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ABSTRACT

Hearing aids as a form of audio preprocessing is increasingly common in everyday life. The goal of this thesis

is to implement a blind approach to the cocktail party problem and challenge some of the regular assump-

tions made in literature. We approach the problem as wideband FD-BSS.

From this field of research, the common assumption of contineous activity is dropped. Instead a number

of users detection is implemented as a preprocessing step and ensure the appropriate number of demixing

vectors for each time frequency bin. The validity of the standard mixing model used for STFT’s is challenged

by looking at the response of a linear array. Source separation is achieved by demixing vectors based on the

GSVD, derived in a model-based approach. While most permutation solvers offer an a posteriori solution for

all users, we looked at finding local solutions for a single user. Combining this with the user identification

called the alignment step, we conclude that the permutation problem can be reduced to selecting a demixing

vector for each discrete time-frequency instance.

The correlation coefficient proves to be a sufficient metric to couple reconstructions to the original data

as it selects most of the active time-frequency bins. In the far-field case, our approach performs in a com-

parable but not superior manner. We did find that our method is much more robust against inaccuracies

introduced when narrowband channels are assumed but not actually available. This is strongly exemplified

by our experiment of a changing DFT-size.

The Frobinius norm was suggested as a measure of distance between the estimate STFT and the orignial

signals time frequency domain description but it resulted in counter intuitive results which didn’t correspond

with other metrics used in this thesis. It is expected that there are effects induced by changing the size of the

STFT which are not accounted for.

Our demixing vectors achieve comparable inteligibility, measured by STOI, as the compared techniques

and it is more robust against smaller sample sizes than the theoretically SINR optimal MVDR.
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1
INTRODUCTION

1.1. THE COCKTAIL PARTY PROBLEM

When attending social gatherings, able-hearing people are very adept at understanding their conversation

partner(s), regardless of conversations being held or loud music being played in their immediate surround-

ings. This capability is still not adequately available in modern recording arrays as these tend to simply am-

plify most of the received data. The desired speech signal is mixed in there somewhere, though degraded

because of propagation through a channel and the addition of interferers and noise. To improve the intelligi-

bility of such a degraded speech signal is called the cocktail party problem.

It has been estimated that 22% of the population of Europe is considered to be hearing impaired in at

least some degree[1]. Apart from the actual sharing of mixed drinks, the cocktail party problem occurs equiv-

alently in other situations. When that is, can be exemplified by three situations which are characterized by the

number of transmitters and receivers involved. In the many-to-one situation there are users of hearing aids

who converse with multiple people while they are the only recipient. The one-to-many situation is common

for public recordings where a single speaker or possibly singer addresses a group. Many-to-many situations

are less common and can for example be a conference calls where two meeting rooms are connected digi-

tally. Because poor hearing impacts peoples lives in such a strong way and the fact that it happens to so many

people, this problem is very much worth researching.

The reasons why this problem is considered so challenging can divided into two categories. First we will

explain more about speech as a signal and secondly more about how that propagates in real world environ-

ments.

Speech signals differ widely between speakers[2]. Such differences are quantised in suprasegmentals[3].

For example, these aspects can be a speaker’s speech rate, stress timing, pause frequency or pause duration.

The following three properties of speech signals should be taken into account: First, the fact that speech sig-

nals start and stop abruptly at unpredictable times. Secondly, as a speaker does becomes active, this doesn’t

happen for all frequencies at the same time. Lastly, during the active time, the power in a speech signal is not

constant over either time or frequency. All of this contributes to the notion that it is difficult to predict the

behaviour of speech signals.

Propagating through real world environments can have a wide variety of effects on acoustic signals. Again,

1



2 1. INTRODUCTION

(a) Signal in the time domain (b) Signal in the TF-domain

Figure 1.1: Examples of the data used in this thesis.

three of those aspects are highlighted. Other conversations make for activity in the environment which is alike

the desired signal, often resulting in an unknown number of interferers. If there are sources that transmit

signals which are not at all alike speech, these can be summarized as sources of (coloured) noise. While

this does make for a simpler description, this also implies that the noise power and colour can change over

time. Finally, speakers and people in their surroundings tend to move about. This implies that time invariant

channels, the existence of a dominant line-of-sight and constant reverberation times can not be assumed.

Constructing a complete model of a realistic environment requires quite a complex structure.

1.1.1. SPECIFIC PROBLEM

In this thesis, the cocktail party problem is approached as being a wideband source separation problem. Our

goal is to improve the intelligibility of a degraded speech signal by suppressing interferers and reducing noise

without having prior knowledge.

Based on the above considerations, only some of the aspects of the real world environment are adopted

by this thesis. The assumptions about the signal and channel behaviour are summarized here. The desired

signal is a speech signal said to be wideband, non-stationary and to be active at unknown intervals. If it is not

further specified, all examples assume two users of which one is the signal and the other the interferer. The

noise distributions is assumed additive, white gaussian (AWGN). To emulate the signal propagation through

a room, two types of data models are considered: The instantaneous model and the convolutional model.

The simulated data is based on a scenario which consist of a linear microphone array.

1.1.2. APPROACH

Wideband signals are most commonly analysed in the time-frequency domain (tf-domain). In literature this

approach is called frequency domain blind source separation (FD-BSS) and it consists of two parts. First,

an approximation of the data’s tf-domain representation is calculated by the short-time Fourier transform

(STFT), an example of which can be seen in figure 1.1b. When a source separation beamformer is applied to

it, this step results in estimates for each users. However these are spread out over time and frequency, which

brings us to the second part: these estimates need to be assigned to either the signal or the interferer. This

latter part is called the permutation problem.

This thesis approaches the source separation problem for each of the STFT’s frequency channels individ-

ually. To solve these problems, we want to extend the work of Mu Zhou [4] which describes a BSS beamformer

as interference suppressor and noise canceller. It is based on the generalized singular value decomposition

(GSVD) and was initially designed for narrowband radio communication. If the frequency channels in the

STFT have a small enough bandwidth, they can be considered narrowband. This allows the technique to be

applied to a situation like ours.

The permutation problem is the situation where for a time-frequency instance, two users are detected.



1.2. STATE OF THE ART 3

The results of the source separation are in an arbitrary order and when compared to reconstructions from

other parts of the STFT, not always in the same order. We are going to discuss solving this indeterminacy in

two steps: First there is fitting the right reconstructions together to one estimate, this is often the only part

of the permutation problem discussed. Secondly, there is identifying the desired user based on the estimate,

sometimes called the alignment step.

Combining these steps, we want to have an estimate of the original time signal as our result.

1.2. STATE OF THE ART

The classification of blind sense separation methods has been covered widely[5]. While new methods have

been developed, the taxonomy has not been extended as much. To compare previous work to our approach,

we use the outline introduced in section 1.1.2 which states that FD-BSS consists of the steps source separation

and permutation solver.

Blind source separation requires an assumption on the structure or statistics of the data. We look at two

popular options: Assumptions based on the signal or on the channel properties.

There is a significant interest in beamformer generation based on the signal. Speech signal sparsity is

one well known assumption. This states that only one user is active for each time-frequency instance. Based

on this assumption, the STFT of the received signal can be divided by a binary mask[6] to reconstruct the

different signals. Research has been done for both soft and hard masking [7] [8]. Alternatively, statistical

independence between the received signals has been assumed. Solutions can be optimized for this with use

of the Kullback-Leibler divergence [9] [10] called ICA.

Alternatively beammformers are based on what is known about the channel. There are TDOA [11] and

DOA [12] techniques, both of which assume farfield propagation models. There is currently no other research

found where the demixing process is based on the generalized

Now, we look at research surrounding second step in this thesis: Permutation solvers. These solvers can

be grouped by which data they compare or by looking at with which metric they compare it. Techniques

compare the effect of the channel with a far field assumption[13] or correlation between reconstruction [14].

Instead of solving the permutation problem, IVA[15] elegantly avoids this by reducing the number of per-

mutable items to one per user.

In this overview we see an opportunity to research the complete process of solving the cocktail party

problem based on blind estimation of the channel subspace.

