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Abstract

Defects in railway crossings harm the quality of service provided by the railway operator.
They can cause disruption time if they are detected in a late stage of deterioration, when
urgent replacement or repair is the only solution.

In order to prevent defects from occurring, inspections are performed periodically. In-
specting railway crossings in areas with difficult access can be expensive and dangerous.
Moreover, maintenance activities scheduled without actual knowledge of the condition
of crossings can lead to unnecessary efforts, costs, and bad performance.

Nowadays, the use of more advanced instrumentation for monitoring the health condition
of crossings is economically possible. However, many technical challenges are still open
when converting data into knowledge for a better maintenance scheduling. Maintenance
activities at the crossings can be more effective when the actual information and the
forecast of their health conditions are employed, giving enough time for contractors to
perform corrective actions. In this thesis project, a methodology to estimate and forecast
the degradation level of a railway crossing based on vibration data recorded by several
accelerometers installed on the crossing is proposed.

Due to various types of trains and other exogenous factors, responses obtained from
accelerometers vary, making the problem of estimating the health condition of crossings
is difficult to do analytically. In the methodology proposed in this thesis, deep learn-
ing algorithms are utilized to extract the condition of the crossing, and to provide the
right features for the forecast of when defects on the crossing are about to be visually
noticeable. The methodology is then evaluated using a dataset from the case study of
a crossing located in Amsterdam. Using wavelet coefficients and the type of trains as
features, the methodology can forecast defects on the crossing two months before the
defects are spotted during the visual inspection.
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Chapter 1

Introduction

Crossings are essential components in railway systems as they allow the trains to move
from one line to another. Crossings are even more crucial in case of service disruptions
as they can provide access to alternative routes. However, crossings are subject to high
wheel-rail impact forces and vibrations during the passage of vehicles, which accelerate
their degradation. It was reported in [1] that the railway infra managers usually spend
20% to 40% of their maintenance budget for repairing Switches and Crossings (S&C).

In order to ensure a safe operation of the crossing, contractors schedule timely visual
inspections and measurements using various tools like handheld ultrasonics or specialized
inspection vehicles when required. In case of detecting severe failures, corrective actions
must be performed immediately.

Defects on the crossings often evolve fast, making preventive maintenance activities
problematic if they are not scheduled wisely. Excessive inspections and maintenance
activities can cause unnecessary spending on spare parts, time, and efforts that lead to
inefficient expenses of the maintenance budget. However, not performing maintenance
activities on time also causes a significant increase in the number of service disruptions.
High costs of components and limited availability of specialized personnel make the
maintenance problem even more complicated. If much time in advance is known, when
crossings are about to fail, preventive actions can be scheduled more efficiently.

In this thesis, the detection of early-stage defects on crossings is investigated. Based on
track-side vibration data and deep convolutional neural networks, a methodology that
allows the monitoring of the health condition of crossing is proposed. As a case study,
the dataset from measurements on a crossing located in Amsterdam is utilized. With
the proposed methodology it is possible to detect the initiation of the failure of the
crossing two months before the cracks are visible, giving the contractors additional time
for planning their maintenance activities. Finally, the methodology can be extended for
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No degradation (t < t,)
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Figure 1-1: The black line shows a typical trend of the degradation level. The black line
inside the yellow box indicates the degradation level when defects are in the early stage, i.e.
invisible to human eyes. The black line inside the red box indicates the degradation level
when defects are visible to human eyes.

the health condition monitoring of other systems that can rely on vibration signals such
as bearings and railway catenary systems.

1-1 Challenges of monitoring railway crossings

Vibration-based health condition monitoring is an interesting topic, particularly when
this technology is applied on the railway crossing. Not many studies on this topic were
found in the literature study. This lack of literature is an opportunity for performing
research on this type of health condition monitoring system. Some of the reasons why this
topic is challenging and has not been fully addressed in the literature are the following;:

1. Dynamics of railway crossings change slowly over time: Defects on the
crossing change the way it vibrates when a train passes over it. With no defects, the
crossing vibrates at its natural frequencies. These frequencies change noticeably if
the crossing is severely damaged and defects are usually visible. However, at an
early stage when defects start to develop, and they are invisible to the human eyes,
the changing frequencies are unnoticeable. As degradation of crossings is slow in
the early stage as illustrated in Figure 1-1, detecting defects in this stage is more
challenging than detecting defects once they are visible.

2. Dominating wheel-crossing impact: The vibration signal is not only affected
by changing dynamics of the crossing but it is also very sensitive to wheel-crossing
impact. Vehicle speed, wheel condition, among other factors, affect the measured
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Figure 1-2: High deviation in the trend of the degradation level caused by the effect of the
uncertainty of input signals.

signal. If changes of the signal due to wheel-crossing impact are more signifi-
cant than changes of the signal caused by defects as illustrated in Figure 1-2, the
detection task becomes more complicated.

3. The size of data to be processed: Detecting defects on the crossing in their
early stage requires vibration data recorded at a high sampling frequency to cap-
ture short time transient responses. This kind of data needs a significantly more
memory to save the same event compared to vibration data sampled at a lower
rate. For example, 20 s of vibration data recorded by a 100 kHz accelerometer
needs 8 MB of data (400 KB/s) compared to the one sampled by a 1 kHz ac-
celerometer, which needs 80 KB of data (4 KB/s). This amount of data grows
significantly with the number of sensors, measurements and crossings that need to
be monitored. Since inspecting the evolution of the responses that slowly change
over time requires a considerable amount of vibration data to be processed at once,
this is a challenge we need to overcome in this thesis.

1-2 Research objectives

The primary objective of this research is determined as follows:

To develop a methodology that can estimate the health condition of a railway crossing
based on its vibration data.

Moreover, considering possible challenges discussed in Section 1-1, the primary objective
was divided into several sub-objectives as follows:
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4 Introduction

1. To develop a methodology that converts vibration signals into useful information.
The use of state of the art methods is considered to accomplish this objective.

2. To compare the methodology with other state-of-the-art methods regarding per-
formance, complexity, and robustness.

3. To find out the configuration of the chosen state-of-the-art method that can achieve
the best performance.

The thesis is divided as follows. Chapter 1 introduces the primary problem, research
challenges, objectives, and research scope. Chapter 2 discusses the literature study
regarding railway crossings, conditions monitoring, and deep neural networks. Chapter 3
presents the proposed methodology for monitoring health conditions of railway crossings.
Chapter 4 discusses implementation of the proposed methodology on the dataset from
the case study of a crossing in Amsterdam. Chapter 5 presents conclusions, discussions,
and further research. Figure 1-3 summarizes the outline of this report.

1-3 Research scope

The thesis focuses on developing a methodology for condition monitoring as discussed in
Section 1-2. Since different approaches can be used to achieve the objectives, the scope
of this research should be limited.

1. Limiting exogenous factors: Dynamical responses of the railway crossings are
affected by many factors. In this thesis, factors that affect the responses are limited
to the wheel-crossing impact forces of passing trains and dynamical changes of the
crossing due to defects. Other factors such as the effect of sleepers, ballasts, and
others are not considered because of the information about them is not available.

2. State of the art approaches: While many state-of-the-art methods might also
be applied to solve the problem in this research, the focus is on Convolutional
Neural Networks (CNN) algorithms. The reason is that this research requires the
method to perform classification and regression tasks from high dimensional input
data, which makes the CNN the most suitable approach [2]. Moreover, many CNN
algorithms have succeeded to perform similar tasks with very good performance
[3, 4, 5, 6].

3. Number of crossings: For generalization purposes, data measured from multiple
and different crossings might be desirable. However, due to strict regulations on
operational crossings, it was not possible to obtain data from other crossings. The
proposed methodology is generic, applicable to new cases of crossings, but the
results of the case study are limited to the condition of that specific crossing.
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Figure 1-3: Outline of the thesis report.
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Chapter 2

Literature Study

In this chapter, the topics discussed are: railway crossings and their degradation, con-
dition monitoring of railway infrastructures, and deep learning algorithms.

2-1 Introduction to railway crossings

A railway crossing is part of a turnout that ensures the continuity of two intersecting
routes, as illustrated in Figure 2-1. The crossing consists of four components: check
rails, wing rails, flangeway opening, and crossing nose. Check and wing rails ensure the
safe passage of the axle by guiding the wheel. The flangeway opening located in front of
the crossing nose provides a path for the wheels of trains to depart safely toward one of
the directions. The flangeway opening, because it causes discontinuity of the rail, causes
wheels of trains that pass the gap to jump and hit the surface of the crossing nose. For
this reason, the railway crossing is also called the “frog”. As a consequence, the surface
of the crossing nose suffers from high impact load that causes damages [7].

