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Abstract

The aim of this thesis is to model fully collateralized exposures in the pres-
ence of the Margin Period of Risk, i.e., the time between the last successful
collateral call to the time where the amount of the loss crystallizes. We start
with introducing a closed-form expression to model fully collateralized expo-
sures for fixed versus floating interest rate swaps. Then the Brownian bridge
method is introduced and applied, which allows for improvements computa-
tional wise. Finally, fully collateralized exposures are modeled in the presence
of the Margin Period of Risk, with the Least Squares Monte Carlo method
in the case of one European call option under Black-Scholes assumptions.
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Introduction

In this thesis we model Credit Valuation Adjustment in the case of having
fully collateralized contracts between counterparties. In particular, we focus
our analysis on the so called Margin Period of Risk, i.e., we model how
exposure profiles behave between the time of the last successful collateral
call and the time when the amount of the loss crystallizes. The main focus
of the thesis is to be able to generate expected positive exposure profiles in
the presence of the Margin period of Risk.

A general concept of Credit Valuation Adjustment is introduced in Chap-
ter 1, where the definitions of expected positive exposure and Credit Valua-
tion Adjustment are provided. Furthermore, agreement clauses like netting
and collateral are discussed, which is used to reduce counterparty risk.

The Margin Period of Risk is modeled in Chapter 2. We consider a setting
of having a portfolio consisting of one fixed versus floating interest rate swap.
For this setting, we define a closed-form expression which provides insights
and intuition behind the drivers of fully collateralized exposures. In terms
of simulation, we make use of open source software, called Open Source Risk
Engine. The Open Source Risk Engine allows us to generate an expected
positive exposure profile in the presence of the Margin Period of Risk, where
discounted portfolio values are obtained by crude Monte Carlo simulation.
The expected positive exposure profile generated by the Open Source Risk
Engine is used for comparison with the expected positive exposure profile
generated with our closed-form expression. We then introduce a method
called the Brownian bridge method, which results in obtaining discounted
portfolio values without having to resort to brute-force daily crude Monte
Carlo simulation of these portfolio values. This method can be useful when
we deal with large portfolios, where calculating discounted portfolio values
on a daily basis is computationally expensive. Again we make use of the
Open Source Risk Engine, where we compare both expected positive exposure
profiles obtained with the Open Source Risk Engine and the Brownian bridge
method in terms of how accurate the Brownian bridge method is.

In Chapter 3, the Margin Period of Risk is modeled in the setting where
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discounted portfolio values are approximated by the Least Squares Monte
Carlo method. In this method, regression functions are used to approxi-
mate discounted portfolio values at every path and every time step. These
approximated discounted portfolio values are used to generate an expected
positive exposure profile. We work in a standard Black-Scholes setting, with
a portfolio that only contains one European call option. In order to model
the Margin Period of Risk, we first analyze the setting where there is no col-
lateralization. We then expand this setting to the fully collateralized setting,
where we show results and compare the expected positive exposure profiles
obtained by the Least Squares Monte Carlo method with the expected posi-
tive exposure profile obtained by Black-Scholes.

In the last chapter, Chapter 4, we state all our findings and suggest further
directions of research.
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Chapter 1

An overview on Credit
Valuation Adjustment

Until the financial crisis of 2008, many (if not all) aspects of counterparty
credit risk, i.e., the possibility that a counterparty will not honor its con-
tractual obligations, were often overlooked in common derivative valuation
practices. Therefore, to provide a fair-value adjustment where counterparty
credit risk is assessed, banks now make use of Credit Valuation Adjustment
(CVA).

In this section we provide a general overview of the framework we are go-
ing to make use of to correctly estimate counterparty credit risk for derivative
valuations. In particular, we mainly follow the approach outlined in [1] (see
Chapter 2 therein). For the sake of clarity, as this framework is used for
valuation purposes only, from here onwards we will be always working with
a (naturally) filtered probability space (Ω, (F (t))t∈[0,T ],Q), where Q denotes
the risk neutral measure.

Given a (portfolio/netting-set of) contract(s) between a bank B and a
counterparty C (we conventionally assume that a positive amount represents
a credit for B, while a negative one a debit), the following notation will be
used from this point forward:

T Longest amongst the maturities in the portfolio;
t Time variable (t ∈ [0, T ]);
Π(t, T ) Sum of all the discounted (at time t) cash flows linked to the

portfolio occurring between t and T (both t and T included);
Et[·] Q-expectation conditional to the σ-algebra F (t). For

convenience, in the case of t = 0 or when F (t) is specified in the
Q-expectation, the subscript will be left out;

Rec Recovery rate of the counterparty;
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τ (Random) default time of the counterparty;
LGD Loss given default of the counterparty, i.e., LGD = 1 - Rec;
PD(ti−1, ti] Probability of default in the interval (ti−1, ti];
P (0, t) Discount factor from t to 0;
max(·, 0) Positive part of the quantity within brackets. In the case of

having to deal with extensive formulas, (·)+ is used;
V (t) Value of the portfolio at time t, i.e., V (t) = Et[Π(t, T )];
1{·} Indicator function of the event {·}.

1.1 (Unilateral) CVA

According to [1] (see Section 2.3 therein), (Unilateral) CVA (i.e., UCVA)
can be defined as the difference between the risk-free portfolio value and the
portfolio value that takes into account the possibility of the counterparty
defaulting. Since the financial crisis, CVA became a central part of coun-
terparty risk management. Furthermore, CVA can also be used to manage,
price and hedge counterparty risk. To avoid ambiguity, from here onwards
amounts are always seen from the point of view of B. Further, we will be
always assuming that a portfolio per as per Section 1 is considered.

We start with deriving the formula of exposure, which is the amount B
can lose, should C default. According to [2], the exposure B has with respect
to C is determined in the following way: if the contract value is negative for
B when C defaults, then B closes out the position by paying C the market
value of the contract. B has, thus, a net loss of zero. If the contract value is
positive for B when C defaults, then B closes out the position and receives
nothing from the counterparty. B has, thus, a net loss equal to the market
value of the contract. We conclude that the exposure is either zero or the
market value of the contract, thus exposure is given by

E(t) = max(V (t), 0), (1.1)

of which only a fraction is actually recovered if C defaults, denoted by
the recovery rate Rec (which is the share of an asset that is recovered if
a borrower defaults). Now we define the expected positive exposure (EPE)
(uncollateralized case), which is the risk neutral discounted expectation of
the exposures:

EPE(t) = E[P (0, t) ·max(V (t), 0)]

= E[P (0, t) · E(t)]. (1.2)
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Obtaining values for the EPE at different times t ∈ [0, T ] results in an EPE
profile. Therefore, it is natural to define CVA as the expectation at time 0 of
the discounted exposures at default time τ , multiplied with the Loss Given
Default (LGD), i.e.,

CVA = E
[
LGD · 1{τ<T} · P (0, τ) · E(τ)

]
. (1.3)

Note that the LGD (which is the share of an asset that is lost if a borrower
defaults, defined as 1 - Rec) is chosen to be constant in (1.3) for simplicity.
Following [3] (Section 2.1 therein), if we assume that τ is independent of other
processes, and that we have partitioned the interval [0, T ] in the partition
0 < t1 < . . . < tn = T , we can approximate the formula of CVA in (1.3) as

CVA ≈ LGD ·
n∑
i=1

Q[ti−1 < τ ≤ ti] · EPE(ti), (1.4)

where Q[ti−1 < τ ≤ ti] (or PD(ti−1, ti]) is the risk neutral probability of
the default of counterparty C in the interval (ti−1, ti]. Letting n → ∞ in
(1.4) (resulting in a grid with an infinite amount of grid points) causes the
approximation sign to turn into a equality sign.

1.2 Reducing counterparty risk

Counterparties often attempt to reduce credit risk, despite that this type of
risk cannot be completely eliminated. In this section we consider two agree-
ment clauses aimed to reduce counterparty risk, i.e, netting and collateral.

1.2.1 Netting

According to [2], netting can be described as an agreement between two
counterparties that, in the event of default, allows aggregation of transactions
between them. This means that transactions with a negative value can be
used to offset transactions with positive value. If B has two contracts with
C with (t-discounted) portfolio values Π(1)(t, T ) and Π(2)(t, T ), respectively,
and no netting agreements in place in the case of default of C, then B would
lose

LGD ·
(
max(E[Π(1)(τ, T )|F (τ)], 0) + max(E[Π(2)(τ, T )|F (τ)], 0)

)
. (1.5)
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With netting on the other hand, B would lose

LGD ·max
(
E[Π(1)(τ, T )|F (τ)] + E[Π(2)(τ, T )|F (τ)], 0

)
. (1.6)

Note that (1.5) is never smaller than (1.6), due to the convexity of the max-
imum function, which shows that netting mitigates counterparty risk.

1.2.2 Collateral

In [1] (Section 2.5 therein), collateral (or margin) is described as an asset of
the borrower that is transferred to the lender if the borrower defaults. After
the default, the lender becomes the owner of the collateral. Collateral creates
protection towards the lender, which results in a reduction of counterparty
risk compared to a contract with no collateral. In the case of fully collat-
eralization and no collateral thresholds, collateral must be kept in line with
the Mark-to-Market (fair value) of the portfolio of deals with the counter-
party. When the mark-to market is negative to B, B has to post collateral.
Conversely, when the mark-to-market is positive to B, then C has to post
collateral.

In this framework we assume that counterparties make use of a Credit
Support Annex (CSA), which is a legal document aimed to offer credit pro-
tection by setting up rules in terms of (mutual) posting of collateral. Aspects
included in a CSA are:

• Collateral posting thresholds, which define maximum amounts of ex-
posures before a party is required to post collateral;

• Minimum Transfer Amounts (MTA’s), i.e., thresholds that establish
the minimum valid amount of margin before a party needs to post
collateral;

• Rounding collateral movements to some reasonable unit;

• Frequency of portfolio revaluation and collateral rebalancing.

