming years. 

2.2.3 Citizen observatories  

A less explored information source in hydrology is the concept of citizen observatories (Wehn 

and Evers 2015, Ferri et al. 2016). Citizen observatories use the information provided by 

citizens, ranging from simple observations to measurements with standard equipment, into the 

data stream of conventional instruments. In its simplest form, observations come from a 

judgement of a variable (such as high or low water level in a canal, or heavy or light 

precipitation). This approach is mostly valuable when models or measurements are significantly 

expensive (Cooke 1991). The participation of the citizen in the observatories can consider that 

these subjects as experts or no, leading to elitist assessments on one side, and crowd 

observations (Kamel Boulos et al. 2011), in the other end. 
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Experts are those observers whose judgement can be inaccurate, but are systematically 

consistent with its observations, reducing the randomness of in the error of its observations. 

This systematic error permits to integrate observations using constrained errors between 

different events. Dealing with expert judgements, Cooke (1991) considers the so-called 

classical model (structured expert judgement). It establishes the best estimate of certain 

parameter as a linear function of experts’ estimates, which must be calibrated by the 

measurement of the same (or other) variable(s) in the test cases. This can be seen as calibration 

of the expert knowledge base. Applications of this method can be found in Cooke and Goosens 

(2008). 

 

In spite of the selected approach, many of these observations are only partially true, especially 

in complex scenarios such as hydrological processes. This occurs due to the incompleteness in 

observations and the inherent simplifications associated with the conceptualisation of the 

processes. This lack of knowledge cannot be reflected into uncertainty estimations, which leads 

to the possibilistic framework (Dubois and Prade 1993, Loquin and Dubois 2010). The 

possibilistic framework considers that the reasoning yield from inductive knowledge might be 

better represented by belief functions, instead of probability distributions. In other words, 

accounting for the uncertainty not only to the lack of certainty about the processes, but also for 

the lack of understanding. This thesis will not explore this concept or its application in citizen 

observatories, but understand its relevance and importance in this topic. 

 

The participation of citizens in the observatories can be split into 5 main groups (Figure 2.1). 

Due to this, there will be different approaches in order to evaluate the information coming from 

these sources, as well as the methods to acquire the sensed information. It is foreseen that 

crowdsourcing techniques can be used to address the information present in social media, but 

not particularly directed to the authorities (involvement level 2). The establishment of a web-

based platforms, SMS or mobile Apps, encourage participation of individuals (involvement 

level 3) by giving the opportunity to directly communicate the sensed information (observations 

or gauge readings). In current citizen observatories projects, experiments with small groups of 

citizens (engaged users, involvement level 4) with physical sensors are carried out with 

promising results. On top of the sensing pyramid are those users who own, maintain and 

transmit measurements using their own sensors (involvement level 5).  
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Figure 2.1 Expected participation in different involvement levels 

The community participates in all the levels, being the more challenging the 1 and 2, due to the 

nature of the given information. This is because one of the main characteristics is the uncertainty 

around the estimates made by individuals who might not be trained for this purpose, as well as 

the use of channels whose information content can be very noisy. 

2.2.4 Sensor network design 

Sensors are commonly arranged in networks to fulfil requirements of representativeness, 

accuracy and uncertainty (Sorooshian et al. 2011, Morrissey et al. 1995) in the observation of 

physical processes. The definition of a sensor network includes in itself the concept of topology, 

which represents the way in which the network is arranged. These arrangements might vary 

depending on the physical constraints (physical topology) of sensor location and the description 

of information flows (logical topology) (Gallo and Hancock 2002). Considering this, two 

apparently identical sensor networks can be significantly different. 

 

From the most theoretical point of view, the design of a sensor network use the same concepts 

as experimental design (Fisher 1974). The design of a sensor network should ensure 

representativeness of the measurements, at the time that can be used to derive the conclusions 

that drive the measurements (EU Commission 2000, EPA 2002). In the context of rainfall-

runoff hydrological modelling, sensor networks should provide the sufficient data for accurate 

the simulation and forecasting of discharge and water levels, at stations of interest. 

 

The objectives of the sensor network design have been categorised into two groups, the 

optimality alphabet (Herzberg et al. 1972, Box 1982, Kiefer and Wolfowitz 1985, Fedorov and 

Hackl 1997, Pukelsheim 2006, Montgomery 2012) which uses different letters to name different 

design criteria, and the Bayesian framework (Chaloner and Verdinelli 1995, DasGupta 1996). 

The alphabetic design is based on the linearization of models, optimising particular criteria of 

the information matrix (Fedorov and Hackl 1997, Guestrin et al. 2005, Chakraborty and Deglon 
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2008). Bayesian methods are centred on principles of decision making under uncertainty, in 

which it seeks to maximise the gain in information (Shannon 1948) between the prior and 

posterior distributions of parameters, inputs or outputs (Lindley 1956, Chaloner and Verdinelli 

1995). Among the most used alphabetic objectives are the D-optimal, which minimises the area 

of the uncertainty ellipsoids around the model parameters; and G-optimal, which minimises the 

variance of the predicted variable, which can also be used as objective functions in the Bayesian 

design. 

 

These objectives are indirectly addressed in the literature, by using several functional 

alternatives in the form of model-based and model-free approaches for sensor network design. 

These categorisation will be later discussed in depth. One of the main limitations in the 

application of sensor network design, using the experimental design is the lack of block 

experimental design (Kirk 2009), as is impossible to replicate initial conditions in a non-

controlled environment, such as natural processes. 

 

On the practical end, the design of a sensor network should start with the institutional setup, 

purposes, objectives and priorities of the network (Loucks et al. 2005, WMO 2008). From the 

technical point of view, an optimal measurement strategy requires the identification of the 

process, for which data is required (Casman et al. 1988, Ali and Narasimhan 1993, Guestrin et 

al. 2005, Dent 2012). Considering that neither the information objectives are unique and 

consistent, nor the characterisation of the processes is complete, the re-evaluation of the sensor 

network design should occur regularly. This re-evaluation should be considered when either the 

studied process, information needs, information use, or the modelling objectives change. 

Consequently, regulations regarding monitoring activities are not often strict in terms of station 

density, but in the suitability of data to provide information about the status of the water system 

(EU Commission 2000, EPA 2002). 

 

The design of meteorological and hydrometric sensor networks should consider at least three 

aspects. First, it should meet various objectives that are sometimes conflicting (Loucks et al. 

2005, Kollat and Reed 2006, Kollat et al. 2011). Second, it should be robust under the events 

of failure of one or more measurement stations (Kotecha et al. 2008). Third, it must take into 

account different purposes and users with different temporal and spatial scales (Singh et al. 

1986). Therefore, the design of an optimal sensor network is a multi-objective problem 

(Alfonso 2010, Volkmann et al. 2010). 

 

The sensor network design can also be seen from an economic perspective (Loucks et al. 2005). 

In most cases, the main limitation in the deployment of sensor networks is related to costs, being 

sometimes the main driver of decisions related to reduction of the monitoring networks. The 

valuation between the costs of the sensor networks and the cost of having insufficient 

information is not usually considered, because the assessment of the consequences of decisions 

is made a-posteriori (Loucks et al. 2005, Alfonso et al. 2016). In most studies, it is seen that the 

improvement of information content metrics (e.g., entropy, uncertainty reduction, among 

others) is marginal as the number of extra sensors increases (Pardo-Igúzquiza 1998, Dong et al. 

2005, Ridolfi et al. 2011), and thus the selection of the adequate number of sensors can be based 
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on a threshold in the rate of increment in the objective function. However, in many practical 

applications the number of available sensors may be defined by budget limitations. Therefore, 

the optimal number of sensors in a network is strictly case-specific (WMO 2008). 

 

2.2.5 Scenarios for sensor network design: augmentation, relocation and 

reduction 

Scenarios for designing of sensor networks may be categorised into three groups: augmentation, 

relocation and reduction (NRC 2004, Mishra and Coulibaly 2009, Barca et al. 2015). 

Augmentation refers to the deployment of at least one additional sensor in the network, whereas 

Reduction refers to the opposite case, where at least one sensor is removed from the original 

network. Relocation is about repositioning the existing network nodes. 

 

The lack of data usually drives the sensor network augmentation, whereas economic limitations 

usually push for reduction. These costs of the sensor network usually relate to the deployment 

of physical sensors in the field, transmission, maintenance and continuous validation of data 

(WMO 2008). 

 

Augmentation and relocation problems are fundamentally similar, as they require estimation of 

the measured variable at ungauged locations. For this purpose, statistical models of the 

measured variable are often employed. For example, Rodriguez-Iturbe and Mejia (1974) 

described rainfall regarding its correlation structure in time and space; Pardo-Igúzquiza (1998) 

expressed areal averages of rainfall events with ordinary Kriging estimation; Chacón-Hurtado 

et al. (2009) represented rainfall fields using block Kriging. In contrast, for network reduction, 

the analysis is driven by what-if scenarios, as the measurements become available. Dong et al. 

(Dong et al. 2005) employ this approach to re-evaluate the efficiency of a river basin network 

based on the results of hydrological modelling. 

  

In principle, augmentation and relocation aim to increase the performance of the network 

(Pardo-Igúzquiza 1998, Nowak et al. 2010). In reduction, on the contrary, network performance 

is usually decreased. The driver for these decisions is usually related to factors such as operation 

and maintenance costs (Moss et al. 1982, Dong et al. 2005). 

2.3 Models of precipitation for rainfall-runoff simulation 

2.3.1 From sensor measurements to fields and areal average 

Precipitation is measured using a variety of techniques, which spans from field gauges to earth-

observation systems. Rain gauges are the primal information source, and can be classified as 

recording or no-recording, which alters the temporal resolution of the measurements, as 

observations are made either manually by an operator, or continuously recoded on time (WMO 

2008a). On catchment and regional scale, weather radars have gained momentum due to its 

ability to cover vast areas at a relatively high temporal and spatial resolution (Buswell et al. 

1954, Sauvageot 1994, Wagner et al. 2009, Abo-Monasar and Al-Zahrani 2014), and with 
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different resolutions depending on the frequency bands (Thorndahl et al. 2017). On the 

continental and global scale, earth observations systems provides precipitation data at a 

relatively coarse temporal and spatial resolutions, with the advantage of being ubiquitous 

(Michaelides et al. 2009).  

 

Hydrological models for rainfall-runoff modelling usually make use of different type of 

precipitation data, depending on how the spatial variability of the model is represented. The 

most common categories for describing the spatial variability, are the distributed, semi-

distributed and lumped models. The distributed models make use of the precipitation fields, as 

the hydrological processes are modelled as points in a grid such as the SHE model (Abbott et 

al. 1986), VIC (Liang et al. 1994), SWAT (Arnold et al. 1993), TOPMODEL (Beven and 

Kirkby 1979), among others. In the case of semi-distributed and lumped models, average 

precipitation is calculated over the catchment or sub-catchment (Sugawara 1961, Lindström et 

al. 1997, Solomatine and Wagener 2011), simplifying the heterogeneity of the precipitation 

fields. 

 

Considering this, precipitation data is usually required either in form of fields or as average 

over the catchment For the simulation of precipitation fields, several techniques have been 

employed (Sluiter 2009, Li and Heap 2011), mapping from point observations to fields such as 

Thiessen polygons (Chow et al. 1988), Kriging (Journel and Huijbregts 1978, Cressie 1993, 

Deutsch and Journel 1998, Holawe and Dutter 1999, Bostan et al. 2012), Copula (Bardossy and 

Pegram 2013, Bardossy and Li 2008), Splines (Hutchinson 1995, Tait et al. 2006), IDW (Garcia 

et al. 2008, Soenario and Sluiter 2010), or Machine Learning (Kanesvski et al. 2009), among 

others. For estimating areal average precipitation, an alternative is to directly integrate the 

precipitation fields over the catchment, or estimates under the assumption of homogeneous 

networks. 

 

One example of the latter uses a best linear unbiased estimator (BLUE) for estimating the 

average precipitation. The average precipitation P̅ is a linear combination of the measurements. 

The set of weights is such that minimises the variance of the estimation of the precipitation 

error, using a Best Linear Unbiased Estimator (BLUE, Equation 2.1). This method is widely 

used in meteorological applications (Daley 1991), as in hydrological modelling applications 

(Lindström et al. 1997). 

 

 �̅� =  ∑ 𝑤𝛼𝑃𝛼

𝑆

𝛼=1

 
Equation 2.1 

 𝑤𝛼 = [∑ 𝑐𝑜𝑣(𝑃𝛼 , 𝑃𝑗)𝑐𝑜𝑣 (𝑂𝛼 , 𝑂𝑗)

𝑆

𝛼=1

]

−1

𝑐𝑜𝑣(𝑃′, 𝑃𝛼) 
Equation 2.2 

 

Where P̅ is the average precipitation over the catchment calculated from S stations, w is the 

weight to each station, Pα is the recorded precipitation at station α, O is the observation error 

and P’ is a first estimate of the precipitation at each station. 
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2.3.2 Stationarity assumptions 

A random field can be defined as a collection of random variables (i.e. precipitation intensity 

at a specific point in space). Spatially distributed variables can be modelled as random fields to 

exploit the spatial dependency among the measurements. The dependence (or covariance 

structure) among measurements can be fixed in time and space, being the field stationary. On 

the contrary, if the dependence among the measurements varies in either time or space, the 

variable is considered as non-stationary. 

 

A random field can be temporal, spatial or directionally stationary (Fuentes 2005). Temporal 

stationarity means that there is no change in the moments of the distribution in time. Spatial 

stationarity ensures that there are no changes in the moments of the distribution at different 

locations in the domain. Directional stationarity means that the covariance structure is isotropic, 

and thus, there is no difference in the direction in which the covariance between a pair of points 

is taken. 

 

Temporal stationarity assumptions are tested using methods such as PSR (Priestley and Subba-

Rao 1969), Dickey-Fuller (Dickey and Fuller 1979), Augmented Dickey-Fuller (Said and 

Dickey 1984), KPSS (Kwiatkowski et al. 1992) and Leybourne-McCabe (Leybourne and 

McCabe 1994, 1999). There are also methods which rely on the representation of the data series 

in the frequency domain, via Fourier or wavelet transforms (Bose and Steinhardt 1996, Fuentes 

2005).  

 

Methods based on covariance structure analysis, and spatial spectral analysis, are commonly 

used to evaluate the spatial stationarity. Bose and Steinhardt (1996) proposed the evaluation of 

stationarity via centrosymmetry of the spatial covariance structure. Ephaty et al. (2001) and 

Fuentes (2005) presented a methodology to evaluate stationarity and isotropy, testing the 

homogeneity of the spatial spectra at different locations. These methods are suited for large 

quantities of spatial data, such as the ones provided by remote sensing, and its use may be 

limited in scattered observations (Velasco-Forero et al. 2009). 

 

Isotropy is the most frequently addressed type of non-stationarity in literature (Journel and 

Huijbregts 1978, Cressie 1993). It is mainly used when data suggest a different behaviour in 

orthogonal directions, for instance, caused by strong wind currents or significant topographical 

gradients. Experimental variograms using preferential directions are used to address the 

anisotropy of the field (Bohling 2005).  

 

Although the assumption of stationarity does not necessarily lead to inferior model 

performance, it may lead to unrealistic estimations of the interpolation variance (Bardossy 

2006). Interpolation variance depends on the spatial correlation structure (Journel and Alabert 

1989, Chiles and Delfiner 1999) and the station network configuration, but it does not depend 

on the particular value of measurements. Consequently, the estimations of interpolation 
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uncertainty are accurate as long as the process holds the same assumptions of the model 

(Bardossy and Li 2008). 

2.3.3 Methods to handle non-stationarity in random fields 

Techniques to handle temporal non-stationarity include seasonal (Woolhiser and Roldan 1986) 

and adaptive variograms (Mardia et al. 1998). For spatial stationarity, dimension expansion 

(Bornn et al. 2012), spatial deformation (Schmidt and O’Hagan 2003), spatially smoothed local 

models (Brunsdon et al. 1998), generalised covariance functions (Kitanidis 1993, Crujeiras and 

van Keilegom 2010), basis function expansion (Sampson and Guttorp 1992, Hannachi et al. 

2007), moving window (Harris et al. 2010, Zhang et al. 2015), and the use of covariates (Hass 

1996, Genton and Kleiber 2015). Most of these approaches use conventional interpolation tools 

after transforming the problem into a homogeneous and isotropic space. 

 

For temporal non-stationarity, seasonal variograms (Bastin et al. 1984, van de Beek et al. 2009) 

suggest that the covariance structure has to consider specific climatological factors (i.e. wet or 

dry seasons). Adaptive variograms (Chen and Li 2012) update the covariance structure in a 

feed-forward loop, by assimilating the new observations into the variogram. 

 

For spatial non-stationarity, dimension expansion methods (Bornn et al. 2012) map the problem 

into a higher dimensional space, in which the problem can be assumed to be stationary. Spatial 

deformation methods (Schmidt and O’Hagan 2003) use an alternative definition of the distance 

kernel (Higdon et al. 1998), homogenising the interpolation space. Spatially smoothed methods, 

including moving window approaches, (Brunsdon et al. 1998, Harris et al. 2010, Zhang et al. 

2015) construct local models, which are stationary in its vicinity, providing a piecewise 

approximation, resolving thus an issue of non-stationarity. Generalised covariance functions 

assume that the mean of the process is not constant, but possess a trend in any of the dimensions 

of the problem (Starks and Fang 1982, Kitanidis 1993, Putter and Young 2001). A combination 

of these methods for handling spatial non-stationarity is also considered by Nott and Dunsmuir 

(2002). Applications in the mapping of precipitation fields using non-stationary approaches are 

significantly limited (Lloyd 2009). 

 

2.4 Simulation of Rainfall-runoff processes using lumped conceptual models 

Rainfall-runoff (RR) models are a sub-set of hydrological models which are used to simulate 

the catchment response to precipitation, by estimating discharge at specific locations. One 

important feature of RR models is that is not necessary a complete description of the internal 

processes which generate runoff, as the target of the models is not on the representation of 

ungauged states of the catchment, but to generate accurate discharge estimations (Devia et al. 

2015, Seibert 1999). This simplification fostered the use of diverse modelling techniques such 

as conceptual and data-driven models (Solomatine and Wagener 2011), which are of use, 

especially in operational hydrological simulation and forecasting systems. 
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2.4.1 Lumped conceptual rainfall-runoff models 

Conceptual hydrological models propose a simplified representation of the processes within the 

catchment. The description of the processes within the catchment simplifies the spatial 

variability of the inputs and response of the catchment, by using areal averages.  

 

Conceptual models assume that the catchment and its drivers are homogeneous for each 

response unit. The parameters are assumed constant in the response unit and are adjusted to 

minimise the error between observations and simulation of discharge at the concentration point 

of interest in the catchment (Gupta et al. 2009, Moussa and Chahinian 2009, Booij and Krol 

2010). As a result in the flexibility in the representation of the hydrological processes, the 

parameterisation of the model is not necessarily unique to yield similar simulation performance. 

Additionally, as a consequence of this incomplete description of the physical system, the 

internal parameters of the model are to be numerically defined, instead of being measured in 

the field. Considering these reasons, model parameterisation is a major uncertainty source in 

conceptual hydrological models (Beven and Freer 2001, Beven 2012). 

 

In this document, an empirical RR model and 2 conceptual RR models are used: Linear 

Reservoir (Zeeuw 1973), Tank (Sugawara 1961) and HBV96 (Lindström et al. 1997). These 

models mean to represent 3 different conceptual models with different complexities, from the 

simplest linear reservoir, to a more elaborate description of internal processes such as the HBV. 

 

The Linear Reservoir is used as the simplest tool for RR modelling. It assumes that the 

catchment acts as a reservoir which discharge is controlled by the water level inside of it (Figure 

2.2). As such, the states of the model corresponds to the water level (and consequently, the 

previous discharge), the inputs are effective precipitation (P) and the output is discharge (Q). 

The model has a unique parameter (k), which controls the discharge rate, and thus, modulates 

the response of the catchment. 

 

P

Q
 

 
Figure 2.2 Linear reservoir hydrological model 

Where Q is the discharge, P is effective precipitation, k is the model parameter and Δt is the 

size of the model time step. 

 

The Sugawara (Sugawara 1961) tank is an extension of the Linear Reservoir model which uses 

several (linear or non-linear) tanks. The flexibility in the selection of the number of tanks, and 

its response, provides a more complex representation of the phenomena, which not necessarily 
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yields better simulation results. A 2 linear tanks Sugawara model is presented in Figure 2.3, 

however the configuration of the tanks is arbitrary and has to be defined by the modeller. 

 

P

Q

q2

q1

q3

q4

s2

s1 d1

d2

ET

 
Figure 2.3 Sugawara (2 tank) model 

Where P stands for precipitation and ET for evapotranspiration. S1 and S2 are the model 

states, represented by the water level in each of the tanks. d1 and d2 are the position of the 

outlets in the top tank. And k1to k4 represent the flux constants. Therefore, d and k are the 

model parameters to be determine during calibration. The description of the model 

components is presented in Table 2.1. The HBV-96 (Lindström et al. 1997) is a widely used 

conceptual method for flow simulation which conceptualise hydrological process for the 

simulation of discharge. The simulated processes are infiltration, snow dynamics, soil 

moisture dynamics, capillary flux, percolation to the deeper aquifer, fast and slow response of 

the catchment, among others. A conceptualisation of the HBV96 model is presented in Figure 

2.4. 
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Table 2.1 Sugawara (2 tanks) model fluxes, states, inputs and parameters 

Type Variable Description 

Fluxes 

q1 Upper outlet top tank discharge 

q2 Lower outlet top tank discharge 

q3 Bottom outlet top tank discharge 

q4 Bottom tank discharge 

States 
S1 Top tank water level 

S2 Bottom tank water level 

Inputs 
P Effective precipitation 

ET Evapotranspiration 

Parameters 

d1 Top tank upper outlet position 

d2 Top tank lower outlet position 

k1 Top tank upper outlet discharge coefficient 

k2 Top tank lower outlet discharge coefficient 

k3 Top tank bottom outlet discharge coefficient 

k4 Bottom tank discharge coefficient 
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T Q
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Figure 2.4 HBV hydrological model 

Where the variables as described as (Table 2.2): 
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Table 2.2 HBV96 model fluxes, states, inputs and parameters 

Type Variable Description 

Fluxes 

IN Infiltration 

R Recharge 

CF Capillary flux 

PERC Percolation 

q0 Fast response 

q1 Slow response 

States 

SP Snow pack 

WC Snow pack water content 

SM Soil moisture 

UZ Upper zone 

LZ Lower zone 

Inputs 

SF Snowfall 

RF Rainfall 

ET Evapotranspiration 

Parameters 

cwh Snow pack water holding capacity 

MAX_CF Maximum capillary flow 

FC Field capacity 

α Fast response exponent 

ß Soil moisture yield exponent 

k0 Quick response parameter 

k1 Slow response parameter 

2.4.2 Role of measurements in rainfall-runoff modelling 

The typical data flow for hydrological rainfall-runoff modelling can be summarised as in Figure 

2.5. For discharge simulation, precipitation and evapotranspiration are the most common data 

requirements (WMO 2008a, Beven 2012), while discharge data is commonly employed for 

model calibration, correction and update (Sun et al. 2016). Data-driven hydrological models 

may use measured discharge as input variables as well (Solomatine and Xue 2004, Shrestha 

and Solomatine 2006). Methods for updating of hydrological models have been widely used in 

discharge forecasting as data assimilation, using the model error to update the model states. In 

this way, more accurate discharge estimates can be obtained (Liu et al. 2012, Lahoz and 

Schneider 2014). In real-time error correction schemes, typically, a data-driven model of the 

error is employed which may require as input any of the mentioned variables (Xiong and 

OConnor 2002, Solomatine and Ostfeld 2008). 
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Figure 2.5 Typical data flow in discharge simulation with hydrological models 

In a conceptual way, we can express the quantification of discharge at a given station as 

(Solomatine and Wagener 2011): 

 

 𝑄 = �̂�(𝑥, 𝜃) + 𝜀 
Equation 2.3 

 

Where Q is the recorded discharge, Q̂ (x,θ) represents a hydrological model, which is function 

of measured variables (mainly precipitation and discharge, x) and the model parameters (θ). ε 

is the simulation error, which is ideally independent of the model, but in practice is conditioned 

by it. Considering that neither the measurements are perfect, nor the model unbiased, the 

variance of the estimates is proportional to the uncertainty in the model inputs, σ² (x), and the 

uncertainty in model parameters, σ² (θ): 

 

 𝜎2 ( �̂�(𝑥, 𝜃)) 𝛼 𝜎2(𝑥), 𝜎2(𝜃) 
Equation 2.4 

2.5 Classification of approaches for sensor network evaluation 

There is a variety of approaches for the evaluation of sensor networks, ranging from 

theoretically sound to more pragmatic. In this section, we provide a general classification of 

these approaches, and more details of each method are given in the next section. 

 

Although most of the approaches for the design of sensor networks make use of data, some rely 

solely on experience and recommendations. Therefore, a first tier in the proposed classification 

consists of recognising both measurement-based and measurement-free approaches (Figure 

2.6). The former make use of the measured data to evaluate the performance of the network 

(Tarboton et al. 1987, Anctil et al. 2006), while the latter use other data sources (Moss and 

Tasker 1991), such as topography and land use.  
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Figure 2.6 Proposed classification of methods for sensor network evaluation 

2.5.1 Sensor network evaluation  

As it is seen from its name, this approach does not require the previous collection of data of the 

measured variable to evaluate the sensor network performance. The evaluation of sensor 

networks is based on either experience or physical characteristics of the area such as land use, 

slope or geology. In this group of methods, the following can be mentioned: case-specific 

recommendations (Bleasdale 1965, Wahl and Crippen 1984, Karasseff 1986, WMO 2008a) and 

physiographic components (Tasker 1986, Laize 2004). This approach is the first step towards 

any sensor network development (Bleasdale 1965, Moss et al. 1982, Karasseff 1986, Nemec 

and Askew 1986).  

 

In this section, we classify the methods used to quantify the performance of the sensor networks 

based on the mathematical apparatus used to evaluate the network performance. These methods 

can be broadly categorised in statistics-based, information theory-based, expert 

recommendations, and others.  

 

The measurement-based approach can be furtherly subdivided into model-free and model-based 

approaches (Figure 2.6), depending on the use of modelling results in the performance metric.  

In model-free approaches, water systems and the external processes that drive their behaviour 

are observed through measurements, without the use of catchment models. Then, metrics about 

amount and quality of information in space and time are evaluated with regards to the 

management objectives and the decisions to be made in the system. Some performance metrics 

in this category are joint entropy (Krstanovic and Singh 1992a, 1992b), Information Transfer 

(Yang and Burn 1994), interpolation variance (Delhomme 1973, Pardo-Igúzquiza 1998, Cheng 
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et al. 2007) and autocorrelation (Moss and Karlinger 1974), among others. Figure 2.7 presents 

the scheme for the case when precipitation and discharge, as main drivers of catchment 

hydrology are considered, in model-free network evaluation (WMO 2008). 
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Figure 2.7 General procedure for Model-free sensor network evaluation 

Fundamentally, the model-free approach aims to minimise the variance of the measured 

variable, therefore, (and in theory) minimising the variance in the estimation. However, a design 

that is optimal for estimation is not necessarily also optimal for prediction (Chaloner and 

Verdinelli 1995). 

 

 min 𝜎2 (�̂�(𝑥, 𝜃))  𝛼 min(𝜎2(𝑥)) 
Equation 2.5 

 

Application of model-free approaches can be found in Krstanovic and Singh (1992a), Nowak 

et al. (2010), Li et al. (2012). Model-free evaluations are suitable for sensor network design 

aiming mainly to water resources planning, in which diverse water interests must be balanced. 

Due to the lack of a quantitative performance metric that relates simulated discharge, this kind 

of evaluations do not necessarily improve rainfall-runoff simulations.  

 

In the model-based approach, the performance of sensor networks is carried out using a 

catchment model (Dong et al. 2005, Xu et al. 2013). In this case, measurements of precipitation 

are used to simulate discharge, which is compared to the discharge measurements at specific 

locations. Therefore, any metric of the modelling error could be used to evaluate the 

performance of the network. Figure 2.8 presents a generic model-based approach for evaluating 

sensor networks. 
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Figure 2.8 General procedure for Model-based sensor network evaluation 

In the model-based design of sensor networks, it is assumed that the model structure and 

parameters are adequate. Therefore, it is possible to identify a set of measurements (x) which 

minimise the modelling error as. 

 

 min 𝜎2(𝜖)  𝛼 min(|𝑄 − �̂�(𝑥, 𝜃)|) 
Equation 2.6 

 

The need for the catchment model and possible high computational efforts for multiple model 

runs are some disadvantages of this approach. The computational load is especially critical in 

case of complex distributed models. It is worth mentioning particular model error metrics (Nash 

and Sutcliffe 1970, Gupta et al. 2009) may qualify the network by its ability to capture certain 

hydrological processes (Bennett et al. 2013), affecting the network evaluation.  

2.5.2 Statistics-based methods 

Statistics-based methods refer to methods where the performance of the network is evaluated 

with statistical uncertainty metrics of the measured or simulated variable. These methods aim 

to minimise either interpolation variance (Delhomme 1973, Rodriguez-Iturbe and Mejia 1974, 

Bastin et al. 1984, Bastin and Gevers 1985, Pardo-Igúzquiza 1998, Bonaccorso et al. 2002), 

cross-correlation (Maddock 1974, Moss and Karlinger 1974, Tasker 1986), or model error 

(Dong et al. 2005, Xu et al. 2013).  

 

 Interpolation variance (geostatistical)  

Methods to evaluate sensor networks considering a reduction in the interpolation variance 

assume that for a network to be optimal, the measured variable should be as certain as possible 

in the domain of the problem. To achieve this, a stochastic interpolation model that provides 

uncertainty metrics is required. Geostatistical methods such as Kriging (Journel and Huijbregts 

1978, Cressie 1993, Cressie 2015), or Copula interpolation (Bardossy 2006) have an explicit 

estimation of the interpolation error. This characteristic makes it suitable to identify areas with 

expected poor interpolation results, (Bastin et al. 1984, Pardo-Igúzquiza 1998, Grimes et al. 

