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Visual Homing for Micro Aerial Vehicles using Scene
Familiarity

Gerald J.J. van Dalen; Kimberly N. McGuire and Guido C.H.E. de Croon
Delft University of Technology, The Netherlands

ABSTRACT

Autonomous navigation is a major challenge
in the development of Micro Aerial Vehicles
(MAVs). Especially when an algorithm has to
be efficient, insect intelligence can be a source
of inspiration. An elementary navigation task
is homing, which means autonomously return-
ing to the initial location. A promising approach
uses learned visual familiarity of a route to deter-
mine reference headings during homing. In this
paper an existing biological proof-of-concept is
transferred to an algorithm for micro drones, us-
ing vision-in-the-loop experiments in indoor en-
vironments. An artificial neural network deter-
mines which control actions to take.

1 INTRODUCTION

A major challenge in robotics is to navigate autonomously
through an unknown environment. Especially in indoor
scenes, where no Global Positioning System (GPS) system
is available, the entire navigation problem is not yet solved.

Current navigation algorithms either require expensive
sensors or significant computation power. Especially Simul-
taneous Localization and Mapping (SLAM) methods have
shown to be successful in real-time navigation, given enough
computational power on-board a vehicle or good sensors.
Most Micro Aerial Vehicles (MAVs) do not have such sensors
and cannot perform heavy computations on-board the vehicle.

In order to find suitable navigation algorithms for MAVs,
insects can be a source of inspiration, since they constantly
have to deal with complex navigation problems while only
having small-sized brains [1]. Different algorithms have al-
ready been created based on observations done on insects.
A well-known example is using optic flow to get a sense of
velocity, which is known to be done by insects [2]. Integrat-
ing this estimate for localization is called visual odometry.
The obtained location estimate is employed in higher level
navigation algorithms. Still, these algorithms are not readily
available for tiny MAVs yet. One of the higher level skills em-
ployed by insects is the ability to return to the nest location.
This is referred to as homing [3]. It would be an important
enabler for MAVs, if they could use similarly high-level, but
computationally efficient algorithms for navigation.
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Figure 1: Pocket drone: a micro quad rotor containing a Lisa-
S autopilot and a stereo camera [5]. While this pocket drone
can already fly, stabilize and avoid obstacles, in this paper we
investigate efficient insect-inspired algorithms that will allow
it to navigate in an unknown environment.

A promising homing algorithm is proposed by Baddeley
et al., where familiar views along a route are used to deter-
mine the correct direction to an earlier visited location [4].
This is a visual homing algorithm, since cameras are used
as driving sensor. Instead of focussing on the contruction of a
detailed (or coarse) map, Baddeley et al. propose that homing
can be performed just by means of recognizing which direc-
tion seems most familiar to a robot. Furthermore, they use a
small neural network to store and recapitulate a route in order
to find the initial location. Potentially, this is very useful for
MAV navigation algorithms, since it deals with limited stor-
age capacity found on many small platforms, like the pocket
drone shown in Figure 1.

In an effort to find efficient navigation algorithms for
MAVs, this paper investigates the practical application of the
scene familiarity algorithm on MAVs. The focus is on how
robust familiarity is to determine control actions.

First, section 2 discusses the state-of-the-art in au-
tonomous visual navigation on drones. Then, section 3 ex-
plains the scene familiarity method as introduced by Bad-
deley et al. Section 4 shows simulations and experiments
for different environments, to overcome current shortcomings
in the implementation described by Baddeley et al. Finally,
closed-loop simulation flights are performed and presented in
section 5, to show a more realistic use-case of view familiar-
ity for MAV homing.

2 RELATED RESEARCH

This section gives a brief overview of previous research
done to visual navigation and specifically visual homing. Vi-
sual SLAM is the most commonly used algorithm in camera-



driven robotics. An example is shown in Motard et al.,
where an AIBO robot! must navigate back to its charging
station [6]. Still, visual SLAM algorithms in real-time re-
quire much computational resources, since (visual) process-
ing, mapping and self-localization must be performed simul-
taneously. Since most MAVs have limited computational re-
sources, visual SLAM often cannot be run in real-time, which
makes it less suitable for homing.

