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The Interplay Between the 
Electro-Magnetic and Wave-Induced 
Instability Mechanisms in the Hyperloop 
Transportation System 

Andrei B. Fărăgău, Rui Wang, Andrei V. Metrikine, and Karel N. van Dalen 

1 Introduction 

Hyperloop is a new emerging transportation system that is in the development stage. 
Its design minimises the air resistance by having the vehicle travel inside a de-
pressurised tube (near vacuum) and eliminates the wheel-rail contact friction by 
using an electro-magnetic suspension, similar to the ones used by Maglev trains. By 
doing so, it can potentially reach much higher velocities than conventional railways, 
thus being a climate-friendly competitor to air transportation. 

Many challenges faced by the Hyperloop system have already been identified and 
investigated in the context of high-speed railways. However, due to the much larger 
target velocities, new challenges will most likely be encountered [8, 13]. One such 
a challenge is ensuring the dynamic stability of the system at large velocities and 
avoiding excessive amplifications of the response. It is well known that the vibration 
of a vehicle travelling on an elastic guideway can become unstable when its velocity 
exceeds a certain critical velocity [2]. Metrikin [11] showed that the physical 
cause of instability is that the energy associated to the radiation of anomalous 
Doppler waves, which feed back energy into the vehicle vibration, is larger than 
the one associated to normal Doppler waves. Knowing in which velocity regimes 
the Hyperloop system can be unstable (i.e., determining the critical velocities [3]) is 
of high practical importance for its design. 

This study aims to determine the said unstable velocity regimes and, more 
specifically, is concerned with the interplay between two instability sources, namely 
(i) the electro-magnetic suspension and (ii) the wave-induced instability. To this end, 
the Hyperloop system is modelled as an infinite beam continuously supported by a 
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viscoelastic foundation subject to a moving mass (see Fig. 1). The vehicle-guideway 
interaction occurs through a nonlinear electro-magnetic force governed by the 
suspension system. The electro-magnetic suspension makes the system inherently 
unstable, thus requiring a control strategy to ensure stability of the system even at 
quasi-static velocities. In the current work, a basic proportional and derivative (PD) 
control strategy with constant gains is used. Since the PD control is able to both 
insert and extract energy from the system, its influence on the system’s stability is 
currently unknown. 

The novelty of this work lies in bridging the gap between the structural-dynamics 
and control-dynamics aspects of the problem. From the structural-dynamics view-
point, the influence of the electro-magnetic suspension on the stability of an object 
moving on an infinite guideway has not been previously investigated. From the 
control-dynamics perspective, the guideway is usually simplified to either a rigid 
base [7, 14] or a single-degree-of-freedom [9, 15], thus neglecting the frequency 
and velocity dependent reaction force of the actual guideway. This study makes 
the first attempt to combine the two aspects and to investigate the interplay of two 
fundamentally different instability sources. 

2 Model and Solution Method 

2.1 Model Formulation 

The system consists of an infinite Euler-Bernoulli beam with mass per unit length . ρ

and bending stiffnessEI . The beam is continuously supported by distributed springs 
(. kd) and dashpots (. cd). The guideway is acted upon by a vehicle of mass M moving 
with velocity v. The vehicle and the guideway are connected through a nonlinear 
electro-magnetic force F that, similarly to the electro-magnetic suspension in 
Maglev trains, only works in attraction [14]. For the chosen solution method, it 
is convenient to write the governing equations in the reference frame moving with 
the vehicle, i.e., .ξ = x − vt and .t = t , where .(x, t) and .(ξ, t) are the spatial and 
temporal coordinates in the stationary and moving reference frames, respectively. 
Figure 1 depicts the system, while its governing equations read [14] 

.EIw′′′′ + ρ
(
ẅ − 2vẇ′ + v2w′′) + cd

(
ẇ − vw′) + kdw = −F(t)δ(ξ), . (1) 

Mü = F(t) − Mg, . (2) 

F(t)  = C I 2(
w0−u

)2 , (3) 

.İ = w0−u
2C

(
U − IR + 2C I(

w0−u
)2 (ẇ0 − u̇)

)
, . (4) 

