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Abstract—Several efforts are being done nowadays to improve 

the modelling of Wind Turbine Systems  (WTSs) for harmonic 

analysis in Offshore Wind Power Plants (OWPPs). Due to the 

high influence of the different control structures in the Power 

Electronic Converters (PECs) on the dynamic response of a 

WTS, each structure needs to be modelled specifically. In the 

case of this paper, the control approach under study is a double 

Synchronous Reference Frame. The main focus lies on the 

correct modelling of one of the main elements of this structure: 

the notch filter tuned at twice the fundamental frequency. It has 

been shown that this filter has indeed a notable effect on 

shaping the frequency response of a WTS, however, the 

modelling of this filter in the αβ frame in previous works was 

inaccurate. This inaccuracy and its implications are detailed in 

this paper. Simulation results confirm the theoretical findings. 

Keywords: wind turbine harmonic model; offshore wind 

power plant; notch filter; double synchronous reference frame  

I.  INTRODUCTION 

Several efforts are being done nowadays to improve and 
standardize the harmonic assessment in Offshore Wind 
Power Plants (OWPPs) [1]. Apart from improved harmonic 
propagation studies or more efficient Wind Turbine (WT) 
measurement campaigns, one of the main focuses lies on the 
accurate modelling of Wind Turbines [2]. 

The main challenges lie in obtaining models that are able 
to represent the harmonic emission of the Wind Turbine 
Systems (WTSs, defined as the WT with the power electronic 
conversion stage) and at the same time the interactions with 
the external electric network and other converters. In this 
sense, it has already been shown that the control loops in the 
Power Electronic Converters (PECs) have a considerable 
impact on the harmonic response of a WTS [3]-[4]. However, 
it has not yet been addressed thoroughly which of the control 
parameters (e.g. Phase-Locked Loop (PLL) bandwidth, 
current loop stability margin) are most influential and in what 
frequency range. 

This paper is focused on the impedance part of the 
harmonic model of a WTS (typically composed on a 
frequency-dependent current source and a parallel impedance 
[5]- [6]). In this paper, a double Synchronous Reference 
Frame (SRF) is going to be considered instead of the typically 
assumed single SRF structure (i.e., it is going to be considered 
that the positive and negative sequences are controlled 

separately instead of both of them going through the same dq 
frame). The single SRF structure is simpler and a priori easier 
to analyze than the double SRF, however, the double SRF 
might become more widespread in state-of-the-art WTSs due 
to its superior dynamic performance under unbalanced grid 
conditions [7]. Indeed, the double SRF has been considered 
in the impedance modelling of WTS before (e.g. [4]), but the 
difference between modelling this structure and a single SRF 
has not been explicitly shown before. 

With this objective in mind, this paper provides the first 
step for the purpose, which is the modelling of one specific 
element that is used in the double SRF structure that is not 
typically used in the single SRF structure: the notch filter that 
is used for separating the positive and negative sequence 
signals. The inclusion or disregard of this notch filter is very 
important because, as shown in [4], this filter can have a big 
influence on the shaping of the WTS output impedance and 
such of the OWPP. However, the modelling procedure for the 
notch filter followed in [4] ignores the cross-couplings that 
this element creates in the αβ frame, which leads to a wrong 
calculation of the WTS impedance in the lower frequency 
range.  

The main contribution of this paper is, thus, to show the 
importance of these cross couplings in the notch filter and to 
explain how to model them. Simulation results uphold the 
theoretical model proposed in this paper. 

Future works will use this first step (i.e. the notch filter 
model) and will explain in detail the procedure for modelling 
the impedance of the complete double SRF. Despite this, still 
in this paper the resultant impedance of a Type IV WTS with 
double SRF in which the notch filter is calculated with the 
model proposed in [4] will be compared to such impedance 
but with the notch filter calculated as proposed in this paper. 
The considerable differences in these impedances highlights 
the importance of a proper modelling of the notch filter. 

With this purpose, Section II describes the WTS under 
study. In Section III, the theoretical explanation on how to 
properly model the notch filter is addressed. In Section IV, 
simulations results are shown. Section V briefly shows the 
impact of the different notch filter models in the output 
impedance of a WTS. Conclusions are drawn in Section VI. 