1999, Bonaccorso et al. 2002, Cheng et al. 2007, Nowak et al. 2010, Shafiei et al. 2014). The 

PDF of the field provides a framework to identify areas with deficiencies in spatial coverage of 

the network (Bogárdi et al. 1985). 
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The variance of the interpolation error σ2 is determined by the covariance structure (C) of the 

measurements, and the distance between the stations and the interpolation target (uα - u) 

(Journel and Huijbregts 1978, Cressie 1993) as: 

 

 𝜎2(𝑢) =  𝐶(0) − ∑ 𝜆𝛼(𝑢)(C (𝑢𝛼 − 𝑢))

𝑛

α=1

− 𝜇(𝑢) 
Equation 2.7 

where C is the covariance function, C(0) is the autocovariance of the random field, C(uα – u) is 

the covariance between station α and the interpolation target u. In the design of precipitation 

sensor networks, the optimal network is such that minimises the average Kriging (interpolation) 

variance (AKV) (Rodriguez-Iturbe and Mejia 1974, Pardo-Igúzquiza 1998) over a considered 

area Ω as: 

 𝐴𝐾𝑉 =
1

𝑈
∑ 𝜎2(𝑢)

Ω

𝑢=1

 
Equation 2.8 

 

Alternatively, the optimal network can also be defined as such that minimise the maximum 

(min-max) interpolation variance (MKV) (Barca et al. 2015) as: 

 

 𝑀𝐾𝑉 = max 𝜎2(𝑢) ; 𝑢𝜖Ω 
Equation 2.9 

 

Bastin and Gevers (1985) optimised a precipitation sensor network at pre-defined locations to 

estimate the average precipitation for a given catchment. Their selection of the optimal sensor 

location consisted of minimising the normalised uncertainty by reducing the network. The main 

drawback of their approach is that the network can only be reduced and not augmented. Similar 

approaches have also been used by Rodriguez-Iturbe and Mejia (1974), Bogárdi et al. (1985), 

and Morrissey et al. (1995). Pardo-Igúzquiza (1998) advanced this formulation by removing 

the pre-defined set of locations (allowing augmentation). Instead, rain gauges were allowed to 

be placed anywhere in the catchment and its surroundings. A simulated annealing algorithm is 

used to search for the find the optimal set of sensors to minimise the interpolation uncertainty. 

 

Copula interpolation is a geostatistical alternative to Kriging for the modelling of spatially 

distributed processes (Bardossy 2006, Bardossy and Li 2008, Bardossy and Pegram 2009). As 

a geostatistical model, the copula provides metrics of the interpolation uncertainty, considering 

not only the location of the stations and the model parameterisation but also the value of the 

observations. Li et al. (2011) use the concept of copula to provide a framework for the design 

of a monitoring network for groundwater parameter estimation, using a utility function, related 

to the cost of a given decision with the available information. 

 

In the case of copula, the full conditional probability distribution function of the variable is 

interpolated. As such, the interpolation uncertainty depends on the confidence interval, 

measured values, parameterisation of the copula and the relative position of the sensors in the 
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domain of the catchment. More details on the formulation of copula-based design can be found 

in Bárdossy and Li (2008) 

 

Cheng et al. (2007), as well as Shafiei et al. (2014), recognised that the temporal resolution of 

the measurements affects the definition of optimality in minimum interpolation variance 

methods. This change in the spatial correlation structure occurs due to more correlated 

precipitation data between stations in coarser sampling resolutions (Krajewski and Duffy 1986, 

Ciach and Krajewski 2006). For this purpose, the sensor network has to be split into two parts, 

a base network and non-base sensors. The former should remain in the same position for long 

periods, to characterise longer fluctuation phenomena, based on the definition of a minimum 

threshold for an area with acceptable accuracy. The latter is relocated to improve the accuracy 

of the whole system, and should be relocated as they do not provide a significant contribution 

to the monitoring objective. 

 

Recent efforts have used minimum interpolation variance approaches to consider the non-

stationarity assumption of most geostatistical applications in sensor network design (Chacon-

Hurtado et al. 2014). To this end, changes in the precipitation pattern and its effect on the 

uncertainty estimation were considered during the development of a rainfall event.  

 Cross-correlation  

The objective of minimum cross-correlation methods is to avoid placing sensors at sites that 

may produce redundant information. Cross-correlation was suggested by Maddock (1974) for 

sensor network reduction, as a way to identify redundant sensors. In this scope, the objective 

function can be written as: 

 

 𝜌(𝑋𝑖, 𝑋𝑗) =  ∑ ∑
𝑐𝑜𝑣(𝑥𝑖, 𝑥𝑗)

𝜎(𝑥𝑖)𝜎(𝑥𝑗)

𝑛

𝑗=𝑖+1

𝑛

𝑖=1

  Equation 2.10 

 

Where cov is the covariance function between a pair of stations (i, j), and σ is the standard 

deviation of the observations. 

 

Stedinger and Tasker (1985) introduced the method called Network Analysis Using 

Generalized Least Squares (NAUGLS), which assesses the parameters of a regression model 

for daily discharge simulation based on the physiographic characteristics of a catchment 

(Stedinger and Tasker 1985, Tasker 1986, Moss and Tasker 1991). The method builds a 

Generalised-Least-Square (GLS) covariance matrix of regression errors to correlate flow 

records and to consider flow records of different length, so the sampling mean squared error 

can be expressed as: 

 

 𝑆𝑀𝑆𝐸 =  
1

𝑛
∑ 𝑋𝑖

𝑇(𝑋𝑇Λ−1 𝑋)−1𝑋𝑖

𝑗

𝑖=1

 
Equation 2.11 
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Where X [k, w] is the matrix of the (k) basin characteristics in a window of size w at discharge 

measuring site i. Λ is the GLS Weighting matrix, using a set of n gauges (Tasker 1986). 

 

A comparable method was proposed by Burn and Goulter (1991), who used a correlation metric 

to cluster similar stations. Vivekanandan and Jagtap (2012) proposed an alternative for the 

location of discharge sensors in a recurrent approach, in which the most redundant stations were 

removed, and the most informative stations remained using the Cooks’ D metrics, a measure of 

how the spatial regression model at a particular site is affected by removing another station. 

The result of these type of sensors is sparse, as the redundancy of two sensors increases with 

the inverse of the distance between them (Mishra and Coulibaly 2009). 

 Model output error  

RR models are used to transform the measurements of precipitation into estimates of discharge 

at the outlet of a catchment. RR models are divided into physically-based, conceptual and data-

driven models (Solomatine and Wagener 2011). Physically-based models describe rigorously 

the processes within the catchment, by maintaining the energy, momentum and mass-

conservations of the system. Conceptual models use simplified representation of the 

hydrological processes within the catchment, usually aiming to represent a few states of interest. 

Data-driven models are built over the relationship of the data itself, making it suitable in 

simulation and forecasting environments, but limiting the possibility of assessing any of the 

hydrological processes. Different RR models have different data requirements, depending on 

the type of measured variables, spatial and temporal resolution, and purpose of the model, 

among others.  

 

Conceptual models are widely used for RR modelling (Solomatine and Wagener 2011, Beven 

2012). Depending on the spatial aggregation, conceptual models are furtherly divided into 

lumped, semi-distributed and distributed models, depending on the internal topology of the 

catchment. For the purpose of flow forecasting, the accuracy of lumped models is typically 

comparable to physically-based and distributed conceptual models (Carpenter and Georgakakos 

2006, Ortiz and Guna 2009, Hassan et al. 2013, Devia et al. 2015).  

 

The evaluation of the simulation models is usually carried out in metrics that describe the 

simulation error. NSE (Equation 2.12) is a score introduced by Nash and Sutcliffe (1970) which 

compares the variance of the model residuals over the variance of the measurements (Krause et 

al. 2005, Gupta et al. 2009). NSE is bound between minus infinity and one. In practice, values 

of NSE smaller than 0 indicate that the predicting capability of the model lies below the average 

of the data. On the other end, a score of 1 indicates a perfect fit.  

 

 𝑁𝑆𝐸 = 1 − 
∑(𝑄𝑠 − 𝑄𝑟)2

∑( �̅�𝑟 − 𝑄𝑟)
2 Equation 2.12 

 

 

Where Qs is the simulated, and Qr is the recorded discharge. NSE is the efficiency using the 

inputs from the reduced network, and the. Another performance metric consists in the 



Literature review and proposed framework 

30 

evaluation of the average error of the model (Franz and Hogue 2011, Beven 2012), also known 

as bias. This metrics indicates the deviation from the mean of the residuals. Ideally, the residuals 

should be unbiased (bias = 0). To use the model bias as an objective function for sensor network 

design, absolute bias is preferred, considering that there are no different consequences from a 

positive or negative bias in the results (Equation 2.13). 

 

 𝐵𝐼𝐴𝑆 =
1

𝑘
|∑ 𝑄𝑠 − 𝑄𝑟| 

Equation 2.13 

 

Finally, according to Dong et al. (2005) the optimal sensor network is such that maximises the 

correlation between the average precipitation and the recorded discharge (Equation 2.14). These 

results come from an experimental study and are furtherly explored in this document. 

 

 𝐶𝑃𝑄 = 𝜌(�̅�, 𝑄𝑟) 
Equation 2.14 

 

Where P̅ is the average precipitation in the catchment and Qr is the recoded discharge, and ρ is 

the correlation function. 

 

Another application is provided by Dong et al. (2005) who proposed to evaluate the rainfall 

network using a lumped HBV model. They found that the model performance does not 

necessarily improve when extra rain gauges are placed. A similar approach was presented by 

Xu et al. (2013) who evaluated the effect of diverse rain gauge locations on runoff simulation 

using a similar hydrological model. It was found that rain gauge locations could have a 

significant impact and suggest that a gauge density less than 0.4 stations per 1000 km2 can 

negatively affect the model performance. 

 

Anctil et al. (2006) aimed at improving lumped neural network rainfall-runoff forecasting 

models through mean areal rainfall optimisation, and concluded that different combinations of 

sensors lead to noticeable streamflow forecasting improvements. Studies in other fields have 

also used this method. For example, Melles et al. (2009, 2011), obtained optimal monitoring 

designs for radiation monitoring networks, which minimise the prediction error of mean annual 

background radiation. The main drawback of this approach is that multiple error metrics are 

considered, as specific objectives relate to different processes 

 

2.5.3 Information Theory-based methods 

The use of Information Theory (Shannon 1948) in the design of sensor networks for 

environmental monitoring is based on Communication Theory, which studies the problem of 

transmitting signals from a source to a receiver throughout a noisy medium. Information Theory 

provides the possibility of estimating probability distribution functions in the presence of partial 

information with the less biased estimation (Jaynes 1957). Some of its concepts are analogous 

to statistics concepts, and therefore similarities between entropy and uncertainty, as mutual 
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information and correlation, etc., can be found (Cover and Thomas 2006, Alfonso et al. 2010, 

Singh 2013).  

 

Information Theory-based methods for designing sensor networks mainly consider the 

maximisation of information content that sensors can provide, in combination with the 

minimisation of redundancy among them (Krstanovic and Singh 1992a, 1992b, Mogheir and 

Singh 2002, Alfonso 2010, Alfonso et al. 2010, 2013, Singh 2013). Redundancy can be 

measured by using either Mutual Information (Singh 2000, Steuer et al. 2002), Directional 

Information Transfer (Yang and Burn 1994), Total Correlation (Alfonso et al. 2010, Fahle et 

al. 2015), among others.  

 

Information Theory (IT) provides a framework to measure the information content of a random 

variable as well as the amount of shared information among a set of them, based on its (joint) 

probabilities (Jaynes 1957, Kolmogorov 1965, Shannon 1948). The information-based metrics 

can either represent information content (e.g. entropy) or information redundancy (e.g. mutual 

information), which are the foundation for the metrics of sensor network performance (Li et al. 

2012). 

 

 Entropy  

The Principle of Maximum Entropy (POME) is based on the premise that probability 

distribution with the largest remaining uncertainty (i.e., the maximum entropy) is the one that 

best represent the current stage of knowledge (Penfeld 2003). POME has been used as a 

criterion for the design of sensor networks, by allowing the identification of the set of sensors 

that maximises the joint entropy among measurements (Krstanovic and Singh 1992a). In other 

words, to provide as much information content, from the Information Theory perspective, as 

possible (Jaynes 1988).  

 

Entropy (H) is a measure of the amount of information contained in a single random variable 

(Cover and Thomas 2006). Due to its roots in communication theory, information-theory 

estimates are suited for discrete variables, thus, continuous variables have to be quantised. 

Quantisation, refers to the methods to convert a continuous into a discrete variable (Gray and 

Neuhoff 1998). The information content (entropy, H) for a discrete variable can then be 

estimated as (Equation 2.15).  

 

 𝐻(𝑋) = − ∑ 𝑝(𝑥)log 𝑝(𝑥)

𝐼

𝑥

 
Equation 2.15 

 

where p(x) is the probability of the variable X taking the discrete value x, or, the probability of 

variable X being in the interval x. 

 

For multiple random variables, the information contained in the set is not necessarily 

independent. Joint entropy (JH) measures the amount of non-redundant information which is 
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captured by the sensor network (set). Therefore, the measurement of the joint entropy can 

provide information about the diversity of measurements that the network is able to capture. 

The joint entropy (JH) can be calculated for a set of n discrete variables as (Equation 2.16). 

 

 𝐽𝐻(𝑋1, … , 𝑋𝑛) = − ∑ … ∑ 𝑝(𝑥1, … , 𝑥𝑛)log 𝑝(𝑥1, … , 𝑥𝑛)

𝐼

𝑥𝑛

𝐼

𝑥1

 Equation 2.16 

 

where p(x1,…, xn) is the joint probability of the n variables X1,…, Xn. For the case of two 

variables, the formulation can be simplified to Equation 2.17 as: 

 

 𝐽𝐻(𝑋1, 𝑋2) = − ∑ ∑ 𝑝(𝑥𝑖, 𝑦𝑗)log 𝑝(𝑥𝑖, 𝑦𝑗)

𝐼

𝑥2

𝐼

𝑥1

 Equation 2.17 

 

Due to the computational complexity of calculating the joint probability distribution of a highly 

dimensional space, an approximated estimation of the multivariate joint entropy is provided by 

the sum of the pair-wise joint entropy. This joint entropy is the sum of the joint entropies 

between the potential combinations of pairs of sensors (PJH) as (Equation 2.18): 

 

 𝑃𝐽𝐻 = ∑ ∑ 𝐽𝐻(𝑋𝑖, 𝑋𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 Equation 2.18 

 

The joint entropy is (by definition) always smaller or equal to the sum of the individual 

entropies (Cover and Thomas 2006). From the information theory perspective, an optimal 

network is such in which the shared information between sensors is minimum. For an optimal 

network, is expected that the pair-wise joint entropy (PJH) may not considerably diverge from 

the multivariate joint entropy (JH).  

 

Krstanovich and Singh (1992a, 1992b) presented a concise work on rainfall network evaluation 

using entropy. They used POME to obtain multivariate distributions to associate different 

dependencies between sensors, such as joint information and shared information, which was 

used later either reduce the network (in the case of high redundancy) or expand it (in the case 

of lack of common information). 

 

Fuentes et al. (2007) proposed an entropy-utility criterion for environmental sampling, 

particularly suited for air-pollution monitoring. This approach considers Bayesian optimal sub-

networks using an entropy framework, relying on the spatial correlation model. An interesting 

contribution of this work is the assumption of non-stationarity, contrary to traditional 

atmospheric studies, and relevant in the design of precipitation sensor networks. 

 

The use of hydraulic 1D models and metrics of entropy have been used to select the adequate 

spacing between sensors for water level in canals and polder systems (Alfonso et al. 2010, 
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Alfonso 2010). This approach is based on the current conditions of the system, which makes it 

useful for operational purposes, but it does not necessarily support the modifications in the 

water system conditions or changes in the operation rules. Studies on the design of sensor 

networks using these methods are on the rise in the last years (Alfonso 2010, Alfonso et al. 

2013, Ridolfi et al. 2013, Banik et al. 2017). 

 

Benefits of POME include the robustness of the description of the posterior probability 

distribution since it aims to define the less biased outcome. This is because neither the models 

nor the measurements are completely certain. Li et al. (2012) presented, as part of a multi-

objective framework for sensor network optimisation, the criteria of maximum (joint) entropy, 

as one of the objectives. Other studies in this direction have been presented by Lindley (1956), 

Caselton and Zidek (1984), Guttorp et al. (1993), Zidek et al. (2000), Yeh et al. (2011) and 

Kang et al. (2014).  

 

More recently, Samuel et al. (2013) and Coulibaly and Samuel (2014), proposed a mixed 

method involving regionalisation and dual entropy multi-objective optimisation (CRDEMO), 

which is a step forward if compared to single-objective optimisation for sensor network design. 

 Mutual information (trans-information)  

Mutual information is a measurement of the amount of information that a variable contains 

about another. This is measured as the relative entropy between the joint distribution and the 

product distribution (Cover and Thomas 2006). In the simplest expression (two variables), the 

mutual information can be defined as: 

 

 𝐼(𝑋1, 𝑋2) = 𝐻(𝑋1) + 𝐻(𝑋2) − 𝐻(𝑋1, 𝑋2) 
Equation 2.19 

 

where H(X1) and H(X2) is the entropy of each of the variables, and H(X1, X2) is the joint entropy 

between them. The extension of the mutual information for more than two variables should not 

only consider the joint entropy between them, but also the joint entropy between pairs of 

variables, leading to a significantly complex expression for the multivariate mutual information. 

Regarding this issue, the multivariate mutual information can be addressed as a nested problem, 

such that: 

 

 𝐼(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝐼(𝑋1, 𝑋2, … , 𝑋𝑛−1) − 𝐼(𝑋1, 𝑋2, … , 𝑋𝑛−1|𝑋𝑛) 
Equation 2.20 

 

Where I(X1, X2, …, Xn) is the multivariate mutual information among n variables, and I(X1, X2, 

…, Xn-1 | Xn) is the conditional information of n-1 variables with respect to the nth  variable. The 

conditional mutual information can be understood as the amount of information that a set of 

variable share with another variable (or variables). The conditional mutual information of two 

variables (X1 and X2) with respect to a third one (X3) can be quantified as: 

 

 𝐼(𝑋1, 𝑋2|𝑋3) = 𝐻(𝑋1|𝑋3) − 𝐻(𝑋1|𝑋2, 𝑋3) 
Equation 2.21 
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Where H(X1 | X3) is the conditional entropy of X1 to X3 and H(X1 | X2, X3) is the conditional 

entropy of X1 with respect to X2 and X3 simultaneously. The conditional entropy can be 

understood as the amount information that a variable does not share with another. The joint 

entropy between two variables can be quantified as: 

 

 𝐻(𝑋1|𝑋2) = ∑ ∑ 𝑝(𝑋1𝑖, 𝑋2𝑗) log
𝑝(𝑋1𝑖)

𝑝(𝑋1𝑖, 𝑋2𝑗)

𝑚

𝑗=1

𝑘

𝑖=1

 
Equation 2.22 

 

where p(X1, X2) is the joint probability, for k and m discrete values, of X1and X2. 

 

An optimal sensor network should avoid collecting repetitive or redundant information, in other 

words, it should be such that reduces the mutual (shared) information between sensors in the 

network. Alternatively, it should maximise the transferred information from a measured to a 

modelled variable at a point of interest (Amorocho and Espildora 1973). Following this idea, 

Husain (1987) suggested an optimisation scheme for the reduction of a rain sensor network. His 

objective was to minimise the trans-information between pairs of stations. However, 

assumptions of the probability and joint probability distribution functions are strong 

simplifications of this method. To overcome these assumptions, the Directional Information 

Transfer (DIT) index was introduced (Yang and Burn 1994) as the inverse of the coefficient of 

non-transferred information (NTI) (Harmancioglu and Yevjevich 1985). Both DIT and NTI are 

a normalised measure of information transfer between two variables (X1 and X2).  

 

 𝐷𝐼𝑇 =
𝐼(𝑋1, 𝑋2)

𝐻(𝑋1)
 

Equation 2.23 

 

Particularly for the design of precipitation sensor networks, Ridolfi et al. (2011) presented a 

definition of the maximum achievable information content for designing a dense network of 

precipitation sensors at different temporal resolutions. The results of this study show that there 

exists a linear dependency between the non-transferred information and the sampling frequency 

of the observations. 

 

Entropy estimations are relative to the measured variables and its study case. The average 

information transfer (AIT) between a pair of stations, normalise the entropy estimations, by 

scaling the joint entropy over one of the variables (or station) simultaneously (Yang and Burn 

1994). This normalisation permits an unbiased comparison of results between different case 

studies. The optimal sensor network is such that minimises the AIT (Equation 2.24). 

 

 𝐴𝐼𝑇 =
1

𝑛2
∑ ∑

𝐽𝐻(𝑋𝑖, 𝑋𝑗)

𝐻(𝑋𝑖)

𝑛

𝑗=1

𝑛

𝑖=1

 Equation 2.24 
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Total Correlation (C) is an alternative measure of the amount of shared information between 

two or more variables, and has also been used as a measure of information redundancy in the 

design of sensor networks ( (Alfonso et al. 2010, Alfonso 2010, Leach et al. 2015) as: 

 

 𝐶(𝑋1, … , 𝑋𝑛) = ∑ 𝐻(𝑋𝑖)

𝑛

𝑖=1

− 𝐻(𝑋1, … , 𝑋𝑁) 
Equation 2.25 

 

Where C(X1, X2, …, Xn) is the total correlation among the n variables, H(Xi) is the entropy of 

the variable i, and H(X1, X2, …, Xn) is the joint entropy of the n variables. Total Correlation can 

be seen then as a simplification of the multivariate mutual information, where only the 

interaction among all the variables is considered. In the design of sensor networks, it is expected 

that the mutual information among the different variables is minimum, therefore, the difference 

between the total correlation and multivariate mutual information tends to be minimised as well. 

The advantage of total correlation is the computational advantage that represents assuming a 

marginal value for the interaction among variables. 

 

Another information theory objective function used in the design of sensor networks is to 

minimise the amount of redundant information. Total correlation (Alfonso et al. 2010) is a 

measure of the amount of redundant information between a set of variables (or sensors on a 

network) and is quantified as the difference between the sum of all the individual entropies and 

the joint entropy (Equation 2.26). Consequently, the optimal sensor network is such that 

minimises the total correlation (TC). 

 

 𝑇𝐶 = ∑ 𝐻(𝑋𝑖)

𝑛

𝑖=1

− 𝐽𝐻 (𝑥1, … , 𝑥𝑛) 
Equation 2.26 

 

A method to estimate trans-information fields at ungauged locations has been proposed by Su 

and You (2014), employing a trans-information-distance relationship. This method accounts 

for spatial distribution of precipitation, supporting the augmentation problem in the design of 

precipitation sensor networks. However, as the relationship between trans-information between 

sensors and their distance is monotonic, the resulting sensor networks are generally sparse. 

2.5.4 Methods based on expert recommendations  

 Physiographic components  

Among the most used planning tools for hydrometric network design are the technical reports 

presented by the WMO (2008), in which a minimum density of stations depending on different 

physiographic units, are suggested (Table 2.3). Although these guidelines do not provide an 

indication about where to place hydrometric sensors, rather they recommend that their 

distribution should be as uniform as possible and that network expansion has to be considered. 

The document also encourages the use of computationally aided design and evaluation of a 

more comprehensive design. For instance, Coulibaly et al. (2013) suggested the use of these 

guidelines to evaluate the Canadian national hydrometric network. 
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Table 2.3 Recommended minimum densities of stations (area in Km² per station) – Adopted from WMO [2008] 

Physiographic 

unit 

Precipitation 

Evaporation Streamflow 
Water 

Quality 
Non-

recording 
Recording 

Coastal 900  9,000  50,000  2,750  55,000  

Mountains 250  2,500  50,000  1,000  20,000  

Interior plains 575  5,750  5,000  1,875  37,500  

Hilly/undulating 575     5,750  50,000  1,875  47,500  

Small islands 25  250  50,000  300  6,000  

Urban areas  –   10–20   –   –   –  

Polar/arid  10,000 10,000  100,000  20,000  200,000 

 

Moss et al. (1982) presented one of the first attempts to use physiographic components in the 

design of sensor networks in a method called Network Analysis for Regional Information 

(NARI). This method is based on relations of basin characteristics proposed by Benson and 

Matalas (1967). NARI can be used to formulate the following objectives for network design: 

minimum cost network, maximum information and maximum net benefit from the data-

collection program, in a Bayesian framework, which can be approximated as: 

 

 log 𝜎(𝑆(|�̂� − 𝑄|)
𝛼

) = 𝑎 + 
𝑏1

𝑛
+

𝑏2

𝑦
  Equation 2.27 

 

where the function S(|Q̂ - Q|)α  is the α percentile of the standard error in the estimation of Q, 

a, b1 and b2  are the parameters from the NARI analysis, n is the number of stations used in the 

regional analysis, and y is the harmonic mean of the records used in the regression. 

 

Laize (2004) presented an alternative for evaluating precipitation networks based on the use of 

the Representative Catchment Index (RCI), a measure to estimate how representative a given 

station in a catchment is for a given area, on the stations in the surrounding catchments. The 

author argues that the method, which uses datasets of land use and elevation as physiographical 

components, can help identifying areas with an insufficient number of representative stations 

on a catchment. 

 

 Practical case-specific considerations  

Most of the first sensor networks were designed based on expert judgement and practical 

considerations. Aspects such as the objective of the measurement, security and accessibility are 

decisive to select the location of a sensor. Nemec and Askew (1986) presented a short review 

of the history and development of the early sensor networks, where it is highlighted that the use 

of “basic pragmatic approaches” still had most of the attention, due to its practicality in the field 

and its closeness with decision makers. 
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Bleasdale (1965) presented a historical review of the early development process of the rainfall 

sensor networks in the United Kingdom. In the early stages of the development of precipitation 

sensor networks, two main characteristics influencing the location of the sensors were 

identified: at sites that were conventionally satisfactory and where good observers were located. 

However, the necessity of a more structured approach to select the location of sensors was 

underlined. As a guide, Bleasdale (1965) presented a series of recommendations on the minimal 

density of sensors for operational purposes, relating the characteristics of the area to be 

monitored and the minimum required a number of rain sensors, as well as its temporal 

resolution. 

 

In a more structured approach, Karasseff (1986) introduced some guidelines for the definition 

of the optimal sensor network to measure hydrological variables for operational hydrological 

forecasting systems. The study specified the minimum requirements for the density of 

measurement stations based on the fluctuation scale and the variability of the measured variable 

by defining zonal representative areas 

 

From a different perspective, Wahl and Crippen (1984) as well as Mades and Oberg (1986) 

proposed a qualitative score assessment of different factors related to the use of data and the 

historical availability of records for the evaluation of sensor value. Their analyses aimed at 

identifying candidate sensors to be discontinued, due to their limited accuracy. 

 

 User survey  

These approaches aim to identify the information needs of particular groups of users (Sieber 

1970), following the idea that the location of a certain sensor (or group of sensors) should satisfy 

at least one specific purpose. To this end, surveys to identify the interests for the measurement 

of certain variables, considering the location of the sensor, record length, frequency of the 

records, methods of transmission, among others, are executed.  

 

Singh et al. (1986) applied two questionnaires to evaluate the streamflow network in Illinois: 

one to identify the main uses of streamflow data collected at gauging stations, where 

participants described how data was used and how they would categorise it in either site-specific 

management activities, local or regional planning and design, or determination of long-term 

trends. The second questionnaire was used to determine present and future needs for streamflow 

information. The results showed that the network was reduced due to the limited interest about 

certain sensors, which allowed for enhancing the existing network using more sophisticated 

sensors or recording methods. Additionally, this redirection of resources increased the coverage 

at specific locations. 

2.5.5 Other methods 

There are also other methods that cannot be easily attributed to the previously mentioned 

categories. Among them, Value of Information, fractal, and network theory-based methods can 

be mentioned. 
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 Value of Information  

The Value of Information (VOI), (Howard 1966, Hirshleifer and Riley 1979) is defined as the 

value a decision-maker is willing to pay for extra information before making a decision. This 

willingness to pay is related to the reduction of uncertainty about the consequences of making 

a wrong decision (Alfonso and Price 2012).  

 

The main feature of this approach is the direct description of the benefits of additional piece of 

information, compared with the costs of acquiring that extra piece of information (Black et al. 

1999, Walker 2000, Nguyen and Bagajewicz 2010, 2011, Alfonso and Price 2012, Ballari et al. 

2012). The main advantage of this method is that provides a pragmatic framework in which 

information have a utilitarian value, usually economic, which is especially suited for budget 

constraint conditions.   

 

One of the assumptions of this type of models is that a prior estimation of consequences is 

needed. If a is the action that has been decided to perform, m is the additional information that 

comes to make such a decision, and s is the state that is actually observed, then the expected 

utility of any action a can be expressed as:  

 

 𝑢(𝑎, 𝑃𝑠) = ∑ 𝑃𝑠𝑢(𝐶𝑎𝑠)

𝑆

 Equation 2.28 

 

where Ps is the perception, in probabilistic terms, of the occurrence of a particular state (s) 

among a total number of possible states (S), and u is the utility of the outcome Cas of the actions 

given the different states. When new information (i.e., a message m) becomes available, and 

the decision-maker accepts it, his prior belief Ps will be subject to a Bayesian update. If P (m|s) 

is the likelihood of receiving the message m given the state s and Pm is the probability of getting 

a message m then: 

 

 𝑃𝑚 = ∑ 𝑃𝑠𝑃(𝑚|𝑠)

𝑆

 Equation 2.29 

 

The value of a single message m can be estimated as the difference between the utility, u, of the 

action, am that is chosen given a particular message m and the utility of the action, a0,  that would 

have been chosen without additional information as:  

 

 ∆𝑚= 𝑢(𝑎𝑚, 𝑃(𝑠|𝑚)) − 𝑢(𝑎0, 𝑃(𝑠|𝑚)) 
Equation 2.30 

 

The Value of Information, VOI, is the expected utility of the values m:  

 

 𝑉𝑂𝐼 = 𝐸(∆𝑚) = ∑ 𝑃𝑚∆𝑚

𝑀

 Equation 2.31 
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Following the same line of ideas, Khader et al. (2013) proposed the use of decision trees to 

account for the development of a sensor network for water quality in drinking groundwater 

applications. VOI is a straightforward methodology to establish present causes and 

consequences of scenarios with different types of actions, including the expected effect of 

additional information. A recent effort by Alfonso et al. (2016) towards identifying valuable 

areas to get information for floodplain planning consists of the generation of VOI maps, where 

probabilistic flood maps and the consequences of urbanisation actions are taken into account to 

identify areas where extra information may be more critical. 

 

 Fractal-based  

Fractal-based methods employ the concept of Gaussian self-affinity, where sensor networks 

show the same spatial patterns at different scales. This affinity can be measured by its fractal 

dimension (Mandelbrot 2001). Lovejoy et al. (1986) proposed the use of fractal-based methods 

to measure the dimensional deficit between the observations of a process and its real domain. 

Consider a set of evenly distributed cells representing the physical space, and the fractal 

dimension of the network representing the number of observed cells in the correlation space. 

The lack of non-measured cells in the correlation space is known as the fractal deficit of the 

network. Considering that a large number of stations have to be available at different scales, the 

method is suitable for large networks, but less useful in the deployment of few sensors in a 

catchment scale. 

