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Power-Capacity and Ramp-Capability Reserves for
Wind Integration in Power-Based UC

Germán Morales-España,Member, IEEE,Ross Baldick,Fellow, IEEE,Javier García-González,Member, IEEE,
and Andres Ramos

Abstract—This paper proposes a power-based network-
constrained unit commitment (UC) model as an alternative to
the traditional deterministic UCs to deal with wind generation
uncertainty. The formulation draws a clear distinction between
power-capacity and ramp-capability reserves to deal with wind
production uncertainty. These power and ramp requirements
can be obtained from wind forecast information. The model
is formulated as a power-based UC, which schedules power-
trajectories instead of the traditional energy-blocks andtakes into
account the inherent startup and shutdown power trajectories
of thermal units. These characteristics allow a correct repres-
entation of each unit’s ramp schedule, which defines its ramp
availability for reserves. The proposed formulation significantly
decreases operation costs compared to traditional deterministic
and stochastic UC formulations while simultaneously lowering the
computational burden. The operation cost comparison is made
through 5-min economic dispatch simulation under hundredsof
out-of-sample wind generation scenarios.

Index Terms—Mixed-integer programming, operating reserves,
power-based UC, power-capacity reserves, ramp-capability re-
serves, unit commitment.

NOMENCLATURE

Upper-case letters are used for denoting parameters and sets.
Lower-case letters denote variables and indexes.

A. Indexes and Sets

g ∈ G Generating units, running from 1 toG.
b ∈ B Buses, running from 1 toB.
BD Set of buses inB with demand consumption.
BW Set of buses inB with wind power injection.
l ∈ L Transmission lines, running from 1 toL.
t ∈ T Hourly periods, running from 1 toT hours.

B. Parameters

Dbt Power demand on busb at the end of hourt [MW].
Γlb Shift factor for linel associated with busb [p.u.].
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ΓP
lg Shift factor for linel associated with unitg [p.u.].

F l Flow limit on transmission linel [MW].
P g Maximum power output [MW].
P g Minimum power output [MW].
RDg Ramp-down capability [MW/h].
RUg Ramp-up capability [MW/h].
SDg Shutdown ramping capability [MW/h].
SUg Startup ramping capability [MW/h].
Wbt Nominal forecasted wind power at end of hourt [MW].
W bt Upper bound of the forecasted wind power at the end

of hour t [MW].
W bt Lower bound of the forecasted wind power at the end

of hour t [MW].
WR−

bt Ramp-down forecasted wind requirement for the whole
hour t [MW/h].

WR+
bt Ramp-up forecasted wind requirement for the whole

hour t [MW/h].

C. Decision Variables

1) Day-ahead schedule decisions:

r−gt Down power-capacity reserve scheduled [MW].
r+gt Up power-capacity reserve scheduled [MW].
rR−
gt Down ramp-capability reserve scheduled [MW/h].
rR+
gt Up ramp-capability reserve scheduled [MW/h].
ugt Binary variable which is equal to 1 if the unit is

producing aboveP g and 0 otherwise.
vgt Binary variable which takes the value of 1 if the unit

starts up and 0 otherwise.
zgt Binary variable which takes the value of 1 if the unit

shuts down and 0 otherwise.
2) Dispatch decisions:

pgt Power output above minimum output at the end of hour
t [MW].

p̂gt Total power output at the end of hourt, including
startup and shutdown trajectories [MW].

rgt Reserve deployment to provide the upper-wind dispatch
wbt [MW].

rgt Reserve deployment to provide the lower-wind dispatch
wbt [MW].

wbt Wind dispatch for the nominal wind caseWbt [MW].
wbt Wind dispatch for the upper bound windW bt [MW].
wbt Wind dispatch for the lower bound windW bt [MW].

D. Functions

cFgt (·) Fixed production cost [$].
cVgt (·) Variable production cost [$].
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I. I NTRODUCTION

I N recent years, high penetration of variable generating
sources, such as wind power, has challenged independent

system operators (ISO) in maintaining a reliable power system
operation. The deviation between expected and real wind
production must be absorbed by the power system resources
(reserves), which must be available and ready to be deployed
in real time. To guarantee this availability, the system resources
must be committed in advance, usually day-ahead, by solving
the so-called unit commitment (UC) problem.

A. Literature Review

1) Dealing with Uncertainty in UC: Stochastic and ro-
bust optimization have gained substantial popularity for UC
optimization under parameter uncertainty. In the stochastic
optimization approach, the stochasticity can be represented
through an explicit description of scenarios and their asso-
ciated probability [1], [2]. This approach presents however
some practical limitations: 1) it may be difficult to obtain an
accurate probability distribution of the uncertainty; and2) a
large number of scenario samples is required to obtain robust
solutions, which results in a computationally intensive problem
(often intractable).

The robust optimization approach partly overcomes these
disadvantages 1) by requiring moderate information about the
underlying uncertainty, such as the mean and the range of the
uncertain data; and 2) by immunizing the solution against all
realizations of the data within the uncertainty range. However,
it may be too conservative, since the objective function is to
minimize the worst-case cost scenario, which may never be
realized in practice. To deal with overconservatism, 1) a para-
meter commonly called budget-of-uncertainty is introduced in
the optimization problem to control the conservatism of the
robust solution [3], [4]; and 2) more recently, [4] proposes an
unified stochastic and robust UC model that takes advantage of
both stochastic and robust optimization approaches, wherethe
objective is to achieve a low expected total cost while ensuring
the system robustness.

Although the computational burden of adaptive robust UC
does not depend on the number of scenarios, it requires solving
a mixed integer programming (MIP) problem together with
a bilinear program to obtain the worst-case scenario. This
problem is considerably more complex to solve than a pure
MIP, requires ad-hoc solving strategies [3], [4], and it can
also considerably increase the computational burden of UC
problems.

In short, although stochastic and robust UCs are power-
ful tools to deal with uncertainty, they are computationally
intensive. This is the reason why traditional deterministic
formulations remain valid and widely used by ISOs worldwide.
This motivates the development of improved deterministic
formulations that better exploit the flexibility of the power
system and better face wind uncertainty.

