
 
 

Delft University of Technology

A Hybrid Control Approach for a Pneumatic-Actuated Soft Robot

Tavio y Cabrera, Emilio; Santina, Cosimo Della; Borja, Pablo

DOI
10.1007/978-3-031-55000-3_2
Publication date
2024
Document Version
Final published version
Published in
Human-Friendly Robotics 2023 - HFR

Citation (APA)
Tavio y Cabrera, E., Santina, C. D., & Borja, P. (2024). A Hybrid Control Approach for a Pneumatic-
Actuated Soft Robot. In C. Piazza, P. Capsi-Morales, L. Figueredo, M. Keppler, & H. Schütze (Eds.),
Human-Friendly Robotics 2023 - HFR: 16th International Workshop on Human-Friendly Robotics (pp. 19-
35). (Springer Proceedings in Advanced Robotics; Vol. 29 SPAR). Springer. https://doi.org/10.1007/978-3-
031-55000-3_2
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-55000-3_2
https://doi.org/10.1007/978-3-031-55000-3_2
https://doi.org/10.1007/978-3-031-55000-3_2


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



A Hybrid Control Approach
for a Pneumatic-Actuated Soft Robot

Emilio Tavio y Cabrera1, Cosimo Della Santina1,2, and Pablo Borja3(B)

1 Department of Cognitive Robotics, Delft University of Technology,
Delft, The Netherlands

emilio@hotmail.nl, c.dellasantina@tudelft.nl
2 Institute of Robotics and Mechatronics, German Aerospace Center (DLR),

Oberpfaffenhofen, Germany
3 School of Engineering, Computing and Mathematics, University of Plymouth,

Plymouth, UK
pablo.borjarosales@plymouth.ac.uk

Abstract. The compliant nature of soft robots is appealing to a wide
range of applications. However, this compliant property also poses sev-
eral control challenges, e.g., how to deal with infinite degrees of freedom
and highly nonlinear behaviors.

This paper proposes a hybrid controller for a pneumatic-actuated soft
robot. To this end, a model-based feedforward controller is designed
and combined with a correction torque calculated via Gaussian process
regression. Then, the proposed model-based and hybrid controllers are
experimentally validated, and a detailed comparison between controllers
is presented. Notably, the experimental results highlight the potential
benefits of adding a learning approach to a model-based controller to
enhance the closed-loop performance while reducing the computational
load exhibited by purely learning strategies.

1 Introduction

Soft robotics has become an increasingly studied field due to its potential appli-
cation in high-impact areas such as medicine, the food industry, and human-
robot interaction. However, because of their compliant nature, the behavior of
soft robots is described by infinite-dimensional and highly nonlinear equations.
Therefore, the design of controllers for these systems can be significantly more
complex than the strategies used for rigid robots, representing one of the current
bottlenecks in this area.

Several approximation approaches are adopted to deal with the challenge
posed by the infinite-dimensional nature of soft robots. Below, we list the three
more common approximation methods:

• Cosserat rod theory. This approach is suitable for modeling soft robots con-
sisting of slender rods while accounting for bend, twist, stretch, and shear
deformations. Some examples of studies using this framework to model soft
robots are given in [2,18,20,24]. The advantage of Cosserat rod models is that
an exact steady-state solution can be achieved [6]. Nevertheless, an infinite
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number of states are possible when using the Cosserat rod theory, making it
complex to use for control.

• Finite element method (FEM). This approach provides a numerical solution to
the partial differential equations describing the dynamics of the soft robot. FEM
consists in decomposing complex systems into simpler ones, which involves a
discretization process. In particular, this approach often decomposes the com-
plex shape of soft robots into a mesh of point masses (nodes) interconnected
via springs. Hence, using more nodes leads to a more accurate model of the soft
robot at the expense of having a larger state space—thus, a higher computa-
tional load. Examples of the application of FEM in soft robotics are [8,15,27].
FEM results are accurate. However, the computational bottleneck is empha-
sized, complicating online control using this approach.

