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Abstract

Hand pose tracking in 3D configuration is one of the popular components of human-
computer interaction research, which can be seen applying in virtual reality (VR) and
augmented reality (AR). Although the research field has been thoroughly studied in the
past few decades, most methods emphasized recognizing hand gestures or joint locations.
However, computer interaction these days requires numerous manual object interactions.
To achieve the accurate hand tracking and control, the paper first reviews state-of-the-art
hand pose estimation and tracking methods. Then we describe the general procedure for
recovery 3D hand model. In the second place, the results of tracking whole hand kine-
matics using the extended Kalman filter (EKF) based on data recorded from the surface
markers are presented. In the part of teleoperation, the paper presents a novel method
for applying synergy-based mapping strategy for SoftHand 2 control. And we demonstrate
the simulation results of telemanipulation with hand tracking through Simulink.
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Chapter 1

Introduction

A background study for this thesis was first conducted, forming the foundation for the
following thesis. In this chapter, the study will be divided into few sections, and each of
them will briefly describe related topics in the research. It starts with Section 1-1, here
we point out the motivation with the study. In section 1-2, it introduces state-of-the-
art hand motion capture techniques. Section 1-3 introduces different methodologies for
performing real-time hand tracking and highlights the challenges. In addition, the potential
improvement in hand tracking lays out the motivation behind this project. Section 1-4
reviews the application of teleoperation of a robotic hand. Another focal point in sections
1-4 is the summary of mapping methods from a human hand to a robotic hand. The last
section, 1-5 provides an overview of the framework of the thesis project.

1-1 Motivation

Robotics has risen rapidly in recent years. However, compared with artificial intelligence
based on algorithms, application technologies that track and repeat human commands
with vision are gradually increasing in demand in different industries, such as surgical
robots, remote control technology and other fields. Mainly, this kind of academic research
is gradually combined with Human-Computer Interaction (HCI) to form a new research
direction in the robotics industry. Our study’s ultimate goal is to combine a human hand
movement tracking result and apply it to operate a robotic hand, which we consider has
similar kinematics.
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2 Introduction

1-2 Hand Motion Capture and Applying Devices

With the growth of technology, Human-Computer Interaction (HCI) has drawn much at-
tention. One of the typical applications in this field would be capturing the kinematics of a
human hand. However, because of the human hand’s complexity and the limitation of the
current devices, the difficulty in motion capture is still great. In this section, the related
research problems of capturing moving hand kinematics will be discussed first, and then
existing methods with employed devices.

Performing hand motion capture is more challenging than a human body capture; due
to fingers and palms’ association, the degree of freedom is significant and leads to high
dimensional space [18]. Moreover, self-occlusion, the variance of different person’s hands,
and the rapid hand movement speed are difficulties in hand motion capture and tracking.
To cope up with occlusion, data gloves and other wearable sensors are used to make up for
the deficiency of missing data [19], and these approaches can be classified as contact-based
motion capture. These devices are wearing on the hand, sensors on the glove will provide
data of each finger joint and the palm’s angle at any time and any position. One example
implemented the whole hand motion capture using CyberGlove has revealed the difference
of hand size from different persons and concluded that it does not affect the data glove
from acquiring data [20]. Apart from that, surface marker-based devices have been utilized
for hand motion capture as well [21]. Nowadays, related technology is cheaper and more
facile. As a result, they are more flexible than traditional data gloves, and bring benefits
such as bending motion can be measured directly.

Although data glove provides a promising way to avoid a self-occlusion problem, analyzing
the noisy raw data and dealing with the complex calibration are still topics that remain
more investigated [18]. On the contract of contact-based devices, visual-based motion
capture devices or so-called optical systems collect data through only cameras. Visual
tracking can be traced back to the 1990s; JM Rehg [22] investigated the hand state model
by projecting the spatial hand geometry into the image plane; thus, the model’s output
became lines and points. They applied a residual model in the algorithm to correct the
prediction and perform the hand state estimation. The idea then lays the foundation of
visual-based motion capturing. With more researchers immersed in the study, color and
edge information are now widely applied for increasing the accuracy of hand matching
in this field. Another study using the Kinect sensor to capture the image information,
and successfully minimized the difference between the 3D hand model and the camera
observation [23]. In this work, an objective function represents the discrepancy between
the human hand and the 3D hand model. The authors solved the function by applying
Particle Swarm Optimization (PSO) method. Nowadays, the latest works focus on tracking
real-time motion with less information computation and enhancing the cooperation with
AR/VR devices.

Both contact-based and video-based motion capture devices have their advantages as well
as drawbacks. Some researchers conducted the fusion of the two techniques and fulfilled
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1-3 Vision-Based Hand Tracking 3

for high accuracy information. The camera can directly provide a hand state while the
data glove can handle the data gap problem such as occlusions. By using the fusion of
the two techniques, the estimation of hand position becomes more reliable. A research
[24] captured finger movement by twenty-four markers attached to subjects’ hands and six
calibrated cameras. Employing a hierarchical chain, they assembled the hand’s rigid body
segments into a twenty-two DoF kinematical hand model. At this work, they provided
less than one percent occlusion in real-time hand motion tracking. Research applying
5DT Data Glove and Nimble VR Kinect has presented a robust hand motion [25]. The
authors applied the Kalman filter to fuse vision-based with contact-based tracking data,
successfully improving pose estimation precision. As the section has pointed out, the
method for capturing hand motion can be classified into contact-based and visual-based,
and both have pros and cons. To take their advantages and eliminate disadvantages, in our
research, we applied a surface marker-based device to acquire hand joints data in advance,
then in our plan is to applying the OptiTrack camera to implement hand tracking.

1-3 Vision-Based Hand Tracking

Hand pose tracking can be considered a recursive hand detection process with time and
prior knowledge of the environment [26]. A hand model with kinematic information is
required to perform an accurate hand pose estimation in the tracking process, while com-
putation results from the model-based approach can be seen as reconstructing a hand
structure. The structure follows the movement of the real hand, with the recognized ap-
pearance or joints. By implementing motion capture devices, a series of hand movements
can be collected. The sorted data, such as joint locations or depth image information, need
to be parsed by different methods to complete pose estimation or gesture recognition.In
contact-based devices, data can be collected directly from sensors. However, the main
challenge will be how to perform data analysis with numerous pieces of information. For
vision-based devices, plenty of research with different approaches has been implemented
due to the cheaper and easier access of cameras. In this section, various 3D hand models
will be discussed first. Next to the definition of the hand model, the challenges of hand
reconstruction and tracking will be described in detail. Last but not the least, the ap-
proaches for vision-based hand tracking, which is the system we decided to apply in work,
will be discussed.

1-3-1 3D Hand Model

A model of the hand can provide the kinematic information of a human hand. Therefore, an
illustration of the hand in accurate hand tracking approach system is needed. Even for some
methods that consider hand model might be redundant, e.g., discriminative methods, the
shape-oriented model can still provide a clear idea with the result of contour and appearance
information of the hand. The anatomy of the human hand will first be discussed in this
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4 Introduction

section, and then some examples of the kinematic model. At the end of this section, some
hand re-construction with 3D information will also be addressed.
As the picture that is shown in Figure 1-1, the human hand consists of 27 bones, and 19
of them form the palms and fingers, while the other eight bones are located at the wrist.
These bones, without deformable tissues, with joints that have one or more DoF, form
the rigid body system of the hand [3]. Joints between the bones are named according
to their location, such as metacarpophalangeal (MCP ) locates from fingers to the palm,
interphalangeal (IP ) is joining finger segments, and carpometacarpal (CMC) connects
the metacarpal bones to the wrist. For interphalangeal (IP),they can be classified into
distal interphalangeal (DIP ) and proximal interphalangeal (PIP ). Understanding hand
anatomy helps to comprehend the characteristics of the hand, and the kinematic model
can therefore be built. In the skeleton, IP joints have only flexion-extension ability (1
DoF), and the CMC joints are assumed to be fixed. Regarding the MCP located at the
thumb, which is also called trapeziometacarpal (TM), it can be considered having 2 DoF
or extending to 3 DoF. From the study of Erol el at. [18], the consideration of seeing TM
as a two DoF saddle joint will form a restrictive model, but it has been used in many
studies. Based on the different ways for analyzing the degree of freedom of the hand, it is
common to see the kinematic model has either 26 DoF or 27 DoF.