Various kinds of damages can be found in crossings like cracks, spalling, plastic deforma-
tion, and shelling [9]. These damages can develop excessively because of the continuous
usage of the crossing. Nowadays, most defects originate from the surface, in the contact
area between wheel and crossing. Early stage defects are not visible to human eyes
because they grow into the subsurface, as shown in Figure 2-2. Moreover, the defor-
mation of the crossing in the early stage defects is minimal (on the scale of pm). If
the maintenance engineer is unaware of their existence, cracks will develop and they
become a threat to the safety of the operation. As a consequence, as soon as defects are
detected, the faulty crossing has to be replaced. In the worst case scenario, undetected
defects in crossings can cause failures, which could lead to trains derailment. In order to
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Figure 2-1: lllustration of railway crossing: 1.
opening; 4. crossing nose [8].

Figure 2-2: Subsurface crack on the crossing [9].

prevent this to happen, several studies have been performed to understand and model
the behavior of degradation in railway crossings.

2-2 Degradation model in railway crossings

Modeling the degradation of railway crossings is done for several reasons: to understand
the factors contributing to the degradation, and to predict when railway crossings will
fail in order to perform more efficient maintenance. Two approaches are usually used for
modeling the degradation of railway crossings: regression methods applied to historical
data (maintenance database), and dynamical models of crossings via simulation of the
wheel-crossing contact.

In the approach using a maintenance database, the relationship between the level of
degradation and different parameters is found using a regression function. In [1], it was
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2-3 Current methods for checking the health condition of railway crossings 9

shown that the train load and the complexity of the crossing play significant roles in
the failures of crossings. In another similar study [10], a function to approximate the
degradation level of the crossing from several parameters was determined using linear
regression. It was found that the complexity of crossings and the operation time give
most statistical effects on the degradation level. Additionally, a study in [11] concluded
that we can use a three-parameters Weibull distribution to find the relationship between
failures in the crossings and the operation time.

In the other approach using dynamical models [12], it was concluded that increasing axle
load leads to increasing degradation. In another study [13], a numerical procedure for
analysis of rolling contact fatigue crack initiation and fatigue life prediction for railway
crossing was proposed. A 3D finite-element model was created based on the drawings
from the manufacturer. The model was developed to simulate the dynamic response of
wheels passing the crossing. The simulation showed that the stress is high in the surface
area of crossing due to the impact force. Additionally, this study also concluded that
most of the damages occur in the area where the stress is high, and that the initiation of
fatigue cracks can be predicted based on the passing axles. In [14], a 3D finite-element
model of wheel-rail impact at railway crossings was developed. The study showed that
the actual dynamics of the crossing is more complicated than usually assumed in the
literature. The model suggests that damage analysis and structure optimization could
lead to the design of new and better crossings.

The degradation level of the crossing can be estimated with both approaches, allowing
the maintenance engineers to set predefined priorities in scheduling the maintenance
activities. However, since the crossing can fail anytime during the expected lifetime, it
is essential to incorporate the actual information from the field to the models so that the
expected lifetime can be predicted with better accuracy (i.e., closer to the real condition
of the crossing).

2-3 Current methods for checking the health condition of rail-
way Crossings

Currently, a lot of railway operators still prefer periodic inspection over condition mon-
itoring. The inspections are performed either by inspectors or inspection vehicles, as
explained in [15]. The inspectors visit the crossings on a monthly or weekly basis to
conduct a visual and measured check. For regular checks using inspection vehicles, var-
ious sensors such as high-definition cameras, lasers, ultrasonics, and eddy currents are
utilized together with GPS to tag the location of the inspected components. The in-
spection vehicles are utilized because they are safer (no personnel on track) and faster
(they can inspect up to 80 to 100 km of track distance per hour) than inspectors. How-
ever, crossings are complicated structures requiring specialized devices to measure their
condition with a more significant accuracy. Thus, a site visit performed by personnel
is still preferred for a detailed measurement such as a hammer test to obtain dynamic
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properties of the structures, ultrasonics or phase array tests to look for hidden cracks,
and 3D scan to get an accurate profile of the crossing.

2-3-1 Hammer excitation test

A hammer excitation test can be performed to obtain dynamic properties of the struc-
tures for measuring performance [16]. In railway systems, it is used for rails and train
wheels. The hammer test is carried out by hitting the track with a special hammer
equipped with a force sensor to apply a vertical impulse load that produces track vi-
bration. The resulting responses are recorded using accelerometers attached to various
locations on the track. The parameter of the track can be obtained by converting the
recorded signal by means of Fast Fourier Transform (FFT) into the Frequency Response
Function (FRF) while assuming linear behavior of the track. The FRF H(s) relates the
fourier transform of the input force U(s) and the fourier transform of the ouput response
Y (s) as

Y (s)

H = 17(5)

(2-1)

With defects in the track, dynamics of the crossing are changed. Therefore, the failure
mode can be noticed from H(s) which is not sensitive to the changes of U(s).

This principle can be adopted for monitoring railway crossings by installing accelerome-
ters to capture the transient responses induced by train wheel-crossing impacts [17, 18].
In this case, the wheels act as hammers.

2-3-2  On board monitoring of railway infrastructures

Several approaches such as vehicle-based [19, 20], axle-box acceleration based [21, 22,
23, 24], and online monitoring [25, 26] have been proposed for condition monitoring of
railway infrastructures. In online monitoring, various kinds of sensors are installed on
stationary places near the infrastructures so that the monitoring can be done in real time.
In vehicle-based monitoring, the sensors are put either in dedicated inspection vehicles
or in-service trains. Compared to the online monitoring, using inspection vehicle or in-
service trains may be cheaper as they can be used for different infrastructures without
additional cost. However, they may reduce the capacity of the monitored components,
and they are not capable of providing real-time information as the sensors keep moving
in different locations.

Different sensors have been proposed in recent studies for railway infrastructures con-
dition monitoring that may be utilized for railway crossings such as ultrasonics [27],
lasers [28], high-definition cameras [25, 29], eddy current sensors [30], and accelerome-
ters [23, 31]. Accelerometers have several advantages over the other sensors. They are
tougher and more robust compared to lasers or high-definition cameras. The lens of
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2-4 Vibration-based condition monitoring 11

high-definition camera and lasers have to be cleaned periodically to maintain their mea-
surement accuracy. Moreover, accelerometers are also not affected by other objects near
them. In contrast, other sensors such as high-definition cameras, lasers, and ultrasonics
do not work when they are blocked by other objects. Lastly, accelerometers are cheaper
than the other sensors.

Accelerometers produce vibration data that needs signal processing involving frequency
domain analysis, filtering, and other mathematical operations before it can be utilized to
present meaningful information to the users. A drawback might appear when the signal
to noise ratio of the vibration data is too high, which makes the processing even more
complicated to extract the right features.

2-4 Vibration-based condition monitoring

Using vibration signals in infrastructure monitoring has become a common practice.
Vibration analysis is widely accepted as a tool to monitor operating conditions as it is
considered as a reliable and nondestructive testing method. It also permits continuous
monitoring. In early usage, engineers used the amplitude of vibration to set up various
stages of maintenance [32]. This method is intuitive, and the data gathered in field
surveys show a good agreement with the trend illustrated in Figure 2-3. For example,
the study in [33] showed that switches that generate fewer noise and vibrations (due
to lubrication) have 50% more lifetime. Once faults are identified, the operator should
closely monitor specific features so that the rate of deterioration caused by the faults can
be revealed. In the case of railway crossings, this method is too general since vibrations
on crossings are induced by different kinds of inputs that make characteristics of fault
trends differ substantially.

Explicit and implicit methods are available for vibration-based condition monitoring. In
explicit methods, faults are associated with the dynamics of the system. According to
[34], changes in train loads, sleepers, ballast, and the type of soil can cause signals to
vary. A mass-spring-damper model can be constructed to isolate and analyze the faults.
Then, the vibration signals from the model can assist to identify the features indicating
different types of faults. In implicit methods, features indicating the faults are directly
inspected from the signal, e.g. the studies in [35, 36]. The implicit approach is considered
to be more practical since creating a dynamical model is not always possible.

