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The Cargo Fare Class Mix problem for an intermodal
corridor: revenue management in synchromodal
container transportation

Bart van Riessen1,2 • Rudy R. Negenborn2 •

Rommert Dekker1

� The Author(s) 2017. This article is an open access publication

Abstract The intermodal hinterland transportation of maritime containers is under

pressure from port authorities and shippers to achieve a more integrated, efficient

network operation. Current optimisation methods in literature yield limited results

in practice, though, as the transportation product structure limits the flexibility to

optimise network logistics. Synchromodality aims to overcome this by a new pro-

duct structure based on differentiation in price and lead time. Each product is

considered as a fare class with a related service level, allowing to target different

customer segments and to use revenue management for maximising revenue.

However, higher priced fare classes come with tighter planning restrictions and

must be carefully balanced with lower priced fare classes to match available

capacity and optimise network utilisation. Based on the developments of intermodal

networks in North West European, such as the network of European Gateway

Services, the Cargo Fare Class Mix problem is proposed. Its purpose is to set limits

for each fare class at a tactical level, such that the expected revenue is maximised,

considering the available capacity at the operational level. Setting limits at the

tactical level is important, as it reflects the necessity of long-term agreements

between the transportation provider and its customers. A solution method for an

intermodal corridor is proposed, considering a single intermodal connection towards
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a region with multiple destinations. The main purpose of the article is to show that

using a limit on each fare class increases revenue and reliability, thereby outper-

forming existing fare class mix policies, such as Littlewood.

Keywords Intermodal planning � Synchromodal planning � Container
transportation � Revenue management � Fare class sizes

1 Introduction

Since 2011, the study of planning models for intermodal container transportation

has received much attention, e.g. in Caris et al. (2013), Nabais et al. (2013),

SteadieSeifi et al. (2014), Li et al. (2015) and Van Riessen et al. (2015a, 2016). The

motivation for this renewed attention is two-fold: optimisation is required to meet

the modal split targets in deep sea ports and to satisfy the need for a more integrated

approach to hinterland transportation. Firstly, several port authorities have stated

modal split targets, e.g. in Rotterdam (Port of Rotterdam 2011), Hamburg and

Antwerp (Van den Berg and De Langen 2014). Attaining the modal split levels for

port operators necessitates a planning approach that considers multiple modes and

routes integrally, we refer to this as an integrated network planning approach.

Secondly, several studies recognised the need for such an integrated approach for

several stakeholders in container supply chains, e.g. Franc and Van der Horst

(2010), Veenstra et al. (2012) and Top Sector Logistics (2011). Available network

optimisation models mostly assume that all transportation orders can be scheduled

with full flexibility, considering operational constraints and time windows.

However, integral network optimisation models have limited value as long as no

integral coordination is possible. The need for a differentiated product portfolio was

described in Van Riessen et al. (2015b). Ypsilantis (2016, pp. 23–46) showed that

container dwell times at terminals largely depend on shipper’s actions, representing

a varying need of urgency of further transporting containers. This relates to a high

variation in the number of transports from day to day, as shippers generally order for

transportation with a fixed mode, route and time. Such orders do not give the

operator of an inland transportation network any flexibility for integral optimisation.

Some flexibility, allowing the network operator to choose from multiple options per

order, could be used to optimise the network transportation plan. Therefore, the

network operator has an incentive to introduce a range of transportation services

with varying levels of flexibility. Such new product ranges have been studied at

EGS by Lin (2014) and independently by Wanders (2014). Their work is related to

the development of differentiated product portfolios in practical applications in

North West Europe, such as in the hinterland transportation network of European

Gateway Services (see European Gateway Services, n.d.). EGS is considering to

offer a differentiated portfolio to the market, starting with a single corridor in its

network. Their goal is to increase both utilisation of inland trains and vessels, and to

increase reliability of container transports arriving on time. In this article, we study

their case to find the benefit of a new set of two products with a different degree of

flexibility for a single corridor of container hinterland transportation. We compare
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corridors, based on differences in demand and price levels to support EGS in

deciding which corridor is most promising. The new portfolio consists of two fare

classes with varying delivery lead times and prices. In a traditional capacity

allocation model, typically the inferior fare class is limited, to reserve space for the

superior fare class with high revenue (such as Littlewood 1972/2005). In the EGS

case however, long-term commitments to customers with repetitive demand are

made, and all incoming demand for a fare class within the commitment must be

transported. To achieve an optimal balance between both fare classes, a limit for

each fare class must be determined. This is a problem similar to the fare mix

problem in aviation: how much available capacity must be reserved for each fare

class? The main purpose of this article is to show how offering two fare classes can

significantly increase revenue compared to alternative approaches. Also, we show

that including limits for each fare class is not only necessary to prevent high costs of

trucking excess cargo, it is even beneficial in terms of expected revenue compared

to alternatives. We define these problems as the Cargo Fare Class Mix (CFCM)

problem. This class of problems is based on differentiated service portfolios in

intermodal networks, but it is also relevant for applications in parcel delivery

services and inventory management in online retail. We provide a framework to

distinguish between different variants of the problem and we provide analytical

solution methods for a single corridor. We propose a model and exact solution

method for the special case of the CFCM problem with two products in an

application with 1 intermodal route, multiple destinations and a horizon of 2

delivery periods. We demonstrate the model and solution method in a case study of

many different parameter settings comparing different hinterland transportation

corridors. This case study supports European Gateway Services in introducing such

a differentiated portfolio. Finally, we show by numerical experiments that the

increase in expected revenue by considering a longer delivery horizon is limited.

The remainder of the article is structured as follows. Section 2 provides an

overview of existing literature on intermodal networks and revenue management in

freight applications. Section 3 proposes a classification structure for different

variants of the CFCM problem and describes the special case of the CFCM problem

for a single corridor. Section 4 describes the proposed solution method for this case

and Sect. 5 presents a case study and results, showing the potential gains for this

case. Section 6 concludes this article with an overview and outlook to future

research.

2 Literature review

2.1 Intermodal networks

Supply chains get increasingly interconnected and shippers demand higher levels of

service, such as short delivery times and reliability (Veenstra et al. 2012; Van

Riessen et al. 2015a). The logistic expression for integrated transportation is

intermodality. The main challenge for an intermodal network operator is the

continuous construction of an efficient transportation plan. That is, the allocation of
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containers to available inland services (train, barge or truck). Generally, container

hinterland transportation is organised per corridor between a deepsea port and a

hinterland destination, although integral network operators are arising, such as EGS

(Veenstra et al. 2012). Consolidation of flows between hubs in barge of train

services is cost efficient as it benefits from the economies of scale (Ishfaq and Sox

2012). For a complete overview on intermodal planning optimisation, see

SteadieSeifi et al. (2014). The approach towards offering hinterland transportation

services is changing. Franc and Van der Horst (2010) studied the motivation of

shipping lines and terminals for the integration of the hinterland in their service.

