

Delft University of Technology

Resampling Point Clouds Using Series of Local Triangulations

Vijai Kumar , S.; Vuik, Cornelis; Möller, Matthias

DOI
10.3390/jimaging11020049
Publication date
2025
Document Version
Final published version
Published in
Journal of Imaging

Citation (APA)
Vijai Kumar , S., Vuik, C., & Möller, M. (2025). Resampling Point Clouds Using Series of Local
Triangulations. Journal of Imaging, 11(2), Article 49. https://doi.org/10.3390/jimaging11020049

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/jimaging11020049
https://doi.org/10.3390/jimaging11020049

Academic Editors: Silvio Del Pizzo

and Luca Perfetti

Received: 30 November 2024

Revised: 30 January 2025

Accepted: 6 February 2025

Published: 8 February 2025

Citation: Suriyababu, V.K.; Vuik, C.;

Möller, M. Resampling Point Clouds

Using Series of Local Triangulations. J.

Imaging 2025, 11, 49. https://doi.org/

10.3390/jimaging11020049

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Resampling Point Clouds Using Series of Local Triangulations
Vijai Kumar Suriyababu *,† , Cornelis Vuik † and Matthias Möller †

Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4,
2628 CD Delft, The Netherlands; c.vuik@tudelft.nl (C.V.); m.moller@tudelft.nl (M.M.)
* Correspondence: v.k.suriyababu@tudelft.nl
† These authors contributed equally to this work.

Abstract: The increasing reliance on 3D scanning and meshless methods highlights the
need for algorithms optimized for point-cloud geometry representations in CAE simula-
tions. While voxel-based binning methods are simple, they often compromise geometry
and topology, particularly with coarse voxelizations. We propose an algorithm based
on a Series of Local Triangulations (SOLT) as an intermediate representation for point
clouds, enabling efficient upsampling and downsampling. This robust and straightforward
approach preserves the integrity of point clouds, ensuring resampling without feature
loss or topological distortions. The proposed techniques integrate seamlessly into existing
engineering workflows, avoiding complex optimization or machine learning methods
while delivering reliable, high-quality results for a large number of examples. Resampled
point clouds produced by our method can be directly used for solving PDEs or as input for
surface reconstruction algorithms. We demonstrate the effectiveness of this approach with
examples from mechanically sampled point clouds and real-world 3D scans.

Keywords: point-cloud resampling; surface reconstruction; feature preservation

1. Introduction
Triangular meshes have long been the standard representation for discrete surfaces

in computational geometry. However, point clouds have emerged as a viable alternative,
particularly in scenarios where generating a surface mesh is challenging [1]. Techniques
such as smoothed-particle hydrodynamics (SPH) and radial basis function-finite differ-
ences (RBF-FD) [2] use tree-based representations [3] to establish connectivity in point
clouds, offering advantages over traditional mesh-based methods for specific applications.
Furthermore, advances in point-based rendering, driven by neural networks [4], highlight
the growing importance of point clouds. Innovations in 3D scanning and LiDAR have
cemented their role as a reliable representation of complex 3D geometries.

1.1. Related Work (Algorithmic Approaches)

Point clouds can be oriented or unoriented depending on their source. Establishing
consistent orientations in unoriented point clouds often requires specialized algorithms [5].
Additionally, point clouds must adhere to specific distribution patterns or maintain a
desired resolution to ensure their effective use. While various methods have been developed
for resampling point clouds [6–10], most approaches focus exclusively on either upsampling
or downsampling. We make a comparison against some of these works in our Numerical
Experiments section.

Voxelization is a common intermediate representation used in resampling workflows.
For instance, Chenlei et al. [8] constructed occupancy grids for point clouds and resampled

J. Imaging 2025, 11, 49 https://doi.org/10.3390/jimaging11020049

https://doi.org/10.3390/jimaging11020049
https://doi.org/10.3390/jimaging11020049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-9736-3750
https://orcid.org/0000-0002-5988-9153
https://orcid.org/0000-0003-0802-945X
https://doi.org/10.3390/jimaging11020049
https://www.mdpi.com/article/10.3390/jimaging11020049?type=check_update&version=2

J. Imaging 2025, 11, 49 2 of 25

them by averaging local voxel neighborhoods. However, voxelization often introduces
artifacts that necessitate additional projection or optimization steps. While such artifacts
may be tolerable for certain applications, CAE workflows typically demand highly uniform
point-cloud distributions [3].

1.2. Related Work (Learning-Based Approaches)

Learning-based methods have emerged as powerful tools for point-cloud processing,
leveraging deep learning architectures to tackle tasks such as denoising, resampling, and
reconstruction [11]. For instance, Zhao et al. [12] proposed a multi-task learning network for
LiDAR point-cloud preprocessing, incorporating denoising, segmentation, and completion
branches. Similarly, Zhao et al. [13] introduced the ICDDPM model for image-conditioned
single-view reconstruction, achieving state-of-the-art results on datasets like ShapeNet
and PASCAL3D+. Other works, such as those by Wu et al. [14], Chen et al. [15], and
Rong et al. [16], focus on advanced resampling and upsampling techniques, demonstrating
impressive performance across diverse non-CAE datasets.

Despite their effectiveness, these learning-based methods are not explicitly tailored
for computer-aided engineering (CAE) applications. For completeness, we still include
comparisons with select learning-based methods in our Numerical Experiments section,
showcasing the strengths of our approach.

1.3. Our Approach

In contrast to the aforementioned methods, we propose a novel algorithm leveraging
an intermediate representation termed the Series of Local Triangulations (SOLT). By con-
structing and refining local Delaunay triangulations, SOLT avoids the artifacts associated
with voxelization while ensuring uniformity and topology preservation. Unlike deep
learning approaches, SOLT does not rely on pre-trained models, making it lightweight and
suitable for seamless integration into CAE workflows.