1.3. OUTLINE OF THE THESIS

In this first chapter the cocktail party problem has been introduced. The unsolved parts of it, the scenario

used in this thesis and current state-of-the-art research have been looked at. The second chapter focusses

on formalizing the outlined problem in a model-based approach. In the third chapter a derivation of the

proposed algorithm is brought forth. It explains what steps it consists of and how these work. It will also

state the interfaces for each step. Chapter four compiles a list of parameters and metrics which are available

to evaluate the performance of the system. The simulation results are presented in chapter five. The last

chapter is reserved for the conclusion and recommendations on further research.





2
DATA MODEL & PROBLEM STATEMENT

To derive the proposed algorithm, a mathematical description of the system is required. It shapes the as-

sumption for later chapters. First, this chapter introduces some of the most common notation used in this

and upcoming chapters. After that we define two important data models: the instantaneous model and the

convolutional model. Finally, the problem that this work is trying to solve, is made explicit and challenges are

adressed.

2.1. BACKGROUND

2.1.1. NOTATION

For real or complex scalars, letters are used (a,b, . . .). A column vector is written as a bold letter (a,b, . . .) and

matrices are denoted with a capital bold letter (A,B , . . .). To describe select parts of the structures presented

above, a subscript or index is used. The nth element of a column vector a is denoted as an and from a row

vector a[n]. The nth column of a matrix A can be denoted as an .

For the following explanations, assume that A is m ×n sized and that B is p ×q sized. The operator |A|◦
returns the element wise absolute value of the matrix as |A|◦i , j = |ai , j |.

The Trace of A is the sum of the diagonal elements as

Tr (A) =
N∑

i=1
a(i ,i ) N = min(m,n)

The Frobenius norm is defined as the sum of all squared elements - exemplified for the matrix A as

|A|F =
m∑

i=1

n∑
j=1

|ai , j |2

2.1.2. TOOLS FROM LINEAR ALGEBRA

This section summarizes two important decompositions: The singular value decomposition (SVD) and the

generalized SVD (GSVD). Both are explained by being applied to a complex matrices.

The SVD is a decomposition which exists for each matrix X as

X =UΣV H

5



6 2. DATA MODEL & PROBLEM STATEMENT

where U and V are unitary matrices which are the basis for the row and column span of X respectively. The

diagonal matrix Σ contains the singular values σi for i = 1,2, . . .min(m,n) where it is defined that σi ≥ σi+1

and σ≥ 0.

The GSVD exists for a pair of matrices X1 and X2 of sizes m ×n and p ×q if and only if m = p, m ≥ n and

p ≥ q . The decomposition results in

GSVD(X1, X1) ⇔
X1 = F CU H

X2 = F SV H
(2.1)

where F is an invertable matrix of size m ×m and where U and V are semi-unitairy matrice of sizes n ×m

and q × p respectively. The matrices C and S are square diagonal matrices which contain together contain

the generalized singular values
ci ,i
si ,i

. In contrast to tradition, we will normalize the decomposition such that

| fi |2 = 1 for every column of F .

2.2. DATA MODEL

Even though speech is generated in continuous time, microphone arrays are limited to measurements at

regular intervals. Consider a frequency Fs at which the signal is sampled and define Ts = F−1
s as the corre-

sponding sample period. From now on forward, instead of continuous time values x(t ), the discrete time

samples x(n ·Ts ) = x[n] are used. The additive white noise distribution is modelled by an i.i.d. Gaussian

process of mean zero and variance σ2
n .

2.2.1. INSTANTANEOUS DATA MODEL

The received data equals the sum of multiple delayed versions of the transmitted signal. If the time in between

receiving these delayed signals is short compared to the inverse bandwidth, the effect can be approximated

by only a phase shift. The signals are then assumed to arrive at all receivers at the same time.

These shifts are defined independently for each receiver/transmitter combination and are multiplications

by coefficients ai , j . If x[n] is the sample taken by the receiver and s[n] is the transmitted symbol, then at any

time instance n, the i th-microphone receives

xi [n] = ai , j s j [n]+en,i

from the j th-source where en,i is the error introduced by noise. From this source, the array consisting of

i = 0,1, . . .R −1 microphones receives

x[n] =


a0, j

a1, j

...

aR−1, j

 s j [n]+en

= a j · s j [n]+en

The environment contains j = 0,1, . . .D − 1 uncorrelated sources and the symbols which each of them

transmits can be stacked in a column vector as s[n] = [s0[n] s1[n] . . . sD−1[n]]T and the data from the array
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can be calculated as

x[n] =
[

a0 a1 . . . aD−1

]
· s[n]+en

= As[n]+en

Finally, measurements are taken by the array over a total of N time instances and they are the result of

the same number of symbols. Both the signal and data can be combined as X = [x[0] x[1] . . . x[N −1]] and

S = [s[0] s[1] . . . s[N −1]] respectively. The former can be calculated from the latter as

X = AS +En

where A, called the channel matrix, is of size R ×D , S is of size D ×N and X ,En are of size R ×N .

As stated earlier, this signal model is valid if the time in between receiving signals is short. This delay is

defined as the time difference between the element at which the signal arrives first and at which it arrives

last. The reasoning behind the approximation - described in appendix A - bases its validity on the time band-

width product. The conclusion on what delay is considered small is explained here for convenience. If W

is the bandwidth in H z in which the signal is active and τ is the maximum delay that a signal can befall

while propagating along the receiver array, its product should satisfy W τ¿ 1 for the signal to be considered

narrowband.

In speech processing, all of the spectrum is considered to be used and the Nyquist theorem states that

it is possible to reconstruct with certainty a signal with bandwidth W which is equal to Fs
2 . Often Fs = 8kHz

(Narrowband) or Fs = 16kHz (Wideband) is used. In the increasingly common scenario of 16kHz, this means

that τ¿ 1 ·W −1 = 2
Fs

= 0.125 ms for τ to be considered small. Define the maximum distance across the array

as dmax , the speed of sound as vs = 343 m/s and if they relate to the delay as τ= dmax
vs

then it can be concluded

that dmax = τvs = 2vs
Fs

¿ 0.043 m or equivalently dmax ¿ 4.29 cm to be considered small. From this it can be

concluded that the instantaneous data model is not a good representation for how a full band speech signal

is received by the type of microphone array which is considered.

2.2.2. CONVOLUTIVE DATA MODEL

A more accurate description of sound waves’ traversal through a room is the convolution model. Different

from the previous model, the change that a channel induces in a signal is not just described by a shift a

but rather by the rooms impulse response vector hi , j . The explanation of this data model is structured in a

similar way as in the previous section. At any time instance n, define what the i th-microphone receives from

the j th-source as

xi [n] =
N60−1∑

l=0
s j [n − l ]hi , j [l ]+en

The memory effect this model introduces allows for arbitrary arrival delays, phase shifts and an overall

better description of multipath behaviour. Here, N60 = T60/Ts where T60 is the length of the channel which is

defined as the time after which a signal has decayed by 60dB . This is an arbitrary but common parameter in

speech processing.

The behaviour of a narrowband segment of a signal is challenging to describe in the time domain. It is

better described how the signal and the data are related when observed in the time-frequency domain. To do

so, first we expand the time signal into its respective STFT’s and then derive the behaviour of the individual

discrete frequency channels.
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The STFT of the data x[n] is constructed by cascading local frequency transforms. To define what we

mean by local, an additional time index is introduced. The two are used in parallel: The earlier described

discrete time instance index n, from here on referred to as the fast time, and the newly introduced time frame

index m, from here on referred to as slow time. The frames m = 0,1,2 . . . M −1 are defined as

x(m)[n] =
x[n] mNshi f t ≤ n < mNshi f t +K

0 otherwise

such that K is the number of samples per frame and Nshi f t is the number of samples moved forward in fast

time for each step in the slow time. For a time sequence x[n] of fast time length N this means that there are

M =
⌊

N−K
Nshi f t

⌋
+1 steps taken in slow time.

Cutting the received data into segments causes edge effects. To reduce them, a Hanning window func-

tion wH [n] is applied to the data time frame. The discrete Fourier transform (DFT) is used to transform the

windowed signal as

xk,m =
K−1∑
l=0

wH [l ]x(m)[mNshi f t + l ]e−i 2π k·l
K

=F
{

wH [n]x(m)[n]
}

where k is the discrete frequency spectrum index.

Notice that in the time domain the frame index m, if ever lost, can be reconstructed by looking at which

part of the signal is zero and which is not. The index can therefore be considered optional and it has been

placed between parenthesis to emphasize this. The spectrum of this specific frame however does not contain

this information and therefore, if any transformed signals are considered, the index is no longer optional and

will not be placed in parenthesis. Hence the notation xk,m =F
{

x(m)[n]
}
.