Veenstra et al. (2012) introduced the concept of extended gates for deep sea

terminals. Currently, many studies refer to the concept of synchromodal

transportation (e.g. Top Sector Logistics 2011; SteadieSeifi et al. 2014; Behdani

et al. 2016), aiming for real-time optimal transportation planning in an integrated

hinterland transportation system. Synchromodality can only really provide an

advantage if the intermodal planning problem is considered in conjunction with the

product portfolio offered to customers (Van Riessen et al. 2015b). Related to this,

some researchers have studied the pricing problem of intermodal inland services.

Ypsilantis (2016, pp. 47–82) proposed a model for jointly determining prices for

transportation products and designing the transportation network. Li et al. (2015)

study the problem of pricing a differentiated portfolio in a cargo network based on

expected realised costs, considering the network state. These works have not looked

into the optimal fare class mix of offered transportation services yet, though.

2.2 Revenue management in freight transportation

The concept of different service propositions in transportation is very similar to the

concept of different fare classes for the same flight in aviation. Barnhart et al. (2003)

give an overview of operations research in airline revenue management. The

primary objective of airline revenue management models is to determine the

optimal fare mix: how many seats of each booking class should be available, given

demand forecasts and a limited total number of seats? Some studies on revenue

management in freight transportation focus on the online policy: whether to accept

or reject an incoming order. Pak and Dekker (2004) propose a method for judging

sequentially arriving cargo bookings based on expected revenues. If the direct

revenue of a booking exceeds the decrease in expected future revenue, the order is

accepted. Bilegan et al. (2013) apply a similar approach on rail freight application.

In their approach the decision of accepting or rejecting an arriving transport order is

based on the difference in expected revenue with and without that order. These

studies assume that accepting or rejecting an incoming order can be done at the

operational level. Other studies acknowledge that in freight transportation orders are

often agreed on in long-term contracts. Because of this, a per-order approach to

revenue management is not sufficient. The traditional revenue management

approach is to reserve capacity at the tactical level for a superior service, while

the remainder of the capacity is offered at the operational level (Chopra and Meindl,

2014). Liu and Yang (2015) develop a two stage stochastic model for this problem:

in the first stage, all long-term contracts are accommodated; in the second stage a
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dynamic pricing model is applied for offering the remaining slots. In all these

studies, it is assumed that the planning characteristics of all orders are identical, i.e.

an order of any service can be carried out with the same transportation options.

To our knowledge, no existing studies have looked into the Cargo Fare Class Mix

of differentiated services with different planning characteristics. In this study we

aim to determine the optimal cargo fare mix for a given service portfolio with

difference in both price and leadtime. This setting introduces a new issue to the fare

mix problem, as the operator must balance between higher priced service with few

transportation options and lower priced services with more transport options (e.g.

different modes, routes and times). Hence, a lower priced service allows more

flexibility in the operational plan and is not simply inferior to a higher priced

service. As transportation orders for each service type are agreed on in long-term

contracts, an optimal mix between the offered services must be determined in

advance, at the tactical level. Besides, all demand accepted at the tactical level must

be transported; if intermodal capacity is insufficient, a high cost truck transport is

needed for the excess demand. Hence, we must determine fare class limits for all

services, not only for the lower priced service.

3 Cargo Fare Class Mix problem

3.1 Practical motivation

In the CFCM problem, as we define it, the transportation provider’s goal is to

maximise revenue by finding the optimal balance in offered transportation services.

The transportation provider runs scheduled intermodal connections with a fixed

daily capacity. The transportation provider offers a range of two or more services,

each service denotes a fare class. A fare class is characterised by a specific price and

specific lead time, ranging from a high price fast service to a low price slow service.

For instance, the fast service pays more per container, but must be transported

immediately; whereas the slow service pays less, but has a longer delivery lead time

and allows optimising the capacity utilisation, because demand varies over the days.

It is assumed that using the available capacity does not invoke additional costs. This

corresponds to a company operating its own trains or vessels. As a lower priced

service offers more planning flexibility, it is not necessarily inferior to a higher

priced product. All accepted demand must be transported, because of commitments

to the customer and if the intermodal capacity is not enough, expensive trucking is

used. Hence, an optimal balance requires a booking limit for each fare class. As

discussed in the Literature review, this is different from traditional cargo revenue

management, in which only one (inferior) fare class is limited. Another distinct

difference with existing literature is that accepting or rejecting incoming orders

cannot be decided on during the operational phase, because long-term commitments

are provided in advance and customers typically have a repeating demand. To

represent long-term commitments in our model, we consider daily booking limits,

determined on a tactical level (before the operational phase). With fixed booking

limits for each service, the operator can optimally use his fixed transportation
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capacity to target different segments allowing revenue maximisation. We will show

that it is better to allow overbooking, or in other words, the sum of the booking

limits may exceed the daily intermodal capacity, as for the lower class we have the

option to transport it later. The general CFCM problem must accommodate fare

classes for transportation services to multiple inland destinations considering a

transportation network. In this article, we demonstrate the benefit of booking limits

for each fare class on a single intermodal corridor, with one intermodal route, e.g. a

train connection between the deep sea port (like Rotterdam) and an inland terminal

(such as Venlo). In the next sections, we first present a general modelling

framework for the CFCM problem, after which we define the specific model for

such a single corridor for our study.

3.2 Modelling framework

The CFCM problem for inland transportation has three dimensions. The tactical

planning problem considers multiple routes r and destinations d for transporting all

cargo. Because the intermodal transportation problem is mostly related to one deep

sea port, we do not distinguish between multiple origins. Transportation orders

arrive in multiple fare classes; the number of fare classes p is the third dimension.