1.4. Contributions

The key contributions of this work are as follows:

1. A novel algorithm, SOLT, enabling efficient point-cloud upsampling and downsam-
pling without artifacts or topology loss.

2. A demonstration of SOLT’s robustness across a variety of inputs, including mechani-
cally sampled point clouds and real-world 3D scans.

3. A comprehensive evaluation of SOLT against state-of-the-art methods, highlighting
its accuracy, computational efficiency, and fidelity.

4. The quantitative and qualitative results, illustrating SOLT’s versatility in
CAE applications.

2. Methodology
Figure 1 illustrates the point-resampling workflow. Steps such as denoising and

smoothing are optional and depend on the characteristics of the input point cloud. The
methodologies for these steps are detailed in [17]. These filters are handy for handling
noise or perturbations introduced by data-collection sources, such as LiDAR or 3D scanners.
Notably, our approach does not modify the point cloud directly; adjustments are applied to
the intermediate mesh representation described in the following sections.

J. Imaging 2025, 11, 49 3 of 25

Unoriented Point
Cloud

Series Of Local
Triangulations

Smoothing
(Optional)

Denoising mesh
(Optional)

Dense Random
Sampling

Upsampling or
downsampling using
blue noise sampling

Reconstruct surface
(Optional)

Solve PDE's
(Further computation)

Figure 1. Workflow of the overall methodology. Optional modules are highlighted in light orange.

2.1. Series of Local Triangulations (SOLT)

The Series of Local Triangulations (SOLT) technique represents point-cloud data
by constructing localized triangulations around individual points. It uses distance and
geometric parameters (tangent coordinates) to identify nearby points and computes a
characteristic length scale for each local neighbourhood, ensuring adaptability to varying
point densities. Heuristics are applied to handle problematic configurations, maintaining
stability and preserving geometry. Points are sorted to enable consistent local Delaunay

J. Imaging 2025, 11, 49 4 of 25

triangulations, followed by iterative refinements. The resulting local triangulations are
merged into a global triangulation by de-duplicating indices.

2.1.1. Nearest Point Selection for Local Triangulation

A key parameter in the SOLT algorithm is the search radius r, which defines the
neighbourhood of each point. The neighborhood S(p) for each point p is mathematically
defined as:

S(p) = {q ∈ PointCloud | ∥q − p∥ ≤ r, and ∥T(q)− T(p)∥ ≤ ϵ},

where:

• r: Search radius (default: average point-to-point distance),
• T(p) and T(q): Tangent coordinate vectors at p and q,
• ϵ: Threshold for tangent coordinate similarity.

Alternatively, a fixed number of nearest points (k) can be used instead of a radius. The
radius r is computed as:

r =
1
n

n

∑
i=1

∥pi − pj∥, ∀pj ∈ NearestNeighbors(pi),

where n is the total number of points in the point cloud.

2.1.2. Mesh Quality and Robustness

The SOLT mesh is an intermediate representation. Issues such as self-intersections or
non-manifold edges do not affect the final resampling results. The SOLT representation
supports the following operations:

• Random sampling,
• Blue noise sampling (a refinement of random sampling),
• Feature distance field computations.

2.1.3. Circumcircle Criterion for Delaunay Triangulation

Delaunay triangulation ensures that no point lies inside the circumcircle of any triangle.
For a triangle △(p1, p2, p3), the circumcircle condition is:

CircumcircleCondition : ∥q − c∥ > rc, ∀q /∈ {p1, p2, p3},

where:

• c: Circumcenter of △(p1, p2, p3),
• rc: Circumradius of △(p1, p2, p3),
• q: Any point outside the triangle.

Edges violating this condition are flipped to restore the Delaunay property.

2.2. Examples and Comparisons

A sample of a building point cloud using the SOLT representation is shown in Figure 2.
This representation highlights the effectiveness of SOLT in capturing local geometric de-
tails and preserving key structural features. To further demonstrate the robustness of
the SOLT method, we present additional examples, including comparisons with other
popular surface reconstruction techniques, such as the Ball-Pivoting Algorithm (BPA) and
Poisson reconstruction.

J. Imaging 2025, 11, 49 5 of 25

Figure 2. Point cloud (blue) converted to a Series of Local Triangulations (SOLT) representation. The
SOLT is shown in yellow, both with and without edges.

The eagle point cloud, sourced from Open3D’s datasets [18], is used to evaluate the
performance and efficiency of our algorithm. Figures 3–6 illustrate the input point cloud
and the reconstructions generated by SOLT, BPA, and Poisson reconstruction approaches.

Figure 3. Different views of an eagle point cloud (from Open3D’s datasets [18]). The point cloud
(796,825 points) contains intricate features, making it an excellent candidate for evaluating reconstruc-
tion algorithms.

J. Imaging 2025, 11, 49 6 of 25

Figure 4. SOLT reconstruction of the eagle point cloud (Time taken: 35.8 s). The SOLT algorithm
effectively captures the intricate features of the point cloud while being computationally efficient.

Figure 5. BPA reconstruction of the eagle point cloud (Time taken: 26.91 min). This method is 62 times
slower than the SOLT algorithm, achieving a similar reconstruction quality.

J. Imaging 2025, 11, 49 7 of 25

Figure 6. Poisson reconstruction of the eagle point cloud (Time taken: 87.9 s). This method is
2.46 times slower than the SOLT algorithm, achieving comparable quality.