The last feature is connected to determining the start of the “Margin Period
of Risk”, which will be discussed in Chapter 2.
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1.3 CVA modeling

In this section we briefly outline the steps involved in CVA calculations, and
the challenges that can arise, as highlighted in [4] (see Section 6.1 therein).
In general, the following intuitive steps are involved:

(1) Simulation of market risk variables.

(2) Evaluation of all contract values belonging to the portfolio for every
path and every time step.

(3) Aggregation of all contract values for every path and every time step
in the simulation.

(4) Application of the CSA contract features.

(5) Estimate the PD at every observation date (assuming the LGD is kept
constant).

(6) Calculation of CVA, with the formula stated in (1.4).

We can see that we need to valuate each contract for every path and every
time step, which is computationally very expensive. We would have to reduce
the amount of time steps, reduce the amount of simulated paths or reduce
the complexity of the models used for valuation, which causes the accuracy of
the computation of CVA to decrease. In Chapter 2, brute force simulation of
portfolio values (i.e. crude Monte Carlo) is used, which is acceptable because
our framework is used for testing purposes only. In Chapter 3, a different
method is used to obtain portfolio values (Least Squares Monte Carlo), where
these values are approximated at every path and every time step by making
use of regression functions.
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Chapter 2

Modeling Margin Period of
Risk

To model collateralized exposures we have to acknowledge that the default of
a counterparty cannot be considered as a one-time event, but as an entire se-
quence of events leading up to and following the default itself. This sequence
of events we are going to model defines a period of time called the Margin
Period of Risk (MPoR). In particular, we mainly follow the approach out-
lined in [5], where the MPoR is described as the time from the last successful
margin call (the last successful posting of collateral) before the eventual de-
fault to the time when the amount of the loss crystallizes (when the contract
with the counterparty is terminated).

Note that we are not interested in modeling the duration of the MPoR,
which is assumed to be constant, but instead we focus on generating EPE
profiles in the presence of the MPoR.

There are two possible types of margin, i.e., initial margin and variation
margin. Our framework focuses on variation margin (VM), which means
that the amount of collateral that needs to be posted is regularly adjusted.
Relating to the margining frequency, daily remargining is assumed in our
framework.

Furthermore, we assume in our framework that exposures are collateral-
ized fully, which means that the amount of collateral that needs to be posted
on a daily basis is equal to the exposure on that day.

In this chapter we start with introducing some fundamental terms when
modeling exposures, then we take a look at a closed-form expression to obtain
an EPE profile of a portfolio consisting of a single fixed versus floating interest
rate swap, and at last we implement a method called The Brownian bridge
method. On top of the notation already introduced in Chapter 1, we define
the following symbols:
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AB(t) Collateral amount B needs to post at time t;
AC(t) Collateral amount C needs to post at time t;
c(t) Total collateral amount at time t in possession of B;
hB Collateral posting threshold for B;
hC Collateral posting threshold for C;
δ The Margin Period of Risk;
y(t) Forward swap rate at time t;
N Notional amount;
T̄ fix
i The i-th fixed cash flow;
T̄ flt
i The i-th floating cash flow;
τfix
i Accrual factor between the i-th and the (i− 1)-th fixed cash

flow;
τflt
i Accrual factor between the i-th and the (i− 1)-th floating

cash flow;
F (t, T1, T2) Forward rate at time t, in the period [T1, T2];
pvbpi(u)(t) Present value of a basis point at time t, with observation date

u fixed, for fixed cash flows that occur after u;
M(t) Numeraire at time t, M(t) := 1

P (0,t)
;

σ(t) Volatility at time t;
W (t) Wiener process/Brownian motion at time t;
N (µ, σ2) Normal distribution with mean µ and variance σ2.

2.1 Fundamental definitions

In this section we will provide some fundamentals to model exposures in the
presence of collateralization (see [5], Sections 2.1 and 2.2 therein). The expo-
sure at time t in the collateralized case is similar to (1.1), but the collateral
amount is subtracted from the market value of the contract, i.e.,

E(t) = max(V (t)− c(t), 0), c(t) = AC(t)− AB(t). (2.1)

Furthermore, each party can have collateral posting thresholds, which will
change the value of collateral that B or C needs to post at time t to

AB(t) = max(−V (t)− hB, 0), AC(t) = max(V (t)− hC , 0). (2.2)

A margin call is used when AB(t) or AC(t) needs to be adjusted. In reality,
these adjustments take several days to complete. In our framework we make
use of daily remargining, which results in the event of overlapping margin
calls.

There are two types of payments, i.e., trade flows and margin flows. Trade
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flows are cash flows (can also be other asset transfers) connected to the trade
themselves, and margin flows are payments in terms of the posting of collat-
eral between parties. Partially missing a margin flow is a common occurrence,
and an event that causes these partial payments are called disputes, i.e, dis-
agreements between parties concerning the amount of collateral that needs
to be posted. These disputes may result in a longer period of time between
the last fully settled margin call and the possible termination of a portfolio.

2.2 Closed-form expression for interest rate

swaps

In this section we introduce a closed-form expression to model fully collat-
eralized exposures for fixed versus floating interest rate swaps. Let u be an
observation date, which is chosen fixed per model. This model is created
only for the time interval [0, u], where the MPoR is displayed in the period
[u− δ, u]. By letting the observation dates vary from 0 to T (having a differ-
ent model every time), we are able to model the MPoR for every observation
date.

We assume that during the MPoR, there are no cash flows. The reason
behind this is because when a counterparty fails to post collateral, we assume
that the bank will detect this and freezes outgoing payments to that specific
counterparty. See Figure 2.1 for an illustration of the model.

Figure 2.1: The model is created for the time interval [0, u], where the Margin
Period of Risk occurs in the time interval [u− δ, u]

Note that because of our assumption that there are no cash flows during
the MPoR, we only have to focus on cash flows occurring after time u, in
terms of modeling the MPoR.

Let us consider a fixed (pay) versus floating (receive) interest rate swap,
with fixed rate K and maturity T . Furthermore, assume this swap has an n
amount of fixed cash flows and an m amount of floating cash flows that occur
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in (u, T ]. The sum of fixed cash flows occurring after time u and discounted
back to time t is described as

K ·
n∑

j=i(u)

τfix
j · P (t, T̄Fix

j ),

where P (t, T̄Fix
j ) is the discount factor from time T̄Fix

j to time t and τfix
j

the corresponding accrual factor. i(u) = min
i
{T̄ fix

i > u} is the index of the

first fixed cash flow occurring after time u. The sum of floating cash flows
occurring after time u and discounted back to time t is described as

m∑
j=k(u)

τflt
j · F (t, T̄ flt

j−1, T̄
flt
j ) · P (t, T̄ flt

j ),

where F (t, T̄ flt
j−1, T̄

flt
j ) is the forward rate at time t, in the period [T̄ flt

j−1, T̄
flt
j ].

k(u) = min
k
{T̄ flt

k > u} is the index for the first floating cash flow occurring

after time u.
We have for the value at time t (time variable of the model) with

0 ≤ t ≤ u, observation date u fixed, of cash flows occurring after u that

V (t) = N · (y(t)−K) · pvbpi(u)(t), (2.3)

where

y(t) =

∑m
j=k(u) τ

flt
j · F (t, T̄ flt

j−1, T̄
flt
j ) · P (t, T̄ flt

j )

pvbpi(u)(t)
, (2.4)

and

pvbpi(u)(t) =
n∑

j=i(u)

τfix
j · P (t, T̄ fix

j ). (2.5)

See Appendix A for the value of cash flows occurring after u in (2.3), rewrit-
ten to a sum of fixed and floating legs.

Note that pvbpi(u)(t) is just the sum of discount factors at the fixed cash
flow dates after time u, discounted back to time t (and multiplied each with
their respective accrual factor).

The variable y(t) is the forward swap rate, which is the value of the fixed
rate at time t, for an interest rate swap with payments occurring after time
u, such that the value of the interest rate swap at time t is equal to zero. We
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can see this by setting y(t) in (2.4) equal to the fixed rate K:

y(t) = K

if and only if
m∑

j=k(u)

τflt
j · F (t, T̄ flt

j−1, T̄
flt
j ) · P (t, T̄ flt

j ) = K · pvbpi(u)(t)

if and only if
m∑

j=k(u)

τflt
j · F (t, T̄ flt

j−1, T̄
flt
j ) · P (t, T̄ flt

j ) = K ·
n∑

j=i(u)

τfix
j · P (t, T̄ fix

j ). (2.6)

If the equality in (2.6) holds, the value of the interest rate swap is equal to
zero, because of the sum of fixed cash flows and the sum of floating cash flows
being equal. This result could also be simply obtained by substituting K for
y(t) in (2.3). for the value of cash flows occurring after u in (2.3), rewritten
to a sum of fixed and floating legs. Furthermore, for modeling the forward
swap rate y(t), we define the process

y(t) = y(0) +

∫ t

0

σ(s)dW (s). (2.7)

First we need to check that there are no arbitrage opportunities available
in the framework we previously defined. In other words, the discounted price
process (discounted by the numeraire M(t)) needs to be a martingale under
the risk neutral measure Q.

