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PD-Like Regulation of Mechanical Systems With
Prescribed Bounds of Exponential Stability:

The Point-to-Point Case
Davide Calzolari , Cosimo Della Santina , Member, IEEE , and Alin Albu-Schäffer , Fellow, IEEE

Abstract—This letter discusses an extension of the
famous PD regulator implementing point to point motions
with prescribed exponential rates of convergence. This is
achieved by deriving a novel global exponential stability
result, dealing with mechanical systems evolving on uni-
dimensional invariant manifolds of the configuration space.
The construction of closed loop controllers enforcing the
existence of such manifolds is then discussed. Explicit
upper and lower bounds of convergence are provided,
and connected to the gains of the closed loop controller.
Simulations are carried out, assessing the effectiveness of
the controller and the tightness of the exponential bounds.

Index Terms—PID control, robotics, Lyapunov methods.

I. INTRODUCTION

PROVING and quantifying exponential convergence of a
system to an equilibrium are important steps in charac-

terizing its transient and asymptotic behavior [1, Sec. 1.3].
Yet, despite the practical importance of the matter, this chal-
lenge has never been fully tackled for nonlinear mechanical
systems. Consider for example a smooth mechanical system
with n Degrees of Freedom (DoF), and configuration depen-
dent and bounded [2] inertia tensor, as the one shown in Fig. 1.
Such a system can be described by a set of n second order
ordinary differential equations [3]

M(q)q̈ + C(q, q̇)q̇ = τ (q, q̇), (1)

where q, q̇, q̈ ∈ R
n is the configuration vector with its time

derivatives. The matrix M(q) ∈ R
n×n is the inertia tensor,

and C(q, q̇)q̇ collects Coriolis and centrifugal forces. Finally,
τ (q, q̇) is a generic set of generalized forces which can include
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Fig. 1. We propose a PD controller implementing exponentially fast
point-to-point motions. The key idea is to generate the control action
such that it is always tangent to the geodesics curve - induced by the
inertia tensor metrics - connecting the starting and the ending point.
The strategy is tested in simulation on a double pendulum connected to
a cart.

any combination of feedback actions, conservative forces, and
friction induced dissipative forces.

Quantitative convergence results can be provided when
strong model compensations are imposed, as for example when
using computed torque control. Indeed, the effect of this estab-
lished technique is to match the nonlinear dynamics to a linear
one, where exponential rate can be explicitly evaluated. We are
interested here instead in the case in which

τ (q, q̇) = P(q)+ D(q)q̇. (2)

This can either represent a mechanical impedance (if P is
a potential and D is positive definite damping), a nonlinear
Proportional Derivative (PD) controller or a combination of
the two. This is a relevant choice since PD controllers are still
very popular control approach in the practice [4], and a quite
active topic of research [5]–[7].

The usual convergence analyses [8] employ the total energy
of the system as (control) Lyapunov candidate. Yet, this is not
a strict Lyapunov function [1], and it cannot be used to assess
exponential convergence. Several works over the years have
solved this issue for very specific choices of (1) and (2). These
efforts are well reviewed in [9]. Moving to a more general set-
ting, one popular way of circumventing the problem is skewing
the virtual energy by adding an infinitesimal term εq̇TM(q)q.
The resulting candidate is a strict Lyapunov function for small
enough ε [3, Sec. 5.3], due to the sign indefiniteness of
C(q, q̇). Despite its theoretical relevance, this result has lim-
ited practical use, since it provides convergence rates which are
arbitrarily close to zero, and therefore a poor estimation of the
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empirical convergence rates evaluated by Monte-Carlo simula-
tions or by experiments. An alternative approach [10]–[12] is
to impose high lower bounds on the norms of P and D, so that
the effect of (2) is dominant with respect to the left hand side
of (1), i.e., the rigid body dynamics. As a result, very high
gains are needed to produce meaningful convergence rates,
often preventing the practical applicability of the method.

