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Power-Capacity and Ramp-Capability Reserves fo
Wind Integration in Power-Based UC

German Morales-Espariember, IEEE Ross BaldickFellow, IEEE,Javier Garcia-Gonzaleklember, IEEE,
and Andres Ramos

Abstract—This paper proposes a power-based network- I‘IF;

constrained unit commitment (UC) model as an alternative to
the traditional deterministic UCs to deal with wind generation
uncertainty. The formulation draws a clear distinction between
power-capacity and ramp-capability reserves to deal with wnd
production uncertainty. These power and ramp requirements
can be obtained from wind forecast information. The model

Shift factor for linel associated with unig [p.u.].

F, Flow limit on transmission liné [MW].
P, Maximum power output [MW].

p, Minimum power output [MW].

RD, Ramp-down capability [MW/h].

RU, Ramp-up capability [MW/h].

is formulated as a power-based UC, which schedules power- SD, Shutdown ramping capability [MW/h].

trajectories instead of the traditional energy-blocks andtakes into
account the inherent startup and shutdown power trajectores
of thermal units. These characteristics allow a correct repes-

entation of each unit's ramp schedule, which defines its ramp Wy

availability for reserves. The proposed formulation signficantly
decreases operation costs compared to traditional determistic
and stochastic UC formulations while simultaneously loweng the
computational burden. The operation cost comparison is mae
through 5-min economic dispatch simulation under hundredsof
out-of-sample wind generation scenarios.

Index Terms—Mixed-integer programming, operating reserves,
power-based UC, power-capacity reserves, ramp-capabilit re-
serves, unit commitment.

NOMENCLATURE

Upper-case letters are used for denoting parameters ad §%

Lower-case letters denote variables and indexes.

A. Indexes and Sets

g € G Generating units, running from 1 1G.

b € B Buses, running from 1 t@.

BP  Set of buses iB with demand consumption.
BY  Set of buses irB with wind power injection.
l € £ Transmission lines, running from 1 to.

t € T Hourly periods, running from 1 t@" hours.

B. Parameters

Dy, Power demand on busat the end of hout [MW].
', Shift factor for linel associated with bug [p.u.].
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SU, Startup ramping capability [MW/h].

Wy Nominal forecasted wind power at end of hadMW].

w Upper bound of the forecasted wind power at the end
of hourt [MW].

W,, Lower bound of the forecasted wind power at the end
of hourt [MW].

W~ Ramp-down forecasted wind requirement for the whole
hourt [MW/h].

Wblj’“ Ramp-up forecasted wind requirement for the whole

hourt [MW/h].

C. Decision Variables
1) Day-ahead schedule decisions:

Down power-capacity reserve scheduled [MW].
Up power-capacity reserve scheduled [MW].

Tgt

o Down ramp-capability reserve scheduled [MW/h].

r_g‘t* Up ramp-capability reserve scheduled [MW/h].

ug:  Binary variable which is equal to 1 if the unit is
producing above?, and O otherwise.

vg:  Binary variable which takes the value of 1 if the unit
starts up and 0 otherwise.

zgt  Binary variable which takes the value of 1 if the unit

shuts down and O otherwise.
2) Dispatch decisions:

Dt Power output above minimum output at the end of hour
t [MW].

Dgr  Total power output at the end of hodr including
startup and shutdown trajectories [MW].

Tyt Reserve deployment to provide the upper-wind dispatch
Wy [MW].

Tgt Reserve deployment to provide the lower-wind dispatch
wyy [MW].

wy:  Wind dispatch for the nominal wind cas&;,, [MW].

Wy Wind dispatch for the upper bound wirid,, [MW].

wy,  Wind dispatch for the lower bound wind’,, [MW].

D. Functions

¥, (+) Fixed production cost [$].

cg’t (+) Variable production cost [$].
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I. INTRODUCTION the range of possible values of wind power for each hour of
I N recent years, high penetration of variable generatifige following day can be very broad. As a consequence, ISOs

sources, such as wind power, has challenged independiffd 1 schedule some power-capacity reserve to guarantee
system operators (ISO) in maintaining a reliable powerespst that comm_med system resources will be_able tc_) cope with any
operation. The deviation between expected and real wiMglue of wind generation that can be realised within thagean
production must be absorbed by the power system resource¥/nen getting closer to the real time, for instance one hour
(reserves), which must be available and ready to be deployBdtdvance, the range of possible values for the next hour is
in real time. To guarantee this availability, the systenoueses smaller. However, even within such short time interval, avin

must be committed in advance, usually day-ahead, by solvif neration can increase or decrease its value at a rate that
the so-called unit commitment (UC) problem. will require that conventional generators adapt their atitp
to follow that ramp to keep the demand-supply balance.