Figure 1-1: The anatomical skeleton of the human hand [2]

As the example from Figure 1-2, the applied kinematic model, however, due to the com-
plexity in result evaluation and the efficiency of computation, will be modified before
processing in the tracking system. Researchers try to avoid complicated hand model or
motion constraints to reduce the search space for pose estimation. Work from Santello
et al. (1998) deployed a 15 DoF kinematic hand model for postural hand synergies [21].
To extend the accuracy in the description of a human hand, Della Santina et al. (2017)
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1-3 Vision-Based Hand Tracking 5

proposed a hand structure with 20 DoF, which includes the 15 DoF hand model used in
Santello et al. (1998) [16]. Aside from simple illustration with linkages and joints, some
studies performed hand models that are supported with shape information to fulfill appear-
ances of the hand in the arbitrary configuration. One study designed a system that can
generate a subject-specific realistic hand model by a monocular image [27]. This system
used a high-vertex count hand model with blend shapes learned from scanning, and it can
produce realistic hand shapes in real-time (see Figure 1-3).

Figure 1-2: Left: A kinematic hand model with 27 DoF [3]. Right: An example of the hand
model with 26 DoF and the reduced model [4]

Figure 1-3: The target hand image and the result of the generating 3D hand shape [5]

Although the same motion model can be assumed for all users, for the shape model,
the same assumption cannot hold true. Also, if precision is required for the application,
these specific hand shape-related models then need calibration procedures to estimate
user-specific measurements. To choose between precision and the computation effort, it
is understandable that the real-time hand tracking with kinematic information tends to
apply more simple illustration.
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6 Introduction

1-3-2 Challenges in Vision-Based Hand Tracking

One of the main challenges of visual hand tracking is the high-dimensional hand config-
uration space. Moreover, Human hand has high appearance changes in each individuals.
When the hand motion is capturing, the potential interference from the environments can
cause instability to the results. These challenges will be described separately below.
The high-dimensional configuration space: To estimates the full-degree-of-freedom
hand posture problem, the dimensionality that needs to be considered is very high. Each
finger has 4 DoF, and thus they create 20 local degrees of freedom for the hand posture.
Although some studies claimed the MCP of the middle finger could be eliminated, the total
number is 19 DoF still high. Other than that, the additional degree of freedom for the
axial rotation that modeled the thumb also needs to count. And the 6 DoF for illustrating
global position and direction. Thus, in total, the problem space has 26 dimensions [6].
Hand variety of different individuals: Both hand appearance and the way of per-
forming movements can change significantly from person to person. The geometry of
different hands causes one main effect in the 3D hand model. Thickness, length of finger
bones, and the width of the hand are influential factors. In short, to detecting the hand
in the input image is challenging because its appearance and position are not known in
advance.
Interference from the environment: To detect the hand from an input image, it is
necessary to apply image segmentation. The related algorithm can be skin-color segmen-
tation or background subtraction. These methods can part the hand beside other objects
in the image. Features such as contours, edges, and silhouettes are needed to identify a
hand from the image. Above all, the more complex the background, the harder feature ex-
traction can distinguish the hand. Neither to say tracking a hand from a moving real-time
video.

1-3-3 Different Tracking Approaches

Generally, hand tracking methods for vison-based motion capture can be categorized into
three main approaches: appearance-based, model-based, and the hybrid of appearance-
based and model-based method [28]. Appearance-based approaches are also known as the
discriminative, data-driven methods, which will learn from the training images and address
the mapping between the observed feature space and the target hand space [26], [29], [30],
[31]. Compared to other methods, appearance-based methods require less computational
cost and less complicated feature recognition because feature learning can be done offline.
Feature detection methods like image differencing, skin color detection, cross-correlation,
and point distribution models are commonly seen in work related to appearance-based
approaches. Since discriminative methods rely on feature recognition, the study of learning
procedures with different algorithms, such as deep learning and the principal component
analysis (PCA), also draws much attention in this field. In Chapter 4, the mathematical
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1-3 Vision-Based Hand Tracking 7

theory of principal component analysis will be discussed. The quality of the result from the
appearance-based approaches highly depends on the training data set since the methods
learn from those employed pictures. Thus, they are more useful for recognizing discrete or
continuous hand gestures than general hand movement tracking. A clear diagram of the
discriminative workflow is provided from [6] (see Figure 1-4).

Figure 1-4: An example diagram of how appearance-based approach works [6].

In contrast with discriminative methods, the model-based approach does not require any
data training to learn the hand model’s parameters. Model-based methods are also known
as generative or model-driven methods, which will require a 3D hand model of the hand
based on prior knowledge. The parameters of the hand model must be initialized first, and
the most seen initialization method would be estimating the pose from the previous frame
and set it as the initialization value of the current frame [3]. During updating estimation,
the 3D hand structure will be optimized continuously to find suitable parameters. In
this approach, how to evaluate the similarity between the hypothesis and the observed
image is the main difference with each model-based method. Generally, fast calculation
and less computational cost are preferred. To achieve the comparison between 3D hand
structure and 2D input image in a model-based approach, projecting a 3D hand model to
image space is a commonly applied method [32], [33]. Simultaneously, some researchers
provided 2D or 2.5D image transfer methods to 3D models (see Figure 1-5). Moreover, the
similarity functions or sometimes called loss functions, to measure the discrepancy between
the hypothesis hand model (target object) and detected features (from input images) such
as edges, shading, optical flow, and depth value are widely used as an optimization process
in model-based approaches [23], [34], [35], [22].
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Figure 1-5: One example of the 3D image recovering from 2.5D representation [7]. The
2.5D approximate 3D method uses a specific bone length; for example, in the image, the
length from the wrist to the middle finger, and the 2.5D pose is projected to a position that
conforms to this length as an approximate 3D pose.

With the increasing popularity of motion capture research, some researchers combined
the two mainstream hand tracking methods and sought better results. In the discussion
above, it is not hard to see that generative methods require computation of the hand
model parameters when updating each frame. The expensive computing cost drives the
speed slow; thus, real-time hand tracking can barely perform in generative methods. For
discriminant methods, the training of labeled data can be operated offline, which helps
reduce the running time of tracking. However, the recognition of the hand poses is based
on the training data set. If the scenes used for training are quite different from the observed
video sequence, hand tracking will also be unreliable. To this stand, the hybrid of model-
based and appearance-based approaches can be more practical. Jan et al. [28] extended the
hand model’s kinematic layer, which enables the hand parameters learnable. They modified
the Spatial Transformer Networks to decrease the variance of the observed information.
Another hybrid method applies a novel matrix to perform regression and estimate a 21
DoF hand model [8]. The authors applied deep convolutional neural networks (CNN) to
train data. They repeated the same operation on both global and local pose parameters
to get an activation feature in a depth map. An overview of this work is shown in Figure
1-6.

In short, an appearance-based method can effectively support a generative method in
computing optimization. Furthermore, the initialization of the parameters of the hand
in each frame can easily be calculated by the discriminative method. On the contrary, a
model-based method can provide the kinematic model and physical constraints to make up
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1-4 Tele-operation of a Robotic Hand 9

Figure 1-6: An overview of a hybrid-approach hand tracking work from [8], which estimates
realtime hand pose with a hand model and discriminatively trained ConvNets. The work is
performed with RGB images and depth information.

for the insufficiency in the appearance-based method and avoid self-occlusion. It is believed
that the hybrid approach can bring a lot of advancement to hand tracking research.

1-4 Tele-operation of a Robotic Hand

As the need and interest in robots grow, the advancement of technology brings the robotics
industry booming that even becomes significant in our lives. In the medical field, robot
surgical instruments help doctors to provide safe and precise surgery. In the industrial
field, robot arms and intelligent machining bring more efficient production lines. More-
over, humanoid robots company with the elder in our daily life while the smart housekeeper
provides people a convenient lifestyle. In robotics, teleoperation is one of the main char-
acteristics that affect how the whole mobile or a single part of the robot moves. In our
current work, we aim to perform a robotic hand manipulation by applying the result from
hand tracking. Previous sections have covered the topics related to hand tracking, and in
this section, teleoperation with robotic hand will be detailed described.