In 1983, Cartwright & Collett introduced the Snapshot
Model [7]. The framework they presented gives an expla-
nation of the navigation capabilities of bees when traveling
between different food sources. The visual matching is done
by a direct comparison of an image on the retina with a stored
snapshot. The landmark approach is further extended by the
addition of visual beacons [8]. A disadvantage of this is that
many images have to be stored.

A similar approach uses Average Landmark Vectors
(ALVs) to represent landmarks [9]. ALVs, introduced by
Lambrinos et al. in 1998, are averages of the heading vec-
tors to all landmark locations [10]. The homing vector is de-
termined with respect to this ALV. ALV homing stores the
location of interest as a vector, which is more efficient in com-
putation and storage, than storing an entire image. However,
due to its simplicity, ALV homing is also more prone to er-
rors.

Scene familiarity methods refer to recognition of a tra-
versed route, without specific information about the goal lo-
cation. This means, a robot must always move into the most
Sfamiliar direction. In the ideal case, this would automatically
mean that the agent returns to the goal location. In 2012,
a scene familiarity method is proposed for visual homing of
desert ants [4]. The scene familiarity method proposed by
Baddeley et al. is quite new and not yet used in robotic appli-
cations. The next section reviews their paper in depth.

3 THE SCENE FAMILIARITY METHOD

In an effort to find a biologically more plausible alterna-
tive to map-based navigation methods and the snapshot model
described in the previous section, the scene familiarity hom-
ing method is introduced [4]. To show that homing navigation
could take place without the use of visual odometry, a method
is presented where views along the entire route determine the
heading in which to proceed. Conceptually, this means that
during a training run images in the direction of the route are
stored. Then, when using the algorithm for homing, images
taken around the robot are compared to these stored views in
order to determine the most familiar direction.

When the homing capabilities are tested, the agent is
placed back at its initial location. From there, homing is done
by performing 360° scans of the world and comparing images
taken in each direction with all images stored. A familiarity
value of a single image is obtained by calculating the Sum of
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Figure 2: Binary panoramic image used in Baddeley et al. [4].

Squared Differences (SSD) of raw pixel values, as defined in
Equation 1 [11].

F(I) = —argmin 3 (I(2,9) - Vilw,p)* (1)

In this equation, F'(I) indicates the familiarity of view I,
I(x,y) is the current view and V;(z, y) are the stored views.
It can be seen that the stored image that gives the closest
match to the current image is used as familiarity value. The
agent can rotate on the spot or use an omni-directional cam-
era to obtain familiarity values in all directions. After deter-
mining the most familiar direction (by maximizing the values
obtained with Equation 1), the simulated agent is moved in
that direction.

The stored panoramas are binary images and have dimen-
sions of 90 by 17 pixels (Figure 2). The resolution is such
that each pixel in horizontal direction is equivalent to a rota-
tion of 4°. During homing, familiarity is evaluated for steps
of 1 pixel, such that Equation 1 is evaluated 90 times. The
maximum outcome of this results in the most familiar direc-
tion.

Due to the large memory needed for storing images and
the computational requirements, the algorithm in the current
form is not yet suitable for implementation on-board a small
robot. Baddeley et al. therefore also study an unsupervised
Infomax neural network to approximate familiarity [12]. The
network is a two-layer neural network, where the linear com-
bination of an input and the network weights represent famil-
iarity. A lower value indicates more familiar. The training
rule therefore adapts the weights such that the value is lower
for every input encountered during training.

Baddeley et al. showed the validity of scene familarity
with virtual robotic ants in a simulated environments. How-
ever, they use an environment of binary sceneries, which are
not representative for the scenes through which a robot must
navigate. Moreover, the simulation is set up such that moving
the image by one pixel in the horizontal direction is equiva-
lent to a rotation of the agent of 4°. These direct relations
to rotation and pixel difference are not realistic for real-life
cameras. Furthermore, the algorithm has only been tested on
relatively small distances, since images are stored every 4cm
and movements of 10cm per timestep are made. When the
method is implemented in robotics, the robot should be able
to cover longer distances to make it more useful.