2.2.1. SOLT Reconstruction

Figure 4 shows the SOLT reconstruction of the eagle point cloud, which took 35.8 s to
complete. The SOLT algorithm effectively retains the eagle’s intricate details and overall
geometry while maintaining computational efficiency. It can be clearly seen that the
topology of the mesh remains intact. This performance demonstrates the algorithm’s
suitability for real-time applications or scenarios where computational resources are limited.

2.2.2. BPA Reconstruction

The Ball-Pivoting Algorithm (BPA) reconstruction of the eagle point cloud (Figure 5)
took significantly longer, completing in 26.91 min. While BPA successfully reconstructs
the geometry, it is approximately 62 times slower than SOLT, highlighting its inefficiency
for large or complex point clouds. This comparison underscores the advantage of SOLT in
handling high-resolution datasets efficiently.

2.2.3. Poisson Reconstruction

The Poisson reconstruction approach (Figure 6) was completed in 87.9 s for a compara-
ble level of detail. While it is approximately 2.46 times slower than SOLT, it is significantly
faster than BPA. Poisson reconstruction balances computational speed and detail preserva-
tion but has notable limitations.

One key drawback of Poisson reconstruction is its tendency to over-smooth fine details,
which can result in the loss of sharp features. Additionally, the method operates as a global
solver, offering limited control over local geometric properties. While this global approach
ensures consistency, it may inadvertently alter the genus or modify essential features of
the input geometry. These characteristics make Poisson reconstruction less suitable for
tasks like mesh resampling, where preserving topology and fine details is critical. Despite
its strengths as a reconstruction algorithm, these drawbacks limit its attractiveness for
applications requiring high fidelity to the original input.

J. Imaging 2025, 11, 49 8 of 25

2.3. Discussion

The comparative analysis of these reconstruction techniques highlights the SOLT
algorithm’s distinct advantages. It not only outperforms BPA by a substantial margin in
terms of computational efficiency but also achieves comparable reconstruction quality to
both BPA and Poisson methods.

• Efficiency: SOLT’s 35.8-second runtime demonstrates its computational advantage,
making it suitable for time-sensitive applications.

• Quality: The SOLT representation accurately captures intricate features such as the
eagle’s wings and body structure, maintaining high fidelity to the input point cloud.

• Versatility: While Poisson reconstruction is faster than BPA, SOLT achieves similar
quality with significantly lower computational cost, cementing its robustness across
diverse use cases.

A more detailed comparison is presented in Table 1, highlighting the SOLT algorithm’s
efficiency and robustness for point-cloud resampling and other applications.

Table 1. Comparison of SOLT, BPA, and Poisson reconstruction.

Criterion SOLT BPA Poisson

Reconstruction Time
(Eagle Example) Fast (35.8 s) Very Slow

(26.91 min) Moderate (87.9 s)

Accuracy High High High

Suitability for
Resampling Excellent Moderate Poor

Requires Surface
Normals No Yes Yes

Suitability for PDE
Solvers Good Moderate Excellent

Computational
Efficiency Very High Low Moderate

Topology
Preservation Excellent Good May alter topology

Feature Sensitivity Preserves fine
details

Sensitive to
noisy data

Over-smoothing of
features is common

Scalability for Large
Datasets Highly Scalable Poor Moderate—Some

optimized variants exist

Summary

The pseudocode in Algorithm 1 is simple and can be easily integrated into geometry
processing pipelines. Nicholas Sharp et al. utilized a similar approach to address degenerate
meshes in solving PDEs [19]. In prior work, this representation effectively transformed
unoriented point clouds for consistent and reliable winding number computations [17].
The SOLT approach delivers results comparable to more complex methods involving
PDEs [5,20].

J. Imaging 2025, 11, 49 9 of 25

Algorithm 1 Series of Local Triangulations (SOLT)

1: function SERIESOFLOCALTRIANGULATIONS
2: Input: Unoriented point cloud
3: Output: Series of Local Triangulations
4: Initialize the point cloud
5: for each point p in the point cloud do
6: Identify a local neighborhood S(p) of p using a distance threshold or tangent

space coordinates
7: Determine the characteristic length scale of S(p) as the distance to its farthest

neighbor
8: if points in S(p) are excessively close or nearly coincident then
9: Adjust their positions to prevent degeneracies

10: end if
11: Arrange points in S(p) in a counter-clockwise order for consistency
12: Compute the local Delaunay triangulation of S(p)
13: Refine the triangulation to ensure it adheres to the Delaunay criterion
14: end for
15: Merge the local triangulations into a global mesh by eliminating duplicate vertices
16: Optionally, apply smoothing or denoising as described in [17]
17: end function

2.4. Point Resampling

After calculating the intermediate representation described in Section 2.1, the next step
involves resampling the points to meet specific application requirements. Point resampling
can be tailored to generate a new point cloud with desired characteristics, such as uniform
distribution, adherence to distance constraints, or alignment with specific features like
sharp edges or curves. Depending on the requirements, different resampling techniques
can be employed.

If random sampling is sufficient, the resampling process can use methods that rely
on random numbers and triangle areas to generate a new point cloud as outlined in
Algorithm 2. However, random sampling may not always be ideal for applications requir-
ing precision or uniformity, as it can lead to uneven distributions or clustering artifacts.
For more structured applications, such as upsampling or downsampling, employing more
sophisticated techniques like blue noise sampling is preferable.