2) Power-Capacity and Ramp-Capability Reserves:In or-
der to solve the day-ahead UC considering wind generation,
it is necessary to take into account uncertainty. As the wind
power forecasting error can be significant 24 hours in advance,

the range of possible values of wind power for each hour of
the following day can be very broad. As a consequence, ISOs
need to schedule some power-capacity reserve to guarantee
that committed system resources will be able to cope with any
value of wind generation that can be realised within that range.

When getting closer to the real time, for instance one hour
in advance, the range of possible values for the next hour is
smaller. However, even within such short time interval, wind
generation can increase or decrease its value at a rate that
will require that conventional generators adapt their output
to follow that ramp to keep the demand-supply balance.
Therefore, apart from the day-ahead power-capacity reserve,
it will be necessary to ensure that for any hour, the committed
system resources will be able to cope with the expected
maximum ramp of variation of the wind generation. Thus, a
ramp-capability reserve is also needed.

To illustrate the need of a clear differentiation between
power-capacity and ramp-capability reserves, consider the fol-
lowing example. Figs.1aand1bshow two different set of wind
scenarios which present the same power-capacity uncertainty
ranges, but completely different ramp-capability uncertainty
ranges. Dealing with the scenarios in Fig.1b requires higher
ramp-capability, although both set of scenarios demand the
same power-capacity requirements. In fact, some power sys-
tems have experienced short-term scarcity events caused by
resources with sufficient power capacity but insufficient ramp
capability [5]. In response, ISOs are developing market-based
ramping products, thus making a clear difference between
power-capacity and ramp-capability requirements [5], [6].

A stochastic UC implicitly captures both reserve require-
ments through scenarios; e.g., Figs.1a and 1b show how the
shape of the set of scenarios implicitly guarantee that the
system can provide different ramp-capability reserve require-
ments, even though the power-capacity reserve requirements
are the same. However, to correctly represent these reserve
requirements, a large number of scenarios is needed, resulting
in a high computational cost. On the other hand, the traditional
deterministic UCs can only ensure a given power-capacity
reserve, see Fig.1c, but it cannot guarantee different ramping
requirements to deal with either of the scenarios in Figs.1aand
1b. Although deterministic UC remains the ISOs’ dominant
practice nowadays due to the low computational burden, it does
not efficiently exploit the system flexibility to deal with the
specific requirements imposed by wind generation uncertainty.

3) Power-based UC:Conventional day-ahead UC formula-
tions fail to deal with ramp capabilities appropriately. Ineffi-
cient ramp management arises from applying ramp-constraints
to energy levels or (hourly) averaged generation levels; con-
sequently, energy schedules may not be feasible [7]. In addi-
tion, traditional UC models assume that units start/end their
production at their minimum output. That is, the intrinsic
startup and shutdown power trajectories of units are ignored.
As a consequence, there may be a high amount of energy that
is not allocated by UC but is inherently present in real time,
thus affecting the total load balance and causing a negative
economic impact [8]. For further details of the drawbacks of
conventional UC scheduling approaches, the reader is referred
to [9], [10] and references therein.
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(a) Stochastic (low ramp) (b) Stochastic (high ramp)

(c) Traditional Deterministic (d) Proposed Deterministic

Fig. 1: Different approaches to deal with wind uncertainty

To overcome these drawbacks, [10] proposes the power-
based UC (or ramping scheduling) approach. This approach
uses piece-wise linear power trajectories for both generating
units and demand instead of the commonly established stair-
case profile for energy blocks. The use of an instantaneous
power profile allows the model to efficiently schedule reserves
and ramping resources. In comparison with conventional UC
models, the power-based UC approach guarantees that, first,
energy schedules can be delivered and, second, that operating
reserves can be deployed respecting the ramping and capacity
limits of generating units. In addition, the model takes into
account the normally neglected power trajectories that occur
during the startup and shutdown processes, thus optimally
scheduling them to provide energy and ramp, which help to
satisfy the power demand.

B. Power-Capacity and Ramp-Capability Reserves in Power-
Based UC: An Overview

This paper proposes a deterministic power-based network-
constrained UC model as an alternative to the traditional
deterministic UCs to deal with wind generation uncertainty.
The proposed UC gives flexibility to the power system to face
wind uncertainty. This flexibility is provided by drawing a
clear distinction between power-capacity and ramp-capability
reserve requirements (Fig.1d), and by optimally dispatching
wind generating units. Allowing a different value for ramp-
capability reserve requirements results in a more realistic set-
ting, as discussed above. Wind dispatch flexibility is modelled
by considering curtailment in the UC formulation. Curtailment
may appear due to either economic reasons or technical reas-
ons, e.g., insufficient network capacity. This flexibility helps to
reduce the reserve requirements since part of the uncertainty
can be faced by curtailment, as practiced in ERCOT and MISO.
Introducing other renewable energy sources to the formulation
is straightforward if they can be curtailed.

The model is formulated as a power-based UC, which sched-
ules power-trajectories instead of the traditional energy-blocks,
and it takes into account the inherent startup and shutdown
power trajectories of thermal units. These characteristics allow
a correct representation of unit’s ramp schedule [7], [8] which
define their ramp availability for reserves [10].

The formulation is represented as a mixed integer program-
ming (MIP) problem, which has become the leading approach
in the electricity sector due to significant improvements inMIP
solvers. The core of the proposed MIP formulation is built
upon the convex-hull and the tight-and-compact formulations
presented in [8] and [11], respectively, thus taking advantage
of their mathematical properties. These formulations improve
the convergence speed by reducing the search space (tightness)
and at the same time increasing the searching speed with which
solvers explore that reduced space (compactness).

This paper presents an extensive numerical study on the
IEEE 118-bus test system, where the proposed formulation
is compared with the stochastic and with the deterministic
approaches. To perform comparisons and to obtain an accurate
estimate of the performance of each UC policy, the hourly
commitment obtained from each UC approach is evaluated
through a 5-min economic dispatch for hundreds of out-of-
sample scenarios.

C. Contributions and Paper Organization

The principal contributions of this paper are as follows:

1) A practical deterministic mixed-integer programming
(MIP) UC formulation that explicitly includes a pre-
specified nodal power-capacity and ramp-capability re-
serve requirements, which can be obtained from wind
forecast information; unlike traditional deterministic
UCs [10], [12], which only consider power-capacity
reserves. The proposed formulation explicitly models the
interdependency between the power-capacity and ramp-
capability reserves; i.e., providing ramp-capability means
providing power-capacity, but providing power-capacity
does not necessarily mean providing a given level of
ramp-capability.