We moved a first step towards a general solution to the
problem in [13], where we tackled the case n = 1. The idea
is here to introduce an energy-based change of coordinates
which makes C(q, q̇) disappear, solving therefore the problem
of its sign indefiniteness. The present work moves from this
initial effort, venturing into the world of n degrees of freedom.
More specifically this letter contributes to the state of the art
of control of mechanical systems with

• tight and analytical bounds of convergence for a system in
the general form (1), (2), when evolving on a one dimen-
sional sub-manifold of the configuration space with line
topology;

• conditions for such a manifold to exist, and how to design
a feedback controller enforcing its existence;

• a nonlinear PD controller, which generates point to point
motions with prescribed rate of convergence, without
the need of using high gains and without requiring the
cancellation of the gyroscopic forces.

II. PRELIMINARIES

An embedded sub-manifold of the system configuration
space S ⊂ R

n is invariant if

∀q(0) ∈ S, q̇(0) ∈ Tq(0)S ⇒ q(t) ∈ S, ∀t, (3)

where Tq(0)S is the tangent space of S in q(0). We consider
here line-shaped manifolds, i.e., we assume the existence of
a continuous function γ : R → S which is invertible with
continuous inverse (i.e., an homeomorphism). Therefore, the
state of the mechanical system evolving in S can always be
expressed as

q = γ (s), q̇ = ∂γ (s)

∂s
ṡ = �(s)ṡ, (4)

where s is a parametrization of γ . Note that � is always full
rank by definition of γ . We call qeq the equilibrium that we
aim at stabilizing, i.e., we take τ (qeq, 0) = 0, where qeq ∈ S.
We will show in the next section that this is without loss of
generality. We define the low-dimensional parametrization of
the equilibrium as seq such that qeq = γ (seq).

III. EXISTENCE AND FEEDBACK ENFORCEMENT OF S

A valid tool for realizing the invariant manifold S is feed-
back based enforcing of the virtual holonomic constraints
γ (πS(q)) = q, where πS is a projection of R

n in S. This
can be done using the techniques discussed in [14], [15]. This
solution is however projection dependent, and can potentially
encompass a strong component of model compensation not
coherent with (2).

We consider here an alternative coherent with a PD-like
action, and that results from a generalization of the so-called
strict mode concept introduced in [16], [17]. Suppose that S
exists with τ = ∂U/∂q + D(q)q̇, for some potential energy
U : R → R and nonlinear damping D � 0. In this case
the manifold is called strict mode, since it can be seen as
the generalization of a linear eigenspaces to a general non-
-Euclidean setting (refer to [17] for a complete discussion on

Fig. 2. Given an initial configuration q0 and the equilibrium qeq in
R

n, there is always a geodesic curve S connecting them. Any control
law τ (q, q̇) satisfying (5) enforces the trajectories to evolve along this
one dimensional manifold without the need to cancel Coriolis/centrifugal
forces. As a consequence, it allows to analyze the stability properties of
the n-DoF system by looking at a simple scalar system.

the topic). The following Lemma introduces a generalization
of the existence result provided in [16] to the general case (1).
Note indeed that in [16] the action τ (q, q̇) is an integrable
potential field. We consider here the general case instead.

Lemma 1: Sufficient conditions for the manifold S with
parameterization γ (s) to exist for system (1) are

• an f : R
2 → R exists such that the on-manifold value of

the torque is
[
τ (q, q̇)

]
q=γ (s),q̇=�(s)ṡ = M(γ (s))�(s)f (s, ṡ), (5)

• a time evolution σ : R → R exists such that (q, q̇) =
(γ (σ ),�(σ )σ̇ ) is a solution of

M(q)q̈ + C(q, q̇)q̇ = 0 . (6)

In other words γ identifies a geodesic curve for the metric
induced by the tensor M(q).