Algorithm 2 Random sampling on SOLT (area-weighted sampling)

1: function RANDOMSAMPLINGONSOLT(SOLT, numPoints)
2: Input: SOLT (Series of Local Triangulations), numPoints (desired number of points)
3: Output: Randomly sampled point cloud
4: Compute the area of each triangle T in SOLT
5: Normalize triangle areas to form a cumulative distribution function (CDF)
6: Initialize an empty set S
7: for each i from 1 to numPoints do
8: Select a triangle T randomly, weighted by its area, using the CDF
9: Generate random barycentric coordinates (u, v, w), where u + v + w = 1

10: Compute the sampled point p as p = uv1 + vv2 + wv3, where v1, v2, v3 are the
vertices of T

11: Add p to S
12: end for
13: return S
14: end function

Blue noise sampling is one of the most effective methods for high-quality resam-
pling, which produces a well-spaced and uniform distribution of points while satisfying

J. Imaging 2025, 11, 49 10 of 25

user-defined distance criteria. Blue noise patterns minimize visual artifacts and cluster-
ing, making them suitable for computational tasks requiring consistent point densities.
The work of Robert Bridson [21] describes an efficient and widely adopted approach for
generating blue noise distributions.

Point resampling typically begins with a dense random sampling phase based on the
SOLT representation. This dense point set is refined into a blue noise-sampled point cloud
that preserves desired spacing and uniformity as outlined in Algorithm 3. By leveraging
triangle areas and random barycentric sampling, these methods ensure that resampled
point clouds respect the application’s geometry and density requirements.

Algorithm 3 Blue noise sampling on SOLT (area-weighted sampling with distance con-
straint)

1: function BLUENOISESAMPLINGONSOLT(SOLT, minDistance)
2: Input: SOLT (Series of Local Triangulations), minDistance (minimum spacing

between points)
3: Output: Blue noise-sampled point cloud
4: Compute the area of each triangle T in SOLT
5: Normalize triangle areas to form a cumulative distribution function (CDF)
6: Initialize an empty set S and a candidate queue Q
7: Randomly select an initial triangle T0 from the CDF
8: Generate a random point p0 within T0 using barycentric coordinates and add p0 to

S and Q
9: while Q is not empty do

10: Remove a point p from Q
11: for each candidate point c generated around p do
12: Select a triangle Tc containing c, weighted by area, using the CDF
13: if c lies within Tc and satisfies the minDistance criterion from all points in S

then
14: Add c to S
15: Add c to Q
16: end if
17: end for
18: end while
19: return S
20: end function

When resampling point clouds, additional considerations may include incorporating
feature constraints. For example, if the input point cloud includes feature curves or sharp
edges, the sampling process can be constrained to ensure that these features are adequately
captured in the output. This is particularly relevant in applications with critical geometric
fidelity, such as surface reconstruction or finite element analysis.

Furthermore, blue noise sampling can be adapted to handle non-uniform distributions,
such as areas requiring higher point density due to localized curvature or features of interest.
The algorithm can produce point clouds tailored to specific geometric and application needs
by introducing variable density criteria or weight-based sampling.

The application’s requirements should guide the choice of resampling technique,
whether it demands random sampling, high-quality blue noise sampling, or feature-
aware constraints.

2.5. Feature Distance Field and Feature-Preserving Resampling

Preserving features in point-cloud resampling is crucial for applications requiring
geometric fidelity. In the existing literature, feature preservation is often overlooked or
handled using heuristic-based techniques. To address this, we estimate a distance field from
feature points onto the mesh and use it as a constraint during resampling. The generalized

J. Imaging 2025, 11, 49 11 of 25

signed distance field is computed using the method described in [22], which provides
robust estimates even for extremely poor quality triangulations (often the case with SOLT).

This feature distance field D(x) is used to augment the resampling process, ensuring
that newly sampled points are sensitive to features. Instead of directly incorporating feature
points, we define a distance-based constraint on the sampling process using the field D(x).
The distance field captures the proximity of any point in the mesh to the nearest feature,
providing a smooth, spatially aware constraint as outlined in Algorithm 4.

During blue noise sampling, the original point cloud P = {p1, p2, . . . , pn} is resampled
using the feature distance field. A minimum distance d is enforced between any two
sampled points, while the distance field D(x) is used to modify the sampling distribution.
Regions’ near features are sampled more densely based on the field values. Points are
sampled only if they satisfy the minimum distance criterion and the constraints imposed
by D(x).

Algorithm 4 Feature-preserving resampling using feature distance field

1: function FEATUREPRESERVINGRESAMPLING
2: Input: Original point cloud P, feature distance field D(x)
3: Output: Resampled point cloud P′

4: Estimate seriesOfLocalTriangulations for P as per Algorithm 1
5: Compute feature distance field D(x) using [22]
6: Initialize P′ = ∅
7: Set minimum distance d
8: while not converged or maximum iterations not reached do
9: Generate candidate point p′ using blue noise sampling

10: if D(p′) < threshold and p′ satisfies distance criterion with all existing points in
P′ then

11: Add p′ to P′

12: end if
13: end while
14: return P′

15: end function

Figure 7 illustrates examples of feature distance fields for selected geometries, show-
casing how distances from feature curves to the surrounding mesh are computed. These
fields guide the resampling process, ensuring that critical features such as sharp edges or
curves are preserved in the final point cloud.

By leveraging the feature distance field, our method ensures that resampled point
clouds are sensitive to features without directly relying on feature points. This approach
maintains geometric fidelity while enabling robust resampling for applications in surface
reconstruction, finite element analysis, and other geometry-sensitive domains.

J. Imaging 2025, 11, 49 12 of 25

Figure 7. Feature distance fields for selected geometries (purple indicates a distance field value
of zero).

3. Numerical Experiments
The algorithm was implemented in C++ and evaluated using datasets including

the Waterloo Point Cloud Database [23,24], Thingi10k [25], and SimJEB [26]. The tests
were conducted on an Intel i5-8350U laptop with 8 threads and an integrated GPU. These
datasets feature diverse geometries such as everyday objects, mechanical components, and
intricate high-genus structures, providing a comprehensive evaluation of the algorithm’s
performance in feature preservation, noise handling, and topological fidelity.

