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Abstract 

ABSTRACT: As the main way for the long-distance transportation of refined products, multi-

products pipelines are of vital importance to the regional energy security. The supply reliability 

evaluation of multi-product pipeline systems can improve the effective response to unexpected 

disruptions and guarantee the reliable oil supply. Based on reliability theory and pipeline 

scheduling method, an integrated supply reliability evaluation methodology for multi-product 

pipeline systems is proposed in this paper and the pumps failure, of which influence is the most 

complex, is focused on. In the methodology, the discrete-time Markov process is adopted to 

describe the stochastic failure and the Monte Carlo method is used to simulate the system states 

transition. With the pipeline flowrate upper limits under various pumps failure scenarios optimized 

in advance, the maximum supply capacity to the downstream markets in each trial is calculated by 

the pipeline scheduling model. Three indicators are also developed to analyze the pipeline supply 

reliability from the holistic and individual perspectives. At last, the methodology application is 

performed on a real-world multi-product pipeline system in China and the supply reliability is 

analyzed in detail according to the simulation results. It is proved to provide a practical method for 

the emergency response decision-making and loss prevention. 

Keywords: Multi-product Pipeline; Supply Reliability Analysis; Pumps Failure; Stochastic process 

simulation; Pipeline scheduling method; Evaluation indicators 

1. Introduction 

1.1. Background 

As a strategic energy influencing the national economy and society stability, refined products 

account for 12.9% of China's total energy consumption and the demand is increasing a rate of 6.3% 

per year [1]. Among all the ways for refined products transportation, pipeline plays the most 

significant role. Its delivery amount takes up 45% of the total transportation amount. Therefore, 

multi-product pipelines have a great importance on the safe and reliable oil supply [2, 3]. In recent 

years, multi-product pipelines are constructed rapidly. According to the Medium and Long-term Oil 

& Gas Pipeline Networks Planning [4], the total length of China’s multi-product pipelines will reach 

40000 km and the basic access to cities with more than 1 million population will be realized. In this 

process, the pipeline system presents many new features such as large market span, complex 

supply relations, decentralized management, etc. This puts forward higher requirements for 

centralized control, safe operation, and equipment maintenance capability [5, 6]. Once the supply 

shortage or interruption is led by pipeline accidents or unbalanced regional resource allocation, it 
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will have a major impact on economic development and social stability [7]. In this way, the supply 

reliability analysis of the multi-product pipeline system is of vital importance to ensure the pipeline 

operation security, reliable oil supply, and improve the management level of regional energy supply 

chain [8, 9]. Besides, the theoretical guidance and decision-making means under emergency 

conditions can be provided for pipeline operators, whose most important responsibility is to supply 

the required refined products to customers in time. 

The earliest concept of reliability came from the American Aviation Commission in 1939. The 

definition of reliability used today was put forward in 1952, referring to the ability or probability of 

components, products, and systems to perform specified functions under certain conditions in a 

certain period of time [10]. The primary function of a multi-product pipeline is to deliver enough 

refined products to the local markets safely [11]. In this way, as the supply-side of downstream 

customers, the supply reliability of multi-product pipelines can be defined as the probability to 

satisfy the demands of delivery stations for various refined products punctually. 

1.2. Related work 

The multi-product pipeline system is composed of a series of components such as pipelines, 

pumps, oil tanks, etc. The normal operation of each component plays an important role in realizing 

the system’s function. Many researches have been conducted on these equipment units’ 

mechanical reliability evaluation, which is to calculate the indicators such as availability, failure 

probability, etc. [12-14]. This is the basis for the supply reliability analysis of multi-product pipeline 

systems. For the failure probability prediction of underground pipelines under rare failure events, 

Kong et al. [15] proposed a novel framework to implement the Subset Simulation and compared 

with Monte Carlo simulation (MCS) to prove the efficiency. Based on the corrosion rate, structural 

integrity analysis results, and the number of defects and failure data, Dundulis et al. [16] put 

forward an integrated framework for the failure probability estimation of natural gas pipelines. 

Abyani et al. [17] conducted a comparative study on the reliability analysis of internally corroded 

pipelines using MCS and Latin Hypercube Sampling (LHS) methods. For the single corrosion defect, 

three failure mechanisms were considered, while for the multiple corrosion defects, only local 

burst was studied. Aiming at the mechanical reliability analysis of centrifugal pumps with small 

maintenance data, Zhu et al. [18] used the least square method and MCS to estimate the Weibull 

distribution parameters and calculated the reliability index and operation rules. Ferreira et al. [19] 

established a framework for the preliminary analysis of equipment failure data and applied it to 

petroleum refinery pumps to estimate the failure mode and plan the maintenance management. 

Due to the lack of basic events failure data and other uncertainties, Shi et al. [20] combined the 

traditional fault tree analysis with the improved analysis hierarchy process and fuzzy set theory to 

evaluate the fire and explosion probability of oil tanks. For the reliable and accurate calculation of 

the likelihood of storage tank accidents, Guo et al. [21] proposed an improved similarity 

aggregation method based Fuzzy Bayesian network model, which could determine the proportion 

of the main influencing factors and the key causes of the accidents. 

As a unified system that has large geographical extension, multi-product pipelines usually 

operate complicatedly and will be influenced by multiple uncertainties, including changeable 

market demand, oil supply fluctuations, unexpected equipment breakdowns, etc [22]. To deliver 

various refined products to different downstream markets, the multi-batch sequential 

transportation process is adopted and multiple stations for injection and delivery are set along the 

pipeline. At the same time, because of the time-varying demands and frequent injection/delivery 
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operations, the pipeline hydraulics varies complicatedly during operation [23]. In this way, the 

accurate calculation of pipeline supply capacity, which is essential to perform the supply reliability 

analysis, must depend on the pipeline scheduling. It is an operational research issue and 

determines the injection/delivery flowrate, pumps start/stop time, and supplied amount to 

delivery stations in a pipeline transportation task [24]. As a classic topic in the research of multi-

product pipelines, considerable efforts have been made based on the discrete/continuous time 

representation, for different objectives including operation costs, backorder demands, transport 

time, etc [25-27]. 

Because of the above mentioned factors, there are few articles for the supply reliability 

analysis of multi-product pipelines to the best of our knowledge. Most previous related studies 

have focused on natural gas pipelines [28, 29], water distribution systems (WDNs) [30, 31], 

industrial plants [32, 33], etc. Combining graph theory, hydro-thermal simulation, and stochastic 

process simulation methods, Su et al. [7] proposed a systematic comprehensive methodology for 

the supply reliability analysis of natural gas pipeline networks, and established an evaluation model 

from different perspectives. Based on reliability theory and unsteady flow simulation, Yu et al. [34] 

developed an integrated approach to quantify the supply capacity of natural gas pipelines, 

considering the influence of line pack and spare equipment. Next, Yu et al. [35] improved the 

proposed approach by considering the pipeline network’s dynamic behavior and the demand 

uncertainty in a Monte Carlo trial. To enhance the computation efficiency, Chen et al. [36] used LHS 

and Cholesky decomposition methods to produce representative demand scenarios and came up 

with four heuristic regulation means to improve the natural gas pipeline supply reliability. Jensen 

and Jerez [37] used the Markov chain Monte Carlo (MCMC) method for the hydraulic reliability 

evaluation of large scale WDNs under uncertainties and the applicability was demonstrated on an 

actual network containing thousands of nodes. Based on the probability density evolution method, 

Liu et al. [38] put forward a lifecycle operational reliability assessment framework for WDNs, in 

which the time-dependent pipe roughness model is included to reflect the pipeline degradation 

process in the lifecycle. Yuyama et al. [39] established a probability model to calculate the accident 

probability of thermal power plants and used the Bootstrap simulation to estimate the potential 

risk of power supply shortage. Sabouhi et al. [40] proposed reliability evaluation models for gas 

and steam turbine power plants and identified the critical components through the proposed 

reliability-oriented sensitivity indexes to determine the efficient maintenance strategies. 