Recently, Gaffin et al. have published a detailed analysis
on scene familiarity in realistic, indoor environments [13].



Distinguishing familiarity is both analyzed in rotation and
translation, for raw pixel matching between images of dif-
ferent resolutions. A rail mounted camera is used to perform
a MATLAB-driven experiment.

In our analysis of the scene familiarity method, we will
use a simulator containing realistic sceneries, vehicle dynam-
ics and camera parameters. A translation and rotation anal-
ysis will be performed as well, however, next to raw pixel
values, we will also investigate alternative image representa-
tions, to determine which one is more suitable for recogniz-
ing familiar views. Closed-loop simulations with an MAV
are presented and we show the use of an Infomax neural net-
work as well, since this helps in meeting the limited storage
requirements of an MAV. We hope to better understand au-
tonomous navigation for small MAVs. In future work, the
methods of Gaffin et al. should be applied to our simulation,
to compare the obtained results.

4 FAMILIARITY ANALYSIS

In the previous section, the original simulation results
presented by Baddeley et al. are discussed [4]. Based on
this, a key question remains whether the algorithm will work
in more realistic environments. In this and the following
sections, an analysis of an indoor simulated environment is
presented in combination with different image representation
methods. First, the tested image representations and calcu-
lated performance measures are introduced. Then, simulation
results of these different methods in multiple environments
are shown. To validate this, similar results are shown on real
imagery.

4.1 Methods

To test the usability of familiarity of scenes for visual
homing, we investigate the familiarity sensitivity during both
rotation and translation. Analyzing rotation is done by per-
forming a 360° turn at a fixed location in the environment, in
steps of 5°. A single image is stored and used as trained view
and all other views experienced during this rotation are com-
pared to this. The hypothesis is that familiarity should im-
prove when the heading difference between the current view
and the stored image decreases.
Translation is analyzed by evaluating familiarity in a grid
of locations, with a fixed heading. Again, a single image is
used as training sample and the familiarity is expected to im-
prove when the distance to the trained view gets smaller. Re-
sults of this should show the sensitivity of familiarity with
both increasing distance (in two directions) and increasing
heading angle.
The following image representations are compared:
e Raw pixel values The sum of squared differences of
each pixel in two images outputs a similarity score [11],
as shown in Equation 1.

e Texton histograms Textons are small distinct image
patches, which can be extracted from an image [14].
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Figure 3: Rotation on the spot at a constant location in a sim-
ulator. Unfiltered images of 48 by 32 pixels are taken every
5° and compared to a stored image at a heading angle of 180°.
The red dashed lines indicate the BoA bounds and the green
dashed line shows the mean familiarity.

When clustered with a texton dictionary, histograms
are formed which represent an image.

e Hue Saturation Value (HSV) color histograms Color
histograms contain a classification of each pixel based
on color intensity.

The performances of the different methods are evaluated
by 1) looking at how distinct a view close to the trained view
is, compared to other views and 2) what the probability is
that the correct (i.e., trained) view is selected as most famil-
iar, since that direction will be chosen for homing. Figure 3
shows an example of a familiarity evaluation when rotating
on the spot. The trained image is positioned at an angle of
180° and, in this example, image matching is done using the
SSD of raw pixel values. The performance is evaluated using
the following measures:

e Peak ratio The peak ratio is defines as:

max F' — up

PR = )

max F' — min F'
In this equation, F' refers to the familiarity values
shown in Figure 3 and pr is the mean of all familiarity
values (i.e., the green line in the figure). The higher the
peak ratio is, the more distinct a peak is.

e Basin of Attraction (BoA) The basin of attraction
shows how far an agent can be off from the trained
view, before diverging from the correct direction. It
is evaluated by finding all local optima (both minima
and maxima) and looking between which minima the
agent converges towards the trained optimum familiar-
ity (maximum).

o Correlation coefficient This is used to estimate the
correlation between two neighboring heading angles,
differing by 5°. Here, the Pearson product-moment
correlation coefficient is used, where 1 indicates full
positive correlation between two neighboring angles,
-1 means full negative correlation and 0 means no cor-
relation.