We use the 3 dimensions to classify the problem type of the CFCM problem as

CFCM (r, d, p), as shown schematically in Fig. 1. Each fare class is associated with

a maximum transportation time. In the tactical problem we define booking limits for

each class. In the repetitive operational problem, incoming transportation requests

for a fare class are accepted up to the booking limit for that fare class. It is assumed

that all orders arrive one by one. Then, the operational transportation plan for all

accepted orders is created, assigning to each order a route towards the destination or

postponing the order to the next period. After executing the transportation plan, we

continue with the next period. The goal of the operational transportation plan is to

minimise costs within capacity restrictions and to transport all accepted orders

within the time limits related to the fare class ordered by the customer. In this

article, we study the CFCM problem of a single corridor, providing insights to be

used as a building block for future extensions.

1 
1

1

Trucking of Excess cargo

Intermodal

Fig. 1 Schematic model of the
Cargo Fare Class Mix problem
with r intermodal routes,
d destinations and p fare classes,
CFCM (r, d, p)
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3.3 CFCM problem for an intermodal corridor

To show the benefits of the CFCM model with limits for each fare class, we

consider a single intermodal corridor with two products in this article. Such a case is

representative of a typical intermodal hinterland corridor between a deep sea port

and a hinterland terminal. Inland transportation providers such as EGS are currently

considering to offer a Standard and Express service types on such a corridor but do

not have insight in the optimal balance yet. First, we will focus on daily booking

limits for two services for a single route, single destination case, and derive a

solution for the CFCM (1, 1, 2) model (Fig. 2). Subsequently, we consider the case

of two fare classes for a single route, with multiple destinations, the CFCM (1, d, 2)

model (Fig. 3). In the latter case, the costs of using a truck to transport Excess

demand varies for different destinations. With some realistic assumptions, we show

that the CFCM (1, 1, 2) model can be applied to CFCM (1, d, 2) as well. For this, we

assume that using the intermodal connections is beneficial for all destinations

considered, compared to the alternative, direct trucking. Also, we assume that the

difference in distance for the various destinations is relatively small, compared to

the total distance and that the amount of cargo is distributed over all destinations.

We derive an analytical model for the CFCM (1, 1, 2) problem with daily

booking limits. This model’s focus is on optimising revenue from 2 product types,

Express and Standard, for a fixed capacity C on one route to one destination. In case

of Express transportation, the container is transported within 1 day. For Standard

transportation, the container is transported within 2 days. At the tactical level, the

available demand (not restricted by booking limits) of daily transportation requests

is assumed to be characterised by discrete distributions NE(t) and NS tð Þ, with

subsequent days i.i.d. Also, we assume NE(t) and NS tð Þ are mutually independent

and having different distributions,

NE tð Þ� pE kð Þ ¼ P NE ¼ kð Þ; k ¼ 0; 1; 2; . . .;

NS tð Þ� pS kð Þ ¼ P NS ¼ kð Þ; k ¼ 0; 1; 2; . . .;

where pE kð Þ denotes the probability of receiving k transportation requests for fare

class E on a day. It is assumed that the demand on consecutive days for a fare class

follows identical, independent distributions. Transportation requests on a daily basis

for a fare class are accepted until the booking limit for that fare class is reached, the

remaining demand is assumed lost. For carrying out the transportation, the operator

has a daily transportation capacity C that can be used for service requests of type E

and/or S. Excess demand that cannot be transported in time on daily capacity C must

be transported by using an (expensive) truck move. This must be avoided, so in

Trucking of Excess cargo

Intermodal
Fig. 2 Schematic model of the
Cargo Fare Class Mix problem
with 1 route, 1 destination and 2
fare classes, CFCM (1, 1, 2)
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order to prevent accepting too many requests, the operator only accepts demand up

to the daily booking limits for both request types: LE and LS. With this, the dis-

tributions of daily accepted demand become:

DE tð Þ ¼ min NE tð Þ; LEð Þ; DS tð Þ ¼ min NS tð Þ; LSð Þ ð1Þ

P DE tð Þ ¼ kð Þ ¼ pE kð Þ; k ¼ 0; 1; 2; . . .; LE � 1

P DE tð Þ ¼ LEð Þ ¼ 1�
XLE�1

k¼0

pE kð Þ
ð2Þ

and, likewise,

P DS tð Þ ¼ kð Þ ¼ pS kð Þ; k ¼ 0; 1; 2; . . .; LS � 1

P DS tð Þ ¼ LSð Þ ¼ 1�
XLS�1

k¼0

pS kð Þ
ð3Þ

In the remainder, the indicator (t) is omitted from the notation for simplicity,

unless specifically required for clarity. It is assumed that the accepted demand of

type E is given priority, as, by agreement, the orders of type S can be postponed to

the next day. It makes no sense to accept more Express orders than the capacity

limit, because the amount of orders exceeding C cannot be transported with the

available capacity, i.e. LE B C. Hence, every day, all accepted demand of type E is

transported, denoted by TE. The remaining capacity is used for transporting accepted

demand of type S; the transported amount of type S is denoted by TS. On any day,

the stack of orders to be transported consists of three types: today’s accepted

demand of type E (DE), the remainder of yesterday’s demand of type S (RS) and

today’s demand of type S (DS). The demand DS of today that is not transported, is

considered on the next day, denoted as RS(t ? 1). If the postponed demand

RS(t ? 1) cannot be transported the day after, it is considered as excess demand

(ES). Three situations can occur:

1. The available capacity is sufficient for transporting DE and part of RS (see

Fig. 4a), the remainder of RS is in excess of capacity C and must be transported

alternatively (ES);

2. The available capacity is sufficient for transporting DE, RS and part of DS (see

Fig. 4b);

3. The available capacity is sufficient for transporting all demand (see Fig. 4c).

Intermodal

Trucking of Excess cargo

Fig. 3 Schematic model of the Cargo Fare Class Mix problem with 1 route, d destination and 2 fare
classes, CFCM (1, d, 2)
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The revenue maximising problem is to select booking limits that maximise the

total revenue J from the accepted demand, with fares per accepted request fE and fS
respectively, while considering a penalty of size p for all excess demand. This

penalty can be considered as the costs for an emergency delivery outside of the

system’s capacity C:

max
LE;LS

J ¼ fEE DEð Þ þ fSE DSð Þ � pE ESð Þ

LE �C; LS � 2C:
ð4Þ

The cost term for excess demand distinguishes this model from existing

problems, as transportation of the accepted Standard product is obligatory as well.

The expected Excess E ESð Þ depend on the booking limits LE, LS and in the next

section we will derive the formulation for this quantity.

4 Solution method for the CFCM problem for an intermodal corridor

For solving (4), we first derive a set of equations for the expected value of DE, DS

and ES as a function of capacity C and the booking limits LE and LS. These

expressions are then used to find the booking limits LE and LS that result in

maximum revenue J.