Concluded from the above, the uniqueness and complexity of multi-product pipelines bring 

difficulties for the quantitative analysis of supply reliability, and thus, few efforts have been made. 

Even though the researches on other large-scale complex systems could be used for reference, the 

technical and operational process and the components are rather different. Therefore, aiming at 

this issue, this paper proposes an integrated methodology consisting of four modules: supply 

reliability indicators establishment, equipment failure analysis, stochastic process simulation, and 

supply capacity calculation. The stochastic failure simulation and the pipeline scheduling model are 

first coupled together to achieve the supply reliability evaluation of multi-product pipeline systems. 

It could also be beneficial for other large-scale complex systems. 

1.3. Contributions of this work 

The contributions of this paper are listed as follows: 

(1) An integrated methodology for the supply reliability analysis of multi-product pipeline systems 

under pumps failure is first proposed. 
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(2) The stochastic pumps failure is described by the discrete-time Markov process and the system 

states transition is simulated by the Monte Carlo method. The multi-product pipeline hydraulic and 

scheduling models are adopted to calculate the pipeline supply capacity. 

(3) Three indicators are put forward for the supply reliability evaluation from the holistic and 

individual perspectives. 

(4) The methodology is successfully applied to a real-world multi-product pipeline in China and the 

supply reliability is analyzed in detail. 

1.4. Paper organization 

The rest of the paper is organized as follows. Section 2 first gives the methodology framework, 

and then elaborates the composition, upstream/downstream link, and operation processes of a 

multi-product pipeline system. Three indicators are also put forward to quantify the supply 

reliability from the holistic and individual perspectives. In Section 3, the pumps failure and repair 

probability are introduced and the stochastic process of pumps failure during the pipeline 

operation is simulated. Section 4 gives a brief introduction on the hydraulic and scheduling models 

of multi-product pipelines and presents the compact forms. The specific objective functions and 

constraints are shown in Appendixes A and B. In Section 5, the application of the proposed 

methodology is performed on an actual multi-product pipeline in China. Conclusions and future 

works are provided in Section 6. 

2. Methodology framework and pipeline supply reliability indicators 

2.1. Methodology framework 

The overall framework of the proposed methodology is shown in Fig.1. It is divided into four 

parts: equipment failure analysis, stochastic process simulation, pipeline supply capacity 

calculation, and supply reliability evaluation. The previous parts are the bases of the later parts. 

Namely, the pumps failure is first analyzed and the stochastic process is simulated (given in Section 

3). Then, based on the pipeline scheduling model introduced in Section 4, the maximum supply 

capacity of the pipeline under the corresponding failure condition are obtained. According to the 

statistics of the calculated pipeline supply capacity, the holistic and individual supply reliability of 

the pipeline can be evaluated systematically based on the indicators proposed in Section 2.2. 

As mentioned, the multi-product pipeline system contains many types of equipment (i.e., 

pumps, oil tanks, pipelines, etc.). If some of them are under failure conditions, it will have a great 

impact on the completion of the refined products delivery task for the entire pipeline system. 

Among all of these equipment, the effect of pumps failure on pipeline transportation is the most 

complex, since it will result in part of the pipeline transportation capacity loss, which involves the 

pipeline hydraulics and is hard to be calculated directly. So the supply reliability analysis of multi-

product pipeline systems under pumps failure is first focused in this paper because of its complexity, 

but the proposed framework is not limited to pumps failure. It is general and can be applied to 

other equipment failure. When other equipment failure needs to be considered, the failure analysis 

of the corresponding equipment can be added to the equipment failure analysis part. After the 

failure rate is obtained, the stochastic process is simulated and the supply capacity under 

corresponding failure scenarios can be calculated. With the solving results, the established 

indicators are used for the reliability analysis. Meanwhile, the framework could also be used for 

reference in the reliability evaluation of other large-scale complex systems by changing the multi-

product pipeline scheduling model used in this paper to the mathematical models applicable to 
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those systems. Since the commercial software or heuristic rules are often adopted to obtain the 

results of system performance, the proposed methodology, in which the mathematical model is 

adopted, may provide new methods for these systems. Even though the technical process of these 

systems are different, the framework structure could be beneficial. 

Pumps failure/
repair rate 

Simultaion of system state stochastic transition 

Stochastic process 
simulation
(Section 3)

Supply Reliability 
evaluation

(Section 2.2)

Monte Carlo 
method

Pipeline supply 
capacity 

calculation  
(Section 4)

Markov process

Pipeline flowrate upper 
limits calculation

Different pumps failure 
processes

Establish the individual and holistic supply reliability 
indicators

Evaluate the supply reliability of multi-
product pipeline quantitatively 

Solve the pipeline maximum  supply capacity

Pipeline scheduling model 

 

Fig.1 The framework of the proposed methodology 

2.2. Supply reliability indicators of multi-product pipeline 

As shown in Fig. 2, a representative multi-product pipeline system consists of the initial 

(injection) station (i.e., IS), delivery stations (i.e., DSs), pump stations (i.e., PSs), and pipeline 

segments. Since refined products are mainly from refineries, ports, and large-scale depots, the 

initial station is upstream connected with these sources directly. Different kinds of refined products, 

which are divided into several batches in advance, are injected from the initial station into the 

pipeline sequentially and distributed to the delivery stations. The delivery stations are usually 

situated near the local downstream markets. This process is called the primary distribution, in 

which the pipeline is the main transportation way, while other modes (e.g., railway, barge and truck) 

serve as the supplements. To offset the hydraulic loss of refined products flowing in the pipeline, 

multiple pump stations are constructed along the pipeline. In a pump station, the pumps with 

different flowrate ranges and pumping heads are set up serially. According to different hydraulic 

conditions of the pipeline, different pumps combination schemes will be selected to ensure the 

safe and economic operation. Since different kinds of refined products must not be mixed, at least 

one dedicated oil tank should be available for the storage of each kind of refined product at the 
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each delivery/injection station. Meanwhile, it can be seen from Fig. 2 that the pipeline diameter 

decreases gradually. This is because some of the fluid is delivered midway and the pipeline flowrate 

will reduce. 

 

Fig.2 Schematic diagram of the multi-product pipeline system 

The supply reliability of multi-product pipeline systems is quantified using three indicators, 

namely, DSi , RSo
, and PS . DSi  focuses on the demand satisfaction degree of delivery station 

i  and can be calculated as the ratio of the actual delivered volume to its demanding volume (i.e., 

Equation (1)). RSo
 represents the completion of the delivery task for a certain kind of refined 

product o . As shown in Equation (2), it is equal to the ratio of the actual delivered volume to the 

total demanding volume of this kind of refined product. The above two indicators can be regarded 

as the individual perspective for evaluating the supply reliability, that is, to pay attention to the 

supply status of a single station and one kind of refined products. At the same time, from the 

holistic perspective, the pipeline’s capacity to achieve its overall function (i.e., the safe and reliable 

delivery of refined products to the downstream markets) in the mission time is also essential for 

the quantitative supply reliability analysis. It can be expressed as the ratio of total transported 

volume to total demanding volume (shown in Equation (3)). 
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where 
DE ,i oV  represents the demanding volume of delivery station i  for refined product o  and

AC ,i oV  is the actual delivered volume. 

Different than the natural gas pipeline network and water distribution system, the multi-

product pipeline is not directly connected with customers and the supply flowrate is not strictly 

required. In this way, the indicator which describes the shortage duration, is not that meaningful 

to the multi-product pipeline supply reliability analysis. On the other hand, as a unique feature of 

multi-product pipelines, multiple kinds of refined products are transported simultaneously. Due to 

the different physical properties and the various demands, the satisfaction degree of each kind of 

refined product may be different in the case of pumps failure. Therefore, for a more comprehensive 
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analysis of the multi-product pipeline supply reliability, the indicator RSo
, which has never been 

taken into account in previous related studies, must be presented in this paper. 