Proof: Consider S a geodesic curve for the metric induced
by the tensor M(q), with � defined as in (4). Substituting (5)
in (1) and pre-multiplying by M−1 yields

q̈ + M−1Cq̇ = �f . (7)

Let us introduce a local set of coordinates ξ ∈ R
n−1 in the

directions orthogonal to S such that the configuration q can be
expressed using a local diffeomorphism h : Rn → Rn between
(s, ξ) and q as

h(s, ξ) = γ (s)+ �⊥(s)ξ . (8)

Differentiating (8) with respect to time yields

q̇ = [
� �⊥

][ ṡ
ξ̇

]
+ �̇⊥ξ = H

[
ṡ
ξ̇

]
+ �̇⊥ξ , (9)

q̈ = H
[

s̈
ξ̈

]
+ Ḣ

[
ṡ
ξ̇

]
+ �̇⊥ξ̇ + �̈⊥ξ . (10)

where �T�⊥ = 0 by construction. We can now express the
dynamics (7) using (s, ξ) coordinates by substituting (8), (9),
and (10), and pre-multiplying by HT , yielding

[
Hs 0
0 Hξ

][
s̈
ξ̈

]
+ μ

[
ṡ
ξ̇

]
+ �̇⊥ξ̇ + Aξ =

[
Hs
0

]
f , (11)

where

μ =
[
μs μs,ξ
μξ,s μξ

]
= HT

(
Ḣ + M−1CH

)
,
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A = HT
(

M−1C�̇⊥ + �̈⊥
)
.

Consider now the case where ξ(0) = ξ̇(0) = 0, i.e., the system
is initially on S, and no input forces are present, i.e., f = 0:
since S is a geodesic, the system naturally evolves on S,
thus it must hold ξ(t) = ξ̇(t) = ξ̈(t) = 0, ∀t ≥ 0. This
imposes the following constraint on the dynamics of ξ

μξ,sṡ = 0, ∀t ≥ 0, (12)

which implies that μξ,s must remain zero along a geodesic.
This reflects the well-known fact that, on a geodesic, the gyro-
scopic forces are purely tangential to the curve. Since the
control action defined by (5) acts solely on the first equation
of (11), the dynamics of ξ remains decoupled, hence, given the
initial condition q(0) ∈ S, q̇(0) ∈ Tq(0)S, then the manifold
S is invariant.

Note that these conditions become also necessary in case
S is required to be a strict mode, i.e., if we ask τ to be fully
implementable by mechanical components. The conservative
case D = 0 is proven in [16], and the general case follows
from similar arguments.

The following Corollary of Lemma 1 proves that this control
action is a good candidate for achieving point-to-point control.

Corollary 1: For all q̇(0) = 0 then a τ verifying Lemma 1
can be selected such that the closed loop admits a S with
q(0) ∈ S and qeq ∈ S.

Proof: The thesis directly follows by the fact that a
geodesics always exists connecting any two configurations
of (1) - by the very definition [18] of geodesic curve γ .

Therefore our analysis can be seen as a quasi-global one, in
the sense that the entire configuration space can be analyzed
with the proposed tools since every admissible configuration
can be connected to the equilibrium qeq - as the configura-
tion space R

n is simply connected. Note that such geodesic
can be evaluated through standard methods in computational
geometry, see for example [19].

In the following we consider among all the possible τ
verifying (5), the PD-like controller

τ = −M(q)
[
κ(s)�(s)(s − seq)+ δ(s)q̇

]
, s = πS(q), (13)

where πS is a projection from R
n to S, i.e., any function

such that πS ◦ γ is the identity, and κ(s), δ(s) are positive
definite scalar functions. It is immediate to see that (13) veri-
fies (5) for q ∈ S considering f (s, ṡ) = −κ(s)(s−seq)−δ(s)ṡ,
and in view of (4). It is worthy to remark that, in contrast
to computed torque control, which forces the evolution along
paths which minimize the Euclidean distance, the proposed
controller drives the system along geodesics that optimally
minimize the kinetic energy difference when traveling between
configurations. As a result, (13) does not cancel the gyroscopic
forces, leading to a passive controller and higher efficiency.