3.1. Quantitative Metrics

To evaluate the robustness of our algorithm, the following quantitative metrics
were considered:

J. Imaging 2025, 11, 49 13 of 25

1. Chamfer Distance Loss (%): Calculates the average bidirectional distance between
two point clouds as a percentage. It is defined as:

Chamfer Loss (%) =

(
1
|P| ∑

p∈P
min
q∈Q

∥p − q∥2 +
1
|Q| ∑

q∈Q
min
p∈P

∥p − q∥2

)
× 100

where P and Q represent the original and resampled point clouds, respectively.
2. Hausdorff Distance Loss (%): Captures the maximum distance between the closest

points of two point clouds, expressed as a percentage. It is defined as:

Hausdorff Loss (%) =

(
max

{
sup
p∈P

inf
q∈Q

∥p − q∥, sup
q∈Q

inf
p∈P

∥p − q∥
})

× 100

3. Uniformity Index (%): Evaluates the evenness of point distribution across the resam-
pled point cloud:

Uniformity Index (%) =
(

1 − σnn

µnn

)
× 100

where µnn and σnn are the mean and standard deviation of nearest-neighbor distances.
Higher percentages indicate more consistent point spacing.

4. Volume Preservation Error (%): Quantifies the percentage difference in volume be-
tween the original and resampled meshes:

Volume Preservation Error (%) =
|Voriginal − Vresampled|

Voriginal
× 100

where Voriginal and Vresampled are the original and resampled volumes.
5. Computational Time (s): Measures the time taken by the algorithm to process and

resample a point cloud:
Tcompute = tend − tstart

6. Compression Ratio: Assesses the reduction in data size during resampling:

Compression Ratio =
Sizeoriginal

Sizeresampled

3.2. Smooth Geometries

This experiment focuses on resampling point clouds from smooth geometries with
low genus, using the Waterloo Point Cloud Dataset. The initial mesh is constructed using
the Series of Local Triangulations (SOLT), followed by resampling based on the desired
point-to-point distance criterion (Figure 8).

We demonstrate 50% and 75% reductions in point density while preserving the genus
through reconstructed meshes. For refinement, Restricted Voronoi Diagram-based (RVD)
re-meshing techniques [17] are suggested. The results (summarized in Table 2) show that
the resampled point clouds maintain the genus and exhibit uniform density distribution
due to constrained blue noise sampling.

J. Imaging 2025, 11, 49 14 of 25

Table 2. Quantitative metrics for smooth geometries.

Metric Range (% or Value)

Chamfer Distance Loss (%) 0.1–0.3

Hausdorff Distance Loss (%) 0.22–1.25

Uniformity Index (%) 96–99

Volume Preservation Error (%) 1.5

Computational Time (s) 5.0–30.0

Compression Ratio 2:1–3.33:1

Raw cloud SOLT
Representation

Down sample
(50% reduction)

Down sample
(70% reduction)

Reconstruction
(using SOLT)

Figure 8. Point cloud (blue) meshed using SOLT (yellow), downsampled in two stages (pink and
green), and reconstructed using the SOLT representation (purple).

3.3. Mechanical Geometries

This experiment evaluates geometries with intricate feature curves sampled from
the SimJEB dataset [26]. Dense point clouds are generated using random point-cloud

J. Imaging 2025, 11, 49 15 of 25

generation [27]. The results (summarized in Table 3) show effective feature preservation
through explicit and implicit techniques (Figure 9).

Table 3. Quantitative metrics for mechanical geometries.

Metric Range (% or Value)

Chamfer Distance Loss (%) 0.3–0.6

Hausdorff Distance Loss (%) 0.8–1.3

Uniformity Index (%) 97–99

Volume Preservation Error (%) 0.5–1.0

Computational Time (s) 7.5–47.9

Compression Ratio 2:1–3.33:1

Raw cloud SOLT
Representation

Down sample
(50% reduction)

Down sample
(70% reduction)

Reconstruction
(using SOLT)

Figure 9. Point clouds synthesized from the SimJEB dataset. Point cloud (blue) meshed using
SOLT (yellow), downsampled in two stages (pink and green), and reconstructed using the SOLT
representation (purple).

3.4. Geometries with Intricate Features

To further evaluate the robustness of our algorithm, we tested intricate geometries
sourced from the Thingi10k dataset [25]. These geometries include objects with sharp
creases and mixed features, presenting significant challenges for resampling and recon-
struction techniques. The geometries were first converted into point clouds from triangular
meshes to serve as input for the resampling process.

The SOLT method was applied to generate an initial mesh representation of the
point cloud, followed by blue noise sampling for resampling. Feature preservation was
achieved using the feature distance field technique described in Section 2.5. This approach
effectively retained sharp and smooth features, demonstrating the versatility and robustness
of the algorithm.

J. Imaging 2025, 11, 49 16 of 25

The results (summarized in Table 4), illustrated in Figures 10–12, confirm that the
algorithm accurately preserves intricate details such as sharp creases and twist-like fea-
tures. These findings highlight the adaptability of the SOLT method to handle diverse
geometric complexities.

Figure 10. A screw geometry resampled using our algorithm (geometry from the Thingi10k dataset).

Figure 11. A mixture of smooth and sharp geometries with twist-like features (geometries from the
Thingi10k dataset).

J. Imaging 2025, 11, 49 17 of 25

Figure 12. Mechanical components from the Thingi10k dataset. Sharp creases were recovered perfectly.

J. Imaging 2025, 11, 49 18 of 25

Table 4. Quantitative metrics for intricate feature geometries.