1-4-1 Current Approaches

Teleoperation is different from autonomous control, while the human being is within the
system and performing the remote control of robots. The main benefits are preventing hu-
mans from working in dangerous environments, allowing wider capacity and vision, and the
overall task control can fully rely on human decision. Master-slave manipulators (MSMs)
are the most commonly seen teleoperation system regarding human upper limbs. Exoskele-
ton is a new trend nowadays due to its convenience that the human operator can directly
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wear. Exoskeleton has a kinematic structure similar to the operator’s upper or lower limbs.
It can simply replicate movements such as touching, grasping, and even delivering the hu-
man operator’s contact forces [36]. However, these “on-hand” controllers have drawbacks
include inaccuracy, heavy to carry, and interference with some of the motions that the op-
erator would like to command [37]. To overcome the shortcomings mentioned above, while
still retaining the advantages of master-slave manipulation, researchers are now conducting
novel methods to perform teleoperation.
In implementing a novel method of teleoperation, motion capture devices play a vital role.
In the 1990s, a complex anthropomorphic robotic hand’s teleoperation was first published
[37]. Through EMG signal collected from the electrodes attached to the operator’s hand,
the researchers accomplished teleoperation. Subsequently, the wearable motion capture de-
vice attached with magnetic measurement units (IMMUs) were released. These wearable
motion capture devices can demonstrate robotic arm-hand teleoperation that simultane-
ously imitate movements as the motions of the operator’s arm and hand. Unlike applying
a contact-based motion capture device, F Gomez-Donoso et al. shows the possibility of
employing only real-time image data to complete a robotic hand teleoperation [9]. They
designed a scheme consisting of two convolutional neural networks; one is detecting the
hand in images while the other infers the joints’ 3D position. Furthermore, the result can
be reconstructed to a 3D hand structure, and by mapping the hand model to a humanoid
robotic hand, they perform the teleoperation of a robotic hand (see Figure 1-7, 1-8, and
1-9).

Figure 1-7: The image input from the RGB camera and the data will be detected and regress
in real-time by two CNNs to form a 3D hand structure [9].

In the thesis project, we seek to implement a robotic hand control through motion capture
camera input, which means the wearing device will only collect the initial hand model
parameters. And the operation of the robotic hand will be driven by real-time input image
data. To achieve novel methods for teleoperation requires motion mapping from the human
hand to the robotic hand since the kinematic structure of robots is different from that of
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1-4 Tele-operation of a Robotic Hand 11

Figure 1-8: The re-construction 3D hand model from the vision-input human hand infor-
mation [9].

Figure 1-9: The teleoperation of the simulation humanoid robot hands [9].

the operator. Moreover, to realize user-friendly and avoid fatigue causing by long-term
use, the motion configuration from human converting to robotic hand needs to be intuitive
as much as possible.

1-4-2 Mapping from Human to a Robotic Hand

For the sake of intuitive teleoperation, motion mapping needs to be employed to keep the
robotic hand doing the similar movement of the operator’s hand in the whole course of
telemanipulation. Different approaches have been proposed in the last few decades for
feasible mapping (see Figure 1-10). They can be categorized into four main methodologies:
fingertips mapping, joint-to-joint mapping, functional pose mapping, and object-specific
mapping [38].

Fingertips mapping can also be called Cartesian space mapping, which is based on the
computation of forward and inverse kinematics of the hand. The method gains positions
of the human fingertips in 3D space by applying the forward kinematics for each finger
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of the human hand. Next, using the inverse kinematics for the robotic hand to compute
the sets of angles that drive the robot’s fingertips to the same positions as the human
hand’s fingertips [39]. Joint-to-joint mapping is the simplest method, which is based on
the assumption that the kinematics of the human and robot hands are quite similar. The
mapping method imposes the human joint angles directly onto the robot joints with little
or no transformation [40], [41]. Functional pose mapping has been proposed as a different
approach for a human to robot hand motion mapping. It attempts to interpret the grasping
function that establishes a correlation between human and robotic hand poses. In most
cases, the input human pose needs to be identified before mapping between humans and the
robot hand. Pao and Speeter [42] developed an algorithm that can convert the human hand
posture to the corresponding manipulator position without losing functional information.
The idea of object-specific mapping is that assumes the operator’s thumb and index finger
held a virtual circle. The virtual circle parameters have been defined, such as the size and
position, and then non-linearly create a transformed virtual object in the robotic hand
configuration. By doing so, the robotic fingertip locations can be computed [43].

Figure 1-10: The illustration of different mapping approaches [10].

In this thesis project, the targeting robotic hand is the Pisa/IIT SoftHand 2 (SH2), an an-
thropomorphic robotic hand with 19 joints. It has five revolute joints to move each finger’s
adduction/abduction movement, while the other 14 are compliant rolling-contact element
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1-5 Proposed Solution and Plan of the Thesis 13

(CORE) joints. The Pisa/IIT SoftHand 2 was constructed as an under-actuated man-
ual and designed based on the neuroscience principle of movement coordination. Current
neuroscience study explains that our brain organizes the control complexity of the hand
movement into synergies or joints movement patterns. Therefore, the principal compo-
nents reduced the involving dimensions of the hand movements and were named a robotic
design concept called “Soft Synergies” [44]. The concept has been applied to robots in
variant ways. For example, some works find robot hand synergies through robot poses are
similar to human hand grasping poses [45], [46]. And they indicate that the muscle synergy
represents a general neural strategy based on muscle coordination in hand postural tasks.
Santello et al. [21] concluded in their work that there were only two principal components
(PCs) needed to explain over 80% of the hand grasp posture variance. Based on the above
researches, it is possible to reduce the high-dimensional data in the matrix representation
and perform human-like grasping in low-dimensional space. Considering the design concept
of SH2, in this project, a novel method of synergy-based mapping approach is performed
to be the main application of the control.

1-5 Proposed Solution and Plan of the Thesis

Since we aim to realize reliable real-time hand movement tracking, applying a hybrid
approach of the model-based and appearance-based methods to form a hand model is the
best option. The reconstruction of the 3D hand model was based on the surface markers
data, which has been collected in the work of [11].
Although the data-set offers enough upper limb poses through grasping taxonomies, hand
kinematics is not considered in the actual experiments. As a result, we cannot directly
apply the data set in the hand tracking process. We need to obtain a reliable 3D hand
kinematic model; thus, the project starts with rebuilding a 3D hand structure. The progress
of the hand model was accomplished through three parts as follows: Firstly, the hand
kinematics model was defined in the previous study from [16]. So, we can then apply
inverse kinematics to transfer markers’ positions to joints’ configuration and get joints’
angles. In the second place, using the forward kinematics for calculating joint angles in the
3D hand kinematic model. Thirdly, apply the above result to the whole hand movement
in recorded data. A flow chart can be seen below (Figure 1-11).
As the 3D hand model is completed, the tracking algorithm can then be designed based
on it. From the data set, we noticed there were a lot of jerking and occlusion. In order
to provide a reliable estimation of missing data, the Extended Kalman Filter (EKF ) was
then designed to be the tracking algorithm, and its scheme was implemented in MATLAB
as post-processing. Tracking with the EKF provides a reasonable estimation with a moving
hand’s joint angles. In our work, we want to achieve real-time hand tracking with a pre-
analysis hand kinematic model and then use this result to control a robotic hand. The
control scheme is the last process of the project. As mentioned above, SH2 is designed
with soft synergies concept. Therefore, applying a postural synergy-based approach is the
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Figure 1-11: The flow chart of the thesis project.

most intuitive option to obtain a promising but straightforward control. The SH2 has
two degrees of actuation (DoA) that drive this anthropomorphic hand to mimic a human
being’s hand pose. And that indicates the management of 19 degrees of freedom (DoF)
relies only on the two motors’ torsion. As a result, we introduce the dimension reduction
method, principal component analysis (PCA), as the primary mapping method to operate
motors’ control. The PCA depicts a standard architecture for mapping many DoF to
few. In this project, we will apply the PCA in the raw data set for finding two main
components for representing human beings grasping poses. The details of mapping from
the two components to the two DoA will be presented in chapter 5.
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Chapter 2