The resolution of this spectrum estimate can be derived from the sample frequency and the size of the

DFT. The Nyquist theorem states that the highest frequency which can be represented with certainty is half

the sampling frequency. The total spectral width is going to be represented by K samples, therefore the band-

width represented by a single frequency sample equals Fs
2K . This equation leads to the insight that a larger time

frame leads to smaller channels. If the number of DFT points is large enough, the frequency components in

the STFT can be considered narrowban - the situation we were looking for.

The complete derivation of the STFT can be found in appendix B. The conclusions which is most relevant

is that at slow time index m and in frequency channel k the measurement taken by a single receiver can be

modelled as

xk,m = hk sk,m +ek,m

This is the scenario which has been discussed in the previous section and for which we can analyse the

narrowband channel behaviour in the following way. What a source contributes to al receivers can be written

as

xk,m = hk sk,m +ek,m

with hk containing all coefficients of the k th frequency channel.

The contributions of all sources in this specific time frequency instance can be stacked in sk,m and their

corresponding channel coefficients, indicated as hk,i , are cascaded which leads to

xk,m =
[

hk,1 hk,2 . . .hk,R−1

]
· sk,m +ek,m

= Hk sk,m +ek,m
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This R-element vector is of great importance and will be referred to as a time-frequency bin or tf-bn: The

measurements of all microphones for a given discrete time-discrete frequency combination k,m. Assuming

time invariance for the channel, combine the signal symbols and array measurements over slow time as Sk =[
sk,0 sk,1 . . . sk,M−1

]
and Xk = [

xk,0 xk,1 . . . xk,M−1
]

respectively. The data is then calculated as

Xk = Hk Sk +Ek

with Xk being a complex R ×M matrix and Ek the error introduced by noise of the same size. The complete

received dataset X is therefore the tensor containing 0,1, . . .K −1 channels and is of size R ×K ×M .

2.3. PROBLEM STATEMENT

This thesis sets out to implement an algorithm to improve the reconstructed speech’ quality and intelligibility.

The goal is, given the data tensor X ∈CR×K×M and while the channel impulse response and the original signal

are unknown, find a demixing vector wk,m ∈CR for each time-frequency bin such that

ŝk,m = w H
k,m xk,m

is an estimate of the original signal at time-frequency instance k,m with noise and interferers suppressed.

The local discrete spectrum can be reconstructed from this as

ŝ(k)
m = [ŝ0,m ŝ1,m . . . ŝK−1,m]T

and from that, find that

ŝ(m)[n] =F−1
{

ŝ(k)
m

}
is the local reconstruction of frame m. The superscript (k) is not intended as an index but as a clarification

that the vector contains values from the discrete frequency domain. These estimates are sequenced for the

complete estimate to be equal to

ŝ[n] = [
ŝ(0)[n], ŝ(1)[n −K ], · · · , ŝ(M−1)[n − (m −1)K ]

]
If multiple signals are reconstructed at the same time, combine the individual demixing vectors as

Wk,m = [w (1)
k,m w (2)

k,m]

where we call Wk,m the beamformer and construct all spectrum estimates at once as

ŝk,m =W H
k,m xk,m

2.3.1. SIGNAL ACTIVITY & CONTINUITY

Most research into the cocktail party problem contains two conflicting assumptions about the number of

sources in each time-frequency bin.

1. A speech signal is so sparse in the time-frequency domain that no two users are active in the same bin.

2. Data from each time-frequency bin will contribute to the reconstruction of a user.

Sparseness, however, is a poorly defined quality and even if one signal and one interferer were ’sparse enough’

to not overlap, this says nothing about N interferers. Still, techniques are often generalized and research rarely

delves into performance analyse covering what happens when signals do overlap.



10 2. DATA MODEL & PROBLEM STATEMENT

Adding the contribution of an ’empty’ bin equals adding noise to a users’ reconstruction. While near-

continuous activity in time is possible, actual conversations tend to have a lot of pauses in them. The reason

continuous activity is assumed, is to ensure an equal number of demixing vectors for each bin, often one per

user. This simplifies the BSS-problem severely.

Speech is simply too volatile to assume that each tf-bin will contain exactly one user and therefore in this

thesis we will not assume this. Instead it is assumed that a signal starts and stops abruptly in a multitude of

frequency channels. Where one or multiple users are detected, a demixing matrix should be made available

for each user based on the source separation algorithm. This thesis sets out to implement a number-of-users-

detection and a signal separating beamformer.

To describe the new assumption of discontinuity completely, the system must be designed in such a way

that it can handle a changing number of users. Three situations must be considered:

1. The number of users increases

2. The number of users decreases

3. The number of users stays the same

If the number of users increases, one demixing vector must be assigned to the current user and the leftover

demixing vector to a newly introduced user. If the number of detected users decreases because the one user

stops while the other is still active, it must be decided which reconstruction is continued and which user we

expect to have stopped transmitting. These two situations are primarily important for alignment and user

identification.

The last situation which must be considered is when the signal stops and an interferer immediately be-

gins. In this case, the estimated number of users does not change over time. To cover this case, a one to one

comparison must be made between sequential beamformers to see if they might belong to the same user.

This thesis sets out to find a metric with which to quantify the likeliness between beamformers. It also sets

out to design an algorithm which decides what changes in the detected number of users lead to what changes

in the distribution of acquired beamformers.

2.3.2. AMBIGUITIES

Based on the data model derived earlier, two commonly known indeterminacies arise: The scaling and per-

mutation problem. While popular approaches to solving exists, both can be considered unsolved. The solu-

tions can best be introduced as the diagonal matrixΛk,m and the permutation matrixΠk,m .

From the model

xk,m = Hk sk,m +ek,m

it can be seen that the data which is received, is indistinguishable from what would be received from a sce-

nario altered according to anyΠ andΛ as

xk,m = Hk (Πk,mΛk,m) · (Λ−1
k,mΠ

−1
k,m)sk,m +ek,m

= H ′
k s ′k,m +ek,m

Because we want to estimate the signal as

ŝk,m =W H
k,m xk,m
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the mistakes made while trying to remove the channel effects depend on these two ambiguities. We define

the error which is the result of our attempt to undo the channel effect as

W H
k,m Hk =Λk,mΠk,m

whereΛk,m andΠk,m are both of size D̂ × D̂ .

The errorΛk,m has to be solved for each reconstructed signal individually. Since it is based on scalar mul-

tiplication, this leads to an infinite number of matricesΛk,m which could have resulted in the array receiving

this data. This thesis does not set out to solve this ambiguity.

The error Πk,m is relevant for neighbouring time-frequency bins where this orientation is not the same.

This can be exemplified by looking at the situation where the signal and an interferer are both present in

frames m and m +1. The STFT of the interferer is denoted in the same way as the signal, which is for now

ik,m . If from bin m we reconstruct [
ŝk,m

îk,m

]
=W H

k,m xk,m

and we define this outcome as being in the correct order, Πk,m = I then there is no guarantee that a new

beamformer based on bin m +1 would not reconstruct[
îk,m+1

ŝk,m+1

]
=W H

k,m+1xk,m+1

where it would have an permutation error as

Πk,m+1 =
[

0 1

1 0

]

There is a finite number of permutation matrices, the set of which is denoted as P and therefore there is

a finite number of errors that can be made. Ideally we construct Π−1
k,m . To do so, this thesis sets out to find

an algorithm which distributes the demixing vectors resulting from each individual bin among the available

users.

2.3.3. USER RECOGNITION

The de-mixing vectors that are looked at for this thesis permute the local spectrum transforms into a single

estimate in merely a quantitative way: The local reconstructions which are most alike, are clustered. There

is not yet a definitive way to identify an individual user with this algorithm. To complete the process, a de-

scription is needed which decides what sequence of de-mixing vectors fits the desired signal. This thesis

will not attend to this task to vividly by evaluating the system primarily by using the actual signal to evaluate

reconstructions.





3
ALGORITHM

In this chapter, a step by step description is given of the algorithm used to solve the cocktail party problem

a bit further. The input of the algorithm is the true data tensor X of size R ×K ×M . This is the collection of

individual Xk ’s. A block scheme of the complete algorithm can be seen in figure 3.1.