2-4-1 Features used in implicit methods

Since a vibration is a time-varying signal, it is difficult to find features indicating the
faults without transforming the signal into something else that is easier to analyze. Sev-
eral available methods such as statistical operations, time to frequency domain trans-
formation, signal source separation, feature compression, and other signal processing
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Figure 2-3: Typical trend of temporal vibration signal showing the rate of deterioration
[32].

algorithms can be used to change the time domain signal into simpler representing val-
ues. Among others, two popular methods that are widely used are the wavelet transform
and statistical operations.

Wavelet transform

Similar to the short-time FFT, the Continuous Wavelet Transform (CWT) also converts
a signal from the time domain to its representation in the frequency domain [37, 38, 39].
In the case of the short-time FFT, a sliding window function g() is utilized to sample a
nonperiodic signal s(t) around the time 7 [40]. The short-time FFT Sg(7,w) is expressed
as

St (w, T) = /s(t)g(t — 7)e vt (2-2)

The short-time FFT produces a uniform distribution across all frequency bands. Con-
sequently, inappropriate selection of 7 will cause the results in lower frequencies bands
too narrow or higher frequencies bands too coarse. The CW'T solves this problem as it
is specially designed to capture transient dynamics. The CWT C(b, a) can be expressed
as

Clb,a) = — / o <M>s(t)dt (2-3)

lal a
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Figure 2-4: Results of time-frequency transformations from a 10ms transient response:
(a) short-time FFT and (b) CWT.

where 9(-) is the wavelet function, and both a and b are scaling variables. Using the
Morlet’s wavelet function with a particular radial frequency w,

t2
P(t) = nI exp(iw,t) exp <_5> (2-4)
the CWT as a function of time and frequency domain can be obtained as the following:

a

C(f,t) =Cl,a){st)};  f= t=> (2-5)

we2m’

The results of short-time FFT and CWT applied on the wheel-crossing impact forces
signals are shown in Figure 2-4 (a) and (b) consecutively. Both figures clearly show
that the CWT produces a better resolution, especially in the higher frequency domain.
Wavelet coefficients can be used as features directly, or they can also be processed again
by performing statistical operations on their particular time or frequency domain to
yield a better representation of signals, as shown in [41, 42, 43].

Statistical values from time domain signals

Statistical operations can be performed directly on the time domain signal to reduce
its dimension. The premise behind this method is that a different shape of signals has
different statistical values. Therefore, the statistical values can be used to represent the
signal. The advantage of this method is that it is easy to implement and may work well
if the features indicating the faults are observable from the signal.
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Statistical features were used in several studies. In [31], the maximum amplitude and
the wavelength of the first peak were utilized to determine severity of defects in insulated
rail joints. In other study [44], statistical values such as variance, maximum amplitude,
number of peaks, average amplitude, area under the peaks, etc were utilized to classify
the types of trains.

In the case of crossings, where features indicating the faults appear during short periods
of the time or lie in a higher frequency band with a small magnitude, statistical features
will not work well. This is because of the indicating features are too small compared
to other peaks that dominate the signal. In this case, statistical operations such as
average, maximum, minimum, median, mode, standard deviation, and variance might
not coincide with features that indicate the faults.

On the other hand, the CWT is suited for features which appear on the particular
frequency even with the small magnitude because the CWT expand the signal into its
representation in both the time domain and the frequency domain. In this case, the
features are more noticeable as they are located in the particular position of the time-
frequency plane.

2-4-2 Recently proposed method for monitoring health conditions of railway
crossings using vibration data

In [23], Axle Box Acceleration (ABA) measurements were used to evaluate a crossing
with two types of degradations: uneven deformation between the wing rail and the
crossing nose, and local irregularity in the longitudinal slope of the nose. The wavelet
transform was applied on the acceleration signals to derive features. Several operations
applied on the wavelet coefficients like the power of two to produce the wavelet power
spectrum, and a weighted sum in the frequency domain to produce the scaled-averaged
wavelet power for improving quantification in the certain frequency range.

The results show that at the frequency of 600 Hz, the values of wavelet power spectrum
were high at the distance of the wheel-crossing contact (uneven deformation) and 50 mm
from the crossing nose (local irregularity) after the crossing was degraded. While the
research utilized ABA measurements, it is a challenge of this thesis to detect crossing
defects with trackside acceleration measurements.

With vibration-based condition monitoring, we can monitor different kinds of railway
infrastructures like the railway track, train wheels, Switches and Crossings (S&C), etc.
Moreover, with the current development of hardware and learning algorithms, e.g., the
deep learning, the condition monitoring can be automated. We can design the condition
monitoring system that is not only capable of giving the actual health condition of the
infrastructure, but also predicting when it is going to fail. In this scenario, a particular
type of deep learning architecture called the Convolutional Neural Networks (CNN) is
used to locate the features indicating the defects and find a nonlinear function associating
the features with the degradation model.
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Figure 2-5: A multi-layer perceptron with three hidden layers.

2-5 Introduction to the deep learning algorithms

Deep learning can be described as a multi-layer perceptron with many (usually more than
two) hidden layers [45] as illustrated in Figure 2-5. A multi-layer perceptron consists
of three different layers represented by a column vector belonging to input, hidden, and
output layers. In each hidden layer, a column vector X'~! of the input (or the output
of previous hidden layer) is multiplied by weight matrix W' and added by a bias vector
B'. The product is then fed into an activation function f(-) as described by

Zl(Xl—l) _ WZXZ—I + Bl (2—6)
X' = f(Z'(X'1)) = max (0, 2 (X" 1)) (2-7)

where the [ indicates the position of the layer (i.e. the [ is the current layer, and the
[ — 1 is the previous layer). In the output layer, similar vector operations are performed
with a different activation function f(-) as

exp(Z]l»)

S e(Z] () (2-8)

f(X)

where j denotes each element of the column vector Z!(X'~1). For a classification task,
the class of vector input is decided based on the highest score generated by the activation
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Figure 2-6: Convolutional Neural Networks (CNN)

Convolutional layer (2 x 5) Pooling layer (3 x 3)

function in Equation 2-8. For a regression task, the score of each element of the vector
output Zjl- is used to determine how close the vector input is to each class in the vector
output.

With high-dimensional input data, a fully connected multi-layer perceptron is not suited
for performing both the classification and the regression tasks as the size of the weight
matrix W is quadratic to the dimension of the input data X. For this kind of task, CNN
algorithms are recommended.

2-5-1 CNN architecture

CNN is a deep learning architecture that is suitable for recognizing patterns from high-
dimensional input data such as the wavelet coefficient matrix as shown in Figure 2-4
(b). The CNN algorithm works by deriving features from the input during the train-
ing, and predicts the output class based on the contribution of each feature. Different
CNN algorithms have been deployed for image tagging [2], sound classification [5], and
vibration-based fault predictions [3, 4, 6, 46]. As illustrated in Figure 2-6, a CNN ar-
chitecture consists of convolutional layers, general pooling layers, and a fully connected
multilayer perceptron. The convolutional and the pooling layers produce features, which
are saved in matrices called feature maps and the pooling maps. Both feature and pool-
ing maps act as nonlinear filters magnifying and reducing the effect of specific areas of
the input related to the output. The fully connected multilayer perceptron acts as either
the classifier or the regressor, which processes the vectorized output of the last pooling
layer (not the prediction).

A convolutional layer is a shared weight multi-layer perceptron that produces a feature
map from the input vector with a sliding window mechanism so that the size of the
weight matrix in the convolutional layer is significantly reduced compared to the one
using a fully connected multi-layer perceptron. For example, assuming that the input
contains 7 x 10 elements, using a sliding windows mechanism, a convolutional layer
consisting of 2 x 5 of weights is enough to produce a 6 x 6 feature map as shown in
Figure 2-6. In contrast, a fully connected multi-layer perceptron needs at least 2520
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(7 x 10 x 6 x 6) weights (all nodes must be connected) to produce a 6 x 6 feature map
from an input consisting of 7 x 10 elements (all elements of the input and feature map
must be connected). In order to produce N feature maps, N convolutional layers are
needed. As feature maps act as learning filters, having more convolutional layers mean
extracting more features from the vector input.

