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Abstract. Dynamic pricing can be used for better fleet distribution
in free-floating vehicle sharing (FFVS), and thus increase utilization and
revenue for the provider by reducing supply-demand asymmetry. Supply-
demand asymmetry refers to the existence of an undersupply of vehicles
at some locations at the same time as underutilization of vehicles at other
locations. We propose to use dynamic pricing as an instrument to incen-
tivize users to rebalance these vehicles from low demand locations to
high demand locations. Despite significant research in rebalancing vehi-
cle sharing, the literature so far lacks experimental results on dynamic
pricing in free-floating vehicle sharing. We propose to use an algorithm
that minimizes the differences in the idle time of vehicles. The algorithm
is tested in a real-life experiment that was conducted in cooperation with
an FFVS provider. The results of the experiment are not statistically sig-
nificant, but they clearly indicate that even slight differences in pricing
and a simple algorithm can already influence user-behavior to counter
supply-demand asymmetry. Improving the existing algorithm with more
experimental research is advised to further uncover the potential of this
strategy.

Keywords: Dynamic pricing * User-based rebalancing - Free-floating
vehicle sharing - User-based operations - Living lab - Price sensitivity

1 Introduction

In recent years, one-way shared mobility has seen large growth. One-way shared
mobility can be subdivided into station-based vehicle sharing (SBVS) and free-
floating vehicle sharing (FFVS). The main difference between these two modes
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of vehicle sharing is that SBVS only allows pick-up and drop-off of vehicles at
specific locations called stations. This mode of vehicle sharing is mostly present
in bicycle sharing (BS) and the stations are often physical existing stations with
a limited number of spots available for dropping off vehicles. FFVS allows the
drop-off of vehicles at any locations inside a certain geofenced area. The result of
this difference is that FFVS offers users more freedom and flexibility. However,
balancing the fleet is easier to manage in SBVS. The large growth of one-way
shared mobility in recent years is especially visible in FFVS according to a study
by the Bundesverband Carsharing [1], a German carsharing organization.

Another recent trend is the usage of small vehicles, called micromobility. The
term micromobility generally encompasses vehicles that weigh under 500 kg [9],
including (e-)bikes, kick-scooters, and seated scooters (also known as mopeds).
The potential market for micromobility has been estimated to make up for about
50% to 60% of all passenger miles traveled [11]. The same estimation concludes
that these miles will translate into a potential market of between $330 billion
to $500 billion worldwide, of which between $100 billion and $150 billion is in
Europe alone, by the year 2030.

The successful adoption of FFVS as a part of an urban transport system
requires reliability from the perspective of the user. Reliability can be achieved
by ensuring the availability of a vehicle at nearly all times and places of demand.
From the perspective of the FFVS operator, the availability of vehicles for cus-
tomers can be increased by increasing the number of vehicles or restricting the
service area. But rather than performing large investments by increasing the
vehicle fleet or decreasing the number of potential customers by reducing the
geofenced area, researchers have suggested a different approach to increase vehi-
cle availability: rebalancing [7,13,16,17,19]. Rebalancing is the act of reposi-
tioning vehicles from low-demand to high-demand areas to overcome spatial
asymmetry in supply and demand. This supply-demand asymmetry is a com-
mon difficulty in FFVS systems. Studies suggest that a successful rebalancing
strategy can greatly increase the performance of a vehicle sharing system by
increasing availability [17,19] or, in the case of ride-hailing, decreasing customer
pick-up time [6,14].

Rebalancing of vehicles can be done by the operator (operator-based rebal-
ancing) or by incentivizing users (user-based rebalancing). Dynamic pricing (DP)
can be used to incentivize users to perform user-based rebalancing. Despite suc-
cess with dynamic pricing to influence customer behavior in a variety of indus-
tries, it is still not common practice to apply DP to incentivize user-based rebal-
ancing.

Responding to the current trends that were discussed in the first two para-
graphs of this paper, we extend the academic research regarding user-based
rebalancing. We investigate what dynamic pricing can do for user-based rebal-
ancing in the upcoming free-floating vehicle sharing market. The rest of this
paper will focus on answering the question:

How can dynamic pricing incentivize user-based rebalancing in
free-floating vehicle sharing?
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To answer this question we will first define what an optimal rebalancing strategy
is in free-floating vehicle sharing. This strategy will be translated into a pricing
strategy. We will make suggestions on how to evaluate such a pricing strategy,
and finally, show how these results translate to other free-floating vehicle sharing
platforms.