Note that geodesics - there induced by non-inertial metrics
- have been used in combination to PD controllers already
in [20, Ch. 11]. However, the aim is there to define the error
signal in a coordinate-free way, rather than to exploit some
property of the system when evolving on a geodesic.

IV. CONVERGENCE RESULTS

A. Dynamics Along S

We aim here at writing a compact description of the
mechanical system dynamics when evolving on the manifold
thanks to the action (13). To this end we differentiate once q̇

from (4), yielding

q̈ = �(s)s̈ + �̇(s, ṡ)ṡ. (14)

Pre-multiply both sides of the equation by �TM gets to
(
�TM�

)
s̈ = �T(Mq̈)− �TM�̇ṡ. (15)

Finally, we substitute the expression of Mq̈ from (1), and q, q̇
from (4), resulting in the following on-manifold dynamics

m(s)s̈ + c(s, ṡ)ṡ + k(s)s + d(s)ṡ = 0, (16)

where we assume seq = 0 without loss of generality, and

m(s) = �TM�, c(s, ṡ) = �TC� − �TM�̇, (17)
k(s) = κ(s)�TM� = κ(s)m(s), (18)
d(s) = δ(s)�TM� = δ(s)m(s). (19)

Note that this is equivalent to a one dimensional mechanical
system with configuration dependent inertia, which is similar
to the one we studied in [13], albeit with a more general non-
linear impedance. Therefore, the results that we introduce in
the following can be applied to one dimensional systems with
configuration dependent inertia as special case.

B. Properties
Since M is bounded [2] and (17) is a tensor transformation

with �(s) bounded, it results

m ≤ m(s) ≤ m, (20)

with m > 0. Moreover, we assume that

k ≤ k(s), (21)

d ≤ d(s) ≤ d, (22)

with k, d > 0. Furthermore, the following well-known prop-
erty of mechanical systems [3] is maintained

ṁ(s, ṡ) = 2c(s, ṡ). (23)

C. Coordinates Change
Consider the following coordinate transformation

ψ =
√

m(s)

2
ṡ, ϕ =

√
1

2
s, (24)

where ψ is the signed square root of the kinetic energy, while
ϕ is a scaling of q. In the new coordinates, system (16) can
be re-written as

ψ̇ = − d(s)

m(s)
ψ − k(s)√

m(s)
ϕ, ϕ̇ = 1√

m(s)
ψ, (25)

where (23) and the inverse coordinate transformation have
been used. We leave for now explicit the dependence on the
configuration s of m, d, and k. The gyroscopic term along the
geodesic vanishes, without any need of explicit compensation.

D. Two Skewed Lyapunov Candidates
We define the following Lyapunov function candidates, with

the objective of tightly bounding the convergence rate of (16).
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To study the upper bound we consider

Vu(ψ, ϕ) = [
ψ ϕ

]
Pu(s)

[
ψ
ϕ

]
, (26)

where

Pu =
[

1 ξu
ξu α(s)

]
, ξu = d

2ηu
√

m
, α(s) = 2

∫ s
0 k(y)y dy

s2
. (27)

Here, ξu is a constant, with ηu ≥ 1, while α(s) depends on the
configuration s and it can be interpreted as a generalization
of the role that the stiffness has in the linear case within the
potential field. Moreover, in [13] it was shown that

α(s) ≥ k. (28)

To analyze the lower bound we consider

Vl(ψ, ϕ) = [
ψ ϕ

]
Pl(s)

[
ψ
ϕ

]
, (29)

where

Pl =
[

1 ξl
ξl α(s)

]
, ξl = d

2ηl
√

m
, (30)

with ηl ≥ 1.
Remark 1: Since α(s) is positive and lower bounded, it is

always possible to properly define (26) and (29) by taking ηu
and ηl large enough.