) ) Therefore, apart from the day-ahead power-capacity reserv
A. Literature Review it will be necessary to ensure that for any hour, the comuhitte
1) Dealing with Uncertainty in UC: Stochastic and ro- system resources will be able to cope with the expected
bust optimization have gained substantial popularity f& Umaximum ramp of variation of the wind generation. Thus, a
optimization under parameter uncertainty. In the stoéhastamp-capability reserve is also needed.
optimization approach, the stochasticity can be represent To illustrate the need of a clear differentiation between
through an explicit description of scenarios and their asspower-capacity and ramp-capability reserves, considefdh
ciated probability I], [2]. This approach presents howevetowing example. Figslaand1bshow two different set of wind
some practical limitations: 1) it may be difficult to obtain a scenarios which present the same power-capacity undgrtain
accurate probability distribution of the uncertainty; a?da ranges, but completely different ramp-capability undatia
large number of scenario samples is required to obtain tobusnges. Dealing with the scenarios in Fid requires higher
solutions, which results in a computationally intensivelpem ramp-capability, although both set of scenarios demand the
(often intractable). same power-capacity requirements. In fact, some power sys-
The robust optimization approach partly overcomes thetsms have experienced short-term scarcity events caused by
disadvantages 1) by requiring moderate information abweit tresources with sufficient power capacity but insufficiemhpa
underlying uncertainty, such as the mean and the range of tiaability B]. In response, ISOs are developing market-based
uncertain data; and 2) by immunizing the solution againist ahmping products, thus making a clear difference between
realizations of the data within the uncertainty range. Hmve power-capacity and ramp-capability requiremes{s [6].
it may be too conservative, since the objective functiorois t A stochastic UC implicitly captures both reserve require-
minimize the worst-case cost scenario, which may never bents through scenarios; e.g., Fids.and 1b show how the
realized in practice. To deal with overconservatism, 1) @pashape of the set of scenarios implicitly guarantee that the
meter commonly called budget-of-uncertainty is introduge system can provide different ramp-capability reserve irequ
the optimization problem to control the conservatism of th@ents, even though the power-capacity reserve requiresment
robust solution 3], [4]; and 2) more recently4] proposes an are the same. However, to correctly represent these reserve
unified stochastic and robust UC model that takes advanfage@quirements, a large number of scenarios is needed, irgsult
both stochastic and robust optimization approaches, wthere in a high computational cost. On the other hand, the trautio
objective is to achieve a low expected total cost while eingur deterministic UCs can only ensure a given power-capacity
the system robustness. reserve, see Fidlc, but it cannot guarantee different ramping
Although the computational burden of adaptive robust Uquirements to deal with either of the scenarios in Figand
does not depend on the number of scenarios, it requiresygolvib. Although deterministic UC remains the ISOs’ dominant
a mixed integer programming (MIP) problem together witpractice nowadays due to the low computational burdendasdo
a bilinear program to obtain the worst-case scenario. Thist efficiently exploit the system flexibility to deal with &h
problem is considerably more complex to solve than a puseecific requirements imposed by wind generation unceytain
MIP, requires ad-hoc solving strategie3],[[4], and it can 3) Power-based UCConventional day-ahead UC formula-
also considerably increase the computational burden of WiGns fail to deal with ramp capabilities appropriatelyefii
problems. cient ramp management arises from applying ramp-consirain
In short, although stochastic and robust UCs are poweo- energy levels or (hourly) averaged generation levels:- co
ful tools to deal with uncertainty, they are computatiopallsequently, energy schedules may not be feasifjlelfi addi-
intensive. This is the reason why traditional deterministiion, traditional UC models assume that units start/endr the
formulations remain valid and widely used by ISOs worldwidgroduction at their minimum output. That is, the intrinsic
This motivates the development of improved deterministitartup and shutdown power trajectories of units are ighore
formulations that better exploit the flexibility of the powe As a consequence, there may be a high amount of energy that
system and better face wind uncertainty. is not allocated by UC but is inherently present in real time,
2) Power-Capacity and Ramp-Capability Reservés:or- thus affecting the total load balance and causing a negative
der to solve the day-ahead UC considering wind generati@tonomic impact§]. For further details of the drawbacks of
it is necessary to take into account uncertainty. As the wirhnventional UC scheduling approaches, the reader isregfer
power forecasting error can be significant 24 hours in advanto [9], [10] and references therein.
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Fig. 1: Different approaches to deal with wind uncertainty

The formulation is represented as a mixed integer program-
ming (MIP) problem, which has become the leading approach
in the electricity sector due to significant improvementMiif®
solvers. The core of the proposed MIP formulation is built
upon the convex-hull and the tight-and-compact formurkegio
presented in§] and [11], respectively, thus taking advantage
of their mathematical properties. These formulations mupr
the convergence speed by reducing the search space (8ghtne
and at the same time increasing the searching speed witlwhic
solvers explore that reduced space (compactness).

This paper presents an extensive numerical study on the
IEEE 118-bus test system, where the proposed formulation
is compared with the stochastic and with the deterministic
approaches. To perform comparisons and to obtain an aecurat
estimate of the performance of each UC policy, the hourly
commitment obtained from each UC approach is evaluated
through a 5-min economic dispatch for hundreds of out-of-

To overcome these drawbackd,0] proposes the power- sample scenarios.

based UC (or ramping scheduling) approach. This approach
uses piece-wise linear power trajectories for both geimgrat

units and demand instead of the commonly established sté&t- Contributions and Paper Organization
case profile for energy blocks. The use of an instantaneousthe principal contributions of this paper are as follows:

power profile allows the model to efficiently schedule ressrv 1)
and ramping resources. In comparison with conventional UC
models, the power-based UC approach guarantees that, first,
energy schedules can be delivered and, second, that ayerati
reserves can be deployed respecting the ramping and capacit
limits of generating units. In addition, the model takesoint
account the normally neglected power trajectories thatiocc
during the startup and shutdown processes, thus optimally
scheduling them to provide energy and ramp, which help to
satisfy the power demand.

B. Power-Capacity and Ramp-Capability Reserves in Power-
Based UC: An Overview 2)

This paper proposes a deterministic power-based network-
constrained UC model as an alternative to the traditional
deterministic UCs to deal with wind generation uncertainty
The proposed UC gives flexibility to the power system to face
wind uncertainty. This flexibility is provided by drawing a
clear distinction between power-capacity and ramp-cdipabi
reserve requirements (Fidd), and by optimally dispatching
wind generating units. Allowing a different value for ramp-
capability reserve requirements results in a more realgsit-
ting, as discussed above. Wind dispatch flexibility is mizdel
by considering curtailment in the UC formulation. Curtagim
may appear due to either economic reasons or technical reas-
ons, e.g., insufficient network capacity. This flexibilitglps to
reduce the reserve requirements since part of the undgrtain
can be faced by curtailment, as practiced in ERCOT and MISO.
Introducing other renewable energy sources to the foriamat
is straightforward if they can be curtailed.

The model is formulated as a power-based UC, which sched-
ules power-trajectories instead of the traditional endyipgeks,
and it takes into account the inherent startup and shutdown
power trajectories of thermal units. These charactesistiow
a correct representation of unit's ramp scheddle [[8] which
define their ramp availability for reserves(.

3)

4)

A practical deterministic mixed-integer programming
(MIP) UC formulation that explicitly includes a pre-
specified nodal power-capacity and ramp-capability re-
serve requirements, which can be obtained from wind
forecast information; unlike traditional deterministic
UCs [10], [12], which only consider power-capacity
reserves. The proposed formulation explicitly models the
interdependency between the power-capacity and ramp-
capability reserves; i.e., providing ramp-capability mea
providing power-capacity, but providing power-capacity
does not necessarily mean providing a given level of
ramp-capability.