• Piecewise constant curvature (PCC). This framework defines the state of the
soft robot along a finite set of arcs (segments) in series, where each segment
is assumed to have constant curvature (bending). In particular, each segment
has three degrees of freedom given by the bending, the rotation orthogonal
to the bending plane, and the elongation [26]. In most cases, the amount of
independent curvatures is equal to the number of links (physical segments)
that compose the soft robot. The success of PCC can be explained by the
fact that most actuator types of soft robots control a segment of the robot
with limited length, which in most cases, bends equally over that length.
Therefore, the simplification of PCC is accurate enough to reduce infinite
degrees of freedom to only three configuration variables. However, a drawback
of PCC approximations is the presence of singularities for some postures. Such
a problem is solved by defining new coordinates in [5]. This singularity-free
approach has been adopted in [23,25].

Control approaches for soft robots can be classified into model-based and
learning-based strategies. Model-based control approaches are suitable for exploit-
ing physical properties and prior system knowledge. This often yields controllers
that are more energy-efficient than learning-based controllers. Additionally, these
model-based strategies are ideal for simulation purposes. Nonetheless, these
approaches are sensitive tomodelmismatches, and they are often analytically com-
plex due to the highly nonlinear nature of soft robots. Some examples of model-
based strategies for soft robots are provided in [1,3,4,7,9,13,19]. On the other
hand, learning-based control approaches are robust concerning model mismatches,
disturbances, and sometimes changing environments. Moreover, the analytical
complexity is significantly reduced as most learning strategies are model-free.
However, these approaches may suffer from long learning times, a large amount
of data required, greater computational load than model-based methods, and
stability problems. Additionally, the learning stage may be destructive for the
soft robot. Examples of learning-based control approaches for soft robots can be
found in [12,16,17,21,22]. A third classification for control strategies is given by
the so-called hybrid techniques, which combine model-based and learning-based
approaches. Hybrid control methods may exhibit the most appealing properties of
model-based and learning-based approaches, i.e., they may be robust to uncertain-
ties concerning the soft robot’s parameters and model mismatches while exploiting
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Fig. 1. Pneumatic-driven soft manipulator

prior system knowledge to reduce the learning process’ complexity and the associ-
ated computational burden. Examples of hybrid control strategies for soft robots
are found in [11,14]. For a more extensive discussion on control design strategies
for soft robots, we refer the reader to [6,10].

This paper proposes a simple hybrid control strategy for a pneumatic-driven
soft robot made of silicone. To this end, we design a feedforward controller based
on a simplified PCC model. Then, we design a correction learning-based con-
troller using Gaussian process regression (GPR). Notably, the proposed model-
based feedforward controller is one of the most straightforward model-based
control strategies that can be formulated. Nevertheless, it is suitable to reduce
significantly the computational burden associated with the learning strategy
while ensuring the stability of the closed-loop equilibrium. Moreover, GPR per-
mits constructively limiting the range of learning.

2 Physical System and Problem Formulation

Consider the pneumatic-driven soft manipulator depicted in Fig. 1. The body
of the manipulator consists of two segments—denoted as Segment 1 and Seg-
ment 2, respectively—made of DragonSkin-20 silicone, where each segment has a
length, diameter, and weight of 11[cm], 45[mm], and 117[g], respectively. More-
over, each segment has four internal air chambers that can be pressurized to
bend up to 8◦ the corresponding segment without damaging the system. The
pressure regulator Festo Motion Terminal VTEM is used to actuate each cham-
ber independently.

We use the inertial measurement units (IMUs) MPU6050—shown in Figs. 1
and 2—together with a complementary filter to measure the position of each
segment’s tip. This sensor choice is more portable and cheaper than a motion
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Fig. 2. Schematic of the pneumatic soft robot. A1–A8 represent the individual air cham-
bers. In red the rotation axis is shown which is perpendicular to the direction of φi.

capture system. However, the IMUs only measure the position of a specific part
of each segment, in this case, the tip. In addition, the segments are shifted 45◦

degrees in the yaw angle, as illustrated in Fig. 2, where A1–A4 represent the air
chambers in Segment 1, and A5–A8 represent the air chambers in Segment 2.

The control objective is to describe a desired trajectory with the robot’s
endpoint (tip of Segment 2). To this end, the desired trajectory is expressed
by N points, i.e., the trajectory is discretized. Hence, the problem reduces to
stabilizing the robot sequentially at the N desired configurations. Moreover,
because of the limited bending capacity of the system, we consider trajectories
where the desired bending angles have the same magnitude. We stress that the
dynamics of this system are highly nonlinear. Therefore, the proposed approach
is split into two parts: (i) designing a controller based on a simplified model
of the system and (ii) implementing a learning method to correct the errors
caused by the model simplifications and unmodeled phenomena. Consequently,
the resulting controller has a hybrid nature, which is expected to require fewer
data than a pure learning method and exhibit better performance than a model-
based controller.