A pooling layer is usually used to reduce the size of feature maps by obtaining represent-
ing values based on operations such as max, average, or other operations. In Figure 2-6,
a 6 x 6 feature map is reduced into a 2 x 2 pooling map using a 3 x 3 pooling layer. In this
case, 9 elements of a feature map are represented by 1 element of a pooling map using
max operation. After the pooling operation, the matrix can be flattened as a vector
input for the fully connected multi-layer perceptrons, or it can be fed into convolutional
layers again to increase the depth of the CNN architecture.

The key performance of CNN lies on the configuration of its convolutional and pooling
layers, since both of them determine the number of features. However, in a real-life
application, the complexity of the CNN architecture must be restricted due to the hard-
ware constraints. This trade-off must be settled so that the performance of the CNN is
not below the desired standard while maintaining the algorithm’s level of complexity.

2-5-2 CNN for monitoring the railway infrastructures

CNN algorithms have been used for monitoring the health condition of railway infras-
tructures [47, 29]. In [47], eight separated convolutional networks were used to extract
nonlinear features from the wavelet coefficients produced by the signals from eight strain
gauges. The strain gauges were installed between the sleepers. Then, the final class prob-
abilities (defects and normal) were obtained by connecting all the convolutional layers
into two fully connected layers. The experiment achieved 84% of accuracy.

In another study, a concept of binary features was introduced in [29]. The idea of
this study was to perform multiple classification tasks in a single image by recognizing
the existing objects in the image using CNN for further detection of material damages.
Full deep convolutional networks were utilized to produce binary features consisting of
material and fastener classes. The architecture consisted of three shared convolutional
layers where the output of the third layer was fed to two separated convolutional layers.
One separated convolutional layer was used for the material classification, and another
convolutional layer was used for the fastener classification. With this architecture, the
predictions achieved 95% accuracy.

Other applications include detection of squats based on video images [48], and the de-
tection of missing elements in the catenary system [49].

2-5-3 Performance measures

Several widely used performance measures are available for evaluating the performance
of learning algorithms. For the classification task, four measures can be utilized such
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as overall accuracy J,, recall J;. ;, precision J, ;, and specificity Js ; [50]. The overall
accuracy is expressed as

1 tp; 4 tn;
Jo == ’ 2-9
* C;tpi—ktni—&—fpi—l—fni (2-9)

where C' is the total number of classes, and ¢ denotes the index of the class. Other
measures such as recall, precision, and specificity are evaluated per class ¢ as

tp;
J = T 2-10
= (2-10)
tp;
J. .= i 2-11
T tp g .
tn;
J. .= _ 2-12
= tn +fp; (212)

where tp; indicates the number of correct positive predictions (the member of the class
i is predicted as the member of the class i), tn; indicates the number of correct negative
predictions (the member of the other class is not predicted as the member of the class
i), fp; indicates the number of incorrect positive predictions (the member of the other
class is predicted as the member of the class i), and fn; indicates the number of incorrect
negative predictions (the member of the class i is detected as the member of the other
class). These variables are summarized in Table 2-1.

Table 2-1: Confusion matrix: labels in the row direction show the actual data, and labels
in the column direction show the predicted data

Predicted: | Predicted:
True False
Actual:
True tpz fni
Actual:
False fpi tn;

For the regression task, Mean Squared Error (MSE)

1 & X
MSE,, cjo. = 7 2 (4 — i) (2-13)
=1

is widely used to measure the overall closeness of the result g; with the reference value
y; € [0,1], with L the number of data. Otherwise, if y; ¢ [0, 1],
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N AW
MSEygio =7 2 <y> (2-14)
i=1 ¢

is utilized. In order to evaluate the complexity of this methodology, the computation time
and the learning time are measured. Additionally, the number of trainable parameters
(the number of weights) is also considered.

2-6 Summary

This chapter introduced the background knowledge regarding this thesis project, includ-
ing the monitoring of the health condition of railway crossings and the deep learning.

In the first part of the chapter, railway crossings are discussed. A railway crossing ensures
the safety of the train to move from or to a particular direction of two intersecting routes.
The railway crossing consists of four components: check rails, wing rails, flangeway
opening, and crossing nose. The flangeway opening causes wheels of the passing train to
jump and hit the crossing nose, which causes damages [7] that can develop excessively
[9].

Degradation models have been constructed to find the expected lifetime of the crossing.
These models are either constructed from the maintenance database [1, 10, 11], or the
dynamical model of the wheel-crossing impact [12, 13, 14, 13]. Since the crossing can fail
anytime during the expected lifetime, it is essential to incorporate the actual information
from the field to the models so that the expected lifetime can be predicted with better
accuracy (i.e., closer to the real condition of the crossing).

In order to obtain the real condition of the crossing, the railway operator performs
periodic inspections and various measurements. These measurements include hammer
tests to obtain dynamic properties of the structures, ultrasonics or phase array tests to
look for hidden cracks, and 3D scan to get an accurate profile of the crossing.

In the second part of this chapter, the vibration-based condition monitoring is discussed.
The vibration-based condition monitoring is a common practice to monitor operating
conditions and faults of infrastructures, as it is considered as a reliable and nondestruc-
tive testing method. Two approaches in the vibration-based condition monitoring are
the explicit and the implicit approaches. In the explicit approach, the operating con-
dition of the infrastructure is associated with the dynamics of the system [34]. In the
case of the implicit approach, features indicating the faults are directly inspected from
the signal [35, 36]. The implicit approach is more practical since creating a dynamical
model of the infrastructure being monitored is not always possible.

Among many features which are available for the implicit approach, two of them are
widely used: Continuous Wavelet Transform, and statistical operations. The wavelet
transform converts the vibration signal into its representation in the time-frequency
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domain, and the statistical operations extract the representing values by performing
statistical operations directly from the signal. In the case of monitoring railway crossings,
features obtained from the CWT is more suitable as values that indicate the defects are
located in a particular position of the time-frequency plane.

In the third part of this chapter the Convolutional Neural Networks (CNN), which is
suitable for recognizing patterns from high-dimensional input data such as the wavelet
coefficient matrix, is introduced. A CNN architecture consists of convolutional layers,
general pooling layers, and a fully connected multilayer perceptron. The convolutional
and the pooling layers extract features from the input, and the fully connected multilayer
perceptron perform either the classification task or the regression task.

Different CNN algorithms have been deployed for image tagging [2], sound classification
[5], and vibration-based fault predictions [3, 4, 6, 46]. In the case of monitoring railway
infrastructures, CNN algorithms have been used for classifying railway track materials
for the further detection of defects [29], detecting the existence of squats on the track
[47, 48], and the detection of missing elements in the catenary system [49].

Arif Nurhidayat Master of Science Thesis



Chapter 3

Methodology for Monitoring Railway
Crossings Using Deep Learning

In this chapter, the focus is on the condition monitoring to predict defects in the cross-
ing considering the early evolution of the degradation. The methodology estimates the
degradation level of crossings based on the inputs from trackside acceleration signals.
The methodology is divided as follows. Section 3-2, the processing for detecting and
extracting transient responses. Section 3-3, relying on deep Convolutional Neural Net-
works (CNN) algorithms, features extraction is conducted. Section 3-4, the estimation
of the degradation level of the crossing is described.

3-1 Problem description

The proposed methodology adopts a similar principle to the hammer excitation test.
Several accelerometers are installed in the crossing, and the wheel-crossing impact forces
are used as the excitation signal (instead of a hammer). In order to understand the
theoretical difference with respect to the hammer excitation test, consider the Frequency
Response Function (FRF)

H(s) = (3-1)

which represents dynamical properties of the crossing. The Y (s) is the Fourier transform
of the acceleration signal due to the Fourier transform of the input force U(s). In the
case of the hammer test, U(s) and Y (s) are measured. In contrast, the Fourier transform
of the input force U(s) is not measured in the trackside measurement. As a consequence,
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Figure 3-1: Effects of different trains passing the crossing on transient responses: (a)
higher magnitude response induced by a heavy train; (b) lower magnitude response induced
by a light train; (c) smooth response induced by a normal rounded wheel; (d) distorted
(higher frequency) response induced by a deteriorated wheel.

the H(s) cannot be obtained. The analysis is then performed only based on the output
Y (s), which is affected by both dynamical properties of the crossing H(s), and the
unknown input U(s).