In terms of choosing the numeraire, we note that numeraires consists of a
broad collection of stochastic processes. [6] (see Section 1.3.5 therein) states
that positive assets (or a sum of positive assets) are a part of this collection,
and we choose the numeraire as M(t) = pvbpi(u)(t), because the pvbpi(u)(t)
is a sum of positive assets.
∀s, t with 0 ≤ s ≤ t ≤ u, u fixed, we have

E

[
V (t)

M(t)

∣∣∣∣∣F (s)

]
= E

[
N · (y(t)−K) · pvbpi(u)(t)

pvbpi(u)(t)

∣∣∣∣∣F (s)

]

= N · E

[
y(0) +

∫ t

0

σ(x)dW (x)−K

∣∣∣∣∣F (s)

]

= N ·

(
y(0)−K +

∫ s

0

σ(x)dW (x) + E

[∫ t

s

σ(x)dW (x)

∣∣∣∣∣F (s)

])
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(a)

= N ·

(
y(0)−K +

∫ s

0

σ(x)dW (x)

)

= N ·

(
y(0)−K +

∫ s

0

σ(x)dW (x)

)
·

pvbpi(u)(s)

pvbpi(u)(s)

=
N · (y(s)−K) · pvbpi(u)(s)

pvbpi(u)(s)

=
V (s)

pvbpi(u)(s)

=
V (s)

M(s)
, (2.8)

where in (a) the expectation is equal to zero, because we make use of the fact
that a stochastic integral with respect to a Brownian motion is a martingale.
We can conclude by (2.8) that our framework is arbitrage free under the risk
neutral measure Q. Now we look into the EPE in the fully collateralized case
at observation date u, which is defined as

EPE(u) = E

[(
M(0) · V (u)

M(u)
−M(0) · V (u− δ)

M(u− δ)

)+]
. (2.9)

The formula in (2.9) describes the expected positive change of the discounted
portfolio values in the period [u − δ, u]. Furthermore, looking inside the
brackets in (2.9), and comparing this to the definition of exposure in the
fully collateralized case in formula (2.1), we note that

c(u− δ) = M(0) · V (u− δ)
M(u− δ)

,

which aligns with the assumption that the MPoR starts at the last day that
the counterparty posts collateral. See for illustration Figure 2.2, where the
gray dots are the discounted portfolio values at time u− δ and u for a single
path. The EPE at time u is calculated by calculating the expectation of
the positive changes in the discounted portfolio values in the time period
[u− δ, u].
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Figure 2.2: The EPE at time u is calculated as the expectation of positive
changes between the discounted portfolio values in the period [u−δ, u], where
these changes are shown for a single path in this figure.

Substituting the value of the swap shown in (2.3) in the formula of the
EPE at time u in (2.9) gives us:

EPE(u) = E

[(
M(0) · V (u)

M(u)
−M(0) · V (u− δ)

M(u− δ)

)+]

= M(0) · E

[(
V (u)

M(u)
− V (u− δ)
M(u− δ)

)+]
(a)

= pvbpi(u)(0) ·N · E
[
(y(u)− y(u− δ))+

]
= pvbpi(u)(0) ·N · E

[(∫ u

u−δ
σ(x)dW (x)

)+
]

(b)

= pvbpi(u)(0) ·N · E
[
1{Z∗≥0} · Z∗

]
(c)

= pvbpi(u)(0) ·N · E

[
1{Z≥0} ·

√∫ u

u−δ
σ2(s)ds · Z

]

= pvbpi(u)(0) ·N ·

√∫ u

u−δ
σ2(s)ds · E[1{Z≥0} · Z]

= pvbpi(u)(0) ·N ·

√∫ u

u−δ
σ2(s)ds ·

∫ ∞
0

x · 1√
2π
· e−

1
2
x2dx

(d)

= pvbpi(u)(0) ·N ·

√∫ u

u−δ
σ2(s)ds · 1√

2π
· Γ(1)

2 · 1
2
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= pvbpi(u)(0) ·N ·

√∫ u

u−δ
σ2(s)ds · 1√

2π
, (2.9)

with the following remarks:

(a) For the numeraire we choose M(t) = pvbpi(u)(t).

(b) Z∗ ∼ N (0,
∫ u
u−δ σ

2(s)ds).

(c) Z ∼ N (0, 1) and the fact that {Z∗ ≥ 0} and {Z ≥ 0} are equal sets.

(d)
∫∞

0
xn · e−ax2dx =

Γ(n+1
2

)

2a(n+1)/2 .

Our conclusion is that we only need to specify the volatilities σ(x) for x ∈
[u− δ, u], to be able to generate values for the EPE for different observation
dates u, resulting in an EPE profile. At last we will simplify the formula
in (2.9), by assuming that the volatility is constant in the period [u − δ, u].
This assumption comes from the fact that volatilities can be considered to be
constant on small time periods. This assumption will result in the following
formula for the EPE in the period [u− δ, u]:

EPE(u) = pvbpi(u)(0) ·N ·
√
δ · σ(u) · 1√

2π
. (2.10)

Now we take a look at (2.10) in an intuitive way. If the present value of a
basis point at time 0 of fixed cash flows after observation date u, pvbpi(u)(0),
increases, the EPE at observation date u will also increase. This is because
there will be more fixed cash flows after observation date u (assuming that
all accrual factors and discount factors are unchanged). Note that the EPE
profile decreases over time, because there will be less upcoming fixed cash
flows when we get closer to maturity T . If the notional N increases, the total
underlying amount of the trade will increase, which again causes the EPE
to increase. Furthermore, if the volatility at observation date u increases,
there will be more uncertainty, which causes the EPE at observation date u
to increase.

With the simplification of the formula of the EPE at observation date u
in (2.10), we only need to estimate the volatilities σ(u) for u ∈ [0, T ]. These
estimations will be obtained by the method of calibration, shown in Section
2.3.
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2.3 Obtaining volatilities through calibration

To obtain the volatilities needed for equation (2.10), we will make use of
calibration. The method of calibration consists of estimating the values of
various parameters, by comparing results of our model in (2.10) with the re-
sults of another model, in terms of generating an EPE profile. By minimizing
these differences we obtain the volatilities σ(u) for u ∈ [0, T ]. In this section
we start with explaining the underlying theory of the method of calibration.
We then talk about the software we use for calibration, where we specify this
calibration procedure to obtain volatilities needed for our model to generate
an EPE profile. At last we compare and discuss the EPE profiles generated
by our model and the model used for calibration.

2.3.1 Calibration method

To obtain a calibration method, which we will use to get approximations for
the volatilities needed for our model, we start with the no arbitrage condition
applied to both the model used for calibration and our own model. V̂ (t) and
M̂(t) are respectively the swap value and the numeraire at time t of the
model used for calibration, while V (t) and M(t) are respectively the swap
value and numeraire at time t of our model. For both the model used for
calibration and our model, the discounted price processes (discounted by the
numeraire of the respective model) need to be a martingale under the risk
neutral measure Q. ∀t with 0 ≤ t ≤ u, u fixed, we have

E

[
M(0)

V (t)

M(t)

]
= V (0) and E

[
M̂(0)

V̂ (t)

M̂(t)

]
= V (0). (2.11)

The equations in (2.11) both need to satisfy, so we get

E

[
M̂(0)

V̂ (t)

M̂(t)

]
= E

[
M(0)

V (t)

M(t)

]
(a)

= E

[
pvbpi(u)(0) ·

(y(t)−K) · pvbpi(u)(t)

pvbpi(u)(t)

]
= E

[
pvbpi(u)(0) · (y(t)−K)

]
(b)

= E

[
M̂(0)

V̂ (t)

M̂(t)

]
,
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with the following remarks:

(a) For the numeraire we choose M(t) = pvbpi(u)(t).

(b) Here we made the substitution

ŷ(t) =
M̂l(0) V̂l(t)

M̂l(t)

pvbpi(u)(0)
+K, (2.12)

which will be an approximation for the forward swap rate y(t) in (2.7).

By calculating the volatility of the variable ŷ(t) in (b), we obtain an
estimation for the volatility of the forward swap rate at time t, which we
need to obtain values for the EPE in (2.10). In the next section we will
explain how to obtain the volatilities for ŷ(u), u ∈ [0, T ], by making use of
openly available software.

2.3.2 Calibration with open source software

We make use of open source software called Open Source Risk Engine1

(ORE), which is based on Quantlib2 (open source library for quantitative
finance). ORE has been initially released by Quaternion Risk management
on 7 October 2016, and currently provides portfolio pricing, cash flow genera-
tion, sensitivity analysis, stress testing, and a range of contemporary deriva-
tive portfolio analytics. The latter is based on a crude Monte Carlo sim-
ulation framework that produces certain market risk measures as expected
positive exposure, which are relevant for our framework.

Furthermore, ORE provides 23 example codes, which gives a number
of standard reports and exposure graphs as output. We will make use of
example code 10 specifically, which is able to generate an EPE profile in the
case of a portfolio with collateralization (exposures are fully collateralized).
For the EPE profile, ORE uses discounted portfolio values that are obtained
by simulation. We will modify this example code to be aligned with our
setting of having a portfolio with one fixed versus floating interest rate swap.
To have a detailed description of ORE, see the user-guide [7].

In the framework of ORE (example code 10), we assumed we perform our
calculations at a valuation date, which is chosen to be 5-Feb-2016. The trade
portfolio consists of one 1Y fixed (pay) vs 3M floating (receive) interest rate

1http://www.opensourcerisk.org/
2https://www.quantlib.org/
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swap with start date 5-May-2016 (date of first cash flow), maturity date 6-
Feb-2021, T = 5Y, notional N=100, fixed rate K=0.01, while for the MPoR
we chose a duration of ten days, which corresponds to δ = 10.

See Figure 2.3 for an illustration of the swap. For all specific details in
terms of simulation with ORE, see Appendix B.

Figure 2.3: Illustration of a 1Y fixed (pay) vs 3M floating (receive) interest
rate swap where the first cash flow occurs on 5-May-2016, and where the last
cash flows occurs on 6-Feb-2021. We assume that CVA calculations are made
on 5-Feb-2016.

The calibration procedure goes as follows:

(1) For every path l, where l ∈ {1, . . . , L}, and for every grid point u,

simulate discounted portfolio values M̂l(0) V̂l(u)

M̂l(u)
.

(2) For every path l and every grid point u, calculate approximations for
the forward swap rate at time u, described in (2.12).

(3) For every grid point u, calculate the approximation of the volatility of
the forward swap rate, σ̂(u). This is the volatility of the approximations
of the forward swap rate at all paths at grid point u, obtained in (2).

By performing the calibration procedure, we are able to calculate ex-
pected positive exposures for every grid point u, by substituting the approx-
imations of the volatility of the forward swap rate at observation date u in
equation (2.10), resulting in an EPE profile.