 

Lovejoy and Mandelbrot (1985) and Lovejoy and Schertzer (1985) introduced the use of 

fractals to model precipitation. They argued that the intermittent nature of the atmosphere can 

be characterised by fractal measures with fat-tailed probability distributions of the fluctuations, 

and stated that standard statistical methods are inappropriate to describe this kind of variability. 

Mazzarella and Tranfaglia (2000) and Capecchi et al. (2012) presented two different case 

studies using this method for the evaluation of a rainfall sensor networks. The former study 

concludes that for network augmentation, it is important to select the optimal locations that 

improve the coverage, measured by the reduction of the fractal deficit. However, there are no 

practical recommendations on how to select such locations. The latter proposes the inspection 

of seasonal trends as the meteorological processes of precipitation may have significant effects 

on the detectability capabilities of the network.  

 

A common approach for the quantification of the dimensional deficit is the box-counting 

method (Song et al. 2007, Kanevski 2008), mainly used in the fractal characterisation of 

precipitation sensor networks. The fractal dimension of the network (D) is quantified as the 

ratio of the logarithm of the number of blocks (NB) that have measurements and the logarithm 

of the scaling radius (R). 

 

 𝐷 =  
log (𝑁𝐵(𝑅))

log (𝑅)
 

Equation 2.32 
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Due to the scarcity of measurements of precipitation type of networks, the quantification of the 

fractal dimension may result unstable. An alternative fractal dimension may be calculated using 

a correlation integral (Mazzarella and Tranfaglia 2000) instead of the number of blocks, such 

that: 

 

 𝐶𝐼(𝑅) =  
2

𝐵(𝐵 − 1)
∑ ∑ 𝛩(𝑅 − |𝑢𝛼𝑖 − 𝑢𝛼𝑗|)

𝐵

𝑗=1

: 𝑓𝑜𝑟 𝑖 ≠ 𝑗

𝐵

𝑖=1

 Equation 2.33 

 

In which CI is the correlation integral, R is the scaling radius, B is the total number of blocks at 

each scaling radius, and Uα is the location of station α. Θ is the Heaviside function. A 

normalisation coefficient is used, as the number of estimations of the counting of blocks 

considers each station as a centre. 

 

The consequent definition of the fractal dimension of the network is the rate between the 

logarithm of the correlation integral and the logarithm of the scaling radius. This ratio is 

calculated from a regression between different values of R, for which the network exhibit fractal 

behaviour (meaning, a high correlation between log(CI) and log(R)). 

 

 𝐷 =  
log (𝐶𝐼)

log (𝑅)
 

Equation 2.34 

 

The Maximum potential value for the fractal dimension of a 2-D network (such as for spatially 

distributed variables) is two. However, this limit considers that the stations are located on a flat 

surface, as elevation is consequence of the topography, and is not a variable that can be 

controlled in the network deployment. 

 

 Network theory-based  

Recently, research efforts have been devoted to the use of the so-called network theory to assess 

the performance of discharge sensor networks (Halverson and Fleming 2015, Sivakumar and 

Woldemeskel 2014). These studies analyse three main features, namely average clustering 

coefficient, average path length and degree distribution. Average clustering is a degree of the 

tendency of stations to form clusters. Average path length is the average of the shortest paths 

between every combination of station pairs. Degree distribution is the probability distribution 

of network degrees across all the stations, being network degree defined as the number of 

stations to which a station is connected. Halverson and Fleming (2015) observed that regular 

streamflow networks are highly clustered (so the removal of any randomly chosen node has 

little impact on the network performance) and have long average path lengths (so information 

may not easily be propagated across the network).  

 

In hydrometric networks, three metrics are identified (Halverson and Fleming 2015): degree 

distribution, clustering coefficient and average path length. The first of these measures is the 

average node degree, which corresponds to the probability of a node to be connected to other 



Literature review and proposed framework 

41 

nodes. The metric is calculated in the adjacency matrix (a binary matrix in which connected 

nodes are represented by 1 and the missing links by 0). Therefore, the degree of the node is 

defined as: 

 

 𝑘(𝛼) = ∑ 𝑎𝛼,𝑗

𝑛

𝑗=1

 Equation 2.35 

 

Where k(α) is the degree of station α, n is the total number of stations, and a is the adjacency 

matrix. 

 

The clustering coefficient is a measure of how much the nodes cluster together. High clustering 

indicates that nodes are highly interconnected. The clustering coefficient (CC) for a given 

station is defined as: 

 𝐶𝐶(𝛼) =  
2

𝑘(𝛼)(𝑘(α) − 1)
∑ 𝑎𝛼,𝑗

𝑛

𝑗=1

 Equation 2.36 

 

Additionally, the average path length refers to the mean distance of the interconnected nodes. 

The length of the connections in the network, provide some insights in the length of the 

relationships between the nodes in the network. 

 

 𝐿 =  
1

𝑛(𝑛 − 1)
∑ ∑ 𝑑𝛼,𝑗

𝑛

𝑗=1

𝑘(𝛼)

𝛼=1

 
Equation 2.37 

 

As can be seen from the formulation, the metrics of the network largely depends on the 

definition of the network topology (adjacency matrix). The links are defined from a metric of 

statistical similitude such as the Pearson r or the Spearman rank coefficient. The links are such 

pair of stations over which statistical similitude is over a certain threshold. 

 

According to Halverson and Fleming (2015), an optimal configuration of streamflow networks 

should consist of measurements with small membership communities, high-betweenness, and 

index stations with large numbers of intracommunity-links. Small communities represent 

clusters of observations, thus, indicating efficient measurements. Large numbers of intra-

community links ensure that the network has some degree of redundancy, and thus, resistant to 

sensor failure. High-betweenness indicates that such stations which have the most inter-

communal links are adequately connected, and thus, able to capture the heterogeneity of the 

hydrological processes at a larger scale. 

 

2.6 Proposed framework for sensor network design 

Table 2.4 summarises the sensor network design classes and approaches, with the selected 

references to the relevant papers in each of the categories for further reference. It is of special 
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interest in the review to highlight the lack of model-based information theory methods, as well 

as the low number of publications in network theory-based methods. Also, quantitative studies 

in the comparison of different methodologies for the design of sensor networks are limited. It 

is suggested, therefore, that a pilot catchment is used for the scientific community to test all the 

available methods for network evaluation, and to establish similarities and differences among 

them. 

 

Table 2.5 summarises the main advantages and disadvantages for each of the design and 

evaluation methods. These recommendations are general, but take into account the most general 

points in the design considerations of sensor networks. Some of the advantages of these 

methods have been exploited in combined methodologies, such as those presented 

by Yeh et al. (2011), Samuel et al. (2013), Barca et al. (2015), Coulibaly and Samuel (2014), 

and Kang et al. (2014). 
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Table 2.4 Classification of sensor network design criteria including recommended reading. 

    Approaches 

    

Measurement-based 
Measurement-

Free 

    Model-free Model-based   

C
la

ss
es

 

Statistics-based 

Interpolation 

variance 

Pardo-Iguzquiza 

(1998) 

    Bardossy and Li 

(2008) 

 Nowak et al. (2010) 

Cross-correlation 

Maddock (1974) 
Vivekanandan and 

Jagatp (2012) 
  Moss and Karlinger 

(1974) 

Model error   

Tarboton et al. 

(1987)   

 Dong et al. (2005) 

Information Theory 

Entropy 

Krstanovic and Singh 

(1992a, 1992b) 
Pham and Tsai 

(2016) 
  

Alfonso et al. (2014) 

Mutual 

information 

Husain (1987) Coulibaly and 

Samuel (2014) 
  

 Alfonso (2010) 

Expert recommendations 

Physiographic 

components 
Samuel et al. (2013) 

Moss and Karlinger 

(1974) Laize, 2004 

Moss et al. (1982) 

Practical case-

specific 

considerations 

    

Wahl and Crippen 

(1984) 

Nemec and Askew 

(1986) 

Karaseff (1986) 

User survey     
Sieber (1970) 

Singh et al. (1986) 

Other methods 

Value of 

information 

Alfonso and Price 

(2012) 

Black et al. (1999) 

  Alfonso et al. 

(2016) 

Fractal 

characterisation 
    

Lovejoy and 

Mandelbrot (1985) 

Capecchi et al. 

(2012) 

Network theory 

Sivakumar and 

Woldemeskel (2014) 

    

Halverson and 

Fleming (2015) 
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Table 2.5 Advantages and disadvantages of sensor network design methods 

 

Advantages Disadvantages 

Statistics-based 

Interpolation 

variance 

Useful to assess data scarce areas 
Heavily rely on the characterisation of the 

covariance structure 

No event-driven 
No relationship with final measurement 

objective 

Minimise uncertainty in spatial 

distribution of measured variable 
  

Cross-

correlation 

Useful for detecting redundant 

stations 

Augmentation not possible without 

additional assumptions 

Computationally inexpensive 
Limited to linear dependency between 

stations 

Model error 
Has direct relationship with the 

measurement objectives 

Biased towards current measurement 

objectives 

  Biased towards model and error metrics 

Information Theory 

Entropy 

Assess non-linear relationship 

between variables 
Formal form is computationally intensive 

Unbiased estimation of network 

performance 

Quantising (binning) of continuous 

variables lead to different results 

  Optimal networks are usually sparse 

  Difficult to benchmark 

  Data intensive 

Mutual 

information Idem Idem 

Expert recommendations 

Physiographic 

components 

Well understood Not useful for homogeneous catchments 

Functional for heterogeneous 

catchments with few available 

measurements 

No quantitative measure of network 

accuracy 

Useful at country/continental 

level 
  

Practical case-

specific 

considerations 

No previous measurements are 

required 
Biased towards expert 

Useful to observe specific 

variables 
Collected data does not influence selection 

  Biased towards current data requirements 

User survey Pragmatic Extensive user identification 

Cost-efficient Biased towards current data requirements 

Other methods 

Value of 

information 

Provides a full economical 

assessment 
Hard to quantify 

  
Usually decisions are made with available 

information 

  Biased towards a rational decision model 
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Fractal 

characterisation 

Efficient for large networks 
Not suitable for small networks or 

catchments 

Does not require data collection 
Does not consider topographic or 

orographic influence 

Network theory 
Provides insight in interconnected 

networks 
Not useful for augmentation purposes 

  Data intensive 

 

Based on the presented literature review, a first contribution towards a unified, general 

procedure for sensor network design is presented. Such procedure, which is currently lacking 

due to the diversity of cases, criteria, assumptions, and limitations, logically link in a flowchart 

various methods in the form of a procedure, following measurement-based approaches (Figure 

2.9). The flowchart suggests two main loops: one to measure the network performance 

(optimisation loop), and the other to represent the iterations required in either augmentation or 

reduction scenarios. Most of the measurement-based methods, as well as most of the design 

scenarios can be seen as particular cases of this generalised algorithmic flowchart. A review of 

some potential optimisation methods (some of which are later used in this document) are 

presented in ANNEX 1. 
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Optimal 

CML

Remove sensor

Is It possible to 

add sensors?

Measurement of 

the variable by 

existing sensors

Build the estimator 

of the measured 

variable at CML

Estimate the 

variable at CML

Evaluate the 

sensor network 

performance

Optimal solution 

found?

Select the new 

CML

Optimisation loop

Is it necessary to 

remove sensors?

No

No

Yes

Yes

(1)

(2)

(7)

(3)

(4)

(5)

(6)

(9)
(10)

(11)

Add sensor

No

Yes

(8)

 
Figure 2.9 Sensor network (re) design flow chart. (CML=candidate measurement locations) 

The general procedure consists of 11 steps (boxes in Figure 2.9). In the first place, physical 

measurements (1) are acquired by the sensor network. This data is used to parameterise an 

estimator (2), which will be used to estimate the variable at the Candidate Measurement 

Locations (CML) using, for instance, Kriging (Pardo-Igúzquiza 1998, Nowak et al. 2010), or 

1D hydrodynamic models (Neal et al. 2012, Rafiee et al. 2012, Mazzoleni et al. 2015). The 

sensor network reduction does not require such estimator as measurements are already in place.  
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The selection of the CML should consider factors such as physical and technical availability, as 

well as costs related to maintenance and accessibility of stations, as illustrated by the WMO 

(WMO 2008) recommendations. The selection of CML can also be based, for example, on 

expert judgement. These limitations may be a model as constraints in the optimisation problem. 

 

Then an optimisation loop starts (Figure 2.9), by the estimation of the measured variable at the 

CML (3), using the estimator built in (2). Next, the performance of the sensor network at the 

CML is evaluated (4), using any of the previously discussed methods. The selection of the 

method depends on the designer and its information requirements, which also determines if an 

optimal solution is found (5). The stopping criteria in the optimisation problem can be set by a 

desired accuracy of the network, some non-improved number of solutions or a maximum 

number of iterations. As pointed out in the review, these performance metrics can be either 

model-based or model-free and should not be confused with the use of a (geostatistical) model 

of the measured variable. 

 

In case the optimisation loop is not complete, a new set of CML is selected (6). The use of 

optimisation algorithms may drive the search of the new potential CML. The decision about 

adequate performance should not only consider the expected performance of the network but 

also, recognise the effect of a limited number of sensors. 

 

Once the performance is optimal, an iteration over the number of sensors is required. If the 

scenario is for network augmentation (7), then a possibility of including additional sensors has 

to be considered (8). The decision to go for an additional sensor will depend on the constraints 

of the problem, such as a limitation on the number of sensors to install, or on the marginal 

improvement of performance metrics. 

 

The network reduction scenario (9) is inverse: due to diverse reasons, mainly of financial nature, 

networks require to have fewer sensors. Therefore, the analysis concerns what sensors to 

remove from the network, within the problem constraints (10). 

  

Finally, the sensor network is selected (11) from the results of the optimisation loop, with the 

adequate number of sensors. It is worth mentioning that an extra loop is required, leading to re-

evaluation, typically done on a periodical basis, when objectives of the network may be 

redefined, new processes need to be monitored, or when information from other sources is 

available, and that can potentially modify the definition of optimality. 

 

2.7 Conclusions 

Most of the sensor network methodologies aim to minimise the uncertainty of the variable of 

interest at ungauged locations and the way this uncertainty is estimated varies between different 

methods. In statistics-based models, the objective is usually to minimise the overall uncertainty 

about precipitation fields or discharge modelling error. Information theory-based methods aim 

to find measurements at locations with maximum information content and minimum 
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redundancy. In network theory-based methods, estimations are generally not accurate, resulting 

in less biased estimations. In methods based on practical case-specific considerations and value 

of information, the critical consequences of decisions dictate the network configuration. 

 

However, in spite of the underlying resemblances between methods, different formulations of 

the design problem can lead to rather different solutions. This gap between methods has not 

been deeply covered in the literature and therefore a general agreement on sensor network 

design procedure is relevant. 

 

In particular, for catchment modelling, the driving criteria should also consider model 

performance. This driving criterion ensures that the model adequately represents the states and 

processes of the catchment, reducing model uncertainty and leading to more informed 

decisions. Currently, most of the network design methods do not ensure minimum modelling 

error, as often it is not the main performance criteria for design. 

 

Furthermore, in the last years, the rise of various sensing technologies in operational 

environments have promoted the inclusion of additional design considerations towards a unified 

heterogeneous sensor network (New et al. 2001). These new sensing technologies include, e.g., 

passive and active remote sensing using radars and satellites (Schuurmans et al. 2007, Wagner 

et al. 2009, Thenkabail 2015), microwave links (Giuli et al. 1991, Messer et al. 2006, Leijnse 

et al. 2007, Zinevich et al. 2008, Overeem et al. 2011, 2012, Rayitsfeld et al. 2012), mobile 

sensors (Haberlandt and Sester 2010, Dahm et al. 2014), crowdsourcing and citizen 

observatories (Huwald et al. 2013, Lanfranchi et al. 2014, Alfonso et al. 2015). These 

information sources have the potential to complement conventional networks, by exploiting the 

synergies between the virtues and reducing limitations of various sensing techniques, and at the 

same time, require the new network design methods allowing for handling the heterogeneous 

dynamic data with varying uncertainty. 

 

The proposed classification of the available network design methods was used to develop a 

general framework for network design. Different design scenarios, namely relocation, 

augmentation and reduction of networks are included, for measurement-based methods. This 

framework is open and offers “placeholders” for various methods to be used depending on the 

problem type.   

 

Concerning the further research, from the hydrological modelling perspective, we propose to 

direct efforts towards the joint design of precipitation and discharge sensor networks. 

Hydrological models use precipitation data to provide discharge estimates, however as these 

simulations are error-prone, the assimilation of discharge data, or error correction, reduces the 

systematic errors in the model results. The joint design of both precipitation and discharge 

sensor networks may help to provide more reliable estimates of discharge at specific locations. 

 

Another direction of research may include methods for designing dynamic sensor networks, 

given the increasing availability of low-cost sensors, as well as the expansion of citizen-based 

data collection initiatives (crowdsourcing). These information sources are on the rise in the last 
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years, and one may foresee appearance of interconnected, multi-sensor heterogeneous sensor 

networks shortly. 

 

The presented review has also shown that limited effort has been devoted to considering 

changes in long-term patterns of the measured variable in the sensor network design. This 

assumption of stationarity has become more relevant in the last years due to new sensing 

technologies and increased systemic uncertainties, e.g. due to climate and land use change and 

rapidly changing weather patterns. Although this topic has been recognised for quite some time 

already (Nemec and Askew 1986), the number of publications presenting effective methods to 

deal with them is still limited. 

 





 

3. Case studies 

3.1 Introduction 

This chapter introduces the case studies in which the proposed methods have been tested. The 

cases are the Brue and Don River catchments in the UK, and the Bacchiglione River in Italy. 

The Brue catchment has been used due to the large amount of data, derived from the 

observations setup for the HYREX project (Wood et al. 2000). The Don and Bacchiglione River 

catchments are associated to the WeSenseIt project, which founded this study, which also have 

quite different monitoring conditions. 

 

Conveniently, the three case studies show diverse hydro-meteorological, hydrological, and 

monitoring conditions, which allows for exploration of different scenarios in the deployment 

of dynamic sensor networks. For instance, the Brue catchment is the smallest catchment in the 

study, containing at the same time the largest amount of sensors. These characteristics makes it 

interesting for the analysis of precipitation patterns at a higher spatial resolution. In contrast, 

the Bacchiglione River catchment has an area of about four times the Brue catchment, and has 

a moderate observation network, standard for operational purposes in the catchments of the 

region. Its high elevation and its precipitation characteristics are useful to represent the potential 

use of sensors in different climatological regimes. Lastly, the Don River catchment is the largest 

among the case studies, with an area almost as double as Bacchiglione, and with the least 

number of precipitation sensors. This case is used to evaluate the methods in ungagged basins. 

3.2 Bacchiglione River 

The Bacchiglione River (Italy) is located in north Italy, in the Veneto region. This river can be 

considered as the tributary of a big and complex drainage network which covers a large part of 

the Vicenza area. This area is characterised by a steep slopes in the upper part of the catchment, 

to a more gentle slopes towards the concentration point. The elevation in this catchment ranges 

from 2150 msl close to Valli del Pasubio, to approximately 40 msl at Vicenza. The catchment 

area of the Bacchiglione River at Vicenza is about 540 km².  

 

The data for this case study was supplied by the Alto Adriatico Water Authority (AAWA) in 

the context of the WeSenseIt project. The supplied data contained precipitation data that spans 

from 2000 to 2009 at an hourly resolution. The average precipitation of approximately 1660 

mm/year, with higher precipitation rates during the warmer months. 

 

The precipitation sensor network is composed by 16 precipitation stations which record hourly 

precipitation estimates. The stations used in this case study does not necessarily lie within the 

catchment bounds (Figure 3.1), however they are used as they make part of the operational 
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forecasting system of the region. The reference system for the coordinates of the stations is the 

Monte Mario, Italy zone 1. 

  
Figure 3.1 Scheme of the Bacchiglione River catchment with location of precipitation sensors (left) and some locations of 

interest (right) 

In the case of the Bacchiglione River catchment it was decided to explore the high precipitation 

events. The high precipitation events are highlighted in Figure 3.2, in the overview of the 

complete dataset. From this dataset, two events were selected. The precipitation in mid-2002 

was not considered as one of the case studies, as it is shows a peak in the variability of the 

precipitation data in the event, leading to the conclusions that may be consequence of a data 

point of dubious quality. A zoom-in of the events is presented in Figure 3.3. 

 

 
Figure 3.2 Overview selected high precipitation events in the Bacchiglione River catchment 
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Figure 3.3 Detail of high precipitation events in the Bacchiglione River catchment 

 

 

Finally, the events are summarised in Table 3.1. The selected events vary in length from 4 to 

11 days, providing insight of the potential scheduling of sensors at different time scales. 

 
Table 3.1 Summary of the precipitation events selected for the Bacchiglione River catchment 

Start End 

Length 

(days) 

14/09/2006 18/09/2006 4 

28/10/2008 08/11/2008 11 

3.3 Brue Catchment 

Brue catchment is located in Somerset, South West of England with predominantly rural use 

and modest slope (Moore et al. 2000). The drainage area of the catchment is 135 km² 

approximately, with a concentration time of about 10 to 12 hours at Lovington. Hourly 

precipitation data are available at 48 automatic precipitation stations, in the context of the 

HYREX project (Wood et al. 2000), where the used data spans from 1993 to 2000. Figure 3.4 

shows the location of the precipitation sensors, with respect to the projected British National 

Grid. 
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Figure 3.4 Scheme of Brue catchment with location of precipitation sensors (left) and some locations of interest (right) 

A general overview of the available data for the catchment is presented in Figure 3.5. From the 

figure it can be seen that some missing data has been filled with constant values at the end of 

1998 for discharge, as well as in early spring 1994, summer 1996, late 1997 and late 1999 for 

temperature and late 1997 for evapotranspiration. As the amount of missing data is considerably 

small, there is no special handling of the missing data. 

 

Figure 3.5 Overview of the experimental dataset 

 

Figure 3.6 shows the overview of the dataset for the Brue Catchment, highlighting the events 

of interest, highlighting 3 variables, average precipitation (P), standard deviation of the 

precipitation measurements (σ(P)) and discharge (Q). The selection of the events are driven by 

maximum discharge values, precipitation variability, and length. In this regard, it is possible to 

observe in Figure 3.7 a zoom-in of the selected events. 
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Figure 3.6 Overview selected high discharge events in the Brue catchment 

 
Figure 3.7 Detail of high discharge events in the Brue catchment 

 

It is possible to visually asses that the precipitation events which are selected due to the high 

variability of the observation in the network does not consider the highest fluctuation event, as 

this behaviour may be triggered by an inconsistent measurement, as it is a single peak. The 

selection of the events also considers a consistent time frame, which allows for sensors to be 

deployed. The selected events are resumed in Table 3.2. 

 
Table 3.2 Summary of the precipitation events selected for the Brue catchment 

Begin End 

Length 

(days) 

19/12/1995 24/12/1995 5 

20/10/1998 05/11/1998 16 
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3.4 Don River 

The Don River catchment is located in England, in the South Yorkshire and Derbyshire 

counties. The catchment drains from the areas in the Peak district to the Ouse River, right next 

to the North Sea. The catchment is mostly of agricultural use, in its headwater, but highly 

urbanised towards the valley. Due to this, there are control structures for high discharge in the 

main tributaries (Rother and Dearne), however they are not operated in a regular basis. The 

catchment also contains the cities of Sheffield, Rotherham and Doncaster. The total length of 

the river is about 110 Km, in a catchment area of approximately 1247 Km², yielding an average 

discharge of 19 m³/s. 

 

The available sensor network in the area is comprised by 3 precipitation sensors (as described 

in Figure 3.8), providing hourly measurements for the operational forecasting system of the 

South-west Yorkshire region. The data for this case study spans from August 2011 to January 

2015. The average precipitation for the area is of approximately 1586 mm/year, without 

considerably seasonal effects. The projection used in the location of the catchment and sensors 

is WGS84 zone 32N. 

 
Figure 3.8 Scheme of the Don River catchment with location of precipitation sensors and some locations of interest (right) 

The events selected in the catchment were selected based on high precipitation rates and high 

discharge, over extended periods of time (Figure 3.9). These criteria were are selected as 

making a valid approximation of the precipitation variability by only using three sensors may 

not be meaningful, and it is supported in the fact that was not possible to visually identify peaks 

in the precipitation variation using the provided data. The selected events using the high 

precipitation criteria are highlighted in Figure 3.9, and the details of these events are presented 

in Figure 3.10. Table 3.3 summarises the selected events for the Doncaster River case study. 
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Figure 3.9 Overview selected high precipitation events in the Don River catchment 

 

 
Figure 3.10  Detail of high precipitation events in the Don River catchment 

 
Table 3.3 Summary of the precipitation events selected for the Don River catchment 

Begin End 

Length 

(days) 

30/03/2012 15/05/2012 46 

01/12/2013 01/03/2014 90 

 

 





 

4. Advancing Kriging methods for 

merging heterogeneous data sources in 

non-stationary precipitation fields 

4.1 Introduction 

Including precipitation observations from dynamic sensors and citizen observatories using 

geostatistical models, requires the revision of some of the most common assumptions (Journel 

and Alabert 1989). This chapter describes and revises three of these assumptions, namely 

homogeneity in measurement uncertainty, average temporal distribution of the precipitation 

within the observation interval, and spatial stationarity. 

 

The first assumption occurs in when the observational error is neglected, or assumed to be 

homogeneous for all observations, as in the Kriging framework. The classical approach to 

include observation uncertainty in Kriging, is to make it part of the covariance structure. As 

such, this factor is introduced via the variogram Nugget (Wackernagel 1998). However, this 

approach is not usable with heterogeneous observations, such as citizen observatories, as the 

nugget is a property of the field and not of the observations. 

 

The second assumption is directly related to representing the total volume of precipitation at a 

given location. In the context of dynamic sensors, it is expected that a sensor moves 

considerably faster than the temporal resolution of the model, thus measurements have to be 

extrapolated from partial observations in time. As a consequence, dynamic sensors add an extra 

uncertainty source that may be critical in the usability of the observations.  

 

Finally, the dimensions of the problem requires that the assumption of stationarity is revised. 

Although temporal stationarity assumptions may be suitable for the modelling of precipitation 

fields at hourly scale, assumptions about spatial, and intensity stationarity are not adequate. The 

findings regarding the testing of stationarity assumptions and a framework to relax such 

assumptions are developed through this Chapter. 

 

This chapter starts by exploring the formulations of Kriging with variable measurement 

uncertainty, and therefore building a framework for the usability of heterogeneous observations. 

Next, the partial temporal recording of observations is quantified, based on the high temporal 

resolution data acquired for the Brue catchment. Then, the stationarity of the precipitation field 

are evaluated, and followed by the description of the proposed method for incorporating the 
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spatial and intensity non-stationarity, which is developed and tested and later applied in Chapter 

6. Finally, conclusions and recommendations are presented. 

4.2 Dealing with data of variable measurement uncertainty 

4.2.1 The Kriging system with noisy measurements  

Kriging is the best linear unbiased estimator. It estimates a given variable at a location (u), by 

using a linear combination of the observations at stations (α): 

 

 𝑍(𝑢) =  ∑ 𝜆𝛼𝑍𝛼

𝑛

∝=1

 
Equation 4.1 

 

The Kriging system aims to identify the optimal set of weights (λ) such that the variance of the 

estimates are minimum (Cressie 1993, Deutsch and Journel 1998). To achieve this purpose, the 

weights are found as: 

 

 𝜆 = 𝐾−1𝑘 
Equation 4.2 

 

Where K is the covariance matrix of the measurements and k is the covariance vector of the 

measurements towards the interpolation target. The covariance matrix of the measurements can 

be derived from the measurement itself, but the variance towards an ungauged location requires 

defining a function that relates the variance and the position of the target with respect to the 

sensor network (Bohling 2005). This function is known as the (semi) variogram, or inversely, 

correlogram. 

 

In its more simple form, the variogram is a measure of covariance with respect to the distance 

between 2 observations (Cressie 1993). This relationship has to be empirically adjusted to the 

data, using a licit (or valid) covariance model, to ensure that the statistical properties of the 

covariance function are preserved. These properties include: symmetry, positive semi-

definiteness, and positive real values, which necessarily leads to positive eigenvalues and 

determinant. These characteristics ensure that the covariance matrix can be inverted, and 

therefore, that the Kriging system has always a unique solution. 

 

For the case of different observational error, the observational errors are added as proposed by 

Mazzetti and Todini (2009). In this framework, the variogram (Γ) is built over a modified 

estimation of the original variogram (γ), such that the variance of the measurements is included 

directly on the observations, and not as a part of the random field. This leads to: 

 

 𝛤𝑖,𝑗 = 𝛾𝑖,𝑗 +
1

2
(𝜎𝜀𝑖

2 + 𝜎𝜀𝑗
2 ) 

Equation 4.3 

 𝛤𝑖,𝑖 = 0 Equation 4.4 
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 Γ𝑖,0 = 𝛾𝑖,0 +
1

2
(𝜎𝜀𝑖

2 ) 
Equation 4.5 

4.2.2 Acceptable observation errors in the Kriging context 

The variogram function (𝛤𝑖,𝑗 ) range exist between zero to sill (𝐶0 ). The addition of the 

measurement variance (𝜎𝜀𝑖
2 + 𝜎𝜀𝑗

2 ), will consequently lead to semi-variance values which are 

higher than the sill, and thus negative covariance, as the measurement variance is always 

positive.  

 

 𝐶𝑖,𝑗 = 𝐶0 − 𝛤𝑖,𝑗 Equation 4.6 

 𝐶𝑖,0 = 𝐶0 − 𝛤𝑖,0 Equation 4.7 

 𝑖𝑓 ℎ ≥ 𝑅 → 𝛤𝑖,𝑗 ≥ 𝐶0 ;  𝛤𝑖,0 ≥ 𝐶0 Equation 4.8 

 

A negative covariance does not have a physical meaning, as covariance is always a positive 

quantity in the Kriging context. By adding measurements with relatively high error (𝜎𝜀𝑖
2 + 𝜎𝜀𝑗

2 ), 

or considerably far away from other sensors ( ℎ ≥ 𝑅 ) or to the interpolation target, will 

artificially increase the variance of the estimates, beyond the natural variability of the process.  