3D Hand Model

In Figure 1-11, this section concerns the first two blocks that apply hand kinematics to
reconstruct a 3D hand model. We applied the data-set collected within the recently ended
H2020 EU-funded Project SoftPro [11], which was designed to combine neuroscientific
outcomes and mechatronic devices for assistive and rehabilitation robotics and advanced
human-machine interaction. The data set is based on the U-Limb, a large, multi-modal,
multi-center dataset on human upper-limb movements. Which consists of data from 91
non-disabled and 65 post-stroke participants, is organized at three levels: (i) upper limb
daily living activities, during which kinematic and physiological signals (electro-myography,
electro-encephalography, and electro-cardiography) were recorded; (ii) force-kinematic be-
havior during precise manipulation tasks with a haptic device; (iii) neural hand control
using functional magnetic resonance imaging. In our work, we only focus on the data of
upper limb daily living activities, and in their experiments, a set of 30 different daily living
tasks were done from 33 subjects. In which 20 active optical markers fastened to the upper
limb and the chest of each individual (see Figure 2-1). Each surface marker set was placed
on ABS-printed support, whose position was estimated during the participant-specific cal-
ibration procedure (See Appendix A-1 for more details).

2-1 Pre-Processing Raw Data and Joint Angle Calcula-
tion in Cartesian 3D Space

In this section, we will discuss how the raw data has been transferred to joint angles,
and the method we applied for correcting the calculation. With the figure shown in the
Appendix (Figure A-1), the identity of the markers has been demonstrated. By applying
them and the information from Figure A-3, we first transferred the reference frame from the
chest to the center of the hand support plane. It is worth mentioning that from the table
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16 3D Hand Model

Figure 2-1: The illustration of upper limb electro-myography data from Harvard U-Limb
original raw data [11]. There are a few points located around the world frame, which are
actually allocated at the chest of the subject (see Figure A-2). The researchers attached
plastic support on the chest to every subject for maintaining the same coordinate system.

Figure 2-2: The modified hand raw data from the U-Limb. In this picture, the coordinate
has moved to the center of the hand support plane, which will be our reference for joint angle
computation. Aside from that, we portrayed the lines of each finger, and the results show
the hand data does not follow kinematics.
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2-1 Pre-Processing Raw Data and Joint Angle Calculation in Cartesian 3D Space 17

Figure 2-3: The illustration of sagittal plane (a) and metacarpal plane (b) of the hand [12].

in Figure A-1, we also obtained the bone length. With all the pre-processing preparation,
the further computation can always stay at the world frame on the center of the support
plane of the hand (see Figure 2-2). Directly computing angles in 3D space can cause errors
with relative orientation and position of the coordinate system of the kinematic chain from
3D marker trajectories reconstructed in the motion sequence. As a result, we separated
the 3D hand model into two 2D planes: the sagittal and the metacarpal planes (see Figure
2-3). This way, 3D joint angles can be simplified by calculating each finger joint on a 2D
plane. However, estimating correct joint angles requires to revise in 3D space for each
finger. The abduction/adduction angles can be calculated on the metacarpal plane, but
they will get affected by extension/flexion angles if we directly apply the inner product of
joint vectors. In the U-Limb data set [11], they attached plastic support on the subject’s
hand back, which is considered as a flat plane. Based on the assumption that the support
platform is always flat and perfectly installed on the back of the subject’s hand. We can
see it as the metacarpal plane of the hand and compute its normal vector. Another vector
that is perpendicular to the normal vector of metacarpal plane, the tangential vector, can
also be found, and it is the Y-direction of the world frame. Figure 2-4 illustrates how the
metacarpal plane was defined. To compute the abduction/adduction of each finger, we
applied a hypothesis that the calculation of abduction angles only holds when the first
phalanx of the hand is parallel to the line on the metacarpal plane. If the hypothesis is
conceded, then we can calculate the marker-line (towards fingers) on the palm plane to
find the angle between it and each 1st phalanx of fingers. In Figure 2-5, we illustrated
how to create a reliable sagittal plane to evaluate the first phalanx’s abduction/adduction
angle in each finger. Firstly, the 1st joint of the index finger and the 1st joint of the
thumb were needed for building a vector. Secondly, The vector will form the sagittal
plane with the normal vector of the plastic support. Finally, the inner product of the 1st
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18 3D Hand Model

Figure 2-4: The world frame is located at the center of the plastic support, while the hand’s
wrist is set as 30 cm backward in Y-direction. The idea is to consider the 1st joint of the
index and the middle with the center of the hand (hand O) as a plane and find its normal
angle. Likewise, the 1st joint of the middle and ring finger and the ring with the little could
form other planes.

phalanx of each finger and tangential vector of the plastic plane can then form the sagittal
plane of each finger. This, of course, will involve the assumption that the "no abduction"
hand pose is straight forward pointing directly to the Y-direction. It is not realistic in
real situations, but the error can be tuned afterward. Luckily, the abduction/adduction
angles only exist on the metacarpal phalanx. And in our case, the middle finger is seen
as having no abduction/adduction. With the revise in the sagittal plane, the relative
orientation on the metacarpal plane can be eliminated when computing each finger joint’s
abduction/adduction angle.

The method to compute the extension/flexion angle of each finger will not be affected by
the relative orientation. We can see it as a cone in 3D space (see Figure 2-6). Therefore,
to find the reliable extension/flexion angle of each finger joint, the vectors that form from
the 1st phalanx and 2nd phalanx, and 2nd phalanx and 3rd phalanx need to perform the
inner product. Above all, we have proposed a reliable method for joint angle calculation in
3D space, however, the data set is provided without kinematic information, so we cannot
directly apply them to a hand tracking algorithm. The next section will introduce the
forward and inverse kinematics of human hand to obtain the joints angles that follow hand
kinematics.
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Figure 2-5: The gray line represents the finger bone in zero abduction angle and projected
in Y-direction, while the orange arrow is the vector that project from current phalanx (finger
pose). And by computing their difference, we can avoid the effect from the abduction angle.
The 1st joint of the ring finger extension/flexion angle needs to calculate in the sagittal plane,
and thus the abduction angle will not affect the result.

Figure 2-6: The illustration of extension/flexion angle in 3D space can be considered a cone
and will not be affected by different orientations.

2-2 The Outliers Elimination

In this section, we focus on removing outliers from the recorded data-set and the recovering
joint angles. These outliers may be caused by self-occlusion when the subject’s hand was
moving during the recording. And the kinematics of the hand was not considered during
the experiment, as Figure 2-2 shows. Without kinematic constraints brings problems like
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cannot calculating the correct joint angle and being hard to perform the hand movement in
a real experiment. To ensure the joint angle we got from the previous section can be used in
the hand model re-build, we start from the significant error elimination. Moreover, to avoid
counting with impossibly operating angles, we considered works from [17] for listing the
reasonable range of each finger’s joint angle in table 2-1. Before the joints’ angle is applied
to the forward kinematics model, they will be filtered by the range limits to avoid invalid
hand poses estimation. These filters, written in Matlab, have some simple thresholds for
rejecting numbers that may cause serious errors when operating hand recovery.

Table 2-1: Finger joints normal range of motion [17].

Finger joint Type of movement Theoretical range

Thumb CMC Hyperextension/Flexion -10/55 deg
Thumb MCP Hyperextension/Flexion -10/55 deg
Thumb IP Hyperextension/Flexion -15/80 deg
Index MCP Extension/Flexion -45/90 deg
Index PIP Extension/Flexion 0/100 deg
Index DIP Extension/Flexion 0/80 deg
Middle MCP Extension/Flexion -45/90 deg
Middle PIP Extension/Flexion 0/100 deg
Middle DIP Extension/Flexion 0/80 deg
Ring MCP Extension/Flexion -45/90 deg
Ring PIP Extension/Flexion 0/100 deg
Ring DIP Extension/Flexion 0/80 deg
Little MCP Extension/Flexion -45/90 deg
Little PIP Extension/Flexion 0/100 deg
Little DIP Extension/Flexion 0/80 deg

To obtain the required geometric information, we followed the idea from [16] that per-
forming kinematic chains, with the Denavit-Hartenburg (DH) parameters for the 3D hand
model (see Appendix Figure A-5). The DH description of each link is augmented with an
additional transform from the link frame to a shaped frame, which describes the position
of the visible link geometry in space [47]. In the next section, we will explain the idea of
hand kinematics and demonstrate the rebuild results.