U = Kp
(
w0 − u − Δss) + Kd

(
ẇ0 − u̇

) + U ss, (5)
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Fig. 1 System schematics: an infinite Euler–Bernoulli beam continuously supported by a vis-
coelastic foundation subject to a moving mass. The vehicle-structure interaction is governed by 
the nonlinear electro-magnetic suspension 

where primes and overdots denote partial derivatives in space . ξ and time t , 
respectively, g is the gravitational acceleration, . δ represents the Dirac delta function, 
u is the mass displacement, and .w0 = w(ξ = 0) is the beam displacement under 
the moving mass. The electro-magnetic force F depends on the current intensity I 
and on the air-gap .Δ = w0 − u, while C is a constant that depends on the electro-
magnet properties [14]. Equation (4) is a nonlinear differential equation governing 
the current intensity where U is the voltage and R is the circuit resistance. Note that 
F represents just the lift component of the electro-magnetic force while the drag 
component is neglected. Also, the velocity dependency of the lift component [7] is  
neglected and could be investigated in future studies. 

Without a control strategy, the formulated system is inherently unstable, even 
when the vehicle is not moving. Consequently, a control strategy on voltage U is 
imposed (Eq. (5)). A standard proportional and derivative control strategy is used, 
where . Kp and . Kd are the position and velocity feedback gains, respectively. The 
error is defined as the deviation from the desired air-gap .Δss (superscript ss stands 
for steady state); .U ss represents the voltage that leads to the desired air-gap in the 
equilibrium state. More complex control strategies can be implemented, but for this 
investigation, the simple control strategy suffices. 

We consider a typical Hyperloop design that was previously described in [6]. 
Since the current model neglects the discrete nature of the supports, the relevant 
parameters from [6] are divided by the support spacing to obtain an equivalent 
distributed foundation. The vehicle is suspended from above and the displacement w 
is at the rail level (located at the top of the tube). Consequently, the spring stiffness 
in our phenomenological model accounts not only for the support stiffness but also 
for the flexibility of the tube-rail connection and, most importantly, for the flexibility 
introduced by the ovalization of the tube. The parameter values are . EI = 25 × 106

kNm2, .ρ = 1400 kg/m, .kd = 28 × 103 kN/m2, .cd = 20 kNs/m2, .M = 7650 kg, 
.C = 0.05 Nm2/A2, and .Δss = 15mm.
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2.2 Solution Method 

Since the system stability is dictated by the vehicle-guideway interaction, it suffices 
to investigate the response under the moving vehicle (i.e., .ξ = 0). To this end, the 
guideway response . w0 under the moving vehicle is written as follows: 

.w0(t) = −
∫ t

0
G0(t − τ)F (τ)dτ + wic

0 (t), (6) 

where . G0 represents the Green’s function of the guideway evaluated at .ξ = 0 due 
to a moving impulse load and .wic

0 represents free vibrations of the guideway at 
.ξ = 0 due to initial conditions corresponding to the system’s equilibrium position. 
This term is necessary because the convolution integral captures just the response of 
the system with trivial initial conditions. Note that to obtain Eq. (6) from Eq. (1) no  
assumptions or approximations have been made, with the only restriction that Eq. (6) 
limits the observation to the position of the vehicle. Also, the partial-differential 
equation of the beam is not explicit in Eq. (6) but is accounted for through the non-
local nature of the Green’s function . G0. 

This Green’s function . G0 can be obtained from Eq. (1) by replacing F with 
.−δ(t). The ensuing equation can be solved by applying the Laplace transform over 
time and expressing the Laplace-domain solution as a superposition of wave modes 
[5]. The resulting analytical solution is evaluated at .ξ = 0 to obtain . Ĝ0 (the hat 
represents the quantity in the Laplace domain). Its time-domain counterpart . G0 is 
obtained by evaluating the inverse Laplace transform numerically. 

To solve the system of Eqs. (2)–(6), we first approximate the convolution integral 
by discretising time and assuming that the electro-magnetic force has a linear 
variation inside one time step, obtaining the following expression [4] 

.w0,n =
n−1∑

n̄=0

[
Fn̄

(
w0,n̄

)
Ln−n−1 + Fn̄+1

(
w0,n̄+1

)
Rn−n−1

]
+ wic

0,n, n ≥ 1, . 