Wheel-crossing impact forces U (s) are influenced by mass, speed, and moving direction of
the train. A heavy train that moves very fast will apply a higher impact force compared
to a lighter train that moves slower. Trains facing the crossing in different directions also
apply different forces. A train that moves toward the crossing nose from the switch has
a higher impact force compared to a train that moves in the opposite direction [51]. The
influence of wheel impact on the signal is illustrated in Figure 3-1 (a) and (b). In the case
of wheel condition, the deteriorated surface of the wheel can induce higher frequency
responses similar to the case of the surface defects on the crossing [52]. The influence
of the condition of the wheel on the signal is illustrated in Figure 3-1 (c) and (d). Since
different factors cause U(s) to vary, it is challenging to estimate the degradation level of
the crossing only from Y'(s).

The arrangement of accelerometers in this proposed method is illustrated in Figure 3-
2, where each one produces different forms of acceleration signals. The accelerometer
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placed nearest to the location of the highest wheel-crossing impact generates signals with
the highest magnitude, and the one placed furthest to the crossing nose yields signals
with the lowest magnitude. In the case of trains coming from the switch toward the
crossing nose, peaks of the signals are first sensed by Accelerometer a. This condition
is illustrated in Figure 3-3. In the opposite direction, the peaks are first sensed by
Accelerometer c.

In order to study the early stage of degradation level, accelerometers are set to record
the responses in high frequency sampling (100 kHz). As a result, the amount of vibra-
tion signals is very large. One hour of measurement would easily yield into 1.4 GB of
data approximately. However, not the whole signal signal contains useful information.
When the train wheel is not passing over the crossing, there is no source exciting ac-
celerations. Thus, the recorded signals contain meaningless information. In order to
keep the memory usage low without losing information, only parts of signals containing
important information are kept. In the case of signals illustrated in Figure 3-3, only
transient responses induced by wheels impact (highlighted by orange boxes) are kept.
For this purpose, preprocessing is conducted to the whole measured signals.

Transient responses Y (s) are affected by both varying inputs U(s) and the evolution of
defects that changes the dynamical properties of the crossing H(s), as discussed before.
Therefore, important features should be extracted from the transient responses. Two
types of features are considered in this methodology. First, as the trend is affected by
varying inputs, features such as the type of the train are utilized for compensating the
deviation. These features are referred to as input representative features. Second,
frequency and time domain features from the output signals Y (s) are used to capture
the degradation level of the crossing and they are referred to as defect representative
features.

Using input representative features and defect representative features, the degradation
level of the crossing is estimated. Both kinds of features are fed to nonlinear regressors,
producing the estimated degradation level of the crossing. This estimated defect level
can provide information so that maintenance engineers have more time to schedule the
maintenance activities.

Based on the described problem, the proposed methodology consists of three steps:
extract the transient responses and eliminate unnecessary signal (preprocessing, Section
3-2), obtain input and defect representative features (feature extraction, Section 3-3),
and build the degradation model and estimate the degradation level of the crossing
(Section 3-4).

3-2 Preprocessing

As discussed in Section 3-1, only parts of the signal, when a train passes over the
crossing, contain information. The signal is also recorded at a high sampling frequency,
which makes the size of the file on the disk considerable. Because of this condition,
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Figure 3-2: The location of accelerometers installed at the crossing.
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Figure 3-3: The vibration signal produced by accelerometers located in points a, b, and c.
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detecting peaks induced by the wheel-crossing impact in the full acceleration signal will
be inefficient and time-consuming.

Moreover, different parts of the signal representing bogies that pass over the crossing
may contain peaks with significantly different magnitudes compared to the peaks from
other bogies. This condition makes the wheel-crossing impact detection difficult when
it is done at once over the whole signal. As the signal of a single train bogie contains
peaks with similar magnitudes, the process of detecting peaks per bogie is more robust
compared to detecting wheel-crossing impacts in a full acceleration signal.

In order to make the preprocessing efficient, not time-consuming, and more robust,
two methods were sequentially considered: signal segmentation (Section 3-2-1), and
transient responses extraction (Section 3-2-2). The purpose of the signal segmentation
is to identify parts of the signal that represent bogies and eliminate parts of the signal
that contains no information. The purpose of the transient responses extraction is to
identify the peaks induced by the wheel-crossing impact and to extract the transient
responses.

3-2-1 Signal segmentation

The segmentation is performed in two steps: dividing the acceleration signal coarsely,
and error correction to eliminate undesired parts of the signal that is detected as bogies.

In the first step, the train signal is fed into an averaging filter to make a clear distinction
between parts of the signal that need to be kept or eliminated [53]. The averaging filter
is defined as

lw—1

1 2 .

saglti) = 0 sl +1)] (3-2)
_lw—l

2

where savg(tr) is the average-filtered signal computed from the source signal s(t), and
L is the length of the sliding window (an odd natural number). For a simplification of
the indexing in the further process, tj refers to the index of the signal matrix (not the
time stamp in second). The average-filtered signal save(tx) is used to distinguish which
parts of the signal should be kept or eliminated by sm1(tx) according to the magnitude
threshold m with the following rule:

0, if max(0, [savg(tr — lw2—1)’ ey SAve(tl + lw%)]) <m

1

. ¢ - (3-3)
1, if max(0, [save(tr — l“’2 )5 oo Save (t + Z”Tl)]) >m

Sm1 (tk) = {

Indices tj of rising and dropping edges in syui1(tx) are saved in arrays indicating the
beginning (Tiart) and the end (Tinq) of the signal that need to be kept as shown in
Figure 3-4. Other parts of the signal outside those indices are eliminated. In this step,
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Figure 3-4: The blue signal represents the full acceleration signal. Areas under the orange
lines indicate segments marked by s,,,1(t;) using the average filter (3-2) and the threshold
marker (3-3). Rising edges (green arrows upward) indicate Tita,t, and dropping edges (red
arrows downward) indicate Teng. Magnitudes of peaks in first two segments are significantly
larger than from last three segments.

the source signal s(tj) is either the full acceleration signal with its original frequency
sampling or a decimated signal, depending on the frequency sampling. In the case of
very high frequency sampling (e.g. 100kHz), the signal can be decimated first to make
an efficient use of the computation time without losing the important features of this
part of the preprocessing.

In the second step, errors produced by the first partitioning of the signal are corrected.
Short segments representing error segmentation are eliminated, and longer segments
representing too coarse segmentation are repartitioned. The sum of wavelet coefficients
in the time domain is also utilized to eliminate noises on the segments, as the wavelet
denoising can remove a considerable amount of noises while preserving the sharp features
in the signal [54]. The sum of wavelet coefficients in the frequency domain C(t;) that
is defined as

ft
Crlte) = 3 (o) (3-4)
f=ro

Where fj is the lower bound frequency of the wavelet transform, f; is the upper bound
frequency of the wavelet transform, and C'(f, tx) is the result of CWT on s(t), will show
more significant magnitudes in the area of transient responses. The time domain ¢ in
the result of Continuous Wavelet Transform (CWT) is adapted to the matrix index tj
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Figure 3-5: The example of the failed segmentation performed by s, (¢;) (a), where the
blue signal is the full acceleration signal, and parts of the signal under the orange line are
divided segments. After the segmentation is corrected using sma(tx), the full acceleration
signal was properly segmented (b).

for a simplification of the further processing. The error correction is perform with the
following rule:

0, if Tona — Tstart < p

. (3-5)
1, if C¢(tr) > q,Vtr € [Tstart, Tend]

sz(tk) = {

where p and ¢ are predefined constants. Indices ¢ of rising and dropping edges in sy (tx)
are saved in arrays indicating the beginning (Tyart) and the end (Tinq) of the signal that
need to be kept. Results of both steps of the segmentation are shown in Figures 3-5 (a)
and (b).

3-2-2 Transient responses extraction

After obtaining the segments of signals with the effect of passing bogies, the next steps
are to detect the locations of the correct peaks and extract the transient responses
located around them. Not all peaks in the segments represent wheel impacts. Some of
them are caused by the welds before and after the crossing [23]. The following properties
are considered to identify which peaks should be extracted from the segments:

e When middle coaches are passing over the crossing, two near bogies can be detected
as a segment with four peaks representing wheels. A single bogie is always detected
as a segment with two peaks representing wheels.

e The first and the last segment of the signal can correspond to one bogie (electrical
module unit), or three closely-located bogies (two bogies from the locomotive and
one bogie from a passenger coach).
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e Impulses induced by wheel-crossing impacts are higher than the impulses induced
by other events such as welds.

e Impulses induced by the wheel impacts decay slower than the other peaks.