2 Literature Review

Multiple research articles have proposed relocation strategies for mobility on
demand (MoD) systems that can decrease the average walking distance to one
of the assets or decrease the average customer waiting time. Research on rebal-
ancing for (autonomous) MoD has already extended to even incorporate different
service levels [2] or a combination of parcel and person transport [3]. However,
research in vehicle sharing is less advanced. Most of the research on vehicle shar-
ing solves a static version of the rebalancing problem in BS [7,16]. Often this is
done with the use of mixed-integer linear programming (MILP).

In the field of DP in mobility, Uber is probably one of the most experienced
players. The DP system of Uber is called surge pricing and research into this
system shows that it can increase total welfare according to the concept in trans-
port economics [6,8,14]. Although it ought to be noted that maximizing revenue
in these ride-hailing systems with dynamic pricing also has its downsides as it
has a negative influence on congestion [15,18].

Congestion issues are less important for most forms of micromobility as they
do not form traffic jams as easily. Also, the total number of miles driven in a ride-
hailing system is higher than that of one-way vehicle sharing caused by vehicle
miles traveled to the start point of the customer [12]. Another notable difference
between DP in ride-hailing services and DP in one-way vehicle sharing is that
DP in ride-hailing also affects the supply side of the demand-supply asymmetry,
because the pricing affects the payments of the drivers [10]. Results of research
into operator-based rebalancing of ride-hailing services points in different direc-
tions suggesting either large improvements even for small fleet sizes [20] or only
marginal improvements [23].

A notable attempt on solving the rebalancing problem in one-way vehicle
sharing that also considers user-based rebalancing is focused on SBVS [17]. This
research finds that the ideal rebalancing strategy combines operator-based rebal-
ancing with user-based rebalancing. A limitation of this research is that it does
not consider latent demand, which is the demand that is not visible in the
data because there were no vehicles available at a certain place and time, but
rather assumes that historical data provides a full picture of demand for the
service. Also, the results are only derived by simulation and not by a real-life
experiment. This requires some assumptions about human behavior, like full
rationality, which do not do justice to the complexity of the real-life problem.

The methods developed in [17] are applied in an experiment in BS [19].
This research extends on [17] with several insights. For example, it is shown that
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most of the rebalancing actions are done by only a small group of people. Survey-
based research also finds that users are in general open to the idea of user-based
rebalancing and are willing to comply with different methods of rebalancing [13].

Both [17] and [19] focus on increasing the service level although in the latter
research it is renamed to quality of service. The definition of a service level is
given as follows:

Potential customers — No-service events

Service level = Potential customers (1)
It is important to note is that latent demand is not taken into account. The
no-service events in this metric are determined by assuming that the demand
will stay the same independent of the rebalancing. The results of the experiment
performed by [19] are also not used to evaluate the effect of rebalancing on
the service-level of the SBVS system. To the best of our knowledge, this means
that no research so far has provided any insights into the effect of user-based
rebalancing in one-way vehicle sharing that are based on experimental results.
This is also visible in Table 1, which contains the references used in this research.
A general lack of experimental research, as well as a lack of research on user-
based rebalancing in FFVS in general, can be concluded from this overview.

Table 1. Analysis of articles about rebalancing in Vehicle sharing showing the dif-
ferent research methods applied to different types of vehicle sharing and whether the
research includes dynamic pricing (DP), operator-based rebalancing (OBR) and user-
based rebalancing (UBR).