2-3 The Application of Hand Kinematics

When re-building a hand structure, we applied both the forward and inverse kinematics of
the hand, which has been defined in previous work from [16], [48], and [49] for reconstruct-

4777522 Chia-Fu, Lee Master of Bio-Robotics Thesis



2-3 The Application of Hand Kinematics 21

ing the posture of the hand in space and completing a 3D kinematic model (see Appendix
A-2 for more details). The configuration of a rigid body is represented as an element T ∈
SE(3). An element T ∈ SE(3) may also be viewed as a mapping T : R3 → R3 which pre-
serves distances and angles between points. According to the D-H method, the kinematics
in homogeneous coordinates of the hand then can be described by matrices with adjacent
bars sequentially established:

T0,4 = T0,1T1,2T2,3T3,4

=
[
R0,4 P0,4
01×3 1

]

=


c1c234 −c1s234 s1 c1(l2c2 + l3c23 + l4c234)
s1c234 −s1s234 −c1 s1(l2c2 + l3c23 + l4c234)
s234 c234 0 l2s2 + l3s23 + l4s234
0 0 0 1


Due to the layout limit, here we don’t specify each T matrix that forming the fingertip
location T0,4 (details can be found in the Appendix A). In the formulation, R ∈ R3×3

represents the rotation matrix, li represents the length of the phalanx, and p ∈ P is the
translation vector. Also, among them:

c1 = cos θ1 s1 = sin θ1

c23 = cos(θ2 + θ3) s23 = sin(θ2 + θ3)
c234 = cos(θ2 + θ3 + θ4) s234 = sin(θ2 + θ3 + θ4)

The inverse kinematics of the finger can then be derived from the following operation:
nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

 =


c1c234 −c1s234 s1 c1(l2c2 + l3c23 + l4c234)
s1c234 −s1s234 −c1 s1(l2c2 + l3c23 + l4c234)
s234 c234 0 l2s2 + l3s23 + l4s234
0 0 0 1


From the above matrix, (px, py, pz) represents the current position of a fingertip, and the
(nx,y,z, ox,y,z, ax,y,z) is the Euler–Rodrigues formula in 3D rotation. By solving geometric
formulation in each backward state of finger joints, we can transfer every joint location to
angles. It is worth mentioning that the geometric calculation of long fingers and the thumb
is different. In the following algorithm pseudo-code, we briefly list the methods of both.
With kinematic adjusting and hand-tuning some errors, the new joint data will then form.
The new hand joints data, however, cannot be applied directly to the hand tracking process.
There are a couple of factors that would affect the accuracy of joint angles estimation.
The raw data cause one; since the recording procedure did not consider hand kinematics,
it frequently shows irrational movements. Another circumstance is due to the kinematics
formulation of the hand, the idea of DH convention is transforming coordinates along a
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Algorithm 1 Solving Long Finger Kinematics
1: procedure geometric Process(px,y,z, nx,y,z, ox,y,z, ax,y,z, l2,3,4)
2: . l2, l3, l4 is the corresponding phalanx length
3: θ1 ← arctan(py, px)
4: if θ1 ≥ 0 then . if θ1 is smaller than 0 we set it as π
5: θ3 ← px,y,z, nz, oz, θ1, l2,3,4
6: end if
7: θ2 ← px,y,z, nz, oz, θ1, θ3, l2,3,4
8: if θ2 6= empty then . if θ2 is empty we set it as 0
9: tan θ4 ← θ2 + θ3 + θ4

10: end if
11: if θ4 6= empty then . if θ4 is empty we set it as 0
12: θ1 = joint1,
13: θ2 = joint2,
14: θ3 = joint3,
15: θ4 = joint4
16: end if
17: end procedure

Algorithm 2 Solving Thumb Kinematics
1: procedure geometric Process(px,y,z, nx,y,z, ox,y,z, ax,y,z, l2,3,4)
2: . l2, l3, l4 is the corresponding phalanx length
3: θ2 ← arctan(−az)
4: θ1 ← arccos(−ax/ sin θ2)
5: for m,n do
6: m = px cos θ1 cos θ2 − pz sin θ2 − l2 + py cos θ2 sin θ1;
7: n = px sin θ1 − py cos θ1;
8: θ4 ← arccos((m2 + n2 − l23 − l24)/(2 ∗ l3 ∗ l4));
9: θ3 ← arcsin(−l4 ∗ (−ny cos θ1)) + nx sin θ1) + py cos θ1 − (px sin θ1)/l3;

10: end for
11: θ1 = thumbjoint1 ,
12: θ2 = thumbjoint2 ,
13: θ3 = thumbjoint3 ,
14: θ4 = thumbjoint4

15: end procedure
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Figure 2-7: The comparison of original data and recovery hand model in resting position.
While q2, q3, q4 represent metacarpal, proximal, and distal joints respectfully.

serial robot consisting of each link from the kinematics equations of the linkage, and this
will result in accumulated errors in each coordinate. The last joint on each finger will reveal
the largest estimation error. Aside from that, the kinematic model constrained all fingers
to have abduction/adduction only in their first joint, which means if the recorded data has
a situation like the following picture (Figure 2-7), then the abduction/adduction angles in
PIP and DIP will be added to the flexion part of them. In Figure 2-7, the grasping recovery
results are illustrated. It shows that even we have conducted the method for calculation
joint angle in 3D space and applied the reasonable range of each finger joint is not enough
for a hand model re-build.
The problems mentioned above and some irrational poses happen even seriously when the
record is in a moving condition (see Figure 2-8). It is clear to see occlusions affected the
data recording, and jerking occurred frequently. These situations require filters that can
at the same time predict the correct hand state to revise. The extended Kalman filter is
then introduced to the process. In the next section, we will describe the implementation
with the extended Kalman filter in detail.
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Figure 2-8: The comparison of original data and recovery hand model when the hand is
grasping. It is obvious to see jerking and occlusion as the recording hand moving.
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Chapter 3

Tracking with Extended Kalman Filter

The motivation of this chapter is to apply the EKF algorithm for improving the camera-
based hand tracking results. We decided to use the extended Kalman Filter, though it is
common to see hand tracking with hidden Markov models, deep learning-based algorithms,
and the Particle Swarm Optimization (PSO). The EKF can provide fast computation, also,
the data type we have is not suitable with a CV-based algorithm. Moreover, the sensors we
may apply with (motion capture device) are relying on the kinematic constraints which the
EKF can easily obtain. With the estimation, the tracking result will be more precise and
implemented on the robotic hand control. However, the EKF also has its limits. At the
end of this chapter, we will go through the difficulties in hand tracking with the extended
Kalman filter.