2) Although the proposed UC formulation optimizes over
a nominal wind scenario, it also includes the worst-
case wind scenario proposed in [13], and so the UC
solution guarantees that the system has enough flexibility
to adapt to any wind uncertain realization. The level of
conservatism of the solution is controlled by the reserve
parameters and wind curtailment flexibility. That is, once
the reserve requirements are fixed, the proposed UC
reshape these requirements by considering curtailment.

3) The proposed deterministic UC can be used by ISOs to
ensure that enough power-capacity and ramp-capability
resources are available to deal with wind uncertainty in
real-time operation. ISOs can also adjust the level of
conservatism of the solution by adjusting the reserve
requirements, based on their preferences and on their
available information of wind uncertainty.

4) A validation methodology that mimics the real-time
operation of the power system where the day-ahead UC
decisions are dispatched against different realizations
of wind uncertainty. The idea is to take the (hourly)
UC decisions as fixed, and to run an economic-dispatch
model with a detailed time representation (a granularity
of 5-min time intervals) for many wind scenarios, inde-
pendently. From each execution (which is a deterministic
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problem) it is possible to compute the corresponding
operational cost, the number start-ups, etc. By compar-
ing the average of these values, their dispersion, and
the worst case solutions, it is possible to compare the
effectiveness of different UC decisions.

The remainder of this paper is organized as follows. SectionII
details the mathematical formulation of the different operating
reserves (power-capacity and ramp-capability) and their links
with the ramp schedules. SectionIII presents some numerical
examples as well as a comparison with the deterministic and
stochastic UC approaches. Finally, concluding remarks are
made in SectionIV.

II. M ATHEMATICAL FORMULATION

This section presents the proposed mathematical formu-
lation of the power-based UC. This section first discusses
the relationship between the wind uncertainty range and the
power system reserve requirements. The next part is devotedto
modelling the reserve constraints for generating units andthe
network constraints. Finally, the objective function is defined.

A. Wind Uncertainty Range and Power System Requirements

The first step is to define the level of reserves. In this
paper, two different type of reserves are defined based on
power-capacity and ramp-capability uncertainty ranges ofwind
production. These uncertainty ranges are defined by the expec-
ted minimum and maximum variations of power-capacity and
ramp wind production, see Fig.1d. Power-capacity uncertainty
range: the wind power production in nodeb at time t is
expected to be within the power-capacity range defined by
the lower and upper bounds

[
W bt,W bt

]
. Ramp-capability

uncertainty range: the wind production in nodeb at time t
is expected to ramp within the range defined by the maximum
ramp down and ramp up

[
WR−

bt ,WR+
bt

]
.

Notice that, similarly to the deterministic uncertainty sets
in robust UCs [3], the power-capacity and ramp-capability
uncertainty ranges defined here are deterministic and must
be set by ISOs. These ranges can be based on, for example,
wind forecast (with a given confidence level) and/or historical
information.

Similarly to traditional deterministic UCs, the proposed
model also requires a nominal profile of wind productionWbt

as input data. This nominal wind profile must be defined by
ISOs (e.g., as the most expected wind production), where the
only limitation is that the nominal value of wind production
must be defined within the ranges of wind power-capacity[
W bt,W bt

]
and ramp-capability

[
WR−

bt ,WR+
bt

]
.

For the sake of clarity, this section first introduces a formu-
lation (1)-(5) for the power system requirements where wind
curtailment is not allowed. Then, the flexibility that brings the
fact that wind generation can be curtailed is taken into account
in (11)-(15).

1) Power System Requirements Without Allowing Wind Cur-
tailment: Once the wind uncertainty ranges for power-capacity[
W bt,W bt

]
and ramp-capability

[
WR+

bt ,WR−
bt

]
are defined,

(a) Forecasted range (b) Dispatchable range

Fig. 2: Forecasted and dispatchable wind uncertainty ranges

the power system must supply demand and reserves for these
ranges:

∑

g∈G
p̂gt =

∑

b∈BD

Dbt −
∑

b∈BW

Wbt ∀t (1)

∑

g∈G
r+gt ≥

∑

b∈BW

(Wbt −W bt) ∀t (2)

∑

g∈G
r−gt ≥

∑

b∈BW

(
W bt −Wbt

)
∀t (3)

∑

g∈G
rR+
gt ≥

∑

b∈BW

W̃R−
bt ∀t (4)

∑

g∈G
rR−
gt ≥

∑

b∈BW

W̃R+
bt ∀t (5)

where (1) is a power balance at the end of hourt. Note that the
energy balance for the whole hour is automatically achieved
by satisfying the power demand at the beginning and end of
each hour, and by considering a piecewise-linear power profile
for demand and generation [10].

Equality (1) ensures that the system provides the power
and ramp requirements for the wind nominal case. Constraints
(2)-(3) and (4)-(5) guarantee that the system can provide the
maximum power and ramp deviations from the nominal case,
respectively. Parameters̃WR+

bt andW̃R−
bt are the maximum up

and down ramp deviations from the nominal ramp, respect-
ively, and are obtained as follows:

W̃R+
bt = WR+

bt − (Wbt −Wb,t−1) ∀b ∈ BW, t (6)

W̃R−
bt = WR−

bt − (Wb,t−1 −Wbt) ∀b ∈ BW, t (7)

Notice that the right sides of (2)-(5) are (input) parameters,
this means that ISOs must define the requirements for up
(2) and down (3) power-capacity reserves as well as up (4)
and down (5) ramp-capability reserves. The following section
shows how these reserve requirements are reshaped by the
model when allowing wind curtailment.

2) Power System Requirements Including Wind Curtailment:
Now, the flexibility that brings the fact that wind generation can
be curtailed is taken into account. Thus, the possible dispatched
wind range that results from the UC may (shrink) be different
from the forecasted range; that is, both power-capacity and
ramp-capability reserve requirements may shrink by allowing
wind curtailment, as shown in Fig.2.