Metric Observed Range (% or Value)

Chamfer Distance Loss (%) 0.45–0.78

Hausdorff Distance Loss (%) 0.92–1.6

Uniformity Index (%) 96–97.5

Volume Preservation Error (%) 1.2–1.8

Computational Time (s) 12.0–46.2

Compression Ratio 2.5:1–3.33:1

Summary

The evaluation of intricate geometries highlights the effectiveness of the SOLT method
in preserving fine details, such as sharp creases and mixed topological features. The algo-
rithm demonstrates robustness across diverse scenarios, achieving Chamfer and Hausdorff
distance losses within minimal ranges, while maintaining uniformity and volume preserva-
tion. The observed computational efficiency and compression ratios further validate the
adaptability of this method to handle complex geometries.

3.5. Applications

The most straightforward application of our algorithm is surface reconstruction. For
surfaces with defects, SOLT-based reconstruction followed by resampling and basic point-
cloud meshing techniques can effectively repair problematic meshes.

Additionally, our method is a robust intermediate representation for preprocessing
challenging geometries in intrinsic triangulations, ensuring better conditioning and im-
proved mesh quality. With its flexibility and robustness, the algorithm can seamlessly
integrate into existing workflows requiring mesh improvement, resampling, or defect
handling.

We showcase selected geometries from the Thingi10k dataset, resampled using our
algorithm. These geometries were reconstructed using a simple Ball-Pivoting Algorithm
(BPA) [28] (Figure 13). The triangle area histograms (Figure 14) for the reconstructed meshes
highlight the uniformity achieved through our resampling approach, demonstrating the
consistency of the method.

(a) 10,000 points (b) 100,000 points

Figure 13. Cont.

J. Imaging 2025, 11, 49 19 of 25

(c) 25,000 points
Figure 13. Selected geometries from the Thingi10k dataset, resampled using our algorithm and
reconstructed using a simple Ball-Pivoting Algorithm (BPA) [28]. The results demonstrate the
uniformity and quality of the reconstructed meshes.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Triangle areas

0

200

400

600

800

1000

1200

1400

1600

F
r
e
q
u
e
n
c
y

Triangle Area Distribution (Case a - 10,000 points)

0.015 0.020 0.025 0.030 0.035 0.040

Triangle areas

0

2500

5000

7500

10,000

12,500

15,000

17,500

F
r
e
q
u
e
n
c
y

Triangle Area Distribution (Case b - 100,000 points)

Figure 14. Cont.

J. Imaging 2025, 11, 49 20 of 25

0.15 0.20 0.25 0.30 0.35 0.40

Triangle areas

0

500

1000

1500

2000

2500

3000

3500

F
r
e
q
u
e
n
c
y

Triangle Area Distribution (Case c - 25,000 points)

Figure 14. Histograms showing the triangle area distribution for the reconstructed geometries
presented in Figure 13.

4. Comparison Against Existing Works
In this section, we compare the resampling capabilities of our algorithm against

selected existing works from the literature. A small subset of examples is chosen for this
comparison, focusing on those with readily available implementations and examples. Many
existing works were excluded from this comparison as they either lack support for Linux
or require specific hardware, such as high-end GPUs, which limits their accessibility.

4.1. Traditional Methods

The method proposed in [12] introduces a two-step framework for intrinsic and
isotropic resampling. It combines efficient intrinsic control using geodesic measurements
with geometrically optimized resampling to address challenges such as non-uniform point
density and adjacency information in point clouds. This algorithm demonstrates strong
performance in applications such as point-cloud simplification, mesh reconstruction, and
shape registration, leveraging geometric updates for isotropic or adaptively isotropic
resampling.

Despite its strengths, the efficiency of the algorithm in [12] significantly decreases
when the target output exceeds 50,000 points (Figure 15). This is primarily due to the
computational overhead of Delaunay triangulation and geodesic coordinate mapping,
which impact its scalability for high-resolution point clouds. As a result, the algorithm is
less practical for applications requiring large-scale resampling. Our method maintains its
efficiency and quality irrespective of size of the target output (Figure 16).

Figure 15. Input bunny point cloud along with a 5000-point resample produced by [12]. These results
were provided by the authors.

J. Imaging 2025, 11, 49 21 of 25

2163 points
2.149 seconds

4380 points
4.585 seconds 11.712 seconds

25.541 seconds 55.518 seconds

22,070 points

88,356 points44,161 points

Figure 16. Bunny resampled at various sizes using SOLT, along with corresponding sampling times.
The results demonstrate that SOLT maintains consistent efficiency and quality as sample size increases,
comparable to the algorithms proposed in [12].

4.2. Learning-Based Methods

The method proposed in [16], known as RepKPU, introduces a novel approach to point-
cloud upsampling by leveraging kernel point representation and a Kernel-to-Displacement
paradigm. This technique reformulates upsampling as the deformation of kernel points
guided by learned geometric features, enabling density-sensitive and position-adaptive
local geometry representations. RepKPU demonstrates superior performance across several
benchmarks, including the PU-GAN and PU1K datasets, producing smoother and more
uniform point clouds while maintaining computational efficiency.

For this study, we used the chair example provided by the authors of RepKPU
(Figure 17). When tested on the same data, our method generated a hole-free reconstruc-
tion of significantly higher quality compared to RepKPU (Figure 18). This comparison
underscores the robustness and effectiveness of our approach, particularly in scenarios
demanding high-precision resampling.

J. Imaging 2025, 11, 49 22 of 25

Input point cloud RepKPU reconstruction RepKPU
reconstruction (triangles)

SOLT reconstruction
SOLT reconstruction (with triangle edges)

Figure 17. Chair reconstruction from input point cloud using the RepKPU workflow (results shared
by the authors). The reconstruction contains multiple holes and is of poor quality. For comparison,
the SOLT reconstruction of the same chair geometry is shown, demonstrating significantly higher
quality and robustness.