The BoA is considered to be most important, since it de-

termines how far an agent can be off the route (i.e., the correct
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Figure 4: Examples from the scenery used in SmartUAV sim-
ulations (a) and the validation Cyberzoo environment (b).

heading), while still being able to converge back to the cor-
rect path with a gradient-like search. The peak ratio is mainly
useful when an agent has no clue where to go; if the agent
makes a 360° turn and the trained peak is very distinct, the
probability of continuing in the right direction is high. The
correlation coefficient gives a measure for how continuous a
familiarity curve is. When the correlation is low, it could hap-
pen that spikes occur in the familiarity curve, which may give
wrong results.

4.2  SmartUAV Simulations

This section shows analyses for sceneries in the
SmartUAV simulator. SmartUAV is made for Guidance Navi-
gation & Control (GNC) research on MAVs and specializes in
the use of vision as primary sensor. The simulator is written
in C++ and sensors and controllers can be connected using a
block interface. This makes it easily extendable and the level
of simulation fidelity can be adapted by changing complex-
ity of vehicle dynamics, sensor dynamics and realism of the
environment.

The tested environment is based on a sports hall located in
Delft (the Netherlands). The dimensions are 30 by 60 meters.
Figure 4a shows an example view of the sports hall. This
environment is used for both familiarity analysis and closed-
loop simulations.

As mentioned, both rotational and translational familiar-
ity sensitivity will be tested. For familiarity estimation, SSD
values of raw pixels, SSD values of texton histograms and
SSD values of HSV color histograms are used and compared.
The familiarity sensitivity to yaw rotations is most important
for view familiarity-based homing. Each turn taken during
homing is made based on the familiarity values for different
heading angles. To analyze familiarity for different headings,
different image representations are compared by calculating
the BoAs, peak ratios and correlation coefficients. An MAV
is simulated at a single location and stores a representation of
one view. This view is matched to images in all other direc-
tions to get a measure of familiarity. This is done in a grid of
locations in the sports hall, to get imagery in the center of the
room, as well as close to walls. For each location, the BoA,
peak ratio and correlation coefficient can be calculated.

Table 1 summarizes these performance measures for the
different methods. The calculated BoAs, peak ratios and cor-

relation coefficients are averaged for all locations and the
standard deviations are included as well. Good performance
is characterized by large BoAs (i.e., it is likely that the correct
heading is found), large peak ratios (i.e., the correct familiar-
ity value is distinct compared to familiarities in other direc-
tions) and correlation coefficients close to 1 (i.e., continuous
and not too noisy).

Raw pixels Textons HSV
BoA average 37.3% 36.7%  6.90%
BoA std. dev. 16.5% 12.0% 3.77%
Peak ratio average 0.57 0.43 0.53
Peak ratio std. dev. 0.10 0.076 0.13
Corr. coeff. average 0.98 0.98 0.80
Corr. coeff. std. dev. 0.051 0.0091 0.14

Table 1: Average performance metrics during rotation, for
each image matching method in the simulated sports hall.

Looking at the results, it can be seen that the BoAs for
raw pixel matching and texton histogram matching perform
similarly. HSV histogram matching performs much worse,
which is also seen in the lower correlation coefficient. This
indicates more local optima, which inherently decreases the
BoA. The peak ratio is best with raw pixel matching, although
the differences between the different methods are quite small.

To illustrate the results shown in the table, familiarity
curves are shown in Figure 5. The top plot shows raw pixel
matching, the middle texton histogram matching and the bot-
tom one HSV histogram matching. The blue, solid lines in-
dicate the average familiarity curves for all locations in the
environment, the red dashed lines indicate two times the stan-
dard deviation and the gray lines show some example famil-
iarity curves at individual locations in the sports hall. The
results are scaled such that the average lies between 0 and 1.