3. Stochastic process of failure conditions 

3.1. Pumps failure analysis 

The unit failure rate can be estimated by historical data statistics and failure mechanism 

modelling methods. Historical data statistics is to obtain failure data by recording the equipment's 

historical failure time, numbers, causes, etc. or conducting reliability tests, and then establish 

historical failure databases. Based on the unit structure and external environment, failure 

mechanism modelling is to obtain the limit state function by setting up the strength and load model 

for the equipment and predict its performance degradation trend [41]. Compared with pipeline 

segments, the failure rate of equipment units in the multi-product pipeline system is relatively 

stable during operation and the historical maintenance record and failure data are easy to obtain. 

In this way, to highlight the research focus of this paper, the pumps failure rate estimation is 

implemented by the historical data statistics method. 

The failure rate (usually denoted by  ) refers to the frequency of a system or unit failure [42]. 

For the pumps which is repairable after failure, as shown in Equation (4), the failure rate can be 

obtained from the Mean time between failures (MTBF), if it is assumed constant for a period of 

time (often used for complex units / systems). 

1

MTBF
 =                  (4) 

In this paper, the pump is considered to have only two states: normal running and failure. The 

degradation state, in which partial function is retained, is not taken into account. The 

normal/interruption status of all pumps in the pipeline system constitutes a scenario. Under 

different scenarios, the pumping capacity varies a lot. The reparability of pumps is also considered 

in this paper. After a pump fails at a certain time, it may be restored and put back into service in 

the latter pipeline operation. The repair rate   is equal to the reciprocal of the Mean time to 

repair (MTTR), if the repair time is exponentially distributed. 

1
=

MTTR
                  (5) 

3.2. Stochastic process simulation 

A multi-product pipeline system includes multiple pumps locating at different stations. The 

stochastic states transition of these components leads to the complex operation conditions 

changes of the entire system. To describe the stochastic process of system evolution 

mathematically, Markov process is adopted. The operation state of the pipeline system in the next 

time step is determined only by the current state and is independent of the previous transition 

process, which conforms to the basic hypothesis of Markov process. Since the stochastic process 

can be observed both in discrete and continuous time, Markov process is divided into two types: 

discrete and continuous time [43]. This is consistent with the time representation methods of the 

multi-product pipeline supply capacity calculation model. Considering that the model is based on 

the discrete-time representation, the stochastic transition of the system’s operation states is also 

described by the discrete-time Markov process (i.e., Markov chain), so that the pumps 

failure/repair conditions during pipeline operation can be directly substituted into the model to 

obtain the supply capacity. 
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The transition probability is constant and the state transition process is the homogeneous 

Markov chain. 
ijp   (i.e., Equation (6)) represents the single-step transition probability of 

homogeneous Markov chain, namely, the probability that the system transfers from state i  at 

time step n   to state j   at time step 1n +   [43]. The schematic diagram of state transition is 

shown in Fig.3. 

( ) ( )1ijp P X n j X n i = + = =               (6) 

n n+1

i j

Δt

 

Fig.3 Schematic diagram of the system states transition 

Considering all possible states N  of the system, the state transition probabilities in a time 

step can be written into a ( )N N  matrix A , which is shown in Equation (7). It has two properties 

(i.e., Equation (8) and (9)). 

11 12 1

21 22 2

1 2

1 2

1

2

N

N

N N NN

Ni j

p p p

A p p p

p p pN

 
 

=  
 
 
 

             (7) 
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1

1
N
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j

p
=
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As mentioned above, one pump has two states, that is, normal running and failure. The state 

transition of one pump can be displayed as Fig. 4. The system operation state is composed of the 

states of each pump, and thus, the system states transition is more complicated. To simulate the 

stochastic process of the system states transition, which is described as a Markov chain, Monte 

Carlo simulation is employed [44]. The detailed steps are stated as bellow and the flowchart is 

shown in Fig. 5. As show in Equation (10), the stopping criterion of Monte Carlo simulation can be 

determined based on the coefficient of variation of the reliability indicators [45-47]. 

I

I

S

E
                 1,2, ,i N (10) 

where IE  refers to the estimate of the indicator’s expected value; IS  represents the standard 

deviation of the estimate;   is the coefficient of variation (stopping criterion). 
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Normal Failure

λΔt

µΔt

1-µΔt1-λΔt  

Fig.4 Schematic diagram of the pumps state transition 

The simulation steps are as follows: 

(1) Set time horizon T , time step t , and the total number of Monte Carlo trials 
MN . 

(2) Set the system initial state, in which all pumps are running normally. 

(3) Simulate the stochastic transition of the system operation state in the mission time: according 

to the system state at time ( )1n t−    and the transition probability matrix A  , sample the 

system state at time n t  repeatedly until n t T = . Integrate the sampling results of all time 

steps to form a system failure scenario. 

(4) Based on the failure scenario, obtain the maximum supply capacity of the pipeline using the 

established model presented in Section 4. 

(5) Calculate the pipeline supply reliability indicators according to the model solving results. 

(6) Repeat steps (2) ~ (4) for 
MN  times and evaluate the supply reliability of the multi-product 

pipeline system quantitatively according to the simulation results. 
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Fig.5 Flow chart for the detailed steps of Monte Carlo simulation 

4. Multi-product pipeline supply capacity calculation model 

In this section, to calculate the maximum supply capacity of the multi-product pipeline under 

pumps failure conditions, a pipeline scheduling model is established, taking the minimum deviation 

between actual delivery and demand as the objective function. Due to the low solving efficiency 

of the model considering the hydraulic related constraints directly, two mixed integer linear 

programming (MILP) models are proposed. The first one is to calculate the maximum allowed 

pipeline flowrate under different pumps failure conditions. As the main power equipment, when 

part of pumps fail, the provided energy will be reduced and the normal flowrate upper limit will 

also be reduced. If the pipeline still operates at the original flowrate, the refined products will not 

reach the latter stations and the underpressure accidents may be led. In this way, the flowrate 

upper limits for each pumps failure scenario should be optimized in advance. The pressure and 

pump-related constraints of the pipeline are also addressed in the first model. Based on the solving 
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results of the first model, the second model is adopted to calculate the actual maximum supply to 

downstream delivery stations after the stochastic process of pumps failure is simulated in each 

Monte Carlo trial. This model needs to deal with other actual processing constraints, such as batch 

moving, injection/delivery, etc., to ensure the pipeline operation safety and refined products 

quality. The mathematical formulation of the two models are given in Appendixes A and B 

respectively. The compact forms are shown as follows: 

( )

( )

( )

P H
1 P H

, ,

P P

P P H

min , ,

s.t.  0

      , , 0

Q
Q

v c b

Q

f v c b

v

v c b





=



                 (11) 

where 
1f   represents the objective function of the first model, namely, the maximum pipeline 

flowrate upper limits; 
Pv  is the vector of pressure variables; 

Qc  is the vector of flowrate upper 

limits (variables in the first model and parameters in the second model); 
Hb  is the vector of binary 

variables related to hydraulic constraints; 
P   refers to the equality hydraulic constraints (i.e., 

Equations (A.2)-(A.3), (A.7)), while 
P   represents the inequality hydraulic constraints (i.e., 

Equations (A.4)-(A.6), (A.8)-(A.9)). 
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               (12) 

where 2f  is the objective function of the second model, namely, the maximum supply capacity of 

the pipeline (the minimum deviation between actual supply and demand ); Tc  is the vector of 

time parameters; 
Qv   is the vector of flowrate variables; 

Av   is the vector of injection/delivery 

volume in an oil delivery task; Cv  is the vector of batch volume coordinates, which is used for the 

tracking of batch locations; Sb  is the vector of binary variables related to pipeline scheduling, e.g. 

whether a station is receiving a kind of refined product, whether a batch is flowing through a 

station and so on; 
Q  represents the equality flowrate constraints (i.e., Equations (B.3), (B.23), 

(B.26)), while 
Q  indicates the inequality flowrate constraints (i.e., Equations (B.2), (B.4)-(B.5), 

(B.19)-(B.20), (B.24)-(B.25)); C  represents the inequality constraints for the calculation of batch 

volume coordinates (i.e., Equations (B.7), (B.11), (B.16)-(B.18)); B   refers to the equality 

constraints for the logical relationships between binary variables (i.e., Equations (B.12)-(B.15), 

(B.21)), while B  represents the inequality constraints for the logical relationships between binary 

variables (i.e., Equations (B.6), (B.8)-(B.10), (B.22)). 