The distributions of accepted demand DE, DS depend according to (1) only on the

independent demand patterns NE and NS (assumed to be known) and on the chosen

limits LE and LS. Formulations for E DEð Þ and E DSð Þ follow from (1)–(3):

(a) 

) 

(b) 

(c) 

) 

Fig. 4 Transportation plan based on fixed capacity (3 situations). a Result situation 1: transported, excess
and remaining, b result situation 2: transported and remaining, c result situation 3: all demand transported
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E DEð Þ ¼
XLE

k¼0

kP DE ¼ kð Þ ¼
XLE�1

k¼1

kpE kð Þ þ LE 1�
XLE�1

k¼0

pE kð Þ
 !

ð5Þ

E DSð Þ ¼
XLS�1

k¼1

kpS kð Þ þ LS 1�
XLS�1

l¼0

pS kð Þ
 !

: ð6Þ

An explicit formulation for the excess demand ES is not straightforward, as it

depends on DE and RS, of which the latter depends on the situation of the day before.

In order to find an expression for ES, we introduce a Markov Chain for the expected

value of RS in Sect. 4.1. Using this Markov Chain, the expected revenue J can be

determined for given fixed booking limits. In Sect. 4.2 we introduce a formulation

for the revenue maximisation problem considering variable booking limits.

4.1 Markov Chain for the expected excess demand

Considering given booking limits and demand patterns, the arriving transportation

requests per day are known and provided by (1)–(3). The state of the transportation

system depends on the number of orders that are left over from the day before, RS.

This process has the Markov property: for a given day t, the state is fully described

by RS(t), the number of Standard service containers remaining from day t - 1, and

independent from previous states. The Markov state is denoted as RS(t), or in short

RS
t . We are looking for an expression of the expected excess demand ES tð Þ that is

not transported. Using Fig. 4, we can derive the following equation:

ES tð Þ ¼ Emax Rt
S þ DE tð Þ � C; 0

� �

Considering the Markov state RS
t we can formulate the probability distribution of

the excess demand:

P ES ¼ mð Þ ¼ P DE �C � Rt
S

� �
m ¼ 0

P DE ¼ C þ m� Rt
S

� �
m[ 0:

�
ð7Þ

To find the probability of excess demand, we take the sum over all m[ 0:

P ES [ 0ð Þ ¼ P DE [C � Rt
S

� �
: ð8Þ

In order to determine the Markov transition probabilities, we need to determine the

probability distribution of the remaining demand for the next day, RS
t?1, given the

remaining demand of the current day RS
t :

P Rtþ1
S ¼ j

��Rt
S ¼ i

� �
: ð9Þ

We will denote this as pRS
i; jð Þ. We distinguish between the situation with excess

demand (ES[ 0) and without excess demand (ES = 0). The transition probabilities

are then provided by
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pRS
i; jð Þ ¼ P Rtþ1

S ¼ j;ES [ 0
��Rt

S ¼ i
� �

þ P Rtþ1
S ¼ j;ES ¼ 0

��Rt
S ¼ i

� �
: ð10Þ

For the case in which excess demand occurs (ES[ 0), all new Standard demand

cannot be transported (see Fig. 4a). Hence, RS
t?1 will be equal to the realised

Standard demand of today:

pRS
i; jð Þ ¼ P DS ¼ jð Þ: ES [ 0 ð11Þ

Combining this with the probability of excess demand occurring (8), we obtain:

P Rtþ1
S ¼ j;ES [ 0

��Rt
S ¼ i

� �
¼ P DS ¼ jð ÞP DE [C � ið Þ ð12Þ

For the case in which no excess demand occurs (ES = 0), we distinguish between

transporting all demand (Fig. 4c, RS
t?1 = 0) or leaving some demand for the next

day (Fig. 4b, RS
t?1[ 0):

pRS
i; jð Þ ¼ P DE þ DS þ Rt

S �C
� �

j ¼ 0

P DE þ DS þ Rt
S � C ¼ j

� �
j[ 0

�
ES ¼ 0 ð13Þ

We consider the following. As no excess demand occurs (ES = 0), all of RS
t is

transported. This leaves a number of slots S for transporting DS. If S C DS, all

demand is transported (RS
t?1 = 0), otherwise we have:

S ¼ DS � Rtþ1
S ð14Þ

with probability distribution:

P S ¼ sð Þ ¼ P DE þ Rt
S ¼ C � s

� �
; ð15Þ

where 0 B s B C - RS
t . For all cases in which (15) is nonzero, we have DE =

C - RS
t - s B C - RS

t . From (7), it follows that in these cases no excess demand

occurs (ES = 0). Using the expressions (14)–(15) we can rewrite (13) as:

P Rtþ1
S ¼ j;ES ¼ 0

��Rt
S ¼ i

� �
¼

PC�i
s¼0 P DE þ i ¼ C � sð ÞP DS � sð Þ j ¼ 0PC�i
s¼0 P DE þ i ¼ C � sð ÞP DS ¼ sþ jð Þ j[ 0

�

ð16Þ

Substituting Eqs. (12) and (16) in (10), we get the general transition probabilities:

pS i; jð Þ ¼
P DS ¼ 0ð ÞP DE [C � ið Þ þ

PC�i
s¼0 P DE þ i ¼ C � sð ÞP DS � sð Þ j ¼ 0

P DS ¼ jð ÞP DE [C � ið Þ þ
PC�i

s¼0 P DE þ i ¼ C � sð ÞP DS ¼ sþ jð Þ j[ 0

(

ð17Þ

We denote the steady-state distribution of the Markov state Rb as p(j) = P

(RS
? = j), i.e. p(j) denotes on a day in the long run the probability of postponing j

transportation orders to the next day. To find the distribution of p(j), we need to find

a solution to the Markov equilibrium equations, as in Kelly (1975):
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pj ¼
X

i

pipS i; jð Þ; ð18Þ

X

i

pi ¼ 1; ð19Þ

with pS(i, j) as in (17). For fixed booking limits, this can be solved by finding a

feasible solution to the set of linear Eqs. (18)–(19).