To allow curtailment in the formulation, the wind-dispatch
variables are bounded by their associated wind forecast
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Fig. 3: Maximum ramp up and down within the wind dispatchablerange

bounds:

0 ≤ wbt ≤ W bt, 0 ≤wbt ≤ Wbt, 0 ≤ wbt ≤ W bt ∀b ∈ BW, t
(8)

and the auxiliary variableswR+
bt andwR−

bt are defined as the
maximum ramp up and down range, exceeding the nominal
wind production values, that can fit within the dispatchable
wind range:

wR+
bt = (wbt − wbt) +

(
wb,t−1 − wb,t−1

)
∀b ∈ BW, t (9)

wR−
bt = (wb,t−1 − wb,t−1) + (wbt − wbt) ∀b ∈ BW, t (10)

where these equations can be obtained from Fig.3. Note that
the dispatchable wind range for periodt is defined by the
lower bound (wb,t−1, wbt) and upper bound (wb,t−1, wbt) wind
dispatches. The maximum possible ramp up within this range
is given bywbt −wb,t−1 (Fig. 3), then the maximum possible
ramp-up deviation from the nominal wind dispatch ramp (wbt−
wb,t−1) is wR+

bt =
(
wbt − wb,t−1

)
− (wbt − wb,t−1), which is

(9). Similarly, wR−
bt defined by (10) can be obtained.

Then (1)-(5) can be reformulated to allow wind curtailment:
∑

g∈G
p̂gt =

∑

b∈BD

Dbt −
∑

b∈BW

wbt ∀t (11)

∑

g∈G
r+gt ≥

∑

b∈BW

(wbt − wbt) ∀t (12)

∑

g∈G
r−gt ≥

∑

b∈BW

(wbt − wbt) ∀t (13)

∑

g∈G
rR+
gt ≥

∑

b∈BW

inf
(
W̃R−

bt , wR−
bt

)
∀t (14)

∑

g∈G
rR−
gt ≥

∑

b∈BW

inf
(
W̃R+

bt , wR+
bt

)
∀t. (15)

The infimum functions in (14) and (15) guarantee that
the ramp requirement do not exceed the scheduled wind
range by choosing the minimum value between the forecasted
ramp requirement and the maximum possible ramp within the
scheduled wind range. An MIP equivalent formulation for the
infimum function in (14) and (15) is provided in AppendixA.

In short, (11) ensures that the system provides the power and
ramp requirements for the wind nominal case; (12) and (13)
guarantee that enough up and down power-capacity reserves
are scheduled, respectively; similarly, (14) and (15) ensure
enough up and down ramp-capability reserves, respectively.

Fig. 4: Unit’s operating range for power capacity

Fig. 5: Unit’s operating range for ramp capability

B. Individual Unit’s Constraints

This section presents a set of constraints that guarantee that
a unit can provide any power trajectory within its scheduled
ramp-capabilityrR+

gt , rR−
gt and power-capacityr+gt, r

−
gt reserve

ranges. Fig.4 shows how the nominal case and the power-
capacity reserves define upper and lower envelopes for units’
operation.

1) Commitment Logic:The relation between the commit-
ment, startup and shutdown variables is given by:

ugt − ug,t−1 = vgt − zgt ∀g, t. (16)

Constraints imposing the minimum up/down times and
different startup types are also included, see [10].

2) Total Power Output for The Nominal Production:The
proposed formulation considers slow- and quick-start units.
For the sake of brevity, this section only presents the set of
constraints for quick-start units, which can startup within one
hour:

p̂gt = P g (ugt + vg,t+1) + pgt ∀g, t. (17)

The slow-start units are included into the formulation by
only modifying (17), thus including shutdown and different-
startup power trajectories that take longer than one hour. The
reader is referred to [8], [10], [11] for further details.

3) Power-Capacity Reserves:The upper and lower envel-
opes must be within the unit’s capacity limits, see Fig.4:

pgt + r+gt ≤
(
P g − P g

)
ugt −

(
P g − SDg

)
zg,t+1

+
(
SUg − P g

)
vg,t+1 ∀g, t (18)

pgt − r−gt ≥0 ∀g, t (19)

4) Ramp-Capability Reserves:The unit’s nominal produc-
tion defines the ramp-capability that is available in every
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period, see Fig.5:

pgt − pg,t−1 + rR+
gt ≤ RUgugt +

(
SUg − P g

)
vg,t+1 ∀g, t

(20)

−pgt + pg,t−1 + rR−
gt ≤ RDgugt +

(
SDg − P g

)
zgt ∀g, t

(21)

In these constraints, the terms
(
SUg − P g

)
vg,t+1 and(

SDg − P g

)
zgt ensure thatrR+

gt andrR−
gt respect the startup

(SUg) and shutdown (SDg) ramping capabilities of the units.
However, if one wanted to ensure ramping constraints only on
variablespgt, the inequalities−RDg ≤ pgt − pg,t−1 ≤ RUg

would have been enough since the units’ startup (SUg) and
shutdown (SDg) ramping capabilities are imposed by (18).

5) Relationship Between Power-Capacity and Ramp-
Capability Reserves:The following constraints ensure that the
unit operate within the ramp limits on either the upper or lower
envelopes, respectively:

−rR−
gt ≤ r+gt − r+g,t−1 ≤ rR+

gt ∀g, t (22)

−rR−
gt ≤ r−gt − r−g,t−1 ≤ rR+

gt ∀g, t (23)

where (22) and (23) can be obtained from Fig.4, see Ap-
pendixB for further details.

The available up (down) ramp-capabilityrR+
gt (rR−

gt ) is
bounded by the maximum upwards (downwards) power change
that is possible within power-capacity operating range,C→B
(A→D) in Fig. 4:

rR+
gt ≤ r−g,t−1 + r+gt ∀g, t (24)

rR−
gt ≤ r+g,t−1 + r−gt ∀g, t. (25)

Constraints (24) and (25) guarantee that once the unit
is scheduled to provide ramp-capability reserve, there is a
scheduled power-capacity range that can allow this ramp-
capability deployment.

Finally, all these reserve variables are defined as positive:

r+gt, r
−
gt, r

R+
gt , rR−

gt ≥ 0 ∀g, t. (26)

In summary, constraints (18)-(26) guarantee that the unit
can provide any power trajectory within its scheduled ramp-
capability and power-capacity reserve ranges.