Since the above two models are both MILP models, the existing commercial solvers based on 

branch and bound algorithm can be adopted to get the solutions efficiently. In this paper, MATLAB 

R2015a is used to implement the model programming and GUROBI 8.1.0 is employed as the MILP 
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solver 

5. Results and discussion 

5.1. Pipeline basic data 

The proposed methodology for the supply reliability analysis of multi-product pipelines is 

applied on a real case in China. All input parameters are from the on-site oil company and pipeline 

operators. The pipeline is 375.5 km with 4 delivery stations (DS1-DS4) and 1 injection station (IS) 

in total. The injection station is also the initial station and connects with the upstream refinery 

directly. The delivery stations are distributed along the pipeline and near the downstream markets. 

The basic parameters of the pipeline are shown in Table 1. Three kinds of refined products (92# 

gasoline, 95# gasoline and 0# diesel) are transported sequentially in batches. The density and 

viscosity are shown in Table 2. Stations IS and DS1 are pump stations (PS1 and PS2). The pump 

parameters are shown in Table 3. There is one standby pump in the two pump stations respectively. 

If some of the pumps fail, the standby units can be used for emergency. The operational parameters 

(i.e., flowrate and pressure limits) of each station are given in Table 4. Taking a delivery task in 

October 2019 as the application case, the demand of each delivery station is shown in Table 5. 

Compared with 95# gasoline, the market demand for 92# gasoline and 0# diesel are higher. 

Meanwhile, DS1 and DS4 require more refined products than DS2 and DS3. Table 6 displays the 

injection sequence and volume of each batch. Since the physical properties of 95# gasoline are 

very different than 0# diesel, more mixed oil will be generated if they are next to each other. In this 

way, 92# gasoline is divided into two batches to prevent 95# gasoline from being seriously 

contaminated. Batch BA1 refers to the existed oil in the pipeline before the operation, and thus, its 

injection volume is 0. According to the historical maintenance and failure record of the pipeline 

pumps in 2014-2019, the failure and repair probability of a pump is determined as 1.7×10-4/h and 

2.1 ×10-2/h respectively. The convergence criterion is set to 0.01, and 100000 Monte Carlo trials 

are conducted accordingly to calculate the pipeline supply capacity and assess the supply reliability 

under various pumps failure conditions. 

Table 1. Pipeline basic parameters 

Pipeline segment Length(km) Inner diameter(mm) Terminal station altitude(m) 

IS-DS1 130.4 492.2 7 

DS1-DS2 139.5 492.2 111 

DS2-DS3 66.9 441.2 53 

DS3-DS4 38.7 441.2 51 

Table 2. Physical properties of refined products 

Refined products Density(kg/m3) Kinematic viscosity (×10-6m2/s) 

0# diesel 845 6.11 

92# gasoline 740 2.05 

95# gasoline 750 1.07 

Table 3. Pump parameters 

Pump station Pump Pumping head parameters(m) 

PS1 

P1-1 330 

P1-2 330 

P1-3 160 
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P1-S 160 

PS2 

P2-1 360 

P2-2 360 

P2-3 180 

P2-S 180 

Table 4. Flowrate and pressure limits of each station 

Station 
Injection/delivery 

upper limits (m3/h) 

Injection/delivery lower 

limits (m3/h) 

Inlet pressure 

lower limits 

(MPa) 

Outlet pressure 

upper limits 

(MPa) 

IS 1100 300 / 7.0 

DS1 950 100 0.5 7.0 

DS2 600 100 0.6 7.0 

DS3 600 0 0.1 7.0 

DS4 600 0 0.1 / 

Table 5. Oil demands of delivery stations 

Delivery station 0# diesel (tonne) 92# gasoline (tonne) 95# gasoline (tonne) 

DS1 21000 16000 8000 

DS2 11500 13000 7000 

DS3 18500 16000 4000 

DS4 10000 13000 6000 

Table 6. Injection sequence and amount of each batch 

Batch number Injection amount (tonne)  Oil type 

BA1 0 0# diesel 

BA2 25000 92# gasoline 

BA3 25000 95# gasoline 

BA4 33000 92# gasoline 

BA5 61000 0# diesel 

5.2. Case study 

5.2.1. Flowrate upper limits calculation 

According to the MILP model shown in Appendix A, the pipeline flowrate upper limits under 

various pumps failure scenarios can be calculated in advance. The number of flowrate upper limits 

set 
maxp  is valued as 3 and the maximum design flowrate of the pipeline is set as 1100m3/h. Since 

each pump station is equipped with a stand-by pump, of which pumping head is the same as that 

of 3# pump, the scenario where only 3# pump fails can be regarded as the normal running state. 

In this way, a pump station has five states, as shown in Table 7. The maximum provided pressure 

of each pump station under different states is also given. The pipeline has two pump stations, and 

the failure condition of the pipeline is the combination of PS1 and PS2. Therefore, the pipeline 

system has 25 states in total. Considering the pressure limits of the pipeline, the flowrate upper 

limits for all possible states are solved and the main results are shown in Table 8. 

Table 7. The possible states of a pump station 

State S1 S2 S3 S4 S5 

Pumps failure condition Normal 1# or 2# 1#,3# or 2#,3# 1# and 2# 1#,2#, and 3# 
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pump fails pumps fail pumps fail pumps fail 

The maximum provided 

pressure of P1 and P2 

(m) 

820/900 650/720 490/540 320/360 160/180 

Table 8. Pipeline flowrate upper limits under the main states 

State P 
Flowrate upper limits (m3/h) 

IS-DS1 DS1-DS2 DS2-DS3 DS3-DS4 

1 (S1,S2) 

1 1079 816 816 816 

2 1079 816 816 816 

3 1100 813 800 800 

2 (S2,S1) 

1 904 816 816 816 

2 940 800 800 800 

3 1085 758 700 700 

3 (S1,S3) 

1 900 813 813 813 

2 929 800 800 800 

3 1100 728 700 700 

4 (S1,S4) 

1 800 765 765 765 

2 900 720 720 720 

3 1000 700 643 643 

5 (S2,S2) 

1 904 816 816 816 

2 940 800 800 800 

3 1085 758 700 700 

6 (S3,S1)  

1 800 781 781 781 

2 900 736 736 736 

3 922 758 700 700 

7 (S4,S1)  

1 720 720 720 720 

2 720 720 720 720 

3 720 720 720 720 

5.2.2. Assessment results of multi-product pipeline supply reliability 

The stochastic process of pumps failure is simulated 105 times by the Monte Carlo method 

described in Section 3. Based on the calculated flowrate upper limits, the maximum supply capacity 

as well as the corresponding scheduling plan of the pipeline in each trial can be obtained by the 

mathematical model presented in Appendix B. With the solving results, the pipeline supply 

reliability indicators are worked out. The total calculation time is 11.85h. The coefficients of 

variation range from 0.0032( 1RS  )to 0.0070( 4DS  ). The statistics of pipeline supply and delivery 

stations demand satisfaction are displayed in Table 9. Tables 10, 12, and 13 show the minimum and 

average supply capacity and the average supply degree from the holistic and individual 

perspectives. The minimum and average supplied amount and the average demand satisfaction 

degree of each refined product at each delivery station are shown in Fig.6 and Fig. 7 respectively. 