 

Now, it is necessary to determine the limit in the accuracy of the measurements. In principle, 

the variance of the measurement error should be less than the variance of the process which is 

measured. Otherwise, measurements have a higher error than the model prediction, and thus, 

increase the uncertainty in the estimation. Considering that the covariance is always a positive 

(𝐶𝑖,𝑗 ≥ 0) we have that: 

 

 𝐶0 − (𝛾𝑖,𝑗 +
1

2
(𝜎𝜀𝑖

2 + 𝜎𝜀𝑗
2 )) ≥ 0 

Equation 4.9 

 

Therefore, reorganising the previous equations, and considering that the semi-variogram and 

the measurement error variance are always positive, the admissible sum of the measurement 

error variance between a pair of gauges should be: 

 

 𝜎𝜀𝑖
2 + 𝜎𝜀𝑗

2 ≥ 2(𝐶0 − 𝛾𝑖,𝑗) Equation 4.10 

 

Considering that two limiting cases are present when 𝑖 = 𝑗 (meaning two sensors are in the 

same location), and the distance between a couple of sensors is equal to the fluctuation scale (r) 

of the process (or semi-variogram range). For these cases, one can say that the permissible sum 

between a pair of sensors range from[0, 2(𝐶0 − 𝑁)], however, the admissible value of the sum 

of a pair of error covariance depends on the distance between stations. 
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Additionally, a similar constraint is imposed on how far can efficiently be from the interpolation 

target. Following the same principles as before, the maximum admissible variance of the 

measurement error is given by: 

 

 𝜎𝜀𝑖
2 ≥ 2(𝐶0 − 𝛾𝑖,0) 

Equation 4.11 

 

These equations also reveal that the admissible variance of the error measurements is directly 

linked to the distance in which these measurements are useful. In the Kriging formulation, in 

which measurement errors are neglected, the measurements can be used for infinitely long 

distances. In practice, the covariance function takes care of this by asymptotically reducing the 

weights of the measurements, as the semi-variogram approaches the sill, and therefore, 

including such measurements does not cause instabilities in the algorithm. 

4.3 Estimating uncertainty due to partial recording 

One of the uncertainty sources in the measurement using dynamic sensors comes from the fact 

that there is partial information about the total amount of precipitation that is recorded in a time 

step. In the case of static sensor networks, there is no error, as the precipitation measurements 

are integrated over the complete time. In the case of dynamic sensors, the information is 

partially recorded, as it will require some time for the sensor to be moved to another location. 

 

As consequence, it is required to estimate the increase in the variance of the measurements, by 

extrapolating partial records. For this purpose, the intra-hourly variability of precipitation was 

investigated. The methodology consisted in integrating the total recoded volume in the gauge 

in 5 minute intervals (τ), and exploring how much of the total hourly volume is recorded (P̂), 

and how much will be the error (Pϵ) of extrapolating the currently measured volume (Pτ) 

towards the estimation of the total volume in an hour (Ṗt|τ).  

 

 �̂�𝑡|𝜏 = 𝑃𝜏

𝑡

𝜏
 

Equation 4.12 

 

 𝑃𝜖 = �̂�𝑡|𝜏 − 𝑃𝑡    Equation 4.13 

 

The results obtained for the data in the Brue catchment (Figure 4.1) provides insight regarding 

the incurred errors due to partial temporal measurements. The collected precipitation volume 

varies along the development of the precipitation event, in which there seem not to be a 

particular time lapse in which the precipitation occur. This yields heavily tailed probability 

distributions of the total recorded volume towards the beginning and end of the integration time, 

while shows a fairly well distributed probability distribution function towards the centre, 

indicating a normal distribution of the precipitation in the each of the intervals. Additionally, 

assuming that the recorded intensity in for different integration time does not seem to be an 

inadequate approach, as the results show that the volumetric error, incurred by such are 

relatively mostly unbiased, but with errors which may be significantly high, rising the suspicion 

in inflated statistics due to the tendency of low precipitation events occurring. 



Advancing Kriging methods for merging heterogeneous data sources in non-stationary 

precipitation fields 

63 

 

 
Figure 4.1 Volume error estimation due to partial measurement of the precipitation 

To further explore the intra-hour variability, the average and variance of the observations in the 

estimation of the total model error as:  

 

 𝑃�̅�|𝜏 =
1

𝑇
∑ �̂�𝑡|𝜏 − 𝑃𝑡

𝑇

𝑡=1

   
Equation 4.14 

  
 

 𝜎2(𝑃𝜖|𝜏) =
1

𝑇
∑(�̂�𝑡|𝜏 − 𝑃𝑡)

2
𝑇

𝑡=1

   
Equation 4.15 

 

Where P̅ϵ is the average estimation error and σ2(Pϵ) is the estimation variance. In this context, 

it becomes clearer that the model does not suffice to explain the high errors, especially in short 

integration time, as the variability may seem reduced by the amount of observations in the low 

range. 

 
Figure 4.2 Long term average of mean and variance of volumetric error at different integration time  

 

 

 

 

 

 

 

 

 

To overcome the bias in the amount of precipitation, a conditioned variance estimation, based 

on the total accumulated volume is proposed as: 
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 𝜎2(𝑃𝜖|𝜏, �̂�𝑡|𝜏 ) =
1

𝑇
∑(�̂�𝑡|𝜏 − 𝑃𝑡)

2
𝑇

𝑡=1

|�̂�𝑡 ∈ 𝜏   
Equation 4.16 

 

Figure 4.3 shows how the desegregation of the accumulated precipitation in the variance 

estimates is able to provide insight, by conditioning the estimates. In other words, if extremely 

high precipitation occur during the first 5 minutes of the hour, using this value to extrapolate to 

the complete hour will incur in a high variance of the error. On the contrary, low precipitation 

estimates during the integration period yield lower variance, as the probabilities of low 

precipitation to yield low overall precipitation volumes are a fair estimate. 

 

 
Figure 4.3 Error variance conditioned to accumulated precipitation for different integration time 

In the implementation, the experimental results are approximated by a response function of the 

form: 

 

 𝑧 = 𝑎𝑥1 + 𝑏𝑥2 + 𝑐𝑥1𝑥2 Equation 4.17 

 

As such, the optimal coefficients are defined in a curve-fitting approach, by minimising the 

difference between the error variance observations and the response function. The independent 

variables of the response function are the total precipitation that the sensor measures in the time 

interval which is placed, and time interval that the sensors remains in the measurement location. 

The optimal set of parameters can be approximated by: 

 

 𝐸𝑉 = max (3.74𝑃𝑇|𝑡 + 0.000497𝑇 − 0.0739 𝑃𝑇|𝑡𝑇;  0) Equation 4.18 

 

The results of this equation can be visualised in Figure 4.4, where the colour indicates the error 

variance in the extrapolation of the precipitation estimates. These results are obtained for the 

Brue catchment, but will be used in all the other case studies due to the lack of data at a 

resolution sufficient to carry out these analyses. 
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Figure 4.4 Variance of approximation error by partial observations of precipitation estimates 

4.4 Handling Non-stationarity in the kriging framework 

The proposed methodology is based on using a (revised) generalised covariance function. It 

employs a unique parameterisation of the variogram at each sensor in the network under 

different precipitation intensities. Figure 4.5 shows a flowchart with the three steps of the 

methodology, which includes parameterisation of the centrosymmetric (CS) variograms, 

evaluation of stationarity assumptions, and the interpolation procedure which, depending on the 

results of the type of stationarity test, could be conventional Kriging, or the proposed non-

stationary Kriging. 

 

Parameterisation 

CS variogram

(Step 1)

Evaluation of 

stationarity 

assumptions 

(Step 2)

Stationary?

Non-stationary 

Kriging

Conventional 

Kriging

NoYes

 
Figure 4.5 General structure of the proposed methodology 

4.4.1 Evaluation of stationarity assumptions 

The evaluation of stationarity assumptions is carried out to determine which assumptions are 

valid in the modelling of precipitation fields (Jun and Genton 2012). Here, we assess the 

temporal, spatial and intensity stationarity. The temporal stationarity evaluates the change of 
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the statistical properties of the precipitation in time. The spatial stationarity evaluates the change 

in mean and variance of the measurements, as well as the changes in the covariance structure 

at different locations. Finally, the Intensity stationarity evaluates the change of the covariance 

structure in different precipitation regimes.  

 

The tests to assess the stationarity of the precipitation field are summarised in Table 4.1. 

Temporal (T1), spatial (T2 - T7) and intensity (T8 – T9) stationarity tests are carried out. 

Temporal stationarity is evaluated for each of the stations, using the ADF test (Dickey and 

Fuller 1979). Spatial stationarity is evaluated comparing different properties of experimental 

and theoretical centrosymmetric (CS) correlograms, by testing the assumptions of stationarity. 

The intensity stationarity evaluates the similitude of CS correlograms in the different 

precipitation regimes. The hypotheses are evaluated at a significance level of 0.05. 

 
Table 4.1 Hypothesis tests for assessing different types of stationarities of spatially distributed variables 

Index Test type Null hypothesis (H0) Alternative hypothesis (H1) 
Type of 

stationarity 

T1 ADF test 
The precipitation series for α is 

non-stationary 

The precipitation series for α is 

stationary 
Temporal 
 

T2 t-test 

The mean of station αi and αj are 

statistically equivalent 

The mean of station αi and αj 

are not 

statistically equivalent 

Spatial 

 

T3 Levene test 
The variance of station αi and αj 

are statistically equivalent 

The variance of station αi and αj 

are not statistically equivalent 

T4 t-test 

The mean between CS 

experimental variogram in station 

αi and αj are statistically 

equivalent 

The mean between CS 

experimental variogram in 

station αi and αj are not 

statistically equivalent 

T5 t-test 

The mean between CS theoretical 

variogram in station αi and αj are 

statistically equivalent 

The mean between CS 

theoretical variogram in station 

αi and αj are not statistically 

equivalent 

T6 t-test 

The mean between the sill of the 

CS theoretical variogram in 

station αi and αj are statistically 

equivalent 

The mean between the sill of 

the CS theoretical variogram in 

station αi and αj are not 

statistically equivalent 

T7 t-test 

The mean between the range of 

the CS theoretical variogram in 

station αi and αj are statistically 

equivalent 

The mean between the range of 

the CS theoretical variogram in 

station αi and αj are not 

statistically equivalent 

T8 t-test 

The mean between the sill of the 

CS theoretical variogram in high 

and low precipitation are 

statistically equivalent 

The mean between the sill of 

the CS theoretical variogram in 

high and low precipitation are 

not statistically equivalent Intensity 
 

T9 t-test 

The mean between the range of 

the CS theoretical variogram in 

high and low precipitation are 

statistically equivalent 

The mean between the range of 

the CS theoretical variogram in 

high and low precipitation are 

not statistically equivalent 

 

The Augmented Dickey-Fuller (ADF) test (Said and Dickey 1984) is used to evaluate the 

temporal stationarity of the precipitation (T1). In short, this test seeks for a unit root using an 

autoregressive model. If the data has a unit root, the process is non-stationary, meaning that the 
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residuals of the autoregressive model have similar statistical properties in time over a sliding 

window. We apply this tests to each station separately. 

 

Spatial stationarity requires that the mean and variance of the measurements are equal, as well 

as the covariance correlogram, regardless of its position in the catchment. Also, the correlogram 

should only depend on separation, meaning that under stationarity conditions all the CS 

correlograms should be equal. We use a t-test to assess the equivalence of the mean between 

stations (T2), and the Levene test (Levene 1960) to assess the equivalence of the variance 

between stations (T3). The t-test is used to evaluate the equivalency between both, experimental 

(T4) and theoretical correlograms (T5). Also, we use the t-test is to further test the equivalence 

of the sill (T6) and range (T7) of CS theoretical correlogram. 

 

Intensity stationarity requires that the parameters of the CS correlograms are statistically equal 

regardless of the precipitation regime. For this study, the precipitation regime is defined as a 

threshold that discriminates between low and high precipitation. We use a t-test to evaluate the 

statistical equivalence of the mean of the sill (T8) and range (T9) for CS correlograms in the 

different precipitation regimes. In the stationary case, there should be no statistical difference 

in the correlogram parameters, independent of the precipitation regime. 

 

4.4.2 Non-stationary centro-symmetric (CS) variogram 

A variogram for each station can be parameterised separately, depending on different 

conditions. For precipitation, such conditions refer to different precipitation regimes. 

Traditionally, the experimental variogram with n stations is calculated with the number of 

possible combinations of pairs of stations Nd = n (n - 1) / 2 in the monitoring network. The 

proposed approach consists of configuring a variogram using n stations, by considering the 

distance between a station α (α = 1, 2… n) and the remaining stations in the network. 

 

The pseudocode in Figure 4.6 proposes the algorithm for the parameterisation of a generalised 

covariance structure for non-stationary interpolation. Conditions (i), Stations (α) and Data (d) 

are the inputs. The conditions (i) are a set of I number of situations for which the system is 

expected to show different statistical behaviours. For precipitation, the conditions iare defined 

as an intensity threshold of the measured variable. Data (D) consists of time series of D number 

of records of the variable to be interpolated at each station. Also, a data pool (Pi,α), is defined 

as a collection of records that meets the condition i at station α, used to fit a theoretical 

variogram (Vi, α). 
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SET Conditions,  = {1, 2, …, I} 

SET Stations, α = {1, 2, …, n} 

SET Data, D = {1, 2, …, Nr} 

FOR each Station (α) 

    FOR each Condition (i) 

        INIT P 

            IF Dα meets  THEN 

                Pi, α = Di, α 

            END IF 
        Fit Vi,α to Pi, α  

    END FOR 

END FOR 

 
Figure 4.6 Proposed algorithm   for the parameterisation of CS variograms (V i, α) at each station (α) in different 

conditions (i) 

The algorithm results in a variogram per station and condition, Vi, α. This covariance structure 

does not rely on the assumption of a constant mean, but it is constructed by the superposition 

of local variograms. The use of local variograms in the parameterisation of the covariance 

structure, leads to a kriging estimator which is not only valid for regionalised variables. In the 

ideal case when there is no difference in the variogram parameterisation between stations and 

conditions (regionalised variable), the generalised covariance structure will be equivalent to the 

variogram. 

4.4.3 Interpolation with Non-Stationary Kriging (NSK) 

The objective of the Kriging interpolation is to simulate a precipitation field (Z), which is 

optimal under assumptions of stationarity, linearity and Gaussianity. If the outcome of the 

stationarity evaluation is that the field is stationary in all its aspects, the current method will 

reduce to the conventional Kriging approximation, and therefore, it should be preferred due to 

parsimony. However, if such outcome indicates that the field is non-stationary, then the 

proposed Non-Stationary Kriging (NSK). 

 

NSK is based on the same formulations of the conventional Kriging, which are modified to take 

into account spatial non-stationarity. Consequently, the value of the precipitation field Z, in the 

position u, can be expressed as: 

 

 𝑍(𝑢) =  ∑ 𝜆𝛼|𝑖(𝑢)𝑍(𝑢𝛼)

𝑛

∝=1

 
Equation 4.19 

 

where Z is the precipitation field, u is the target position in which the value of precipitation is 

unknown. λ corresponds to the weights assigned to each station (α), given the precipitation 

regime i, to interpolate the field in the location u. The values of Zα correspond to the value of 

the field in the position of the measurements, therefore, the measurements themselves.  

 



Advancing Kriging methods for merging heterogeneous data sources in non-stationary 

precipitation fields 

69 

Contrary to the conventional Kriging interpolation, in the proposed NSK, the weights λ in 

Equation 4.19 not only depend on the covariance structure and the position of the interpolation 

target (u), but also on the precipitation regime. Under non-stationary conditions, there are no 

single values of field auto covariance (C(0)) or the Lagrangian parameter (μ(u)), as they are 

subject to each precipitation regime. Therefore, the estimation of the interpolation variance 

𝜎2(𝑍(𝑢)) can then be expressed as: 

 

 𝜎2(𝑍(𝑢)) =  ∑ 𝜆𝛼|𝑖(𝑢)(𝐶𝛼|𝑖(0) − 𝐶𝛼|𝑖(𝑢𝛼 − 𝑢))

𝑛

∝=1

− 𝜇𝛼|𝑖(𝑢) 
Equation 4.20 

 

Where Cα|i(0) is the variance and µα|i is the Lagrangian parameter in the Ordinary Kriging at 

station α, for precipitation regime, i and uα is the location of the station (α). It is worth noting 

that the conventional Kriging interpolation variance can also be used, by assuming a constant 

mean employed. In this case, the Lagrangian parameter would not be considered. This approach 

is an extension of the static nature of the interpolation variance in the conventional Kriging for 

different regimes and locations. 

 

A drawback of the proposed method is the expected inconsistency between covariance 

estimations between pairs of stations. This occurs because each station has its particular 

parameterisation of the correlogram function, which implies an asymmetric covariance matrix 

of the measurements, meaning that the covariance between a pair of stations (A and B) follows: 

 

 𝐶𝑜𝑣(𝐴, 𝐵) ≠ 𝐶𝑜𝑣(𝐵, 𝐴) 
Equation 4.21 

 

As a result, the covariance matrix (K) is not positive definite (Christakos 1984); in consequence, 

the Kriging system may not have a unique solution. To overcome asymmetry, it is suggested to 

replace K by the average covariance (average bi-directional), �̅� formulated as: 

 

 �̅� =  
1

2
(𝐾 + 𝐾𝑇) 

Equation 4.22 

 

The resulting average bi-directional covariance matrix is now symmetric, but as do not come 

from a licit covariance model (Christakos 1984), it cannot be ensured that is actually a positive 

semi-definite matrix. In this case, it is opted for approximating the matrix to its closest semi-

definite matrix using the spectral decomposition method proposed by Rebonato and Jäckel 

(2011), approximating the covariance matrix by minimising the norm between the original and 

the approximation, that ensure positive eigenvalues. As result, the solution of the Kriging 

system is always possible. Then, the set of weights λ for each regime i can be obtained as: 

 

 𝜆𝑖|𝑢 = �̅�𝑖
−1

𝑘𝑢 
Equation 4.23 

 

where ku is the covariance vector between the stations and the location u. 
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4.5 Application in the Brue Catchment 

Before applying the proposed methodology, a variogram model for the case study is set up as a 

baseline for the analysis as presented in Figure 4.7. The fitting of the theoretical variogram 

minimises the RMSE between the regularised experimental and the theoretical variogram. The 

results show that the PDF of the sill and range are fairly symmetrical and normally distributed, 

while the nugget effect shows a more uniform behaviour than the other two variables (Figure 

4.8). The nugget effect, which is directly related to the measurement error, was not identifiable 

in the analysis. 

 

 
Figure 4.7 Conventional variogram estimation 

 
Figure 4.8 Identifiability analysis of spherical variogram parameters in conventional analysis (a) Sill, (b), range and (c) 

nugget 

4.5.1 CS variogram in single precipitation regime 

CS variograms are fitted using the relative distance from each sensor to the rest of the network. 

Figure 4.9 shows the results for CS equifinal variograms, which suggest that the CS variograms 

are inconsistent with the baseline, as the CS sill values fluctuate in wider ranges. The range is 

hardly identifiable, and far more variable than the range in the baseline. Similarly to the 

baseline, the nugget was not clearly identified in the CS variogram. These results indicate that 

the selection of a unique variogram to represent the covariance structure may not be an adequate 

hypothesis. 
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Figure 4.9 Identifiability analysis of centrosymmetric variogram parameters (top) Sill, (mid) Range, and (bottom) Nugget 

4.5.2 CS variograms in several precipitation regimes 

The precipitation regimes used in this study are denoted as low (L) and high (H) precipitation. 

These regimes are considered as the conditions (i) for the variogram parameterisation, as 

presented. The threshold for the separation between low and high precipitation is set to 2.0 

mm/hr, and corresponds to 10 times the minimum resolution of the stations, and approximately 

90th percentile of the precipitation data (Figure 4.10). The selection of the threshold is arbitrary 

at this point, but the analysis can be easily extended to more than one precipitation threshold. 
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Figure 4.10 Accumulated probability distribution of precipitation data 

Results for the CS sill indicate a clear difference between L and H regimes (Figure 4.11). The 

difference in the parameterisation between the two regimes is considerable, which differs from 

the results obtained for the baseline. In comparison, L is characterised by a significantly lower 

sill than H and the baseline. In practice, this is reflected in a smaller interpolation uncertainty 

for lower precipitation intensities, and a larger one for higher precipitation intensities. This 

result is expected, as the variance grows exponentially with the magnitude, and thus it is 

conditioned by the selection of the precipitation regime. 

 

 
Figure 4.11 Identifiability of the CS Sill in Low (top) and High (bottom) precipitation regimes 

The results for the CS variograms at different precipitation intensities (Figure 4.12) reveal a 

shorter range of the CS variogram for L, and longer for H. The results expose a smaller spread 

of the results for H in comparison with L and the baseline. The spread of the low precipitation 

range can be explained by the little sensitivity of this parameter when the process is noisy. On 
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the contrary, the range in the high precipitation variogram is relatively well bounded, and thus, 

less uncertain than the baseline. 

 

 
Figure 4.12 Identifiability of the CS range in Low (top) and High (bottom) precipitation regimes 

The results obtained for the nugget (Figure 4.13) reveal that this parameter is not identifiable 

regardless of the precipitation regimes.  

 

 
Figure 4.13 Identifiability of the CS Nugget in Low (top) and High (bottom) precipitation regimes 
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4.5.3 Stationarity tests 

The results of the hypothesis tests described in the methodology are presented in Table 4.2.  

 
Table 4.2 Results of the hypothesis tests for non-stationarity of the precipitation field 

Index Description Test 

Accepted 

H0 

Rejected 

H0 

T1 Temporal non-stationarity ADF 0.00% 100.00% 

T2 Equal mean between stations t-test 30.23% 69.77% 

T3 Equal variance between stations Levene 59.51% 40.49% 

T4 Equal average of CS experimental variogram t-test 29.07% 70.93% 

T5 Equal average of CS theoretical variogram t-test 0.00% 100.00% 

T6 Equal mean of the theoretical CS Sill t-test 0.01% 99.99% 

T7 Equal mean of the theoretical CS Range t-test 3.38% 96.62% 

T8 Equal mean of CS Sill in high and low precipitation t-test 0.00% 100.00% 

T9 Equal mean of CS Range in high and low precipitation t-test 2.27% 97.73% 

 

The results of the ADF test reveal that precipitation is temporarily stationary. For this, test, the 

selection of the time lag for the ADF test was set between 2 and 3 hours, considering that the 

autocorrelation beyond this point is marginal (Figure 4.14). The result was lower than -50 in 

the ADF for all stations, which practically yields a p-value of 0.0, rejecting the null hypothesis. 

Meaning that a 95% level of confidence, the hypothesis of non-stationarity can be rejected, and 

assume the precipitation is temporarily stationary at temporal operational scale. 

 
Figure 4.14 Autocorrelation of the precipitation time series for all stations in the Brue Catchment 

Spatial stationarity refers to the fact that, independently of the position in space, the statistical 

properties of the process must remain statistically equal. The results obtained for every possible 

combination of stations reveals that in approximately 30% of the cases, the precipitation 

average is equal for the stations, thus the null hypothesis is rejected in 70% of cases. T2 

evaluates the null hypothesis that the variance between a pair of observations is equal, which is 

the requirement to assess spatial homogeneity. The variance between a pair of stations is equal 

in almost 60% of the cases, while is rejected in 40% of them.  
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The testing of the homogeneity of the experimental and theoretical variograms also reveals that 

the assumptions of spatial homogeneity in the variograms are not adequate. The stationarity 

tests for the spatial homogeneity of the variograms (T4 – T7) reject the hypothesis of equality 

of means and parameters of CS variograms at different stations in the catchment. These results 

contradicts the assumption of spatial stationarity, as the rejection rate of these tests is 

considerably high. 

 

Additionally, the assumption of stationarity between low and high precipitation thresholds was 

rejected. The hypothesis of statistically equivalent parameters between precipitation regimes 

was rejected most of the times for the sill and range. The test was not carried out for the nugget, 

but the relatively little effect of the interpolation and the lack of identifiability of this parameter 

in every condition will end up in the acceptance of the equivalence of the nugget in different 

precipitation regimes. 

4.5.4 Comparison of conventional Kriging and NS-Kriging 

To evaluate the performance of the proposed methodology a leave-one-out approach is used 

(Cressie 1993, Kanevski 2008, 2010), where precipitation estimates are carried out at each 

station, without using the measurements of said station for building up the model. To summarise 

the interpolation error, two deterministic metrics are used: the root mean squared error (RMSE) 

and the mean absolute error (MAE), as: 
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Equation 4.24 
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Equation 4.25 

 

where n is the total number of stations (α), T is the total number of observations in the time 

series, P is the recorded and P̂ is the estimated precipitation in step t at station  

 

Additionally, two descriptors of the estimation variance are assessed: the Mean Prediction 

Interval (MPI), and the Prediction Interval Coverage Probability (PICP) (Shrestha et al. 2009, 

Dogulu et al. 2015). MPI measured the average width of the prediction interval, for a given 

confidence interval, while the PICP determines how many of the observations actually fall 

within the confidence bounds. Making use that the Kriging estimates of the error are Gaussian, 

the formulation of these indicators can be presented as: 
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Equation 4.26 
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Equation 4.27 

 

where σ is the standard deviation of the interpolation error, kf is the coverage factor (which is 

directly related to the confidence level of the estimates) and θ is the Heaviside function. Again, 

P represents the observations and P̂ the estimates of precipitation at time t and station α. 

 

Finally, the model results are evaluated in a probabilistic framework, using normed residuals 

(Kitanidis 1983, Samper and Neuman 1989, Lee 1997). For this purpose, the normed mean 

residuals (S1) and normed mean-variance (S2) are used as: 
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Equation 4.28 
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Equation 4.29 

 

where σ is the standard deviation of the interpolation error, P are the observations and P̂ the 

estimates of precipitation at time t in station α. 

 

The results for RMSE and MAE show comparable results (Figure 4.15) between OK and NSK. 

In most of the cases, a marginally better performance is observed for the conventional Kriging, 

although in practice both are equally accurate, considering that the resolution of the 

measurements is 0.2 mm. 

 

 
Figure 4.15 Error and prediction interval metrics of conventional (OK) and (proposed) non-stationary Kriging (NSK) 
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The MPI accounts for the length of the mean prediction interval, while the PICP accounts for 

the frequency that observations lie within the prediction interval. The results (Figure 4.15) show 

that the prediction interval of the OK is considerably smaller than NSK. However, evaluation 

of the PICP reveals a systematic underperformance of the indicator, as OK averages 82% of 

hits inside the prediction intervals, while NSK lies around 97%. 

 

Finally, the normed residuals account for errors which are proportional to the prediction 

interval. Ideally, S1 should be equal to zero to satisfy the unbiasedness condition, and S2 should 

be equal to 1 to ensure the adequacy of the prediction interval (Samper and Neuman 1989). The 

results for S1 (Figure 4.16) reveal significantly less variable results regarding the prediction 

intervals for the proposed methodology, as the metrics for the error are consistent between 

methods. The results of NSK for S2 are several orders of magnitude better.  

 

 

Figure 4.16 Normed errors of Ordinary Kriging (OK) and (proposed) non-stationary Kriging (NSK) 

The previous analyses show that OK provides mean estimations which are as good as those 

obtained by NSK. However, the OK consistently underestimates the prediction intervals. In 

consequence, the stationarity assumptions do not necessarily lead to larger interpolation errors 

but, may result in a systematic misrepresentation of the interpolation error. Table 4.3 and Table 

4.4 presents a complete overview of the results. 

 
Table 4.3 Results for the average performance of different precipitation performance metrics among the cross-validation 

results 

 MAE [mm] RMSE [mm] MPI [mm] PICP [mm] S1 [-] S2 [-] 

OK 0.006 0.205 0.763 0.833 -0.012 49.20 

NSK 0.012 0.250 3.693 0.969 0.090 5.132 

 
Table 4.4 Results for the coefficient of variation of different precipitation performance metrics among the cross-validation 

results 

 MAE [mm] RMSE [mm] MPI [mm] PICP [mm] S1 [-] S2 [-] 

OK 0.732 0.241 0.208 0.018 -22.595 1.108 

NSK 0.569 0.244 0.011 0.014 0.664 1.612 

 

Additionally, a similar analysis is carried out for several (extended) cross-validation scenarios, 

where sets of 30, 35 and 40 stations randomly left out. As the size of the leave-one-out analysis 
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grows exponentially with the number of stations left out, a sample of 100 random combinations 

were tested. The results of the average absolute model error and prediction intervals are 

presented in Figure 4.17, where it is possible to observe that the deterministic performance of 

both models decrease in terms of RMSE, as long as the number of stations left out increases, 

while the MAE shows higher values when only one station is left out, thus indicating that the 

inaccuracies of the model results in low precipitation conditions inflate the absolute error. Also, 

it is interesting to observe how the MPI, and consequently PICP, increases with the number of 

stations left out in the OK. In this case, the network becomes sparser, yielding higher estimation 

error variance. In contrast, the average values for MPI and PICP remain almost constant for 

NSK. It has to be noted that in practice both models have a similar performance, as the order of 

magnitude of the error among models may be negligible. 

 

 
Figure 4.17 Error and prediction interval metrics of Ordinary Kriging (OK) and (proposed) non-stationary Kriging (NSK) 

for various cross-validation scenarios 

Figure 4.18  shows the results of the mean absolute normed errors for the extended cross-

validation scenario. The results show that the values of S1 for OK are only superior in the leave-

one-out cross-validation, but not when a higher number of stations are left out, indicating that 

only in areas with high sensor density, the OK outperforms NSK in this particular objective. In 

contrast, values of S2 are considerably lower for NSK in comparison with OK, indicating that 

NSK provides a more meaningful estimation of the interpolation error. 
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Figure 4.18 Normalised errors of Ordinary Kriging (OK) and (proposed) non-stationary Kriging (NSK) for various cross-

validation scenarios 

4.6 Conclusions 

This chapter explores in depth the characteristics of modelling of random fields through 

Kriging-type formulations. This includes the redefinition of the fundamental ordinary Kriging 

to account for the individual measurement uncertainty in heterogeneous networks as a result of 

different partial recording times, the use of diverse instruments, among others. The results 

indicate that there is indeed a great role in the observation uncertainty in the results of the 

Kriging estimates, as observations with a higher uncertainty that the precipitation field itself, 

are not suitable for use in these type of models. 

 

The data analysis revealed that in the Brue catchment, the temporal variability of the 

precipitation plays a significant role in the uncertainty estimation. The experimental results 

indicate that the uncertainty due to partial recording grows exponentially with the non-recorded 

time. As consequence, dynamic sensors should be restricted in its displacement to provide 

observations of acceptable quality. As a side effect, displacement in highly observed areas 

require longer observations to yield valid results, and therefore, dynamic sensors have less 

displacement capacity in such environments. These results are to be validated for the other case 

studies, but it is assumed that the uncertainty due to partial recording has the same 

characteristics in all the case studies. 

 

Additionally, an alternative method for the parameterisation of a generalised covariance 

structure which is neither fixed in time or space is presented and tested (CS variogram). The 

results in the modelling of precipitation field yield similar cross-validation errors than the 

Ordinary Kriging. However, it describes better the errors estimation. This has a direct 

implication in the design of dynamic sensor networks, as the purpose of sensors in the 

geostatistical design, aims to minimise the spatial uncertainty in the Kriging estimation. 