Although the proposed UC formulation optimizes over
a nominal wind scenario, it also includes the worst-
case wind scenario proposed i3], and so the UC
solution guarantees that the system has enough flexibility
to adapt to any wind uncertain realization. The level of
conservatism of the solution is controlled by the reserve
parameters and wind curtailment flexibility. That is, once
the reserve requirements are fixed, the proposed UC
reshape these requirements by considering curtailment.
The proposed deterministic UC can be used by ISOs to
ensure that enough power-capacity and ramp-capability
resources are available to deal with wind uncertainty in
real-time operation. ISOs can also adjust the level of
conservatism of the solution by adjusting the reserve
requirements, based on their preferences and on their
available information of wind uncertainty.

A validation methodology that mimics the real-time
operation of the power system where the day-ahead UC
decisions are dispatched against different realizations
of wind uncertainty. The idea is to take the (hourly)
UC decisions as fixed, and to run an economic-dispatch
model with a detailed time representation (a granularity
of 5-min time intervals) for many wind scenarios, inde-
pendently. From each execution (which is a deterministic
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problem) it is possible to compute the correspondingh, s Expected range v S Dispatchable range
operational cost, the number start-ups, etc. By compar A Expected up ramp _A Dispatchable up ramp

ing the average of these values, their dispersion, and;,~ >~ peE— LT

. . . ! ~_ >~ -7
the worst case solutions, it is possible to compare thew===<_ LEE TG | .
effectiveness of different UC decisions. Ne
; W

The remainder of this paper is organized as follows. Sedtion
details the mathematical formulation of the different aiery (a) Forecasted range (b) Dispatchable range
reserves (power-capacity and ramp-capability) and thels| Fig. 2: Forecasted and dispatchable wind uncertainty sange
with the ramp schedules. Sectitlh presents some numerical

examples as well as a comparison with the deterministic and

stochastic UC approaches. Finally, concluding remarks are

=

k—

ty,
Ll

made in SectionV. the power system must supply demand and reserves for these
ranges:
II. MATHEMATICAL FORMULATION Dot = Z Dy — Z Wi Wt (1)
This section presents the proposed mathematical formu- 9€9 . bes? beBy
lation of the power-based UC. This section first discusses Sordi> Y (W —W,,) vt (2)
the relationship between the wind uncertainty range and the 9€g beBW
power system reserve requirements. The next part is detmted Sorg = Y (We—Wi) Vi (3)
modelling the reserve constraints for generating units thed 9eG beBW
network constraints. Finally, the objective function idided. R—
$ e o e Y WE v @
9€g beBW
. . R— TR+
A. Wind Uncertainty Range and Power System Requirements Z?‘gt > Z Wy, " vt (5)

) . . . €g beBW
The first step is to define the level of reserves. In this 7 N

paper, two different type of reserves are defined based WRere @) is a power balance at the end of hauNote that the
power-capacity and ramp-capability uncertainty rangesioél  €Neray bglance for the whole hour is automat!cally achieved
production. These uncertainty ranges are defined by thecexpdy Satisfying the power demand at the beginning and end of

ted minimum and maximum variations of power-capacity argich hour, and by considering a piecewise-linear powerlgrofi
ramp wind production, see Figd. Power-capacity uncertainty for demand and generatioad.

range: the wind power production in nodeat time ¢ is Equality (1) ensures that the system provides the power

expected to be within the power-capacity range defined Byd ramp requirements for the wind nominal case. Consgraint

the lower and upper bound§V,,, Wy|. Ramp-capability (2)-(3) and @)-(5) guarantee that the system can provide the

uncertainty range: the wind production in nodeat time ¢  maximum power and ramp deviations from the nominal case,

is expected to ramp within the range defined by the maximugspectively. parametetfs’,}:* and\fvffg‘ are the maximum up

ramp down and ramp dpV,,~, Wy, *]. and down ramp deviations from the nominal ramp, respect-
Notice that, similarly to the deterministic uncertaintytsse jvely, and are obtained as follows:

in robust UCs 8], the power-capacity and ramp-capability -

uncertainty ranges defined here are deterministic and must WZE'JF = WZE'JF ~ Wy = Woyo1) Yoe BVt (6)

be set by ISOs. These ranges can be based on, for example, VT/,}}‘ = Wﬁ‘ — (Whi—1 —Wy) Vb€ BV, ¢ (7

wind forecast (with a given confidence level) and/or histalri

information. Notice that the right sides oR)-(5) are (input) parameters,
Similarly to traditional deterministic UCs, the proposethis means that ISOs must define the requirements for up

model also requires a nominal profile of wind productid®; (2) and down B8) power-capacity reserves as well as 4 (

as input data. This nominal wind profile must be defined nd down %) ramp-capability reserves. The following section

ISOs (e.g., as the most expected wind production), where tlegows how these reserve requirements are reshaped by the

only limitation is that the nominal value of wind productionmodel when allowing wind curtailment.

must be defined within the ranges of wind power-capacity . . ) )
[Wbt,Wbt] and ramp-capabilit){W,f}‘,W,ft‘ﬂ. 2) Power System Requirements Including Wind Curtailment:

Now, the flexibility that brings the fact that wind generatican

For the sake of clarity, this section first introduces a form e ; . .
Y e curtailed is taken into account. Thus, the possible tibed

lation (1)-(5) for the power system requirements where wind" . !
curtailment is not allowed. Then, the flexibility that brinthe wind range that results from the QC may (shrink) be dlf_ferent
fact that wind generation can be curtailed is taken into anto from the for_epasted range, Fhat s, both pow_er-capacny gnd
in (11)-(15). ramp-capability reserve requirements may shrink by afowi

1) Power System Requirements Without Allowing Wind Cuv}l-InOI curtailment, as shown in Fig.

tailment: Once the wind uncertainty ranges for power-capacity To allow curtailment in the formulation, the wind-dispatch
(W, W,,| and ramp-capability Wi *, W~ are defined, variables are bounded by their associated wind forecast
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A P % Dispatchable range _ Power [MW]
Wis P-P- A B eeeeeee Upper envelope: p,+7;
7% ] IR c SPYETILL JITTT
- — — -‘\*V__V _."*+ T+ Nominal production: p,
o _ < e ht
T_ Wy x s — — Lower envelope: p/r;
Max ramp Max ramg_up range 1.
downrange OR >0 - — *"1 (7
W, " —_—— — T —~ 4
L '~ <
- - T =t | | | \| Time
B
I I > 0 | 7 Tw

t-1 t

Fig. 3: Maximum ramp up and down within the wind dispatchatsege Fig. 4: Unit's operating range for power capacity

Power [MW] RU

bounds:

Nominal production: p,

0 < wyy < Wy, 0<wpr < Wiy, 0 <y < Wy, VbeBY,t

8
and the auxiliary variables;;:* andw;\~ are defined as the ~ 5
maximum ramp up and down range, exceeding the nominal 0 yail n >
wind production values, that can fit within the dispatchable ) . ) -
wind range: Fig. 5: Unit's operating range for ramp capability
wngr = (Wyr — wee) + (wb,t—l - Mb,t—l) vbe BVt (9)

w,f}* = (Wpt—1 — Wpe—1) + (Wpr —wy,) Vb€ BY,t (10) B. Individual Unit's Constraints
where these equations can be obtained from EigNote that
the dispatchable wind range for perigdis defined by the

R+ ,R—

lower bound v, ,_;, w;,) and upper boundiy,;—1, @) wind ramp-capability-;; ", r..~ and power-capacity;;,r;5 reserve

. . . . . . gt k) gt
Q|sp_atches.7The maximum possible ramp up_W|th|n this _rangfnges. Fig4 shows how the nominal case and the power-
is given bywy —w, ,_, (Fig. 3), then the maximum possible

2 . . . capacity reserves define upper and lower envelopes for’ units
ramp-up deviation from the nominal wind dispatch rarmp, operation
wbﬁtfl) is wll):{t+ = (Ebt _wb,tfl) — (wbt — wb,tfl), which is 1 ¢ ' it t LogicTh lati bet th it
(9). Similarly, wi*~ defined by £0) can be obtained. ) Commitment LogicThe relation between the commit-

ment, startup and shutdown variables is given by:
Then @)-(5) can be reformulated to allow wind curtailment:

This section presents a set of constraints that guaranate th
a unit can provide any power trajectory within its scheduled

R Ugt — Ugt—1 = Vgt — Zgt VG, L. (16)
> Bo=> Du— Y wy Vi (11) S . .
9eG be BD beBW Constraints imposing the minimum up/down times and
ZT; > Z (whe — wy,) Vi (12) different startup types are also |ncludet-j, sed.[ .
9€G beBW 2) Total Power Output for The Nominal Productiohe
- _ proposed formulation considers slow- and quick-startsunit
> — . X ;
ngt - Z (@or = wer) vt (13) For the sake of brevity, this section only presents the set of
9€g beBW . . . . o
~ constraints for quick-start units, which can startup witbne
ZT?[L > Z inf <W£7,wl§7> Vi (24) hour:
geY beBW N P ( n )+ Vot (17)
~ P =1L (u Vg, t+1 p g,t.
bz Yl (W wit) v @8) e
g€g beBW The slow-start units are included into the formulation by

o ] ) only modifying (L7), thus including shutdown and different-
The infimum functions in 14) and (5 guarantee that siartup power trajectories that take longer than one hdue. T
the ramp requirement do not exceed the scheduled Winghder is referred tog], [10], [11] for further details.

range by choosing the minimum value between the forecaste%) Power-Capacity Reserveshe unper and lower envel-
ramp requirement and the maximum possible ramp within the pacity : PP

scheduled wind range. An MIP equivalent formulation for th@P€s must be within the unit's capacity limits, see Mg.

infimum function in (4) and (5) is provided in AppendiA. Pyt + th < (Fg — Bq) Ug — (ﬁg — SDg) Zg.t+1
In short, (1) ensures that the system provides the power and + (SUg — Eg) Vgi+1 Vg,t (18)
ramp requirements for the wind nominal cas&2)(and (3) pgt — T >0 Vg,t (19)
gt — )

guarantee that enough up and down power-capacity reserves
are scheduled, respectively; similarlyi4f and (5 ensure  4) Ramp-Capability Reserve§he unit's nominal produc-
enough up and down ramp-capability reserves, respectivelytion defines the ramp-capability that is available in every
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period, see Fig5: for any scenario would bey,,. Now, by ensuring a feasible
dispatch for the upper expected wind boumgi, the formu-
Pot = Pg—1 + 7y < RUgugr + (SUs = By) vot1 Y9t parion guarantees that wind scenarios upaig can also be
(20) dispatched.
—Dgt + Pgt—1 + ’I‘ff[ < RDgug + (SDg — Bg) zgt Vg,t Now, the units’ reserve deployments for the uppeg) and
(21) lower (r,:) expected wind bounds are obtained. These reserve
In these constraints, the terméSUg —Bg)vg,t+1 and Iq;:]ptlolyments must be within the scheduled power capacity
(SDy — P,) zg ensure that," andry;,  respect the startup mits:
(SU,) and shutdown{D,) ramping capabilities of the units. T STyt Ty < 7";5 Vg,t (27)
However, if one wanted to ensure ramping constraints only on . . .
variablesp,;, the inequalities- RD, < pyi — pgs—1 < RU, and they must also satisfy ramp limit constraints:
would have been enough since the units’ startép’{) and *7‘5}_ <Tgt —Tgo1 < r;}; Vg, t (28)
shutdown §D,) ramping capabilities are imposed bigj.
5) Relationship Between Power-Capacity and Ramp-
Capability ReservesThe following constraints ensure that the Finally the transmission capacity constraints are enfbrce

unit operate within the ramp limits on either the upper ordow for both the upper and lower expected wind bounds:

envelopes, respectively: .
- < ZF}Z (Pgt +Tgt) + Z Liywe

7TgRi_ < tgt - ﬁg,tfl < rgRi+ Vg7t (29)

“Tor STg~Tgue1 STo Vgt (22) pr b
R— — — R+ _
gt STg —Tgi1 STer VYt (23) ~ N by <F; Vit (30)
where @2) and @3) can be obtained from Figd, see Ap- beBP
pendixB for further details. _F < Zr}’g (Pt +£gt) + Z Tpw,,
The available up (down) ramp-capabilit);* (ri") is prere bEBW
bouqded by_the maximum upwards _(downwar_ds) power change _ Z TwDy <F: Vit (31)
that is possible within power-capacity operating range; B R
(A—D) in Fig. 4: _
. N The demand balances for these scenarios are guaranteed by
ot STy Ty Vgt (24)  (12) together with:
JR— o+ -
gt S Tgi1TTg Vgt (25) ngt = Z (wpr — We) Vit (32)
Constraints 24) and @5) guarantee that once the unit 9€g beBW
is scheduled to provide ramp-capability reserve, there is a Tyt = Z (wpr — wy,) Yt (33)
scheduled power-capacity range that can allow this ramp- e bEBW

capability deployment.