As expected, all average curves show a single peak at
the trained locations (i.e., at 180°). The HSV histogram re-
sult however, shows a less predictable outcome, with a larger
amount of local optima. This is in line with the lower BoAs
and correlation coefficients shown in Table 1.

To test familiarity sensitivity with translation only, im-
ages taken in a grid pattern are analyzed. In the sports hall
the trained view is obtained in the centre of the room, which
is matched against views from the entire room, keeping the
heading angle constant. In contrast to rotation, translational
motion is not directly controlled. For homing, only the head-
ing angle is adjusted in order to reach the correct destination.
This means that good performance in translation is charac-
terized by a familiarity that does not change too much for
small displacements. Stated differently: when a 360° turn is
performed, it is advantageous when the familiarity curves are
similar for proximate locations, so that good homing perfor-
mance is achieved even when exploration and homing routes
do not perfectly align. Figure 6 shows the results in the sports
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Figure 5: Average rotation on the spot of 231 locations in
the sports hall environment in SmartUAV. Unfiltered images
of 48 by 32 pixels are taken every 5° and compared to a
stored image at a heading angle of 180°. The red dashed lines
indicate the 20 bounds and the gray lines are some exam-
ple familiarities. The top, middle and bottom plots indicate
raw pixel matching, texton histogram matching and HSV his-
togram matching respectively.

hall environment, for raw pixel matching, texton histogram
matching and HSV color histogram matching. The colors in-
dicate the familiarity of a certain location, where dark blue is
most familiar.

From the figures it is clear that raw pixel matching shows
the most distinct global optimum. Texton and HSV histogram
matching however, show a larger region of optimal familiar-
ity. This can be useful when the robot is slightly off-track,
because rotational performance will be similar on different
locations. However, both methods show several local min-
ima, which can be disadvantageous for homing.

4.3 Validation Experiment

The previous analysis is done in simulation. To validate
this, an experiment is shown using real imagery taken in an
indoor environment. The environment used is the Cyberzoo;
a flight arena located at the TU Delft, as shown in Figure 4b.

Validation is done for both rotation and translation. For
rotation, videos of rotations on the spot are recorded, con-
taining 25 videos in a grid of 5 by 5 meters. The average
BoAs, peak ratios and correlation coefficients are computed,
as in the simulations presented in the previous section. The
results, including the corresponding standard deviations, are
shown in Table 2. The first observation is that the BoAs are
much smaller than in simulation. This is explained by more
spikes (and hence local optima) in the results, which is con-

—10 0 10
X [m]

Figure 6: Varying x and y positions in a SmartUAV simula-
tion in a sports hall, with constant heading angle. Unfiltered
images of 48 by 32 pixels are taken in a grid pattern and com-
pared to a stored image at the center of the grid (x=0 and
y=0). The top figure uses raw pixel matching, the middle fig-
ure texton histograms and the bottom figure HSV histograms.

firmed by the lower correlation coefficients. It is however,
in contrast with the observation in the previous section that
more realistic environments yield higher BoAs.

The second observation is that texton and HSV histogram
matching show slightly better BoAs than raw pixel matching.
Due to the small differences and the large standard deviations
however, no significant conclusions can be drawn from this.
The corresponding rotation plots are shown in Figure 7.

Raw pixels Textons HSV
BoA average 9.13% 12.7%  11.7%
BoA std. dev. 3.38% 6.57% 4.24%
Peak Ratio average 0.53 0.41 0.37
Peak Ratio std. dev. 0.054 0.095 0.093
Corr. Coeff. average 0.82 0.92 0.84
Corr. Coeff. std. dev. 0.093 0.025 0.14

Table 2: Familiarity performance metrics for each image
matching method in the Cyberzoo environment.