3.1. NUMBER OF USERS DETECTION

The goal of this step is to determine what number of individual users is present in the data.

First we repeat the assumption that there are more receivers than sources in the array, R > D . Another

look at the data model

Xk = Hk Sk +En

reveals that this means that the channel matrix is tall and that in the noiseless case, the data matrix Xk is of

low rank. The rank can be found by using the singular value decomposition (SVD)

Xk =UΣV H

where the number of singular values which are non-zero is equal to the number of rows in Sk . This allows us

to conclude that the rank is equal to the number of users.

Dk = RANK(Xk ) for En = 0

However the data does contain noise: White, Gaussian, zero-mean noise and because of that the rank

will always be full. The Gaussian noise has a covariance matrix E [En E H
n ] = Rn = σ2

n I , but because Xk is of
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&
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Figure 3.1: Block scheme of the complete process

13



14 3. ALGORITHM

limited size the assumption that this noise increases each singular value with σn is insufficient. To still use

the singular values as the basis for our an activity detector, a subspace separation can be applied as

Xk =
[
Us Un

][
Σs

Σn

][
V H

s

V H
n

]

where the signal subspace is defined by the threshold Σs > εI . Here we use the threshold ε=σn(
p

2M +p
R)

or slightly larger[4] to detect users. This corresponds to the highest singular value expected from the sample

covariance matrix En E H
n = R̂n . From this partition, conclude that if Us is of size R × D̂ where D̂ is the number

of detected users.

Earlier we have assumed that signals are not always active. Therefore, to achieve a higher time resolution,

it is better to estimate the number of users in smaller windows rather than the complete data matrix Xk . The

most narrow window would be an individual time-frequency bin: xk,m . This is however not possible with the

introduced approach because the number of users is smaller than R and if such a window is of size R ×Nw

then for Nw ≥ R, it is certain be large enough. A smaller part of Xk is used to detect users more locally. This

segment is called the detection window and defined as

Xk [m] =
[

xk,m xk,m+1 . . . xk,m+Nw−1

]
such that the index m of Xk [m] corresponds to the index m of the first bin xk,m . The threshold applied in the

subspace separation can be altered to be usable by this window as ε=σn(
p

2Nw +p
R).

This section offers two things to the next step in the algorithm. First, windows Xk [m] of size R ×Nw with

a corresponding D̂ . Secondly, the requirement Nw ≥ R.

3.2. SOURCE SEPARATION

The goal of this step is to find the signal separation beamformer. To achieve this, this thesis extends on the

work of [4]. It compares the power of signals appearing in two detection windows, generally referred to as

X1 and X2. That work finds a beamformer which reconstructs the column subspaces dominant in X1 and

nullifies the column subspaces dominant in X2.

In our situation a part of this method can be used to compare the detection windows as they are described

in the previous section. There are multiple choices in our scenario for these detection windows. One might

want to rid Xk [m] from interferers also active in Xk [m +1] or compare activity between Xk [m] and Xk+1[m].

This section will use the former as an example.

To find a basis which both windows share, we apply the GSVD to find

GSVD(Xk [m], Xk [m +1]) ⇔
Xk [m] = F CU H

Xk [m +1] = F SV H
(3.1)

where the columns of F are normalized left singular vectors for both windows. The matrices C and S are

diagonal and their ratios
ci ,i
si ,i

are the generalized eigenvalues.

Based on [16] it can be said that if the generalized singular values are unique, F can be considered a joint

diagonalizer which is unique up to a scaling and permutation. This means that for each column in Hk there is

a scaled variant in F . However F is defined as square and H is not. It still contain subspaces only contributed

by Ek,m . Ideally, this could be removed in a way similar to the number of users detection: Finding ε′ such

that ci ,i , si ,i > ε′ is the bases of the segmentation F = [Fs |Fn]. Sadly enough, no theory was found on the
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distribution of generalized eigenvalues in the GSVD. It can be said that the channels’ subspace directly exists

in F but the noise subspace has to be removed in an other way.

We will remove the noise subspace by rank reduction as shown in the previous section. To prevent count-

ing one user as two, simply because it exists in both windows, apply the SVD to both windows at the same

time. The new decomposition

[
Xk [m] Xk [m +1]

]
=

[
Us Un

][
Σs

Σn

][
V H

s

V H
n

]
Σs > ε

for ε=σn(
p

2(2 ·Nw )+p
R). This allows us to perform the rank reduction

X̃k [m] =U H
s Xk [m] X̃k [m +1] =U H

s Xk [m +1]

as a preprocessing step to ensure the right number of sources are separated by

GSVD(X̃k [m], X̃k [m +1]) ⇔
X̃k [m] = F CU H

X̃k [m +1] = F SV H

This ensures there is no common noise subspace in F and the separating beamformer of size D ×R be-

comes

W H = F−1U H
s

where F is of size D̂ × D̂ and U H
s is of size D̂ ×R.

Because all windows are compared to a window adjacent to them, this section offers a separating beam-

former Wk,m for each detection window except the last. This step offers the beamformer Wk,m and the rank-

reduced data matrices X̃k [m] to the next step in the algorithm.

3.3. PERMUTATION & ALIGNMENT

This thesis proposes using correlation ρ as a likeliness measure between two demixing vector. The de-mixing

vectors can come from both adjacent time windows by comparing wk,m and wk,m+1 and from neighbour-

ing frequency bins by comparing wk,m and wk+1,m . To simplify notation for this explanation consider two

demixing vectors in a general notation as w1 and w2 of size R and the data they are derived from as X of size

R ×N .

3.3.1. LIKELINESS MEASURE

Two approaches to this likeliness measure are: Comparing demixing vectors of wi ∈CR as

ρ f (w1, w2) = |w H
1 w2|

|w1| |w2|
(3.2)

and comparing the reconstruction ŝi = w H
i X ∈C1×N made by the demixing vector

ρr (w1, w2, X ) = |ŝ1 ŝH
2 |

|ŝ1||ŝ2|
= |w H

1 X X H w2|
|w H

1 X | |w H
2 X | (3.3)

Both are commutative mappings ρ f : CR×R 7→ [0,1], respectively ρr : CN×N 7→ [0,1].

Based on the amount of microphones, the number of multiplications to compare just the filter coefficients

can be significantly less than the number required to compare the reconstruction. A consequence, however

is that for overdetermined problems R > D , wildly varying filters can lead to the same reconstruction.
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Figure 3.2: An example of how beamformers might be permuted.

Reconstructions by the demixing vectors, based on the same signals inherently should have a likewise

result. This allows the system to compare different beamformers. These could be as instances of the same

algorithm or to compare outcomes from different algorithms. GSVD-beamformers however explicitly con-

tain the information required to differentiate between active channels. This advantage could be lost and

permutation can become difficult if signal reconstructions are to similar[17]. Using the true signal s[n] in this

comparison allows for easy evaluation of the algorithm.

Since we are dealing with an overdetermined system, we will use ρr as our likeliness measure.

3.3.2. PERMUTATION

The above metric is sufficient to compare adjacent bins or windows if they both expect and have the same

number of beamformers. In this section we look at the situation where two adjacent detection windows

contain the same number of active users.

Two beamforming matrices are generated according to the GSVD-algorithm. For simplicity they are re-

ferred to as W1 and W2, are of equal size and the columns of W2 are randomly permuted. If the correct per-

mutation is written as W ∗
2 , the solution to this mix-up is the permutation matrix which solves W ∗

2 Π
∗ =W2.

Define that the beamformers are of size R ×D and are a cascade of de-mixing vectors as

Wi =
[

wi ,0, wi ,1, . . . wi ,D−1
]

We construct the matrix C of size D ×D which contain all correlations between the columns of the first

and second beamformer as

ci , j = ρr (w1,i , w2, j )

where we leave out Xk for convenience. Also denoted as C (W1,W2), the order of the columns of W1 is pre-

served in the row order of C and the column order of W2 is preserved in the column order of C . If W2 was

ordered correctly, the de-mixing vectors pointing towards the same user would find each other on the diag-

onal of C . Finding the optimal permutation is also equivalent to finding the maximum correlation sum as

shown in appendix C. There it is shown that it can be concluded that

Tr (C (W1,W ∗
2 )) > Tr (C (W1,W2))

Equivalently the optimal permutation matrixΠ∗ becomes

Π∗ = ar g max
Π∈P

Tr (CΠ)

This optimization problem can be solved iteratively by a greedy algorithm: For each row i = 0,1. . .D −1,

permute the largest value on the i th place, equivalent to placing them on the diagonal. An example of how

beamformers might be permuted can be seen in figure 3.2.
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Figure 3.3: The changing number of users and how they could be permuted.