Furthermore, in terms of calibration, ORE makes use of swaptions to cal-
ibrate their interest rate models. A swaption is a financial product that
grants its owner the right but not the obligation to enter into an underlying
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swap. According to [4] (see Section 3.4.1 therein), we can note that in our
framework, where we have a portfolio consisting of one interest rate swap,
the volatilities of the forward swap rates of the interest rate swap (which are
the volatilities we needed to approximate in (2.10)) are equal to the volatili-
ties of the forward swap rates of these swaptions. The reason why we do not
obtain the volatilities of our forward swap rate this way is because ORE does
not give these volatilities as output, and it is unknown what interpolation
method ORE uses between these volatilities, to obtain volatilities for every
observation date u, which we need in order to generate an EPE profile with
(2.10).

In Figure 2.4 we show the EPE profiles generated by ORE and our model,
for the swap described earlier. Furthermore, ORE makes the following as-
sumptions about cash flows during the MPoR:

(1) During the MPoR, the bank makes payments towards the failing coun-
terparty.

(2) During the MPoR, the failing counterparty makes payments towards
the bank.

We assumed in our framework that no cash flows are present during the
MPoR, so we do not take assumptions (1) and (2) into account, as this does
not always reflect common market practice in financial situations.
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Figure 2.4: Graph of the EPE profiles generated by ORE and our model.
Simulation with 300 paths on a daily grid.

The assumptions (1) and (2) that ORE makes about cash flows, are the
reasons for the spikes seen in Figure 2.4. In the interest rate swap we consid-
ered, the bank pays a fixed cash flow towards the counterparty on a yearly
basis, while on a quarterly basis, the bank receives a floating cash flow from
the counterparty. Looking again at assumptions (1) and (2) that ORE makes,
it would be intuitive to expect the spikes at the floating cash flow dates in
Figure 2.4 to be facing downwards, because at these dates the bank receives
payments from the counterparty.

Unfortunately we are unable to explain the spikes that occur caused by
the floating cash flows, but we will now explain that these spikes (caused by
fixed and floating cash flows) do not have a significant impact, in terms of
the calculation of CVA.

When we are computing the CVA of this portfolio, we are basically cal-
culating an integral in (1.3) or a summation in (1.4). The spikes occur on a
quarterly basis, and cause an increase of the EPE at a small amount of ob-
servation dates u, compared to the total amount of observation dates. Thus,
we can conclude that the spikes only make a small difference for the value of
the CVA of this portfolio.

Note that the EPE of our model is larger than the EPE of ORE at
observation dates u, except when there is a payment present in [u − δ, u].
One of the reasons is the following: when we discretize with a certain grid
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(in our case we discretized with a daily grid), the EPE of ORE is calculated
as

ÊPE(u) = E

[(
M̂(0) · V̂ (u)

M̂(u)
− M̂(0) · V̂ (u− δ)

M̂(u− δ)

)+]
, (2.13)

where M̂(x) is the value of the numeraire that ORE uses at time x, and
where u is a grid point (observation date) used to calculate the EPE at that
time. If u − δ is not a point on that grid, ORE will instead use the closest
grid point available, which will either be the grid point on the left at time a,
or the grid point on the right at time b, according to the illustration shown
in Figure 2.5. ORE uses the grid point b instead of u − δ, to calculate the
EPE at time u.

Figure 2.5: For obtaining the EPE at time u in (2.13), if u− δ is not a grid
point, ORE calculates the EPE for the interval [b, u] instead for the interval
[u− δ, u], resulting in a MPoR of less than δ days.

This will result in a lower EPE profile, in the case for ORE, because the
duration of the MPoR, δ, is reduced at times where u− δ is not a grid point.
Now we increase the time step size of the grid to weekly instead of daily. See
Figure 2.6 where the EPE profiles of both our model and ORE are shown:
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Figure 2.6: Graph of the EPE profiles generated by ORE and our model.
Simulation with 300 paths on a weekly grid.

Note that the difference between our model and the model from ORE is
larger compared to the difference between these models displayed in Figure
2.4. This happens because when we use weekly time steps and an MPoR of
ten days (δ = 10), ORE actually calculates a EPE corresponding to a MPoR
of fewer days (seven to be precise), because u − δ is not a grid point, and
ORE chooses the data from an observation date closer to u instead. This
means that the MPoR duration is decreased, which results in a lower EPE
profile.

Also note the presence of spikes facing downward from the model of ORE
in Figure 2.6. These spikes occur when the period between observation dates
is larger than ten days (this can be caused by calendar vacation dates and
weekends), which causes ORE to use the same observation date in (2.13),
resulting in the EPE being equal to zero at time u (which is incorrect).

In the case of generating an EPE profile with ORE, we note that, we still

need to simulate discounted portfolio values M̂(0) V̂ (u)

M̂(u)
for observation dates

u on a daily grid. When simulation is done on a grid larger that daily, ORE
generates less accurate EPE profiles, as seen between Figures 2.4 and 2.6.
Furthermore, daily simulation can be computationally infeasible, when we
deal with large portfolios and long time horizons. In Section 2.4, we intro-
duce a method where we can obtain EPE profiles on a daily grid, while only
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simulating discounted portfolio values on a grid where the time step size is
larger than daily (weekly, biweekly, monthly, quarterly, etc.).

2.4 The Brownian bridge method

The Brownian bridge method allows us to avoid brute-force daily simulation
of discounted portfolio values, by constructing a Brownian bridge between
two points on a grid where the time step size are larger than daily. This
can be useful when we deal with large portfolios, where having to calculate
portfolio values on a daily basis can be computationally infeasible. Further-
more, some applications can only calculate discounted portfolio values on a
pre-specified grid, and implementing a method like this gives the option to
obtain approximations of portfolio values on a daily grid. We mainly follow
the method described in [5] (see Section 8.2 therein), which we will adjust to
our own setting.

We start by formulating the steps that are involved in the (standard)
Brownian bridge method:

(Standard) Brownian bridge method

(1) For each path l, l ∈ {1, . . . , L}, and every portfolio valuation point sj,
j ∈ {1, . . . , J} (time step size of the grid should be larger than daily),

simulate the discounted portfolio values, M̂l(0)
V̂l(sj)

M̂l(sj)
.

(2) For every grid point u, compute the local variance σ2(sj, sj+1) for the
portfolio “diffusion” between sj and sj+1,

M̂l(0)
V̂l(sj+1)

M̂l(sj+1)
− M̂l(0)

V̂l(sj)

M̂l(sj)
, ∀l ∈ {1, . . . , L}, j = 1, . . . , J − 1,

via a kernel density estimator. According to [8] (see Section 2 therein),
the kernel density estimation of a density f at the point x is given by

f̂h,[sj ,sj+1](x) =
1

L · h

L∑
l=1

Ker

(
x−Xl

h

)
,

where in our case, we have that

Xl = M̂l(0)
V̂l(sj+1)

M̂l(sj+1)
− M̂l(0)

V̂l(sj)

M̂l(sj)
,
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as random variables with density f . Ker is the kernel function that
satisfies the conditions ∫ ∞

−∞
Ker(x)dx = 1,

and
Ker(−x) = Ker(x) ∀x,

which are the normalization and symmetry conditions respectively.
Furthermore, h is a smoothing parameter known as the bandwidth.
We will make use of the Gaussian kernel, which means that for Ker,
we have

Ker(y) =
1√
2π
· exp

(
− y2

2

)
.

For our selection of bandwidth h, we use Silverman’s rule of thumb in
[8] (see Section 3.1 therein), where for h, we choose

h =

(
4

3
· σ̂

5

L

) 1
5

,

with σ̂ being the standard deviation of the samples Xi
3.

(3) For each path l and each grid point sj, simulate an independent, daily
sampled, Brownian bridge process (see Section 3.1 in [10]) that starts

with the value M̂l(0)
V̂l(sj)

M̂l(sj)
at time sj, and ends at M̂l(0)

V̂l(sj+1)

M̂l(sj+1)
at time

sj+1. For the Brownian motion Bl(u), where sj < u < sj+1, we have
that B(u) is normally distributed with conditional mean

E[Bl(u)|Bl(sj) = x,Bl(sj+1) = y] =
(sj+1 − u) · x+ (u− sj) · y

sj+1 − sj

= x+ (y − x) · u− sj
sj+1 − sj

, (2.14)

3In [5] (see p35 therein) it is stated that there is another method available to obtain
the local variance, by making use of the Nadaraya-Watson Gaussian kernel regression
estimator, which is described in [9] (see p141-142 therein).
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and conditional variance

Var[Bl(u)|Bl(sj) = x,Bl(sj+1) = y] = σ2(sj, sj+1) · (sj+1 − u) · (u− sj)
sj+1 − sj

.

(2.15)

(4) For each path l and each portfolio valuation point sj, the portfolio
values for every grid point u, with sj < u < sj+1, are approximated by
the simulated Brownian bridge point Bl(u):

M̂l(0)
V̂l(u)

M̂l(u)
≈ Bl(u). (2.16)

Furthermore, according to [10] (see Section 3.1 therein), if we assume we
have determined the values B(u1) = x1, B(u2) = x2, . . . , B(uk) = xk at times
sj < u1 < u2 < . . . < uk < sj+1, and that we wish to sample B(uk+1), with
uk < uk+1 < sj+1, then

(B(uk+1)|B(sj) = x,B(sj+1) = y,B(uj) = xj, j = 1, . . . , k)

= (B(uk+1)|B(uk) = xk, B(sj+1) = y). (2.17)

Equality (2.17) tells us that both conditional distributions are the same,
which means that conditioning on all B(uk), B(sj) and (Bj+1), is the same
as conditioning on the two points closest to B(uk+1), which are B(uk) and
B(sj+1). The same conclusion can be derived from the Markov Property of
Brownian motion, described in [11] (see Section 2.1, Proposition 2.3(iv)). We
can conclude that

(B(uk+1)|B(sj) = x,B(sj+1) = y,B(uj) = xj, j = 1, . . . , k)

∼ N

(
xk + (y − xk) ·

uk+1 − uk
sj+1 − uk

, σ2(sj, sj+1) · (sj+1 − uk+1) · (uk+1 − uk)
sj+1 − uk

)
,

which tells us that when constructing a point in the Brownian bridge, we
only have to look at the values of the two points nearest to that point.