Translation is validated by comparing images taken fac-
ing the same direction, in a grid of 49 locations. The results
are quite similar to the simulation results and are shown in
Figure 8. Again, the result for raw pixel matching shows a
very narrow peak at the trained location. This can be disad-
vantageous for homing, since a small offset from the training
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Figure 7: Average rotation on the spot of 25 locations in the
Cyberzoo environment. Unfiltered images of 64 by 36 pix-
els are taken every 5° and compared to a stored image at
a heading angle of 180°. The red dashed lines indicate the
20 bounds and the gray lines are some example familiarities.
The three plots indicate raw pixel matching, texton histogram
matching and HSV histogram matching respectively.

path can cause divergence from this path. When looking at
the texton histogram matching result, it can be seen that two
clear optima are present. Even though the surrounding re-
gion has quite similar familiarity values, the local optimum at
x = 3 and y = 2 might result in wrong convergence.

Looking at both rotation and translation of HSV his-
togram matching, it can be observed that the real-life results
are better than those made in simulation. This can be ex-
plained by more distinct colors in the validation imagery, such
that more bins in the HSV histogram are filled.

5 CLOSED-LOOP SIMULATION FLIGHT

As mentioned in the previous sections, the recognition of
views during rotation performs best for both raw pixel match-
ing and texton histogram matching. Especially in simulation,
the BoAs of these two methods are comparable. When ob-
serving familiarity during translations, both texton and HSV
histogram matching show a large central region of similar fa-
miliarity. As explained earlier, this can be advantageous for
homing, since recognizing the correct heading during rota-
tions probably yields the same result for proximate locations.
When looking at closed-loop results it is therefore expected
that texton histogram matching will perform better than the
other two methods.

To show a closed-loop simulation, a simulated robot is
placed in the sports hall environment. A route is learned by
flying backwards (with a speed of 0.5m/ s), such that the front
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Figure 8: Varying x and y positions using pictures of the Cy-
berzoo environment, with constant heading angle. Unfiltered
images of 64 by 48 pixels are taken in a grid pattern and com-
pared to a stored image at the center of the grid (x=4 and

y=4).



camera looks in the homing direction, which is necessary to
use scene familiarity for homing. One third of the image
taken at the center is used for training. When homing is initi-
ated, the robot starts flying forward with a constant speed of
0.5m/s and the heading is constantly determined using view
familiarity. This is done by selecting one third of the image
giving the best match with one of the trained views. The cen-
ter of this image patch is converted to an angle, to which the
MAV is steered. Views are obtained from a forward looking
camera, with a field of view of 90°. The result is shown in the
left part of Figure 9. Here, the blue solid line is the training
route, starting at x = 4m and y = 12m, which are arbitrarily
chosen. A route of approximatelly 20m is flown.

From the results it can be seen that both texton histogram
matching and HSV histogram matching approximatelly reach
the initial location. The main difference is that texton his-
togram matching performs turns with a small delay, where
HSV histogram matching turns too early. The delay can be
explained by low frequency: because all possible patches are
extracted from each image, texton histogram matching oper-
ates at approximatelly 1H z, where HSV histogram matching
operates at approximatelly 20H z. Texton histogram match-
ing can be significantly improved by using sub-sampling of
textons, instead of extracting all. For HSV histogram match-
ing it could be questioned whether it only performs well be-
cause the flying direction is approximatelly straight. When
homing is done by matching raw pixels (performed at approx-
imatelly 5H z), the robot diverges from the trained route. It
does, however, follow the curvature of the trained path. The
fact that raw pixel matching works worst suggests that dif-
ferences in familiarity when performing small translational
movements causes views to be hard to recognize.

As mentioned, the Infomax neural network can be used
as function approximator of familiarity [12]. To test this in
closed-loop, the three methods are all represented in a neu-
ral network. For both texton and HSV histogram matching a
network with 50 inputs is defined (i.e., each histogram forms
one input vector to the network). The number of novelty neu-
rons is arbitrarily chosen to be 200. Furthermore, the number
of epochs is set to 500. It turned out that a lower number of
epochs gives significantly worse performance. In further sim-
ulations or flight tests this should be tuned by testing multiple
numbers of both novelty neurons and epochs. For raw pixel
matching, the image is scaled down to 16 by 12 pixels, which
gives 192 inputs to the network. Larger dimensions as in-
put cannot be performed in real-time. The number of novelty
neurons and epochs are kept the same.