Finally, all these reserve variables are defined as positiv and the nominal wind production must be within its upper and

Sower wind dispatches:
+ ,— R+ R—

TgtsTgt:Tgt »Tge 20 Vg, t. (26) wy, <wp < Wy Vb€ BVt (34)
In summary, constraintslg)-(26) guarantee that the unit
can provide any power trajectory within its scheduled ramp;
capability and power-capacity reserve ranges.

Notice that total reserve deployment for the upper wind
spatch 82) is negative, this means that the power system
must decrease its overall generation when wind production
is above the nominal value. Notice i83) and @3) that the
C. Network Constraints power-capacity reserve requirements are provided pyr,,

The work in [L3! shows that by finding a feasible dispatctinen these variables provide the limits QE__‘N;[I” otr]rer
for the lowest expected wind bound,,, all other possible Words, variablesry,,r,, will be equal to eitherry, or rg,.
wind realizations within the uncertainty range are feasibl1nerefore, £8) and @9) are more constrained and dominate
That is, all scenarios can becoras, by curtailment. Con- (22 and @3), that is, @2) and @3) are then redundant.

sequently, all scenarios can be dispatched and, in the worsgonstraints 12) and (L3) ensure that the units can provide

case, the maximum quantity of wind that can be dispatchEtf required power-capacity reserves, and constra@s (
(34) guarantee that there is transmission capacity available s

1A similar result can be concluded from theory of adaptiveusttoptimiz-  these power-capacity reserves can be deployed to placks in t
ation for LP problems 14]. Note that the uncertainty affecting every one ofnetwork where these reserves are required.
the constraints (upper bound of wind dispatch, i@,; < &) is independent
of each other, and the uncertainty set is defined as a consninterval (i.e.,
wy, < & < Wpe). Due to these specific characteristics, the fully adaptiv P .
solution of the second-stage problem, which is LP, is edgemteo the static (or B. Objective Function

non-adaptive) one (i.ewy; < w,;,), as proven in14] and further discussed in The Objective function of the proposed UC model is to

[15]. This simple MIP formulation of the adaptive robust prahlés possible S h . | . d ide th ahi
because all second-stage variables are linear, althowgfirst-stage variables minimize the operational cost incurred to provide the n n

are integer 16]. wind scenario:
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5 1 1 S 1
0.8{° 0.8 0.8 ° ° 0.8
. I V ~ o
min Z Z |: Cat (ugt7 Vgt th) + Cqt (pgt) (35) 06 ° o 06 06 ° 06
teT geg - V""" ~——~ o4 o ™04 S04 o’ o4
) Day—ahead schedule Dispatch 02 o 02 02 & ° 02
As (35) does not capture the effect on the cost of deploy % “os 1 81 005 o % o5 1 82 02 o
the scheduled reserves, it is possible to add a welghte% 02 Fly . I
of the cost terms that correspond to the cases in whictr Zn I| I= =
generators deploy all their upper and lower capacity reser ° % ! 0 % !
(a) LHS: 10 samples (b) Monte Carlo: 10 samples
min Z Z |: Cgt (Ugt7 Vgt th) 1 o o5 1 1 T "% 1
—_— g Eosf o
t 5 00 508 . .8} o o .
€T 9e9 Day—ahead schedule 086000 o 5, T o oo °28,° o® 2 ° o
06/ ° o ®o oo 0.6 06p Q;) © o o 9% 9 06
~ _ ~ > (o0 ° 00 Poy > > @ o © 0 800 |3
Vo~ C;/t (pgt + Tgt) + C;]t (pgt + tgt) 0at® " 90 b & 0.4 o4t % o, {04
+(1 - a) Cat (pgt) +ol| = B - 02/ s & o0° °d 02 02 %% g0 | 02
© oog P2 o° od) o 0 9% o4
G0 0.5 1 ?J.l 0.05 0 OO 0.5 1 8.2 0.1 0
Dispatch —~ 01 g f(y) —~ 02 & f(y)
8
( & 00 0.5 1 = OO 0.5 1
where the weighta gives the flexibility to 1SOs to give T x
(c) LHS: 100 samples (d) Monte Carlo: 100 samples

priority to dispatches around the nominal valgg,J or around
the extremes [, + 7y and py; + £gt), hence ISOs can Fig. 6: Latin hypercube sampling (LHS) vs. simple Monte Gasimulation:
set o according to their preferences. Notice, however, thggrl]fgi;irgstjjcligl)bu;l?g)flt in two dimensions;, y and their resulting probability
« should be small £ 0.1), giving higher priority to the T

nominal dispatch, since wind production is usually normal-
like distributed (most of the samples are around the nomingl
value rather than on the extremes). SectiirB1 shows a
sensitivity analysis for different values of 1) Scenario GenerationThe scenarios are created assum-

The day-ahead schedule costs counts the fixed productiyd that the wind production follows a multivariate normal
cost c§t () which is composed by the no-load, shutdowfistribution W|th pred_|cte_d valu®” and volatlll_ty matrle_[4].
and different startup costs, depending on how long the uionte Carlo simulation is one of the sampling strategiestmos

has been offline]0]. The dispatch costs counts the variabl§oMmmonly used to create scenariék However, Monte Carlo
production costY, () that is calculated based on the unitsS@MPling requires a very large number of samples to explore

energy production, which can be easily obtained i 10]. Fhe Wh(l)le.arela in the expgrimental region and to rgcreate the
input distributions. In addition, a problem of clusteringsas

when a small number of samples are created. These problems
are illustrated in Figs6b and 6d.
To overcome these drawbacks, Latin Hypercube Sampling

The performance of our proposed approach is evaluated (IsHS) is used to generate scenarios for the uncertain wind
ing the modified IEEE 118-bus test system, available online Rfoduction. The idea in applying LHS is to optimally distrtb
www.iit.upcomillas.es/aramos/IEEE118_SUSD-Rampsfels the samples to explore the whole area in the experimental
a time span of 24 hours. The system has 118 buses; 1ggion, avoiding the creation of scenarios that are too sim-
transmission lines; 54 thermal units; 91 loads, with avera§ar (clusters) L§. Furthermore, LHS can recreate the input
and maximum aggregated levels of 3991 MW and 5592 MWfistribution with a relatively small number of samples. .Fig
respectively; and three wind units, with aggregated aweragPmpares LHS with Monte Carlo sampling for a small (10) and
and maximum production for the nominal wind case of 86% large (100) number of samples in two dimensions. Note how
MW and 1333 MW, respectively. The power system data akélS better explore the experimental region and also present
based on that inZ] and it was adapted to consider startup an@wer clusters than Monte Carlo sampling.
shutdown power trajectories. All tests were carried ouhgisi  2) Scheduling and Validation Stage$o compare the per-
CPLEX 12.6 [L7] on an Intel-i7 3.4-GHz personal computeformance of the different UC approaches, this paper makes a
with 16 GB of RAM memory. The problems are solved untiflear difference between the scheduling stage and theavalid
they hit a time limit of 7200 seconds or until they reach afion stage. The computational experiments proceed asfsllo