Figure 3.4: The result of alignment: Identified users and assigned beamformers.

3.3.3. CHANGING NUMBER OF USERS

If the two adjacent detection windows do not have the same number of expected users, one user that was

previously assigned a de-mixing vector should be considered inactive from then on forward. A comparable

situation arises when the number of expected users increases. The system should consider adding an ad-

ditional speaker to listen to. The de-mixing vector initially left out during the optimization process can be

considered as the first de-mixing vector for that user. Both of these decisions can still be made with the ap-

proach explained above. The only difference is that the smaller set of beamformers is complemented with a

zero vector before comparison and whomever is assigned to it can be considered the exception case. These

situations do not alter the system a lot. An example of how a changing number of users might influence the

permutation can be seen in figure 3.3.

What does seriously alter our case is when we consider that one user can stop and an other can start

with zero detection windows in between. In that case the number of expected users stays the same while

the system should conclude that the most recent beamformer does not contain a vector belonging to the

previously tracked user. This requires a lower bound on correlation between alike demixing vectors.

If two consecutive beamformers can be considered to be perturbed variants of each other, up to what dif-

ference can it be concluded that they reconstruct the same source H1 or not H0? For this decision introduce

a threshold γ which completes the hypothesis testing problem which answers

H0 : ρr (w1, w2) < γ
H1 : ρr (w1, w2) > γ

and which defines when two de-mixing vectors can be considered to be perturbed variants of each other.

3.3.4. ALIGNMENT

Placing the correct sequence of beamformers with the right user is the final step of our algorithm. As stated

earlier, this will be done by comparing the reconstructions received from the source separation step and the

original signal. To find the demixing vector that best reconstruct this and is also still eligible after the one to
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one comparison, our selection is reduced to

w∗
k,m = ar g max

wk,m∈Wk,m

ρr (wk,m , Xk ,Sk ) s.t . ρr > γ

which can be done for each of the approaches.

This step adds the requirement that we have the original signal available.

3.4. RECONSTRUCTION

As we stated in section 2.3, each tf-bin xk,m which has had a demixing vector assigned result in the estimates

ŝk,m = w H
k,m xk,m

which are combined in the k-direction into the local spectrum as

ŝ(k)
m =

[
ŝ0,m ŝ1,m . . . ŝK−1,m

]T

and those are cascaded into the STFT as as

Ŝ(k) =
[

ŝ(k)
0 ŝ(k)

1 . . . ŝ(k)
M−1

]
which we called the STFT before.

To obtain the time estimate for this user, apply the inverse Fourier transform defined as

ŝ(m)[n + (m −1)Nshi f t ] =F−1
{

ŝ(k)
m

}
=

K−1∑
k=0

ŝk,me− j 2π kn
K−1

to each of the local spectra m = 0,1, . . . M −1 which are sequenced to fit

ŝ[n] =
[

ŝ(0)[n] ŝ(1)[n +Nshi f t ] . . . ŝM−1[n + (M −1)Nshi f t ]
]

3.5. OUTPUT POWER

As described in the problem description, a sound solution for this step would be to find the matrixΛ−1. This

problem is generally still unsolved, even though popular approaches exist[18]. Our implementation in speech

processing offers a solution. Since the final receiver of a reconstructed signal is a person, the signal can be

scaled at the last possible moment to be played at what is called the Most Comfortable Loudness (MCL)[19]

which is broadly researched for both preference and intelligibility. [20].



4
SCENARIO & PERFORMANCE METRICS

The goal of this chapter is to summarize the previous two chapters and explain the scenario as a whole. Also

it describes how the quality of the system we have designed is measured.

Where previously the system was divided into a data model and the algorithm, this chapter will reshape

that. While the unavoidable perturbations affecting the signal are all found in the data model, not everything

from that chapter is written in stone: The DFT-size and the number of microphones for example. To em-

phasize this, what decisions can be made in tuning the system are grouped together. This new division of

Environment versus System is visualized in figure 4.1.

In the Scenario section we explain which of the parameters of the system are used as variables. These will

be the inputs to our simulation for which we want to see how they influence the algorithm’s performance.

In the Performance Metric section, it is explained which points in the system are looked at and with what

metrics we define that performance.

4.1. SCENARIO

Goal of this section is to introduce all parameters relevant to our simulation. Those for which we chose a

single value are the constants and those for which we scan a range of values are the variables. A summary of

both can be found in table 4.1.

4.1.1. SYSTEM

The goal of this subsection is to introduce the variables which have to do with the processing of the data.

They are variables which we control and therefore which we can use to tune the system.

TIME FRAME SIZE

The implementation of the first transform which the system performs, the STFT, is mostly covered in ap-

pendix B. What is left as a parameter is the size of the time frame K . This decision influences the length of

the DFT, therefore the number of frequency channels and the resulting number of steps in slow time. The

balancing of precision in the spectral and the temporal domain is called the Gabor-limit and it is a specific

version of the uncertainty principle. In literature this frame size is also referred to as the NFFT.

19
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Figure 4.1: Visualisation of the complete scenario

Table 4.1: Values and ranges

(a) Constants

Constants Value

Room size 4×3×2 (x, y, z) meter

Speed of sound 343 m/s

Sampling 16 kH z

Source angle −10◦

Element distance 1cm

Additional delay 0.5s

Receivers 10

Window size 10

(b) Variables

Variable Range (Default) Value

SNR [0,15] dB 10 dB

SIR [−5,10] dB 3 dB

Angle of separation [10◦,60◦] 50◦

Reverberation time [100,300] ms 100 ms

DFT-points [32,1024] 256

Because speech consists of harmonics, an NFFT that is too high can result in empty frequency channels

in between the signal. It also gives the algorithm a high latency and this makes it less applicable in real-time

situations.

Low NFFT makes for an easier hardware implementation since it required less filter-taps. Since the con-

sidered frequency is limited, a short time segment is bound to be more stationary. What is unfortunate is that

low spectral resolution will make the signal and interferers overlap faster.

Lest not forget that a wide frequency channel results into a low time-bandwidth product of which the

importance was explained in appendix A. If the inter element distance is denoted as d and the speed of sound

through air as vai r then the time bandwidth product from a uniform linear array can be calculated as

t i me −band wi d th = τ ·W

= d(R −1)

vai r
· F s

1
2 NFFT

which, with our constants applied becomes tbw = 0.84
NFFT

. This can be used as a rule of thumb for when pre-

dicting the required number of DFT-points.

A literature standard is to use the time frames of 10ms wide. In this width we can expect each frame to
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contain at most one phoneme and that should give a fairly stationary signal. At 16 kHz sampling rate, this

boils down to 160 samples. Adding the 50% overlap on each side makes for a total of 320 samples. We use 256

as our default NFFT as it is close to 320 but also a known hardware standard. For exactly the same reason, the

upper limit we explore is 1024. Based on emperical evidence we offer 32 as the lower limit

4.1.2. ENVIRONMENT

Goal of this section is to introduce the variables which have to do with data generation. They are the variables

which we do not control. We simply see how the system performs under these circumstances.

POWER RATIOS

Well known descriptions for signal processing environments, the signal-to-noise ratio (SNR) and the signal-

to-interferer ratio (SIR) require some additional explanation in the field of audio processing. For the non-

stationary and non-continuous case which speech as a signal presents, their definitions are different than

common in literature.