J. Imaging 2025, 11, 49 23 of 25

2295 points
2.065 seconds

4538 points
4.391 seconds

22,399 points
10.987 seconds

44, 605 points
23.717 seconds

89,335 points
49.019 seconds

Figure 18. Chair resampled at various sizes using SOLT, along with corresponding sampling times.
The results demonstrate that SOLT maintains consistent efficiency and high-quality output as the
sample size increases.

5. Conclusions
We presented a novel approach for resampling point clouds based on the proposed in-

termediate representation, “Series of Local Triangulations” (SOLT). This method overcomes
the limitations of voxelization-based techniques, offering a robust and flexible solution for
both upsampling and downsampling.

Through extensive testing on point clouds derived from 3D scans and mechanical
geometries, we demonstrated the effectiveness of our algorithm in preserving features,
maintaining point-to-point distance criteria, and ensuring geometric fidelity. Additionally,
we showcased the potential of our method as a surface reconstruction tool, particularly for
repairing defective meshes and improving the quality of reconstructed surfaces.

This approach’s seamless integration into existing CAE workflows makes it a valuable
tool for practitioners in academic and industrial settings. Our method advances state-of-the-
art techniques in point-cloud processing and related applications by addressing challenges
in feature preservation, surface reconstruction, and geometric fidelity.

6. Limitations
The algorithms proposed in this paper are specifically designed and extensively

tested for CAE workflows, with examples tailored to this domain. Consequently, their
robustness and performance in other fields may not align with the levels demonstrated
in our experiments. Adapting and enhancing these algorithms for broader applications
remains an open challenge for future research.

J. Imaging 2025, 11, 49 24 of 25

Additionally, the current implementation does not incorporate parallelization in any
part of the algorithmic workflow. Introducing parallel processing and further code op-
timizations could significantly improve both the speed and robustness of the existing
algorithms, making them more suitable for large-scale and time-sensitive applications.

Author Contributions: Conceptualization, V.K.S., C.V. and M.M.; methodology, V.K.S.; software,
V.K.S.; validation, V.K.S., C.V. and M.M.; writing—original draft preparation, V.K.S.; writing—review
and editing, C.V. and M.M.; visualization, V.K.S.; supervision, C.V. and M.M.; project administration,
C.V. and M.M. All authors have read and agreed to the published version of the manuscript.

Funding: The APC for this article is funded by Delft University of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We used the Waterloo point cloud database, SimJEB dataset, Thingi10k
dataset and Eagle geometry from the Open3D dataset.

Acknowledgments: We extend our gratitude to Honglei Su for providing access to the Waterloo
Point Cloud Database [23], which served as a valuable source of real-world examples to demonstrate
the effectiveness of our algorithm. We also thank the authors of the SimJEB dataset [26] for their
comprehensive collection of high-quality jet-engine brackets, enabling us to evaluate our method on
intricate mechanical geometries. Additionally, we acknowledge the Thingi10k dataset [25], which
offers a diverse range of 3D models for testing and validation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rios, T.; Wollstadt, P.; Stein, B.V.; Back, T.; Xu, Z.; Sendhoff, B.; Menzel, S. Scalability of Learning Tasks on 3D CAE Models Using

Point Cloud Autoencoders. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen,
China, 6–9 December 2019; pp. 1367–1374. [CrossRef]

2. Fornberg, B.; Flyer, N. A Primer on Radial Basis Functions with Applications to the Geosciences; Society for Industrial and Applied
Mathematics: Philadelphia, PA, USA, 2015. [CrossRef]

3. Suchde, P.; Jacquemin, T.; Davydov, O. Point Cloud Generation for Meshfree Methods: An Overview. Arch. Comput. Methods Eng.
2023, 30, 889–915. [CrossRef]

4. Aliev, K.A.; Sevastopolsky, A.; Kolos, M.; Ulyanov, D.; Lempitsky, V. Neural Point-Based Graphics. arXiv 2020, arXiv:1906.08240.
5. Metzer, G.; Hanocka, R.; Zorin, D.; Giryes, R.; Panozzo, D.; Cohen-Or, D. Orienting Point Clouds with Dipole Propagation. ACM

Trans. Graph. 2021, 40, 1–14. [CrossRef]
6. Deng, Q.; Zhang, S.; Ding, Z. An Efficient Hypergraph Approach to Robust Point Cloud Resampling. IEEE Trans. Image Process.

2022, 31, 1924–1937. [CrossRef]
7. Chen, S.; Tian, D.; Feng, C.; Vetro, A.; Kovačević, J. Fast Resampling of Three-Dimensional Point Clouds via Graphs. IEEE Trans.

Signal Process. 2018, 66, 666–681. [CrossRef]
8. Lv, C.; Lin, W.; Zhao, B. Intrinsic and Isotropic Resampling for 3D Point Clouds. IEEE Trans. Pattern Anal. Mach. Intell. 2023,

45, 3274–3291. [CrossRef]
9. Xiao, Y.; Zhang, T.; Cao, J.; Chen, Z. Accelerated Lloyd’s Method for Resampling 3D Point Clouds. IEEE Trans. Multimed. 2024,

1–14. [CrossRef]
10. Jiao, X.; Lv, C.; Zhao, J.; Yi, R.; Wen, Y.H.; Pan, Z.; Wu, Z.; Liu, Y.J. Weighted Poisson-disk Resampling on Large-Scale Point

Clouds. arXiv 2025, arXiv:2412.09177.
11. Fei, B.; Yang, W.; Chen, W.M.; Li, Z.; Li, Y.; Ma, T.; Hu, X.; Ma, L. Comprehensive Review of Deep Learning-Based 3D Point Cloud