 



 

Figure 2.  Schematic of the control structure in a double Synchronous Reference Frame 

 

II. WIND TURBINE SYSTEM DESCRIPTION 

In this paper, the Type IV WT was selected as this is the 
common choice for offshore applications due to its excellent 
dynamic response [3]. The power electronic stage consists of 
a back-to-back full converter as shown in Fig. 1. 

The DC voltage is considered constant in this study, so the 
dynamics of both converters can be decoupled. The focus of 
this article is on the grid-side converter as this is the one 
facing the OWPP. The main parameters of this PEC, a two-
level VSC, can be found in TABLE I. The values were chosen 
in order to approximate the situation in a real offshore WTS. 
The constant-DC voltage approximation implies the omission 
of the DC voltage control loop. 

 

Figure 1.  Schematic of a Type IV Wind Turbine 

A. Control Structure 

 The current control loop might be implemented in 
different ways, but based on the literature it was decided to 
use a rotating dq reference frame synchronized with the 
power system frequency by a Phase-Locked Loop (PLL).  

In order to improve dynamic performance, especially in 
the case of voltage unbalances, a common procedure is to 

control the positive and negative sequences separately and 
simultaneously [7]. In order to do this, the positive sequence 
is controlled in a positive sequence synchronous reference 
frame (SRF) in which there is a PI. Additionally, the negative 
sequence is controlled in a negative sequence SRF with 
another PI. The key point is that in the positive SRF, a 
positive sequence signal appears as a DC signal, while a 
negative sequence appears as an AC signal at twice the 
fundamental frequency. Thus, it is very easy to filter the 
negative sequence in the positive sequence frame if a notch 
filter is tuned at a 2f1 (with f1 being the fundamental 
frequency, 50Hz in this paper). Similarly can be done in the 
negative SRF. The formula for the notch filter and a 
discussion on its effects will be provided later in Section III. 
The schematic of this control structure is shown in Fig. 2. 

Note that, for the case of this specific paper, the focus is 
exclusively on the notch filter depicted in Fig. 2. The rest of 
the elements described in here will be used in order to 
calculate the WTS impedance at the end of this paper, 
although the exact procedure for this final impedance 
calculation will be shown in a follow-up paper. 

The formula for the PI controller can be found in (1). The 
values chosen for this PI are shown in TABLE II. The values 
have been chosen with Ki=KpRL/L in order to compensate for 
the pole in the plant (where L is the output filter inductor and 
RL its resistance). Kp was selected to obtain a bandwidth 
BW=200Hz (10 times lower than the switching frequency 
Fsw=2kHz). 

 

 

 



TABLE I.  MAIN PARAMETERS OF THE GRID-SIDE POWER ELECTRONIC CONVERTER 

 Description Value Unit   Description Value Unit 

Vdc DC Voltage 1200 V  RL Resistance of Output Inductor 30 (0.15/5) mΩ (p.u.) 

Vac Line-to-line AC Voltage 690 V  
 Operating Point   

Prated Rated Power 4.2 MW 
 

I1 Output Current 
4.97 

(nominal) 
kA 

L Output Inductor 48.71 (0.15) μH (p.u.) 
 

ϕi1 
Angle difference between 
Current and Phase Voltage 

0 degrees 

TABLE II.  MAIN PARAMETERS OF THE STUDIED CONTROL LOOPS  

 Description Value Unit   Description Value Unit 

Fs Sampling Frequency 4000 Hz   Phase-Locked Loop   

Kd 
Current Coupling 

Compensation Gain 
Lω1=0.0153 Ω 

 
Kp-pll Proportional Constant PI 0.3 rad/s 

Kf Voltage Feedforward Gain 0 V/V  Ki-pll Integral Constant PI 12 rad/s2 

 Current Control    BWpll PLL Bandwidth 30 Hz 

Kp Proportional Constant PI 0.062 Ω   Filters in the Sensors   

Ki Integral Constant PI 37.7 Ω/s 
 

ωfi 
Cut-off freq. of filter current 

sensor 
2π 2000 rad/s 

BWi Current Control Bandwidth 200 Hz 
 

ωfv 
Cut-off freq. of filter voltage 

sensor 
2π 2000 rad/s 

 

 

𝐻𝑖(𝑠) = 𝐾𝑝 +
𝐾𝑖
𝑠

 (1) 

Further, the current control includes a current coupling 
compensation gain (Kd) which is selected as Lω and a voltage 
feedforward gain (Kf). In this case, the voltage feedforward 
has not been included (Kf=0) for simplification. 