Considering these properties of the signal, wheel impacts can be detected as several dom-
inant peaks in the segment. The number of the dominant peak is determined according
to the position of the segment in the signal.

In the opening segment and the closing segment, the number of dominant peaks can
be two or six. In the case of more than two closely-located bogies, the length of the
segment will be larger than the average length of middle segments. Thus, six wheel
impacts, which come from two bogies of a locomotive and a bogie of a passenger coach,
must be detected. Otherwise, two wheel impacts must be detected.

In the middle segment, the number of dominant peaks can be two or four. Light trains
can have two dominant peaks as there is only one bogie located between two coaches.
However, most trains have two closely-located bogies in the middle segment of the signal.
In this case, four dominant peaks must be detected. The number of dominant peaks that
must be detected can be decided based on the difference of the length of the opening
segment and the average length of middle segments. As the opening segment of light
trains always contains one bogie, the length of the opening segment should not have
much difference compared to the average length of middle segments. In this case, two
dominant peaks must be detected. Otherwise, four dominant peaks must be detected.

Before detecting peaks, the segment is smoothened using the wavelet denoising [54],
which is defined as C'y in (3-4), to eliminate noises in the segment. This algorithm is ex-
pressed in Algorithm 1, which calls Algorithm 2 by function DETECT _N__PEAKS(-)
to find indices of a particular number of peaks in a particular segment.

For the detection of peaks in a segment in Algorithm 2, positions of the peaks are
obtained one by one starting from the highest magnitude. Once the first location of the
peak has been retrieved, parts of the signal related to the detected peak are flattened
to their minimum level. This is done by finding two indices with the local minimum
located before and after the peak, and change the magnitude of the signal between the
indices into its minimum value. The process is then iterated. This way, the indices are
sorted according to their magnitudes. Indices produced by Algorithm 1 and Algorithm 2
(indices) should be upsampled to generate predicted indices with the original frequency
sampling, in the case of the signal segmented was downsampled. The real indices of wheel
impacts are then found by looking at the minimum magnitudes near the predicted indices
(the wheel impacts apply downward forces; thus, detected peaks are always negative).
The result of detected peaks are shown in Figure 3-6.
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Algorithm 1 Find the correct positions of transient responses in the segment.

1: S : array of the acceleration signal (or downsampled acceleration signal) over the
whole measurement period

2: Tsare © array of the start index of the segment

3: Teng @ array of the end index of the segment

4: Tpng : predefined real numbers

5: procedure OBTAININDICES(S, Tstart, Tend)

6: n_seg < LENGTH(Tstqrt)

7 avg__segment__len < average(Tenq[2 : n_seg — 1] — Tgart[2 : m_seg — 1])
8: fori=[1,...,n_seg] do

9: segment[i] <= C¢(S[Tstart]t] : Tenali])

10: segment_len[i] < Tenali] — Tstart|d]

11: if i =0 then

12: if segment_lenli] < avg__segment_len then

13: indices[i]| + DETECT _N__PEAKS(segmentli],2)
14: else

15: indices[i] < DETECT N _PEAKS(segment]i],6)
16: end if

17: else if © < n_ seg then

18: if (|segment len[0] — avg segment len|/avg segment len) <

const__length then

19: indices[i] <+ DETECT _N__PEAKS(segment]i],2)
20: else
21: indices[i] < DETECT N__PEAKS(segment]i],4)
22: end if
23: else
24: if segment_lenli] < avg__segment_len then
25: indices[i] < DETECT N_PEAKS(segment]i],2)
26: else
27: indices[i] <~ DETECT N_PEAKS(segment]i],6)
28: end if
29: end if
30: end for
31: Return indices

32: end procedure
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Algorithm 2 Detect dominant peaks in the segments.

1: s: one segment of the acceleration signal

2: n : the number of peaks that need to be found
3: procedure DETECT__N_ PEAKS(s,n)

4 fori=11,...,n| do

5 t, < argmax(s)

6 indices[i] < ty

7: break low <+ False

8 break__up < False

9 p < any small natural number

10: q < any small natural number

11: loop

12: if break low = False then

13: low_indexr = argmin(s[ty — p : tg])
14: end if

15: if break__up = False then

16: up__indexr = argmin(s[tg : tg + q])
17: end if

18: if low_index > t; — p then

19: break low = True

20: else

21: pp+1

22: end if

23: if up_index < t; + q then

24: break__up = True

25: else

26: qg+—qg—+1

27: end if

28: if (break low = True) and (break up = True) then
29: Break loop

30: end if

31: end loop

32: sty — low__index : t +up_index] = min(s[ty — low_index : ty +up_index])
33: end for

34: Return indices

35: end procedure
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Figure 3-6: The blue signal indicates the full acceleration signal and the orange signal
indicates the detected wheel impacts. Elements of the blue signal with same indices as the
indices of detected wheel impacts are copied to the null matrix to create the plot of the
orange signal.

3-3 Feature extraction

Two kinds of features should be extracted from the transient responses as illustrated
in Figure 3-7: input representative features (Section 3-3-1) and defect representative
features (Section 3-3-2). As discussed in Section 3-1, both features affect the transient
responses. Thus, it is difficult to separate one feature from another. In order to solve
this problem, learning algorithms are utilized.

3-3-1 Input representative features

Input representative features are binary values in a column vector representing the char-
acteristics of the input [29]. Since the operation in a multi-layer perceptron can be
described as a multiplication between an input vector and the weight matrix, a binary
input vector works as an activator of a particular mode of weight. For example, a record
that has input representative features in a column vector X*~1 = [0 0 0 1]7 will activate
the last column vector of weight matrix W' in

X! = max(0, W'X""! + BY) (3-6)
where [ indicates the current layer, and [ — 1 indicates the previous layer. In the case
of railway crossings, the type of the train can be utilized as an input representative

feature. The premise is that trains of the same type have similar dynamical responses.
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time and frequency domain)

Figure 3-7: Features extracted from the transient responses: the input representative
features, and the defect representative features.

Moreover, they also use the same kind of bogies. It is very relevant to assume that the
wheel characteristics from trains of the same type are also similar.

In this thesis, types of trains were obtained using CNN, Support Vector Machine (SVM),
and K-Nearest Neighbors (K-NN). SVM and K-NN were chosen because they have
been widely used as a benchmarking standard for similar tasks, e.g. in [44, 55, 56].
Various types of input extracted from transient responses were chosen depending on the
characteristics of the classifier. For CNN classifiers, wavelet coefficients were utilized.
For SVM and K-NN, statistical values derived from the transient responses and wavelet
time-frequency entropy extracted from the wavelet coefficients were used. Statistical
values utilized as the input are max, average, variance, standard deviation, median,
the sum of area under the curve, distances between peaks of accelerometers, and the
time constant of the signal. Statistical features were also used in [44], resulting an
overall accuracy of 90.7% using SVM classifier. In the case of wavelet time entropy, the
dimension of wavelet coefficients is reduced into a vector in time domain by means of
sum and averaging as

‘ 1 lsi ft
w(i) =+ Y Y C(ft) (3-7)
5 t=1+ls(i—1) f=fo
_ Nir }
ls = - (3-8)

for all wy € Wy, where Wy € R™ denotes the wavelet time entropy, i € [1,...,m] is the
index of Wy, ng, is the length of transient responses, fo is the lower bound frequency of

Arif Nurhidayat Master of Science Thesis



3-3 Feature extraction

33

the wavelet transform, f; is the upper bound frequency of the wavelet transform. Math-
ematically speaking, the wavelet time entropy is the reduction of the wavelet coefficients,
which is performed by summing the matrix in the frequency domain f. The result of
the summation is then divided into m number of regions. In each region, with the size
ls, a representative value is obtain using an average.

Two different CNN architectures are proposed in this thesis as illustrated in Figure 3-8
and Figure 3-9. The architecture in Figure 3-8 uses different convolutional networks for
each accelerometer and the architecture in Figure 3-9 uses one convolutional network for
all accelerometers. Both configurations have different level of flexibility. When one of
the accelerometer contains noises, eparated convolutional networks are preferred. Both
architectures, separated and shared convolutional networks can be combined to arrange
the flexibility of the convolutional networks. SVM and K-NN are explained in Appendix
A-1 and A-2 respectively.