Let us define the quantities

βm = min
s∈S

k(s)

α(s)
, βM = max

s∈S

k(s)

α(s)
,

then, the following inequalities trivially hold

− k(s) ≤ −βmα(s), 0 < βm ≤ 1, (31)
−k(s) ≥ −βMα(s), 1 ≤ βM. (32)

Lemma 2: If the conditions

V̇u ≤ −λuVu, (33)
V̇l ≥ −λlVl, (34)

hold for the Lyapunov function candidates (26) and (29), then
‖[ψ √

α(s)ϕ
]‖ converges exponentially to zero with a rate not

lower than λu
2 and not higher than λl

2 .
Proof: The proof can be derived with similar arguments as

in [21, Lemma 3.4].

E. Bounds on the Exponential Convergence
The Theorem presented in this section assesses the exponen-

tial convergence rates of the n-DoF system implementing (13)
and satisfying Lemma 1.

Theorem 1: System (16) converges exponentially to the
origin with a rate not lower than

λ′
u = 1

ηu

βm

ρ

d

2m
, (35)

where ρ > 1, ηu ≥ 1, if

d2

4mβmk
≤ min

x∈[m,m]
fu(x,Rd), (36)

with fu defined in (46) and Rd = d/d.
Furthermore, the trajectories converge exponentially with a

rate not higher than

λ′
l = ηl

βM

θ

d

2m
, (37)

where 0 < θ < 1, ηl ≥ 1, if

d
2

4mβMk
≤ min

s∈S
fl(m(s), rD(s)), (38)

with fl defined in (48) and rD(s) = d(s)/d.
Proof: The derivative of (26) along the system trajectories

results in

V̇u(ψ, ϕ) = −
[
ψ
ϕ

]T
[ 2d(s)

m(s) − 2ξu√
m(s)

,
d(s)ξu
m(s)

d(q)ξu
m(s) ,

2k(s)ξu√
m(s)

][
ψ
ϕ

]
. (39)

Using (31), equation (39) can be lower bounded as

V̇u(ψ, ϕ) ≤ V̇∗
u (ψ, ϕ) = −

[
ψ
ϕ

]T

Q∗
u(s)

[
ψ
ϕ

]
, (40)

where

Q∗
u(s) =

[ 2d(s)
m(s) − 2ξu√

m(s)
,

d(s)ξu
m(s)

d(s)ξu
m(s) ,

2βmα(s)ξu√
m(s)

]

. (41)

The exponential convergence rate defined in (35) is implied
by imposing that

V̇∗
u (ψ, ϕ) ≤ −2λ′

uVu(ψ, ϕ), (42)

which is a necessary and sufficient condition for (33) to hold.
Combining (26), (40), (42), and (35) yields

−
[
ψ
ϕ

]T

Gu(s)

[
ψ
ϕ

]
≤ 0,

where Gu(s) = ηu
ρ
βm

m
d Q∗

u(s) − Pu(s). Thus, proving (42) is
equivalent to prove that Gu(s)) is positive semi-definite. To this
end, we proceed by applying the Sylvester’s criterion [22], i.e.,
we check for positiveness of the determinants of all leading
principal minors of Gu(s)

Gu(1,1) = ρ
√

m

βm
√

m(s)

(
2rd(s)ηu

√
m√

m(s)
− 1

)

− 1 ≥ 0, (43)

det(Gu(s)) ≥ 0, (44)

where rd(s) = d(s)/d. Inequality (43) is trivially satisfied
using (20), (22), and (31). By simplifying and collecting terms,
condition (44) can be expressed as

fu,d(s)
(

d2
)

+ fu,k(s)(4ηumβmα(s)) ≤ 0, (45)

where

fu,d(s) = (ηuρrd(s)m − βmm(s))2,

fu,k(s) = −η2
u

(
m(s)− ρ

√
m

√
m(s)

)

(
βmm(s)− 2ηuρrd(s)m + ρ

√
m

√
m(s)

)
.