See an example of the construction of a point in the Brownian bridge in
Figure 2.7, where the value at time u is normally distributed, with (2.14)
and (2.15) as conditional mean and conditional variance, respectively.
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Figure 2.7: Example of the construction of a point u in the Brownian bridge,
between the portfolio valuation points sj and sj+1.

In step (1) in the Brownian bridge method, we again make use of the
simulated discounted portfolio values obtained by ORE, with the same fixed
(pay) versus floating (receive) interest rate swap described in Section 2.2.
We will simulate the discounted portfolio values on a daily grid, and obtain
the simulated discounted portfolio values at every portfolio simulation point
sj, for every path. We then build Brownian bridges between these portfolio
valuation points, with steps (2), (3) and (4) in the Brownian bridge method.

Note that we do not make use of the simulated discounted portfolio val-
ues of ORE, simulated on portfolio valuation points sj, where the time step
size is larger than daily, and build Brownian bridges between those portfo-
lio valuation points. Instead we simulate the discounted portfolio values on
a daily grid (with ORE), where we then take portfolio valuation points to
be on a larger grid, and then build Brownian bridges between these chosen
portfolio valuation points. With this approach we can exactly compare the
performance of daily simulation against simulating on a larger grid and ob-
taining discounted portfolio values on a daily grid with the Brownian bridge
method.

By applying the Brownian bridge method, we obtain discounted portfolio

values, M̂l(0) V̂l(u)

M̂l(u)
, for every path l and every daily grid point u. We are now

able to generate an EPE profile with the discounted portfolio values obtained
by the Brownian bridge method.
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Note that in the Brownian bridge method, in order to have accurate results,
we need to have approximations of the conditional mean and conditional
variance shown in (2.14) and (2.15) that are close to the real conditional
expectation and conditional variance (from the discounted portfolio values
simulated on a daily grid by ORE), for every observation date. When we
apply the Brownian bridge method between two portfolio valuation points,
in the case of a cash flow occurring between these portfolio valuation points,
the conditional expectation and conditional variance are not correctly esti-
mated (which we will show and explain later in this section). To deal with
this problem, we introduce a second method, which we refer to as the new
Brownian bridge method:

New Brownian bridge method

(1) Take the valuation date (the date when the CVA calculations are being
made) of the simulation process, and every cash flow date as portfolio
valuation dates sj.

(2) For every portfolio valuation date sj, the nearest observation dates to
the left and right side of sj, will be added as new portfolio valuation

dates, referred to as sleft
j and sright

j .

(3) The Brownian bridge method is applied between portfolio valuation
dates sright

j and sleft
j+1, as seen in Figure 2.8 (sright

j and sleft
j+1 are shown

as white dots), where the arrows facing upwards are floating cash flows
the bank receives from the counterparty, and where the arrows facing
downward are fixed cash flows the bank pays to the counterparty. At
the valuation date, when there is no payment yet, we can build the
Brownian bridge starting at the first portfolio valuation point s1 and
ending at sleft

2 .
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Figure 2.8: By building the Brownian bridges between points where cash flow
dates are not occurring in, we avoid the disruption caused by these cash flows,
in terms of estimating the conditional expectation and conditional variance
in (2.14) and (2.15), for every observation date.

Now we show some graphs of EPE profiles, obtained by ORE and by different
Brownian bridge methods. We start with the case of applying both Brownian
bridge methods on monthly time steps, with 300 and 1000 paths, shown in
Figures 2.9 and 2.10, respectively:
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Figure 2.9: Graphs of EPE profiles generated by ORE and the Brownian
bridge method. Simulation with 300 paths on a daily grid. With the Brow-
nian bridge method, we used monthly time steps, where we constructed, per
path, a Brownian bridge between every portfolio valuation point sj. In graph
(a), the standard Brownian bridge method is applied, with the portfolio val-
uation points chosen to be cash flow dates. In graph (b), we applied the new
Brownian bridge method .

We can see in graph (a) in Figure 2.9 that the EPE profile generated with
the standard Brownian bridge method is inaccurate. Especially at the cash
flow dates, where in the EPE profile generated by ORE spikes upwards occur.
The standard Brownian bridge method is unable to correctly capture these
spikes, because of the cash flow(s) occurring between or at the portfolio valu-
ation points, which causes the conditional mean and conditional expectation
shown in (2.14) and (2.15) to be incorrectly estimated for every observation
date. In graph (b) in Figure 2.9, we see the EPE profile generated by the
new Brownian bridge method, which succeeds in accurately estimating the
conditional mean and conditional variance shown in (2.14) and (2.15). We
obtain accurate results because the new Brownian bridge method is not ap-
plied in time periods where cash flows occur, and the discounted portfolio
values at these cash flow dates are obtained by simulation with ORE. Now
lets take a look what happens when we increase the number of paths in our
simulation:
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Figure 2.10: Graphs of EPE profiles generated by ORE and the Brownian
bridge method. Simulation with 1000 paths on a daily grid. With the Brow-
nian bridge method, we used monthly time steps, where we constructed, per
path, a Brownian bridge between every portfolio valuation point sj. In graph
(a), the standard Brownian bridge method is applied, with the portfolio val-
uation points chosen to be cash flow dates. In graph (b), we applied the new
Brownian bridge method .

We can see that in graph (a) in Figure 2.10, the standard Brownian
bridge method still fails to accurately estimate the EPE profile, even when
the amount of paths is increased. In graph (b) in Figure 2.10, we can see
that the EPE profile generated by the new Brownian bridge method is a bit
more accurate when the amount of paths is increased (compared to graph
(b) in Figure 2.9), especially in the time period between February 2016 and
February 2018.

In Table 2.1, the mean squared errors (MSE) are calculated, where we
compared the EPE profile of ORE with both EPE profiles obtained by mak-
ing use of the standard and the new Brownian bridge method: the mean
squared errors are calculated for both the standard and new Brownian bridge
method.
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MSE
Number of paths

300 1000 2000

Method
Standard 0.01889 0.01889 0.01871
New 0.00044 0.00026 0.00020

Table 2.1: Table where the mean squared error is calculated, between the
standard and new Brownian bridge method, with different number of paths.

We can conclude, by looking at the graphs of the EPE profiles in Figures
2.9 and 2.10, and the mean squared errors in Table 2.1, that the new Brow-
nian bridge method is better than the standard Brownian bridge method in
terms of creating an accurate EPE profile with monthly time steps.

In our framework, we consider a portfolio of a single interest rate swap where
cash flows occur on a quarterly basis, so we can take a look at what happens
if we increase the time step size from monthly to quarterly. Figures 2.11
and 2.12 show EPE profiles generated by ORE and both Brownian bridge
methods (where cash flow dates are chosen as portfolio valuation points), in
the setting of quarterly time steps, with 300 and 1000 paths respectively:

Figure 2.11: Graphs of EPE profiles generated by ORE and the Brownian
bridge method. Simulation with 300 paths on a daily grid. With the Brown-
ian bridge method, we used quarterly time steps, where we constructed, per
path, a Brownian bridge between every portfolio valuation point sj. In graph
(a), the standard Brownian bridge method is applied, with the portfolio val-
uation points chosen to be cash flow dates. In graph (b), we applied the new
Brownian bridge method .
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We can see in graph (a) in Figure 2.11, that the EPE profile generated by
the standard Brownian bridge method is inaccurate. Again, the cash flows
occurring at or between the portfolio valuation points prevent the standard
Brownian bridge method to correctly estimate the conditional mean and
conditional variance shown in (2.14) and (2.15). Looking at graph (b) in
Figure 2.11, the EPE profile generated by the new Brownian bridge method
succeeds in accurately approximating the EPE profile generated by ORE.
Now lets take a look at what happens if we increase the number of paths in
our simulation:

Figure 2.12: Graphs of EPE profiles generated by ORE and the Brownian
bridge method. Simulation with 1000 paths on a daily grid. With the Brow-
nian bridge method, we used quarterly time steps, where we constructed,
per path, a Brownian bridge between every portfolio valuation point sj. In
graph (a), the standard Brownian bridge method is applied, with the port-
folio valuation points chosen to be cash flow dates. In graph (b), we applied
the new Brownian bridge method .

We can see that in graph (a) in Figure 2.12, the standard Brownian
bridge method still fails to accurately estimate the EPE profile, even when
the amount of paths is increased. In graph (b) in Figure 2.12, we can see
that the EPE profile generated by the new Brownian bridge method is a bit
more accurate when the amount of paths is increased (compared to graph
(b) in Figure 2.11), especially in the time period between February 2016 and
February 2018.
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In Table 2.2, the mean squared errors are calculated, where we compared
the EPE profile of ORE with both EPE profiles obtained by making use of
the standard and the new Brownian bridge method.

MSE
Number of paths

300 1000 2000

Method
Standard 0.01969 0.01943 0.01936
New 0.00058 0.00029 0.00024

Table 2.2: Table where the mean squared error is calculated, between differ-
ent choices of portfolio valuation points and between what points the Brow-
nian bridge method is applied, with different number of paths.

We can conclude, by looking at the EPE profiles in Figure 2.11 and 2.12,
and the mean squared errors in Table 2.2, that the new Brownian bridge
method performs better compared to the standard Brownian bridge method
in terms of creating an accurate EPE profile with quarterly time steps.

Note that in our case, where cash flows occur on a quarterly basis, we are
unable to apply the new Brownian bridge method on a grid larger than
quarterly. The reason behind this is because we cannot avoid cash flow dates
being between the portfolio valuation points where we apply the Brownian
bridge method to, when the grid is larger than quarterly. The Brownian
bridge method described in [5] (see Section 8.2 therein), does allow us to
increase the grid to be larger than quarterly, without losing accuracy in the
EPE profile. Unfortunately, we are unable to follow this method, because
ORE makes use of a numeraire (the Linear Gauss Markov numeraire, de-
scribed in [12] (see Section 11 therein)) where we are unable to obtain its
values at every observation date u, which we need to perform the Brownian
bridge method described in the article.
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Chapter 3

CVA with Least Squares Monte
Carlo

In Chapter 2 we have outlined how to generate EPE profiles by making use of
discounted portfolio values obtained by crude Monte Carlo simulation. This
means that the discounted portfolio values are directly simulated for each
path and every time step in the simulation. Furthermore, we have described
how discounted portfolio values can be generated using crude Monte Carlo
simulation on a less granular grid, before being on a finer grid, by using the
Brownian bridge method.