(7) 

Ln−n̄−1 =
∫ tn̄+1 

tn̄ 
G0(tn − τ)

(
1 − 

τ − tn̄ 
Δt

)
dτ, . (8) 

Rn−n̄−1 =
∫ tn̄+1 

tn̄ 
G0(tn − τ)  

τ − tn̄ 
Δt 

dτ, (9) 

where n is the observation time index while . ̄n is the running (integration) time 
index. Equation (7) is valid only for .n ≥ 1 because the response is described by the 
initial conditions (incorporated in .wic

0,n) at  .t0 = 0. . L and . R represent the responses 
observed at . tn due to triangular pulses lasting between . tn̄ and .tn̄+1. 

Equation (7) is implicit for .n̄ = n−1 because the contact force . Fn depends on the 
response .w0,n. Therefore, the equation is divided into a yet unknown instantaneous
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contribution and an already known history term, leading to 

.w0,n = wic
0,n + whist

0,n + Fn

(
w0,n

)
R0, (10) 

whist 
0,n = 

n−2∑

n̄=0

[
Fn̄

(
w0,n̄

)
Ln−n̄−1 + Fn̄+1

(
w0,n̄+1

)
Rn−n̄−1

]
+ Fn−1

(
w0,n−1

)
L0. 

Next, .Fn

(
discretised Eq. (3)

)
is substituted in Eq. (10), resulting in the third-

order polynomial 

.w3
0,n + a2,nw

2
0,n + a1,nw0,n + a0,n = 0, (11) 

a2,n = −wic 
0,n − whist 

0,n , a1,n = −u2 n, a0,n =
(
wic 
0,n − whist 

0,n

)
u2 n + CI 2 nR0. 

The roots of this polynomial can be computed using a symbolic mathematical 
software (e.g., Maple) and are not given here for brevity. From the three existing 
roots, only one is physically admissible (i.e., real valued and corresponding to the 
vehicle below the guideway). The discretised system of equations now reads 

.w0,n = f
(
wic
0,n, w

hist
0,n , un, In

)
, . (12) 

Mün = C I 2 n(
w0,n−un

)2 − Mg, . (13) 

İn = w0,n−un 
2C

(
Un − InR + 2C In(

w0,n−un

)2 ( ẇ0,n − u̇n)
)
, . (14) 

Un = Kp
(
w0,n − un − Δss) + Kd

(
ẇ0,n − u̇n

) + U ss, (15) 

where f represents the expression of the real-valued root of Eq. (11). The resulting 
system of ordinary differential equations is solved through a time-stepping scheme 
(i.e., Runge–Kutta in-built in the ODE45 solver in Matlab). 

3 Linearisation of the Nonlinear Model 

To investigate the system stability, next to the numerical solution it is instructive 
to study the linearised system around the equilibrium state. Although the system 
of Eqs. (2)–(6) could have multiple equilibrium positions, we are interested only in 
the behaviour around the operational equilibrium position (i.e., the standard steady 
state of an equivalent mechanical system). To this end, a perturbation around the 
steady state is introduced by substituting .w0(t) = wss

0 + wtr
0 (t), .u(t) = uss + utr(t), 

.F(t) = F ss + F tr(t), .I (t) = I ss + I tr(t), where superscript tr stands for transient. 
After mathematical manipulations, we apply the Taylor expansion to the governing
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equations corresponding to Eqs. (3) and (4). Thus, the linearised system is obtained 
and reads 

.wtr
0 = −

∫ t

0
G0(t − τ)F tr(τ )dτ, . (16) 

M ̈utr = F tr, . (17) 

F tr = 2CI ss2 

Δss3

(
Δss 

I ss 
I tr + utr − wtr 

0

)
, . (18) 

İ tr = Δss 

2C

[
−I trR + Kp

(
wtr 
0 − utr

) +
(
Kd + 2CI ss 

Δss2

) (
ẇtr 
0 − u̇tr

)]
. (19) 

The stability of the equilibrium state can be investigated through the eigenvalues 
of the linearised system. To obtain the characteristic equation, the Laplace transform 
is applied to Eqs. (16)–(19) with respect to time. The expression of the electro-
magnetic force is substituted in the Laplace-domain counterparts of Eqs. (16) 
and (17), and the resulting system of equations, in matrix form, reads 

. 