 

 

Figure 3. Synchronous Reference Frame PLL (SRF-PLL) 

The PLL under study is a basic SRF-PLL as depicted in 
Fig. 3. The PLL compensator (HPLL(s)) has been chosen to be 
a simple PI with an additional integrator as in (2). The closed-
loop transfer function of the PLL is given by (3) [8]. 

𝐻𝑃𝐿𝐿(𝑠) = (𝐾𝑝 +
𝐾𝑖
𝑠
)
1

𝑠
 (2) 

𝑇𝑃𝐿𝐿(𝑠) =
𝐻𝑃𝐿𝐿(𝑠)

1 + 𝑉1𝐻𝑃𝐿𝐿(𝑠)
 (3) 

Where V1 is the amplitude of the AC output phase 
voltage. In [8] TPLL is also multiplied in the numerator by V1. 
However, this is due to the fact that the author assumes that 
the signal values in the control blocks will be in p.u. 

Finally, in (4) and (5), Gi(s) represents the filter in the 
current measuring system and the sampling delay, and Gv(s) 
represents the same for the AC voltage signal (used in the 
feedforward voltage and as an input to the PLL).  

𝐺𝑖(𝑠) = 𝑒
−𝑠1.5𝑇𝑠

𝜔𝑓𝑖
2

𝑠2 + 2𝜉𝜔𝑓𝑖𝑠 + 𝜔𝑓𝑖
2  (4) 

𝐺𝑣(𝑠) = 𝑒
−𝑠1.5𝑇𝑠

𝜔𝑓𝑣
2

𝑠2 + 2𝜉𝜔𝑓𝑣𝑠 + 𝜔𝑓𝑣
2  (5) 

Where Ts is the sampling time (Ts=1/Fs with Fs=2Fsw as in 
TABLE II. ), ξ is the damping factor and is selected equal to 
1, and ωfi and ωfv are the cut-off frequencies of the filter of 
the current and voltage sensors, respectively. 

Note on Fig. 1 that the objective is to calculate the 
impedance of the WTS (ZWT) up until and including the 
output inductor. The possible additional filter stages can be 
added a posteriori to the impedance of the converter by linear 
circuit theory. 

III. THEORETICAL MODEL OF THE NOTCH FILTER 

A typical notch filter is shown in (6). 

𝐻𝑛(𝑠) =
𝑠2 + (

𝜔𝑛
𝑄𝑛
) 𝑠 + 𝜔𝑛

2

𝑠2 + (
𝜔𝑛
𝑄𝑑
) 𝑠 + 𝜔𝑛

2
 (6) 

Where ωn is the angular frequency at which the filter is 
tuned and Qn and Qd are constants that need to be tuned 
according to the application [4]. The parameters chosen for 
this filter are Qn=10/sqrt(2), Qd=2/sqrt(2) and ωn=2ω1 as in 
[4]. The response of the filter can be seen in Fig. 4. 

As implied in Fig 2, the notch filter is applied to both dq 
channels separately, as in (7). 

[
𝑖𝑑
𝑖𝑞
] = [

𝐻𝑛(𝑠) 0

0 𝐻𝑛(𝑠)
]

⏟          
[
𝑖𝑑_𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
𝑖𝑞_𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

] 

𝐻𝑛
𝑚
𝑑𝑞
(𝑠) 

(7) 

 

 

 

 

 



 

Figure 4.  Notch filter in the dq frame (as in (11)) 

Hn
m

dq(s) is a transfer matrix (m is upper-index for transfer 
matrix) in de dq frame (dq sub-index). If this transfer matrix 
is to be translated into the αβ frame, it is very useful to 
represent it as a complex transfer function because the 
translation is just a frequency shift (for basic theory on 
transfer matrices and complex transfer functions see [9]).  

Note that Hn
m

dq(s) not only is symmetrical (the diagonal 
terms are equal and the cross-diagonal terms have opposite 
signs) but also that the cross-diagonal terms are zero. The first 
characteristic implies that, when representing Hn

m
dq(s) with 

complex transfer functions, only one transfer function is 
needed, and the second characteristic that the complex 
transfer function will actually have a zero imaginary part.  