Another method to obtain (approximated) discounted portfolio values is
to use the Least Squares Monte Carlo (LSMC) method introduced in [13],
where the LSMC method is used to price American options. In our setting of
making calculations for CVA, we follow the approach outlined in [3] to obtain
approximations for the discounted portfolio values for each path and every
time step, which we need to be able to generate EPE profiles. Some portfolios
contain products that cannot be valued analytically at each simulation step,
and the standard market practice is to approximate the discounted portfolio
values by making use of regression functions from the LSMC method. We
start with explaining the LSMC method in the setting of the framework we
are going to work in, which will be a Black-Scholes setting where we have
a portfolio consisting of one European call option. Then we are going to
generate EPE profiles in both the uncollateralized and the fully collateralized
case, where results will be shown and analyzed. On top of the notation
already introduced in Chapters 1 and 2, we define the following symbols and
abbreviations:

ITM In-the-money;
r Annual interest rate, assumed to be constant;
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t0 Valuation date;
T Time of expiry of the European call option;
S(t) Value of the underlying stock at time t (t ∈ [t0, T ]);
σ Volatility, assumed to be constant;
K Strike price of the European call option;
Φ(x) Standard normal cumulative distribution function at x;
ft(x) Regression function at time t, with x as input variable;
Ut Cash flow of the European call option occurring at time T,

discounted back to time t;
CF(l; t) Cash flow at time t at path l;
LN(µ, σ2) Log-normal density where µ and σ are the mean and standard

deviation of the log of the log-normal density respectively.

3.1 The LSMC method

In this section we start with defining the LSMC method in a Black-Scholes
setting where a portfolio containing one European call option is considered.
Then, the framework where we are going to work in is explained in detail.

3.1.1 Methodology

Assume that we have N time steps in our simulation, which means that our
time discretization consists of the points t0 := 0, t1, . . . , tN := T . We assume
that we have L simulation paths. The aim of the LSMC method is to obtain
approximations of discounted portfolio values at every path, at every time
step. The method starts at time tN , and works backwards over every time
step until time t0

1. Furthermore, we introduce two approaches in terms of
implementing the LSMC method, where the differences between these two
approaches are in the points taken into account in the regression.

In the first approach, we only take the in-the-money (ITM) paths into
account in the regression, which is referred to as the LSMC method (ITM
paths case). For the second approach, all paths are taken into account in the
regression, which is referred to as the LSMC method (all paths case). The
LSMC method for a portfolio consisting of one European call option consists
of the following steps, where the distinction between the first and second
approach is made in step (2):

1We follow the LSMC method outlined in [3], but in general the simulation can start
at t0 and end at tN .
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LSMC method

At time k = tN , tN−1, . . . , t0:

(1) Calculate for every path l (where l ∈ {1, . . . , L}) the intrinsic value of
the European call option at time k, defined as

(Sk(l)−K)+.

(2) Save the paths l where the values obtained in step (1) are
(a) ITM (the paths where [(Sk(l)−K)+ > 0]);
(b) all paths (the paths where [(Sk(l)−K)+ ≥ 0]).

(3) Define Xk as the collection of stock values at time k, at the paths l
obtained in step (2).

(4) Define Uk as the cash flow of the European call option occurring at
time tN , discounted to time k, at the paths l obtained in step (3).

(5) Use the Ordinary Least Squares (OLS) method with a regression func-
tion, where Uk is the vector of response variables and Xk is the vector
of regressor variables, to determine the coefficients of the regression
function.

(6) Fill in the values of the underlying stock for all paths, at time k, in the
regression function in step (5). These values are discounted relative
to the numeraire back to time t0, which will be estimations of the
discounted portfolio values for all paths at time k.

In the next section we are going to introduce the framework we are going
to work in, where both approaches in the LSMC method are going to be
implemented.

3.1.2 Framework

We choose to work in a simple Black-Scholes setting, where we consider a
portfolio with one European call option. The European call option is issued
at time t0 = 0, expires at T = 5 and has K as strike price. Furthermore, the
starting value of underlying stock is S0 = 5, the volatility of the underlying
stock is σ = 0.25 and for the annual interest rate we set r = 0. The un-
derlying stock follows a geometric Brownian motion, which has the following
stochastic differential equation:

dS(t) = rS(t)dt+ σS(t)dW (t),
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with the analytic solution

S(t) = S(0) · e(r−σ
2

2
)t+σW (t).

Furthermore, the value at time t of a European call option for a stock that
does not pay dividends is given as

V (t) = Φ(d1) · S(t)− Φ(d2) ·K · e−r(T−t), (3.1)

with

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt

d1 =
1

σ
√
T − t

·

[
log

(
S(t)

K

)
+

(
r +

σ2

2

)
(T − t)

]
d2 = d1 − σ

√
T − t.

In terms of simulation, we use a grid that starts at t0 = 0, and ends
at time T = 5. The time step size is chosen to be 0.1, which is chosen to
be equal to the duration of the MPoR 2. Furthermore, we consider N = 50
time steps and L = 10000 paths. We do not make use of real calendar days,
because we want to keep the framework simple and straightforward.

In Section 3.2 we are going to implement the LSMC method with the frame-
work just defined, to obtain EPE profiles for both the uncollateralized and
the fully collateralized case.

3.2 Obtaining EPE profiles with the LSMC

method

In this section we aim to generate EPE profiles in the presence of the MPoR,
where the discounted portfolio values are approximated by the LSMC method.
We start with generating EPE profiles by the LSMC method in the uncol-
lateralized case, to see how well the discounted portfolio values are approx-
imated by the LSMC method. These EPE profiles are compared with the
EPE profiles obtained with the Black-Scholes model, where the discounted

2Note that during the simulation, the duration of the MPoR does not matter, only
the presence of the MPoR during the simulation does. δ is chosen to be equal to 0.1 for
convenience sake.
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portfolio values are calculated with (3.1).

3.2.1 Uncollateralized case

We use the following approximation of the EPE at time t in the uncollater-
alized case:

EPE(t)
(a)

= E

[(
M(0)

V (t)

M(t)

)+]
(b)

≈ E

[
M(0)

1

M(t)
· (ft)+

]
,

with the following remarks:

(a) The formula for the EPE at time t in the uncollateralized case has been
stated in (1.2). Furthermore, we assumed that r = 0, so the numeraire
can be left out.

(b) The value of the portfolio at time t, at every path l, is approximated
by the regression function ft.

The regression function is chosen to be a second order polynomial, i.e.,

ft(x) = a(t) + b(t) · x+ c(t) · x2, (3.2)

with a(t), b(t), c(t) ∈ R. Working backwards over each time step, the regres-
sion coefficients at every time t are determined by minimizing∑

l∈Ωa(t)

[ft(x(l))− Ut(l)]2,

where the input variables in the regression function are based on the paths
chosen per regression step. Ωa(t) is either the subset of paths on which
the product is ITM at time t (a=ITM), or equal to all the paths at time t
(a=ALL). At time t, at path l, Ut(l) has the form

Ut(l) = M(t)
CF(l;T )

M(T )
,

and by approximating Ut(l) at every path l and every time step with the
regression function ft(l), we obtain approximations of the discounted port-
folio values for every path and every time step, resulting in an EPE profile
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obtained by the LSMC method.

We start with implementing the LSMC method where the regression is based
on the ITM paths only.

LSMC method (ITM paths case)

First we analyze the case where we only take the ITM paths in the regression.
In Figure 3.1 (and Figure D.1 in Appendix D), we can see EPE profiles
obtained by making use of the LSMC method (ITM paths case), for various
strike prices.

Figure 3.1: Figure where the EPE profiles by the LSMC method are com-
pared to the EPE profile by Black-Scholes. Note that in the LSMC method,
we based the regression on the ITM paths only, at every time step. Graph
(a) shows the case where the strike price K is equal to zero, while graph (d)
shows the case where K = 5. See Figure D.1 in Appendix D, for the EPE
profiles where K = 4 and K = 4.5, shown in graphs (b) and (c) respectively.

By looking at Figure 3.1 and Figure D.1 in Appendix D, we can see that
for higher values of K, the EPE profile by the LSMC method (ITM paths
case) becomes less accurate (compared to the EPE profile generated by Black
-Scholes). For higher values of K, more paths are left out in the regression
at every time step, because the amount of ITM paths decreases.
At these paths that are left out, we obtain the approximations of the dis-
counted portfolio values by making use of the regression based on the ITM
paths only, which do not result in accurate estimations.
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Now we take a look at the case of K being equal to S(0). In Figure 3.2 we
can see graphs showing how the regression fits the data, at different stages
in time.

Figure 3.2: Examples of the regression in the LSMC method, at different
times. In this setting, K is equal to S(0), and only the ITM paths are taken
into account at every time step in the regression.

We can note that at time T = 5, which is the maturity of the European
call option, that when we only consider the ITM paths in our regression, we
obtain a perfect estimation. This can be seen in Figure (d) in 3.1, where at
time T , the EPE value by the Black-Scholes method is well approximated by
the EPE value by the LSMC method. At time t = 2.5, the regression does
not work optimally, because of the inaccurate approximations of the paths
that are not ITM (which is approximated by the regression function based
on the ITM paths only).

Now we are going to generate EPE profiles where in the LSMC method
the regression is based on all paths.
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LSMC method (all paths case)

In Figure 3.3 (and Figure E.1 in Appendix E), we can see EPE profiles
obtained by making use of the LSMC method (all paths case), for multiple
strike prices.