C. Network Constraints

The work in [13]1 shows that by finding a feasible dispatch
for the lowest expected wind boundwbt, all other possible
wind realizations within the uncertainty range are feasible.
That is, all scenarios can becomewbt by curtailment. Con-
sequently, all scenarios can be dispatched and, in the worst
case, the maximum quantity of wind that can be dispatched

1A similar result can be concluded from theory of adaptive robust optimiz-
ation for LP problems [14]. Note that the uncertainty affecting every one of
the constraints (upper bound of wind dispatch, i.e.,wbt ≤ ξbt) is independent
of each other, and the uncertainty set is defined as a continuous interval (i.e.,
wbt ≤ ξbt ≤ wbt). Due to these specific characteristics, the fully adaptive
solution of the second-stage problem, which is LP, is equivalent to the static (or
non-adaptive) one (i.e.,wbt ≤ wbt), as proven in [14] and further discussed in
[15]. This simple MIP formulation of the adaptive robust problem is possible
because all second-stage variables are linear, although the first-stage variables
are integer [16].

for any scenario would bewbt. Now, by ensuring a feasible
dispatch for the upper expected wind boundwbt, the formu-
lation guarantees that wind scenarios up towbt can also be
dispatched.

Now, the units’ reserve deployments for the upper (rgt) and
lower (rgt) expected wind bounds are obtained. These reserve
deployments must be within the scheduled power capacity
limits:

−r−gt ≤ rgt, rgt ≤ r+gt ∀g, t (27)

and they must also satisfy ramp limit constraints:

−rR−
gt ≤ rgt − rg,t−1 ≤ rR+

gt ∀g, t (28)

−rR−
gt ≤ rgt − rg,t−1 ≤ rR+

gt ∀g, t. (29)

Finally the transmission capacity constraints are enforced
for both the upper and lower expected wind bounds:

− F l ≤
∑

g∈G
ΓP
lg (p̂gt + rgt) +

∑

b∈BW

Γlbwbt

−
∑

b∈BD

ΓlbDbt ≤ F l ∀l, t (30)

− F l ≤
∑

g∈G
ΓP
lg

(
p̂gt + rgt

)
+
∑

b∈BW

Γlbwbt

−
∑

b∈BD

ΓlbDbt ≤ F l ∀l, t. (31)

The demand balances for these scenarios are guaranteed by
(11) together with:

∑

g∈G
rgt =

∑

b∈BW

(wbt − wbt) ∀t (32)

∑

g∈G
rgt =

∑

b∈BW

(wbt − wbt) ∀t (33)

and the nominal wind production must be within its upper and
lower wind dispatches:

wbt ≤wbt ≤ wbt ∀b ∈ BW, t. (34)

Notice that total reserve deployment for the upper wind
dispatch (32) is negative, this means that the power system
must decrease its overall generation when wind production
is above the nominal value. Notice in (32) and (33) that the
power-capacity reserve requirements are provided byrgt, rgt
then these variables provide the limits onr−gt, r

+
gt. In other

words, variablesrgt, rgt will be equal to eitherr−gt or r+gt.
Therefore, (28) and (29) are more constrained and dominate
(22) and (23), that is, (22) and (23) are then redundant.

Constraints (12) and (13) ensure that the units can provide
the required power-capacity reserves, and constraints (30)-
(34) guarantee that there is transmission capacity available so
these power-capacity reserves can be deployed to places in the
network where these reserves are required.

D. Objective Function

The objective function of the proposed UC model is to
minimize the operational cost incurred to provide the nominal
wind scenario:
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min
∑

t∈T

∑

g∈G

[
cFgt (ugt, vgt, zgt)︸ ︷︷ ︸
Day−ahead schedule

+ cVgt (p̂gt)︸ ︷︷ ︸
Dispatch

]
(35)

As (35) does not capture the effect on the cost of deploying
the scheduled reserves, it is possible to add a weighted sum
of the cost terms that correspond to the cases in which the
generators deploy all their upper and lower capacity reserves:

min
∑

t∈T

∑

g∈G

[
cFgt (ugt, vgt, zgt)︸ ︷︷ ︸
Day−ahead schedule

+(1− α) cVgt (p̂gt) + α

(
cVgt (p̂gt + rgt) + cVgt

(
p̂gt + rgt

)

2

)

︸ ︷︷ ︸
Dispatch

]

(36)

where the weightα gives the flexibility to ISOs to give
priority to dispatches around the nominal value (p̂gt) or around
the extremes (̂pgt + rgt and p̂gt + rgt), hence ISOs can
set α according to their preferences. Notice, however, that
α should be small (∼ 0.1), giving higher priority to the
nominal dispatch, since wind production is usually normal-
like distributed (most of the samples are around the nominal
value rather than on the extremes). SectionIII-B1 shows a
sensitivity analysis for different values ofα.

The day-ahead schedule costs counts the fixed production
cost cFgt (·) which is composed by the no-load, shutdown
and different startup costs, depending on how long the unit
has been offline [10]. The dispatch costs counts the variable
production costcVgt (·) that is calculated based on the units’
energy production, which can be easily obtained fromp̂gt [10].

III. N UMERICAL RESULTS

The performance of our proposed approach is evaluated us-
ing the modified IEEE 118-bus test system, available online at
www.iit.upcomillas.es/aramos/IEEE118_SUSD-Ramps.xls, for
a time span of 24 hours. The system has 118 buses; 186
transmission lines; 54 thermal units; 91 loads, with average
and maximum aggregated levels of 3991 MW and 5592 MW,
respectively; and three wind units, with aggregated average
and maximum production for the nominal wind case of 867
MW and 1333 MW, respectively. The power system data are
based on that in [2] and it was adapted to consider startup and
shutdown power trajectories. All tests were carried out using
CPLEX 12.6 [17] on an Intel-i7 3.4-GHz personal computer
with 16 GB of RAM memory. The problems are solved until
they hit a time limit of 7200 seconds or until they reach an
optimality tolerance of 0.05%.

This section first shows the procedure used to evaluate the
performance of the UC solutions. Then, SectionIII-B performs
sensitivity analysis of the proposed formulation in terms of the
objective weight and uncertainty range. Finally, SectionIII-C
compares the performance of the proposed approach with the
traditional deterministic and stochastic approaches.
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(d) Monte Carlo: 100 samples

Fig. 6: Latin hypercube sampling (LHS) vs. simple Monte Carlo simulation:
Uniform distribution fit in two dimensionsx, y and their resulting probability
densitiesf (x) , f (y).