First, a clairevoyant detector defines the activity regions A as those samples in the fast time in which the

signal is active. The ideal time signal is cut into blocks of a small number of samples and if the energy in this

block surpasses a certain threshold, all samples in that block are marked as active. This way, the presence

of the speech signal is assumed to be precisely known. This ideal detector allows us to negate the effects of

faulty detectors and focus on the algorithm at hand. The signal power is therefore calculated as

Ps =
∑

n∈A

|s1[n]|2

The interference power is defined by that part of the interferer which exists in the active regions as

Pi =
∑

n∈A

|s2[n]|2

To simulate an environment with a certain SI R, the interferer is scaled in such a way that the part which

overlaps with the signal provides that power. If the current Pi ,c interferer power is known and if the desired

interferer power is calculated as

Pi ,d = Ps ·10
−SI R

10

then the interferer can be scaled by
Pi ,d
Pi ,c

. To simulate an environment with a certain SN R, noise with the

correct power is generated according to

Pn = Ps ·10
−SN R

10

CHANNEL BEHAVIOUR

The constants applicable to the uniform array are the speed of sound, the element distance and the amount

of microphones. It is primarily characterizes by the angular distance between the DOA of the source and that

of the interferer. An illustration of this can be found in figure 4.2. The smaller the angular distance, the more

alike the channel vectors a(θs ) and a(θi ) become, the more difficult to distinguish the users based on their

channel use. Experimenting with the default values of the system has shown that ∆θ = 10◦ is problematically

close and that ∆θ = 60◦ offers little challenge to the system. The default value ∆θ = 50◦ should give a good

separation, based on empirical evidence.

The convolutional model introduces an additional variable: The reverberation time T60. Rooms typically

have reverberation times of 100ms up to 300ms. The response depends on the locations of the transmittors
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Element distance:
10 𝑐𝑚

Source: -5°

Interferer: 10°

Figure 4.2: Layout of the uniform linear array in 2D as it receives in the far field.

and receivers in comparison to both oneanother and the room. Our realisation and an example of the result-

ing room impulse response can be seen in figure 4.3. We are choosing a small default value which allows us

to see the effects of other parameters more clearly. The lower bound of 100ms is used as a default value.

4.2. PERFORMANCE METRICS

The goal of this section is to introduce what combinations of system blocks we look at and explain the met-

rics that are used to measure their performance. There are three combinations of blocks considered and we

compare the effect of the input power ratios for all three metrics.

4.2.1. CORRELATION COEFFICIENT

The performance of the BSS-block is described by the correlation coefficient ρ. To measure this performance

actively, a form which uses information that is known to the system, is required. The separation performance

of a single demixing vector wk,m can best be evaluated by applying it to all of the data available in the k th

channel and compare that to the signal. This is however not possible in real time and it is more realistic

to measure performance based the local estimate and apply the demixing vector to the current detection

window. To conclude, for each demixing vector wk,m , calculate the local estimate ŝ(m) = w H
k,m Xk [m] and

correlate that to the signal originally in that detection window Sk [m]

While evaluating the system, average correlation coefficient is known. We will use that to tune the the

threshold. To start out with, γ = 0.5 is chosen based on empirical results. As stated in section 3.3.4, our

procedure is to find

w∗
k,m = ar g max

wk,m∈Wk,m

ρr (wk,m , X ) s.t . ρr > γ

which can be solved for each k,m combination.

4.2.2. SPECTRUM RECONSTRUCTION

The performance of our algorithm as a whole can be measured by looking at the difference between the signal

estimate and the clean signal in the time-frequency domain. By looking at figure 4.1 it can be seen that by

doing so, we look at the performance of the FD-BSS-step and P&A-step combined. Because the estimate still

contains a random phase shift, only the amplitude envelops are compared: The absolute value of the STFT is

defined as

|S(k)|◦ =
∣∣∣[s(k)

0 s(k)
1 . . . s(k)

M−1]
∣∣∣◦
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Figure 4.3: Top: Layout of the uniform linear array in 3D as it receives in the near field. Centre/Bottom: The channel response vectors as

generated by the rir-generator.[21]
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Table 4.2: The considered variable/metric combinations

SNR SIR ∆θ T60 N F F T

Beamformer permutation × × ×
STFT reconstruction × × ×

Time estimate × × ×

It must be stated that this metric is only available in system evaluation: It requires clairvoyant information

normally not available to the system. The error measure is defined as

eF =
∣∣∣∣∣∣|S(k)|− |Ŝ(k)|

∣∣∣∣∣∣
F

where | · |F indicates the use of the Frobenius norm and | · |◦ the element wise absolute value.

This metric is also used to compare performance of our own algorithm to other beamformers. This is done

in two different ways: Unmasked and masked. The unmasked approach offers the complete data tensor to

compare to. This is fair in the way that is receives the same information as the complete algorithm. The

masked approach offers only the tf-bins with one or more users to compare to. This is done to compare the

performance of our separating beamformer.

Next to the power ratio’s, this error is also evaluated by varying over the reverberation time of the room.

4.2.3. TIME SIGNAL ESTIMATE

As is known, the tensor used as the input for our algorithm is of size R ×K ×M as a direct result of the design

choices made on the system side. Altering these does make using the previous metrics challenging: The

number of beamformers changes and the spectrogram becomes of a different size. Predicting what effect

this has on the non-linear metrics to distinguish that from real performance issues is not often looked at. To

compare tuning parameters which influence the size of the data, we look at the time domain reconstruction.

Ideally, the deterministic signal could be compared with the estimate through some algebraic distance.

Sadly enough we can not because small phase-shifts in periodical signals generate large differences in the

amplitude envelope. Our specific implementation in speech processing offers a solution. To determine the

performance of the complete system, including (I)FFT and user identification, we suggest STOI[22] as an

inteligibility measure.



5
SIMULATION

This chapter consists of three sections corresponding to the earlier explain performance metrics. Each sec-

tion also explains how it is an adaptation from the previous simulation, starting with the technique initially

proposed by Mu Zhou[4].

5.1. SINGLE FREQUENCY BIN

This section introduces speech instead of QPSK1 as the signals of choise to the system. Also, apart from using

just the instantaneous model, data are also generated through the convolutional model. First, the systems

performance for a single frequency channel is looked at. Examples of what these signals and the data look like

are given in figures 5.1 for the instantaneous channel and 5.4 for the convolutional channel. They also show

the detection windows which are used in the following steps. Previously we have predicted that if a frequency

channel is narrowband that W H
k,m H = Πk,mΛk,m . An indication of how well our beamformer will perform

can be seen in figure 5.2. There is a clear diagonal structure in the separation error and the angular response

of both demixing vectors is close to zero for the other user. The channel matrix in the frequency domain,

however, is only available for the instantaneous model. In figure 5.3 and 5.5 a reconstruction is made with

the help of each of the two demixing vectors and this is compared to the original signal. The reconstructions

are normalized to the power of the signal to present them together in one image. This has not been done to

1Quadrature phase-shift keying(QPSK) is a complex valued alphabet based on the symbols e
iπ
2 k for k ∈ {0,1,2,3}

Figure 5.1: Signals and data as an example of a single bin, instantaneous channel simulation.

25
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Figure 5.2: Performance visualized by the separation error W H H and angular response |W H a(θ)| for θ ∈ [−90,90]. The beamformer is

based on the data and windowing as seen in figure 5.1.

Figure 5.3: Two estimates based on the two demixing vectors resulting from the data and windowing as seen in figure 5.1. Rho

calculated is ρr

Figure 5.4: Signals and data used as an example of the single bin, convolutional channel simulation.

Figure 5.5: Two estimates based on the two demixing vectors resulting from the data and windowing as seen in figure 5.4. Rho

calculated is ρr
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(a) Effect of SNR on coefficient. (b) Effect of SIR on coefficient. (c) Effect of ∆θ on coefficient.

Figure 5.6: The results of correlation coefficient experiments.

(a) Signal in the time domain (b) Signal in the TF-domain (c) Activity per detection windows

(d) Interferer in the time domain (e) Signal in the TF-domain (f) Activity per detection windows

Figure 5.7: The signal and interferer used in this simulation

calculate the correlation coefficient. We can see that each of the demixing vectors clearly reconstructs ether

the signal or the interferer.

In figure 5.6 the sample mean of the correlation coefficient achieved by our beamformer and two others

is compared. The beamformers with which our signal is compared are the MF-beamformer and the MVDR-

beamformer[23]. In figure 5.6a and 5.6c an increase of the sample mean of the correlation coefficient can be

seen. This is primarily caused by the system detecting less beamformers yet those that are detected recon-

struct an estimate highly correlated to the original signal.