Completion Processing and Analysis. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22862–22883. [CrossRef]
12. Zhao, L.; Hu, Y.; Yang, X.; Dou, Z.; Kang, L. Robust multi-task learning network for complex LiDAR point cloud data

preprocessing. Expert Syst. Appl. 2024, 237, 121552. [CrossRef]
13. Zhao, L.; Hu, Y.; Yang, X.; Dou, Z.; Wu, Q. ICDDPM: Image-conditioned denoising diffusion probabilistic model for real-world

complex point cloud single view reconstruction. Expert Syst. Appl. 2025, 259, 125370. [CrossRef]
14. Wu, C.; Zheng, J.; Pfrommer, J.; Beyerer, J. Attention-Based Point Cloud Edge Sampling. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023.

http://doi.org/10.1109/SSCI44817.2019.9002982
http://dx.doi.org/10.1137/1.9781611974041
http://dx.doi.org/10.1007/s11831-022-09820-w
http://dx.doi.org/10.1145/3450626.3459835
http://dx.doi.org/10.1109/TIP.2022.3149225
http://dx.doi.org/10.1109/TSP.2017.2771730
http://dx.doi.org/10.1109/TPAMI.2022.3185644
http://dx.doi.org/10.1109/TMM.2024.3405664
http://dx.doi.org/10.1109/TITS.2022.3195555
http://dx.doi.org/10.1016/j.eswa.2023.121552
http://dx.doi.org/10.1016/j.eswa.2024.125370

J. Imaging 2025, 11, 49 25 of 25

15. Chen, H.; Du, B.; Luo, S.; Hu, W. Deep Point Set Resampling via Gradient Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2022,
45, 2913–2930. [CrossRef]

16. Rong, Y.; Zhou, H.; Xia, K.; Mei, C.; Wang, J.; Lu, T. RepKPU: Point Cloud Upsampling with Kernel Point Representation and
Deformation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
17–18 June 2024; pp. 21050–21060.

17. Suriyababu, V.K.; Vuik, C.; Möller, M. Towards a High Quality Shrink Wrap Mesh Generation Algorithm Using Mathematical
Morphology. Comput.-Aided Des. 2023, 164, 103608. [CrossRef]

18. Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847.
19. Sharp, N.; Crane, K. A Laplacian for Nonmanifold Triangle Meshes. Comput. Graph. Forum (SGP) 2020, 39, 69–80. [CrossRef]
20. Xu, R.; Dou, Z.; Wang, N.; Xin, S.; Chen, S.; Jiang, M.; Guo, X.; Wang, W.; Tu, C. Globally Consistent Normal Orientation for Point

Clouds by Regularizing the Winding-Number Field. ACM Trans. Graph. (TOG) 2023, 42, 1–15. [CrossRef]
21. Bridson, R. Fast Poisson Disk Sampling in Arbitrary Dimensions. In Proceedings of the ACM SIGGRAPH 2007 Sketches, San

Diego, CA, USA, 5–9 August 2007; SIGGRAPH ’07; ACM: New York, NY, USA, 2007; p. 22-es. [CrossRef]
22. Feng, N.; Crane, K. A Heat Method for Generalized Signed Distance. ACM Trans. Graph. 2024, 43, 1–19. [CrossRef]
23. Su, H.; Duanmu, Z.; Liu, W.; Liu, Q.; Wang, Z. Perceptual quality assessment of 3D point clouds. In Proceedings of the 2019 IEEE

International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3182–3186.
24. Liu, Q.; Su, H.; Duanmu, Z.; Liu, W.; Wang, Z. Perceptual Quality Assessment of Colored 3D Point Clouds. IEEE Trans. Vis.

Comput. Graph. 2022, 29, 3642–3655. [CrossRef]
25. Zhou, Q.; Jacobson, A. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv 2016, arXiv:1605.04797.
26. Whalen, E.; Beyene, A.; Mueller, C. SimJEB: Simulated Jet Engine Bracket Dataset. Comput. Graph. Forum 2021, 40, 9–17.

[CrossRef]
27. Turk, G. Generating Random Points in Triangles. In Graphics Gems; Academic Press Professional, Inc.: Williston, VT, USA, 1990;

pp. 24–28.
28. Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G. The ball-pivoting algorithm for surface reconstruction. IEEE

Trans. Vis. Comput. Graph. 1999, 5, 349–359. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2022.3175183
http://dx.doi.org/10.1016/j.cad.2023.103608
http://dx.doi.org/10.1111/cgf.14069
http://dx.doi.org/10.1145/3592129
http://dx.doi.org/10.1145/1278780.1278807
http://dx.doi.org/10.1145/3658220
http://dx.doi.org/10.1109/TVCG.2022.3167151
http://dx.doi.org/10.1111/cgf.14353
http://dx.doi.org/10.1109/2945.817351

	Introduction
	Related Work (Algorithmic Approaches)
	Related Work (Learning-Based Approaches)
	Our Approach
	Contributions

	Methodology
	Series of Local Triangulations (SOLT)
	Nearest Point Selection for Local Triangulation
	Mesh Quality and Robustness
	Circumcircle Criterion for Delaunay Triangulation

	Examples and Comparisons
	SOLT Reconstruction
	BPA Reconstruction
	Poisson Reconstruction

	Discussion
	Point Resampling
	Feature Distance Field and Feature-Preserving Resampling

	Numerical Experiments
	Quantitative Metrics
	Smooth Geometries
	Mechanical Geometries
	Geometries with Intricate Features
	Applications

	Comparison Against Existing Works
	Traditional Methods
	Learning-Based Methods

	Conclusions
	Limitations
	References