A. Evaluating Approach

1) Scenario Generation:The scenarios are created assum-
ing that the wind production follows a multivariate normal
distribution with predicted valueW and volatility matrixΣ [4].
Monte Carlo simulation is one of the sampling strategies most
commonly used to create scenarios [1]. However, Monte Carlo
sampling requires a very large number of samples to explore
the whole area in the experimental region and to recreate the
input distributions. In addition, a problem of clustering arises
when a small number of samples are created. These problems
are illustrated in Figs.6b and6d.

To overcome these drawbacks, Latin Hypercube Sampling
(LHS) is used to generate scenarios for the uncertain wind
production. The idea in applying LHS is to optimally distribute
the samples to explore the whole area in the experimental
region, avoiding the creation of scenarios that are too sim-
ilar (clusters) [18]. Furthermore, LHS can recreate the input
distribution with a relatively small number of samples. Fig. 6
compares LHS with Monte Carlo sampling for a small (10) and
a large (100) number of samples in two dimensions. Note how
LHS better explore the experimental region and also presents
fewer clusters than Monte Carlo sampling.

2) Scheduling and Validation Stages:To compare the per-
formance of the different UC approaches, this paper makes a
clear difference between the scheduling stage and the valida-
tion stage. The computational experiments proceed as follows.

1) Scheduling stage: solve the different UC models and
obtain the hourly commitment solutions, using 20 wind
scenarios for each of the three wind units. Fig.7 shows
the aggregated wind production of these wind scenarios.
For this study case, the nominal profile of wind pro-
ductionWbt was computed as the middle value of the
power-capacity uncertainty range, i.e.,

(
W bt +W bt

)
/2.
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Fig. 7: Representation of wind uncertainty over time, scenarios and bounds

2) Out-of-sample validation stage: for each fixed UC solu-
tion, solve a 5-min economic dispatch problem repetit-
ively for a set of 200 new wind scenarios. Notice that
around the 20% of these out-of-sample scenarios fall
outside the uncertainty bounds shown in Fig.7.

The scheduling stage uses the 20 scheduling wind scenarios
(Fig. 7) to define the wind uncertainty ranges for power-
capacity

[
W bt,W bt

]
and ramp-capability

[
WR−

bt ,WR+
bt

]
,

which are needed by the proposed UC formulation to define
the power-capacity and ramp-capability reserve requirements,
respectively (as discussed in SectionII-A ):

W bt = sup
s

(Wsbt) ∀b ∈ BW, t (37)

W bt = inf
s
(Wsbt) ∀b ∈ BW, t (38)

WR+
bt = sup

s
(Wsbt −Wsb,t−1) ∀b ∈ BW, t (39)

WR−
bt = sup

s
(Wsb,t−1 −Wsbt) ∀b ∈ BW, t (40)

where sup (·) and inf (·) are the supremum and infimum
functions, respectively. The parameterWsbt is the wind power
[MW] in bus b at end of hourt for scenarios, which belong
to the set of the 20 wind scheduling scenarios.

In the 5-min economic dispatch, penalty costs for the viola-
tion of some constraints are introduced to mimic the high costs
due to corrective actions in real time operations. The penalty
costs are set to 10000 and 5000 $/MWh for demand-balance
and transmission-limits violations, respectively, as suggested
in [19] (similarly to [3], [4]). These penalty costs represent
the expensive real-time corrective actions that an ISO needs to
take in the event that the actual system condition significantly
deviates from the expected condition, such as dispatching fast-
start units, voltage reduction or load shedding. Notice that
these demand-balance and transmission-limits violationsare
only allowed in the 5-min economic dispatch (validation stage)
and not in the UC (scheduling stage) problems, allowing these
violations with high penalty costs also helps finding solutions
to infeasible dispatch problems.

The performance of the UC strategies are shown in eight
aspects, two related with the scheduling stage and six with the
validation stage. These aspects, presented in TablesI to III , are
described as follows. Scheduling stage: 1) the fixed production

Table I: SENSITIVITY OF OBJECTIVEWEIGHT α

α
Scheduling Validation: 5-min Economic Dispatch

Hourly Dispatch Costs [k$] Violations
UC [k$] # SU Average Std Worst # Sc # Tot MWh

0 52.026 14 771.115 14.351 814.471 2 2 0.038
0.1 51.986 14 770.823 14.365 814.223 2 2 0.038
0.2 51.949 14 770.970 14.348 814.087 2 2 0.048
0.3 51.986 14 770.806 14.364 814.206 2 2 0.038
0.4 51.961 14 770.928 14.392 814.201 2 2 0.038
0.5 51.351 13 771.642 14.361 814.667 2 2 0.038
0.6 51.259 13 771.822 14.408 815.037 0 0 0.000
0.7 50.446 14 772.659 14.325 815.602 1 1 0.004
0.8 50.623 14 772.657 14.378 816.045 5 5 0.108
0.9 50.435 14 772.725 14.327 815.951 5 5 0.108
1.0 49.824 13 773.503 14.355 816.718 5 5 0.108

costs described in SectionII-D (UC [k$]), and 2) the number of
startups (# SU). These two aspects indicate the commitment
decisions that were needed by each approach to prepare the
system to deal with the given wind uncertainty. Validation
stage: 3) the average dispatch costs (Average), indicates the
economic efficiency of the UC decision; 4) the volatility of
these costs (Std), represented by the standard deviation of
dispatch costs, which indicates the reliability of the real-time
dispatch operation under the UC decision; 5) the dispatch cost
of the worst-case scenario (Worst), indicates how robust the
UC decision is against the worst-case scenario (from the 200
out-of-sample scenarios); 6) number of scenarios where there
were violations in either demand-balance or transmission-
limits constraints (# Sc); 7) total number of these violations
(# Tot); and 8) total accumulated energy that could not be
accommodated, demand-balance violations (MWh). The last
three aspects also indicate how robust the UC decision is
against different wind scenarios.