Provided that

d2

4βmα(s)m
≤ − fu,k(s)

fu,d(s)
= fu(m(s), rd(s)), (46)

then condition (44) is always verified. Using similar arguments
as in [13, Appendix A], it can be shown that the right hand-side
of (46) can be lower bounded as

min
x∈[m,m]

fu(x,Rd) ≤ − fu,k(s)

fu,d(s)
. (47)
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Finally, using (28) to upper bound the left hand-side of (46),
and combining it with (47) results into (36), therefore linking
this hypothesis to the positive semi-definiteness of Gu(s), and
thus the validity of the exponent λ′

u in (42).
Using similar arguments while imposing (34) for (29), and

additionally exploiting (32), it is straightforward to prove the
validity of the lower bound λ′

l on the convergence rate defined
in (37), provided that the following inequality is satisfied

d
2

4mβMα(s)
≤ − fl,k(s)

fl,d(s)
= fl(m(s), rD(s)), (48)

where

fl,d(s) = (
βMηlm(s)− θrD(s)m

)2
,

fl,k(s) =
(
θ
√

m
√

m(s)− η2
l m(s)

)

(
θ
√

m
√

m(s)− 2ηlθrD(s)m + η2
l βMm(s)

)
.

Using (28) to upper bound the left hand-side of (48) leads
to (38). The thesis follows by the application of Lemma 2.

Remark 2: The total mechanical energy of system (16) is

E = ‖[ψ √
α(s)ϕ

]‖2, (49)

thus, Theorem 1 allows to quantitatively estimate the transient
behaviour of the energy of system (16) as well as of system (1)
using the control defined in (13).

Remark 3: Note that the bounds λ′
l and λ′

u are built as by
considering the convergence rates of the slowest and fasted
frozen systems ms̈ + dṡ + ks = 0 and ms̈ + dṡ + ks = 0 (i.e.,
d/2m and d/2m), relaxed through pre-multiplication for the
constants ηl and ηu. If the system is under-damped then the
two constants can be taken equal to one.

Remark 4: The parameters ηu and ηl can be tuned to trade
off the tightness of the convergence rate against the initial size
of the bounding envelopes.

V. SIMULATIONS

Let us consider the 3-DoF system depicted in Fig. 1, where
m1 = m2 = 1 [kg], m3 = 5 [kg], Iz,2 = 0.1, Iz,3 = 0.5 [kg m2],
the links have length 0.5 [m], and the centers of mass of the
two links are located at their respective centroid. We use the
proposed PD-like action (13) to stabilize the unstable equilib-
rium (arm straight, pointing upwards), swinging the arm up
from its stable one (arm straight, pointing downwards).

The geodesic curve connecting the two can be found
by using a simple shooting method, consisting in simulat-
ing multiple random initial velocities the dynamics (6). The
curve is then parametrized using 50th order polynomials. The
resulting shape is shown in Fig. 3.

We aim at assessing the ability of our controller to function
both in the under-damped and the over-damped cases, and of
our convergence analysis to correctly assess tight convergence
bounds in both cases. Therefore, the simulation consists of a
swinging phase (slow convergence) followed by a breaking
phase (fast convergence).

A. Swinging Phase
Initially, the system is commanded to perform a swinging

motion using constant gains κ(s) = 12 and δ(s) = 0.02. The
bounds on m(s), k(s) and d(s) are m = 25.93, m = 31.70,
k = 311.27, d = 0.519 and d = 0.634, while the ratio k(s)

α(s) is
bounded by βm = 0.965 and βM = 1.041.

Fig. 3. Evolution of the trajectories for system (1) in configuration space
during swinging motion (solid line). Thanks to the PD-like control defined
in (13), the multi-DoF system evolves on an uni-dimensional manifold,
identified with a chosen geodesic curve. Several other geodetic curves
crossing the origin are depicted in the figure using dotted lines.