3-1 Mathematical Background

Kalman filter is a filtering method that uses the dynamic model of the system, the known
input of the system, and multiple continuous measurements (such as data from sensors)
to form an estimate of the amount of change in the system (its state), which is better
than an estimate obtained using only one measurement alone. Therefore, it is a common
sensor fusion and data fusion algorithm [50]. The extended Kalman filter is an extended
version of the Kalman filter as it is named. The main difference is the state transition and
observation models can be nonlinear functions in extended Kalman filter.
State transition model:

xk = f(xk−1, uk) + wk (3-1)

Observation model:
zk = h(xk) + vk (3-2)
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26 Tracking with Extended Kalman Filter

Here wk and vk are the process and observation noises which are both assumed to be zero
mean multivariate Gaussian noises with covariance Qk and Rk respectively. Apart from
them, uk is the control vector, which can be neglected in our case.
The function f is used to compute the predicted state from the previous estimate. In our
case, the joint angles of the hand are the state, and we divided the hand into 5 fingers and
got 5 different functions. Thus, each function f can be written as the forward kinematics
matrix of each finger, which contains MCP, PIP, and DIP angles forming joint positions
in Cartesian coordinate. Nevertheless, the 3D marker positions are represented as the
observation function h. It can be used to compute the predicted measurement from the
predicted state. To obtain the covariance of function f and h, the Jacobian matrix (partial
derivatives) is needed. At each time step, the Jacobian is evaluated with current predicted
states. These matrices represent linearization of the non-linear function around the current
estimate. Meanwhile, EKF also minimizes the posterior estimation error covariance. The
following structure shows how EKF works.
Predict:

xk|k−1 = f(xk−1|k−1, uk)
Pk|k−1 = FkPk−1|k−1F

T
k +Qk

Update:

yk = zk − h(xk|k−1)
Sk = HkPk|k−1H

T
k +Rk

Kk = Pk|k−1H
T
k S
−1
k

xk|k = xk|k−1 +Kkyk

Pk|k = (I −KkHk)Pk|k−1

where P is the estimation error covariance, Kk is the Kalman gain, F and H are Jacobians
of function f and h respectfully. They are defined as following:

Fk = ∂f

∂x

∣∣∣∣∣
xk−1,k−1,uk

Hk = ∂h

∂x

∣∣∣∣∣
xk,k−1

The Matlab code and explanation of the EKF application in our hand tracking are available
assess from GitHub. Here we only discuss the results and the validation of the algorithm.

3-2 Validation and Tracking Results

In order to evaluate the algorithm, we first applied the filter onto a sure correct hand
finger movement. The finger was designed from the synthesis of a particular type of planar
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3-2 Validation and Tracking Results 27

six-bar mechanism, which is called the Watt I mechanism [51]. In work from [51], they
demonstrate the synthesis of a finger mechanism and achieve mimicking a human finger
grasping pose. Figure 3-1 illustrates the finger mechanism with its movement provided by
the software Sam61 [52]. By collecting each frame of the finger movement, we can form a
new set of data that represents reliable finger joints positions in a 2D plane. Thus, we can
apply the EKF on the tracking of the new data to validate the design of algorithm.

Figure 3-1: The illustration of how Watt I mechanism synthesis a finger and its movement.

Meanwhile, since vk is a zero-mean multivariate Gaussian noise in measurement, we also
need to track the result by tuning the standard deviation parameter σR in measurement
noise to obtain the best parameter. In the definition of extended Kalman filter, Q is
the covariance of w (w is the process noise), and R is the covariance of v (where v is
the measurement noise). In which, R is determined by σR, the standard deviation of
observation noises. And normally it is hand-tuned according to the estimated speed of
hand movement during tracking experiment. However, considering the measurement error
cannot be determined from the raw data set, we need to perform another test to find a
proper σR for raw data tracking. Thus, 10 times repeating for different values of σR were
done for verifying the convergence and divergence. The sample test with three different
values of σR and results are shown in Figure 3-2 and 3-3. It is worth noticing that the
first MCP angle (the abduction/adduction angle) does not exist in a 2D plane, so the first
column of the testing result can be neglected.
As the results show in table 3-1, we decided to set the value of σR as 0.1 mm. We believe
that the error in estimation results when σR = 0.1 mm are closer to the real situation.
After the validation of the EKF algorithm, we applied the filter to five fingers. Following
the same idea, the raw data need to be parsed with both forward and inverse kinematic
models for getting joint angles. Moreover, the joint angles of each finger will then be saved
as different files, and we applied the EKF tracking with these joints angles data. It’s worth
noting that, the results only focus on a subject (S7) from the experiment. In the following
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28 Tracking with Extended Kalman Filter

Figure 3-2: The tracking results with different standard deviation σR in measurement noise.

Figure 3-3: The 10 times results with σR equals to 0.1, 1, 10 mm in measurement noise.
As the figure has shown, the value of σR directly affects the robustness of the estimation.
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3-3 Recovery and Estimation Error 29

Table 3-1: Estimation Error in different σR during 10 times repeating test.

Turn σR =0.01mm σR =0.1mm σR =1mm σR =10mm

1 0.629128 mm 1.217492 mm 8.806767 mm 72.82048 mm
2 0.691331 mm 0.955043 mm 11.13055 mm 85.06250 mm
3 0.803799 mm 1.172389 mm 8.883702 mm 71.55041 mm
4 0.807322 mm 0.946418 mm 8.094886 mm 326.33463 mm
5 0.631474 mm 1.151795 mm 5.420166 mm 88.49551 mm
6 0.624739 mm 1.093376 mm 7.973390 mm 76.13414 mm
7 0.603146 mm 1.052899 mm 7.341866 mm 92.27715 mm
8 0.728434 mm 1.110531 mm 13.38066 mm 65.16027 mm
9 0.665615 mm 1.176667 mm 6.515464 mm 76.10397 mm
10 0.626242 mm 1.244694 mm 9.105936 mm 85.09066 mm

average 0.681123 mm 1.112130 mm 8.665339 mm 103.90297 mm

figures, various hand grasping results are shown in both actual data and re-building models.
In the last part of this section, we will also analyze the error between static estimation and
recovery joint angle.

3-3 Recovery and Estimation Error

From Figures 3-4 and 3-5, the recovery of the hand model and the tracking result of the
EKFare shown in different colors. Due to the space limitations, we only demonstrated
four different hand poses tracking results. In most cases, the error commonly occurred in
abduction/adduction joints. The estimation error in every second can be pretty varied as
capturing a moving hand’s absolute position in 3D space is challenging. An illustration(see
Figure 3-6 and Figure 3-7) is shown in the following tracking results that the "moving"
period of the hand can cause major errors. Actually, there are only a few seconds of doing
the particular hand poses (which can be seen as a few seconds static) that we want to
estimate during the whole tracking period. In other words, when considering the errors
in the whole hand record period, the significant error happened as the hand changed its
moving orientation. We analyzed the total errors in the entire tracking period of each
joint of each finger and calculated the average deviation of them (see table 3-2 and 3-3).
However, these errors actually look inconspicuous when we record the whole tracking result
into videos.

In Figures 3-8 and 3-9, we zoom in on the instant tracking error at every frame when the
hand was performing specific movements. For example, in Figure 3-8, the hand is grabbing
a suitcase while in Figure 3-9 the hand is doing the gesture OK. These results have shown
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30 Tracking with Extended Kalman Filter

Figure 3-4: The column of (a) shows both the front and side view of a hand pose an OK
posture. And on top of them is the natural human hand doing "OK" as a comparison with
the estimation. The blue line represents recovered data, while the red line illustrates the
estimation from the EKF. Column (b) shows a human hand grabbing a tennis ball. As the
layout of (a), the blue line is the recovery data and the red line is the hand tracking result.

that the EKF hand tracking is promising and quick enough for performing real-time hand
tracking. The error of the EKF results has been accumulated from the beginning of the
hand recovery process. However, the error of the EKF results has been accumulated from
the beginning of the hand recovery process. The first factor has been made to remedy
missing or mislocated data points in the actual data from markers positions. The kine-
matics rebuilding progress causes another deviation; to form a hand pose close to reality,
we turned some parts of the joints with apparent distortions. With all these adjustments,
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3-3 Recovery and Estimation Error 31

Figure 3-5: In the left column, it shows a human hand grabbing a pen and doing the writing.
The recovered result is covered in blue lines, while the red lines show the EKF tracking results.
Pictures in the right column have the same overall arrangement and it indicates the hand
structure when carrying a suitcase.

the new forming data then be applied as the "real hand" for the EKF tracking. Although
the data we applied has been slightly tuned, the tracking results show that it still has high
reliability with tracking natural hand movements.
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32 Tracking with Extended Kalman Filter

Figure 3-6: In the Thumb EKF tracking result, the sequence is organized as MCP abduc-
tion/adduction (q1), MCP flexion/extension (q2), PIP (q3), and DIP (q4) joints. And for
the other pictures, they also followed the order.