To illustrate the pipeline supply reliability in more detail, the cumulative distribution functions (CDF) 

of the proposed three indicators are shown in Fig. 8 and Fig. 9. 

Table 9. Statistics of the pipeline supply and the delivery stations demand satisfaction 

The holistic supply and individual Frequency 
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demand satisfaction degree PS  1DS  
2DS  

3DS  
4DS  

1 98759 99466 99428 99449 99168 

[0.99,1) 227 234 179 245 100 

[0.98,0.99) 974 100 140 86 18 

[0.97,0.98) 5 61 93 88 105 

[0.96,0.97) 18 52 6 11 69 

[0.95,0.96) 1 46 53 21 9 

[0.94,0.95) 10 35 14 30 137 

[0.93,0.94) 6 3 15 65 36 

[0.92,0.93) / / 69 1 203 

[0.91,0.92) / 1 1 1 127 

[0.90,0.91) / 1 1 / 2 

[0.80,0.90) / 1 1 3 20 

[0.70,0.80) / / / / 3 

[0.60,0.70) / / / / 3 

As shown in Table 9, the holistic supply and individual demand satisfaction degree (i.e., PS  

and DSi ) are divided into 14 intervals. The lowest interval reaches 0.6-0.7 and 
4DS  falls into this 

interval 3 times. Since most supply and demand satisfaction degrees are concentrated between 0.9 

and 1, the range is divided more densely to display the statistics more clearly. For the holistic supply 

degree PS , it is equal to 1 more than 98000 times, which proves that the pipeline can complete 

the oil delivery task successfully and preform its function well in most cases. The lowest holistic 

supply degree is within 0.93-9.94. This demonstrates that a great decline in the pipeline supply 

capacity will not occur, even under extreme pumps failure conditions, and the pipeline can 

transport refined products to downstream stations safely. As for the individual demand satisfaction 

degree DSi , their frequency of equaling 1 is higher than PS . This is because even if the oil supply 

is not fully completed, the shortage is only reflected in one or a few stations, and the demand of 

other stations can be fully met. When PS  is equal to 1, the oil delivery for all downstream stations 

must be reliable ( DS 1i = ). It can also be found that DS4 station is more frequent with low supply 

degrees, which indicates that the oil supply to the last station is more likely to be insufficient. This 

is because DS4 is the farthest from the initial station, and it is more difficult to deliver enough 

refined products when unexpected failures occur. 

Table 10. Results of the holistic supply capacity for the pipeline 

Station 
Minimum supply 

capacity (tonne) 

Average supply capacity 

(tonne) 
Average supply degree (%) 

IS 134408.6 143973.9 99.9808 

Table 10 shows the minimum and average supply capacity and the average holistic supply 

degree of the pipeline. Since the maximum supply capacity is equal to the planned transport 

amount (the actual transport amount in most trials), it is not displayed. The average supply 

shortage is 26.1 tonnes, which equals the total demand minus the average supply capacity. 

Compared with the total demand, the average supply shortage is very small. This means that under 

stochastic pumps failure, the pipeline can almost achieve the continuous and reliable delivery of 

refined products normally. The average supply degree of the pipeline reflects the expected 

completed ratio of the oil delivery task. It is calculated based on the holistic supply degree PS  

obtained from each Monte Carlo trial. As for the minimum supply capacity, it is nearly 10000 tonnes 
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less than the required amount. The corresponding pump state transition is shown in Table 11. As 

we can see, the pumps at PS1 and PS2 run normally in the first 14 time intervals. Starting from the 

15th time interval, the two pumps with higher pumping head at PS1 fail in succession. Since they 

locate at the initial station, their failure will result in a significant reduction in the pipeline flowrate 

upper limits. In this way, the total supply capacity also declines greatly and becomes the minimum 

one among all trials. 

Table 11. Pump state transition  

Time interval number 
Pumps state 

Time interval number 
Pumps state 

PS1 PS2 PS1 PS2 

1 S1 S1 14 S1 S1 

2 S1 S1 15 S2 S1 

3 S1 S1 16 S2 S1 

4 S1 S1 17 S4 S1 

5 S1 S1 18 S4 S1 

6 S1 S1 19 S4 S1 

7 S1 S1 20 S4 S1 

8 S1 S1 21 S4 S1 

9 S1 S1 22 S4 S1 

10 S1 S1 23 S4 S1 

11 S1 S1 24 S4 S1 

12 S1 S1 25 S4 S1 

13 S1 S1    

Table 12. Results of the individual demand satisfaction for each delivery station 

Station 
Minimum supplied 

amount (tonne) 

Average supplied  

amount (tonne) 

Average demand 

satisfaction degree (%) 

DS1 38766.8 44995.7 99.9897 

DS2 26755.6 31495.5 99.9849 

DS3 33480.0 38495.7 99.9881 

DS4 19982.7 28987.0 99.9533 

Table 12 shows the minimum and average supply capacity and the average supply degree of 

different stations. It can be found that the average demand satisfaction degree of stations closer 

to the initial station is generally higher. This is because it takes more energy to transport refined 

products further away. The provided energy is limited under pumps failure conditions and the fluid 

in the pipeline passes through the front stations first. In this way, the demand for stations far from 

the initial station is less likely to be met. As for stations DS2 and DS3, the average demand 

satisfaction degree of DS2 is a bit higher than that of DS3. This is because DS3 has a lower elevation 

than DS2. It consumes less energy for the oil flowing from DS2 to DS3 and the pressure will even 

increase at certain flowrates. At the same time, the delivery requirement of DS2 is a bit higher than 

that of DS3. In this way, the delivery operation of DS2 is not as flexible as DS3. The average shortage 

of DS1-DS3 is concentrated in 4-5 tonnes, while the average shortage of DS4 is more 10 tonnes. 

This also illustrates that the demand satisfaction of DS4 is the most vulnerable in the event of 

pumps failure. The sum of the average shortage of all delivery stations is equal to the supply 

shortage of the pipeline system, which proves the correctness of the statistical results. The sum of 

the minimum supplied amount of all stations is lower than the minimum pipeline supply capacity. 
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This is because the minimum supplied amount of all stations is not in the same trial and will not be 

reached simultaneously. 

Table 13. Results of the delivery task completion for each refined product 

Oil type 
Minimum completed 

amount (tonne) 

Average completed 

amount (tonne) 

Average completion degree 

of the delivery task (%) 

0# diesel 58770.7 60999.9 99.9999 

92# gasoline 49205.3 57976.1 99.9586 

95# gasoline 21775.0 24997.9 99.9917 

Table 13 displays the minimum and average completed amount and the average completion 

degree for each refined product. As it is shown, the average completed amount of 0# diesel and 