B. Sensitivity Analysis

1) Changes of Objective Weightα: The performance of
the proposed approach is tested under differentα and the
results are shown in TableI. Notice that the performance
does not change considerably. The maximum values of the
Average, Std and Worst-case dispatch cost are 0.6% above
the minimum values. These small changes are because the
model guarantee feasibility through a set of hard constraints;
however, the results may change considerably if one relaxesthe
demand-balance and transmission constraints by introducing
penalty-cost violations (i.e., depending on the value ofα,
large violations may appear since their weigh in the objective
function can be insignificant, then not guaranteeing a feasible
deployment of reserves in real-time operation). Henceforth, α
is set to0.1.

2) Changes of Uncertainty Range:Table II shows the
results in the scheduling and validation stage for different
values of the uncertainty range, from 0 to 100%. The 100%
uncertainty range is defined by the bounds shown in Fig.7,
and the 0% is equivalent to a deterministic UC using only
the nominal wind case. These ranges were equally changed
to the power-capacity and ramp-capability ranges. It can be
clearly observed that the larger the considered uncertainty
range, the UC costs and number of startups increase because
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Table II: SENSITIVITY OF UNCERTAINTY RANGE

%
Scheduling Validation: 5-min Economic Dispatch

Hourly Dispatch Costs [k$] Violations
UC [k$] # SU Average Std Worst # Sc # Tot MWh

0 46.705 10 1067.017 575.205 5479.411 103 1744 5884.536
10 46.906 10 1018.959 505.127 5017.905 101 1492 4928.511
20 46.725 10 966.994 461.833 4797.448 87 1259 3883.190
30 47.443 11 877.291 337.356 3905.236 53 759 2102.645
40 47.941 12 825.176 228.394 3130.061 31 308 1052.421
50 47.973 12 795.862 134.644 2317.292 16 145 460.961
60 48.691 13 780.770 67.952 1617.704 11 77 165.247
70 51.583 13 772.493 26.906 1039.311 6 39 43.814
80 51.442 13 770.863 14.830 831.475 4 12 3.647
85 51.930 14 770.535 14.522 814.291 3 6 2.008
90 51.911 14 770.562 14.384 814.089 2 2 0.038
95 51.934 14 770.740 14.382 814.246 2 2 0.038
100 51.986 14 770.823 14.365 814.223 2 2 0.038

the UC solutions become more conservative. Consequently, the
dispatch costs and violations decreases.

Through different uncertainty ranges, there is a significant
reduction in the Average and Std dispatch costs. This signific-
ant reduction is closely related to the violations reduction and
its associated costs, which represent the expensive emergency
actions that the ISO has to take to maintain system reliability.

Notice that the uncertainty range of 85% presents the lowest
average dispatch costs. This indicates that the uncertainty range
can be slightly reduced without sacrificing the efficiency and
robustness of the UC solution. One can observe in the ranges
(85% and above) presenting few violations that considering
lower uncertainty levels leads to better economic benefit, but
worse risk performance, which is represented by the standard
deviation of the dispatch cost. Using this information, a proper
tradeoff can be made by decision makers.

Henceforth, the uncertainty range is set to 100%.

C. Comparing the Proposed Approach with the Traditional-
Deterministic and Stochastic Approaches

The proposed UC formulation (ResRPC), which includes
ramp-capability and power-capacity reserves, is comparedwith
the traditional deterministic-reserve modelling (DetRes) and
the stochastic (StchOpt) UC approaches. All three models are
based on the power-based UC proposed in [10].

To obtain the commitment strategies of all UC approaches,
the 20 wind scenarios shown in Fig.7 are used, as described
in the scheduling stage in SectionIII-A . These scenarios are
assumed to be the only information available for the scheduling
stage. Therefore, these data are used to describe the different
wind uncertainty representation required by the differentUC
approaches. The proposed approach ResRPC uses the nominal
wind production together with minimum and maximum bounds
of power-capacity and ramp-capability, which are obtained
from this set of scenarios [as previously defined by (37)-(40)].
The stochastic approach StchOpt uses all 20 scenarios. Finally,
the deterministic approach DetRes uses the nominal wind
production and two hourly reserves, upwards and downwards
which are defined as

∑
b

(
Wbt −W bt

)
and

∑
b

(
W bt −Wbt

)
,

respectively.
1) Reliability of Dispatch Operation:Table III compares

the performance of the different UC approaches. From the

Table III: BETWEEN DIFFERENT UC POLICIES UNDER THE 200 OUT-OF-
SAMPLE WIND SCENARIOS

Scheduling Validation: 5-min Economic Dispatch
Hourly Dispatch Costs [k$] Violations

UC [k$] # SU Average Std Worst # Sc # Tot MWh

ResRPC 51.986 14 770.823 14.365 814.223 2 2 0.038
StchOpt 54.765 12 808.971 200.096 2903.841 28 259 611.473
DetRes 55.492 16 857.199 279.813 3254.877 55 611 1793.881

scheduling stage, one can observe that DetRes commits the
largest quantity of resources, because this is the only approach
that cannot readjust (optimize) the given level of reservesby
considering wind curtailment. That is, the reserve requirements
for the deterministic approach results in a larger quantityof
committed resources. On the other hand, ResRPC presents
lower FxdCost than Stch, but ResRPC started two more units.
This difference is because ResRPC scheduled more flexible
units (smaller with higher ramps) which usually present lower
fixed costs but higher variable costs.

From the validation stage in TableIII , the following can be
observed:

1) The Average and Std dispatch costs of StchOpt are
around 6% and 40% lower than DetRes, respectively.
This clearly shows the advantages of the stochastic
strategy over the deterministic one, as expected.

2) Although DetRes committed the largest quantity of re-
sources, it is the least robust. This is mainly because
the deterministic approach only models the network
constraints for the nominal case and it cannot guarantee
that the committed reserves can be deployed. This is in
contrast to ResRPC and StchOpt, where generating units
are committed taking into account that power must be
delivered to specific places in the network where the
uncertainty appears.

3) The Average dispatch cost of StchOpt is around 5%
higher than ResRPC, and the Std for StchOpt is more
than an order of magnitude higher (13.9 times). Sim-
ilarly, the total quantity of violations and the energy
unbalance of StchOpt is more than two (130 times)
and four (16k times) orders of magnitude higher than
ResRPC, respectively.

In short, the proposed approach ResRPC presents a better
economic-benefit and risk performance than the deterministic
and stochastic approaches for this study case. Consequently,
ResRPC offers more robust commitment decisions which lead
to a better system reliability.