⎛

⎜⎜
⎝

1 − Ĝ0(s)
2CI ss2

Δss3 Ĝ0(s)
2CI ss2

Δss3 Ĝ0(s)
2CI ss

Δss2

2CI ss2

Δss3Ms2
1 − 2CI ss2

Δss3Ms2
− 2CI ss

Δss2Ms2

(Δss2Kd+2CI ss)s+Δss2Kp
−2CΔss

(Δss2Kd+2CI ss)s+Δss2Kp
2CΔss

ΔssR
2C + s

⎞

⎟⎟
⎠

⎛

⎝
ŵtr

ûtr

Î tr

⎞

⎠ =
⎛

⎝
0
f0

I0

⎞

⎠ ,

(20) 

where .f0 = su0 + v0, with . u0, . v0, and . I0 are the initial conditions of the 
perturbation for the mass and current. The beam is considered unperturbed with 
respect to the steady state, but perturbations can be imposed through . wic. The  
characteristic equation, which is not presented here for brevity, is obtained by 
equating the determinant of the coefficient matrix to zero. It must be emphasised 
that the characteristic equation is neither a polynomial (since s appears also in . Ĝ0
under square roots) nor a transcendental equation, meaning that it has a finite amount 
of roots. The eigenvalues are determined numerically by using a root finding routine 
(i.e., fsolve in Matlab) with a multitude of initial guesses for s to cover the part of 
the complex plane relevant for this problem. 

4 Results and Discussion 

Figure 2 presents the eigenvalues of the linearised system for set values of control 
gains . Kp and . Kd and for varying vehicle velocity. Note that in this paper, the critical 
velocity . ccr refers to the minimum phase velocity of the guideway (i.e., the velocity 
at which the load becomes super-critical) and not to the velocity at which stability 
is lost. It can be seen that the choice of control gains ensures that the system is 
stable when the vehicle is not moving. Three eigenvalues are found, one real valued
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Fig. 2 The eigenvalues versus relative velocity of the vehicle. The bottom left panel is a zoom in 
of the top left panel. Kp = 20 (kV/m), Kd = 40 (kVs/m) 

and two complex-conjugates, unlike the studies that approximate the guideway 
by a single-degree-of-freedom system in which five eigenvalues are always found 
[9, 15]. It must be mentioned that in the range of .v ≈ 0.7–.1.3ccr an additional 
pair of complex-valued roots is found (not presented in Fig. 2) that corresponds 
to branch points of the characteristic equation introduced by the dynamic stiffness 
of the infinite guideway. The behaviour of infinite systems (guideway) coupled to 
finite/discrete ones (vehicle) cannot be fully described by the eigenvalues because 
the integrals along the branch cuts also influence the dynamic behaviour. However, 
neither the branch points nor the integrals along the branch cuts influence the 
system stability and are, therefore, ignored in this analysis. The jump observed 
in the location of the complex-valued eigenvalues at .v ≈ 0.7ccr is caused by the 
eigenvalues crossing the branch cut. 

Focusing on the three eigenvalues presented in Fig. 2, the real-valued one remains 
almost unchanged with varying velocity (most clear in the bottom left and right 
panels), while the complex-valued ones undergo significant changes with varying 
velocity. As the velocity approaches . ccr, the magnitude of the negative real part of 
the complex-valued pair increases meaning that the perturbation-induced vibration 
decays faster if the vehicle velocity is close to the critical one. This suggests that 
the increase in velocity (for sub-critical velocities) is beneficial when it comes to 
suppressing perturbations. At a velocity of approximately .1.3ccr, the real part of 
the complex-valued eigenvalues becomes positive, meaning that the equilibrium 
position loses stability through a super-critical Hopf bifurcation. Interestingly, 
increasing the velocity even further, the equilibrium position regains stability. This 
feature is not unique to the controlled electro-magnetic suspension since it also
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Fig. 3 Stability vs control gains for different vehicle velocities, namely .v = 0.1–.1.1ccr (left panel) 
and .v = 1.2–.2ccr (right panel); grey indicates instability. Note that for .v = 1.5–. 2ccr, the instability 
region is outside the closed ovals and does not have a grey background to avoid cluttering the figure 

appears in equivalent mechanical systems [12] with compliant contact relations 
between the vehicle and guideway. 

To offer a general overview, Fig. 3 presents the stability parameter space of 
the control gains for different vehicle velocities. For all velocities and . Kd values, 
the equilibrium position is unstable if .Kp is smaller than a specific minimum 
.Kp,min (vertical line in Fig. 3). In such a scenario, the control is not fast enough to 
counteract the vehicle falling under gravity, thus giving rise to instability. For . Kp >

Kp,min, the equilibrium position can be stable. The stability domain monotonically 
increases with increasing velocity, meaning that the larger . Kp the larger should . Kd
be to ensure stability, reaching its maximum at .v ≈ 0.8ccr, after which it slightly 
reduces until .v ≈ 1.1ccr. The instability in these scenarios (left panel of Fig. 3) is  
solely caused by the electro-magnetic levitation system. 