95# gasoline is almost equal to the required amount. The average shortage is 0.1 tonne and 2.1 

tonnes respectively. Compared with these two refined products, the shortage of 92# gasoline 

reaches 23.9 tonnes, which is relatively high. It indicates that the delivery of 92# gasoline is not as 

reliable as other refined products under stochastic pumps failure. This can also be concluded from 

the average completion degree. The average completion degree of 0# diesel and 95# gasoline is 

much higher that of 92# gasoline, which is related to the initial condition of the pipeline and the 

batch injection sequence. Since the pipeline is filled with 0# diesel at the initial time, all stored oil 

must be delivered so that later batches can be injected and delivered. In this way, the average 

completion degree of 0# diesel is the highest. As for 95# gasoline, it is located between the two 

batches of 92# gasoline. In most cases, it also needs to be pushed out of the pipeline (completely 

delivered) so that the next two batches can be operated. In addition, the required amount of 95# 

gasoline is much less than that of 92# gasoline, so it is easier to complete. With regard to 92# 

gasoline, it is divided into two batches. The previous batch will be delivered completely, while the 

latter batch is not easy to be totally delivered. As for the minimum completed amount, the sum of 

all refined products is less than the minimum supply capacity of the pipeline, which is in the same 

way as Table 12. The minimum completed amount of 0# diesel is relatively high. This is because 

the completed amount of 0# diesel is equal to the basic amount (pipeline storage oil) plus the 

fluctuating amount and the basic amount is high (67499*0.845=57037 tonnes). The basic amount 

of 92# gasoline (25000 tonnes) is low. About 87% of 95# gasoline is pushed out of the pipeline and 

the remaining 13% is left at the end of the pipeline in the worst case. 
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Fig.6 The minimum and average supplied amount of each refined product for different delivery stations 

Fig. 6 shows the minimum supplied amount (in red) and the difference between the average 

and minimum supplied amount (in green). As can be seen, the minimum supplied amount of 0# 

diesel at DS1 and DS3 is equal to the average. This means that under no conditions will the two 

stations be short of diesel. With respect to the other two stations, even if the diesel supply is not 

always sufficient, the maximum shortage is not large. As for the 92# gasoline supply, the maximum 

shortage is generally large, which is consistent with Table 13. Among all stations, the maximum 

shortage of DS4 is the highest and other stations are approximately the same. Regarding the 

maximum shortage of 95 # gasoline, the difference between all stations is not great, mainly 

between 65% and 75% of the demand. 
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Fig.7 Average demand satisfaction degree of different stations for each refined product 

The detailed average demand satisfaction degree of each station for each refined product is 

presented in Fig. 7. It can be found that DS1-DS3 have roughly the same change trend in the 

demand satisfaction degree for each refined product, with 92# gasoline being the least, followed 

by 95# gasoline and finally 0 diesel (almost all equal to 100%). As for DS4, the average demand 

satisfaction degree of diesel is almost the same as the first three stations, but the average demand 

satisfaction degree of gasoline (especially 92# gasoline) is reduced a lot. This leads to a great 

reduction in the total average demand satisfaction degree of DS4. 

 
Fig.8 The holistic supply and individual demand satisfaction degree represented by CDF 

Fig.8 intuitively shows the change of the holistic and individual supply reliability from the 

perspective of probability. The vertical axis represents the cumulative probability, while the 

horizontal axis means the supply or demand satisfaction degree. The curves represent the 

cumulative distribution functions, namely, the probability that PS  or DSi  is less than or equal 

to a certain value. Different colored numbers in the figure indicate the start and end points of the 

corresponding curve. In fact, the ordinate value of the traditional CDF should reach 1 at last. But in 

this paper, compared with 1, the cumulative probability of other values except 100% is very small. 

If the curve is finally drawn to 1, a great “step” will be generated at the end of the curve, and the 

previous part will not be effectively displayed. Therefore, the CDF curves in this paper exclude the 

point (100%, 1). The end points shown in the figure are the highest points except (100%, 1). Taking 

the CDF of PS   as an example, it can be understood that the probability of the holistic supply 

degree being less than 99.9138% is 0.01241, and the probability of being equal to 100% is 0.98759. 

Then the probability of PS  being less than or equal to 100% is 1. 

As we can see in Fig.8, the CDF of the holistic supply degree begins to rise from 93.0248%, 

which means that the pipeline supply degree will not be less than this value. Next, the cumulative 

probability remains stable at about 4×10-4 between 96% and 98% and has a significant “step” 

between approximately 98.3% and 99.5%. It can be concluded that the probability of the holistic 

supply degree being less than 98.3% is relatively small. Meanwhile, when the pumps failure occurs 
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and the normal supply is interrupted, the holistic supply degree is mostly concentrated around 

98.3% and 99.5%. As for the CDFs of the individual demand satisfaction degree, DS1-DS3 have 

roughly similar growth trends. But for DS4, the CDF curve starts to rise earlier and the end point is 

higher. This indicates that the possible minimum demand satisfaction degree is lower compared 

with other three stations and pumps failures are more likely to cause the supply shortage of DS4. 

This is consistent with the conclusions drawn above. Namely, DS4 is the furthest away from the 

injection station (IS) among all delivery stations. Once pumps failure occurs and the provided 

energy is limited, DS4 will be the first to be affected, because the delivery to DS4 is the most energy 

intensive. Besides, due to the pipeline initial condition and batch injection sequence, the 92# 

gasoline supply to DS4 is very vulnerable to pumps failure. 

 

Fig.9 The oil delivery completion degree represented by CDF 

Fig. 9 shows the CDF of the delivery completion degree for the three refined products. The 

meaning of the vertical axis in Fig. 9 is the same as that in Fig. 8 and the horizontal axis represents 

RSo . For the same reason, the point (100%, 1) is also excluded from the curves in Fig. 9. The start 

and end points of each curve are also marked. As we can see, the CDF of 92# gasoline starts growing 

earlier and ends at a much higher level, followed by 95# gasoline. The supply shortage of 0# diesel 

has been maintained at a very low level and the possible minimum completion degree of 0# diesel 

is much higher than that of the other two refined products. This proves that the supply shortage 

of 0# diesel is the most difficult to be led, while 92# gasoline is the most possible. The CDFs of 92# 

gasoline has an obvious “step” around 96%, followed by 99%, which indicates that the delivery 

completion degree is most likely to be concentrated in these two intervals once the incomplete 

delivery occurs. 

From the above analysis, it can concluded that under pumps failure conditions, the multi-

products pipeline can maintain a high level of supply reliability both as a whole and for individual 

stations/refined products. But it’s also important to note that the supply shortage will be caused 

in some failure conditions. When the supply interruption occurs, the terminal station DS4 is the 
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most vulnerable to supply shortage. As for different refined products, 92# gasoline is most likely to 

have an incomplete delivery, while 0# diesel’s transportation is the most reliable. These results can 

provide auxiliary emergency management measures for pipeline operation managers, such as 

improving the availability of other transportation methods to the failure-sensitive stations, and 

increasing the reserve of the refined products with relatively weak supplies, etc. 

6. Conclusion 

In this paper, an integrated methodology for the supply reliability analysis of multi-product 

pipeline systems under pumps failure is proposed by integrating stochastic process simulation and 

pipeline scheduling together. Based on the technical and operational process of the multi-product 

pipeline system, three evaluation indicators are developed to quantify the supply reliability from 

the holistic and individual perspectives. Considering the unit reparability, the stochastic failure and 

recovery of pumps are described by Markov process and the stochastic transition of the system 

states are simulated using Monte Carlo method. To deal with the pipeline pressure and pump 

related issues, the pipeline flowrate upper limits under all possible states are optimized first. Then, 

for each trial with a different failure process, the maximum supply capacity to the downstream 

markets is calculated by the pipeline scheduling model. According to the simulation and model 

solving results, the established supply reliability indicators are calculated, which can quantitatively 

show the supply level of refined products. 

A real-world multi-product pipeline in China is used to perform the case study. All system 

states are first listed and the flowrate upper limits under these states are calculated. Next, based 

on the statistics of the solving results in each Monte Carlo trial, the holistic and individual supply 

reliability are analyzed in detail. For the entire pipeline system, the reliable and continuous oil 

supply can be achieved in general and pumps failure will not significantly affect the pipeline 

transportation capacity at a high probability. With respect to different stations and refined products, 

the extents to which they are affected by pumps failure are quite different. For the stations and 

refined products which are more sensitive to pumps failure, loss prevention measures should be 

provided in advance to minimize the impact. In summary, the proposed methodology can provide 

a comprehensive supply reliability evaluation for multi-product pipeline systems and help improve 

the regional energy supply chain resilience. For future works, the methodology will be expanded 

to multi-products pipeline networks and more other failure conditions can be considered. Besides, 

the upstream and downstream supply-demand changes can be taken into account by combining 

the prediction method with the present supply reliability evaluation framework. 