 

In the proposed method, the covariance structure is not selected using a maximum-likelihood 

approach. Therefore, the parameterisation is not biased by assuming that a fixed variogram 

represents the covariance function. Consequently, the method provides a framework to assess 

the parametric uncertainty, in contrast with the maximum-likelihood approach to estimate the 

covariance function. 
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This study has a number of limitations. The proposed method has been tested only on one case 

study, and further exploration on other cases is required. Considering that the terrain of the case 

study is relatively flat, without preferential precipitation areas, the assumptions of spatial 

stationarity at a first glance may seem to be reasonable. However, the analysis suggests that this 

assumption may not be adequate for precipitation fields at hourly resolution. Consequently, it 

is foreseen that the assumptions regarding spatial stationarity may be inadequate to characterise 

the interpolation error for hourly precipitation using conventional Kriging estimates. 

 

Another specific (limiting) characteristic of the considered case study is the relatively high 

density of stations. Using sparse networks in the evaluation of stationarity is a major challenge, 

as the number of data points for the assessment of the correlogram decreases significantly from 

n(n-1)/2 to n. Therefore, a smaller number of points in the correlogram parameterisation may 

result in more uncertain estimates of the covariance function, and identifying areas of 

applicability of the presented method is one of the future challenges as well. 



 

5. Optimisation of static precipitation 

sensor networks and robustness 

analysis 

5.1 Introduction 

Static (conventional) sensor networks are the heart of any hydrological monitoring system 

(WMO 2008, 2009). They are formed by standardised instruments with well-established 

operation and maintenance protocols. Static sensor networks, therefore, permit continuous 

observation of variables during extended periods of time at designed locations, and are the main 

data source for hydrological and hydraulic models. 

 

The design of static precipitation sensor networks have been traditionally driven by aspects 

such as the minimisation of interpolation estimations (Pardo-Igúzquiza 1998, Barca et al. 2015, 

Bardossy and Pegram 2009), the even spatial distribution of the sensors and the maximisation 

of information content they provide (Ridolfi et al. 2011, Coulibaly and Samuel 2014). However, 

there are some aspects that have not been given enough attention in previous studies and that 

can eventually have effects on the traditional analyses, especially in the context of citizen 

observatories.  

 

This Chapter starts with the formulation of the optimisation problem, starting with the analysis 

of the encoding of decision variables. The experiments are carried out for the Brue catchment. 

First, the selection of the decision variable encoding is selected between two alternatives, 

namely Cartesian and local-polar. The optimisation algorithm was selected between four classic 

candidates, namely Genetic Algorithms, Particle Swarm, Simulated Annealing and Harmony 

Search, for a sample objective function. 

 

Following, the relationship between some of the most frequently used objective functions from 

the literature are evaluated. The experiment consists in a Monte Carlo experiment with 100 000 

runs for three to seven sensors. The final outcome of this experiment is to identify similitudes 

and differences between objective functions, as well as their trade-offs. It is of especial interest 

to explore the dependence between model-free and model-based methods, aiming to provide 

guidelines for development of monitoring plans in previously ungauged catchments. 

 

Next, the problem of designing optimal sensor networks is solved for all of the objective 

functions. These experiments are carried out with three to five sensors for each objective 

function. The results show the optimal network configurations for each case. 
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Finally, an analysis of robustness of the optimal solutions is carried out. This analysis aims to 

understand how robust are each of the previously found optimal solutions to the location of the 

sensors. The general idea is to evaluate the changes in the objective function in the vicinity of 

the optimal solution at different distances, and analyse its relative change. This may help in the 

selection of an objective function for the design of sensor networks, and also provide support 

for the selection of potential objective functions in the design of dynamic sensor networks. The 

outcomes of this Chapter are fundamental for formulating the objective functions in Chapter 6. 

5.2 Formulation of decision variable encoding  

The problem of designing an optimal sensor network consists of defining optimal network 

configurations such that minimise (or maximise) a predetermined objective function (Chacon-

Hurtado et al. 2017). Regardless the objective function, the decision variables of the 

optimisation problem are the position of sensors, and therefore they are directly related to a 

coordinate system. An important question that arises is to what extent the performance of the 

optimisation procedures for sensor network design depends on the selection of a coordinate 

system that defines the decision variables, knowing that one single design network solution can 

be represented in different ways. We called this the encoding problem. Two alternative 

solutions for the encoding problem are presented below, namely Cartesian and local-polar 

coordinate systems, followed by an experimental setup to evaluate the performance of both 

alternatives using different optimisation algorithms. The results are used as part of to design 

static and dynamic sensor networks, later in this thesis, as presented in Chapter 6.  

5.2.1 Sensor location defined in Cartesian coordinates 

The problem of optimal location of sensors within a catchment can be posed assuming an 

arbitrary Cartesian coordinate system, in which each sensor locations is defined by its 

coordinates (x, y).  Figure 5.1 shows a simple network of three sensors.  

 

(x1, y1)

(x2, y2)

(x3, y3)

x1 x2 x3

y2

y3

y1

X

Y

 
Figure 5.1 Sensor network problem posing with an arbitrary Cartesian coordinate system 
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As consequence we can define the decision variable vector as: 

 

𝑠{𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛}  

 

Conditioned to: 

 

(𝑥𝑖, 𝑦𝑖) ∈ Ω 𝑓𝑜𝑟 𝑖 ∈ Ω 

 

Where s is the decision variable set of n sensors, x and y are the coordinates of sensor i, and Ω 

is the domain of the catchment. 

 

However, one single design network solution can be represented by different vectors s, as 

shown in Figure 5.2. The network at the left can be represented by the vector sL = {1, 2, 3, 4}, 

whereas the network at the right can be represented by the vector vR = {4, 2, 3, 1}. Both sL and 

SR are identical from the point of view of sensor location, but are encoded differently. The 

implication of this non-uniqueness in the encoding leads to a lack of a meaningful metric to 

recognise similar solutions. This may lead to complications (and most likely higher epistasis 

variance) in the optimisation procedure, in particular in the crossover operator of GA methods, 

and in the distance operator in the particle swarm method. 

 

 
Figure 5.2 identical sensor networks with different sensor encoding 

To overcome this situation, a methodology for re-arranging vector s is proposed. This will allow 

to create a quasi-unique representation of each sensor network, facilitating their comparison. 

The methodology consists of sorting the solutions based on distances, as described below and 

using Figure 5.3: 

 

 Create a polygon containing the catchment, with a number of vertices (V1, V2, V3, V4) 

equal to the number of sensors (a, b, c, d). 

 Assign arbitrarily to each sensor a polygon vertex and calculate the distance between 

each sensor and its assigned vertex (e.g., distances between a and V1, b and V2, c and 

V3, d and V4 in Figure 5.3) 

 Sum up the individual distances between sensors and vertices, obtaining a total distance. 
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 Iterate over all the possible combinations of nodes and vertices to find the combination 

with the minimum total distance between sensors and vertices. 

 

 
Figure 5.3 Sorting algorithm schematisation  

It is clear that the proposed combinatorial problem may be inefficient. However, there are two 

main reasons to support its use: first, distance functions are cheap to calculate, and second, the 

number of stations in the selected case studies make it possible to apply the approach in a 

reasonable time frame. Figure 5.4 illustrates the advantage of the methodology, using 

normalised coordinates, showing eight similar sensor network configurations (each line is a 

network). It can be seen that without sorting the vector, the identification of similar networks 

is extremely difficult, whereas similar networks can be easily identified after the sorting is 

performed. 

 

 
Figure 5.4 Unsorted (left) and sorted (right) solutions for the position of eight different sensor networks  

5.2.2 Sensor location defined in local-polar coordinates 

An alternative way to define the position of the sensors is by using a local-polar coordinate 

system (Figure 5.5), which means that there are as many coordinate system origins (grey circles) 

as sensors (blue circles), and therefore the vector s is unique for the same networks, solving the 

encoding problem. The optimal set of sensors in polar coordinates (r, θ), from an arbitrary 

origins denoted as (x*, y*) is now given by the vector:  

V1 V2

V3V4

a

b

c

d
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𝑠{𝑟1, 𝑟2, … , 𝑟𝑛, 𝜃1, 𝜃2, … , 𝜃𝑛}  

 

Conditioning the results to be within the catchment limits as: 

 

(𝑥𝑖
∗ +  𝑟𝑖 cos 𝜃𝑖 , 𝑦𝑖

∗ +  𝑟𝑖 sin 𝜃𝑖) ∈ Ω 𝑓𝑜𝑟 𝑖 ∈ Ω 

 

x1 x2 x3

y2

y3

y1

X

Y

(r1, θ1)

(r2, θ2)

(r3, θ3)

 
Figure 5.5 Sensor network problem posing in a local-polar coordinate system 

However, as the sensors have their own local-polar coordinates, there is still the need to place 

them within a global coordinate system. Assuming that the design of a completely new sensor 

network is required, a methodology to conveniently select (i.e., uniformly distributed in the 

area) candidate locations of each local-polar coordinate origin is proposed. It consists of a 

random subset of nodes coming from a hexagonal lattice in the domain of the catchment. As 

lattices are regular structures, a hexagonal one will ensure that there is a minimum distance 

among the potential origins, which guarantees an overall adequate spread. 

 

The lattice is built iteratively, as described in Figure 5.6. The first step consists in defining the 

(rectangular) bounds of the catchment in a Cartesian plane, (H, L), where H is the shortest, and 

L is the longest dimension respectively. Then, a hexagonal lattice is built, using as distance 

between the nodes half of the longest dimension (L/2) of the catchment bounds (represented as 

grey nodes). If the number of nodes within the domain of the catchment is below the minimum 

number of sensors, a new lattice is built using half of the distance of the previous (represented 

as green nodes). 
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X

Y
L

H

L/2
 

Figure 5.6 Hexagonal lattice for initialisation of sensor positions 

 

Due to the exponential growth in the number of nodes in the lattice, it is likely that it surpasses 

the amount of gauge origins (orange) for the sensors in the catchment (blue polygon), as shown 

in Figure 5.7. The iteration finishes when the number of origins is equal or larger to the number 

of sensors. It can be demonstrated that few iterations are required to generate more nodes than 

the required initial locations, as the number of nodes in the lattice grows exponentially in each 

iteration. 

X

Y

 
Figure 5.7 Selection of coordinate system origins in the local-polar coordinate system 

5.3 Selection of decision variable encoding and of optimisation algorithm 

An experimental setup to evaluate the performance of the two alternative solutions for the 

encoding problem presented above, namely Cartesian and local-polar coordinate systems is 

presented. The experiment consists of evaluating four different optimisation algorithms to find 

the optimal configuration of three sensors in the Brue Catchment, to minimise the average 

Kriging variance (AKV). The test is carried out using the Cartesian coordinate posing and the 
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local-polar coordinate posing. Details of the algorithms can be found in Annex 1, and their 

corresponding parameters used in the experiments are presented in Table 5.1. 

 
Table 5.1 Optimisation algorithms for the minimisation of AKV in the Brue catchment 

Algorithm Acronym Max Iterations Parameters 

Particle Swarm PSO 5000 Swarm size = 50 

Harmony Search HSO 5000 Pitch adjustment rate = 0.65 

Genetic Algorithms GA 5000 Population = 50 

Simulated Annealing SA 5000 Mutation rate = 0.5 

 

The results of the evolution of the minima are presented in Figure 5.8. The evident first result 

is that in both cases, SA is underperforming, and it is especially evident when using the local 

coordinate system. In both cases, GA shows to be the second worst algorithm to converge to 

the optimal solution, and failing to reach the minima of the other optimisation algorithms in the 

local coordinate system. HSO and PSO show a relatively good performance in both cases, being 

able to reach to the minimum of the objective function. It can be stated that solutions found 

using local coordinate system converge about 66% faster than those using global coordinate 

system. 

 

 
Figure 5.8 Evolution of the optimisation process for Cartesian (left) and Local-polar (right) coordinate systems 

Additionally, it is possible to see that in the amount of valid solutions that are generated by each 

optimisation algorithm, varies depending on how the problem is posed (Figure 5.9).  

 

 
Figure 5.9 Evolution of the fraction of valid generated solutions for Cartesian (left) and Local-polar (right) coordinate 

systems 

It can be observed that HSO and PSO are able to generate far more valid solutions when using 

the local-polar coordinate system than when using the Cartesian coordinate system. On the 
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contrary, GA and SA are able to generate more valid solutions when using the global coordinate 

system.  

 

The solutions generated using the Cartesian coordinate system have larger random jumps, 

indicating that may help in finding the local minima due to randomisation (or mutation in GA), 

instead of refinement of the solutions. As consequence, methods that generate better solutions 

(HSO and PSO) converge earlier to the optimal in the local-polar coordinate system. Based on 

these results, PSO is used as optimisation algorithm for the design of the sensor networks, using 

a local-polar coordinate system in Section 5.4 and also in Chapter 6. 

5.4 Exploring relationships between various objective functions 

A second aspect worth exploring relates to the lack of consensus in the criteria for the design 

of sensor networks, some of them shown in the reference column in Table 5.2. In this section, 

functional relationships and hidden links between the different objective functions for optimal 

design of precipitation monitoring networks are presented. Table 5.2 summarises the objective 

functions to be contrasted in the trade-off analysis.  

 
Table 5.2 Summary of selected objective functions 

Type Method Metric Unit Reference 
Description of objective 

function 

Model 

free 

Geostatistics 

AKV mm² 

Pardo-

Iguzquiza 

1998 

Minimise the average 

interpolation variance over the 

precipitation field. 

MKV mm² 
Barca et al. 

2015 

Minimise the maximum 

interpolation variance over the 

precipitation field. 

Information 

Theory 

JH nat 

Krstanovic 

and Singh 

2000 

Maximise information content of 

the monitoring network. 

PJH nat 

Krstanovic 

and Singh 

2000 

Maximise information content of 

the monitoring network, 

estimated with pairs of sensors. 

TC nat 

Alfonso 

2010, 

Alfonso et al. 

2010 

Minimise the total correlation of 

the monitoring network 

AIT - 
Yang and 

Burn 1994 

Minimise the normalised 

information transfer 

Model 

based 
RR model 

NSE - 
Xu et al. 

2013 

Maximise Nash and Sutcliffe 

Efficiency 

BIAS m³/s - 
Minimise the absolute average 

model error 
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CPQ - 
Dong et al. 

2005 

Maximise correlation between 

average precipitation and 

discharge 

 

A schematic representation of the methodology is shown in Figure 5.10. The inputs of the 

methodology are a base precipitation field generated with all the avaliable rainfall data, a 

rainfall runoff (RR) model of the catchment and the observed discharge data at the outlet of the 

catchment. The methodology consists of the random positioning of S sensors within the 

catchment (S-network). A Monte Carlo experiment which yields 100 000 S-networks is carried 

out. These steps are repeated for a varying number of sensors in the network, from three (3) to 

seven (7). The steps of the methodology in Figure 5.10 are described in detailed in the following 

sections. 
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Start

Use model Pb, to calculate 
precipitation Ps at locations S 

(Eq. 14)

Calculate model-free 
performance metrics

Geostatistical
AKV (Eq. 2)
MKV (Eq. 3)

Information-based
JH (Eq. 5), PJH (Eq. 7), 
AIT (Eq. 8), TC (Eq. 9)

Run RR model using    to 
obtain discharge Qs

Calculate the areal average 
precipitation    using Ps (Eq. 

2, 3)

RR model performance
NSE (Eq. 10), ABIAS (Eq. 11), 

CPQ (Eq 12)

Analysis of results: sensitivity and trade-offs between 
objective functions

Build the baseline 
precipitation model Pb using 

all  available sensor data

Generate a random position 
of S sensors within the 

catchment

r = r + 1

No

r < MCE
Yes

r = 1
S = 3

S = S+1

r  = 1

 

Figure 5.10 Methodology flowchart for the analysis of different objective functions for the design of sensor networks 

Where S is the number of sensors which are going to be used in the deployment of each S-

Network; r corresponds to the run number in the Monte Carlo experiment, that has a maximum 

(MCE) of 100 000 runs. 

 

The first step is the construction of the baseline precipitation Pb using all the available 

information of the case study. The second step is to generate an S-network (network with 
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random position of S sensors) within the catchment. The third step is to generate the 

precipitation data for the S-network (Ps) using the baseline precipitation model, Pb. The fourth 

step is to calculate the average areal precipitation P̅ over the catchment using a linear 

combination of the interpolated values at each sensor location of the S-network (Equation 5.1, 

Equation 5.2).  

 

 �̅� =  ∑ 𝑤𝛼𝑃𝛼

𝑆

𝛼=1

 
Equation 5.1 

 𝑤𝛼 = [∑ 𝑐𝑜𝑣(𝑃𝛼 , 𝑃𝑗)𝑐𝑜𝑣 (𝑂𝛼, 𝑂𝑗)

𝑆

𝑗=1

]

−1

𝑐𝑜𝑣(𝑃′, 𝑃𝛼) 
Equation 5.2 

 

where P̅ is the average precipitation over the catchment calculated using the sensor locations of 

the S-network, wα is the weight of each station (α), Pα is the recorded precipitation at α, O is the 

observation error and P’ is a first estimate of the precipitation at station j. The set of weights 

(wα) is identified by the BLUE approach, minimising the variance of the estimated precipitation 

error (Equation 5.2). This method is widely used in meteorological (Daley 1991) and 

hydrological modelling applications (Lindström et al. 1997). 

 

Finally, for each S-network produced, the objective functions summarised in Table 5.2 are 

calculated. The model-free objective functions (geostatistical and information theory based) are 

calculated using Ps whereas model-based objective functions use P̅ to run the RR model and 

calculate the simulated discharge (Qs). 

 

The Monte Carlo experiments are the base for trade-off and sensitivity analysis for each S-

network. Monte Carlo can also be seen as random search for optimal solutions, albeit neither 

the most efficient nor effective one. These set of close-to-optimal solutions will be used for 

further analysis. For each pair of objective functions we will be identifying sets of non-

dominated solutions. Trade-offs are evaluated by comparing pairs of objective functions for 

each S-network configuration, whereas sensitivity reflects the degree of change in objective 

functions for different network configurations.  

 

We propose a method to quantitatively evaluate the trade-off between a pair of objective 

functions, based on the shape of the relation between them. The objective is to describe the 

upper and lower limits of the plots, to measure how conflictive the functions (f1, f2) are. The 

method consists in rotating a set of local axes, until a given number of solutions NS below the 

rotated axis is reached. The origin of the local axes corresponds to the minimum of both 

objective functions.  

 

 𝑓1′, 𝑓2′ = 𝑓1 − min(𝑓1) , 𝑓2 − min(𝑓2) 
Equation 5.3 

 

We use the concept of rotation matrix (R) to perform a rotation in the Euclidean space as:  
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 𝑅(𝜃) =  (
cos (𝜃) −sin (𝜃)

sin (𝜃) cos (𝜃)
) 

Equation 5.4 

 

where θ is any angle of rotation of the axes. The matrix with the coordinates of the sensor 

network ([n, 2]) is rotated around the minimum of each function, yielding the transformed 

functions f *: 

 

 
𝑓1∗(𝜃1), 𝑓2∗(𝜃1) =  [𝑓1′, 𝑓2′]𝑅(𝜃1) 

𝑓1∗(𝜃2), 𝑓2∗(𝜃2) =  [𝑓1′, 𝑓2′]𝑅(𝜃2)𝑇 

Equation 5.5 

 

Finally, the fraction of the solutions that remain in the negative side of the rotated axis is 

calculated using the Heaviside function (Θ, Equation 5.6). It has to be noted that the matrix is 

being transposed for θ2, in order to maintain the sign of the vector.  

 

 

𝑔(𝜃1) =
1

𝑀𝐶𝐸
∑ Θ(−𝑓2𝑖

∗(𝜃1))

𝑀𝐶𝐸

𝑖=𝑖

 

𝑔(𝜃2) =
1

𝑀𝐶𝐸
∑ Θ(−𝑓1𝑖

∗(𝜃2))

𝑀𝐶𝐸

𝑖=𝑖

 

Equation 5.6 

 

Finally, the solutions (g) are compared with the fraction of solutions which are negative in each 

axis (NS/MCE). As the problem is not explicitly solvable, an iterative procedure for the 

selection of the θ index is required. As the g-function is smooth and convex, it has been found 

out that the definition of the θ index can be efficiently solved using a Newton-Raphson solution 

such that: 

 

  |𝑔(𝜃) −
𝑁𝑆

𝑀𝐶𝐸
| ≅ 0 

Equation 5.7 

 

A schematisation of the method is presented in Figure 5.11. In this figure it is possible to 

observe three of the most common cases of relations between two objective functions. Figure 

5.11(a) shows a sparse relation between f1 and f2, and how θ1 and θ2 are defined with respect 

to the corresponding axis. Figure 5.11(b), shows a strong inverse relation between f1 and f2, 

making θ1 and θ2 close to 0. Finally, Figure 5.11(c), shows a strong direct relation between f1 

and f2, meaning that the minimisation of f1 leads to the minimisation of f2. In this case, both 

θ1 and θ2 have relative high values. 
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Figure 5.11 Three common cases in the trade-off evaluation of objective functions in the design of sensor networks. (a) 

mildly-conflicting, (b) highly-conflicting, and (c) cooperative 

5.4.1 Relationship between model-free objective functions 

Figure 5.12 presents the PDF of the results as box-plot for the geostatistical methods, based on 

Equation 2.8 and Equation 2.9. The average Kriging variance (AKV) has a positive skewness, 

indicating that the probability of having an S-network with low AKV is high, if the position of 

the sensors is randomly selected. On the contrary, the maximum Kriging variance (MKV) 

shows almost no skewness. As the number of sensor increases, there is a reduction of both AKV 

and MKV, as well as a reduction in the range of the AKV values.  

 

  
Figure 5.12 Sensitivity of the average (AKV) and maximum (MKV) Kriging variance for varying number of sensors 

Figure 5.13  presents the comparison between AKV and MKV for five different network sizes 

by plotting all the generated networks in the objective function space (with the Pareto optimal 

set indicated by black points). It can be seen that there is a strong direct relation between them. 

Note that the size of the Pareto front is small in all cases, which means that the minimisation of 

one of the objective functions leads to the minimisation of the other. It has to be noticed that 

the reduction in the AKV may not necessarily lead to correspondingly lower MKV, however if 

both are minimised, their trade-off reduces (an indication of dependency). Also, it is possible 

to observe that the direct relation between average and maximum Kriging variance strengthens 

as the number of sensors increases. From the geostatistical perspective, one can think of the 

network with low AKV as a fairly well distributed network, as the Kriging variance is a function 

of the separation between the interpolation target (catchment) and the sensor network.  
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Figure 5.13 Results of Monte Carlo simulation: trade-off between geostatistical objective functions for varying number of 

sensors 

Figure 5.14  presents the histograms for the results of the information-based objective function 

for different number of sensors. These metrics are calculated using Equation 2.16, Equation 

2.18, Equation 2.24 and Equation 2.26 respectively. The sign of the joint entropy metrics (JH 

and PJH) have been reversed to pose the optimisation problem as minimisation. In consequence, 

the best solutions are located towards the bottom of the boxplots. The results for JH and PJH 

reveal that random networks yield centred distributions disregarding the number of sensors. 

The results show high correlation between JH and PJH; the differences in their values rise the 

number of sensors increases, and this can be explained by their formulations. Figure 5.14 also 

shows that the objective functions of information redundancy (AIT and TC) depend on the 

number of sensors in the system: more sensors share more information. 

 

 
Figure 5.14 Sensitivity of the Multivariate joint entropy (JH), pair-wise joint entropy (PJH), average information transfer 

(AIT) and total correlation (TC) for varying number of sensors 

The results of Monte Carlo simulations between JH and PJH (Figure 5.15 ) show a directly 

proportional relationship, thus suggesting that maximising PJH is almost equivalent to 

maximising JH. The simplification from JH and PJH is especially relevant, because the 

complexity of computing multivariate joint probabilities increases exponentially as the number 

of sensors. It can also be seen that the larger the number of sensors, the lower the correlation 

and the higher the differences between JH and PJH. All the other objective functions show 

conflicting indirect relations as can be seen in Annex 1. 

 

 
Figure 5.15 Trade-off between joint entropy (JH) and pair-wise joint entropy (PJH) for varying number of sensors 
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5.4.2 Relationship between model-based objective functions 

The results for absolute bias (BIAS) and correlation between the average precipitation and 

discharge (C-PQ) are symmetrically distributed, while NSE is positively skewed (Figure 5.16). 

The skewness of the NSE can be explained by the fact that the RR processes act as a low-pass 

filter (Blöschl and Sivapalan 1995, Beven 2012) from precipitation to discharge. The C-PQ 

does not exhibit a significant variation with regards to the position of the sensors.  

 

 
Figure 5.16Sensitivity of the N-NSE, BIAS, and C-PQ for varying number of sensors 

The comparison between of NSE with respect to BIAS and CP-Q shows general trade-offs 

(Figure 5.17). Although the relation between BIAS and NSE shows little dependency, 

especially for a small number of sensors, the maximisation of NSE implies the minimisation of 

BIAS. However, the minimisation of BIAS does not necessarily lead to a maximisation of NSE. 

 

 

 
Figure 5.17Trade-off between model-based objective functions for varying number of sensors 

The maximisation of C-PQ seems to have a relationship with NSE, especially when the number 

of sensors is limited. The results show a reduction in the interval of the NSE for higher values 

of C-PQ, indicating a possible trend connecting these two objective functions. However, a 

trade-off among these two functions can still be observed. Additionally, there are models close 

to the optimal for almost every value of C-PQ, regardless the number of sensors. Also, optimal 

networks for NSE may have any corresponding value of C-PQ, but networks with higher values 

of C-PQ are less likely to correspond to networks with low NSE. 
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5.4.3 Relationship between all objective functions  

We also analysed the relationships between the various types of objective functions: 

geostatistical, information theory and model-based. In particular, the relationship between 

model-free and model-based approaches may unveil relationships that are valuable for the 

deployment of sensor networks for hydrological modelling applications, and this may allow for 

approximating the model-based design without previously building a RR model of the 

catchment. 

 

Figure 5.18  presents the relationship between the geostatistical objective functions (AKV and 

MKV) and the total correlation (TC) (the results for all the objective functions are presented in 

Annex 1). It can be concluded that generally there is no evidence of a strong functional 

relationship. Only for a low number of sensors, one can see some interdependency between the 

AKV and MKV on one hand, and TC on the other (indicated by a smaller Pareto front if 

compared to the one for a larger number of sensors). This interdependency can be explained as 

the amount of shared information among a limited number of independent variables seem to be 

related to the adequate selection of locations in geostatistical sense. Therefore, as the number 

of sensors increases and the amount of information shared becomes larger, these functions 

become more and more conflicting. 

 

 

 
Figure 5.18 Trade-off between total correlation (TC) and geostatistical objective functions (AKV and MKV) for a varying 

number of sensors 

The comparison between the geostatistical and model performance functions reveal that the 

functions are not conflicting (Figure 5.19). The results for AKV on NSE reveal that the 

minimisation of AKV leads to the maximisation of NSE, as both functions tend to converge to 

the same minimum despite the number of sensors. The minimisation of MKV does not 

necessarily yield better NSE, but the reduction of this metric significantly reduces the range of 

the potential NSE. These results indicate that the minimisation of MKV may yield better RR 

model performance, but it does not mean that is a requisite for a network to yield optimal 

simulation metrics. In contrast, the minimisation of AKV tends to yield sensor networks with a 

higher NSE performance. 
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Figure 5.19Trade-off between geostatistical objective functions and NSE for a varying number of sensors 

The relationship between JH (and consequently PJH) and TC was also compared with the 

hydrological model performance (Figure 5.20). From Figure 5.20 it can be seen that high NSE 

values can appear for a wide range of JH, but low NSE values do not occur alongside with high 

JH values. In this regard, the maximisation of the JH will lead to a smaller range of NSE, but it 

is not a requirement to find a network with adequate performance. Additionally, minimisation 

of TC yields sensor networks with low NSE scores as the number of sensors increase. However, 

close to good NSE values correspond to a wide range of TC values. AIT did not exhibit any 

relationship to NSE or absolute bias. 
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Figure 5.20Trade-off between information-based objective functions and NSE for a varying number of sensors 

5.4.4 Can we use model-free instead of model-based objective functions in 

designing networks for hydrological modelling? 

One of the main drivers of this study is to evaluate the possibility of designing sensor networks 

using model-free methods, which can provide data for accurate hydrological models. The 

purpose lies in the development of sensor networks in areas where hydrological models are 

inexistent, so it is possible to develop monitoring plans which lead to adequate performance of 

such. To this end, the model-free objective functions were used to assess the θ1 and θ2 indexes 

to estimate NSE (Figure 5.21) and absolute bias (Figure 5.22 ), using as threshold 0.1% of the 

total number of solutions. 

 

The results in Figure 5.21 show that there is not a clear indication among the model-free 

objective functions, which can ensure adequate results of the hydrological model in terms of 

NSE. It is important to notice that the highest score in this regard belongs to AKV, indicating 

that approximating the design of the sensor networks using this objective function can lead to 

an adequate performance of RR models. Additionally, it is possible to observe that most of the 

model-free objective functions have high θ1values for low number of sensors, indicating that 

the discrimination of network configurations that yield good hydrological model performance 

decreases as the number of sensors increases.  
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Figure 5.21 θ1 and θ2 coefficients for assessing NSE 

 

Figure 5.22 θ1 and θ2 coefficients for assessing ABIAS 

In contrast, it is possible to establish that the information theory-based objective functions are 

able to discriminate sensor networks that yield poor NSE values. This is especially evident for 

the metrics of joint entropy (JH and PJH). Also, it is interesting to observe how the simplified 

formulation from JH to PJH has almost no effect in the discriminative capacity of the objective 

function. It can be concluded that the simplifications of PJH may be adequate for the design of 

sensor networks for catchments with the characteristics of the present case study. Additionally, 

it is possible to see how all of the objective functions are able to better discriminate low-

performance NSE networks, as long as the number of sensors increases. 

 

The assessment of the hydrological model bias is essential to provide information in mid and 

long-term planning, as the interest is mainly focused on average precipitation volumes, in 

contrast with a perfect description of the hydrograph characteristics. In this regard, it was found 

that none of the model-free or any of the other model-based performance objective functions 

were able to discriminate sensor networks that yield a low absolute bias. In other words, the 

values of θ1 are close to 0. In contrast, it seems to be possible to identify networks that yield a 

low performance in terms of absolute bias, indicated by high values of θ2. Among these 

techniques, the information-based metrics show a relationship, especially the total pair-wise 

entropy (H) and joint entropy (JH and PJH). In other words, entropy metrics can be used to 

assess inadequate sensor networks. 
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5.5 Solving the optimal design problem for the selected objective functions 

5.5.1 Using model-based objective functions 

Although precipitation sensor networks provide data to simulation models, an aspect worth 

exploring is how the precipitation sensor networks would look like if they were designed to 

improve these models. In principle, the use of hydrological models in the design of sensor 

networks has a fundamental limitation, as the sensor network design is driven by the error 

structure of the hydrological model. The consequence of this is reflected in a specific network 

for each hydrological model, and period of analysis, leading to a reduced possibility of 

generalising the results from one network to another, or from one analysis period to another. 