Evaluating Approach

I1l. NUMERICAL RESULTS

optimality tolerance of 0.05%. 1) Scheduling stage: solve the different UC models and
This section first shows the procedure used to evaluate the obtain the hourly commitment solutions, using 20 wind
performance of the UC solutions. Then, Sectilt+B performs scenarios for each of the three wind units. FHigshows
sensitivity analysis of the proposed formulation in termhthe the aggregated wind production of these wind scenarios.
objective weight and uncertainty range. Finally, Secti+C For this study case, the nominal profile of wind pro-

compares the performance of the proposed approach with the duction Wy, was computed as the middle value of the
traditional deterministic and stochastic approaches. power-capacity uncertainty range, i.éWbt + wbt)/z.
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1600 ‘ ‘ ‘ ‘ Table I: SENSITIVITY OF OBJECTIVEWEIGHT «
I"
EAR RO Scheduling Validation: 5-min Economic Dispatch
1400 q « Hourly Dispatch Costs [k$] | Violations
UC [k$] # SU || Average  Std Worst| #Sc # Tot MWh
1200 0 [ 52.026 14 || 771.115 14.351 814.4Jy1 2 2 0.038
g 0.1| 51.986 14 || 770.823 14.365 814.2p3 2 2 0.038
Z 1000} 0.2| 51.949 14 || 770.970 14.348 814.087 2 2 0.048
% 0.3| 51.986 14 || 770.806 14.364 814.206 2 2 0.038
T g0l 04| 51.961 14 || 770.928 14.392 814201 2 2 0.038
£ 05| 51.351 13 || 771.642 14.361 814.657 2 2 0.038
= 0.6| 51.259 13 || 771.822 14.408 815087 0O 0O 0.000
600r g : 0.7] 50.446 14 || 772.659 14.325 8156p2 1 1  0.004
= = =Upper bound " i 0.8 | 50.623 14 772.657 14.378 816.045 5 5 0.108
400 ——Mean \ . R 09| 50.435 14 || 772.725 14.327 815951 5 5 0.108
- - Lowerbound| =~ ot Pt 10| 49.824 13| 773503 14.355 816718 5 5 0.108
Scenarios ‘ S- "T~~ ol
200 5 10 15 20

time Thl

Fig. 7: Representation of wind uncertainty over time, sdesaand bounds -gsts described in SectidkhD (UC [k$]), and 2) the number of
startups (# SU). These two aspects indicate the commitment

decisions that were needed by each approach to prepare the

2) Out-of-sample validation stage: for each fixed UC SOILgystem to deal with the given wind uncertainty. Validation

tion, solve a 5-min economic dispatch problem repeti tage: 3) the average dispatch costs (Average), indichtes t

Ively for a set (?f 200 new wind scenarios. NOt'Cfe thaéﬁ:onomic efficiency of the UC decision; 4) the volatility of
arou_nd the 20% Of_ these out-of-sample scenarios f?}hese costs (Std), represented by the standard deviation of
outside the uncertainty bounds shown in Fig. dispatch costs, which indicates the reliability of the e
The scheduling stage uses the 20 scheduling wind scenati@hatch operation under the UC decision; 5) the dispatsh co
(Fig. 7) to_define the wind uncertainty ranges for powefyf the worst-case scenario (Worst), indicates how robust th
capacity Wy, W,,] and ramp-capability [W;{~, W;;*], Uc decision is against the worst-case scenario (from the 200
which are needed by the proposed UC formulation to defig@t-of-sample scenarios); 6) number of scenarios where the
the power-capacity and ramp-capability reserve requirgsie yere violations in either demand-balance or transmission-

respectively (as discussed in Sectib ): limits constraints (# Sc); 7) total number of these violaio
Wi = sup (Way) Vo BY, ¢ (37) (# Tot); and 8) total accumulated energy that could not be
s accommodated, demand-balance violations (MWh). The last
W,, = inf (W) Vbe BWY, ¢t (38) three aspects also indicate how robust the UC decision is

Rt W against different wind scenarios.
Wyt =sup (Wa = Wape1) ¥be BVt (39)

Wy = Sup (Wepe1 = Wenr) Wb BVt (40) g Sensitivity Analysis

where sup () and inf (-) are the supremum and infimum 1) Changes of Objective Weight The performance of

functions, respectively. The paramet&,;; is the wind power the proposed approach is tested under differenand the

[MW] in bus b at end of hourt for scenarios, which belong results are shown in Tablé Notice that the performance

to the set of the 20 wind scheduling scenarios. does not change considerably. The maximum values of the
In the 5-min economic dispatch, penalty costs for the violéwverage, Std and Worst-case dispatch cost are 0.6% above

tion of some constraints are introduced to mimic the highscoghe minimum values. These small changes are because the

due to corrective actions in real time operations. The ggnamodel guarantee feasibility through a set of hard condsain

costs are set to 10000 and 5000 $/MWh for demand-balarfumvever, the results may change considerably if one relivees

and transmission-limits violations, respectively, asgagied demand-balance and transmission constraints by introduci

in [19] (similarly to [3], [4]). These penalty costs represenpenalty-cost violations (i.e., depending on the valueaof

the expensive real-time corrective actions that an ISO sweeed large violations may appear since their weigh in the objecti

take in the event that the actual system condition signifiganfunction can be insignificant, then not guaranteeing a fdasi

deviates from the expected condition, such as dispatchistg f deployment of reserves in real-time operation). Hencifart

start units, voltage reduction or load shedding. Noticet this set to0.1.