3 Modeling

The compliant nature of the manipulator poses a challenge from a control per-
spective, as the controller needs to deal with an infinite number of degrees of
freedom. Moreover, as mentioned in Sect. 2, the sensors only read the position
of each segment’s endpoint. To overcome these problems, we consider a PCC
approximation and neglect the elongation of the segments. Hence, the configu-
ration variables of the robot are given by

q =
[
φ1 θ1 φ2 θ2

]�
, (1)

where φi ∈ R and θi ∈ R denote the rotation of the bending plane and the
bending angle of the corresponding segment, respectively. Figure 3 illustrates
the configuration variables of the ith segment, where i ∈ {1, 2}.
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Fig. 3. Front view of the ith segment of the soft robot.

The dynamics of the robot can be obtained via the Euler-Lagrange formalism.
To this end, we consider the Lagrangian

L(q, q̇) = T (q, q̇) − V (q); T (q, q̇) = q̇�M(q)q̇
V (q) = Vk(q) + Vg(q),

where T : R4 × R
4 → R denotes the (co-)kinetic energy; M : R4 → R

4×4 is
the mass inertia matrix, which is positive definite; V : R4 → R represents the
potential energy of the system, which is split into the elastic potential Vk : R4 →
R and the potential energy due to gravity Vg : R4 → R. Hence, the dynamics of
the system are given by

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
+ D(q, q̇)q̇ = τ, (2)

where D : R4 × R
4 → R

4×4 is the damping matrix and τ ∈ R
4 are the input

torques. Customarily, (2) is rewritten as

M(q)q̈ + (C(q, q̇) + D(q, q̇)) q̇ +
∂Vk(q)

∂q
+

∂Vg(q)
∂q

= τ, (3)

where C : R4 × R
4 → R

4×4 contains the Coriolis and centrifugal terms. Given
the control problem explained in Sect. 2, at the desired equilibria q̈ = q̇ = 0.
Therefore, at the desired configuration, (3) reduces to

∂Vk(q)
∂q

+
∂Vg(q)

∂q
= τ. (4)

3.1 Simplified Model

Even if PCC provides an approximation of the actual behavior of the system,
the dynamics (3) are still highly nonlinear and complex. However, we adopt the
following simplifications based on the fact that the maximum expected bending
angle is 16◦:

(A1) The elastic potential is given by

Vk(q) =
1
2
kθ21 +

1
2
kθ22, (5)
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yielding a linear torque given by

∂Vk(q)
∂q

= Kθq; Kθ := k

⎡

⎢
⎢
⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤

⎥
⎥
⎦ , (6)

with k > 0.
(A2) We neglect the torque due to gravity, i.e.,

∂Vg(q)
∂q

= 0.

We remark that, because of the relatively small bending angle, the effect of
gravity on the dynamics is negligible compared to the impact of damping or
the torque described in (6).

Under assumptions (A1) and (A2), the dynamics (3) take the form

M(q)q̈ + (C(q, q̇) + D(q, q̇)) q̇ + Kθq = τ, (7)

and the set of equilibria is characterized by

Kθq = τ. (8)

4 Control Design

In this section we present a hybrid controller consisting of a simple model-based
feedforward controller and a correction torque obtained via GPR. Furthermore,
given the physical limitations of the system mentioned in Sect. 2, we restrict our
attention to desired configurations satifying the following:

θ� = θ1�
+ θ2�

φ� = φ1�
= φ2�

,

where θ1�
, θ2�

, φ1�
, and φ2�

denote the desired angles.