Fig. 4. Trajectories of (16) simulated along the chosen geodesic. The
bounds on the convergence rates is not over-conservative, as can be
seen from the plots of the ratios V̇u/Vu and V̇l/Vl against −λu and −λl ,
i.e., the upper and lower bounds, respectively.

Conditions (36) and (38) are satisfied for ηu = ηl = 1, ρ =
1.001, and θ = 0.999, thus the energy E = ‖[ψ √

α(s)ϕ
]‖2

converges exponentially with a minimum rate λu = 0.0158
and a maximum rate λl = 0.0255. The system is simulated
starting from the stable equilibrium - which corresponds to
s = −1 in our parametrization. The resulting trajectories are
presented in Fig. 4.

B. Breaking Phase
At time tb = 7.25 [sec], the gain δ(s) is increased such that

the energy converges with a desired minimum rate λu = 2.75.
To design this gain, a combination of the parameters d, ηu,
and ρ must be found such that condition (36) is satisfied for
the desired rate. A possible solution is obtained by choosing
first ηu = 1.3 and ρ = 1.4, and combining the inequality (36)
together with (19), and (22) to solve for δ, leading to the upper
bound δ(s) ≤ 7.06. Imposing (35) yields the lower bound
δ(s) ≥ 6.33. Thus, at time tb, the gain is increased to δ(s) =
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Fig. 5. Snapshots of the cart and double pendulum system exponen-
tially converging to the upper equilibrium in a single swing. The gray
shape shows the configuration in the previous snapshot.

Fig. 6. The total mechanical energy of system (1) during the swinging
and breaking phases. The upper and lower bounds are evaluated using
Theorem 1, and they are depicted in the figure using dashed and dotted
lines, respectively.

Fig. 7. Comparison between the PD-like controller defined in (13) (solid
line) and computed torque (dashed line) in terms of convergence of joint
trajectories and torque requirements during the point-to-point motion of
the breaking phase. The simulations show that the PD-like controller
achieves the same convergence rate as CT with a remarkably lower
torque demand.

6.7, and the system converges to the upstanding equilibrium
in a single, well-damped swing, as depicted in Fig. 5.

The lower bound on the rate is found using condition (38),
which is satisfied for ηl = 1.43. Therefore, the energy is
guaranteed to converge exponentially with a minimum rate
λu = 2.75 and a maximum rate λl = 12.18.

For both the swinging and breaking phases, plots of the
ratios V̇u/Vu and V̇l/Vl against the respective bounds are
shown in Fig. 4, while the evolution of the energy and the
exponential envelopes are depicted in Fig. 6.

Of all the papers discussed in the introduction, the
only one that does not fail to produce a convergence rate
is [12], which, even so, provides a substantially less tight
bound of ∼0.16.

C. Comparison With Computed Torque Control
We provide a preliminary comparison of the proposed

controller against standard computed torque control (CT)
[3, Sec. 5.2]. The initial and final configurations presented for
the breaking phase (Fig. 5) are considered for the control task.
The gains for CT are matched with the ones used for the PD-
like, so to achieve a similar convergence rate. The results of
the simulations are depicted in Fig. 7, where the larger torque
demands of CT can be acknowledged. Although we suspect
that the proposed approach leads to very efficient point-to-
point motions, claiming optimality is beyond the scope of this
letter.

VI. CONCLUSION AND FUTURE WORK

This letter proposed a PD-like controller with prescribed
exponential bounds of convergence. For the sake of
conciseness, we considered the system to be fully actu-
ated. Nonetheless, we believe that the proposed results can
be extended to some classes of under-actuated systems. We
will provide such extension in future work. We also aim at
understanding if a single closed form proportional action is
possible, which substitutes M(q)�(s)κ(s)s while covering all
the configuration space. Finally, we plan to formally evaluate
the robustness of this technique, and validate its effectiveness
with experiments on a real system.
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