The stability parameter space changes drastically from the above description 
starting at .v ≈ 1.2ccr (right panel of Fig. 3) and reaches the minimum at .v ≈ 1.3ccr. 
While at lower velocities the stability domains slightly expand or contract without 
any qualitative change, at .v ≈ 1.3ccr and above, the stability domain transits to 
a closed oval at larger velocities with an additional stable region above a specific 
. Kd value (see almost horizontal line in the right panel). Increasing the velocity 
even further, the stable parameter space increases in size once again through the 
expansion of the oval shape. The change in behaviour between the left and right 
panels in Fig. 3 does not originate from the control system but is caused by the 
second instability mechanism becoming present. More specifically, the energy 
radiated by the vehicle into the guideway is being fed back to the vehicle vibration 
through the anomalous Doppler waves [11]. It is important to emphasise that,
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Fig. 4 The time-history response of the nonlinear system; .v = 1.3ccr, .Kp = 20 (kV/m), and 
.Kd = 20 (kVs/m) 

similarly to its mechanical counterpart, this type of instability seems to occur only at 
super-critical velocities, meaning that the electro-magnetic interaction does not lead 
to qualitative differences. Furthermore, this instability source cannot be observed 
when one reduces the guideway to a single-degree-of-freedom system as done in 
previous studies on maglev trains and, as can be seen, can reduce the stability 
parameter range drastically. 

In the vicinity of the stability boundaries shown in Fig. 3, limit cycles can be 
observed provided that .Kp > Kp,min. A typical limit cycle is shown in Fig. 4 for 
a velocity of .v = 1.3ccr. As can be seen, the electro-magnetic force first increases 
after which it drops to zero in the limit cycle oscillation, implying that the vehicle 
is first pulled towards the guideway and the control then reacts by reducing the 
electro-magnetic force to zero, basically leading to a free falling body; after this, the 
electro-magnetic force increases again to avoid the vehicle dropping under gravity. 
If . Kp is far away from the stability boundary, the control becomes very aggressive 
and overshoots, leading to the vehicle colliding with the guideway, moment at 
which the electro-magnetic force becomes infinite. Thus, for very large values 
of . Kp, limit cycles no longer exist. Limit cycles are also observed in equivalent 
mechanical systems provided that either the contact force [10] or the guideway 
[1] has a nonlinear behaviour. Nonetheless, limit cycles in mechanical systems are 
only observed at super-critical velocities because the radiated energy feedback is the 
sole instability mechanism, while the Hyperloop system exhibits limit cycles at any 
velocity due to the electro-magnetic induced instability.
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5 Conclusions 

From a practical viewpoint, this study investigated the unstable velocity regimes 
of the Hyperloop vehicle-structure interaction and their dependency on the control 
gains. From a theoretical perspective, this paper studied the interplay of two 
fundamentally different instability mechanisms that are present in the Hyperloop 
system, namely (i) the electro-magnetic suspension and (ii) the wave-induced 
instability. To enable the studying of the aforementioned interplay, the velocity and 
frequency dependent reaction force of the infinite guideway is incorporated in the 
stability analysis, thus allowing for the vehicle velocity to influence the instability. 
This is not possible in approaches found in literature where the guideway is either 
considered rigid or is approximated by a single-degree-of-freedom system. The 
novelty of this work lies mainly in its theoretical perspective. 

It was shown that, for sub-critical velocities, the frequency and velocity depen-
dent reaction force provided by the guideway can be beneficial in suppressing 
perturbations and in increasing the parameter space in which the system is stable. 
However, at some super-critical velocities, the stable parameter space reduces 
drastically. This drastic change is caused by the second instability mechanism, i.e., 
the radiated energy feedback associated to the anomalous Doppler waves excited 
at super-critical velocities. Furthermore, in the vicinity of the stability boundaries, 
the system presents limit cycle oscillations (i.e., stability loss occurs through a 
super-critical Hopf bifurcation), but for even larger control gains, the limit cycles 
no longer exist. To conclude, it was shown that the interplay between the two 
instability mechanisms does not lead to significant qualitative changes compared 
to considering each mechanism separately. 
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