these demand-balance and transmission-limits violatemes  2) Changes of Uncertainty Rangefable Il shows the

only allowed in the 5-min economic dispatch (validatiorgefp results in the scheduling and validation stage for differen

and not in the UC (scheduling stage) problems, allowingehegalues of the uncertainty range, from 0 to 100%. The 100%

violations with high penalty costs also helps finding s@no$ uncertainty range is defined by the bounds shown in Fig.

to infeasible dispatch problems. and the 0% is equivalent to a deterministic UC using only
The performance of the UC strategies are shown in eigiie nominal wind case. These ranges were equally changed

aspects, two related with the scheduling stage and six Wwéh to the power-capacity and ramp-capability ranges. It can be

validation stage. These aspects, presented in Taldeldl , are clearly observed that the larger the considered unceytaint

described as follows. Scheduling stage: 1) the fixed praacluct range, the UC costs and number of startups increase because
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Table 1l: SENSITIVITY OF UNCERTAINTY RANGE Table Ill: BETWEEN DIFFERENT UC POLICIES UNDER THE 200 QUT-OF-
_ __ _ _ SAMPLE WIND SCENARIOS
Scheduling Validation: 5-min Economic Dispatch
% Hourly Dispatch Costs [k$] [ Violations Scheduling Validation: 5-min Economic Dispatch
UC [k$] # SU || Average Std Worst| #Sc #Tot  MWh Hourly Dispatch Costs [K$] | Violations
0 | 46.705 10 || 1067.017 575205 5479411 103 1744 5884.536 UC [k$] #SU || Average  Std Worst| #Sc # Tot _MWh

10 | 46.906 10 1018.959 505.127 5017.905 101 1492 4928.511 ResRPC| 51.986 14 770.823 14.365 814.223 2 2 0.038

20 | 46.725 10 966.994 461.833 4797.448 87 1259 3883.190 StchOpt| 54.765 12 808.971 200.096 2903.841 28 259 611.473

30 | 47.443 11 877.291 337.356 3905.236 53 759 2102.645 DetRes | 55.492 16 857.199 279.813 3254.877 55 611 1793.881

40 | 47.941 12 825.176 228.394 3130.061 31 308 1052.421

50 | 47.973 12 || 795862 134.644 2317.292 16 145 460.961

60 | 48.691 13 780.770 67.952 1617.704 11 77 165.247 . )

70 | 51583 13 || 772493 26.906 1039.311 6 39 43814 Scheduling stage, one can observe that DetRes commits the

80 | 51442 13 ) 770863 14.830 831415 4 12 3647 |grgest quantity of resources, because this is the onlyoagpr

851 51930 14| 770535 14522 BlAzqL 3 6 2008 that cannot readjust (optimize) the given level of reseitwes

90 | 51.911 14 || 770562 14384 814089 2 2 0038 cannot readjust (op ' 9 :

o5 | 51.93¢ 14 || 770740 14382 814246 2 2 0038 considering wind curtailment. That is, the reserve regnéets

100| 51.986 14 || 770823 14365 814293 2 2 0038 for the deterministic approach results in a larger quardity

committed resources. On the other hand, ResRPC presents

) ) lower FxdCost than Stch, but ResRPC started two more units.

the UC solutions become more conservative. Consequemly, s gifference is because ResRPC scheduled more flexible

dispatch costs and violations decreases. _ ~__units (smaller with higher ramps) which usually presentdow
Through different uncertainty ranges, there is a signiticafiyaq costs but higher variable costs.

reduction i,n the Average and Std dispa.tch (,:OStS' This g’gmﬂ From the validation stage in Tabl#, the following can be
ant reduction is closely related to the violations reduténd op o reqd:
its associated costs, which represent the expensive enwrge
actions that the ISO has to take to maintain system religbili
Notice that the uncertainty range of 85% presents the lowest
average dispatch costs. This indicates that the uncertainge
can be slightly reduced without sacrificing the efficiency an
robustness of the UC solution. One can observe in the rangeg)
(85% and above) presenting few violations that considering
lower uncertainty levels leads to better economic bensiit, b
worse risk performance, which is represented by the standar
deviation of the dispatch cost. Using this information, egar
tradeoff can be made by decision makers.
Henceforth, the uncertainty range is set to 100%.

1) The Average and Std dispatch costs of StchOpt are
around 6% and 40% lower than DetRes, respectively.
This clearly shows the advantages of the stochastic
strategy over the deterministic one, as expected.
Although DetRes committed the largest quantity of re-
sources, it is the least robust. This is mainly because
the deterministic approach only models the network
constraints for the nominal case and it cannot guarantee
that the committed reserves can be deployed. This is in
contrast to ResRPC and StchOpt, where generating units
are committed taking into account that power must be
delivered to specific places in the network where the
uncertainty appears.

C. Comparing the Proposed Approach with the Traditional- 3) The Average dispatch cost of StchOpt is around 5%

Deterministic and Stochastic Approaches higher than ResRPC, and the Std for StchOpt is more

The proposed UC formulation (ResRPC), which includes ~ than an order of magnitude higher (13.9 times). Sim-
ramp-capability and power-capacity reserves, is compaited ilarly, the total quantlty.of violations and the energy
the traditional deterministic-reserve modelling (DetResd unbalance of StchOpt is more than two (130 times)
the stochastic (StchOpt) UC approaches. All three models ar ~ @nd four (16k times) orders of magnitude higher than
based on the power-based UC proposedLid]. ResRPC, respectively.

To obtain the commitment strategies of all UC approachds, short, the proposed approach ResRPC presents a better
the 20 wind scenarios shown in Fig.are used, as describedeconomic-benefit and risk performance than the deternanist
in the scheduling stage in Sectidi-A . These scenarios areand stochastic approaches for this study case. Conseguentl
assumed to be the only information available for the schiegul ResRPC offers more robust commitment decisions which lead
stage. Therefore, these data are used to describe theediffeto a better system reliability.
wind uncertainty representation required by the differgft Although LHS is used to represent the space of scenarios
approaches. The proposed approach ResRPC uses the noraidefuately, the performance of StchOpt may be improved
wind production together with minimum and maximum boundsy introducing a larger quantity of scenarios in the schedul
of power-capacity and ramp-capability, which are obtainédg stage or by a better scenario sampling. To observe the
from this set of scenarios [as previously defined 8Y){((40)]. performance of ResRPC and DetRes compared with a “per-
The stochastic approach StchOpt uses all 20 scenarioslyFindect” stochastic approach, the economic dispatch vabdati
the deterministic approach DetRes uses the nominal wiigdcarried out using the same scenarios used by StchOpt in
production and two hourly reserves, upwards and downwair& scheduling stage. Tabl¢ shows the performance of the
which are defined ay", (Wi — W,,) andy", (Wy — Wy), different UC approaches under the 20 scheduling scenarios.
respectively. For this case, StchOpt presented the lowest Average dfspatc