3-3-2 Defect representative features

Defect representative features can be obtained using the class activation mapping [57, 58|
applied on the wavelet coefficients. This method could indicate the area of wavelet
coefficients that significantly contributed to the output of the CNN algorithm, which is
time and frequency of the vibration signal indicating degradation of the crossing. Class
activation mapping works with a particular architecture shown in Figure 3-10. Suppose
the output of a CNN architecture is defined as follows:

y=w"Xx (3-9)

where y denotes the output value, W € RP?" denote the weight vector, and X € RPI"
represents the input vector. Since X is obtained by the vectorization of last feature
maps:

X = vec(4) (3-10)
where A € RPX?*" and a matrix W € RPX9%" can also be constructed by

A~

W = vec ' (W) (3-11)

where function vec™!(.) converts a vector of RPY" into a matrix RP*9*". Another matrix
W € R¥*¥X7 is then expanded from the W € RP*9%" with the following rule:
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Figure 3-8: A CNN architecture with separated convolutional networks per input signal.
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Figure 3-9: A CNN architecture with shared convolutional networks per input signal.
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Wmnk = 'UA)ijk (3—12)

i = [ (;”p)w (3-13)
i~ e 1)

forallme[l,...,s],ne[l,...,t],i€[l,....p,,F€[1,...,q], kK €[L,....7], Wpnk € W,
and ;3 € w. The localization map Lcawm is defined as:

T

LCAM = Z WinnkCmnk, (3'15)
k=1

for all ¢pie € C, and Wy, € W, where C € RS*¥X" is the last feature maps. Math-
ematically speaking, the Lcan is the weighted summation of last feature maps. Each
weight in the fully connected layer receives the input from last pooling maps, where each
element of pooling maps represents a particular area of last feature maps. These weights,
which are back propagated to last feature maps, can be used to amplify areas of fea-
ture maps that contribute positively to the output and suppressed areas that contribute
negatively to the output. By setting the proper areas of interests, the effect of features
in the defined areas can be seen from the visualization of the Lcay. The problem can
arise when the resolution of the areas is set too high, which makes the size of the weights
grow excessively. This condition can lead to inaccurate visualization of the Loan due to
the weights are not trained well, especially when the number of training sample is not
sufficient.

In this thesis, the wavelet coefficients were divided into three different areas of interests,
as illustrated in Figure 3-11. The purpose of this arrangement is to find out in which
domain of the wavelet coefficient matrix contains features related to the defects. If
the features are located in a particular time domain, the arrangement that is shown in
Figure 3-11 (a) will give the area that is highlighted constantly when defects exist. If the
features are located in a particular frequency domain, the arrangement that is shown in
Figure 3-11 (c) will give the area that is highlighted constantly when defects exist. If
defects can be inspected from both time and frequency domain, the arrangement that is
shown in Figure 3-11 (b) will give the area that is highlighted constantly when defects
exist.

In order to produce an accurate Lcan visualization, the trend closely related to the
defects must be utilized as a baseline value for the regression test. As discussed in [13],
the number of passing axles are closely related to the defects as in the simulation they
could be used to predict the initiation of the surface defects on the crossing. Thus,
wavelet coefficients can also be utilized in regression tests to estimate the number of
passing axles, in order to produce the visualization map. Moreover, different length of
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Figure 3-10: The CNN used for the class activation mapping.
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(a) (b) (c)

Figure 3-11: The wavelet coefficient matrices are divided into three areas of interests
(frequency x time): (a) 1 x 8 focusing on the time domain, (b) 3 x 4 focusing on both the
frequency and time domain, and (c) 6 x 1 focusing on the frequency domain. Each area of
interests is indicated by two different colors (the dark blue and the light blue).

transient responses as shown in Figure 3-12 are also considered as the longer responses
contain more information such as time constants of the transient responses.

3-4 Estimating health conditions of the crossing

The last step is to estimate the health condition of the crossing based on the input
representative features and defect representative features. This step is illustrated in
Figures 3-13. Four CNN architectures are considered to perform this task as shown in
Figure 3-14 to 3-17. In the model shown in Figure 3-14, the architecture consists of
five convolutional networks arranged in series. Each network reduces the dimension of
the input (mainly in the time domain) using a shared weight convolutional layer shown
by orange boxes in Figure 3-14. Unlike the max or average-pooling layer, a shared
weight convolutional layer allows more flexible mathematical operation for representing
the data, other than taking the maximum or average value. This model is similar to
VGG Net without pooling layers in [59, 49], and referred to ConvNet in this thesis. In
other models shown in Figure 3-16 to 3-17, the architectures consist of more complicated
layers compared to ConvNet. Each layer contains convolutional networks and pooling
layers processing the same data in parallel to add different pieces of information. At the
end of each layer, the output of convolutional and pooling networks are concatenated
shown by violet boxes in Figure 3-16 to 3-17. This kind of architecture is referred to
Inception, and has been used in [60] to increase the accuracy.

3-5 Summary

This chapter has discussed the methodology proposed in this thesis: the problem de-
scription that needs to be tackled, and steps of the methodology designed for solving
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Figure 3-12: Different lengths of transient responses used for the activation mappings: (a)

0.625 ms (only the peak) and (b) 10ms (a full transient response).
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Figure 3-13: The input representative features and defect representative features are fed
to the nonlinear regressor to estimate the defects level in the crossing.
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Figure 3-16: A CNN architecture with inception networks consisting of convolutional and
max-pooling layers arranged in parallel (Inception Conv + Max).
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Figure 3-17: A CNN architecture with inception networks consisting of convolutional,

average-pooling, and max-pooling layers arranged in parallel (Inception Conv + Avg +
Max).
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the problem.

The proposed methodology uses responses of the wheel-crossing impact, which is recorded
by several accelerometers installed on the crossing. These responses are affected by both
defects on the crossing and the wheel-crossing impact. As wheel-crossing impacts are
induced by various trains from the different type, the responses recorded by accelerome-
ters become. Because of this condition, estimating the degradation level of the crossing
is difficult to perform analytically.

Different problems also arise from the acceleration data induced by the wheel-crossing
impact. In order to capture transient responses, a high frequency sampling must be
used by the accelerometers. As a consequence, the size of the data is considerable.
Additionally, only particular parts of the signal contain information. Thus, processing
the full acceleration signal is inefficient and computationally expensive.

Three steps of the methodology are designed for solving the problem regarding the
variation of the input caused by different types of trains, and the size of the data caused
by a high frequency sampling: preprocessing, feature extraction, and estimation of the
health condition of the crossing.

In the preprocessing, parts of the signal containing wheel-crossing impacts are extracted
from the full acceleration signal. In order to make the process more efficient, the accel-
eration signal is segmented into several parts. This segmentation is performed according
to the threshold values that are applied to the output of the averaging filter [53] and the
output of the wavelet denoising filter [54]. After the acceleration signal is segmented,
indices of wheel-crossing impacts are detected, so that the transient responses can be
extracted.

Transient responses that are extracted from the acceleration data are utilized to build
a degradation model of the crossing. In order to build the model, wavelet coefficients
are computed from the responses using CWT. These wavelet coefficients are fed to
a particular type of CNN regressor to construct the localization map using the class
activation mapping [57, 58]. The localization map is the visualization of the weighted
sum of last feature maps. As the weights are back propagated from the fully connected
layer, the localization map shows the area of the input (i.e. wavelet coefficients) that has
the most contribution to the output. When a trend related to defects, such as the number
of passing axles [13], are utilized in the regression test to build the localization map, the
location of features that indicate the defects can be approximated. In this thesis, these
features are called the defect representative features. Using the defect representative
features, the degradation level of the crossing can be built.

The degradation model built from defect representative features contains high deviations.
Therefore, compensating features are needed to suppress these deviations. These features
are binary features [29], and they are referred to input representative features. As
deviations on the degradation model are caused by various inputs, which are related
to trains of the different type that induce the responses, types of trains that pass the
crossing are used as input representative features. In order to extract the type of the
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train from the wavelet coefficient, different kinds of CNN classifiers are utilized. The
CNN classifier with separated convolutional networks per sensor, and the CNN classifier
with shared convolutional networks for all sensors [29, 47]. CNN classifiers are chosen
because they are good for performing classification tasks from high dimensional input
data such as wavelet coefficients. For comparison, machine learning classifiers such as
SVM and K-NN are also used to extract the features. These machine learning classifiers
have been used as benchmarks for similar classification tasks [44, 55, 56].