Reference Type DP | OBR | UBR | Method

Zhou [23] Ride-hailing | v |V Simulation
Qiu et al. [18] Ride-hailing | v |V Simulation
Kroll [15] Ride-hailing | v* |V Simulation
Korolko et al. [14] | Ride-hailing | v/ |V Simulation
Castillo et al. [6] Ride-hailing | v | v Simulation
Chemla et al. [7] SBVS v Simulation
Pal and Zhang [16] | SBVS v Simulation
Spieser et al. [20] AMoD v Simulation
Wen et al. [22] AMoD v Simulation
Pfrommer et al. [17] | SBVS v v v Simulation
Singla et al. [19] SBVS v |V v Experiment
Herrmann et al. [13] | FFVS v v Survey
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3 Methodology

3.1 Optimal Rebalancing Method

The methodology of this research was outlined in the last paragraph of the
introduction and starts with defining what the ultimate rebalancing strategy is
for FFVS. The answer to this question is mainly based on the research done
by [17]. The optimal strategy is the one that minimizes the deviation from the
optimal distribution of vehicles. [17] use historical origin-destination pairs of
rides to determine the departure and arrival rates of every station at different
times and days. Based on this they build a simulation in which they attempt to
positively affect the service level by applying a rebalancing strategy.

Following the lines of academic research so far, we construct a simulation
based on historical origin-destination pairs from which we can draw demand
patterns for different areas in the service area. We discretize the spatial data by
clustering the rides to certain areas and model the system as an SBVS system.
The data is divided into week/weekend days and one day is sliced into time
frames of 1h. The simulation draws random samples from the data based on
the different data sets and simulates these rides. However, the simulation does
not provide realistic results especially in areas in which the number of rides
taken is relatively low. A reason is that origin-destination pairs ignore the latent
demand of the system and, thus, areas that lack supply in particular do not
give a good representation of the demand. For this reason, we refrain from using
origin-destination pairs of rides to determine the demand. We propose to use a
different metric instead as a basis for the rebalancing strategy: idle time.

Idle time is the amount of time between two consecutive rentals of one vehicle
that is available for rent. Hours that are outside of the FFVS opening hours or
the time during which a vehicle’s battery has been empty are not part of the idle
time of a vehicle. We assume that the preferred rebalancing strategy, from the
customers’ point of view, balances the vehicles such that the idle time of vehicles
is equal across the whole service area. In this scenario the utilization of vehicles
is equal across the service area, which is good for the service level. However, it
does not take into account differences in ride length, and for that reason, might
slightly differ from the most profitable scenario from the operators point of view.
Rebalancing actions that have a positive utility are those for which the expected
idle time of the vehicle is lower in the targeted area compared to the vehicles
current area.

These definitions lead to a slightly altered version of the minimization prob-
lem that was set up in [17]. We use a as an index for a certain area that is part
of the total service area A. The parameter v is an index of a certain vehicle.
The idle time that a vehicle has spent in a certain area is 0, ,. The average idle
time of an area is I, = % ZUEV 0a,v, Where V is the complete set of idle times
measured during a certain time interval. The expected idle time is derived from
historical data and denoted with I, and the average idle time of the complete
area I. The average profit made per vehicle per unit time is denoted with R
and the monetary incentive for a certain ride is p. In the experiment, the mon-
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etary incentive p is a reduction of the per minute price. Multiple different levels
of reduction are tested in the experiment. The difference in idle time resulting
from an applied incentive p is denoted by AI(p). We can define the following
optimization problem:

min Z Z (Iaﬂ) — 7)2 —+ « Z Z Pa,v (23‘)

p(v) a€AveV, acAveV,
subject to AL, (p)R—p >0 VacA (2b)
Al(p) < I, VacA (2¢)

The objective function (2a) minimizes the differences between the real scenario
and the optimal scenario (in which idle time is equal across the whole service
area) and the total sum of the costs of the incentives given. The factor a can
be set in accordance with the importance of suppressing the costs of incentive
payout. Constraints (2b) ensure that the result of a certain incentive payout has
a positive influence on the operator’s profit. Constraints (2c) take into account
the upper limit of a decrease in idle time by an incentive p.

The minimization problem is used to determine the optimal pricing strategy.
This pricing strategy is based on a set of two different predictions. Figure 1 shows
how these two predictions influence the pricing strategy. Both of the predictions
are drawn from historical data. The effect of pricing on the idle time can however

~_
, -t
—
Save data, 6,,, -—
Historical data
= v !
ol =7 @ ,| Predictidle Predict effect of
FFVS system ‘e X~/ g times: | pricing: Al(p)

Observe current state

=%

A A 4

Determine pricing strategy: p(v,t)

®

Execute strategy

Fig. 1. The pricing strategy is determined based on historical data and the current
state of the system as is shown in this block diagram. The current state consists of the
amount of the current idle times of the vehicles in the system. The current fill levels
should be taken into account when determining the expected idle times.
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only be determined by experiment. This will be pointed out later in this paper
as well.