Figure 3.3: Figure where the EPE profiles by the LSMC method are com-
pared to the EPE profile by Black-Scholes. Note that in the LSMC method,
we based the regression on all the paths, at every time step. Graph (a) shows
the case where the strike price K is equal to zero, while graph (d) shows the
case where K = 5. See Figure D.1 in Appendix D, for the EPE profiles where
K = 4 and K = 4.5, shown in graphs (b) and (c) respectively.

By looking at Figure 3.3 and Figure E.1 in Appendix E, we can see that for
higher values of K, the EPE profile by the LSMC method (all paths case)
becomes less accurate (compared to the EPE profile generated by Black-
Scholes).

Now we take a look at the case of K being equal to S(0). In Figure 3.4 we
can see graphs showing how the regression fits the data, at different stages
in time.

43



Figure 3.4: Examples showing the regression in the LSMC method, at dif-
ferent times. In this setting, K is equal to S(0), and all the paths are taken
into account at every time step in the regression.

We can note that at T = 5, which is the maturity of the European call
option, that when we take all the paths in our regression, we do not obtain a
perfect estimation as in the ITM paths case in Figure 3.2. This can be seen
in graph (d) in Figure 3.3, where at time T the EPE value of the Black-
Scholes method is not accurately approximated by the EPE value of the
LSMC method. At time t = 2.5, the regression does better fit the discounted
portfolio values, which we also see in graph (d) in Figure 3.3. This is caused
by the fact that all the paths are taken into account in the regression, which
approximates the discounted portfolio values more accurately.

In terms of making the choice of taking all the paths or just the ITM paths
in the regression, we can see that no choice results in EPE profiles that are
always more accurate. At last we take a look at the case where K = 6,
which means that when the regression is based on the ITM paths only, a lot
of paths are left out at every regression step. See Figure 3.5 for the EPE
profiles for both the cases where the regression is based on the ITM paths
only and the regression based on all the paths.
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Figure 3.5: Graphs showing the EPE profiles by the LSMC method in the
case when K = 6, for both the cases where the regression is based on the
ITM paths only (graph (a)) and where the regression is based on all paths
(graph (b)).

K 0 4 4.5 5 6
MSE (ITM paths case) 0.00051 0.00208 0.00266 0.00699 0.15032
MSE (all paths case) 0.00051 0.00218 0.00239 0.00251 0.00256

Table 3.1: MSE calculated for different strike prices, for the EPE profiles
obtained by different approaches in the regression in the LSMC method.

Furthermore, looking at Table 3.1, where the MSE is calculated for dif-
ferent strike prices, we can note that the LSMC method where the regression
is based on the ITM paths only does not perform well when K = 6. We
can conclude that we prefer to use the LSMC method in the case where the
regression is based on all the paths, to generate EPE profiles in the uncol-
lateralized case.
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In Section 3.2.2 we take a look at the fully collateralized case, where we
generate EPE profiles in the presence of the MPoR.

3.2.2 Fully collateralized case

In this section we are going to generate EPE profiles in the presence of the
MPoR, which is the general aim for this thesis. We start with the formula
for the EPE at time t, in the fully collateralized case:

EPE(t) = E

[(
M(0)

V (t)

M(t)
−M(0)

V (t− δ)
M(t− δ)

)+]

≈ E

[(
M(0)

ft(x)

M(t)
−M(0)

ft−δ(x− δ)
M(t− δ)

)+]
.

As in the uncollateralized case, the portfolio value at time t, at every path,
is approximated by the regression function ft(x) in (3.2). The MPoR occurs
in the time interval [t − δ, t] and has a duration of δ, as in previous chap-
ters. δ is chosen to be equal to 0.1, which is equal to the size of the time step.

We start with taking a close look at a specific case, where the strike price K
is equal to zero. The reason behind this is because we can obtain the value
of the EPE at time t in this setting analytically:

EPE(t) = E

[(
V (t)

M(t)
− V (t− δ)
M(t− δ)

)+]
(a)

= E
[
(S(t)− S(t− δ))+

]
= E

[
(S(0) · e−

1
2
σ2t+σWt − S(0) · e−

1
2
σ2(t−δ)+σWt−δ)+

]
= E

[
S(0) · e−

1
2
σ2t(eσWt − e

1
2
σ2δ+σWt−δ)+

]
= S(0) · e−

1
2
σ2t · E

[
(eσWt − e

1
2
σ2δ+σWt−δ)+

]
= S(0) · e−

1
2
σ2t · E

[
eσWt−δ(eσ(Wt−Wt−δ) − e

1
2
σ2δ)+

]
(b)

= S(0) · e−
1
2
σ2t · E

[
eσWt−δ

]
· E
[
(eσ(Wt−Wt−δ) − e

1
2
σ2δ)+

]
(c)

= S(0) · e−
1
2
σ2t · e

1
2
σ2(t−δ) · E

[
(eσ(Wt−Wt−δ) − e

1
2
σ2δ)+

]
= S(0) · e−

1
2
σ2δ · E

[
(eσ(Wt−Wt−δ) − e

1
2
σ2δ)+

]
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(d)

= S(0) · e−
1
2
σ2δ · E

[
(eσ
√
δZ − e

1
2
σ2δ)+

]
(e)

= S(0) · e−
1
2
σ2δ ·

∫ ∞
1
2
σ
√
δ

[
eσ
√
δz − e

1
2
σ2δ
] 1√

2π
e−

1
2
z2dz

(f)

= S(0) · e−
1
2
σ2δ ·

(∫ ∞
1
2
σ
√
δ

eσ
√
δz 1√

2π
e−

1
2
z2dz︸ ︷︷ ︸

(1)

−
∫ ∞

1
2
σ
√
δ

e
1
2
σ2δ 1√

2π
e−

1
2
z2dz︸ ︷︷ ︸

(2)

)

= S(0) · e−
1
2
σ2δ ·

[
e

1
2
σ2δ ·

(
1− Φ

(
− 1

2
σ
√
δ
))
− e

1
2
σ2δ ·

(
1− Φ

(1

2
σ
√
δ
))]

(g)

= S(0) ·
(
− Φ

(
− 1

2
σ
√
δ
)

+ Φ
(1

2
σ
√
δ
))

(3.3)

with the following remarks:

(a) The portfolio consists of just one European call option with strike K =
0, which results in the value of the portfolio at time t being equal to
the value of the underlying stock at time t. Furthermore, we assumed
that the annual interest rate r is equal to zero, so the numeraire M(t)
is equal to 1 for every time t.

(b) Note that the random variables eσWt−δ and (eσ(Wt−Wt−δ)−e 1
2
σ2δ)+ are in-

dependent random variables, which means we can split the expectation
in two parts.

(c) eσWt−δ ∼ LN(0, σ2(t− δ)), which means that E[eσWt−δ ] = e
1
2
σ2(t−δ).

(d) Wt−Wt−δ ∼ N (0, δ), so we can substitute Wt−Wt−δ with
√
δZ in the

expectation, where Z ∼ N (0, 1).

(e) To obtain the lower boundary for the integral, we solve the following
equation:

eσ
√
δZ − e

1
2
σ2δ = 0

if and only if

σ
√
δZ − 1

2
σ2δ = 0

if and only if

Z =
1

2
σ
√
δ.

We can conclude that the expectation is greater than zero when Z >
1
2
σ
√
δ, which will be the lower boundary of the integral.
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(f) See Appendix C for the solution of these integral (1) and (2).

(g) Note that −Φ
(
− 1

2
σ
√
δ
)

+ Φ
(

1
2
σ
√
δ
)

is the inner part of the stan-

dard normal probability density function, integrated in the interval
[−1

2
σ
√
δ, 1

2
σ
√
δ]. See for an illustration Figure 3.6.

Figure 3.6: Standard normal probability density function where we integrate
in the interval [−1

2
σ
√
δ, 1

2
σ
√
δ].

In Figure 3.7 we see the EPE profiles generated by Black-Scholes and equa-
tion (3.3).

48



Figure 3.7: Graph of the EPE profiles generated by Black-Scholes and by
equation (3.3). The portfolio consists of a European call option with strike
equal to zero, which corresponds to a portfolio containing one stock. Time
steps are chosen to be 0.1, which is equal to the duration of the MPoR, δ.

Now we are going to generate EPE profiles where in the LSMC method
we only take the ITM paths at every step in the regression. In the setting
where the strike price K is equal to zero, we make use of the analytical EPE
profile, where the value of the EPE is shown in (3.3).

LSMC method (ITM paths case)

In Figure 3.8 (and Figure D.2 in Appendix E), we can see EPE profiles
obtained by making use of the LSMC method (ITM paths case), for various
strike prices.
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Figure 3.8: Figure where the EPE profiles by the LSMC method are com-
pared to the EPE profile by Black-Scholes (when K = 0 compared with
equation (3.3)). Note that in the LSMC method, we based the regression on
the ITM paths only, at every time step. Graph (a) shows the case where
the strike price K is equal to zero, while graph (d) shows the case where
K = 5. See Figure D.2 in Appendix D, for the EPE profiles where K = 4
and K = 4.5, shown in graphs (b) and (c) respectively. Time steps are
chosen to be 0.1, which is equal to the duration of the MPoR, δ.

By looking at Figure 3.8 and Figure D.2 in Appendix D, we can see that
for higher values of K, the EPE profile by the LSMC method (ITM paths
case) becomes less accurate. For higher values of K, more paths are left
out in the regression at every time step, because the amount of ITM paths
decreases. At these paths that are left out, we obtain the approximations of
the discounted portfolio values by making use of the regression based on the
ITM paths only, which do not result in accurate estimations.

Note that we do not take a look at the regression performance plots as
we did in the uncollateralized case, because the regression stays the same,
only the formula of the EPE profile changes.

Now we are going to generate EPE profiles where in the LSMC method
the regression is based on all paths. In the setting where the strike price K
is equal to zero, we make use of the analytical EPE profile in (3.3).
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LSMC method (all paths case)

In Figure 3.9 (and Figure E.2 in Appendix E), we can see EPE profiles
obtained by making use of the LSMC method (all paths case), for multiple
strike prices.