4.1 Feedforward Controller

Given the system’s configuration, which is hanging similar to a pendulum, any
constant torque—producing a bending within the physical limitations of the
system—modifies the equilibrium of the closed-loop system without destabilizing
it, i.e., a constant torque τF shifts the (stable) open-loop equilibrium q = 0 to
a new stable closed-loop equilibrium q̄ ∈ R

4. To prove this, we can consider the
Lyapunov function

H(q, q̇) = T (q, q̇) + V (q) − q�τF,

which guarantees the stability of any configuration q̄ = [φ1 θ̄1 φ2 θ̄2]�, where
θ̄1, θ̄2 are determined by τF, and φ1, φ2 can take any value. We remark that the
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specific values of φ1 and φ2 are determined during the implementation of the
controller via the mapping from pressures to torques, as explained in Sect. 5.
For simplicity, we consider a constant feedforward controller τF to drive the
manipulator’s endpoint to the N desired configurations that describe the desired
trajectory. Moreover, considering the assumptions (A1) and (A2), τF can be
computed as follows

τF = Kθq�, (9)
where q� ∈ R

4 denotes the desired configuration. Because of the arguments given
in Subsect. 3.1, (9) provides an approximation of the torque required to steer the
endpoint of the manipulator to the desired configuration. However, steady-state
errors are expected because we neglect the effect of gravity and other phenom-
ena, such as nonlinear damping and dead zones in the actuator. Such error can
be compensated with a learning approach, which is more straightforward than
obtaining the exact value analytically. Moreover, we stress that, in this formu-
lation, the model-based feedforward controller does not depend on the matrices
M(q), C(q, q̇), D(q, q̇).

4.2 Supervised Learning: GPR

GPR is suitable for efficient statistical prediction based on samples or observed
targets. This is achieved by updating the probabilities via observations. GPR
involves a mean function and covariance kernel. In particular, a prediction is
made by calculating the weighted mean. Then, the covariance or kernel function
returns how related observations are. A popular kernel function is the radial
basis function

κ(x, x′) = e− 1
2σ2 ‖x−x′‖2

(10)
where σ is the length scale hyperparameter. This parameter describes how much
the resulting function varies. This kernel function relates approximately similar
inputs—i.e., relative small Euclidean distance in the input space—to similar
outputs, while reducing the significance of distanced inputs.

To improve the feedforward controller (9), a Gaussian process regressor can
learn the relation between a correction torque τL and the resulting bending angle
θ for different desired bending angles θ�. Hence, GPR is used to predict the
bending angle θp for different torques τT. Then, the best correction torque τL is
selected—i.e., the torque for which the error

ε = θp − θ� (11)

is the closest to zero. The correction torque τL is expected to differ for each
desired bending angle θ�. Therefore, it is necessary to include θ� in the input
space of the Gaussian process. However, because GPR suffers from scaling, the
input space dimensions should be limited to avoid the learning process becoming
too slow. Consequently, we assume that τL does not significantly depend on the
angle φ. Thus, the selected input to the Gaussian process is θ� and τT, which are
the desired bending angle and the applied torque. Moreover, the output is the
predicted angle θp as shown in Fig. 4. Once the correction torque τL is selected,
the hybrid controller is given by τ = τF + τL.
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Fig. 4. Block diagram of the learning part: the inputs to the Gaussian process regressor
are θ� and τT, while the output is the predicted bending angle θp.

5 Implementation Process

5.1 Identifying Kθ

To compute τF in (9), it is necessary to know Kθ. To this end, a weighing scale
is placed vertically such that the endpoint of the soft robot is touching it. Then,
the other endpoint of the robot is bent at different angles without applying any
input (pressure), and the resulting elastic force of the soft robot is computed via
the formula F = mg. The results are shown in Table 1. To obtain the stiffness
coefficient k, the slope between the bending angle and elastic force is calculated
using the line of best fit formula, i.e.,

k =
∑

(θ − θ̄)(F − F̄ )
∑

(θ − θ̄)2
.

Finally, Kθ is obtained from (6).

5.2 From Pressures to Torques

The dynamics (3), alternatively (7), consider torques as the control input. How-
ever, as explained in Sect. 2, the system is actuated via pressures. The rela-
tionship between pressures and torques has the structure τ = A(q)P, where
P ∈ R

8 denotes the (positive) pressures injected into the air chambers and

Table 1. Resulting elastic forces when bending the soft robot.

θ [◦] Measured Weight [g] Elastic Force [N]

15 250 2.5
30 500 4.9
45 770 7.6
60 900 8.8
75 950 9.3
90 1150 11.3
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Fig. 5. Directional actuation scheme showing the actuator dependency on φ1 and φ2.

A : R
4 → R

4×8 is the actuation matrix, which has full rank. Therefore, (8)
becomes Kθq = A(q)P.