The effect on the service level can be determined by looking at the average
number rides in a certain time frame and the difference in idle time that was the
result of applying certain incentives. If n,;4.s is the total number of rides during
a certain time frame then the change in service level is given by the following:

AService level(p AL( (3)
(;4 IA n'r‘zdes

3.2 User-Based Rebalancing

When considering the payout of incentives for certain rebalancing actions it is
important to keep in mind that it might be difficult to find users to perform
these actions. A rebalancing action as described in the section above is called
a complete rebalancing in this research. There are, however, also other possible
ways to rebalance in FFVS. We distinguish between three different methods of
rebalancing, as listed below. The difference between complete rebalancing and
pushed rebalancing is made visible in Fig. 2.

1. Complete rebalancing incentivizes a complete rebalancing action. In this
case, a customer is presented with an incentive to reposition a particular
vehicle to a certain location. It is, in fact, similar to what an operator would
do when rebalancing vehicles. It can be difficult, however, to find customers
that are willing to reposition a vehicle when both the origin and destination
of the trip are fixed. This requires the incentive to be high.

2. Pulled rebalancing incentivizes users to end a ride at a certain position.
This is done by [19] and also considered by [17] when an extra reward is given
for leaving a bike at a (nearly) empty bike station. Giving out these incentives
requires the definition of high-demand areas and high-demand times. This
information then needs to be communicated to the end-user such that they
can be incentivized to leave behind a vehicle in such a position. Such incentives
are determined and provided by [19] during the rental period of the client,
taking into account also the current number of bikes at a certain bike-sharing
station.

3. Pushed rebalancing incentivizes users to start a ride with a certain vehicle
without specifying where the vehicle should travel to. This is also performed
by other free-floating car-sharing and e-scooter-sharing companies. In this
case, the operator incentivizes the use of certain vehicles. Often these vehicles
are positioned in a low-demand area or have not been used for a certain
amount of time. When this type of incentive reduces the idle time of the
vehicle the vehicle can bring in extra revenue and create extra availability.
This type of rebalancing assumes that on average many vehicles departing
from low-demand areas will end up in areas in which the demand is higher.

Also important to note is that the values of AI(p) can only be determined by
modeling user behavior or by experimental research. The lack of experimental
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research was already indicated in Sect. 2. Experimental research can uncover
better insights into how effective a certain pricing strategy is. In the rest of this
research, we set up a living lab that is based on pushed rebalancing.

T BR current fill level
hi(®) B B fill level after rebalance
- A ft - expected idle time
[~ ftw
1[0] = Tt+y) —-
L F 1 —=af:
+Af 4 Y
- 1, (t+y) Tft
° — - ° o
- -
ad =A% % aa
=K =|& _ =6
=5 =5 =%
1 2

(a) In complete rebalancing, both the starting and ending posi-
tion of a rebalancing move are known.
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22 sk RE=S
R =R
= = .
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current fill level
possible fill level after rebalance
expected idle time

33
= || aa

(b) Pushed rebalancing is performed from an area that is over-
supplied. The vehicle will most likely end up in another area in
which it is needed more.

Fig. 2. Schematic representation of different modes of rebalancing. Where f; is the fill
level of a certain are at time ¢, v is the time required for a rebalancing move and Af
is the change in fill level resulting from the rebalancing.
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4 Experiment in a Living Lab Setting

4.1 Setting up the Living Lab

The key principles of a living lab are continuity, openness, realism, empowerment
of users and spontaneity, according to [21]. Examples of setting up a living lab
are given by [4] and [5]. We take the most important lessons of these works into
account to set up an effective living lab experiment for our use case. A notable
difference between how the living lab has been set up in this research and that of
[5] is that the concepts in our research are developed with very little co-creation
(i.e., service design process with input from customers). The development of
the concept, however, was the result of research into different possibilities that
were all viewed from the customer’s perspective. After this, the concepts are
evaluated in a living lab setting. The main focus of this living lab experiment is
to make the experiment very realistic and evaluate the concept in a user-centered
way. The lessons learned from the experiment described below should take into
account co-creation for the development of follow-up concepts. These co-creation
characteristics of a living lab are not emphasized in this paper and should be set
up as a continuation of this research.