Figure 3-7: This Figure shows the tracking results of the middle, ring, and little fingers.
One thing that is obvious to see from all three fingers is that the tracking results of the last
joints (DIP) show significant errors.
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Table 3-2: Estimation Error in tracking a hand is writing.

joint Thumb Index Middle Ring Little Unit
q1total 5.014 17.687 N 147.961 6.677 deg
q2total 2.550 5.632 26.357 46.222 3.714 deg
q3total 8.235 36.518 104.100 196.624 19.265 deg
q4total 14.152 439.945 14390.795 6760.705 10540.931 deg

q1avg 0.0041 0.0146 N 0.1219 0.0055 deg/per frame
q2avg 0.0021 0.0046 0.0217 0.0381 0.0031 deg/per frame
q3avg 0.0068 0.0301 0.0857 0.1620 0.0159 deg/per frame
q4avg 0.0117 0.3624 11.8540 5.5689 8.6828 deg/per frame

Table 3-3: Estimation Error in tracking a hand doing OK pose.

joint Thumb Index Middle Ring Little Unit
q1total 6.252 128.290 N 25.655 27.343 deg
q2total 1.774 63.970 1.679 5.720 9.918 deg
q3total 6.558 195.052 8.397 50.825 62.023 deg
q4total 10.987 306.414 1893.966 2725.141 4388.208 deg

q1avg 0.0064 0.1306 N 0.0261 0.0278 deg/per frame
q2avg 0.0018 0.0651 0.0017 0.0058 0.0101 deg/per frame
q3avg 0.0067 0.1986 0.0086 0.0518 0.0632 deg/per frame
q4avg 0.0112 0.3120 1.9287 2.7751 4.4686 deg/per frame
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34 Tracking with Extended Kalman Filter

Figure 3-8: This figure indicates the natural hand joint configuration when it was carrying a
suitcase. And the dotted line is the estimation from the EKF, in which we can see the error
between them is only about 0.1 degrees.

Figure 3-9: Here we can see even more minor errors in the EKF estimation. It is the period
that a human hand is doing the gesture of OK. It is worth mentioning that the range of this
frame has avoided the part that the subject lifts up his hand.
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Chapter 4

Postural Synergy Analysis

In the late 19th century, neuroscientists indicated that the high complexity of the human
hand sensorimotor system could be divided into layered sets of motion primitives or “syn-
ergies.” This discovery shows that most human hand movements can be represented by
combining a minimal number of linearly independent elements. In this Chapter, we look
for the presence of a synergistic behavior in the hand motions from the discussed dataset,
and we compare these results from the ones from literature.

4-1 Concept of Principle Component Analysis

Postural synergy provides dimensionality reduction for the human hand. It can reproduce
a similar coordinated and orderly whole of human hand motions. According to the abun-
dance, synergies may be defined as co-varying changes in the output of individual elements
of a multi-element system that stabilize a value or a time profile of a vital performance vari-
able produced by the system [53]. Santello et al. [21] recorded 285 hand poses that involve
grasping operations. Furthermore, they measured static hand postures by recording the
joint angles of all fingers. The result indicates that though the subjects changed different
hand poses while grabbing other objects, the joint angles did not vary independently. In
our data set, we have only 30 daily activities employed by principal components analysis.
Moreover, as the original data-set was focusing on human upper limb movements, partial
of them are not grasp poses. Thus, when conducting PCA, they became the outliers that
seriously affected the important variables’ performance. By eliminating them one by one,
we concluded that the chosen 21 poses will lead to the best encoding result. The details
will be illustrated in the following sections.
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36 Postural Synergy Analysis

4-2 Result Validation

As already mentioned above, postural synergies represent a set of linear dependencies
between the joint variables of the hand kinematics. Therefore, using a much lower-
dimensionality approximation of the DoF configuration can clearly define the characteri-
zation of the recorded hand movements. In our case, the first two principal components
account for more than 75% of the variance (see Figure 4-1). As the bar chart shows, if

Figure 4-1: In our analysis, the percentage of the first two principal components has reached
over 75 percent. The rest of the PCs have small values, and thus we only list the first seven
of all.

we only considered the first two PCs, there would be about 25% distortion in all synergy-
based hand poses. In the dimensionality reduction system, distortion is sure to happen,
however, we must verify that the distorted part will not affect the main gripping action.
To do so, we re-plot some original poses which has been recovery from hand kinematics,
and compared them with the synergy-based results. The quality of the estimated angular
values at each time frame was evaluated through the Mean Squared Error (MSE).

EMSE =

√√√√ 1
NDoF

NDoF∑
i=1

(qreal − qpca)2 (4-1)

Where NDof is the number of the Degree of Freedom, qreal represents each joint that
estimated from markers position via Inverse Kinematics and recovered through Forward
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4-2 Result Validation 37

Figure 4-2: We randomly chose two poses and compared their joint recovery angles from raw
data with synergy-based joint angles. The 4th joint of each long finger has a slight difference
because we only applied 15 joints PCA result, but the reconstruction of the whole hand has
20 joints. To mimic the pose, we set them roughly as 0.5*pi. Moreover, some researches
suggest assuming that the distal interphalangeal rotation angle was 2/3 of the proximal one.

Kinematics. And qpca is the synergy joint angle rebuilds via PCA. In our experiments we
had EMSE typically around 0.05 rad. However, with one exception, the fist pose, shown in
Figure 4-3, the MSE has reached about 1.5 rad. From this observation, it can be expected
that the result we got may be hard to compromise when the desired pose involved a lot of
thumb movements.
In Figure 4-4, we compare PCA results from Santello et al. and our data-set. In both PC1
(horizontal) axis, the fingers are extended at the MCP joint and abducted (PC1 min). And
we can see that our result shows more flatten than Santello et al.. It can be explained by
the considered data-set having no grasping pose that demonstrates a hand grabs a large
object (such as an ashtray); instead, we have poses like showing a "stop" sign by hand
and which cause it tends to extend more. At the other extreme, they both are flexed
at the MCP joint and adducted (PC1 max). The excursion at the PIP joints remains
approximately constant. Along the PC2 (vertical) axis, we can see the differences with the
changes in the angular excursion. In work from Santello et al., the PIP joints flex, whereas
the MCP joints extend with a smaller amplitude moving toward PC2 max. However, the
index and the thumb in our PC2 show opposite directions of significant movement when
moving from one extreme to the other.
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38 Postural Synergy Analysis

Figure 4-3: The comparison of real fist and synergy-based fist shows that the main effect
from the distortion happens mainly on the thumb. In this figure, we can see the major
difference is on the PIP joint.

Figure 4-4: The Left picture shows our analysis result, and the percentage of the first two
principal components has reached over 75 percent. The two dominant PCs in Santello’s
work are on the right side, which covers over 80 percent of the maximum possible amount
of information about objects. We can see in the figure both PC1 has shown the same trend
of movement.
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Chapter 5

Postural Synergy and Hand Mapping

In this chapter, we will propose a novel method with simulation results of synergies-based
control. The goal is to show that natural and artificial synergies can be used to enable a
linear mapping strategy from an human hand and a robotic hand (SoftHand 2 is considered
in this work). Researchers such as [21], [54], and [53] proved that human hand motions
could be explained in a reduced set of eigenvectors, i.e., covariation patterns of joints,
also called Principal Components (PC) or Postural Synergies [55], that the dimension is
much lower than human hand kinematic structure, which we have discussed in the previous
chapter. SH2 has applied the synergy concept with a slight difference in its design, and
it has only two (Degree of Actuation) DoAs. Engineers provide a novel model which can
control the internal forces needed to hold an object while still operating through synergies
[56], [46]. The novel concept is called “soft synergies,” and in the subsequent studies, it
has been upgraded to “adaptive synergies [57], [58].”

5-1 Mathematics of Postural Synergy

Postural synergies define the hand posture through a lower number of degrees of freedom.
To achieve so, the PCA is dedicated to extracting reduced dimensional data from the
whole hand joint variables and represents them in a set of linear dependence. The hand
pose can therefore be described in the reduced dimensional synergy space by neglecting
higher principal components without significant loss in quality of data [59]. Using this
low dimensional grasping space, the hand model was developed the simplified kinematic
structure of real human hand. The linear relation can be explained by the following
formulation:

qm(t) = S · z(t) + qavg
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40 Postural Synergy and Hand Mapping

The qavg represents the average the average of data set hand postures (the illustration is
in Figure 5-1), and the z(t) is the vector of synergy variables at instant time t. qm(t)
is the the joint space vector representing the hand posture at time t, which will be the
tracking result from the EKF. S is the matrix of coefficients stemming from the principal
component analysis on the grasping posture data set.