Using the steady state expression pj for the distribution of RS in the expression

for the distribution of ES from (7), we can find the expected value of the excess

demand E ESð Þ:

P ES ¼ mð Þ ¼
PLS

q¼0 P DE �C � qð Þpq m ¼ 0
PLS

q¼0 P DE ¼ C þ m� qð Þpq m[ 0

(

E ESð Þ ¼
XLS

m¼0

mP ES ¼ mð Þ ¼
XLS

m¼1

mP ES ¼ mð Þ ¼
XLS

m¼1

m
XLS

q¼0

P DE ¼ C þ m� qð Þpq

ð20Þ

Now, the expected revenue J for fixed booking limits LE and LS can be

determined using the expressions for the expected demand (5)–(6) and expected

excess demand (21) in Eq. (4). A method to find the optimal booking limits of the

CFCM (1, 1, 2) problem is provided in the next section.

4.2 CFCM (1, 1, 2) model

In Sect. 4.1 we derived the expression to find the expected revenue for given

booking limits. In this section, we repeat all assumptions and aggregate all

expressions to formulate the CFCM (1, 1, 2) model. The CFCM (1, 1, 2) model aims

to maximise the expected revenue J of two different transportation services that

must be transported on a single corridor with fixed capacity C to a single

destination. Accepted orders for the Express service must be transported on day 1,

accepted orders for the Standard service must be transported on day 1 or 2. The

demand for both products is provided as pE(k) = P(NE = k) and pS lð Þ ¼ P NS ¼ lð Þ,
with revenue per order fE and fS, respectively. Accepting an order, but transporting it

by truck instead of intermodally, is penalised with penalty p. This can be considered

the cost of using a truck for transportation. The main decision variables are the

limits LE and LS. Orders are automatically accepted until these limits, and rejected

after that. The model is based on a Markov Chain described in the previous

section. The Markov equilibrium is denoted by dependent variable pq, denoting the

probability that q Standard orders on a day are postponed to the next day. The model

is defined by maximising objective (4), with the expressions for the expected

demand (5)–(6) and expected excess demand (20), subject to the Markov

equilibrium Eqs. (19)–(21). The model is valid for any empirical or theoretical
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distributions of the (discrete) demands NE, NS in a transportation corridor with a

fixed daily capacity C.

4.3 CFCM (1, d, 2) model and solution method

The derived equations for the CFCM (1, 1, 2) model largely hold for the CFCM (1,

d, 2) problem as well: the transportation provider offers an Express and a Standard

services towards all d destinations. The only difference is that the Excess penalty

(the cost of transporting by truck) differs for each destination. Assuming that

transportation requests are handled in the order of arrival and that the delayed

Standard product can be covered, the probability distribution for the Excess penalty

of an Excess container is constant. We can therefore use the following to represent

the average Excess penalty pa:

pa ¼
X

d

kdpd; ð21Þ

where pd denotes the penalty costs for an excess order towards destination d and kd
denotes the fraction of demand destined to destination d. The CFCM(1, d, 2) model

is provided as Model 1.

If orders are not necessarily handled in order of arrival, it may be beneficial to

send the cheapest options on truck. In that case, (21) will be an upper bound of the

penalty costs. Because of our earlier assumption that the difference in distance for

all destinations is relatively small, it is expected that Model 1 will still provide a

tight approximation of the optimum. In the next section we apply a sensitivity

analysis to address the impact of this assumption: we compare the results with the

case of using the maximum trucking costs as Excess penalty. The CFCM (1, d, 2)

model is non-linear in variables pq and LS because the probabilities of the actual

demand DE and DS are multiplied by the Markov state probabilities pq. These
probabilities both depend on the decision variables LE and LS. Also, the variables LE
and LS are integer. Generally, J as a function of the decision variables LE and LS is

non convex. Therefore, it is difficult to find the optimal solution for the CFCM (1, d,

2) model directly.

However, for fixed values for LE and LS, the model reduces to finding a solution

to the set of linear Eqs. (18)–(19). Hence, determining the expected revenue J for

fixed booking limits is easy with the model. The optimal booking limits can be

found by enumerating all possible combinations (LE, LS). Assuming p[ fE, we can

conclude that LE B C, as any accepted Express booking more than the capacity

results in the penalty, which is larger than the revenue for that booking. Similarly,

assuming p[ fS, we can conclude that LS B 2C as Standard bookings must be

transported within 2 days with 2 times the daily capacity. Hence, enumeration

requires 2C2 times solving the LP problem of Model 1 with fixed (LE, LS). Regular

problem sizes of the CFCM (1, d, 2) problem are often limited in practice, as many

intermodal corridors have a daily capacity C� 100 container slots. In the next

section, the model is demonstrated in a case study.
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5 Experiments based on EGS Network

The importance of the CFCM concept can be seen in the following example.

Consider a corridor with daily capacity equal to 1. Suppose that every day exactly 1

request Standard arrives (with revenue 1), on average every 3 days one request for

Express (with revenue 1.25), and the Excess penalty is 2. In the classical revenue

management approach, Standard will be limited to 1 and the Express will always be

accepted. This will automatically result in incurring the penalty for every time an

Express order is accepted. The additional revenue from the Express order does not

outweigh the penalty. The resulting average revenue is 0.75 per day. In the CFCM

approach, two limits are considered, and Express will not be accepted, leading to a

better resulting revenue of exactly 1 per day. The CFCM method outperforms the

typical revenue management approach by one third. It will be clear that the benefit

of the CFCM approach compared to the traditional alternative can be arbitrary large

for cases where penalty p goes to infinity, for a given difference in revenue between

the fare classes, fE - fS.

To demonstrate the CFCM (1, d, 2) model in a practical setting we carry out three

sets of experiments based on the EGS network. EGS is an intermodal network operator

based in Rotterdam, offering intermodal connections between the deep sea port of

Rotterdam and around 20 inland locations (European Gateway Services, n.d.).

Traditionally offering transportation services in a traditional way, EGS is now

considering to offer a differentiated portfolio with Standard and Express service, as

studied in this article. In the first experiment set, we show the value of an optimal fare

Model 1 CFCM (1, d, 2) model

max
LE;LS

J ¼ fEE DEð Þ þ fSE DSð Þ � paE ESð Þ

where

E DEð Þ ¼
PLE�1

k¼1

kpE kð Þ þ LE 1�
PLE�1

k¼0

pE kð Þ
� �

E DSð Þ ¼
PLS�1

l¼1

kpS lð Þ þ LS 1�
PLS�1

l¼0

pS lð Þ
� �

E ESð Þ ¼
PLS
m¼1

m
PLS
q¼0

P DE ¼ C þ m� qð Þpq

subject to:

p0 ¼
PLS
i¼0

pi P DS ¼ 0ð ÞP DE [C � ið Þ þ
PC�i

s¼0

P DE þ i ¼ C � sð ÞP DS � sð Þ
� 	

pj ¼
PLS
i¼0

pi P DS ¼ jð ÞP DE [C � ið Þ þ
PC�i

s¼0

P DE þ i ¼ C � sð ÞP DS ¼ sþ jð Þ
� 	

; ðj[ 0Þ

PLS
i¼0

pi ¼ 1

LE;LS 2 N

pq � 0
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class mix compared to traditional methods (Sect. 5.1). With the second set we show

the value of the outcome of the CFCM (1, d, 2) model in a large set of parameter

settings, to support the selection of suitable corridors for the CFCM approach in the

EGS network (Sect. 5.2). Thirdly, we study the effect of two critical aspects in our

model: the penalty value and the lead time for the Standard product (Sect. 5.3).