To ensure continuity and realism we implement our pricing system in an
existing FFVS system without making any changes to the service area, fleet size,
or users. The pilot is communicated to the users only as it begins. Qualitative
feedback is asked for directly, adhering to the spontaneity principle. The pricing
system is visible and available to use for all users.

In the service area, we define a set of low demand areas L for which L C A

and Ta,t > I, + ~v where gamma is a factor that controls the size of the low
demand area. In addition, we define a set of control areas C' that have an idle
time that is close to the average of the service area for which CUL C A and
CNL=0.Both in L and C for a certain period, a set of vehicles is discounted.
This reduction in price will be the same for different vehicles at the same moment
in time, so there is only one level of discount tested at a certain moment in time.
The experiment runs for a couple of weeks and tests multiple levels of discount.

As indicated in Fig. 3, the experiment bases its pricing strategy on a predic-
tion of the idle time: I. The strategy that is executed only discounts a subset of
the vehicles and does not discount the other vehicles. Both of the measurements
I (of discounted and not discounted vehicles) are compared with the predic-
tion made beforehand. Their relative differences can be calculated to show the
effect of a price discount under the same external influences, I;fl The difference
between discounted and not discounted vehicles will provide insight in the value
Al(p).

A fixed incentive is applied to vehicles in these areas. After a certain time
period the incentive is changed and the effects on the idle time of the vehicles
for different incentives and different areas is compared. In total, two different
incentives are applied: p1, a 10% reduction in price and py, a 15% reduction in
price. In both of the areas only 50% of the vehicles are discounted. The vehicles
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@ Predict idle times: T ‘

‘ %‘, Determine pricing strategy: p(v,t)

I Experiment —
Execute strategy

/)%

FFVS system

93

&

Measure effect of pricing: Al(p)

=%

Measure idle times, 6,1,

Fig. 3. The expected idle times are used to determine a pricing strategy. The execution
of this strategy will then result in idle times which can be compared with the expected
idle times. The comparison of the resulting values and expected values will show the
effectiveness of a strategy.

aill Ben NL = 16:47 @ 7 92% 4

@ Get10% discount on this ride
Badhuisweg 147
@ 48% 34 kr & 46 km 696

Extended reservation
€0.15/min (first 15 min free)

Reserve for 15 minutes
Free

Fig. 4. Screenshot of FFVS application, showing how discounted vehicles are made
visible in the application.

that are discounted are made visible in the application with a different icon.
This is shown in Fig. 4. The difference between the results of the discounted and
not discounted vehicles are discussed in the next section.
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Table 2. Averages of idle time of the living lab experiment. I“i;la is the difference
between the expected value of idle time and the average of the ‘measured idle time
samples as indicated in Fig. 3. The different values for discounted and not discounted
vehicles lead to the measured impact of incentive AI(p).

Not discounted | Discounted | Difference

% n % n AI(p)a | n
Low demand | p1 +26% | 658 +0% | 676 |26% 1,334
P2 +15% | 542 —15% | 634 | 30% 1,176
Total | +21% | 1,200 | —6% |1,310|27% 2,510
Control p1 +15% | 284 +12% | 240 |3% 524
D2 +6% 207 —12% | 241 |18% 448
Total | +11% | 491 +0% 481 | 11% 972

4.2 Results of the Living Lab

During the pilot period, we measured the idle times of different vehicles that were
discounted and not discounted. The differences between these results and the
value that was expected are noted in Table 2. This table measures the resulting
idle times for two different incentives: p; and py for which ps > p;. The values
in the table are the average idle time values of both the group of not discounted
vehicles and discounted vehicles. From the results in Table 2, we draw several
conclusions.

The first clear effect that is visible is the difference in the effect of different
incentives: AI(p) is larger for ps than for p; in both the low demand areas and
the control areas. This means that higher incentives have a larger effect. The
second effect we note is that the values of AI(p) are higher in the low demand
areas than they are in the control areas. This can easily be seen by comparing
the total values for both of these areas. This means that the pricing has a larger
effect in areas with higher idle times. A reason for this could be that users need
a certain time before the discount is noticed, which will result in a relatively
larger effect for longer idle times.