Figure 3.9: Figure where the EPE profile by the LSMC method is compared
to the EPE profile by Black-Scholes (when K = 0 compared with equation
(3.3)). Note that in the LSMC method, we based the regression on all the
paths, at every time step. Graph (a) shows the case where the strike price
K is equal to zero, while graph (d) shows the case where K = 5. See Figure
D.1 in Appendix D, for the EPE profiles where K = 4 and K = 4.5, shown
in graphs (b) and (c) respectively. Time steps are chosen to be 0.1, which
is equal to the duration of the MPoR, δ.

By looking at Figure 3.9 and Figure E.2 in Appendix E, we can see that for
higher values of K, the EPE profile created by the LSMC method (all paths
case) becomes less accurate (compared to the EPE profile by Black-Scholes).

In terms of making the choice of taking all the paths or just the ITM paths
in the regression, we can clearly see in the figures that the LSMC method
produces more accurate EPE profiles when the regression is based on all the
paths. Furthermore, in Figure 3.10 the EPE profiles are shown where K = 6,
in the cases where the regression is based on the ITM paths only (graph (a))
and when the regression is based on all the paths (graph (b)). We can see
that when more paths are left out at every regression step, the resulting EPE
profile gets more inaccurate. In Table 3.2 the MSE is calculated for different
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strike prices, where we can see that when the regression is based on the ITM
paths only, we obtain far less accurate results compared to when all the paths
are taken into account in the regression.

Figure 3.10: Graphs showing the EPE profiles by the LSMC method in the
case when K = 6, for both the cases where the regression is based on the
ITM paths only (graph (a)) and where the regression is based on all paths
(graph (b)). Time steps are chosen to be 0.1, which is equal to the duration
of the MPoR, δ.

K 0 4 4.5 5 6
MSE (ITM paths case) 0.00001 0.00032 0.00067 0.00183 0.17815
MSE (all paths case)

(·10−5)
1.07835 1.42595 1.51070 1.52775 1.47761

Table 3.2: MSE calculated for different strike prices K, for the EPE profiles
obtained by different approaches in the regression in the LSMC method.
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We can conclude that we prefer to use the LSMC method in the case
where the regression is based on all the paths at every time step, in order to
generate accurate EPE profiles in the fully collateralized case. This means
that in both the uncollateralized and the fully collateralized case, taking all
the paths in the regression at every time step is preferred in terms of gener-
ating accurate EPE profiles.
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Chapter 4

Conclusion

The aim of this thesis is to model fully collateralized exposures in the presence
of the MPoR. We start with introducing a closed-form expression that is used
to generate EPE profiles in the setting of having a portfolio containing a fixed
versus floating interest rate swap. We made use of the open source software
ORE, that is able to generate EPE profiles in the presence of the MPoR.

With a calibration method we were able to generate EPE profiles with
the closed-form expression, and compared these with EPE profiles generated
by ORE. This approach allows us to obtain reliable EPE profiles in the case
where we use daily simulation, as outlined in Section 2.3.

We then applied the Brownian bridge method as introduced in Section 2.4,
which lets us avoid daily simulation of discounted portfolio values. The
method consists of constructing a Brownian bridge between two portfolio
values at different times (which are obtained by simulation with ORE), on a
time grid where the time step size is larger than daily. The implementation of
the standard Brownian bridge method resulted in inaccurate EPE profiles1,
because of the cash flows occurring between the portfolio values we applied
the Brownian bridge method to. The new Brownian bridge method deals
with this problem, by only applying the Brownian bridge method between
portfolio values where no cash flows occur in between. For both methods we
show results and discuss the performance. We have studied the Brownian
bridge method in a simplified setting and shown empirically that the perfor-
mance of this methodology is linked to how the cash flows of the portfolio
are being treated.

We then resort to modeling the MPoR in the setting where discounted port-

1This method is stated in [5] (see Section 8.2 therein), but adjusted to our own setting.
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folio values are approximated by the LSMC method. This method uses re-
gression functions to estimate the discounted portfolio values at every time
step. The LSMC method tackles the problem of dealing with a portfolio
consisting of products that cannot be valued analytically at each time step.
We work in a Black-Scholes setting, where we consider a portfolio consisting
of one European call option.

In this setting we generated EPE profiles where we started in the uncol-
lateralized case, where the distinction is made in terms of regressing on only
the ITM paths or on all the paths, at every time step. We showed figures
where the regression is shown at different times in both the cases of regress-
ing on the ITM paths or on all the paths. For the uncollateralized case, we
made the conclusion that when in the LSMC method the regression is based
on all paths we result in more accurate EPE profiles, compared to the EPE
profiles obtained by regressing on the ITM paths only.

For the fully collateralized case, where we model the MPoR, we started
with a special case of setting the strike price to zero, and obtained an analyt-
ical solution for the EPE at every time step. We then generated EPE profiles
with the distinction between regressing on only the ITM paths or on all the
paths, at every time step. For the fully collateralized case, we concluded that
the choice of regressing on all the paths at every time step results in more
accurate EPE profiles, compared to the EPE profiles obtained by regressing
on the ITM paths only.

We made the conclusion that for both the uncollateralized and the fully
collateralized case, regressing on all the paths results in more accurate EPE
profiles compared to the EPE profiles obtained by regressing on the ITM
paths only.

As a general conclusion, we state that we are able to use three different
methods for obtaining discounted portfolio values that allows us to generate
EPE profiles in the presence of the MPoR. These methods consists of making
use of crude Monte Carlo simulation only, making use of crude Monte Carlo
simulation combined with the Brownian bridge method, or making use of
the LSMC method. For a portfolio containing a fixed versus floating inter-
est swap, we have investigated how EPE profiles can be generated by either
making use of crude Monte Carlo simulation only or by making use of crude
Monte Carlo simulation combined with the Brownian bridge method. We
concluded that we only make use of crude Monte Carlo simulation of dis-
counted portfolio values when we do not require high computational costs,
and the Brownian bridge method helps to reduce these computational costs,
while still obtaining accurate EPE profiles. For a portfolio containing an Eu-
ropean call option in a Black-Scholes setting, we have generated EPE profiles
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by making use of Black-Scholes or by the LSMC method. We concluded that
the LSMC method does generate accurate EPE profiles when the regression
is based on all paths at every time step. We have not extended the LSMC
to the fixed versus floating interest rate swap case, which is left for further
research.

For further research we suggest that EPE profiles are generated by the LSMC
method in the case of a fixed versus floating interest rate swap, with the same
time discretization points on the grid. This allows us to directly compare the
EPE profiles obtained by crude Monte Carlo simulation and by the LSMC
method. Furthermore, the Brownian bridge method can be applied together
with the LSMC method, which could improve the computation time of the
simulation.
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Appendix A

Analytic formula for the value
of an interest rate swap

Value at time t of a payer interest rate swap, with 0 ≤ t ≤ u, observation
date u fixed, of cash flows occurring after u:

V (t) = N · [y(t)−K] · pvbpi(u)(t)

= N ·

[∑m
j=k(u) τ

flt
j · F (t, T̄ flt

j−1, T̄
flt
j ) · P (t, T̄ flt

j )

pvbpi(u)(t)
−K

]
· pvbpi(u)(t)

= N ·

[
m∑

j=k(u)

τflt
j · F (t, T̄ flt

j−1, T̄
flt
j ) · P (t, T̄ flt

j )−K · pvbpi(u)(t)

]

= N ·

[
m∑

j=k(u)

τflt
j · F (t, T̄ flt

j−1, T̄
flt
j ) · P (t, T̄ flt

j )−K ·
n∑

j=i(u)

τfix
j · P (t, T̄Fix

j )

]
,

with i(u) = min
i
{T̄ fix

i > u} and k(u) = min
k
{T̄ flt

k > u}. We can see that the

value of this interest rate swap can be seen as the sum of all floating cash
flows received from the counterparty, minus the sum of all fixed cash flows
we pay to the counterparty.
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Appendix B

Specification of ORE files

The specifications of the input and output files used in ORE:

ORE Input files

ore mpor.xml : Master input file;
portfolio.xml : Trade data;
netting mpor.xml : Collateral (CSA) data;
simulation.xml : Configuration of simulation model and market;
market.txt : Market data snapshot on 5-Feb-2016;
fixings.txt : Index fixings history;
curveconfig.xml : Curve and term structure composition from individual

market instruments;
conventions.xml : Market conventions for all market data points;
todaysmarket.xml : Configuration of the market composition, relevant for

the pricing of the given portfolio as of today
(yield curves, FX rates, volatility surfaces etc);

pricingengines.xml : Configuration of pricing methods by product.

Swap specifications

start date : 5-Feb-2016;
end date : 6-Feb-2021;
Currency : EUR;
K : 0.01;
N : 100;
Fix rate tenor : 1Y;
Float rate tenor : 3M.
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Simulation

Discretization : Exact;
Grid : 1210 x 1D;
Samples : 300.

CSA

Threshold pay : 0;
Threshold receive : 0;
MTA pay : 0;
MTA receive : 0;
Call Frequency : 1D;
Post Frequency : 1D;
MPoR (δ) : 10D.

ORE output files

netcube.csv : NPV cube after netting and collateral;
exposure nettingset ∗ .csv : Netting set exposure evolution reports;
curves.csv : Generated yield (discount) curves report.
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Appendix C

Solution of integrals

The integrals (1) and (2) in equation (3.3) solved:
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Appendix D

EPE profiles (ITM paths case)

(a) K = 0 (b) K = 4

(c) K = 4.5 (d) K = 5

Figure D.1: EPE profiles in the uncollateralized case, with only ITM paths
in the regression.
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(a) K = 0 (b) K = 4

(c) K = 4.5 (d) K = 5

Figure D.2: EPE profiles in the fully collateralized case, with only ITM paths
in the regression.
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Appendix E

EPE profiles (all paths case)

(a) K = 0 (b) K = 4

(c) K = 4.5 (d) K = 5

Figure E.1: EPE profiles in the uncollateralized case, with all the paths in
the regression.
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(a) K = 0 (b) K = 4

(c) K = 4.5 (d) K = 5

Figure E.2: EPE profiles in the fully collateralized case, with all the paths
in the regression.
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