The actuation matrix is obtained experimentally estimated by measuring, for
different pressure levels, the amount of bending and using the previous measured
stiffness to estimate the amount of millibars per Newton meter. The resulting
matrix is given by A(q) =

[
A1(q) A2(q)

]
, where

A1(q) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−θ1 cos(φ1 + π
4 ) − sin(φ1 + π

4 )
θ1 cos(φ1 − π

4 ) sin(φ1 − π
4 )

θ1 cos(φ1 + π
4 ) sin(φ1 + π

4 )
−θ1 cos(φ1 − π

4 ) − sin(φ1 − π
4 )

0 0
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A2(q) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0
0 0
0 0

θ2 sin(φ2) − cos(φ2)
θ2 cos(φ2) sin(φ2)

−θ2 sin(φ2) cos(φ2)
−θ2 cos(φ2) − sin(φ2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Figure 5 shows the relation between the angles φ1 and φ2 and the pressures. Note
that A1(q) is associated with Segment 1, and A2(q) with Segment 2. Accordingly,
the control input corresponding to (9) must satisfy
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A(q�)P = Kθq�. (12)

Because A(q�) depends on the desired values for φ1 and φ2, the expression (12)
ensures that the robot moves in the desired direction for these angles.

5.3 Implementation of the GPR

The training data points are equally spread over the input space to acquire
knowledge over the full input space. The process of acquiring training data con-
sists in using the feedforward model-based controller and, on top of that, apply-
ing a varying τT to measure the resulting bending angle θ. Algorithm 1 shows
the process adopted for acquiring the learning data, where A−1(q�) denotes the
pseudo inverse of A(q�). Figure 6 illustrates the procedure, where θ� is set to dif-
ferent values (under the label “Setpoint”), and the feedforward controller applies
the corresponding torque. Then, τT is applied varying from −0.03 to 0.03. The
black line represents the sum of the feedforward torque and τT.

Concerning the Gaussian process kernel, (10) ensures that similar values for
τT yield similar bending angles, while not being affected by points further away.
Hence, it only remains to select the value for the hyperparameter σ, which, based
on a manually tuning process, is selected as σ = 0.1.

After training the Gaussian process, GPR is used online to estimate the
bending angle for different torques τT ∈ TT for the desired bending angle, where
TT is a linear-spaced array with size 100. Thus, 100 predictions are considered.
Then, for all the predictions, the error is calculated as in (11). Finally, the torque
corresponding to the smallest error is selected as follows:

τL = min
τT∈TT

|θp(τT, θ∗) − θ∗| (13)

The Gaussian process is fitted only once (before starting the movement).
Thus, the time to predict τL for the controller using the Gaussian Process is
reduced compared to fitting every iteration with new data. Figure 7 shows the

Algorithm 1. Algorithm to acquire training data for the Gaussian Process
1: begin
2: for φ := 0 to 360 step 45 do
3: for θ� := 0 to 15 step 3 do
4: for τT := −0.03 to 0.03 step 0.003 do
5: τ = τF + τT;
6: P = A−1(q�)τ ;
7: apply pressure P ;
8: Delay (1s);
9: θ(θ�, τT) := θcurrent;

10: end
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Gaussian process prediction time for each controller during control iterations.
Finally, the torque τL needs to be transformed to pressures following the approach
explained in Subsect. 5.2.

Fig. 6. Visual representation of how the data for the Gaussian process is sampled.
For different desired bending angles, a varying τT is applied on top of the feedforward
controller.

6 Experimental Results

For the experiments, we consider circular trajectories of the manipulator’s end-
point. To this end, θ�—which determines the radius of the circle—is set to a
constant value for the N points describing the trajectory. Then, the angle φ�

rotates one revolution in 10 s.
Figure 8 shows a scattered part of the learning data for three desired bending

angles. At each desired angle, τF is constant because τT varies. Then, the resulting
angle θ is measured. The figure also shows the fitted Gaussian process, where
its intersection with the corresponding desired angle line determines the best τT
obtained from the training data. When using the improved controller, τL takes
the value corresponding to the intersection between the fitted Gaussian process
and the desired bending angle.

Figure 9 depicts the measured endpoint position for two different controllers:
(i) the model-based feedforward τF and (ii) the hybrid controller, i.e., the
feedforward controller in combination with the learning approach explained in
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Fig. 7. Overview of the time for the controller to calculate the new τL during the
experiments.