1) Reliability of Dispatch Operation:Table Il compares cost, around 0.3% lower than ResRPC, but the Std and the
the performance of the different UC approaches. From tNéorst-case are higher than ResRPC. Notice that StchOpt



10 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY (accepted versjon

Table IV: BETWEENDIFFERENTUC POLICIESUNDER THE20 SCHEDULING

WIND SCENARIOS which schedules power-trajectories instead of the trautiti

energy-blocks and takes into account the inherent stardp a

5-min Economic Dispatch Simulation . . . .
Dispatch Costs [&] | Violafions shutdown power trajectories of thermal units. The formiatat
Average  Std Worst | # Sc # Tot MWh is compact since it only needs two reserve requirements and
ResRPC| 770.863 12.360 795588 1 1  0.002 therefore keeps the advantages of deterministic UCs, ainlik
StchOpt| 768.793 21.888 848.723 2 12 5.729 the stochastic approach for which problem size dependseon th
DetRes| 803.457 119.146 1263678 3 36 71.670

quantity of scenarios. Study cases showed that the proposed
Table V: PROBLEM SIZE AND COMPUTATIONAL BURDEN OF THE DiFrer-  formulation significantly decreases operation costs coetpa

ENT APPROACHES to traditional deterministic and stochastic UC formulato
Problem Size ] Computational Burden While simultaneously lowering the computational burdeheT
Constraings NonZero  Continuous  Binary  CPU Nodes Operation cost comparison was made through 5-min economic
elements  variables variables Time [s] _ explored  (igpatch simulation under hundreds of out-of-sample wind
ResRPC| 36141 1074712 21096 6520  90.45 250 i i0s. As fut tudies. th ¢
StchOpt| 225141 5600307 169776 6376  867.88 g0  generation scenarios. As future studies, the performafiteo
DetRes | 18093 315424 11016 6376 8.75 29  proposed formulation should be compared with the tradation
5-min stepwise energy-block formulations under both stochastit
dispatch 157594 15711648 276195 0 82 0 .
robust approaches for different power systems.
APPENDIX

presented constraint violations in two scenarios evenghou
these scenarios were used in the scheduling stage. ThiAisMIP Equivalence for The Infimum Function

because the scheduling stage considers a simplified ho“”Ynequality @1) seeksz to be greater than or equal to the

piece-wise linear approximation of the 5-min smooth powekinimum value between the parametérand the variabley:
profile of the set of scenarios shown in Fig.

2) Computational PerformanceTableV shows a compar- z > inf (4,y). (41)
ison of problem size and computational burden between theA

. . . n MIP equivalent of this non-linear function is:
different approaches. Notice that all three formulatioaseh q

almost the same quantity of binary variables, but ResRPC x>A—at (42)
has around 2.2% more than the others. This is due to the at—a=A—y (43)
modelling of the infimum function that ResRPC requires, see i
. at < Ab (44)
Sectionll-A.
a” < B(1-9) (45)
§€{0,1}, at,a” >0 (46)

When comparing the number of constraints, nonzero ele- . L . .
ments and continuous variables, ResRPC is around tw%vgere @3.)'(46) '".‘pose“ iAfy if and onl_y_ ify<A ar_ld
otherwise. Variableg™,a~ and J are auxiliary, andB is

the size of DetRes, and StchOpt is more than 12 and 6 arameter representing the maximum possible value of the
times larger than DetRes and ResRPC, respectively. On gf erenceA — y. Therefore, the value aB for the infimum

other hand, the CPU time of ResRPC is around an order Of .. . — - p
magnitude higher than that of DetRes, and one lower than gigpetions in (4) and fl?ﬂ“’ set adly ;1 + We, — Wi
of StchOpt. Finally, unlike DetRes and ResRPC, the proble"ﬁqd Wit + Wo 1 — W), respectively.
size and computational burden of StchOpt highly depends on
the quantity of scenarios that it considers. B. Ramping Constraints on Envelopes

Table V also shows the computational performance of the The following inequality is obtained by reorganizing the
5-min economic dispatch simulation used for the validatiogmp-up constraint20) and @2):
stage. The 5-min optimal dispatch is an LP problem (O
binary variables), solved for the fixed hourly commitment UC 7 — 7/, 1 < 7t < RUgug + (SUy — Py) vg.141
decisions. The dispatch problem is significantly largenttiee — Dyt + Pgit—1 Yg,t 47)
UC formulations because it is solved for 144 periods (5-min ) ) o )
time step for 24 hours); however, its computational burden 'here its left side together with its right side ensure
t)gl (average 82 seconds per scenario) because the problem prgt n 7‘;}@) - T'th) < RU,uy

+ (S’Ug — Bg) Ugi+1  Vg,t (48)

IV. CONCLUSIONS which imposes the ramp-up on the upper envelope;y B in
This paper presented a deterministic power-based netwoFI'kQ-_ 4. _ o _
constrained UC formulation as an alternative to the tradil ~ Likewise, by reorganizing the ramp-down constrair24)(

deterministic UC under wind generation uncertainty. The foand €2), the following inequalities are obtained:
mulation draws a clear distinction between power-capacity .+ + R—

o . ! o= < <RD, SD,— P
and ramp-capability reserves to deal with wind production Tor T Tg-1 STt = ggt +( g —9) “gt
uncertainty. The model is formulated as a power-based UC, +Ppgt —Pgt-1 Vgt (49)
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where its left side together with its right side ensure

- (pgt + T;}) + (pg,t—l + 7”;:,5,1) g RDgugt
+(SDy —P,) 2z Vg,t (50)

11

[18] P. GlassermanMonte Carlo methods in financial engineering New
York: Springer, 2003.

[19] FERC, “RTO Unit Commitment Test System,” Federal Ewyemnd
Regulatory Commission, Washington DC, USA, Tech. Rep., 2002.

which imposes the ramp-down constraint on the upper envel-

ope, A — B in Fig. 4.

Similarly, (20) and Q1) together with 23) guarantee the
ramp-up and -down constraints on the lower envelape; D
in Fig. 4.
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