Appendix A. Mathematical formulation of the flowrate upper limits 

calculation model 

A.1. Objective function 

The objective function is to search for the maximum flowrate upper limits of each pipeline 

segment under different scenarios. Since it will never exceed the pipeline design flowrate, the 

maximum flowrate upper limits can be converted the minimum difference from the design flowrate. 

, ,k i p  refers to the importance of each pipeline segment under flowrate set p  of scenario k . On 

the whole, the pipeline segments closer to the initial station will have a higher importance value 
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and 
, ,k i p  will be closer to 1. 

( )1 , , E max U , ,min k i p i k i p

i I

F q q


= −                (A.1) 

A.2. Model constraints 

The following two equations are the energy balance constraints along the pipeline. Namely, 

the outlet pressure of station i  is equal to the inlet pressure plus the provided pressure (if station 

i  is not a pump station, its provided pressure is 0) and the inlet pressure of station 1i +  is equal 

to the outlet pressure of station i  minus the hydraulic loss of pipeline segment ( ), 1i i + . 

O , , N , , O ,k i p k i p i kP P R gH= +             , ,k K i I p P   (A.2) 

N , 1, O , , F , ,k i p k i p k i pP P P+ = −              max, ,k K i i p P   (A.3) 

The pipeline hydraulic loss is calculated by the Liebenson (Лейбензон) equation, which is 

derived from the Darcy-Weisbach equation and widely used in the multi-product pipelines in China . 

Since there is a nonlinear term in the equation, the piecewise linearization method is employed 

for the efficient and accurate model solving. Namely, if flowrate upper limits set p  under scenario 

k  is selected and the flowrate of pipeline segment ( ), 1i i +  is within interval a , 
F , ,k i pP  can be 

expressed by the following two equations. 

( )U , , D

F , , D 1 QL , , ,5
( 1)

m

a k i p a i
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 
+−

 +
  + − + −
  

   max, , ,k K i i p P a A    (A.4) 

( )U , , D

F , , D 1 QL , , ,5
(1 )

m
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i

u q w L
P R g Z Z B M

d

 
+−

 +
  + − + −
  

   max, , ,k K i i p P a A    (A.5) 

If the flowrate upper limit of pipeline segment ( ), 1i i +  under flowrate set p  of scenario k  

is within interval a , the upper and lower bounds of the interval need to be satisfied. Meanwhile, 

there must be an interval to be selected. 

L min  QL , , , U , , L max  QL , , ,( 1) (1 )a k i p a k i p a k i p aq B M q q B M+ −   + −     max, , ,k K i i p P a A    (A.6) 

QL , , , 1k i p a

a A

B


=                max, ,k K i i p P   (A.7) 

The inlet and outlet pressure of each station along the pipeline should meet the required 

limits. 

O , , O maxk i p iP p               , ,k K i I p P   (A.8) 

I min N , ,i k i pp P               , ,k K i I p P   (A.9) 
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Appendix B. Mathematical formulation of the maximum supply capacity 

calculation model 

B.1. Objective function 

When the pipeline system is under pumps failure conditions, the pipeline’s capacity to meet 

the demand of downstream stations is usually smaller than that under normal operating conditions. 

Therefore, the objective function is to minimize the deviation between the actual delivered volume 

and the demanding volume of each delivery station. 

( )2 DE , AC ,min i o i o

i I o O

F V V
 

= −                 (B.1) 

B.2. Delivery constraints 

Since the pipeline delivery capacity under failure conditions must be reduced, the actual 

delivered volume of each delivery station is limited to be less than the demanding volume. There 

may be a case in which the actual delivered volume of a station is greater than the demanding 

volume if it is not limited. As a result, the actual delivered volume of other stations will be much 

smaller than the demanding volume, resulting in the supply satisfaction level further decreased. 

Meanwhile, the supply satisfaction level for the stations whose actual delivered volume is greater 

than the demanding volume have not increased. Therefore, it is necessary to set this constraint. 

AC , DE ,i o i oV V                 ,i I o O  (B.2) 

The total delivered volume of oil o  at delivery station i  is equal to the sum of the delivered 

volume in each time interval. 

AC , , DO , , Pi o j o s i j

s S j J

V Q 
 

=              ,i I o O  (B.3) 

If batch j  is delivered at station i  in time interval s , the delivery flowrate should meet 

the upper and lower limits; otherwise, the flowrate must be equal to 0. 

( ) ( )min DO DO , , max DO1 1D i s,i, j s i j D i s,i, jq B M Q q B M+ −   + −        , ,s S i I j J   (B.4) 

DO , , DOs i j s,i, jQ B M               , ,s S i I j J   (B.5) 

Only when batch j  flows through delivery station i  in time interval s , delivery station i  

can receive it. 

DO FTs,i, j s,i, jB B                , ,s S i I j J   (B.6) 

B.3. Batch moving constraints 

The following constraint is to realize the definition of 
PAs,i, jB  . That is, if batch j  ’s upper 

coordinate has exceeded station i   at the start time of time interval s  , 
PAs,i, jB   is equal to 1; 

otherwise, 
PA =0s,i, jB . 

( )PA OH , PA1i s,i, j s j i s,i, jX B M C X B M+ −   +          , ,s S i I j J   (B.7) 
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The following three equations are to constrain the logical relationship of variable 
PAs,i, jB : (1) 

the time when batch j  arrives at station i  must be later than that when it arrives at station 

1i − ; (2) the time when batch j  arrives at station i  must be later than that when batch 1j −  

arrives at station i  ; (3) if batch j   has arrived at station i   in time interval s  , it must have 

arrived at station i  in the later time intervals. 

PA 1 PAs,i , j s,i, jB B−                , 1,s S i j J   (B.8) 

PA 1 PAs,i, j s,i, jB B−                , , 1s S i I j   (B.9) 

PA 1 PAs ,i, j s,i, jB B+                max , ,s s i I j J   (B.10) 

Since this model is based on the discrete-time representation, the exact time of batch 

interfaces arriving at delivery stations must be the discrete-time nodes. Namely, if 

PA 1 PA =1s ,i, j s,i, jB B+ − , 
OH 1,t jC +

 must equal 
iX  on account of Equation (B.7) and (B.10). 

( )OH 1, PA 1 PA1s j i s ,i, j s,i, jC X B B M+ + + − +           max , ,s s i I j J   (B.11) 

If batch j ’s upper coordinate has reached station i  (i.e. 
PA =1s,i, jB ) and batch 1j + ’s upper 

coordinate (batch j  ’s lower coordinate) has not (i.e. 
PA 1 =0s,i, jB +

 ), it means that batch j   is 

flowing through station i  (i.e. 
FT =1s,i, jB ). As for the last batch 

maxj , if its upper coordinate has 

reached station i , it is flowing through the station. 

FT PA PA 1s,i, j s,i, j s,i, jB B B += −              max, ,s S i I j j   (B.12) 

FT max PA maxs,i, j s,i, jB B=               ,s S i I  (B.13) 

For station i , there must be a batch flowing through in time interval s . 

FT 1s,i, j

j J

B


=                ,s S i I  (B.14) 

If batch j  ’s upper coordinate has reached station i   (i.e. 
PA , =1s i, jB  ) and has not reached 

station 1i +   (i.e. 
PA 1 =0s,i , jB +

 ), it means that batch j  ’s upper coordinate is in pipeline segment 

( ), 1i i +  (i.e. 
FA =1s,i, jB ). 