5.2. FULL CHANNEL

This section extends our perspective from looking at one channel towards considering all K channels. Be-

cause it will be different per channel, we also look at signal activity per detection window. A summary of the

two speech signals, both shown in the relevant domains and supplemented with a clairvoyant activity de-

scription can be found in figure 5.7. The time-frequency domain representation of the received data can be

seen in figure 5.8

The quality of the number of users detection is evaluated only by example and can be seen in figure 5.9.
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Figure 5.8: TF-domain representation of the data used in this simulation.

(a) Users active in window. (b) Users detected in window. (c) Error between them.

Figure 5.9: Error in the detected number of users based on the known activity as shown in figure 5.7c and figure 5.7f.

There certainly seem to be users missing in a number of detection windows. In figure 5.10 the three steps in

selecting detection windows are shown. First, the largest correlation coefficient when the reconstruction is

compared to the original signal and then those coefficients which are larger than the threshold. It can be seen

there that there are a lot less detection windows missing. It must be concluded that the errors shown in 5.9c

are primarily coming from the case where the interferer is not detected.

Specifically the outcome shown in figure 5.9b is of importance in our next simulation. It is the basis of

the difference between what we will call the masked and unmasked comparison. To evaluate the quality of

only the separating beamformer, the beamformers that we want to compare it with are only applied if the

system detect a user. In that way, the beamformers receive the same information. This we will refer to as the

activity mask. To evaluate the quality of both the separating beamformer and the signal detection step, the

beamformers for comparison are always applied. It is more fair to offer the same information to both of the

approaches. The masked and unmasked cases are both compared to in this and the next (STOI) experiment.

In figure 5.11 the Frobenius norm of the error between the normalized tf-domain representations of the

signal and the reconstructions is shown for all considered cases.

5.3. TIME ESTIMATE

This section looks at the system as a whole by applying the speech intelligibility metric STOI to the recon-

structed time signal. This approach ensures that any additional limitations introduced, for example by the

(a) Largest correlation coefficient ρr for

each bin with detected activity

(b) Coefficient ρr for selected detection

windows

(c) Error between selected windows

and known activity as seen in 5.7c

Figure 5.10: TF-bins selection through max(ρr |ρr > γ)
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(a) Effect of noise. (b) The effect of an interferer. (c) The effect of T60.

Figure 5.11: The results of the stft-reconstruction experiment

(a) An example of a strong reconstruction. SN R = 15 (b) An example of a poor reconstruction. SN R = 0

Figure 5.12: Estimates of the original time signal which itself can be seen in 5.7a

(I)STFT, are included and that possibly unheard errors are overlooked. The best time signal reconstruction

can be seen in figure 5.12a while the poorest result from the GSVD-based beamformer can be seen in 5.12b.

In figure 5.13 the STOI for our selected beamformers can be found. It is in figure 5.13a that we see the

performance of the masked case decrease faster than the unmasked case. This is the result of a decrease

in the number of users detected and therefore less beamformers being applied. In figure 5.13b it can be

seem that separation by the known beamformers is hardly influenced by the interferer. This can be expected

because of the sizeable default difference in angle of arrival. For the convolutional case a strong decrease can

be seen for the compared to interferers.
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(a) The effect of noise. (b) The effect of an interferer. (c) The effect of the used NFFT-size.

Figure 5.13: The results of the intelligibility experiment



6
CONCLUSION

In this thesis we have applied the known narrowband BSS-technique to a speech signal in two environments.

We have adapted a design rule-of-thumb found in previous work to predict what size of DFT is required.

This can be applied if a desired time-bandwidth is know and hardware limitations can be reconsidered. It has

been shown that a larger DFT indeed results in more understandable reconstructions.

When enforcing narrowband behaviour by generating data with the instantaneous model, both the known

beamformers and our new beamformer result in intelligible signals however we do not yet outperform them.

Once the convolutional model is introduced, the new algorithm shows to be more robust to the limitations of

te narrowband assumption than the others, even though it does not require prior information.

Leaning on the correlation coefficient as a measure of likeliness between reconstructions has shown to

select almost all of the bins where our user is active.

Also, the theoretically SINR-optimal MVDR beamformer performs worse than the matched beamformer

in almost all situations and worse than the GSVD-beamformer in most convolutional cases - presumably

because of the small number of samples available to the sample autocorrelation matrix.

Using the Frobenius norm as a distance measure between two STFT’s has shown counter intuitive re-

sults for all beamformers. Both in the situation when one of them was degraded with noise or when it was

propagated through multipath channels. No conclusion on the quality of an estimated STFT can be drawn.

6.1. FUTURE RESEARCH

Currently the SVD is used as a preprocessing step to remove the noise space from the data. This can be solved

more elegantly if there would be a description of the distribution of the generalized singular values C and S.

With such a measure, a distinction between F = [Fs |Fn] should come available.

Currently the selection threshold γ was decided upon by looking at the results of the correlation coef-

ficient experiments. If sufficient information on both the speech signal and beamformer is considered, it

may lead to a threshold based on a combination of first or second order statistical descriptions. Instead of

choosing a functioning threshold, in this way the data could dictate a threshold for itself.

I expect that the definition of the delay in the time-bandwidth product has to be extended beyond what

time it takes the line of sight to travel across the array. The delay can be better characterized by including a
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power delay profile like a mean excess delay[24].

The fact that our algorithm performs reasonably well with a very small detection window, totalling only 20

samples, makes it more plausible that real time applications are possible. Looking further into this topic, we

know user identification is still challenging. To avoid having to do it over and over, some long term memory,

for example exponential memory, can be researched. This suggestion also fits the result shown in chapter 5

that stated that maybe a beamformer isn’t always found but once it is, it’s good. The system should be able to

learn from these findings.

The theory surrounding the MF and MVDR-beamformers that has been consulted for their implementa-

tion was primarily based on linear arrays. To compare our work to it, all data was based on these forms. The

GSVD-beamformer doesn’t actually require that limitation and research into different shapes of hardware can

lead, for example, to reducing the largest propagation delay while keeping the number of receivers constant.
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A
PHASED ARRAY APPROXIMATION

The phased-array data model is based on two the assumption. The first is the far-field approximation which

implies that all receivers receive the signal at the same power or equivalently with the same channel loss. A

rule of thumb here is that it can be applied from a distance of 10λ and beyond. The second is the narrowband

assumption which says that a small difference in time of arrival can be represented by only a phase shift. The

validity of this approximation follows from the following derivation, found in [23]

If s(t ) is the signal the first microphone receives then let S( f ) be its Fourier transform. The delayed signal

received by the second microphone includes a delay and a phase shift and is described as

sτ(t ) = s(t −τ) ·e j 2π fcτ

The inverse Fourier transform which returns the delayed signal equals

s(t −τ) =
∫ ∞

−∞
S( f )e j 2π f τe− j 2π f t d f

Define W > 0 as the active bandwidth around the centre frequency fc , adding the constraint W
2 < fc to

include only positive frequencies. It can be seen that the integral contributes

s(t −τ) ≈
∫ fc+W /2

fc−W /2
S( f )e− j 2π f t d f = s(t )

because if within the bandwidth | fc − f | < W /2 the argument |2π f τ| ¿ 1 then the exponent can be approxi-

mated by e j 2π f τ ≈ 1 resulting in

sτ(t ) ≈ s(t )e j 2π fcτ

Looking at the bandwidth requirement, the worst case condition for this approximation is the boundary

of the frequency range | fc − f | = W
2 . The argument can then be rewritten as |2πW

2 τ| ¿ 1. The conclusion is

that delays between two microphones receiving the same signal can be ignored as long as the approximation

e jπW τ = 1 holds which is equal to a small time bandwidth product W τ¿ 1.
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B
CALCULATING THE STFT

The short-time Fourier transform (STFT) is a discrete approximation of a signals time-frequency spectrum.

An STFT is calculated by cascading local frequency transforms. What local implies and how the transform is

defined is explained in this appendix. Additionally, we discuss the relationship between the data and the sig-

nal in this domain and what improvements can be made on the most elementary STFT to improve spectrum

estimation.