Although the penalty value is critical for determining the gravity of an excess demand,

we show that the optimal fare class limits are not sensitive to the estimated penalty

value. Also, a simulation study into the effect of longer lead times is included. Our

model is developed for a two-fare class portfolio, in which the secondary (Standard)

product has twice the lead time of the primary (Express) product.

In all experiments, the cost and demand parameters are based on realistic

numbers from the practice of the EGS network. Note that the CFCM (1, d, 2) model

can be used for any pair of discrete demand distributions. In these experiments,

Poisson distributions are assumed for the demand, with average demand chosen

such that it is equal or above the available capacity, such that the model has to find a

trade-off between the two products.

5.1 Optimal Cargo Fare Class Mix compared to traditional offerings

Firstly, we study the value of offering two services with a booking limit for each

service, by comparing the CFCM (1, d, 2) optimum with traditional alternatives. For

this, we consider a small test case with capacity C ¼ 20 and Poisson distributed

demands with average 15 for both Express and Standard. For these we determine

optimal booking limits using the CFCM (1, d, 2) model. As comparison, we

consider alternative approaches that a transportation provider could take:

1. Offering Express and Standard, with limits based on the CFCM (1, d, 2) model.

2. Offering both products, but putting no limit on Express (i.e. accepting Express

up to capacity C). This is considered the classical approach according to

Littlewood (1972/2005) of only limiting the ‘inferior’ product.

3. Offering Express service only, ignoring Standard service demand. We assume

that the Express service is not considered as a substitute for the Standard

demand.

4. Offering Standard service only, ignoring Express service demand. We assume

that the Standard service is not considered as a substitute for the Express

demand so that demand is lost.

5. Offering Standard service as substitution for Express demand, assuming the

Standard service can be a substitute for Express demand: so all customers with

Express demand now book a Standard service and allow a delayed transport.

6. Offering both, but putting no limit on Standard (i.e. accepting Standard up to

capacity 2C).

An overview of the settings for these experiments is provided in Table 1.

Alternative 3–5 are used in practice in intermodal transportation and are added for

comparison: each transportation provider offers a single service type. According to

EGS experts, the Express service is not a realistic substitute for Standard demand, as
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Standard customers are especially interested in the lower tariff. In the alternatives 2

and 6, both fare classes are offered with a limit on only one of the fare classes.

Alternative 2 is the typical approach in existing models for revenue management in

logistics.

For each of the experiments, Table 2 lists the optimal booking limits, the

expected revenue, the expected capacity utilisation and the expected excess

demand. For experiments in which no limit on Express is determined, we take the

maximum capacity C, and similarly, if no limit for Standard is determined, we take

the maximum capacity 2C (as it can be postponed maximally one day). Also, the

computation time T is reported. The expected capacity utilisastion g is computed

using:

g ¼ E DEð Þ þ E DSð Þ � E ESð Þ
C

:

Table 1 Experiment setting of comparisons to alternatives of the CFCM (1, d, 2) model

Case Capacity

C

Demand

express

Demand

standard

Fare (fE;

fS)

Penalty

pa

1. CFCM (1, d, 2) 20 Poisson (15) Poisson (15) 110; 95 175

2. No limit on express 20 Poisson (15) Poisson (15) 110; 95 175

3. Express service only 20 Poisson (15) 0 110; 95 175

4. Standard service only 20 0 Poisson (15) 110; 95 175

5. Standard service

w/substitution

20 0 Poisson (30) 110; 95 175

6. No limit on standard 20 Poisson (15) Poisson (15) 110; 95 175

Table 2 Results of comparisons to alternatives of the CFCM (1, d, 2) model

Case Optimal booking

limits LE; LB

Expected

revenue J

Capacity

utilisation g (%)

Expected

excess E EBð Þ
Comp.

time T (s)

1. CFCM (1, d,

2)

14; 7 2063 98.9 0.13 5.3

2. No limit on

express

(20); 6 2005 98.5 1.09 0.3

3. Express

service only

20; – 1627 73.9 0 4.7

4. Standard

service only

–; 40 1425 75.0 0 4.8

5. Standard

w/substitution

–; 20 1895 99.8 0 4.7

6. No limit on

standard

5; (40) 1908 98.1 0.38 0.4
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The results show that the proposed method of offering two product types

(experiment 1, 2 and 6) can significantly improve the expected revenue, compared

to only selling one product type (experiment 3–5). Also, the results show that the

average utilisation of the available capacity is significantly higher in the case of

combining both products than in case of only considering one of both products

(compare experiments 3–5 with all others). If Express and Standard are combined,

generally, the sum of optimal booking limits exceeds the system capacity. In

experiment 3, in which only Express is sold, the optimal booking limit LE = C,

whereas in experiment 4, in which only Standard is sold, the optimal booking limit

LS[C. These results are as expected, because the additionally accepted demand

can be transported on the next day.

The classical revenue management alternative based on Littlewood (not limiting

Express) results in an expected revenue closest to the CFCM approach. Still, using

optimal booking limits for both Express and Standard services yields in a revenue

increase: experiment 1 shows an increase in expected revenue of 2.9% over

experiment 2. Note that the industry standard profit margin is around 5%, indicating

that this increase in revenue corresponds to increasing profit by 58%. On top of that,

a comparison between the CFCM (1, d, 2) approach and the alternative of

determining only one limit, cannot be made on expected revenue alone. In practice,

customers of both Standard and Express services need long term commitments. Also

customers of a slower Standard service require a steady flow of cargo, e.g.

containers towards a warehouse. Without a limit on the Express service for the same

capacity, the Standard customers are more often faced with capacity shortage. As

shown in Table 2, without a limit on Express, the expected excess is higher, which

must be delivered in an alternative way (an excess of 1.09 in experiment 2 compared

to only 0.13 in experiment 1).