Subsect. 4.2. The experiments last one minute, which is equivalent to 6 rota-
tions. The left polar plot in Fig. 9 shows the experimental results of the feedfor-
ward without correction torque, while the right polar plot in Fig. 9 depicts the
experimental results considering the correction torque τL obtained via GPR. The
correction torque is implemented only for Segment 2. The reason for this is that
the learning approach considers the total bending of the manipulator. Hence,
implementing a correction torque in both segments results in a larger error as
the GPR tries to correct the error twice.

Figure 10 provides a comparison between the performance of the model-based
controller and the hybrid one for different radii of the circular trajectory. In this
figure, the improvement using the hybrid controller is particularly notorious for
15◦.

6.1 Performance Assessment

Small errors in the desired bending angle can be caused by sensor noise or the
internal PID controllers in the VTEM regulator. In contrast, large errors can be
associated with the controller’s limitations. Hence, the root-mean-square (RMS)
error can be used as a performance index to compare the controllers. Figure 11
shows the resulting RMS errors for the model-based and improved controller
for different desired bending angles. The figure shows that the RMS error is
considerably reduced—approximately 40%—for a desired bending angle of 10◦,
highlighting a performance improvement that is not evident in Fig. 10. To further
assess the performance of the proposed controllers, we compare the experimen-
tal results for three different desired bending angles—10◦, 12◦, and 15◦—via the
box plots provided in Fig. 12. The box plots show that the median correspond-
ing to the improved controller is very close to the desired value for the three
experiments. In contrast, the median corresponding to the model-based feedfor-
ward controller diverges from the desired value as this increases, as observed in
the experiments where the desired angle is 12◦ and 15◦. Moreover, the improved
controller outperforms the model-based one in terms of precision (determined by
the box size) in the experiments where the desired angle is 10◦ and 15◦. Hence,
we conclude that for the particular experiments where the desired angle is 15◦,
the improved controller performs considerably better than the model-based one.
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Fig. 8. A snippet of the training data. The resulting bending angle θ for varying τT.
For readability, only three different desired angles θ� are shown.

Fig. 9. Polar plot showing the circular trajectory of the soft robot for different con-
trollers. (Left) Model-based feedforward controller. (Right) Feedforward controller
improved with the learning approach. The target angle θ� = 12◦ is shown in orange.
(Color figure online)

This result is unsurprising because gravity has a greater influence on the system
dynamics as the bending angle increases.



32 E. Tavio y Cabrera et al.

Fig. 10. Comparison between the feedforward and the hybrid controller. The task
consists in describing circular trajectories with different radii. The soft robot bending
angle is denoted as θ.

Fig. 11. RMS error graph for the model-based controller and the hybrid (improved)
controller.
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Fig. 12. Box plots that illustrate the accuracy and precision of the model-based and
improved controllers. A smaller box indicates more precision, while the median indi-
cates the task’s accuracy. The desired angles are plotted with dashed green lines for
reference. (Color figure online)

7 Concluding Remarks and Future Work

This paper proposed a simple yet effective hybrid controller for a pneumatic-
driven soft manipulator. The proposed hybrid controller has been validated
experimentally in a soft manipulator consisting of two segments made of silicone.
Moreover, the benefits of combining learning and model-based strategies have
been thoroughly analyzed by comparing the performance of the closed-loop sys-
tem with and without the correction torque obtained via the learning approach.
Unsurprisingly, the hybrid controller performs better in scenarios where the non-
linear phenomena neglected in the mathematical model significantly influence
the system’s behavior. However, it is remarkable that the proposed simplifica-
tions greatly reduced the analytical complexity of the model-based controller
and guaranteed a learning process fast enough for implementation purposes.

The control design strategy is expected to be suitable for implementation in
other systems with similar properties, e.g., tendon-driven continuum soft robots
and different designs of pneumatic-actuated soft manipulators. Furthermore, the
following items are proposed for future research:

• To include feedback terms in the model-based part of the hybrid control
strategy. Feedback may be essential in control tasks involving disturbances.

• To analyze the performance of the proposed controller in scenarios with larger
bending angles or load manipulation. Nonlinearities a more important as the
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bending angle increases. The soft robot used in this paper is unsuitable for
performing such control tasks because of its physical limitations.

• To adapt the learning part for control tasks focusing on the robot’s posture
instead of its ending point.
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