B.1. ELEMENTARY

This section derives the simplest STFT and the relationship between signal and data. From the signal s[n],

frames are selected in such a way that each frame m = 0,1, . . . M −1 is defined as

s(m)[n] =
s[n] m ·K ≤ n < (m +1) ·K

0 Otherwise

where K is the as the number of samples in each frame. For these frames, the relationship to the data is

known: Applying a discrete convolution with the room impulse response h[n], this frame contributes

x̃(m)[n] =
∞∑

l=−∞
s(m)[n − l ]h[l ]+en

to the data. It must be made explicit that this is the data that is the result of the part of the signal generated in

window m. The spreading effect of the convolution results in it having N f +N60 −1 samples which are non-

zero. The frequency spectrum of this local data can be calculated with the discrete-time Fourier transform

(DTFT) which is defined as the infinite sum

x̃m(ω) =
∞∑

l=−∞
x̃(m)[mN f + l ] ·e− jωl

However only finite data is available as a basis to estimate the local frequency spectrum. That is why the

cyclic DFT is used as the definition of the Fourier transform F and it can be calculated as

x̃m[k] =
K+N60−2∑

l=0
x̃(m)[mK + l ] ·e

−i 2π k·l
K+N60−1
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Figure B.1: Visualisation of the segments of s[n] and x[n].

This is equal to the DTFT for k ∈ [0,K +N60 −2].

Keeping in mind that we want to estimate sm[k], this data x̃(m)[n] would be ideal. However it can not

simply be recovered since two problems occur. First, N60 is unknown and as a channel property, it might not

even be constant. Second, the last N60 −1 samples of x̃m[n] are overlapping with the first N60 −1 samples of

the data generated by in the next data frame, x̃m+1[n]. Instead, we approximate the data resulting from the

signal generated in window m with x(m)[n], the data in window m which is likewise defined as

x(m)[n] =
x[n] m ·K ≤ n < (m +1) ·K

0 Otherwise

What is known about this data is that it contains the first K samples of x̃(m)[n] and contains N60−1 overlap

in the front, coming from the previous frame x̃(m−1)[n]. The validity of this approximation is based on the

ratio between K and N60. The transform of the shorter x(m)[n] is calculated as

xk,m =F
{

x(m)[n]
}K−1∑

l=0
x(m)[mK + l ]e−i 2π k·l

K

and stacked in a vector x (k)
m = [x0,m x1,m . . . xN f −1,m]T it is the local spectrum. The superscript (k) is not

intended as an index but as a clarification that the vector contains values from the discrete frequency domain.

The relationship between signal and data in this domain can be concluded from the way it was defined in

the time domain and the convolution theorem on Fourier transforms. If we write

h(k) =F {h[n]}

for the frequency response of the channel and define

s(k)
m =F

{
s(m)[n]

}
to be the signal’s local spectrum then the data’s local spectrum becomes

x (k)
m = h(k) ¯ s(k)

m
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or equivalently for the individual elements

xk,m = hk sk,m

Either way, as stated before, these local spectra are cascaded the STFT that we were looking for.

X (K ) =
[

x (k)
0 x (k)

1 . . . x (k)
Nt−1

]

B.2. IMPROVEMENT

In the previous explanation, two assumptions have been made which are uncommon in current state-of-the-

art STFT analysis. What these are and how they can be improved upon are explained here.

By simply selecting samples we have unintentionally used the rectangular window function. The proper-

ties considered important for a window function are the level of the first sidelobe and the 3dB decay band-

width. For the rectangular window these are −13dB and 0.89 2π
N . An alternative window is the Hanning win-

dow. With width N , it is defined as

w(n) = 1

2

(
1−cos

(
2πn

N −1

))
for 0 ≤ n < N . It has a level of −32dB at its first side lobe and a 3dB-decay width of 1.44 2π

N [25]. The main lobe

is a little broader but the level of the first side lobe is significantly lower.

The second unintentional assumption was not using any overlap. Because of the limited size of the time

frames, parts of the signal that are situated at the border of a frame have a high risk of being distorted. They

are represented less strongly, especially if a function like the Hanning window is used. Also, any windowing

function but the rectangular function descreases the amount of signal energy available. To allow overlap,

redefine a time frame as

s(m)[n] =
s[n] mNshi f t ≤ n < mNshi f t +K

0 otherwise

where Nshi f t is now the number of samples with which the frame is moved forward in fast time. Often the

overlap is described in percentages equivalent to the outcome of 1− Nshi f t

K . For a time sequence x[n] of fast

time length N this means there are Nt =
⌊

N−K
Nshi f t

⌋
+1 steps in the slow time.

To ensure a more appropriate spectrum estimation, this thesis uses the Hanning window with a 50% over-

lap on both sides

Figure B.2: The rectangular and Hanning windowing function
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Figure B.3: A visualisation of the constant energy preserving effect by applying overlap.



C
CORRELATION SUM

In this appendix we show that any permutation of column vectors can be reversed if the original order is

known. In our case we look at two matrices which are very much alike, yet also perturbed by factors besides

the permutation.

Given is the situation that there are two adjacent detection windows which both generate a beamformer

containing an equal number of demixing vectors. Let us use a general notation and say that the windows 1

and 2 generate matrices W1 and W2 consisting of demixing vectors as

Wi = [wi ,0, wi ,1, . . . wi ,D−1]

where Wi is of size R ×D .

The columns of the beamformers 1 and 2 are said to be approximately the same and the order in which

they appear in W1 is considered the correct order. The columns of W2 are randomly permuted. We denote

the correct order as W ∗
2 and define that the solution to this problem equals finding a permutation matrix that

solves

W ∗
2 Π

∗ =W2

or since only the left side is know,

W ∗
2 =W2(Π∗)−1

Before we look forΠ∗, let us repeat the likeliness measure which was introduced in the main body of this

thesis. The correlation coefficient

ρ(w1,i , w2, j , X ) =
|w H

1,i X H X w2, j |
|w H

1,i ||w2, j |

describes the likeliness between two demixing vectors. The fitness of the complete solution is defined as the

sum of the individual likenesses and can be written as

R(W1,W2, X ) =
D−1∑
i=0

ρ(w1,i w2,i , X )

41
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Now additionally we introduce a matrix C which contains the likeliness of all D ×D combinations of the

demixing vectors of beamformers 1 and 2. Because the elements are defined as

ci , j = ρ(w1,i , w2, j , X ) ∀i , j = 0,1, . . .D −1

the column order of W1 is preserved in the row order of C and the column order of W2 is preserved in the

column order of C . The fitness of the current combination W1 and W2 can also be described as a function of

this matrix and more specifically as

Tr(C (W1,W2)) =
D−1∑
i=0

ci ,i

=
D−1∑
i=0

ρ(w1,i w2,i , X )

= R(W1,W2, X )

One final equality is required before the complete optimization problem can be given. As said earlier, the

column order of W2 is preserved in C . Therefore it can be said that

C (W1,W2Π) =C (W1,W2)Π

which allows us to describe the previously stated problem as

Π∗ = ar g max
Π∈P

Tr(CΠ−1))

or equivalently the permutation matrixΠ∗ places the largest values of C on it’s diagonal.

To prove that this optimization problem indeed results into the correct permutation, consider the follow-

ing: Based on the definition of the correlation coefficient it is known that

ρ(w1,i , w∗
2,i ) > ρ(w1,i , w∗

2, j ) ∀i 6= j

which, while it also holds for our situation, must be extended in three ways before its true consequence is

revealed. First, trade in > for ≥ and it can be any column which allows us to leave out ∀i 6= j . In fact, notice

that the column w∗
2, j also exists in W2 so the optimality condition of the right half can be left out. Finally, our

solutions can never contain just one such mismatch. A single mistake in permutation has two corresponding

demixing vector mismatches as a consequence. Therefore we start with the following inequality

ρ(w1,i , w∗
2,i )+ρ(w1, j , w∗

2, j ) ≥ ρ(w1,i , w2, j )+ρ(w1, j , w2,i )

which is about one pair of mispermuted demixing vectors. It states that the sum of the correlation coefficients

is at its highest if the columns of W2 are permuted correctly. This inequality can be extended to

D−1∑
i=0

ρ(w1,i w∗
2,i ) ≥

D−1∑
i=0

ρ(w1,i w2,i )

where the left half of the inequality can be recognised as the fitness of the current column order of W2 and

therefore also as the trace of C .

This is solved a simplistic, two step greedy algorithm. First, check for the current row where the largest

value is. Secondly, permute that value to the diagonal. If this is done for all D rows, the combined permutation

matrix must equalΠ∗. An example is given in figure C.1.
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Figure C.1: Left: An unknown permutation. Centre: Matrix C and highlighted the largest values for each row. Right: The corresponding

optimal permutation matrix
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