5.2 Corridor comparison for European gateway services

Secondly, to illustrate how the proposed model supports European Gateway

Services in selecting suitable corridors to introduce the differentiated portfolio, we

study instances with different demand and cost parameters. For these, we compare

the results of 3 policies, corresponding to experiments 1, 2 and 5 in the previous

section: i.e. a situation in which all demand is fulfilled with the Standard service

(close to the current situation and referred to as the traditional approach), and two

variants in which two fare classes are considered, i.e. the CFCM (1, d, 2) problem,

and Littlewood’s version with No limit on express. The company has insight that

demand for both Standard and Express services exist, but does not know the demand

distributions for Express and Standard for various price levels. Therefore, we aim to

show the impact of using either Littlewood or CFCM for a range of demand

scenarios in comparison with the traditional situation. Table 3 lists all combinations

of tested parameters. We use normalized prices, with Standard service set to 1 and

we consider Express services priced from 1.05 to 1.2 (i.e. between 5 and 20% mark-

up for Express services). In each setting we consider a range of demand patterns,

with total demand N varying between 90 and 140% of capacity and Express demand

NE varying between 0 and 100%. All combinations of parameters results in 315
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experiments per capacity level; for C ¼ 25, we considered a finer grained range of

values for Express demand: NE 2 1; 2; . . .; 25f g, which results in 1377 experiments.

For C 2 25; 50; 100f g the results show the same trends. In all experiments, the

CFCM policy results in higher expected revenue than a Littlewood policy. Both

policies with two fare classes generally outperform the traditional approach, except

for some cases: The Littlewood policy underperforms the traditional policy if

Express demand is high, while the mark-up is low. The CFCM policy underper-

forms the traditional policy in very rare cases with a low mark-up and in which all

demand is considerd to be Express. In such cases, the reduction in flexibility

(because all demand has to be transported in one day) is not sufficiently

compensated by the additional revenue of Express orders. In practice, it is not

realistic that (almost) all demand which is traditonally treated with a Standard

policy, would shift to Express service in a two fare class policy.

In Figs. 5, 6 and 7 the revenue increase of the two-fare class policies over the

traditional policy is depicted. The striped bars give the expected revenue using a

policy according to Littlewood. The solid part of the bar indicated the additional

revenue if a CFCM policy is used instead. Figure 5 shows that the benefit of using a

two fare class policy increases with the height of the Express mark-up. The CFCM

model especially improves expected revenue compared to using Littlewood for

lower markups and a higher level of total demand. The data in Fig. 5 is an average

over all ratios of Express and Standard demand. Figure 6 shows the impact of the

Table 3 Experiment setting of

corridor comparison with CFCM

(1, d, 2) model

a For C ¼ 25; NE 2
1; 2; . . .; 25f g

Parameter Values

Capacity C 25, 50, 100

Average total demand N [90, 100, …, 140%] C

Average express demand NE [0, 20, …, 100%] Ca

Standard fare fS 1

Express fare fE 1.05, 1.1, 1.2

Excess trucking cost pa 1.5, 1.75, 2
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amount of Express cargo (as percentage of the daily capacity). For a low value of

the Express markup, Littlewood is most beneficial for intermediate amounts of

Express cargo. For a high markup, the benefit of Littlewood is increasing with the

level of Express cargo. On top of Littlewood’s benefit, the CFCM model provides

an improvement that increases with higher fractions of Express cargo. From Fig. 6,

we can distinguish three effects: firstly, the revenue increases with selling more

Express (at a higher fare). Secondly, as the Littlewood policy cannot reduce the

amount of Express orders coming in, an increase of Express demand results in a

reduction in revenue because of reduced flexibility. The CFCM policy reverses this

effect. Lastly, for high numbers of Express cargo, the utilisation risk is reduced,

which results in an increased revenue, even for the Littlewood policy for a low

Express markup. Figure 7 shows that the benefit of using Littlewood reduces for

increasing costs of Excess trucking. This decline is for a large amount compensated

by using CFCM.

The results of this case study show that a two-fare class policy is very beneficial

compared to the traditional approach. For a corridor in which a high mark-up can be

charged, a Littlewood model suffices. However, especially in cases in which the

potential mark-up is not so high, but a significant interest in Express service exits,
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the CFCM model adds additional benefit. These insights help EGS in selecting the

most promising corridor to implement the new service portfolio of Express and

Standard services.

Furthermore, the results show that for several of the corridors, the Littlewood

policy results in a higher excess demand, especially for higher levels of Express

demand (Fig. 8). This indicates a reduced reliability for the customer. Finally, the

results show an increased utilisation rate of the corridor capacity for the CFCM

approach, compared to the traditional approach. The purpose for EGS with

introducing a differentiated portfolio is to increase both utilisation of inland trains

and vessels, and to increase reliability of container transports arriving on time.

Based on the results, we advise to focus on corridors in which significant interest in

Express service exists and set the Express mark-up to a level in which a substantial

level of Express demand is attracted.

5.3 Sensitivity analysis for the research setting

We analyse the sensitivity of our results for two critical aspects of our model: the

penalty parameter pa and the lead time of the Standard product. First, we describe

the impact of the penalty value. In the previous sections, we assumed a average

value pa to denote the cost of Excess trucking to all destinations d. We perform a

sensitivity analysis based on experiment 1 of Sect. 5.1, to find the impact of this

assumption: would the optimal limits change for different values of p and how much

would the expected revenue change? Under the CFCM policy, we found that

varying the Excess penalty p 2 [0.8pa, 1.5pa] does not affect the resulting limits

(LE = 14, LS = 7), and does not affect the expected amount of excess cargo (0.13).

In practice, the costs of excess trucking to destination around an inland location will

vary much less than the studied range for p. Using the Littlewood policy (no limit no

Excess), the optimal limit for the Standard product is affected slightly by the

penalty: for p
pa
\1:05 optimal limit LS = 6, for larger values of p, the optimal limit

LS = 5. Figure 9 shows the expected revenue for several levels of p, i.e. several

levels of trucking costs, or trucking distance. It can be seen that the expected
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revenue of the CFCM(1, d, 2) model is much less sensitive for the level of the

Excess penalty, than the classical approach. Furthermore, the CFCM(1, d, 2) model

outperforms the classical approach by 1–5% over the tested range.

Finally, we consider the effect of a longer lead time for the Standard demand.