Another clear result in Table 2 is that the expected values of the idle times are
relatively low. The measured values for idle times I are therefore relatively high
in comparison. This leads to very positive values of I“i;lu, whereas a negative
value would have been expected. This is investigated closer later in this section.
The expected value of the idle times is, however, not of importance when looking
at the difference between the discounted and not discounted vehicles, so the
above conclusions still hold.

Finally, the data of the living lab experiment shows that for different areas
the effects vary heavily. For example, multiple areas marked as low demand areas
show very different results on the effect of pricing AI(p). These differences could
be dependent on characteristics of these areas such as the distance to the center
of the service area or other characteristics. The total number of measurements n
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in some of these areas is, however, relatively low. More measurements are needed
in order to get a significant result to make comparisons between these areas as
illustrated in Fig. 5. These differences are not visible in Table 2, because this table
contains the average of all of the incentives. The average of discounted and not
discounted vehicles in the same area does not significantly decline in comparison
with the average idle times before the pilot. This is visible in Fig. 6. The average
line shows no significant decline and is not stable during the period of the pilot
due to significant influences of the weather. Some weeks show an overlap between
two different incentives because the shift between these discount levels was made
during the week. A reason for the average idle time not declining could be that
the offered discounts are too low. The number of vehicles that are discounted
is only about 5% of the number of rides. Moreover, the idle times fluctuate
heavily with the influence of exogenous variables, which makes it very difficult

O O o O O O
ARSI »\Q\m 9 %\& u\& %\& b\&
S I R I S O I G
lowdemand1 1 2 1 19 64 37 42 37 26 32 6 -13
lowdemand2 25 12 40 9 3 21 20 22 18 9 36 27 5
lowdemand3 29 18 3//%67 -6 8 25 36 28 53 -10 53 13
lowdemand4 7 -16 25 21 44 34 22 13 34 46 36 48 21
lowdemand5 34 29 32 35 1 58 73 54 66 21 4 40
Controll 4 2 3 19 26 21 12 20 -10 22 10 15 35
Control2 6 31 4 27 2 20 28 29 23 -16 27 9 3

Control 3 27 3 10 36 24 13 36 -16 -46 7 5 30 -19

Fig. 5. The I“f;f“ values for “low demand” and “control” areas applying the strategies,

nodiscount, pl{,l and p2 in different weeks. Putting expected and measured idle times
into relation, these values indicate how effective a pricing policy has been in a specific
area and week.

Weekly average idle time of targeted rides for low demand areas

Average idle time
I
I

wa W5 wé

=1 x
w3

W-3 W-2 W-1 wo w1 w2

Week

w-4

ot discounted W= p1 p2 average

Fig. 6. The weekly averages of idle time for different vehicle groups.
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to compare the results during the pilot with the historical data. This suggests
that the incentives have probably triggered people to drive certain vehicles, but
that these incentives might have been too low or not applied long enough to
increase demand.

5 Conclusion

The success of dynamic pricing strategies for user-based operations in vehicle
sharing highly depends on the users. Dynamic pricing algorithms, therefore, need
to be implemented in real-world systems to fully evaluate their impact. To our
knowledge, this is the first work that does this in the case of free-floating vehi-
cle sharing. From the results, we conclude that even small price incentives and
basic algorithms can be used to steer the behavior of the user. This means that
dynamic pricing can be used as an instrument to incentivize user-based rebal-
ancing in free-floating vehicle sharing. However, the effect on differences between
idle times in different areas at the same time has not been significant. To reach
more significant results in this regard, larger incentives might be needed or the
pricing algorithm needs to be improved. Results for different living labs showed
similar trends, but were still different. It could be interesting to investigate how
well these results translate to other modalities of free-floating mobility, or how
the effects of pricing can be different for different countries. It would also be
useful to know what happens when all vehicles in a certain area are discounted.
However, the resulting differences in idle time with idle times at other locations
in the service area would have to be compared to times before and after apply-
ing the pricing algorithm. To make this comparison, more insight into the effect
of exogenous variables on this difference would be needed. Lastly, this research
does not investigate a price increase or negative incentives. Price increases are
also part of dynamic pricing and can lead to an increase in revenue, but will
probably not lead to an increase of service level.
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