FA PA PA 1s,i, j s,i, j s,i , jB B B += −              max, ,s S i i j J   (B.15) 

If batch j ’s upper coordinate is in pipeline segment ( ), 1i i +  in time interval s , its position 

at the start time of time interval 1s +  is equal to that at the start time of time interval s  plus the 
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flowed volume of pipeline segment ( ), 1i i +  in time interval s . 

( ) ( )OH , PF , P FA OH 1, OH , PF , P FA1 1s j s i s,i, j s j s j s i s,i, jC Q B M C C Q B M ++ + −   + + −  max max, ,s s i i j J   (B.16) 

If batch j  has not been injected into the pipeline (i.e. 
PA 1 =0s, , jB ), its upper coordinate at the 

start time of time interval 1s +   is equal to that at the start time of time interval s   plus the 

injected volume in time interval s . 

OH , PF ,1 P PA 1 OH 1, OH , PF ,1 P PA 1s j s s, , j s j s j s s, , jC Q B M C C Q B M ++ −   + +       max ,s s j J  (B.17) 

If batch j  has reached the terminal station, its upper coordinate will remain unchanged. 

( ) ( )OH , PA max OH 1, OH , PA max1 1s j s,i , j s j s j s,i , jC B M C C B M++ −   + −        max ,s s j J  (B.18) 

B.4. Pipeline flowrate constraints 

If pipeline segment ( ), 1i i +  is active in time interval s , the flowrate need to meet the upper 

and lower limits; otherwise, it is equal to 0. With regard to the upper limit, it is the solving results 

of the MILP model in Appendix A. If the pipeline is under scenario k  in time interval s , there 

must be a flowrate set under this scenario selected. If flowrate set p  is chosen, the corresponding 

upper limit of pipeline segment ( ), 1i i +  
U , ,k i pq  must be satisfied in Equation (B.19). 

Pmin ID , PF , U , , SP , , ID ,i s i s i k i p s k p s i

k K p P

q B M Q q B B M
 

−   +       max,s S i i  (B.19) 

( )PF , ID ,1s i s iQ B M −              max,s S i i  (B.20) 

SP , , U ,=s k p s k

p P

B F


              ,s S k K  (B.21) 

If the former pipeline segments are shut down, the later pipeline segments must also be idle. 

ID , 1 ID ,s i s iB B+                max, 1s S i i  − (B.22) 

The flowrate of pipeline segment ( ), 1i i +  is equal to that of pipeline segment ( )-1,i i  minus 

delivery station i ’s flowrate. 

PF , PF , 1 DO , ,s i s i s i j

j J

Q Q Q−



= −            max,1s S i i   (B.23) 

B.5. Injection constraints 

If batch j  is being injected in time interval s  (i.e. 
FT 1 1t, , jB = ), the injection flowrate must 

satisfy the required limits; otherwise, it is equal to 0. 

( ) ( )J min FT 1 NJ , J max FT 11 1s, , j s j s, , jq B M Q q B M+ −   + −         ,s S j J  (B.24) 

NJ , FT 1s j s, , jQ B M               ,s S j J  (B.25) 
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The injection flowrate is equal to the flowrate of pipeline segment ( )1,2 . 

NJ , PF ,1s j s

j J

Q Q


=                s S (B.26) 
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Nomenclature 

Sets and indices 

 max= 1,2, ,k K k    Set of scenarios in which some pumps are normal and others fail. 

 max= 1,2, ,p P p    Set of flowrate upper limits set. 

 max= 1,2, ,i I i    Set of stations along the pipeline. 

 max= 1,2, ,a A a    Set of flowrate intervals for piecewise linearization. 

 max= 1,2, ,s S s    Set of time intervals. 

 max= 1,2, ,j J j    Set of batches. 

 max= 1,2, ,o O o    Set of oil types. 

Input parameters 

, ,k i p      Importance value of pipeline segment ( ), 1i i +   under flowrate set 

p  of scenario k  (
, ,0 1k i p  ). 

E max iq      Maximum design flowrate of pipeline segment ( ), 1i i +  (m3/h). 

g       Gravitational acceleration (m/s2). 

,m      Hydraulic loss calculation coefficients, which are related to the flow 

regime ( 0 1m  ). 

,i kH       Pumping head parameters. 

,i iL d      Length and inner diameter of pipeline segment ( ), 1i i +  (m). 

iZ       Elevation of station i  (m). 

OR       Refined product density for the pumps provided pressure calculation 

(kg/ m3). 
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DR       Refined product density for the hydraulic loss calculation (kg/ m3). 

D       Refined product viscosity for the hydraulic loss calculation (m2/s). 

,a au w      Coefficients of the fitted linear equation of interval a . 

L max L min,a aq q     Upper and lower limits of flowrate interval a  (m3/h). 

Omax ip      Maximum outlet pressure of station i  (MPa). 

I min ip      Minimum inlet pressure of station i  (MPa). 

DE ,i oV      Demanding volume of delivery station i   for refined product o  

(m3). 

P       Time length of the time interval (h). 

,j o       If batch j   corresponds to refined product o  , 
, 1j o =  ; otherwise, 

, 0j o = . 

iX       Volume coordinate of station i  (m). 

Dmax Dmin,i iq q     Maximum and minimum delivery flowrate of station i  (m3/h). 

P min iq      Minimum flowrate of pipeline segment ( ), 1i i +  (m3/h). 

J max J min,q q      Maximum and minimum injection flowrate (m3/h). 

U ,s kF       If the pipeline is under scenario k   in time interval s  , 
U , 1s kF =  ; 

otherwise, 
U , 0s kF = . 

Model variables 

U , ,k i pq      Flowrate upper limits of pipeline segment ( ), 1i i +   under flowrate 

set p  of scenario k  (m3/h). 

N , , O , ,,k i p k i pP P     Inlet and outlet pressure of station i   under flowrate set p   of 

scenario k  (MPa). 

F , ,k i pP      Hydraulic loss of pipeline segment ( ), 1i i +   under flowrate set p  

of scenario k  (MPa). 

QL , , ,k i p aB      If flowrate upper limits set p   under scenario k   is selected and 

the flowrate of pipeline segment ( ), 1i i +   is within interval a  , 
QL , , , 1k i p aB =  ; otherwise, 

QL , , , 0k i p aB = . 

AC ,i oV      Actual delivered volume of delivery station i   for refined product 

o  (m3). 

OH ,s jC      Upper coordinate of batch j  at the start time of time interval s  
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(m3). 

NJ ,s jQ      Injection flowrate of batch j  in time interval s  (m3/h). 

PF ,s iQ      Flowrate of pipeline segment ( ), 1i i +  in time interval s  (m3/h). 

DO , ,s i jQ      Delivery flowrate of batch j   at station i   in time interval s  

(m3/h). 

DOs,i, jB      If batch j  is delivered at station i  in time interval s , 
DO 1s,i, jB = ; 

otherwise, 
DO 0s,i, jB = . 

PAs,i, jB      If the upper coordinate of batch j  has exceeded station i  at the 

start time of time interval s , 
PA 1s,i, jB = ; otherwise, 

PA 0s,i, jB = . 

FTs,i, jB      If batch j   is flowing through station i   in time interval s  , 

FT 1s,i, jB = ; otherwise, 
FT 0s,i, jB = . 

FAs,i, jB      If the upper coordinate of batch j   is within segment ( ), 1i i +   in 

time interval s , 
FA 1s,i, jB = ; otherwise, 

FA 0s,i, jB = . 

ID ,s iB      If pipeline segment ( ), 1i i +   is shut down in time interval s  , 

ID , 1s iB = ; otherwise, 
ID , 0s iB = . 

SP , ,s k pB      If flowrate upper limits set p  under scenario k  is selected in time 

interval s , 
SP , , 1s k pB = ; otherwise, 

SP , , 0s k pB = . 
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