Although LHS is used to represent the space of scenarios
adequately, the performance of StchOpt may be improved
by introducing a larger quantity of scenarios in the schedul-
ing stage or by a better scenario sampling. To observe the
performance of ResRPC and DetRes compared with a “per-
fect” stochastic approach, the economic dispatch validation
is carried out using the same scenarios used by StchOpt in
the scheduling stage. TableIV shows the performance of the
different UC approaches under the 20 scheduling scenarios.
For this case, StchOpt presented the lowest Average dispatch
cost, around 0.3% lower than ResRPC, but the Std and the
Worst-case are higher than ResRPC. Notice that StchOpt
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Table IV: BETWEENDIFFERENTUC POLICIESUNDER THE20 SCHEDULING
WIND SCENARIOS

5-min Economic Dispatch Simulation
Dispatch Costs [k$] Violations

Average Std Worst # Sc # Tot MWh

ResRPC 770.863 12.360 795.588 1 1 0.002
StchOpt 768.793 21.888 848.723 2 12 5.729
DetRes 803.457 119.146 1263.678 3 36 71.670

Table V: PROBLEM SIZE AND COMPUTATIONAL BURDEN OF THE DIFFER-
ENT APPROACHES

Problem Size [#] Computational Burden

Constraints
Nonzero Continuous Binary CPU Nodes
elements variables variables Time [s] explored

ResRPC 36141 1074712 21096 6520 90.45 250
StchOpt 225141 5600307 169776 6376 867.88 819
DetRes 18093 315424 11016 6376 8.75 29

5-min
157594 15711648 276195 0 82 0dispatch

presented constraint violations in two scenarios even though
these scenarios were used in the scheduling stage. This is
because the scheduling stage considers a simplified hourly
piece-wise linear approximation of the 5-min smooth power
profile of the set of scenarios shown in Fig.7.

2) Computational Performance:TableV shows a compar-
ison of problem size and computational burden between the
different approaches. Notice that all three formulations have
almost the same quantity of binary variables, but ResRPC
has around 2.2% more than the others. This is due to the
modelling of the infimum function that ResRPC requires, see
SectionII-A .

When comparing the number of constraints, nonzero ele-
ments and continuous variables, ResRPC is around twice
the size of DetRes, and StchOpt is more than 12 and 6
times larger than DetRes and ResRPC, respectively. On the
other hand, the CPU time of ResRPC is around an order of
magnitude higher than that of DetRes, and one lower than that
of StchOpt. Finally, unlike DetRes and ResRPC, the problem
size and computational burden of StchOpt highly depends on
the quantity of scenarios that it considers.

Table V also shows the computational performance of the
5-min economic dispatch simulation used for the validation
stage. The 5-min optimal dispatch is an LP problem (0
binary variables), solved for the fixed hourly commitment UC
decisions. The dispatch problem is significantly larger than the
UC formulations because it is solved for 144 periods (5-min
time step for 24 hours); however, its computational burden is
low (average 82 seconds per scenario) because the problem is
LP.

IV. CONCLUSIONS

This paper presented a deterministic power-based network-
constrained UC formulation as an alternative to the traditional
deterministic UC under wind generation uncertainty. The for-
mulation draws a clear distinction between power-capacity
and ramp-capability reserves to deal with wind production
uncertainty. The model is formulated as a power-based UC,

which schedules power-trajectories instead of the traditional
energy-blocks and takes into account the inherent startup and
shutdown power trajectories of thermal units. The formulation
is compact since it only needs two reserve requirements and
therefore keeps the advantages of deterministic UCs, unlike
the stochastic approach for which problem size depends on the
quantity of scenarios. Study cases showed that the proposed
formulation significantly decreases operation costs compared
to traditional deterministic and stochastic UC formulations
while simultaneously lowering the computational burden. The
operation cost comparison was made through 5-min economic
dispatch simulation under hundreds of out-of-sample wind
generation scenarios. As future studies, the performance of the
proposed formulation should be compared with the traditional
stepwise energy-block formulations under both stochasticand
robust approaches for different power systems.

APPENDIX

A. MIP Equivalence for The Infimum Function

Inequality (41) seeksx to be greater than or equal to the
minimum value between the parameterA and the variabley:

x ≥ inf (A, y) . (41)

An MIP equivalent of this non-linear function is:

x ≥ A− a+ (42)

a+ − a− = A− y (43)

a+ ≤ Aδ (44)

a− ≤ B (1− δ) (45)

δ ∈ {0, 1} , a+, a− ≥ 0 (46)

where (43)-(46) imposea+ = A− y if and only if y ≤ A and
0 otherwise. Variablesa+, a− and δ are auxiliary, andB is
a parameter representing the maximum possible value of the
differenceA − y. Therefore, the value ofB for the infimum
functions in (14) and (15) are set asW b,t−1 + Wbt − W̃R−

bt

andW bt +Wb,t−1 − W̃R+
bt , respectively.

B. Ramping Constraints on Envelopes

The following inequality is obtained by reorganizing the
ramp-up constraints (20) and (22):

r+gt − r+g,t−1 ≤ rR+
gt ≤RUgugt +

(
SUg − P g

)
vg,t+1

− pgt + pg,t−1 ∀g, t (47)

where its left side together with its right side ensure
(
pgt + r+gt

)
−
(
pg,t−1 + r+g,t−1

)
≤ RUgugt

+
(
SUg − P g

)
vg,t+1 ∀g, t (48)

which imposes the ramp-up on the upper envelope,A → B in
Fig. 4.

Likewise, by reorganizing the ramp-down constraints (21)
and (22), the following inequalities are obtained:

−r+gt + r+g,t−1 ≤ rR−
gt ≤RDgugt +

(
SDg − P g

)
zgt

+ pgt − pg,t−1 ∀g, t (49)
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where its left side together with its right side ensure

−
(
pgt + r+gt

)
+
(
pg,t−1 + r+g,t−1

)
≤ RDgugt

+
(
SDg − P g

)
zgt ∀g, t (50)

which imposes the ramp-down constraint on the upper envel-
ope,A → B in Fig. 4.

Similarly, (20) and (21) together with (23) guarantee the
ramp-up and -down constraints on the lower envelope,C → D
in Fig. 4.
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