The results using an Infomax network can be seen in
the right part of Figure 9. It is clear that the results are
slightly worse than with a perfect memory (i.e., by keeping a
database of images, texton histograms or HSV histograms). It
does however, look quite similar to the perfect memory case,
which suggests that the assumption that Infomax is only used
as approximator for views is quite good.
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Figure 9: Closed-loop homing simulation in the sports hall
environment in SmartUAV. On the left, a perfect memory is
used; on the right the Infomax neural network is applied.

6 DISCUSSION

When first looking at the rotational analysis, it was ob-
served that raw pixel and texton histogram matching per-
formed best. When looking at the translation results, raw
pixel matching shows the most distinct peak. Because po-
sition of the robot is not directly controlled, it is advanta-
geous that a large familiar region appears in translation, so
that a small displacement of the robot does not change the
homing performance. This was especially the case for tex-
ton histogram matching and HSV histogram matching. This
suggests that texton histogram matching would perform best,
which is confirmed by the closed-loop results. Surprisingly,
HSV histogram matching shows very good performance in
closed-loop. A reason for this can be that generating and stor-
ing HSV histograms is computationally very efficient, which
allows for a low timestep. This means corrections are made
very quickly so that the robot does not diverge too much. It
does not say however, that HSV histogram matching would
perform well when divergence already happened.

When evaluating the closed-loop tests in this paper, some
limitations can be identified. First of all, it is only tested in
simulation. Although the fidelity of the simulation is higher
than the simulations performed by Baddeley et al., it is ques-
tionable whether the same results would be obtained in a real
flight. Furthermore, additions can be proposed to make the
algorithm more robust. An example is to use active rotation
instead of using the inherent field of view of the forward look-
ing camera, such that bigger turns can be made. Alternatively,
a camera with a larger field of view can be added. Another
possibility is the use of visual odometry to get a rough esti-
mate of the path taken. Odometry could be used to prevent
severe divergence from the correct route. Since the experi-



ment enforces small turns only, it cannot yet be concluded
that the method works well for diverse trajectories.

Another point of discussion is that the main reason scene
familiarity can be a viable approach for visual homing of
MAVs is computational efficiency. The only way this is tested
in this paper, is by performing closed-loop real-time simula-
tions on a laptop computer. When implementing the algo-
rithm on-board an MAV, the real-time performance may be
inadequate due to a slower micro-processor. The one excep-
tion was HSV histogram matching, because both the compu-
tations needed to extract histograms, and the storage capacity
are limited. In this paper however, all textons were extracted
from each image. Usually, it suffices to randomly pick a set
of textons, which would drastically improve computational
performance. The storage of a texton histogram is similar to
storing an HSV histogram. A huge advantage of using a neu-
ral network is that the storage capacity is constrained. Even
though this means that the network can forget earlier trained
views (which is also investigated by Baddeley et al.), it al-
lows control over the often very limited storage capacity on
MAVs. Training on the other hand, is quite slow; especially
when having to train each sample 500 times.

7 CONCLUSION AND RECOMMENDATIONS

This paper investigates the applicability of the scene fa-
miliarity homing method, observed from insect behavior, to
MAVs. The scene familiarity method is introduced as proof
of concept for desert ants to use the recognition along a route
to find their way home. Next to this, an unsupervised neural
network was used to keep storage of familiarity compact.

The concept of only using recognition along a route is a
very interesting one. The analysis shows the closed-loop per-
formance is good. The reason the method is promising, is the
computational efficiency. Especially HSV histogram match-
ing showed surprisingly good closed-loop performance while
running quite fast. For the other two image representations
the algorithm works in real-time on a laptop, although the
frequencies in the current implementations are low.

Itis concluded that using texton or HSV histogram match-
ing is useful for visual homing on small robots. Once a route
is lost, the risk of divergence is quite high. This must be
further investigated. It seems very useful to combine scene
recognition with existing methods like visual odometry. Es-
pecially when some more thought is put in optimizing the
algorithm and sensor usage (like multiple or omnidirectional
cameras), two computationally efficient methods can be com-
bined to succesfully perform homing.
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