 

The optimisation problem is selecting the optimal sensor locations such that maximise the 

performance of a hydrological model measured in terms of Nash-Sutcliffe Efficiency (NSE). 

Three hydrological models are used: an empirical model (linear reservoir, LR) and two 

conceptual hydrological models, the Sugawara (SUG) and HBV-96. Details about the set-up of 

the models are presented in Annex 2.  

 

The results of the optimal configuration of the sensor network for each of the models are 

presented in Figure 5.23, (the connecting lines are drawn to facilitate the visualisation of the 

different resulting networks). From here it can be seen that the optimal configuration of the 

network largely depends on the selection of hydrological model. The results for the HBV-96 

model (left in Figure 5.23), show a strong tendency to cluster stations towards the centroid of 

the catchment. In contrast, linear reservoir model (right) that clusters the sensors towards the 

Eastern part of the catchment, and away from the catchment outlet. For the Sugawara model 

(bottom), the sensors were clustered towards the centre and East part of the catchment.  

 

 



Optimisation of static precipitation sensor networks and robustness analysis 

101 

 

 
Figure 5.23 Results of optimal sensor networks using 3 sensors for HBV (left), LR (right) and Sugawara (bottom) in the 

Brue catchment 

As a conclusion, it can be seen that there is a relationship between the optimal sensor networks, 

and the used hydrological model. These conclusions are supported in the evidence that sensors 

are clustered towards different areas of the catchment. This behaviour can be interpreted by the 

fact that different structures of the hydrological models lead to different errors, and therefore, 

the sensor networks aim to compensate this error. 

5.5.2 Using model-free objective functions 

In this stage the optimal deployment of static sensor networks for three to five sensors are 

explored in the Brue Catchment in a model-free optimisation. The large availability of 

precipitation records makes the Brue catchment case suitable to make the following analyses 

as the sensor baseline is large enough to keep a low uncertainty in the estimation of precipitation 

values at ungauged locations. 

 Optimal sensor networks using geostatistical measures 

The geostatistical measures which are the average (AKV) and maximum (MKV) Kriging 

variance. The results of the optimisation are presented in Figure 5.24, where it can be seen that 
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for a low number of sensors, convergence occurs with fewer iterations in the AKV; in contrast, 

the convergence is faster when a larger number of sensors are used in MKV. 

 

 
Figure 5.24 Evolution of optimal finding for Average (left) and Maximum (right) Kriging variance 

The resulting configuration of the optimal location of sensors is presented in Figure 5.25. From 

the results it is possible to observe spatially well distributed networks for both AKV and MKV 

within the catchment. The optimal MKV networks are closer to the edge of the catchment, 

which yields estimations with a low absolute variance due to the fact that extrapolation (outside 

the convex hull of the sensors) is reduced. In contrast, the average (AKV) pushes the sensors 

away from the boundaries of the catchment, to generate an overall lower variance fields. 

 

 
Figure 5.25 Optimal sensor location for Average (left) and Maximum (right) Kriging variance 

 Optimal sensor networks using information theory metrics 

The results of the optimisation problem for the design of sensor networks using information 

metrics are presented in Figure 5.26.  The figure reveals that most of the objective functions 

tend to require about 1000 model runs to reach values close to the overall minimum. Also, it is 

possible to observe how the minimum joint entropy (JH, top left) takes a larger number of model 

runs, in comparison with the pair-wise joint entropy (PJH, top right). Additionally, the total 

correlation (TC, bottom right) discriminates better the assessments of redundancy than average 

information transfer (AIT, bottom left), showing larger differences among the networks with 3 

and 4 sensors. 
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Figure 5.26 Evolution of optimal finding for Joint Entropy (JH), Pair-wise Joint Entropy (PJH), Average Information 

Transfer (AIT) and Total Correlation (TC) 

The results of the optimal sensor networks are presented in Figure 5.27. The results show some 

interesting features about the optimal configuration of the networks, as they are not well 

distributed within the catchment. First, the results between JH and PJH are considerably 

different, while the formulations are similar, indicating that despite the apparent similitude of 

both functions for a low number of sensors, the location of the sensors differ largely. This 

differences may probably be triggered by instabilities when computing the information metrics. 

These differences may appear in the optimisation problem when using multivariate joint 

entropy to maximise its performance. 
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Figure 5.27 Optimal sensor location for Joint Entropy (JH), Pair-wise Joint Entropy (PJH), Average Information 

Transfer (AIT) and Total Correlation (TC) 

The sensor networks in the information based context, aim to augment the information content 

of the measurements. The analysis reveals an important variability of precipitation towards the 

north of the catchment, which is capitalised by most of the objective functions. The pair-wise 

information metrics (PJH and AIT) exploit this information sink, generating the maximum 

relationship towards this area, leading to inflated metrics of the performance function, if the 

multivariate entropy is neglected. On the contrary, information metrics which are able to 

address the multi-variate entropy (JH and TC) are able to produce much sparser networks. In 

conclusion, the use of information theory metrics requires accounting for the multi-variate 

entropies for the design of sensor networks, even if the number of sensors appears to be low. 

5.6 Analysis of robustness 

The fourth aspect to discuss is the robustness of static sensor networks. If a small change in the 

position of a sensor produces a large reduction in the performance of the objective function, it 

is said that the network is not robust. This aspect is further explored in this section by means of 

analysis of robustness of the optimal position of the sensors. 
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The analysis consists of evaluating the susceptibility of the objective functions to the position 

of sensors in its neighbourhood. If the solution lies in a smooth minima, the variations of the 

objective function are gradually increasing as the sensors take position in locations which are 

nearby to the optimum. On the contrary, if the objective function changes rapidly by locating 

the sensors in the vicinity of the optimal location, it is possible that the minima has found a 

solution that is numerically better, but perhaps far from the optimum. 

 

To this end, the following method is proposed: first, a random sampling of the position of the 

sensors (s) at different distances is carried out. This can be visualised as concentric rings (of 

radius rs) around the optimal position of the sensors, as depicted in Figure 5.28. For each of the 

configuration of sensors in the random sampling, the objective function (OF) is calculated and 

four indicators are produced: range variation (rv), intra-ring standard deviation (stdv), minimum 

(minv) and maximum (maxv) variation. The formulations of these indicators are shown as 

follows: 

 

 𝑚𝑖𝑛𝑣𝑖 = min 𝑂𝐹(𝑠) ∀ 𝑠 ∈ 𝑆𝑖 
Equation 5.8 

 

 𝑚𝑎𝑥𝑣𝑖 = max 𝑂𝐹(𝑠) ∀ 𝑠 ∈ 𝑆𝑖 
Equation 5.9 

 

 𝑟𝑣𝑖 =
𝑚𝑎𝑥𝑣𝑖 − 𝑚𝑖𝑛𝑣𝑖 

𝑟𝑠𝑖+1 − 𝑟𝑠𝑖
 

Equation 5.10 

 

 
𝑠𝑡𝑑𝑣𝑖 =

√1
𝑆

∑ 𝑂𝐹(𝑠) − 𝑂𝐹(𝑆)̅̅ ̅̅  

𝑟𝑠𝑖+1 − 𝑟𝑠𝑖
 

Equation 5.11 

 

Where OF is the value of the objective function, Si is the set of all the position of the sensors α 

between distance rsi+1 and rsi and s is each of the individual position of the sensors. The range 

variation (rv) explores the distance between the minimum and maximum values of the objective 

function for a given ring, indicating the rate of change of the objective function. The standard 

deviation variation (stdv) accounts for the intra-variability of the results within the ring. In 

addition, min and max are included for reference. 
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Figure 5.28 Methodology to analyse robustness of optimal sensor networks. Concentric rings correspond to the distance in 

which the random samples are generated for the robustness analysis. 

Once the indicators are calculated for a ring, the process is repeated for each of the remaining 

rings. The rate of change of each indicator provides insights about the behaviour of the objective 

function in the vicinity of the optimal solution. A flowchart of the robustness analysis 

methodology is presented in Figure 5.29. 
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Figure 5.29 Flowchart for the robustness analysis of optimal solutions for sensor networks 

To evaluate the sensitivity of the optimisation results, the methodology was applied to the 

optimised networks found in the previous section. In this experiment, the number of rings is set 

to 10, each having a radius varying from 0.1 to 1Km. The number or samples per ring (S) is set 

to 500. An independent sample set is generated for each objective function. 

 

The results for rv are presented in Figure 5.30. The analysis reveals that the objective functions 

with the highest divergence from the optimal set are the model-based metrics, especially the 

HBV and SUG, followed by the joint entropy measures, JH and PJH. The robustness of the 

model-based performance metrics indicates that the design of sensor networks using 

hydrological models may end up in solutions that are optimal, but far from being robust. In 

consequence, these optimal sensor networks may be unreliable, and even more considering that 

hydrological models are uncertain. Also, it is possible to observe how the sensitivity of the 

optimal networks obtained using model-based methods reduces as the number of sensors 

increase. 
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Figure 5.30 Range variability (rv) for the optimal configuration of sensor networks for 3, 4 and 5 sensors respectively 

The JH and PJH show a similar sensitivity as long as the number of sensor is low. This means 

that the role of multivariate joint entropy is important in the design. In addition, the presence of 

larger multi-variate entropies influences the sensitivities of the estimates when the number of 

sensors increase. PJH is more sensible than JH in the case of redundant networks (with more 

sensors).  

 

For the geostatistical measures AKV and MKV, the rv gradient does not greatly change among 

the different rings. This occurs due to the linearity of the Kriging model, suggesting stable 

solutions for the minima. 

 

Additionally, Figure 5.31 shows the intra-variability (stdv) of the solutions within the ring 

(Eq. 77). This metric evaluates the consistency of the solutions generated in each of the rings. 

If the solutions are rather insensible to the position of the sensors the score will be the lowest, 

while higher variability among the rings will generate a higher score. In this regard, the 

geostatistical metrics vary greatly, being among the highest (MKV) and lowest (AKV), 

regardless of the number of sensors, but keeping an almost constant index in all of the rings. 

 

 
Figure 5.31 Intra-ring standard deviation (stdv) for the optimal configuration of sensor networks for 3, 4 and 5 sensors 

respectively 

The model-based performance statistics show diverse behaviours to the variability of the 

performance of hydrological models. The HBV shows a great variability of the solutions, which 

is reduced as long as the number of sensors in the network increases, indicating that the 

sensitivity to the performance of the model largely depends on the number of sensors. Basically, 

indicating that the model becomes less sensitive to the position of the sensors as long as its 

number grow. 
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On the other end of the spectrum, the LR model shows little variation among the different rings, 

indicating that the optimal solution does not vary significantly from the optimal in each of the 

rings. Part of this behaviour can be attributed to the fact that the optimal solution for this 

objective function tends to be clustered towards the same area at the east of the catchment, 

making the objective function almost insensible to the sensors in the vicinity of the optimal.  

 

In the case of SUG, the performance of the model seems to be more susceptible when using 

four sensors in comparison to three and five sensors. This behaviour can be attributed to the 

optimal position, as it is possible to observe that the network with three sensors is considerably 

clustered towards the east of the catchment, and the network with 5 sensors find its optimal by 

having 2 sensors lying extremely close to each other, reducing the effect in the performance 

variability during the sensitivity analysis.  

 

As in the rv, metrics of JH and PJH tend to diverge as the number of sensors increases due to a 

more clustered set of sensors in for PJH, in contrast with the sparser network found for JH. The 

result of the instability of the PJH arises as the minima of the objective function is considerably 

erratic in the position of nearby sensors, indicating that the solution may be consequence of the 

numerical approximation in calculating joint entropies. 

5.7 Conclusions 

This chapter explored the problem of optimal design of static sensor networks. The first 

conclusion in this direction, is that using a local-polar coordinate system together with the 

particle swarm optimisation algorithm, are the most efficient way to solve the problem of the 

optimal network configuration that minimises the average Kriging variance. This problem 

formulation and optimisation algorithms are used in the experiments of this Chapter, as well as 

in the optimal scheduling of dynamic sensors in the next Chapter. 

 

From the relationship between objective functions, it was found that the design of precipitation 

sensor networks is a determinant factor in the performance of hydrological models. The number 

of sensors in did not affect the best performance configuration, as the same performance was 

achieved with 3, 4, and 5 sensors. However, a larger number of sensors reduces considerably 

the probabilities of selecting an inadequate configurations of the network, increasing its 

reliability. These results confirm those obtained by Dong et al. (2005) and Xu et al. (2013), 

which also highlights that the impact of the position of the sensors in the hydrological model 

performance is inversely proportional to the available number of sensors. In conclusion, 

networks with less sensors require a more careful design, while networks with more sensors 

make the hydrological model performance less sensitive to the final configuration of the sensor 

network. 

 

The results also show that the bias is less sensitive to the position of the sensors than the other 

error metrics. Therefore, optimal sensor networks are more critical for applications that use 

information in short-time windows, such as early warning systems and real-time control. Long-

time window applications such as water resources planning, do not require sensor networks to 
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be as refined. This can be explained as the systematic errors in the precipitation measurement 

are filtered out in the long-term average, thus having a lesser impact in the model bias with 

respect to metrics such as NSE. As conclusion, the monitoring objectives control to a large 

extent the final results of the optimal sensor networks. 

 

The trade-off analysis between the average Kriging variance and the hydrological model 

performance, reveal a weak dependence between these two objectives. In the literature this 

property has been speculated, but has not been confirmed. However, we confirm that the 

minimisation of the average Kriging variance leads to the maximisation of the NSE (and 

consequently reduction in the bias) in the Brue Catchment. As consequence, the objective 

functions for scheduling of dynamic sensors in the following Chapter, will aim to minimise 

metrics of average spatial variability of the precipitation field. 

 

Additionally, it was found out that the results for maximum NSE performance were located in 

areas with a low MKV. However, using MKV for the design of sensor networks does not 

guarantee that the performance of the hydrological model is optimal, as acceptable results for 

NSE were found with every single value of MKV, but models with bad performance were 

always found in areas with high MKV. Therefore, this index may be used as a secondary 

objective to consider, as it is useful in identifying sensor networks that yield poor model 

performance. Similar conclusions can be derived for C-PQ, as the inter-relationship with NSE 

is similar to MKV. 

 

Signs of over/under gauging (and therefore indication of the adequacy of the number of sensors) 

can be detected in the relationship between some objective functions. Particularly, the 

relationship between AKV and TC show a dependency which varies in function of the number 

of sensors. Also, the relationship between the JH and PJH reveals the amount of information 

that overlaps between measurements. If the catchment is over gauged, the JH and PJH should 

differ considerably, as the joint entropy for more than two variables cannot be neglected. On 

the contrary, if the catchment is under gauged, the information overlapping between more than 

two variables is expected to be minimum, and therefore, estimations of JH and PJH will be 

more strongly correlated. 

 

The optimal configuration of sensor networks for the different objective functions of this 

Chapter, show great differences in the solutions. These results indicated that, unless the 

objective functions are part of a generalised field property (such as the correlogram in AKV 

and MKV), may be susceptible to singularities in the data. In particular, information-based 

metrics, are quite susceptible to this feature. Therefore, it is possible that smoothed precipitation 

fields (in time and space), may provide a more consistent dataset for the design of sensor 

networks with to be used in the other information-theory objective functions. 

 

Finally, it was found that the AKV show a relatively high robustness, among all of the model-

free objective functions and number of sensors. This result indicates that the changes in the 

objective function vary gradually with the position of the sensors, indicating that the function 

is indeed concave in the vicinity of its optimal locations, making it relatively insensible to small 
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deviations from its optimal location, in contrast to information-based metrics. This conclusion 

reinforce the use of formulations based on the minimisation of interpolation variance as 

objective function in the design of sensor networks with dynamic components, as will be 

considered in Chapter 6. 

 





 

6. Optimisation of dynamic precipitation 

sensor networks 

6.1 Introduction 

Measurements of hydrological variables are carried out to extract information about water 

systems with various aims, including the understanding of processes and the improvement in 

decision making (Hart and Martinez 2006). A side objective is, therefore, the minimisation of 

the uncertainty in the estimation of hydrological variables (Loucks et al. 2005). Conventional 

measurements of hydrological variables are carried out using stations which remain in the same 

location for extended periods of time (WMO 2008a).  

 

Currently, observations methods have evolved from ground stations to remote observations and 

dynamic sensors, including those carried by citizens (citizen observatories) (Lanfranchi et al. 

2014, Alfonso et al. 2015). The latter data source implies that the observations are carried out 

at an irregular sampling frequency, are scattered in space (Mazzoleni et al. 2015), and which 

may vary according to the level of engagement of the participants (Mazzoleni et al. 2018). 

Although one of the reasons for using citizens for monitoring is the potential of larger scalability 

(with the help of volunteers), with respect to conventional observation methods. There are well-

known challenges that make it difficult to generate sustainable citizen observatories 

(Gharesifard and When 2016, 2017, de Vos et al. 2017, Aceves-Bueno et al. 2017).  

 

To include citizen’s observations into conventional data streams, these are treated as if were 

taken using dynamic sensors. From the measurement side, these are heterogeneous 

observations, and handled as described in sections 4.2 and 4.3. From the scheduling side, means 

that we assume that citizens are highly engaged, and therefore, they will always be available to 

travel to any place, at any given moment. In case that these latter assumption is not valid, the 

data from citizens will only be opportunistic (anything that is send is added to the data stream). 

In this document, we use the term citizen sensors to denote not scheduled observations, while 

using the term dynamic sensors for schedulable observations. 

 

Following the structure of the previous chapters, we explore two main alternatives for 

scheduling the position of dynamic sensors, based on model-based and model-free approaches. 

Model-based approaches minimise the error of lumped hydrological models to schedule the 

position of dynamic sensors, and is tested in section 6.3.1. Also, model-free approaches are 

tested and three alternatives are proposed, based on the minimisation of average volumetric 

uncertainty based on Kriging variance (6.3.2), non-stationary Kriging variance (6.3.3), and 

based on the discrepancy of a set of an ensemble of different families of models (6.3.4).  
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To ensure the maximum utility of the dynamic sensors, it is necessary to develop a methodology 

for optimal scheduling of the position of the set of dynamic sensors. The scheduling strategy 

defines the posing of the optimisation problem and the rules which govern the position of the 

dynamic sensors. In the context of this thesis, finding the optimal location of the sensors is 

denoted as a deployment strategy, while the general set of rules that control the overall 

movement of the sensors is defined as the scheduling strategy. 

 

This chapter is organised as follows. First, we present the optimal scheduling strategy and the 

framework for dynamic sensor deployment. Second, the different objective functions for the 

deployment are presented and discussed. Third, the experimental setup to test the deployment 

strategies is discussed. Lastly, results of the scheduling for each of the deployment strategy are 

presented, and compared against each other. Finally, conclusions, recommendations, 

limitations and further work is discussed.  

 

6.2 Posing the optimisation problem  

The formulation of the problem for the optimal scheduling of dynamic sensor networks (DSN) 

requires the set of conventions that are shown in Figure 6.1. The rectangle represents the spatial 

area that needs to be monitored, the orange triangles (SS) represent the static sensors in the 

network, the grey circles represent the current position of each dynamic sensor (DS), and the 

blue circles represent their target position. The variables that describe the new position of a 

sensor are the distance from the initial position of the sensor (R), and its angle (θ). Therefore, 

the problem is formulated in local-polar coordinates, as described in Section 5.2.2. 

Additionally, each dynamic sensor belongs to a base (B), indicated by the green hexagons in 

the figure, which acts as a resting place for the sensors when is not active. 

X

Y

(R1, θ1)

(R2, θ2)

(R3, θ3)

B1

B3

B2

DS1

DS2

DS3

SS1

SS2

SS3

 
Figure 6.1 Conventions in the optimal scheduling of dynamic precipitation sensor networks 

The scheduling of dynamic sensors is intended to actively respond to precipitation events 

(Haberlandt and Sester 2010). These sensors will be used to carry out measurements in areas 

and times that can potentially yield useful observations, and should be at base position when 
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are not required. One of the criteria set is that the sensors will only leave base (and therefore 

collect data) once the average areal precipitation (P̅) calculated using the static sensor network 

(SSN) is over a threshold tr. A general overview of the strategy for the operation of the sensor 

network is presented in Figure 6.2.  

 

Get available data 
(SSN and DSN)

Return DSN to base 
positions

Deploy DSN

Is     > tr

Calculate average areal 
precipitation (  )

Set deployment 
threshold (t)

Wait for next time step

No Yes

 
Figure 6.2 Overview of the general scheduling strategy of DSN 

The deployment strategy is the central points in this study. It aims to minimise a function related 

to the uncertainty of the total precipitation volume. The uncertainty in the precipitation 

estimations comes from two main sources: measurement uncertainty and interpolation 

uncertainty. The former accounts for instrumental errors and the completeness of the 

observation, and consequently, is directly affected by the displacement of a dynamic sensor. As 

shown in section 4.3, the uncertainty in the measurements is affected by the fraction of time in 

which the sensor is static at a specific site. The latter accounts for the errors coming from the 

interpolation exercise with limited sensors, and it is quantified using field estimations. 

 

To deploy the DSN, three approaches are developed and tested: including the minimisation of 

uncertainty metrics based on 1) stationary Kriging (KVP), 2) non-stationary Kriging (NKVP, 

0), and 3) multi-model discrepancy (MMD). The first two strategies are based on a metric that 

relates the total volumetric uncertainty, under the assumptions of ordinary and non-stationary 

Kriging, while the latter use concepts of equifinality and model ensemble to achieve 

conceptually similar estimates. The formulation and details of these strategies are presented in 

the following sections. 



Optimisation of dynamic precipitation sensor networks 

116 

 

The methodology for the deployment of dynamic sensor networks (DSN) is proposed in Figure 

6.3. The first step consists of obtaining the current position of the DSN, which can differ from 

the planned one due to factors such as accessibility, traffic or others that may constrain the 

placement of the sensors. This thesis does not consider any of these aspects, and assume that 

the sensors are always satisfactorily deployed in their target locations. 

 

Get current position of 
DSN (DSNt)

Generate new Potential 
DSN position (DSNt+1)

Calculate distance 
between DSNt and 

DSNt+1

Assign measurement 
uncertainty to DSNt+1

Evaluate OF

KVP NKVP MMD

Deploy DSN to DSNt+1 

Is OF optimal?

Yes

No

Wait for next time step

Optimisation loop

 
Figure 6.3 Methodology for the deployment of dynamic sensor networks (DSN) 

The second step constitutes the generation of a new position for the DSN. These new positions 

may be selecting by using an optimisation algorithm, and is the beginning of the optimisation 

loop. The new set of solutions are given for each of the dynamic sensors, and consequently are 

used to calculate the distance between the current and the next position of the DSN. 

Additionally, defines the initial position of the sensors for the coming time step. 
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The third step is to add uncertainty to the DSN measurements, depending on how much time 

the sensor remains in the target position (DSNt+1). Assuming that dynamic sensors have a fixed 

velocity, the time available for the sensor to take measurements in the target position can be 

estimated as: 

 

 t𝑖 = 1 −
𝑅𝑖

𝑣
 

Equation 6.1 

 

where t is the time that the sensor i remains in the target position, R represents the total 

displacement and v is the velocity of sensor i. Consequently, the uncertainty due to the 

incomplete observation in time is directly proportional to the amount of recorded precipitation 

and inversely to the fraction of the time that the sensor resides in the measurement location. 

 

In the fourth step, the objective functions to schedule the DSN are evaluated. Depending on the 

deployment strategy, one of the objective functions is evaluated for the new position of the 

sensor network. In case the value of the objective function is not optimal, the process will re-

start again, otherwise the sensors will be deployed to their target positions and the problem will 

re-start in the following time step. 

 

6.3 Objective functions and corresponding strategies for deployment 

In this point, we evaluate strategies that are categorised in two approaches, based on model-

based and model-free formulations. In general, model-based design aims to define the position 

of the dynamic sensors, which directly minimise the error of a hydrological model; in the 

context of this thesis, using lumped hydrological models. In this section we explore the potential 

use of the error of lumped hydrological models as a driver for defining the optimal sampling 

strategy by analysing the error propagation in hydrological models (6.3.1). In model-free 

formulations, the objective solely rely on information derived from the data itself. As previously 

discussed, these metrics will be based on the minimisation of the overall uncertainty of the 

precipitation volume, as discussed in Section 6.1, based on the findings of Chapter 5. 

 

6.3.1 Can model-based objective functions be used for model-based optimisation 

of dynamic sensor networks? 

One of the possibilities to guide the deployment of dynamic sensor networks is to reduce the 

error in rainfall-runoff models. Ideally, better observations will reduce the model error. For this 

purpose, it is necessary to understand the relationship between the inputs and output of the 

model, considering that hydrological processes are often non-Markovian. Additionally, it is 

required to establish a way to map from the model error into the inputs (inverse model), and 

therefore to the position of the DSN. Applications of inverse models to establish precipitation 

estimates from discharge have been proposed (Herrnegger et al. 2015, Volkmann 2011, 

Kunstmann et al. 2006). 
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The current approaches for estimating precipitation from discharge (inverse models), assume 

that the processes are Markovian (Herrnegger et al. 2015), and therefore, only a previous 

condition and a perturbation of the inputs is required to yield the next outputs and states. This 

assumption is valid as long as the model states converge close to the models of the forward 

model, implying that the effects of the precipitation variation are only immediately seen. In case 

the model is not Markovian, the model errors will accumulate over time.  

 

As result, it will limit the use of the model error at the current time, rendering it unusable to 

determine the optimal network configuration in the previous step. Additionally, inverse models 

only provide information about the value of (average) precipitation that the model requires to 

adjust its error, but do not offer insights (and do not seem required at that point), of where 

sensors should be. 

 

To understand the error propagation in a real case study, the Brue catchment is used and 

modelled with three different hydrological models: HBV96, Sugawara and linear reservoir. An 

analysis to precipitation perturbations is carried out for three different hydrological models. The 

analysis consists of comparing the difference in discharge estimates, by adding a perturbation 

of 1 mm of precipitation at each time step of a model run window and evaluating the difference 

along the time series.  

 

If the perturbations on the discharge add up linearly, then the model is Markovian, and the effect 

of the perturbations should not affect the discharge estimations retrospectively. On the contrary, 

if the states of the model influence the precipitation estimates, the discharge at a given time step 

comes from different precipitation patterns, and therefore render the problem unsolvable. 

 

The results for the HBV96 model (Figure 6.4) show that the perturbation in the precipitation 

time series has a long impact in the precipitation estimations, which largely spreads in time. 

The differences in discharge vary greatly, especially after high precipitation events, indicating 

that higher variations tend to decrease in time, but are conditioned to the initial conditions of 

the system. Besides, the magnitude of the error is directly linked with the evolution of the 

precipitation event, as errors which are induced in dry spells of the catchment are more 

significant in posterior steps. 
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Figure 6.4 Propagation of precipitation errors in the HBV96 model. Scale bar shows the difference in discharge between 

original and perturbed model [m³/s] 

The results of the Sugawara model (Figure 6.5) shows a different behaviour to the propagation 

of precipitation errors in the model. In this case, it is possible to observe a decreasing trend in 

the magnitude of the simulation error, which is propagated in time, depending on the preceding 

states of the model (especially upper tank) at the moment of the error propagation. This explains 

the lack of response of the model for the dry spell; as soon as the upper tank (see Section 2.4.1) 

has enough volume, the errors in the model increase significantly, but not in function of the 

discharge. 

 

 
Figure 6.5 Propagation of precipitation errors in the Sugawara model. Scale bar shows the difference in discharge 

between original and perturbed model [m³/s] 

In contrast with the HBV96 and Sugawara, the linear reservoir model (Figure 6.6) shows a 

monotonic response to the measurement errors in the precipitation estimates. In this figure a 

constant and decreasing error value occurs in discharge estimates, which are not conditioned 

by the dynamics of the discharge of precipitation in future steps. In this situation, it is possible 

to determine that both, the forward and inverse hydrological model are Markovian, and thus, 

only one step is required to go forward or backwards in time. 
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Figure 6.6 Propagation of precipitation errors in the linear reservoir model. Scale bar shows the difference in discharge 

between original and perturbed model [m³/s] 

As a conclusion, it is not possible to assess the influence of the precipitation errors based on the 

last discharge measurement, using a hydrological model consisting of more than one tank. The 

conclusion is reached as there exist thresholds for the behaviour of the multi-tank system, which 

prevents the response surface of the model from being smooth, inducing larger errors, especially 

in quick response processes. Additionally, the response of any lumped hydrological model can 

only account for the errors in the overall areal precipitation error, but does not provide a logical 

framework to deploy dynamic sensor networks. 

6.3.2 Kriging Variance (KVP)  

One of the suggested objectives to design dynamic sensor networks is to minimise the 

uncertainty of the estimation in the precipitation volume. This objective function is equivalent 

to the minimisation of the Kriging variance in the design of static sensor networks, 

acknowledging that precipitation is not homogeneous in the catchment, but changes as the 

precipitation event develops.  

 

This method can be understood as a generalisation of the minimisation of the Average Kriging 

Variance minimisation (Pardo-Igúzquiza 1998, Coulibaly et al. 2013, Chacon-Hurtado et al. 

2017), without the assumption that the variance value is homogeneous in all the catchment. As 

such, the objective function is defined as the minimum of the overall volumetric uncertainty of 

the estimation at a given coverage (confidence) level (k), as: 

 

 min: ∫ 𝑝(𝑢) ∗ 𝑘𝜎(𝑢)
𝛺

 
Equation 6.2 

 

where p is the precipitation at the location u, k is the confidence level, which represents the 

number of standard deviations which are used to compute the volumetric uncertainty, which 

varies from 0 (no coverage) to a value of approximately 6.0 (a coverage of approximately 99%), 

as the Kriging error is Gaussian. σ corresponds to the standard deviation of the simulation error 
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in the position u, calculated in the ordinary Kriging estimator. Finally, Ω represents the spatial 

domain of the catchment.  

 

To produce a robust deployment strategy, the sensors should increase its measurement time in 

the target locations, to reduce its uncertainty. To this end, it is possible to trade optimal locations 

at a given step, to be in a better position for the next step, leading to a larger impact in the 

objective function in a time window. In other words, it is possible to allow the sensors to 

displace ahead of time to areas where observations are expected to be of higher importance. 