More specifically, if the element (1,1) in Hn
m

dq(s) is called 
Gdd(s), the element (1,2) is -Gqd(s), the element (2,1) is Gdq(s) 
and the element (2,2) is Gqq(s), we can rename Gdd(s)= 
Gqq(s)=Gd(s) and Gdq(s)= Gqd(s)=Gq(s). In order to transform 
it into a complex transfer function Hn

c
dq(s) (c upper-index) 

then (8) applies. 

𝐻𝑛
𝑐
𝑑𝑞
(𝑠) = 𝐺𝑑(𝑠) + 𝑗𝐺𝑞(𝑠) = 𝐻𝑛(𝑠) + 𝑗0 (8) 

Thus, due to the special characteristics of (7), the complex 
transfer function is simply Hn(s). Now, in order to translate 
this complex transfer function into the alpha beta frame, the 
only thing to do is a frequency shift as in (9) [9]. 

𝐻𝑛
𝑐
𝛼𝛽
(𝑠) = 𝐻𝑛

𝑐
𝑑𝑞
(𝑠 − 𝑗𝜔1) = 𝐻𝑛(𝑠 − 𝑗𝜔1) =

=
(𝑠 − 𝑗𝜔1)

2 + (
𝜔𝑛
𝑄𝑛
) (𝑠 − 𝑗𝜔1) + 𝜔𝑛

2

(𝑠 − 𝑗𝜔1)
2 + (

𝜔𝑛
𝑄𝑑
) (𝑠 − 𝑗𝜔1) + 𝜔𝑛

2
 

(9) 

Equation (9) shows a complex transfer function Hn(s-jω1) 
that is the notch filter in the αβ frame. Note that now, the 
imaginary part is non-zero due to the frequency shift. 

In order to understand what this means more intuitively, 
it is useful to translate this into a transfer matrix again (like 
(12) but in the αβ frame). This transfer matrix will have the 
following elements: (1,1) is called Gαα(s), (1,2) is -Gβα(s), 
(2,1) is Gαβ(s) and (2,2) is Gββ(s). As the filter is represented 
by only one complex transfer function, it is known that the 
corresponding transfer matrix is symmetric, thus: Gαα(s)= 
Gββ(s)=Gα(s) and Gαβ(s)= Gβα(s)=Gβ(s). In order to find Gα(s) 
and Gβ(s), (10) and (11) are applicable [9]. 

𝐺𝛼(𝑠) =
𝐻𝑛
𝑐
𝛼𝛽
(𝑠) + 𝐻𝑛

𝑐
𝛼𝛽
∗ (𝑠)

2
 (10) 

𝐺𝛽(𝑠) =
𝐻𝑛
𝑐
𝛼𝛽
(𝑠) − 𝐻𝑛

𝑐
𝛼𝛽
∗ (𝑠)

2𝑗
 (11) 

Where the upper-index * in (10) and (11) means conjugate. 
In this case, the conjugate would be given by (12). 

𝐻𝑛
𝑐
𝛼𝛽
∗ (𝑠) =

(𝑠 + 𝑗𝜔1)
2 + (

𝜔𝑛
𝑄𝑛
) (𝑠 + 𝑗𝜔1) + 𝜔𝑛

2

(𝑠 + 𝑗𝜔1)
2 + (

𝜔𝑛
𝑄𝑑
) (𝑠 + 𝑗𝜔1) + 𝜔𝑛

2
 (12) 

Thus, with (10), (11) and (12) the transfer matrix in the αβ 
frame can be obtained as in (13). 

[
𝑖𝛼
𝑖𝛽
] = [

𝐺𝛼(𝑠) −𝐺𝛽(𝑠)

𝐺𝛽(𝑠) 𝐺𝛼(𝑠)
]

⏟          
[
𝑖𝛼_𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
𝑖𝛽_𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

] 

𝐻𝑛
𝑚
𝛼𝛽
(𝑠) 

(13) 

where Gα(s) and Gβ(s) are the real and the imaginary part 
of Hn

c
αβ(s) (shown in (18)), as it is indicated in (14). 