Figure 5-1: Left figure shows the average of 21 hand postures for one subject (S7) in our
data set. We only considered 21 poses because, in the original 30 tasks, some of them are
not directly related to hand grasping (see appendix A for more details). The right figure is
the average of pose and simulated by a Matlab Tool SynGrasp [13].

5-2 Synergies-Based Mapping with Pisa/IIT SoftHand 2

The above results have successfully reduced a high-dimensionality human hand kinematics
model into two principal components (PC1 and PC2). To complete the mapping between
the human hand and the SH2, we need to assume another vector, qs(t), representing the
robotic hand joints angle. And to map the results from human hand tracking qm(t) to a
robotic hand, we surmise that the slave hand and master hand kinematics were the same.
The following equations will explain the idea we applied.

qs(t) =
[
R
Rf

]
·
[
σ
σf

]
+ εs

qm(t) = S ·
[
PC1
PC2

]
+ εm

Since there is no object contact, thus εs is close to zero can be neglected. And as a result,
we can write the mapping directly as:

qm(t) = qs(t)

To achieve the synergy-based mapping control, the last part of the mapping strategy is to
find the relationship between PC1, PC2, and DoA1, DoA2. In Figures 5-3, we find out the
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Figure 5-2: Postural synergies defined by the first two principal components in our data set
of one subject (S7). To show them more clearly, here we also applied SynGrasp to illustrate
these postures. The hand posture at the center of the PC axes is the average of 21 hand
postures for one subject (S7). The postures to the right and left are for the postures for
the maximum (max) and minimum (min) values of the first principal component (PC1), and
coefficients for the other principal components having been set to zero. The postures at the
top and bottom are for the maximum and minimum values of the second principal component
(PC2).

correlation between each motor to each corresponding PC. The comparison of PC1 and
motor σ (DoA1) shows positive linear regression, while PC2 and motor s (DoA2) shows
a negative correlation. Though only 21 poses from the data-set have been concerned, the
mapping results show a possible intuitive control scheme for future work to conduct in real
experiments.
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Figure 5-3: Left figure shows the average of 21 hand postures for one subject (S7) in our
data set. We only considered 21 poses because, in the original 30 tasks, some of them are
not directly related to hand grasping (see appendix A for more details). The right figure is
the average of pose and simulated by a Matlab Tool SynGrasp [13].

Table 5-1: Synergy-based result (PC1, PC2) and the corresponding motor σ and s on SH2

Hand Movement σ s PC1 PC2

Tennis 3.5π 0 mm 1.4343 rad -2.2889 rad
Phone 4.5π 2 mm 1.9196 rad -2.5532 rad
Door 6.5π 1 mm 2.5912 rad -2.3263 rad
Pour water 3π -4.5 mm 1.3418 rad -2.3178 rad
Top hat 6.5π 1 mm 1.9667 rad -2.6359 rad
Bag 6π 0 mm 2.8589 rad -2.4549 rad
Fist 7.5π 0 mm 3.3688 rad -2.6707 rad
Apple 4.5π 0 mm 1.8979 rad -2.2824 rad
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Figure 5-4: The Matlab and Simulink model of Pisa/IIT SoftHand and SoftHand 2 to
simulate behavior during its free closure or during the application of external forces [14]

Figure 5-5: Simulation of the SoftHand2 humanoid robot hands being teleoperated using
Simulink system (Human hand pose of "three finger grabbing" replication).
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Figure 5-6: Simulation of the SoftHand2 humanoid robot hands being teleoperated using
Simulink system (Human hand pose of "grabbing a phone" replication).

Figure 5-7: Simulation of the SoftHand2 humanoid robot hands being teleoperated using
Simulink system (Human hand pose of "OK" replication).
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Figure 5-8: Simulation of the SoftHand2 humanoid robot hands being teleoperated using
Simulink system (Human hand pose of "greeting with a top hat" replication).
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Chapter 6

Conclusion and Future Works

In this work, we have presented a reliable approach for 3D hand pose estimation from the
raw data of the motion capture camera. The Cartesian position input of each joint in hand
can be accurately predicted by the approach to the 3D position of each joint in hand, thus,
retrieving a 3D hand pose relative to the operator viewpoint. Moreover, we have proposed
a novel method to teleoperate the Pisa/IIT SoftHand 2 based on the tracking result. The
Synergies-based mapping control strategy allows the user to implement the robotic hand
intuitively. In comparing two motors and the two dominant principal components (Figure
5-3), we find linear correlations between them, which shows a possibility of precise control.
Finally, we simulated the proposed method on a robotics application: a robot teleoperation
system where the SH2 replicates human hand fine movements.

6-1 Discussion

Although hand tracking with the extended Kalman filter performs a pretty promising result
from the simulation, we still need to apply it with actual experiments for parameter tuning.
Moreover, the 3D hand model is rebuilt with only one subject, and thus a further calibration
with different subjects has to be done for obtaining better performance. Another noticed
point is that the two DoAs of SH2 still have certain dissimilarities with human postural
synergy from our results and Santello et al.s [21], which can be seen in Figure 4-4. This
leads to another work evaluating whether engaging more than two synergies will get better
results in hand posture evaluation. However, some researchers have concluded that adding
higher-order synergies does not improve performances [60], [61]. This conclusion yields
another possible control strategy of SH2 that, instead of direct mapping, we can design
a subspace for correlating to certain SH2 motions. For example, in work from Meeker
et al. [62], they provided a low-dimensional teleoperation subspace that can be used as
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an intermediary for mapping between hand pose spaces. Then some poses related to a
lot of thumb movements in our PCA results are hard to operate, can be organized into
particular intermediate spaces, and be assigned into correct hand movements. Last but
not least, the motion caption hand poses data also needs more varying collection. One
example shows clearly how the data-set affects PCA result in our work. There is no hand
grasp tremendous object pose in our data-set, so the PCA result shows a slight difference
in PC1 min.

6-2 Future Works

As mentioned above, due to the severe pandemic, we do not have a chance to operate the
synergies-based mapping in real SH2 for implementing experiments, which can be the first
coming work to test and modify the simulation results. One thing worth mentioning here
is that the SH2 is a soft robotic hand, which brings more flexibility than what we simulated
in the "rigid body" condition. As a result, some poses may not be able to match in our
computation, they have a high possibility to perform when conducting on the real SH2.
One primary research in hand teleoperation we did not conduct in the work is considering
the haptics or force feedback, which has been shown in some researches [63], [64], [65].
The force feedback from the robotic hand can help the operator aware of the situation and
improve performance. Furthermore, haptics feedback plays a vital work in providing an
immersive experience in telemanipulation tasks. To obtain more humanoid hand grasping,
considering haptics or force feedback based on synergy-based control is a feasible future
work.

Figure 6-1: The integration of our work is illustrated in Black block and the future work is
showed in blue block.

4777522 Chia-Fu, Lee Master of Bio-Robotics Thesis



Appendix A

Appendix A

A-1 Previous Experiment

Figure A-1: The illustration of surface markers and their locations on the subject [15].
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Figure A-2: The markers placement and the scale of hand surface markers [15].

Figure A-3: The design of plastic supports that were attaching the subject in the experiment
[15]. These supports play an important role in calibration and stabilization.
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A-1 Previous Experiment 51

Figure A-4: The list of actions defining the SoftPro protocol [15].
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A-2 Hand Kinematics

T0,1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 0
0 0 0 1

 , T1,2 =


cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1



T2,3 =


cos θ3 − sin θ3 0 l3 cos θ3
sin θ3 cos θ3 0 l3 sin θ3

0 0 1 0
0 0 0 1

 , T3,4 =


cos θ4 − sin θ4 0 l4 cos θ4
sin θ4 − cos θ1 0 l4 sin θ4

0 0 1 0
0 0 0 1



Figure A-5: The illustration of different mapping approaches [16].
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