The problem is formulated in a time window (w), such that the objective function can be written 

as: 

 

 min: ∑ ∫ 𝑝𝑡(𝑢) ∗ 𝑘𝜎𝑡(𝑢)
𝛺

𝑤

𝑡=1

 Equation 6.3 

6.3.3 Non-stationary Kriging Variance (NKVP) 

Similarly to the previous method, the deployment of the dynamic sensors can be driven by the 

minimisation of the total precipitation volume uncertainty, now considering that the 

precipitation field is modelled as non-stationary. The formulation is basically the same as for 

KVP. However, the estimations of precipitation and error of the estimations are calculated using 

non-stationary estimates as discussed in Chapter 3: 

 

 min: ∫ 𝑃∗(𝑢) ∗ 𝑘𝜎∗(𝑢)
𝛺

 
Equation 6.4 

 

where P* is the precipitation at the location u estimated using a non-stationary approach (see 

Section 4.4.3). k is the confidence level, which represents the number of standard deviations 

which are used to compute the volume uncertainty, which varies from 0 (no coverage) to 

approximately 6, for a coverage of approximately 99% of the PDF, making clear Gaussianity 

assumptions. σ* corresponds to the standard deviation of the simulation error in the position u, 

calculated using the non-stationary Kriging estimator. Ω represents the spatial domain of the 

catchment. 

 

Similarly to KVP, the problem can also be posed in a time-window, such that it is possible to 

trade measurements for preferential positions. Better position means that sensors can stay 

longer in the target locations, and therefore, reduce the uncertainty due to the partial observation 

of the precipitation. In this respect, the optimisation can be carried out in a time window (w), 

such that: 

 

 min: ∑ ∫ 𝑝𝑡
∗(𝑢) ∗ 𝑘𝜎𝑡

∗(𝑢)
𝛺

𝑤

𝑡=1

 
Equation 6.5 
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6.3.4 Multi-Model Discrepancy (MMD) 

Typically, precipitation models are data-driven, so several models can describe the process with 

similar accuracy. This is known as equifinality (Beven and Freer 2001), which occurs because 

the models are either statistical or mathematical approximations, parameterised with incomplete 

information, from noisy measurements, using likelihood metrics that may be biased. As 

consequence, there is not a single best model that is best in each condition to represent the 

phenomena, and therefore, an ensemble of equifinal models may be useful to provide insights 

regarding the spatial uncertainty in the precipitation field. 

 

These equifinal models can be used to build ensembles of models which have similar 

explanatory capabilities about the precipitation field. Assuming that there is no superior model 

in the ensemble, it is possible to estimate the interpolation uncertainty, by measuring the 

divergence of the estimations. 

 

Considering that the models are tied to observations, the measurement of the divergence of the 

ensemble is a metric of the lack of quality in the interpolation. This divergence between models 

can be directly associated with uncertainty in the spatial interpolation, which not only depends 

on the distance between measurements and interpolation targets, but also by the gradients 

between observations. The optimal location of dynamic sensors is a problem that can be 

formulated as the minimisation of the divergence of the equifinal model ensemble: 

 

 𝑚𝑖𝑛:  
1

𝑚
∑ √∑ (𝑒𝑢,𝑖 − 𝑒𝑢̅̅ ̅)

2𝐸
𝑖=1

𝐸

𝑚

𝑢=1

 
Equation 6.6 

 

Where E is the total number of ensembles, e is the ensemble i at location u and m is the total 

number of discrete interpolation targets in the catchment, used to construct the precipitation 

field. In the same manner, as with the other strategies, the problem can be posed in a time-

window (w), such that is possible to trade measurement opportunities, for better positions in 

the overall time window. Therefore, the objective can be posed as: 

 

 min: ∑
1

𝑚
∑ √∑ (𝑒𝑢,𝑖 − 𝑒𝑢̅̅ ̅)

2𝐸
𝑖=1

𝐸

𝑚

𝑢=1

𝑤

𝑡=1

 
Equation 6.7 

In this particular case we use an ensemble of 9 different types of models. These models are: 

simple Kriging, squared simple Kriging, ordinary Kriging, squared ordinary Kriging, cubic and 

linear interpolation, radial basis functions, inverse distance weighting and nearest neighbours. 

6.4 Experimental setup and solution of the optimisation problem 

The experiments aim to explore the optimal deployment of dynamic sensors under different 

time-windows and different artificial perturbations in the baseline precipitation field. 

Additionally, each strategy is tested for two different precipitation events in the Brue, and 
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Bacchiglione case studies, while KVP and MMD are tested in the Doncaster case study, due to 

the limited size of the baseline network (3 sensors) to make adequate estimations of non-

stationary variograms. 

 

To implement the algorithm shown in Figure 6.3, several assumptions have been made. First, 

the threshold for the deployment of dynamic sensors is set at 1.0 mm/hr, using the data from 

the static sensor network. Second, the sensors return to their corresponding base as fast as 

possible. Third, the dynamic sensors do not acquire data while returning to its base position. 

Fourth, we assume a sensor velocity of 20 Km/h for Brue and Bacchiglione, and 30 Km/h for 

Don. More realistic definitions of the velocity of the sensors may be re-defined in subsequent 

studies. 

 

The time window determines how the optimisation problem is posed. As such, each additional 

step in the window generates a new set of sensor positions in time. Consequently, the 

dimensions of the optimisation problem grow proportionally with the size of the window. As 

part of the experiment, the problem was run in batches of equal window size, for 1, 3 and 6 

hours. It has to be noted that the optimisation problem is not re-started in each time step, but a 

new problem is solved at the end of each time window. 

 

The base of the dynamic sensor network is defined to account for different conditions regarding 

the scheduling. In the Bacchiglione case study, the dynamic sensors were homogeneously 

distributed inside the catchment, with special interest towards ungauged areas. In the Brue 

catchment, the sensors were (on purpose) located close to each other, towards the North of the 

catchment, opening up a relatively large under-gauged area in the East of the catchment. In the 

Don River catchment, the base position of the sensor network was located in large under gauged 

areas, mostly outside of the convex hull of the limited static sensor network. Table 6.1 presents 

the base positions of each of the dynamic sensors in each of the case study. The colour in the 

top of the table corresponds to the colour of the sensors in the subsequent figures. 

 
Table 6.1 Base position of the dynamic sensors in each case study (column colours for identification purposes in 

subsequent figures  

 
DS 1 DS 2 DS 3 

 N [Km] E [Km] N [Km] E [Km] N [Km] E [Km] 

Bacchiglione 1685.0 5065.0 1695.0 5061.0 1690.0 5045.0 

Brue 367.7 140.3 365.2 142.1 - - 

Don 590.0 5930.0 605.0 5905.0 610.0 5920.0 

 

The experiments are set in two sets, depending if artificial perturbations are added or not to the 

deployment strategy. In this direction, we describe several fields which are going to be used in 

setting up the experiments as shown in Figure 6.7. The baseline field corresponds to the field 

built with all available data in the case study, represented by the four static (black) sensors. The 

perturbation, is a spatially random auto-correlated field that affect the precipitation field. The 

sampling field is considered as “true”, as all the observations during the experiments will be 

taken from here. Finally, the sampled field corresponds to the field that is built using the 
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observations coming from the sampling field, either being taken by static (grey) or dynamic 

sensors (orange). 

 

Baseline field

Sampling field

Sampled field

Perturbation

+

==

 
Figure 6.7 Schematisation of the baseline, perturbation, sampling and sampled precipitation fields 

The sampled field is built the data coming from all static and dynamic sensors in Bacchiglione 

and Don, but uses data coming from a reduced static network for Brue. This decision is made 

due to the high density of static sensors in the area, which is far from any practical application, 

rendering the deployment of dynamic sensors unjustified. Therefore, a reduced static sensor 

network was selected for this case study, such that observation deficiencies occur in the East of 

the catchment. The final configuration of the static sensor network is presented in Figure 6.8. 

 

 
Figure 6.8 Reduced static sensor network in the Brue catchment 

The first set of experiments consists in using the baseline precipitation field as the sampling 

field. The experimental setup for the scheduling of sensor networks in windows of 1, 3 and 6 
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hours, for 2 different precipitation events, are summarised in Table 6.2, where the blue cells 

represent the experiments carried out, and the grey cells the experiments which were not.  

 
Table 6.2 Overview of the experimental setup for the deployment of dynamic sensors 

Case study 
Methods 

KVP NKVP MMD 

Bacchiglione       

Brue       

Don       

 

The second set of experiments consist in systematically modifying the baseline precipitation by 

introducing a spatially auto-correlated perturbation, as described in Annex 3. These 

experiments were carried out using different deployment strategies for a window size of 3 

hours, in the precipitation event 1 only. The summary of the experiments is shown in Table 6.3, 

where blue indicates which methods were used in which case study. 

 
Table 6.3 Overview of the experimental setup for experiments for the deployment of dynamic sensors using different 

perturbation scenarios 

Case study 
Methods 

KVP NKVP MMD 

Bacchiglione       

Brue       

Don       

 

The amplitude of the perturbation is set to 0.5 and 0.8 times the stationary variance for each 

case study. The fluctuation scale is set to 10 Km for short scale and; 20 Km for Brue and 30 Km 

for Bacchiglione and Don for long scale. These experiments are summarised in Table 6.4, and 

its parameterisation in Table 6.5. 

 
Table 6.4 Perturbation scenarios classification in experiment set 2 

  Fluctuation scale 

Amplitude Short Long 

Mid Ex1 Ex2 

High Ex3 Ex4 

 
Table 6.5 Parameterisation of the perturbation for each of the scenarios to be tested in the case studies in experiment set 2 

Case study 
Perturbation specification 

Ex1 Ex2 Ex3 Ex4 

Bacchiglione a = 0.5, f=10 - - a = 0.8, f=30 

Brue a = 0.5, f=10 a = 0.5, f=20 a = 0.8, f=10 - 

Don a = 0.5, f=10 a = 0.5, f=30 a = 0.8, f=10 - 
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6.5 Results and discussion 

6.5.1 Scheduling of dynamic sensors using KVP 

The results of scheduling the DSN using the KVP deployment strategy for window-size of 1, 3 

and 6 hours are presented for the case study of Bacchiglione, Brue and Don River in the 

following sections. Additionally, the problem is solved for the different perturbation scenarios, 

as defined in Table 6.5. In this chapter, the path of each dynamic sensor is represented by a 

solid line with a different colour. 

 Bacchiglione 

The results for a window size of 1 hour for precipitation events 1 and 2 in the Bacchiglione 

catchment are presented in Figure 6.9. The results show that the sensors do not go far from their 

base, with a frequent return of the sensors to their base position. Additionally, it is possible to 

observe that the sensors tend to stay in the vicinity of its base position. However, in the second 

event, DS3 (green) overtakes at some point the position of DS2 (orange), showing that the 

sensors are working in a cooperative manner when being scheduled. 

 

 
Figure 6.9 Scheduling of dynamic sensors using KVP strategy in Bacchiglione River for precipitation event 1 (left) and 2 

(right), using one hour window size 

For the with 3h window-size, it is possible to see a shifting from the original areas of influence 

of the sensors (Figure 6.10). In the first precipitation event, the sensors tend to move SE, 

towards areas with a lower density of static networks, which goes in contradiction with the 

results obtained for the deployment using a shorter time window. A similar behaviour is 

exposed in the second event, as the sensors enlarge its area of influence, and it is possible to see 

that DS2  (orange), goes far in the direction NW, even in the presence of the DS1 (blue), 

indicating that the deployment included several steps in order to reach such location. 

Additionally, the DS3 (green) has a much more active role covering moving around the South 

of the catchment, especially towards the mountainous area located in the South-East of the 

catchment. 
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Figure 6.10 KVP deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using three hours 

window size 

Finally, the deployment of the dynamic sensors in a time-window of 6 hours, reveals a large 

overlap among sensors, in both events (Figure 6.11). One of the reasons is attributed to a more 

frequent deployment of the dynamic sensors, as well as a more relaxed limitation with respect 

to the displacement capabilities of the sensors. As it was previously shown, one of the largest 

uncertainty sources in the use of dynamic sensors is related to the fraction of the time that the 

sensor is able to remain in the same place, to carry out the measurement. As consequence, in a 

larger time-window, the sensors are deployed further, as the displacement limit increases 

proportionally with the time ahead that the sensor deployment is planned. In practice, this yields 

to more sparse deployments of the dynamic sensors, increasing the reach of the network. 

 

 
Figure 6.11 KVP deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using six hours window 

size 

 Brue 

The results for the deployment of the sensor networks in the Brue catchment using a time-

window of 1 hour are presented in Figure 6.12. The results show the consistent re-visit of the 
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base for each of the sensors in both events. The reasons behind are the size of the catchment, 

which makes it possible to travel between two points within the catchment possible in one step, 

and also indicating intermittent precipitation, especially in event 1. On the contrary, the 

deployment of sensors for the second precipitation event seems to find a preferential area for 

the deployment, towards the Centre-East side of the catchment, which lies between the two 

most eastern sensors in the catchment. In the second event, there is also a constant re-visit to 

the base point. 

 

 
Figure 6.12 KVP deployment results in Brue for precipitation event 1 (left) and 2 (right), using one hour window size 

When the window size increases to 3 hours (Figure 6.13), the results seem to diverge from the 

previous. In this case, the deployment of the sensors is more consistent. However, due to the 

size of the catchment, and the proximity of the base points of the two dynamic sensors, there is 

no clustering of the position of the dynamic sensors, and thus, no preferential location for none 

of them. As an example, it can be seen that in the first precipitation event, the DS1 (blue) sensor, 

deploys towards the West end of the catchment, as the DS2 (orange) deploys at the farthest 

eastern position. 

 

 
Figure 6.13 KVP deployment results in Brue for precipitation event 1 (left) and 2 (right), using three hours window size 
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In the 6-hour time-window interval, it is possible to observe that both sensors travel far from 

its original location. Also, it is possible to observe how returning to the base point is less 

frequent, as consequence of longer plan times. The reason for this behaviour can be attributed 

to the penalty in the objective function by arriving late to the scheduled optimal measurement 

point. As consequence, there is a higher uncertainty in the measurements due to the partial 

observation of the precipitation event in the target location. Therefore, it is possible to 

appreciate short displacements, preceded by long jumps. 

 

 
Figure 6.14 KVP deployment results in Brue for precipitation event 1 (left) and 2 (right), using six hours window size 

 Don 

The results for the scheduling of dynamic sensors using KVP in the Don River catchment for a 

window size of 1 hour are presented in Figure 6.15. Due to the size of the catchment, it is 

possible to observe that the sensors are heavily constrained by the displacement capability, and 

the penalty on the objective function, due to the partial observation of the precipitation event. 

Consequently, the deployment of the sensors occurs only in the vicinity of the base position, 

and thus, there is little interaction among sensors. As result, there are no major differences in 

the deployment of the dynamic sensors between the two events. 
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Figure 6.15 KVP deployment results in Doncaster for precipitation event 1 (left) and 2 (right), using one hour window size 

When the time-window for the deployment increases from 1 to 3 hours, it is possible to observe 

a stronger interaction among dynamic sensors (Figure 6.16), especially between the blue and 

green sensors, which are the closest. The increase in the time-window in solving the optimal 

deployment problem makes possible to increase the reach of the network, and therefore, boost 

the area of influence of the dynamic sensors. However, it is possible to observe that clusters are 

mostly maintained, as eventually, sensors rotate around its base position. 

 

 
Figure 6.16 KVP deployment results in Doncaster for precipitation event 1 (left) and 2 (right), using three hours window 

size 
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When the time-window of the deployment problem increases from three to six hours (Figure 

6.17), the deployment of the DSN seems to follow the same trends as previously. As in the 

previous time-window, it is possible to observe that the deployment of the sensors revolve 

around their base positions generating clusters, and rarely distant sensors overlap. It is possible 

to see that during these precipitation events, the orange and blue sensors get near to the base of 

each other, whereas the green sensor does, especially towards the blue cluster, indicating that 

there seem to be some parts dominated for each sensor, which may suggest that is possible to 

use soft constraints in the deployment of the dynamic sensors. 

 

 
Figure 6.17 KVP deployment results in Doncaster for precipitation event 1 (left) and 2 (right), using six hours window size 

6.5.2 Scheduling of dynamic sensors using NKVP 

 Bacchiglione 

The scheduling of dynamic sensors using the NKVP strategy is carried out in the Bacchiglione 

and Brue catchments. Don River catchment is left out, because of the insufficient amount of 

baseline data to generate informative non-stationary variograms. 

 

The results for the application of the NKVP to deploy the dynamic precipitation sensors using 

a time-window of one hour in for two precipitation events in the Bacchiglione catchment is 

presented in Figure 6.18. The results indicate a strong deployment of the sensors to remain in 

the areas far from the current monitoring network. Also, it is possible to observe that even for 

a single hour time-window, the deployment of the sensors is considerable. In this deployment 

scenario, it is possible to observe that sensors tend to revolve around its base positions, but with 

significant interactions among them. 
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Figure 6.18 NKVP deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using one hour 

window size 

The results of the deployment in a time-window of 3 hours are presented in Figure 6.19. The 

results show that seems not to be a clustering of the scheduling of the dynamic sensors, as they 

are freely roaming through the catchment in both precipitation events. In a part of the events, it 

is possible to see that the sensor assigned to the most Southern base (DS3, green), eventually 

goes past the most Northern base (DS1, blue) in the first precipitation event. After the movement 

of the sensor is completed in this location, it finds the shortest route to return to its base, 

explaining the stop of the sensor in a point outside of the catchment, and as discussed, no 

measurements are being taken by the dynamic sensor in such conditions. 

 

 
Figure 6.19 NKVP deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using three hours 

window size 

The 6-hour time-window deployment using the NKVP strategy (Figure 6.20), reveals that the 

influence clusters of the dynamic sensors are almost none, as the sensors do not seem to cluster 

towards particular areas. This can be understood that the deployment of the sensors responds to 

the precipitation dynamics, beyond the conditions forced by outside factors, such as rules for 

the return to base. Additionally, it is possible to assess that the interaction among sensors shows 
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a cooperative behaviour among them in the search for the optimal configuration of the whole 

sensor network at each time step. 

 

 
Figure 6.20 NKVP deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using six hours 

window size 

 Brue 

The results for the case of Brue are fundamentally different with respect to the results obtained 

for the Bacchiglione catchment. For the Brue catchment, it is possible to observe a tendency in 

the deployment of the dynamic sensors, using a one hour time-window (Figure 6.21), to be 

clustered towards the Centre-East of the catchment in the two precipitation events. This area 

can be seen as a potential target for localising sensors, due to the relatively low density of 

sensors in comparison with the rest of the catchment, purposely defined in the selection of the 

reduced sensor network for this experiment. 

 

 
Figure 6.21 NKVP deployment results in Brue for precipitation event 1 (left) and 2 (right), using one hour window size 

The results of using a time-window of 3 hours for scheduling the dynamic sensors are presented 

in Figure 6.22. The results show that indeed there is still a tendency on positioning the dynamic 

sensors towards the Centre-East are of the catchment, especially evident in the first event. 
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However, the second event reveals a more freely relocation of the sensors around the catchment, 

from which are of especial interest, the deployment of sensors towards the West end of the 

catchment. In this area, the density of sensors is maximum, but the lack of precipitation in other 

areas defines this place as optimal in this context. 

 

 
Figure 6.22 NKVP deployment results in Brue for precipitation event 1 (left) and 2 (right), using three hours window size 

The results for the 6-hour time-window deployment of the dynamic sensors is presented in 

Figure 6.23. The results in the position of the sensors slightly differ from the previous case, 

with the condition that the reach of the sensors is increased. These results can be explained by 

the fact that in longer time windows, the sensors can be closer to the optimal point before the 

point becomes optimal, thus reducing the uncertainty associated with the partial recording of 

the precipitation, which is exponentially proportional to the travel distance. Additionally, 

sensors travel relatively further than in smaller time-windows, and therefore, return to the base 

position less often. 

 

 
Figure 6.23 NKVP deployment results in Brue for precipitation event 1 (left) and 2 (right), using six hours window size 

The experimental results for the 3-hour time windows suggest that the base position of the 

sensors can be improved. As discussed, the problem was purposely posed so that there are 

evident flaws in the design of the static sensor network, as well as the location of the base 
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position of the dynamic sensors. The results show a tendency of the dynamic sensors to relocate 

themselves to the Centre-East area of the catchment, indicating that this area may be of interest 

to locate the base of the dynamic sensors, thus reducing the displacement of the sensors. The 

reduction in the displacement distance has an effect on the overall cost of deployment of the 

sensors, as well as it reduces the uncertainty due to a partial recording of the precipitation event. 

 

6.5.3 Scheduling of dynamic sensor networks using MMD 

 Bacchiglione 

The results for the 1-hour time-window for the Bacchiglione case study are presented in Figure 

6.24. It is possible to observe how the sensors are solely scheduled around its base position, 

without a particular preferential target around the catchment. It is possible to observe that the 

DS3 (green) sensor prefers locations towards the south of its base position. Additionally, it is 

important to notice that the position of the sensors tends to drift away from the static sensors, 

which may reduce the search space in the optimal scheduling strategy. 

 

 
Figure 6.24 MMD deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using one hour window 

size 

The two case studies show a different behaviour in the deployment of the sensors in the 3-hour 

time-window deployment (Figure 6.25). In the first precipitation, the DS3 (green) and DS1 

(blue) sensors remain in the vicinity of its base position, while DS2 (orange) tends to freely 

roam along the catchment. In the second event, it is possible to observe the DS3 sensor taking 

a more active role. As said before, DS3 never scheduled towards the south of its position in the 

first precipitation event, while only a few times in the second event. In both events, the dynamic 

sensors are consistently deployed towards the large areas between sensors in the centre and 

North part of the catchment. 
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Figure 6.25 MMD deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using three hours 

window size 

Following the same trend in the deployment as the other techniques, and case studies, the 

deployment of sensors in the 6-hour time-window (Figure 6.26), driving the dynamic sensors 

from the vicinity of its base position. It is interesting to observe also how the positioning of the 

dynamic sensors gets closer to the static sensors in comparison with shorter time-windows. This 

indicates that it may be used as non-optimal positions to allow the sensors in posterior steps to 

be in a more adequate position, minimising the total discrepancy in the whole time-window. 

Also it is necessary to observe that there is little deployment of the sensors towards the South 

end of the catchment, in contrast with shorter time-windows, indicating that the optimal position 

of the sensors may be located away from this area, and that only it is measured in short time-

windows, as it is not possible to effectively reach with the current displacement constraints. 

 

 
Figure 6.26 MMD deployment results in Bacchiglione for precipitation event 1 (left) and 2 (right), using six hours window 

size 
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 Brue 

The results for the deployment of dynamic sensor networks in the Brue catchment using the 

MMD approach in a 1-hour time-window are presented in Figure 6.27. For this case, it is 

possible to observe how the sensors tend to be deployed towards the North and East ends of the 

catchments, which corresponds to the areas with the less sensor coverage. In the cases where 

the sensors are deployed towards the West of the catchment, they tend to take extreme positions. 

However, the deployment towards these areas is scarce in comparison with the deployment 

towards the Centre and East. 

 

 
Figure 6.27 MMD deployment results in Brue for precipitation event 1 (left) and 2 (right), using one hour window size 

The results for the deployment of sensors on a 3-hour time-window using the MMD methods 

are presented in Figure 6.28. The results show the deployment of the sensors in a more regular 

fashion in comparison with the one hour time window. It is also of interest to observe how areas 

that were previously of lesser interest in the deployment (such as the Centre-South), become 

more active, in scenarios with longer time-window. The reason for this may be justified by the 

use of this location as trampoline positions so that the overall discrepancy in the time window 

is minimised. 

 

 
Figure 6.28 MMD deployment results in Brue for precipitation event 1 (left) and 2 (right), using three hours window size 
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To complete the experiment, Figure 6.29 shows the deployment of the dynamic sensors in the 

Brue catchment in a 6-hour time-window using the MMD method. In this case, as similarly to 

the other deployment methods, the reach of the sensor network has increased considerably, 

blurring the areas of special interest. However, it is possible to observe (especially in the first 

event) that there still exists a trend for deploying the sensors towards the Centre-East of the 

catchment. 

 

 
Figure 6.29 MMD deployment results in Brue for precipitation event 1 (left) and 2 (right), using six hours window size 

 Don 

The results for the deployment of the dynamic sensors in the Don River catchment using a 1-

hour time-window are presented in Figure 6.30. As discussed in previous stages, the 

characteristics of the Don River catchment is that is the largest case study in extension, and at 

the same time, has the lower amount of static sensors to guide the deployment of the dynamic 

sensors. As consequence, it is possible that the static sensor networks lack the proper coverage. 

As consequence, it is possible to observe, that the sensors tend to stay in their influence areas, 

much more than in the other case studies. Also, it is possible to observe that the algorithm 

position the sensors towards the edge of the catchment, as is evident in the most Southern 

sensor, DS2 (orange), which deploys towards the Southern end of the catchment, while the most 

Eastern sensor, DS3 (green) deploys preferably towards the North-East of its base position in 

both events. 
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Figure 6.30 MMD deployment results in Don for precipitation event 1 (left) and 2 (right), using one hour window size 

The results of the scheduling of dynamic sensors in a 3-hour time-window using MMD are 

presented in Figure 6.31. The results reveal a similar behaviour with respect to the 1-hour time 

window, indicating that there is no considerable overlap among sensors, showing that it is 

possible (at least to this time-window) to effectively assign dynamic sensors to specific parts of 

the catchment. Also, by extending the time-window to three hours, it was possible for the 

sensors to extend its reach, deploying furtherly, but radially towards their base positions. 

Additionally, it is possible to observe that the sensors start to cooperate, as there is a movement 

towards the centre of the catchment, especially evident in the second event. 

 

 
Figure 6.31 MMD deployment results in Don for precipitation event 1 (left) and 2 (right), using three hours window size 



Optimisation of dynamic precipitation sensor networks 

140 

 

When the time-window extends to 6 hours (Figure 6.32), it is possible to observe a similar 

pattern to the 3-hour time-window. In this case, it is possible to see how the green and blue 

sensors merge their area of influence, while the orange sensors remain within its own area of 

influence. The cooperation can be understood as the North part of the catchment has a far greater 

coverage with respect to the South, and therefore, the orange sensor has to account for the 

dynamics of the precipitation field in this area, which is also explained by the lack of capacity 

of the models to agree (and consequently diverging) towards largely ungauged areas. 

 

 
Figure 6.32 MMD deployment results in Don for precipitation event 1 (left) and 2 (right), using six hours window size 

6.5.4 Comparing solutions corresponding to different objective functions 

Due to the characteristics of the case studies, and the incompatibility of the deployment 

strategies, the results between approaches is not quantitatively compared. The analysis 

compares the value of the objective functions for the two precipitation events in three case 

studies, and for the three (where applicable) deployment strategies. 

 

The results for the value of the objective functions for the three deployment methods in the 

Bacchiglione River catchment are presented in Figure 6.33, for the Brue Catchment in Figure 

6.34 and for the Don River Catchment Figure 6.35. The results show that even if there is no 

correspondence of the units among methods, their own values tend to peak at similar times, 

indicating that there exists a correspondence among methods. Indubitably, the similitude 

between the objective function between KVP and NKVP is evident, differing mostly in the 

orders of magnitude of the variables. This can be explained by the fact that both are a measure 

of variance in the field, and therefore, the dynamics are controlled by those of the precipitation 

field and the deployment of the sensors. 
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Figure 6.33 Objective function for event 1 (left) and event 2 (right) using different deployment methods and time-windows 

in the Bacchiglione River catchment 

 
Figure 6.34 Objective function for event 1 (left) and event 2 (right) using different deployment methods and time-windows 

in the Brue catchment 

 
Figure 6.35 Objective function for event 1 (left) and event 2 (right) using different deployment methods and time-windows 

in the Don River catchment 

Additionally, it is possible to observe that the increment in the time-window for the deployment 

of the sensors has an important effect in the optimality of the results. Longer time-windows 

show consistently lower peaks, and therefore, suggesting that the use of non-optimal location 

to deploy sensors may be of great importance to increase the reach of the sensors, and to reduce 

the uncertainty associated with the partial recording of the precipitation. 
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6.5.5 Sensitivity of solutions to uncertainties in the generated precipitation field 

This section explores the effect of the deployment of dynamic sensors in cases where 

perturbations are added. This perturbation is artificially introduced, aiming to explore the effect 

unknown processes in the precipitation field. The results explore the experiments presented in 

Table 6.5, for the strategies in each case study as described in Table 6.4. The experiments are 

presented for the first precipitation event in each of the case studies. The results are presented 

by case study, perturbation experiment and finally deployment strategy. 

 Bacchiglione 

The relative comparison of the results in the deployment for a time-window of three hours, for 

perturbations with mid amplitude and fluctuation scale (Ex 1), and high amplitude and long 

fluctuation scale (Ex4) using the KVP as deployment method are presented in Figure 6.36. The 

results of the two methods reveal significant differences in the deployment of the network. For 

Ex 1, the sensors explore freely the solution space, with a preference for the Centre-Southern 

end of the catchment, while Ex 4 drives the sensors to explore the catchment more uniformly.  

 

 
Figure 6.36 Optimal KVP deployment in Bacchiglione for Ex 1 (left) and Ex 4 (right) 

The added perturbation foster the dynamic sensors to explore other areas that were not part in 

the original deployment, making the cooperation among sensors more evident. The effect that 

the fluctuation scale and amplitude of the perturbation increases (from Ex 1 to Ex 4) show that 

the results tend to locate the dynamic sensors towards smaller ungauged areas, which may result 

into smaller influence area of the static sensors. 

 

The same experiment repeated for NKVP strategy, and the results are presented in Figure 6.37. 

The results show a similar behaviour for the first perturbation experiment (Ex 1), but a slightly 

different trend in the second (Ex 4). In the first, the deployment of the dynamic sensors occurs 

mostly towards the Centre-South of the catchment, where green and orange sensors have a more 

active role, while the blue sensor tends to monitor the North end. In the second perturbation 

experiment, the deployment occurs in more homogeneously, towards the ungauged areas in the 

centre of the catchment. This behaviour seems to highlight the importance that the spatial 



Optimisation of dynamic precipitation sensor networks 

143 

correlation structure of that the perturbation has in the deployment of DSN. Considering this, it 

is possible to suggest that the effect of the fluctuation scale of the precipitation process has an 

important role in the definition of the deployment of dynamic sensors using the NKVP method. 