𝐻𝑛
𝑐
𝛼𝛽
(𝑠) = 𝐺𝛼(𝑠) + 𝑗𝐺𝛽(𝑠) (14) 

This is the same procedure followed in [4]. The difference 
is that in [4] the cross-diagonal terms in the αβ transfer matrix 
(that is to say, Gβ(s)) are assumed to be irrelevant, and the 
notch filter in the αβ frame is simply modelled as Gα(s). That 
is to say, in the complex transfer function representation, the 
imaginary part is neglected. 

Fig. 6 shows the notch filter in the αβ frame (that is to say, 
Hn(s-jω1) as in (14)), its real part Gα(s) and its imaginary part 
Gβ(s). As it can be seen, Gβ(s) a priori might seem 
insignificant because of its low magnitude in comparison to 
Gα(s). However, the effect of Gβ(s) is actually quite 
significant, as shown by the big difference in between Hn(s-
jω1) and Gα(s), in both the magnitude and phase plots. 

 

Figure 5.  Notch filter in the αβ frame (Hn(s-jω1) as in (14)), its real part 

Gα(s) and its imaginary part Gβ(s). Note the frequency shift of Hn(s-jω1), in 

blue, with respect to Fig. 4.  

Thus, it is considered in this paper that (9) is the correct 
representation of the notch filter, which indeed makes sense 
because as expected, it clearly filters the negative sequence 
component at -50 Hz while having magnitude 1 and phase 0 
degrees for the positive sequence at 50 Hz.  

 

 



 

Figure 8.  Impedance of a Type IV WT considering a double Synchronous Reference Frame with a complete notch filter as in (9) (red), and the same but 

with a partial notch filter (ignoring the couplings) (blue) 
 

IV. SIMULATION RESULTS 

In order to uphold this analytic analysis, several 
simulations where carried out in Simulink. The system 
simulated is shown schematically in Fig. 6 

 

Figure 6.  Schematic of the simulated system 

The objective was to calculate the complex transfer 
function between the signal before the filter (iαβunfiltered) and 
the signal after the filter (iαβ) in the αβ frame to check the 
validity of (9). In order to do so, the three phase signal iabc was 
varied over a frequency range, both in the positive and 
negative sequences. Subsequently, Hn

c
αβ(s) = Hn(s-jω1) was 

calculated according to (15). 

𝐻𝑛
𝑐
𝛼𝛽
(𝑠) =

𝑖α + 𝑗𝑖β

𝑖α_𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 + 𝑗𝑖β_𝑢𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
 (15) 

The results of this procedure are shown in Fig. 7 As it can 
be seen, the theoretical formula shown in (9) accurately 
matches the simulation results. 

 

Figure 7.  Comparison of simulation results (red) with the 
theoretical model (blue). Note: the blue curve is the same as in Fig. 5. 

 

V. IMPACT OF THE NOTCH FILTER ON THE HARMONIC 

IMPEDANCE OF A TYPE IV WTS 

In Fig. 8 it can be seen the curve of the output filter 
inductor (Ls+RL), the impedance with a double SRF in which 
the notch filter has been calculated with (9) and the 
impedance with a double SRF but with the notch filter only 
partially included (only the real part, as done in [4]). Firstly, 
in this figure it is shown the considerable effect of the notch 
filter in shaping the output impedance of a WTS in the low 
frequency range. Secondly, the figure highlights also the 
importance of including both the real and the imaginary parts 
of the notch filter complex transfer function. That is to say, to 
consider both Gα(s) and Gβ(s) in (14) or, in other words, to 
not neglect the cross-couplings of the notch filter when 
transferred into the αβ frame. 

VI. CONCLUSIONS 

With the objective of analytically calculating the 
harmonic impedance of a WTS in the case of the use of a 
double SRF, this paper has provided the first step for the 
purpose: the modelling of the notch filter tuned at twice the 
fundamental frequency. 

The theoretical analysis behind the correct modelling of 
this filter has been provided using transfer matrices and 
complex transfer functions transformations, and the final 
model has been validated with simulations. 

The importance of including the couplings that the notch 
filter creates when transferred into the αβ frame has been 
shown by highlighting the great influence of these couplings 
in the final shaping of the output impedance of a Type IV 
WTS in the low frequency range.  
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