Suppose we use the optimised limits from our proposed model. Given these limits,

we consider the impact if the Standard demand could be delayed longer. In such a

case, the risk of excess cargo is reduced. Therefore, the expected revenue for such a

case is at least as high as in the regular case, and potentially higher, due to a

reduction of excess trucking costs. The maximum reduction is equal to the expected

excess trucking costs:

pE ESð Þ

This corresponds to a situation in which no time limit for Excess cargo exists,

provided that the long term average of demand is below the capacity:

E DEð Þ þ E DSð Þ�C

This holds in general in the CFCM model, as the optimal limits are selected such

that no steady amount of excess cargo arises.

For a finite time limit for delivering Standard ts[ 2, the expected amount of

excess cargo may be reduced compared to the case analysed in the previous sections

(for ts = 2). We will use simulation to show that the additional cost saving of

increasing the lead time from 2 to 3 days is negligible under practical

circumstances. For this, we will make an analysis in two steps. First, for fare

class limits optimised under the assumption of ts = 2, we will simulate the resulting

Excess cargo under a policy of ts = 2 and ts ¼ 3. Provided the longer lead time for

Standard, the optimal fare class limits may be higher. We use simulation to show

that increasing the fare class limits (for the policy with ts ¼ 3) has a negligible

effect on the expected revenue.
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For experiment 1 in Table 1, we generate 10 series of random demand for

1000 days. We use the optimal booking limits as obtained with the CFCM policy

(based on 2 day delivery for Standard). In this setting, we consider the effect of

using a 2 days lead time in comparison with a 3 days lead time, assuming all clients

accept this longer leadtime. Using the same random feed of demand data, we also

consider increased fare class limits for both products: we simulate the 10 series

using all combinations of fare class limits {LE, LE ? 1, … LE ? 5} and

fLS; LS þ 1; . . .LS þ 5g. In Table 4, the results are reported: the average revenue

from the simulation for a 2 day policy, the percentage cost savings in case of a

3-day policy with equal limits and the percentage cost savings with higher limits.

Since the cost savings by using higher limits are so small (smaller than the random

effect), the highest cost savings occurred for different limits in the ten demand

series. Therefore, in order to report the maximum cost savings possible for a 3 day

policy with higher limits, we took for each of the 10 demand series the maximum

possible cost savings out of the results for all combinations of increased limits.

The average revenue obtained by the simulations validates the results of the

analytical model. Also, an additional revenue increase of 0.6% can be obtained by a

policy of 3 days delivery for Standard, provided customers are willing to accept

that. However, for the studied corridor the optimal limits are not affected, and the

optimal limits resulting from the CFCM (1, d, 2) model can be used for this case as

well.

6 Overview and outlook

In this article, we have proposed the Cargo Fare Class Mix (CFCM) problem. This

problem arises from current practice in intermodal networks for container

transportation, which start offering a range of transportation services with different

lead times. The CFCM problem differs from the existing Fare Class Mix problem,

as accepted demand can be planned on different transportation routes or modes.

Because of the difference in planning characteristics between the service types, the

CFCM problem also differs from classical revenue management in freight, such as

Littlewood. In the CFCM setting, a lower priced product is not necessarily inferior

than a higher priced product. The key insight is that finding the optimal balance

between offered services provides an opportunity to increase revenue. In a case

study of an intermodal setting, we have shown that significant revenue potential can

be gained by setting limits for all fare classes, compared to classical approaches of

limiting only the lower priced fare class. Introducing a two-fare class service

Table 4 Results of simulation studies for 2 and 3 day lead time for standard products mean and standard

deviation provided, based on 10 runs of 1000 days

Case Average revenue

(2 day policy)

Cost saving (3 day

policy)

Cost saving (3 day policy,

higher limits)

1. C = 20; lE = 15;

lS = 15

2063 ± 6 2075 ± 2 (?0.6%) 2075 ± 2 (?0.6%)

B. van Riessen et al.

123



portfolio can result in a significant increase in expected revenue, both by using a

Littlewood policy or a CFCM policy. The benefit of CFCM over Littlewood’s

revenue management is largest for high Express demands at low mark-up prices for

Express service. In such cases, CFCM prevents the increase of excess trucking that

would be required in a Littlewood policy. Generalising, the insights are applicable

to all applications in which multiple fare classes are offered that not only differ in

price, but also in service characteristics. Therefore, we expect similar results for

applications in parcel delivery, typically balancing Express or Standard delivery,

and webshop inventory management, potentially reducing inventory if not all

customers require immediate delivery.

We have proposed a framework to indicate the variant of the problem that is

studied. The problem for inland transportation has several dimensions: the

considered number of routes r, the considered number of destinations d and the

considered number of transportation service types p. We denote the problem variant

as CFCM (r, d, p). We have provided an analytical formulation and solution method

for the CFCM (1, d, 2) problem. We showed that both utilisation rates and reliability

are increased by introducing a 2 fare class portfolio of which the secondary product

has lead time of twice the primary product. We showed in some case studies that

considering multiple fare classes with booking limits for each fare class can

significantly increase expected revenue compared to only offering one service type

or compared to limiting only one of the offered fare classes. These case studies

exemplify how our model supported European Gateway Services in selecting a

suitable corridor to start offering differentiated fare classes. On these corridors

utilisation is increased and opportunity costs reduced. The results showed that in

some cases the optimal fare class mix consists of limits that exceed available

capacity. We showed that the model’s outcomes are insensitive to the penalty value

for excess cargo. Finally, we considered the case of lead times for the secondary

product of more than twice the primary product. Using simulations, we showed for

the EGS corridors that the expected revenue increases slightly, however, the optimal

fare class limits are not affected.

In further research we will use the currently proposed model for the CFCM (1, d,

2) problem and extend it for more general variants of the CFCM (r, d, p) problem.

To develop a model for multiple routes, we aim to decompose a multi-route network

into multiple corridors, each modelled as CFCM (1, d, 2). Considering the corridors

in order of increasing costs, the excess of the previous corridor can be

accommodated in the present corridor provided capacity is available. This approach

is similar to modelling lateral transshipments in multi-echelon inventory models.

Other extension may consider further detailing customer demand. Our result suggest

additional benefit if customers are accepting longer lead times for the secondary

product. With more insight in customer preferences, the interest of customer in a

product range with more flexibility regarding lead time, or different flexibility along

other dimensions. For instance, what would be the optimal balance between a

product type that must travel over a fixed route, in combination with a product for

which the operator may decide on routing? This requires more insight in customer

demand preferences.
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