 

 
Figure 6.37 Optimal NKVP deployment in Bacchiglione for Ex 1 (left), Ex 4 (right) 

 Brue 

The results for the deployment of dynamic sensors in three perturbations experiments (Ex 1, Ex 

2, Ex 3) in the Brue catchment, using the KVP method are presented in Figure 6.38. The results 

show a tendency of the sensors to be located towards the North and East side of the catchment 

in the events with a short fluctuation scale, in contrast with the deployment in the events of 

perturbations with a long correlation scale. In other words, indicating that in short correlation 

scales, the variance of the estimation grows significantly faster, and therefore, the values of 

maximum precipitation are more relevant in the deployment of the DSN. On the other hand, if 

the fluctuation scale of the perturbation is longer, then is possible to make better assessments 

of the precipitation field, and therefore, it is more relevant to carry out measurements in areas 

with a low network density (East). 
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Figure 6.38 Optimal KVP deployment in Bacchiglione for Ex 1 (left), Ex 2 (right), and Ex 3 (bottom) 

The optimal deployment of dynamic sensors using the NKVP method for the three noise 

scenarios is presented in Figure 6.39. The deployment of the sensor shows that there is a 

tendency of the sensors to be placed towards the ungauged parts of the catchment in the Centre-

East. It is possible to observe how the increment in the amplitude of the noise lead to the 

deployment of sensors closer to the static sensor network in some occasions (Ex 3), indicating 

that probably the gain of the precipitation towards the static sensor in the North of the catchment 

is driving the deployment. However, it is also possible to observe that in all of the noise 

scenarios, there is always a visit towards the West side of the catchment, probably triggered by 

a precipitation located in this area. 
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Figure 6.39 Optimal NKVP deployment in Bacchiglione for Ex 1 (left), Ex 2 (right), and Ex 3 (bottom) 

The deployment of the dynamic sensors in the three noise scenarios using the MMD in the Brue 

Catchment are presented in Figure 6.40. The results show a more uniform distribution 

deployment of the sensor of the catchment, driving the optimal position of the sensor away from 

the static sensor network, proportionally to the fluctuation scale. In other words, there is 

deployment of dynamic sensors closer to static sensors in the experiments with low fluctuation 

scale of the noise (Ex 1 and Ex 3), while the deployment seems to be driven away from static 

sensors in the noise scenario with long fluctuation scale (Ex 2). 
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Figure 6.40 Optimal MMD deployment in Bacchiglione for Ex 1 (left), Ex 2 (right), and Ex 3 (bottom) 

Additionally, it is possible to observe that extreme positions of the sensors are encouraged. This 

can be explained by the divergence of many of the models, especially towards important 

gradients in the sensor network. In the case of an important gradient in the observations, the 

presence of a sensor in the edge of the catchment serves as a sort of anchor, to reduce the spread 

of the models. Also, it can be seen as maximising the convex hull of the whole sensor network, 

if the gradient in the observations of the static network is pronounced. This can also be 

supported by the lack of deployment towards the South, where there is a sensor close to the 

boundary of the catchment in this direction. 

 

 Don 

The results of the deployment using the KVP model in the three noise scenarios for the Don 

River catchment are presented in Figure 6.41. The results show that the deployment patterns 

change little with respect to the underlying noise field. This can be attributed to the lack of static 

networks which can actually generate a difference in the driving of the dynamic sensors under 

different noise conditions. In other words, seems not to be a noticeable difference in the 

deployment  
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Figure 6.41 Optimal KVP deployment in Don for Ex 1 (left), Ex 2 (right), and Ex 3 (bottom) 

The deployment of dynamic sensors using the MMD in the scenarios of artificial noise is 

presented in Figure 6.42. The results for the deployment of the network agrees with the results 

already observed in the previous noise scenario, meaning that the dynamics of the deployment 

are not altered by the presence of noise. In this regard, the sensors remain to a large extent 

around their base positions and are deployed mostly towards the boundaries of the catchment. 
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Figure 6.42 Optimal MMD deployment in Don for Ex 1 (left), Ex 2 (right), and Ex 3 (bottom) 

6.5.6 Additional considerations for practical deployment of dynamic sensors 

In the design of sensor networks, there are usually additional considerations that may constraint 

the development of a certain monitoring plan, such as cost and accessibility, among others 

(Loucks et al. 2005). This study is based on the fact that sensors are moving through the 

catchment for actively monitoring, and therefore, it is of interest to understand how far these 

sensors go. This travel distance is directly correlated with the cost of the operation of these 

sensors, and may be the base for making decisions such as the limiting threshold for the sensors 

to leave its base, or to constrain the total travel distance between observations. 
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Figure 6.43 presents the results of the total travel distance for each of the precipitation events 

in each of the case studies for the three different time-windows. The overall results show that 

the deployment of sensors using the MMD gives consistently longer displacement distance than 

KVP and NKVP, which are consistent with the different case studies. The results also show that 

the length of the time-window is directly proportional to the total travel distance. It is presumed 

that there is an asymptotic limit for the total travel distance with respect to the time-window, 

but it was not found in the results of this study. 

 

  

 
Figure 6.43 Travel distance for the deployment of sensors in the three case studies (top: Bacchiglione, mid: Brue, Bottom: 

Don) for the first (left) and second (right) precipitation event 
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6.6 Conclusions 

In this chapter, three strategies for the scheduling of sensor networks for two different events 

in three case studies were tested. The overall results indicate that sensors indeed are generally 

directed towards areas with low coverage from the static sensor networks. However, it is 

common to find deviations from these rules, if the observations in the static sensor network 

suggest potentially high values of precipitation in ungauged areas. This last situation is 

minimised in the event that the static sensor network is relatively well distributed, as 

uncertainties in the spatial interpolation are considerably smaller. 

 

To accentuate the monitoring in ungauged locations, NKVP tends to schedule sensors to areas 

with low monitoring, in contrast with KVP. The reason can be attributed to a more realistic 

estimation of the precipitation variance, which drives the sensors using NKVP to remain in 

areas of higher variance, and far from the points of maximum precipitation, which correspond 

to measured variables. As consequence, the optimal value for the location of the sensor in 

similar precipitation conditions, will result in DSN which are closer to the static sensors, when 

using KVP, and farther, when using NKVP. 

 

In non-stationary Kriging-type interpolation, ‘hot’ areas for dynamic sensors are identified, and 

trend to enlarge the coverage of the network. The average precipitation is better represented by 

measurements that are located in the areas of higher uncertainty. In contrast with the Kriging-

based methods, the MMD strategy tends minimise the overlap of the dynamic sensors, 

developing a cluster in which the sensors should be. This clustering is the result variance 

estimates which do not account for the precipitation intensity, but instead by the relative 

differences between precipitation estimations.  

 

The result in the position of the dynamic sensors for the Brue catchment reveals minor 

discrepancies between the Kriging-based and the MMD strategies. The results for the Kriging 

based methods cluster towards North-west and the east end of the catchment, where 

measurements are more uncertain due to the distance to the sensors. As ensemble methods react 

to the patterns in the precipitation, the clusters vary, without following a clear pattern. In 

general, the discrepancies between methods depend on the amount of available information and 

the interpolation tools to simulate the precipitation field. 

 

In contrast, similitudes between the different methods were found in the Bacchiglione case 

study. In this case, it was possible to identify two hot location for sensor deployment: One in 

the most upstream part of the catchment, and other in the inter-basin area at the south-west of 

the catchment. These similitudes occur as a consequence of the even distribution of the sensors 

within the study case, which lead the sensors to identify similar areas of interest. 

 

In the Don River catchment, it was possible to observe KVP and MMD provide quite different 

solutions. KVP makes a consistent deployment of two sensors, in which one of them remains 

fairly static in the south end of the catchment, while other exhibits a more dynamic behaviour 

in the north. In contrast, in the Information-based methods, a hot spot is identified in the north 



Optimisation of dynamic precipitation sensor networks 

151 

part of the catchment, and little attention is given to the south part of it. This discrepancy is 

triggered by the interpolation methods used in the generation of the observations in the south, 

and thus revealing, that the information-based dynamic networks may not necessarily be most 

adequate choice to identify areas with systematic lack of coverage. 

 

Additionally, the experiments using the different perturbation scenarios reveal that the lack of 

knowledge about the precipitation processes will significantly alter the result of the deployment 

strategy. This lack of knowledge can be usually attributed to a static sensor network that is 

designed at a different spatial scale, and therefore, is not able to capture certain processes. In 

this sense, un-seen processes with a short scale may require that the DSN are deployed closer 

to the static sensor networks, to capture the variations between static sensors. Additionally, the 

assumptions of un-seen processes may be beneficial in the scheduling of DSN, as makes it 

possible to generate a set of more robust estimations of variance, which permit characterising 

 

 





 

7. Conclusions and recommendations 

7.1 Summary 

This thesis explores the optimal design of static, and scheduling of dynamic sensors networks 

for precipitation monitoring. The design of conventional sensor networks is developed using 

various methodologies, exposing the interactions between different design objectives and 

solution methods. In addition, the scheduling of dynamic sensors is explored, and three 

deployment strategies are proposed and tested. 

 

Chapter 1 describes the motivation, objectives and general scope of this work, highlighting the 

main objective: Develop and improve methods for optimal design of dynamic rainfall sensor 

networks with varying physical topology, in heterogeneous data environments for operational 

hydrological systems. To reach this general objective, the following steps were undertaken: 1) 

defining a framework for the design of sensor networks, 2) improve geostatistical methods for 

modelling of precipitation fields, 3) enhancing the current methods for the design of sensor 

networks for streamflow simulation, and 4) developing a methodological approach for the 

optimal scheduling of dynamic sensor networks which include data from static, dynamic gauges 

and citizen observatories.  

 

Chapter 2 provided a literature review on the design of sensor networks, methods for design of 

static precipitation sensor networks. This review allowed to identify the current techniques in 

the design and evaluation of sensor networks, understand their limitations and potential 

advantages, and classify and identify knowledge gaps. As a result, we proposed a classification 

of methods and a framework for the design of sensor networks, achieving the first specific 

objective of this thesis. The results of this chapter have been presented as paper in a peer-

reviewed journal (Chacon-Hurtado et al. 2017). 

 

Chapter 3 presented the three case studies: Bacchiglione, Brue and, Don River catchment. The 

Bacchiglione River is located in Northern Italy, in the province of Veneto; the case study is of 

relevance due to the flooding hazard that the city of Vicenza. The Brue case study is located in 

Somerset (South-West England), and, since it is an experimental catchment, it is characterised 

for the availability of extremely detailed dataset (a large number of sensors in a relatively small 

catchment) collected during the HYREX experiment. The last case study corresponds to the 

Don River catchment, which presents flooding hazards to the communities in its lower end, in 

particular, the city of Doncaster (Yorkshire County), in East England. The Bacchiglione and 

Don River were also case studies of the WeSenseIt project which funded this PhD. 
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Chapter 4 explored the enhancement and testing of tools for the modelling of precipitation 

fields. These tools include an alternative formulation and algorithmic implementation of 

Kriging, which is able to use heterogeneous observations in non-stationary conditions, and a 

framework for the evaluation of measurement uncertainty estimation from partially observed 

data. The proposed Kriging approach relaxes some of the conventional assumptions such as: 

regionalised variable, equal observational uncertainty and spatial stationarity. As a 

consequence, the method provides more realistic approximations of the interpolation error than 

conventional (Ordinary) Kriging estimators. Additionally, the uncertainty in precipitation 

estimates due to the partial observations in time were assessed, thus yielding the theoretical 

basis for including observations from dynamic sensors into spatially distributed precipitation 

fields. Consequently, this chapter focused in achieving the second specific objective of this 

thesis.  

 

Chapter 5 explored several aspects of designing static sensor networks. These aspects include: 

adequate formulation of the optimisation problem, selection of an optimisation algorithm, 

assessments of various optimality criteria in the final design, and its relationship with the 

performance of hydrological models, as well as an analysis of robustness of optimal solutions. 

The formulation of the problem, and the selection of the optimisation algorithm consisted in 

identifying the combination of such that ensure an efficient solution of the sensor network 

design problem. The different design criteria were compared using a large-scale Monte Carlo 

experiment that evaluated the relationship between model-based and model-free alternatives in 

the design of precipitation sensor networks. Following, the sensor networks problem is solved 

for each of the chosen objective functions, and the resulting sensor networks are presented. 

Finally, analysis of robustness of the optimal solutions for each resulting network was carried 

out. Accordingly, this chapter accounted for achieving the third specific objective of this thesis. 

 

Chapter 6 presented the optimal scheduling of dynamic sensor networks, exploring the effect 

of different three different strategies for exploring precipitation fields. It introduced three 

strategies (KVP, NKVP and MMD) for the scheduling of dynamic sensors, and suggested the 

formulation of the optimal scheduling problem. Second, these strategies were tested in the case 

studies for three different time-windows (horizons). To further test these methods, a set of 

experiments including spatially correlated artificial noise were set. The results demonstrated 

the use of three different methodologies for scheduling of dynamic precipitation sensors, 

proving the theoretically usability of dynamic sensors. Subsequently, this chapter accounted for 

achieving of the fourth (and last) specific objective of this thesis. 

 

7.2 Conclusions 

The conclusions from this thesis are drawn as follows.  

 

As result of the literature review, it was possible to establish that quite a considerable body of 

research done in this area, but also the fact that there is no agreement in the scientific community 

about a single method for the design of sensor networks. In this knowledge gap, we propose a 
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classification of methods and a generic framework for the design of sensor networks. This 

framework is able to encompass most of the approaches found in the literature, and can be seen 

as a first step towards the integration of design methodologies. 

 

Additionally, it was found that the effect of different uncertainty sources in modelling of 

precipitation fields prompts for re-thinking some of the conventional assumptions. Among 

these are the assumptions regarding geostatistical interpolation methods, including 

heterogeneous observations, and stationarity assumptions. Also, it was found that one of the 

main challenges for the modelling of precipitation fields in the context of the citizen 

observatories, relates to the intra-hourly variability of the precipitation, and this means that 

instantaneous measurements of precipitation are hardly usable, as its uncertainty is greater than 

the precipitation autocorrelation at operational time scales (see Section 4.2 and 4.3). 

 

This thesis also proposed a methodology for the use of heterogeneous data sources in modelling 

non-stationary precipitation fields. For this purpose, a variation (NSK) of the Ordinary Kriging 

is developed, such that it is possible to generalise the field variogram for locally built 

(centrosymmetric) variograms, which adapt to different precipitation conditions. NSK is 

considerably more data-intensive than Kriging, but relaxes the assumption of a regionalised 

variable, as there are not assumptions of spatial stationarity. NSK is flexible to adapt other 

exogenous variables that may trigger different statistical behaviour of the modelled processes, 

by incorporating this information in the definition of the variogram (CS variogram). These 

features do not necessarily lead to better deterministic results, but provided more reliable 

uncertainty bands, which are of utmost interest in the design of static, and deployment of 

dynamic sensor networks. 

 

In this thesis we also established the lack of consensus in the definition of an optimal sensor 

network, considered the consequences of this, and explored the relationship among different 

objective functions. The results show that geostatistical objective functions (namely, Average 

and Maximum Kriging Variance) do offer insights which lead to the selection of networks that 

tend to yield better rainfall-runoff model results in operational settings at hourly scale. Also, it 

was found that Information Theory methods are able to discriminate sensor networks that yield 

poor performance of the hydrological model but were unsuccessful in determining whether or 

not the sensor network will yield optimal discharge results. It was also found out that model-

based optimisation usually yield model-specific networks, which are not robust unless the used 

model is simple; therefore, these objective functions may not be reliable candidates for the 

design of sensor networks, as objectives (criteria used to assess a network) usually are wider, 

than just maximizing the hydrological model performance. In this sense, we have developed 

recommendations which may help to harmonise the selection of objective functions for the 

design of precipitation sensor networks. 

 

The analysis of the error propagation in rainfall-runoff models, revealed that the precipitation 

errors tend to influence the results for long periods of time, and this influence largely depends 

on the conditions of the catchment when these errors occurred. Consequently, we advocate that 

methods where precipitation is estimated using inverse rainfall-runoff type model (Herrnegger 
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et al. 2015) under the assumption of a Markovian Process, have fundamental problems. The 

reason is in the explicit use of exact representation of the model states, which in practice is not 

possible for conceptual models, as processes are lumped at scales that do not match, and 

therefore, not measurable. 

 

The results of applying the three different strategies (KVP, NKVP and MMD as presented in 

Chapter 6) for the scheduling of dynamic sensor networks, indicated that dynamic sensors can 

improve the network coverage. The experimental results indicate that the three strategies seem 

to be effective in the representation of precipitation fields, and can be used to reasonably 

schedule dynamic sensor networks. However, testing in field campaigns are required to verify 

and adjust the proposed models and methodology to realistic operational settings. 

 

7.3 Limitations 

There are several limitations found during the development of this thesis. 

 

First, most of the proposed methods cannot be employed in data scarce regions. As a 

consequence, the dynamic sensors are only to be deployed in catchments where there is enough 

data from static networks to build acceptable spatial estimates of the precipitation field. 

Therefore, the dynamic sensors can provide data to help refine the first estimate of the 

precipitation field, but without sufficient data to understand the underlying phenomena, it is 

impossible to believe in an adequate deployment of dynamic sensors. 

 

Second, the results of this thesis are based on a limited set of case studies, and therefore a much 

wider validation is required. In this respect, it is necessary to test the resulting methodologies 

in field applications, aiming to identify the weaknesses which may have been overlooked in the 

development of this thesis. The frameworks developed in this thesis should be also further 

incorporated into a wider decision making process, and tested, as sensor networks and 

monitoring programmes should consider many additional factors that the ones considered here. 

 

Additionally, it is assumed that the dynamic sensors have a constant displacement capability. 

This distances that they need to travel are estimated from a Cartesian coordinate system, and 

therefore do not correspond to actual routes and traffic. In this study it is assumed that a sensor 

is always able to move freely in any direction, and this may be unrealistic in operational settings. 

 

It is assumed also that the sensors are always available and ready to be deployed. In practice, 

obviously, volunteers may not follow the “instructions” on where and when to move. In the 

case that the sensors are deployed by operators (i.e. emergency response organisations), there 

are limits to the working hours, the places where should they be and the time to go before their 

turn is finished. Also, it will be possible that in critical events, their presence may be required 

for other tasks beyond providing precipitation data.  
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From the operational point of view, the deployment of these dynamic sensor networks is 

potentially a rather expensive task. For the events in this thesis, the total travel length of these 

sensors is considerable, implying that the costs associated with a vehicle, fuel, operator, sensor, 

among other expenses, may render unfeasible the use of the current “generation” of dynamic 

sensors. The mentioned issues were not considered in this work, but the developed framework 

can be updated to do so, and, e.g. be used in the programming of (cheaper) autonomous 

observation devices, such as drones in the near future. 

7.4 Outlook and recommendations 

Precipitation is not simple to measure. It is advised that the focus of citizen observatories 

regarding this variable be shifted towards a high engagement level (citizens having a sensor and 

maintaining it), in contrast with a larger participation of random, low engaged observers. The 

impact of this decision is that it will be possible to have more useful information, when it is 

derived from reliable data sources, in contrast with more observations at random places and 

times. Additionally, the results coming from highly engaged citizens (meaning that the 

observations are carried out during long continuous periods of time) are of a higher value than 

sporadic observations, as the intra-hour precipitation variability has a dominant role in the 

uncertainty of the measurements. 

 

From the experience of the WeSenseIt project, and other related activities to this thesis, it has 

been found that engaging citizens is a very complex task. In this regard, the author suggests to 

shift the efforts in data collection of precipitation to automatic devices (rain gauges, radars, 

microwave links, etc.), and focus the participation of citizens in acquiring other variables such 

as water level in canals or soil moisture. The reason behind this reasoning rises from the 

usability of instantaneous data, as it was shown that this type of observations are almost 

unusable for precipitation analysis (this thesis), while they may of use in other types of water 

models (Mazzoleni et al. 2015). Ideally, measurement systems will not fail and data collection 

will be automatic, thus in the future, the focus should be directed towards ubiquity, robustness 

and automation of gauging systems.  

 

In case of flood forecasting, the deployment of dynamic sensor networks for precipitation may 

not be practical. In many situations it could be more beneficial to obtain additional observations 

of discharge at upstream locations, and use that data to adjust the forecast using techniques such 

as data assimilation, as shown in Mazzoleni et al. (2015, 2016, 2017). The motive behind this 

reasoning lies in the time-window that is required for a flood to occur, which is usually in the 

order of hours for medium and small rivers. For this type of situations, hydrological forecasting 

is essential. In case of larger rivers, the rainfall-runoff processes are slower, and it has been 

demonstrated that indeed data assimilation techniques are highly effective to improve the 

discharge forecast in this type of systems. 

 

It would be also beneficial to develop methods for the optimal deployment of dynamic 

precipitation sensors in data scarce regions. These methods can lead to more cost-efficient 

alternative than conventional monitoring. In terms of data analytics, it is envisioned that 
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Bayesian updating of the precipitation models with data from the dynamic sensors, may be a 

viable alternative.  

 

Finally, the methodology for the deployment of dynamic precipitation sensor networks is quite 

general, and can be applied to other environmental or other spatially distributed variables or 

processes of interest, e.g. related to water quality of air pollution.  
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ANNEX 1. Overview of candidate 

algorithms for sensor network 

optimisation 

 

An optimisation problem can be defined as the problem of finding a vector of decision variables 

that satisfies a set of constraints and minimises (or maximises) the value of a certain objective 

function. Depending on the number of objectives, optimisation problem can be categorised into 

single-objective (SOO), or multi-objective (MOO) optimisation. It has to be noted that the 

objective functions in MOO have to conflict, meaning that the optimality of one function affects 

the optimality of other, otherwise, the problem can be simplified to a SOO.  

 

From this point of view, the design of a sensor network can be seen as an optimisation problem 

where the decision variables are the location of the sensors, and the objective functions are the 

optimality criteria. Applications of this type of tools are wide-spread into water resources, as 

they help to tackle large combinatorial problems (Mishra and Coulibaly 2009, Reed et al. 2013, 

Mishra and Coulibaly 2009, Tayfur 2017). In the particular case of precipitation sensor network 

design, SOO applications have been carried out (Pardo-Igúzquiza 1998, Chacón-Hurtado et al. 

2009), or as a MOO problem (Samuel et al. 2013, Barca et al. 2015). 

 

1.1 Random Search 

Random search is one of the oldest methods for global optimization, as it does not require 

assumptions of any type in its implementation. The main drawback of this algorithm is 

inefficiency, and thus, its large demand on the number of function calls. This method is also 

known as the Monte Carlo optimisation. This method can be slightly boosted by using smart 

sampling strategies such as Latin Hypercube, which explores the decision space in a more 

efficient manner (McKay et al. 1979). 

 

1.2 Evolutionary computation 

Evolutionary computation aims to solve large optimization problems using artificial 

intelligence concepts (Goldberg 1989). These methods attempt to analytically determine the 

optimal solution of an optimisation problem by exploring the solution space in an iterative 

processes, which is usually rooted in concepts of biological evolution. These methods are also 

commonly known as metaheuristics. Among the most popular evolutionary computation 

algorithms are NSGAII (Deb et al. 2002), SPEAII (Zitzler et al. 2001, Zitzler and Kunzli 2004), 

and the ϵ-MOEA variants (Deb et al. 2005). 
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1.2.1 Non Sorting Genetic Algorithms (NSGA) II 

This algorithm was introduced by Deb et al. (2002), and it is based on the crossover and 

mutation of the set of dominant solutions. The offspring population Q (t) is created from the 

parent population P (t), by means of crossover between the dominant solutions. Later, these 

population is perturbed by a mutation operator, which introduces randomness in the selection 

of the optimal locations, preventing the solutions of reaching only local minima, and thus, 

exploring the solution space more completely. This processes continues until a convergence 

stopping criteria is reached. 

 

1.2.2 Harmony search 

The concept behind this algorithm (Geem et al. 2001) is based on how musicians aim to 

maximise the aesthetics (objective) of a tune in an improvisation session. This is achieved by 

the selection of the proper pitch (decision variables) to play in a limited memory of the system. 

The model will randomly initialise the memory of the system, and from this point the generation 

of new harmonies is randomised, excluding the worst solution every time. This algorithm has 

been reported as a specific case of evolutionary strategies (Weyland 2010). 

 

1.3 Particle Swarm Optimisation 

This method is based in the strategy of the movement of several groups of animals such as birds 

(Kennedy and Eberhart 1995), fish schools (Filho et al. 2008), ants (Maniezzo and Roffilli 

2008) or bees (Mernik et al. 2015). It is part of heuristic methods based on a population that 

converge to the optimal in each generation.  Particle Swarm Optimisation (PSO) is similar to 

GA but without crossover operators. Each individual in the swarm move towards the best 

solution with specific velocity and acceleration. PSO has been applied in several engineering 

(Jariboui et al. 2007, Pongchairerks and Kachitvichyanukul 2009, Izquierdo et al. 2008).  

 

1.4 Simulated Annealing Optimisation 

This method is inspired in the tempering process of metals, in which a better configuration of 

the molecules will result in a lower energy state (Kirkpatrick et al. 1983, Cerny 1985). In this 

idea, in each generation, the temperature threshold is reduced by a certain amount, forcing the 

generation of new random solutions which are below the threshold. As consequence, this 

method is pseudo-random, and considerably inefficient, as it only draws a rejection limit for 

the solutions which cannot be hold, while it forces a number of solutions to be within such 

bounds. 

 

1.5 Clustering optimization algorithms 

Clustering algorithms belong to the family of multistart methods. In this type of algorithms, a 

local search is applied, using different initial solutions. In order to improve the convergence of 

this type of methods, clustering techniques can be included to restrain the search space of the 

initial solutions, as shown by Solomatine (1999). Among these methods, exist the Adaptive 

Cluster COvering (ACCO), in which the local search is replaced by a global randomized search 

(Solomatine 1999), or by using local downhill simplex methods (Nelder and Mead 1965) to 

improve the convergence rate and solution efficiency. 



 

ANNEX 2.  Hydrological models used 

for the Brue catchment 

 

In this Annex we present the hydrological models that were used in the development of this 

thesis for the Brue catchment. Here, we present the results for the HBV96, Sugawara and Linear 

Reservoir models, as described in Section 2.4.1. 

 

HBV-96 

 

The results in terms of error of the model are adequate as it can be seen that the major processes 

in the catchment were described by the model. The results indicate the lack of important 

systematic error along both calibration and validation periods, supporting the hypothesis that 

the model calibration was successful. Additionally, the time to the peak was adequately 

achieved. However, the model mostly underestimates the peak discharge. The reason for this 

can be attributed to the calibration metric (maximisation of NSE), which leads to a good overall 

performance of the model, however, limit the efficiency of the model to simulate extreme 

conditions. 

 

 
Figure 1 Calibration and validation periods in Brue catchment using HBV-96 

The results for the states reflects a fast response from the catchment, as processes are mostly 

driven by the soil moisture (Figure 2) and the fast response components (Figure 3), due to the 

relatively high gradients and discharge values at the peaks. This behaviour is expected from 

small catchments, relatively impermeable soils or high topographic gradients. 
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Figure 2 Soil moisture for calibration and validation 

 
Figure 3 Upper zone for calibration and validation 

To support the hypothesis of adequate model calibration, it can be observed that the contribution 

of the lower zone (Figure 4) has variations that are almost annual, indicating that the base flow 

in the catchment is regulated in such a way. However, some unusual behaviour seems to appear 

in 1997, which the recharge of the aquifer is limited. This can be explained by the fact that 

temporal precipitation patterns change due to an exceptionally dry winter and spring which lead 

to the precipitation to be kept as moisture, instead of reaching the aquifer, replicating in lower, 

discharge peaks, and quite low discharge levels around the season. 

 

 
Figure 4 Lower zone for calibration and validation 

The results regarding the snow component are relatively small, and has little effect on the 

results, as the variations in the winter periods are minimal. This occurs due to relatively high 

temperatures during the winter for long periods, as the snow melts in frequent intervals along 

the winter. 
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Figure 5 Snowpack for calibration and validation 

 
Figure 6 Water content in snow pack for calibration and validation 

Linear reservoir 

 

The calibration of this model consisted in the identification of 2 values: k and a systematic 

correction for the precipitation. The first represents the coefficient of the response of the 

catchment while the latter performs a systematic correction of the precipitation. The latter is 

introduced to compensate for systematic errors in the measurement. 

 

The results of the calibration show that the model may represent the dynamics of the problem, 

however due to the lack of a separation of the base and excess flow, the model tend to overshoot 

precipitation peaks at dry periods, while underestimating high peaks in constantly wet 

conditions. 

 

 
Figure 7 Linear reservoir calibration results 

Sugawara 
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In the Sugawara (1961) tank model, there were 7 parameters to be identified. The 6 Sugawara 

parameters correspond to the location of the fast response box, 3 parameters for the linear 

response of the fast and slow response box while the last controls the flow from the top to the 

bottom box. Similarly as in the other models, a systematic correction of the precipitation was 

introduced in the calibration of the model, as an additional calibration parameter. 

 

 
Figure 8 Sugawara tank calibration results 

Model states are represented by S1 and S2, corresponding to the conceptual level in the fast and 

slow response boxes. As can be seen from Figure 9 and Figure 10, the calibration results show 

a much slower contribution of the slow response box, while the fast response box coincides 

with the discharge peaks, leading to the hypothesis that the model is adequately calibrated, as 

base and excess flow seem to be adequately characterised. 

 

 
Figure 9 Fast response box behaviour 

 
Figure 10 Slow response box behaviour 



 

 

ANNEX 3. Perturbation specification for 

simulating incomplete precipitation data 

To test the strategies for the scheduling of sensor networks, it envisioned to test the results 

under different perturbation scenarios, which can be controlled in the design of the experiments. 

On this regard, it is necessary to establish a methodology to produce controlled perturbations 

in the precipitation fields which are spatially correlated. 

 

The proposed spatial perturbation has three main components, namely: the generator function 

(G; also known as kernel), the field fluctuation scale (f), and the noise level (a, also known as 

amplitude). The generator corresponds of a kernel function which specifies the type of noise 

which is generated, defining if the noise is either temporally uncorrelated (white), or with a 

temporal frequency structure (pink, red), and coming from a given probability distribution 

(Gaussian, uniform, etc.). The fluctuation scale defines the distance in which the correlation 

between samples become independent. The noise level (or amplitude) corresponds to a measure 

of the interval in which the noise is applied, as different compositions of the noise are defined, 

the amplitude is specifically defined for each type of generator function. 

 

On the implementation side, the noise generator is built by generating samples at locations 

which are statistically independent. The spatially independent locations are selected by using a 

hexagonal lattice, which distance corresponds to the fluctuation scale (f) of the perturbation 

field. At each of these locations, a unit noise sample is generated, using the noise kernel. Finally, 

results are scaled (and truncated to ensure physically-possible values), according to the noise 

level. The workflow of this is approach is as. 

 

1. Define: Kernel (G), Fluctuation Scale (fs) and amplitude (a) 

2. Create a randomised seed point for the hexagonal lattice within the domain of the 

perturbation field 

3. Create a hexagonal lattice with separation fs, starting from the seed point 

4. Sample random values from the generator function (G) at each lattice node 

5. Interpolate to the domain of the perturbation field using a Kriging approximation, with 

sill = a, range = fs 

6. Go to 2 for next time step 

 

A sample of the perturbation generator using a white Gaussian noise for a unit amplitude at 

different fluctuation scales is presented in Figure 1. 
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                                  (a)                                                          (b) 

 
                                  (c)                                                          (d) 

Figure 1 Sample of white Gaussian spatially distributed noise using different correlation lenghts 5 Km (a), 20 Km (b), 35 

Km (c) and 50 Km (d) 
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