With input representative features and defects representative features, several degra-
dation models with fewer deviations are built using CNN regressors with various con-
figurations. Two main configurations can be applied to the CNN regressors: the fully
connected convolutional networks [59, 49], and the inception networks [60]. The in-
ception networks are extended into three configurations: inception networks with the
average-pooling layers, inception networks with max-pooling layers, and inception net-
works with both average-pooling layers and max-pooling layers.
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Performance Evaluation

As discussed in Chapter 3, the proposed methodology consists of three steps: preprocess-
ing for extracting transient responses from the signals, feature extraction for obtaining
indicating and compensating features from the transient responses, and estimating the
degradation level of the crossing. The proposed methodology was implemented in Python
Keras [61], and evaluated using a case study in Amsterdam.

4-1 The case study of a railway crossing in Amsterdam

The Section of Railway Engineering from TU Delft performed measurements of a crossing
located behind ProRail West office, near Nieuwe Westerdokstraat, Amsterdam. The
location is shown in Figure 4-1. Acceleration signals induced by the passing trains were
recorded. The measurements were done from February 2015 to April 2016. Small surface
defects were found during an inspection in August 2015, and the crossing was repaired
in November 2015.

A prototype consisting of an STM-32 module and four 603C00 IMI accelerometers was
developed as a data logger. The module sampled the signals produced by the accelerom-
eters at 102400 Hz, allowing the frequency analysis to perform up to 10240 Hz, five
times higher than the Nyquist rate required to avoid the aliasing error. The prototype
captured the signals produced by four accelerometers, then saved the data into a Matlab
compatible file per one passing train. The information flow is illustrated in Figure 4-2.

4-1-1 Sensor arrangement

The accelerometers were installed in different locations of the crossing as illustrated in
Figure 4-3 a, and produced different signals as shown in Figure 4-3 b. The Accelerometer
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Figure 4-1: The location of case study performed by the Section of Railway Engineering
from TU Delft (left) and the measured crossing (right).

File n: Train n

* Accelerometer 1
* Accelerometer 2
* Accelerometer 3
¢ Accelerometer 4

File 1: Train 1
i : File 1: Train 2

Figure 4-2: A prototype consists of four 603C00 IMI accelerometers and an STM-32
module. All measurement data of a passing train was saved by the prototype.
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Figure 4-3: Arrangement of accelerometers used in the case study: (a) locations and (b)
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1 produced signals with the highest magnitude as it was located near the crossing nose,
where the strongest wheel-crossing impact happens, followed by Accelerometer 2 and
Accelerometer 4. Accelerometer 3, which was used to compare dynamic responses at
different locations, produced the smallest magnitude of signals as it was further away
from the location of wheel-crossing impact compared to the others.

4-1-2 Dataset

This case study recorded responses induced by four different types of trains: TRAXX,
ICRm, SGMm, SLT, Thalys, and VIRM. In this thesis, only four of them are used:
TRAXX, ICRm, SGMm, and VIRM. Thalys trains and SLT trains are not used be-
cause the number of responses induced by both trains are insufficient for training and
evaluation.

The TRAXX is a type of locomotives. A TRAXX locomotive has length, width, and
height of 18.90 m, 2.97 m, and 4.98 m respectively. The locomotive has the weight of
is 84 mt and the speed of up to 140 km/h on the normal track, and 160 km/h on the
high-speed track.

The ICRM is a type of passenger coaches. This type of coach has the length, width, and
height are 26.4 m, 2.82 m, and 3.93 m. An ICRM coach also has the mass of 41 mt. In
the dataset, ICRM coaches are always pulled by a TRAXX locomotive. Both TRAXX
and ICRm, together with their induced vibrations, are illustrated in Figure 4-4.

The SGMm is a type of rapid transit trains. This type of trains have two different series:
SGM-II and SGM-IIT [62]. The length, width, and height of an SGM-II train are 52.2
m, 2.8 m, and 3.89 m respectively. A train with this series has the mass of 104.2 mt
and can achieve 120 km/h of speed. An SGM-III train can reach the same speed as an
SGM-II train. However, the SGM-III train has a longer body (78.7 m), and a greater
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total mass (144 mt). There is no information regarding the series of SGMm trains in
the dataset. Therefore, both of train series is assumed as one type. The first two cars
of SGM-III train, and their induced vibrations, are illustrated in Figure 4-5.

The VIRM is a type of double-decker intercity trains. The VIRM train has two forma-
tions of the cars: 4 and 6. A four-cars VIRM has 235.7 mt of weight and 106.8 m of length
[63]. A six-cars VIRM has 349 mt of weight, and 162.1 m of length. Although in service
the VIRM trains run at 140 km/h, they are designed to achieve 200 km/h of speed. The
first two cars of a four-cars VIRM, and their induced vibration, are illustrated in Figure
4-6.

In addition to types of trains and their induced responses, other data such as number of
passing axles per month, total tonnage per month, and total number of passing trains
per month were also available.

4-2 Experiments

Considering the dataset from the case study of a crossing explained in Section 4-1,
following experiments were performed:

1. Extracting input representative features (types of trains classification).

(a) Types of trains classification using fully shared convolutional networks and
transient responses from different accelerometers:

i. Classification with transient responses from Accelerometer 1 (accelerom-
eter with the highest magnitude).

ii. Classification with transient responses from Accelerometer 1, 2, and 4
(all accelerometers located bellow the crossing nose).

(b) Types of trains classification using various Convolutional Neural Networks
(CNN) configurations:
i. Classification with separated convolutional networks.

ii. Classification with two parallel convolutional networks, where the first
convolutional network was used for transient responses from Accelerome-
ter 1, and the other convolutional network was shared between transient
responses from Accelerometer 2 and 4.

(c) Types of trains classification with other states of the art classifiers (Support
Vector Machine (SVM) and K-Nearest Neighbors (K-NN)):

i. Using statistical values derived from transient responses as the input.

ii. Using the wavelet time-frequency entropy extracted from the wavelet co-
efficients as the input.

2. Extracting defect representative features (localization maps).
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S

Figure 4-4: The vibration signal relates to the vehicle structure of a TRAXX locomotive
and an ICRm coach

Figure 4-5: The vibration signal relates to the vehicle structure of an SGMm train (SGM-

1.

Figure 4-6: The vibration signal relates to the vehicle structure of a four-cars VIRM train.
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(a) Regression test based on the number of passing axles using different length
of transient responses:
i. Transient responses with the period of 0.625 ms (only the peak).
ii. Transient responses with the period of 10 ms (full transient response).
(b) Localization maps generation using transient responses with the best per-
forming period and various areas of interest.
i. The size of last average-pooling layer was 1 x 8, focusing on the time
domain.

ii. The size of last average-pooling layer was 3 x 4, focusing on both time
and frequency domain.

iii. The size of last average-pooling layer was 6 x 1, focusing on the frequency
domain.

3. Estimating degradation level of the crossing.

(a) Regression test with and without compensating features:
i. Regression test with defect representative features (without input repre-
sentative features) and fully convolutional networks (ConvNet).
ii. Regression test with all features (input and defects representative fea-
tures) and fully convolutional networks (ConvNet).
(b) Regression test with different CNN architectures:
i. Regression test with all features and inception networks consisting of
convolutional and average-pooling layers arranged in parallel.

ii. Regression test with all features and inception networks consisting of
convolutional and max-pooling layers arranged in parallel.

iii. Regression test with all features and inception networks consisting of
convolutional, average-pooling layers, and max-pooling layers arranged
in parallel.

(c) Regression test with different numbers of convolutional depths and filters:

i. Regression test with all features and the best performing architecture
where the depth of convolutional networks vary.

ii. Regression test with all features and the best performing architecture
where the number of convolutional filters vary.

All experiments were carried out using a personal computer with the specification as
follows:

e Processor: Intel Core i7-4710HQ CPU @ 2.5 GHz (8 CPU)
e Memory: 16 GB DDR3 PC-12800 (800 MHz)
e Graphics: NVIDIA Geforce GTX 860M (4 GB)
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4-3-1 Input representative features

The input representative features were extracted using CNN and other states of the art
classifiers such as SVM and K-NN so that their performances could be compared.

Types of trains classification using fully shared convolutional networks and transient
responses from different accelerometers

Two fully shared CNN classifiers were utilized for classifying types of train. The one fed
with wavelet coefficients calculated from signals produced by Accelerometer 1 (FSh1-
CNN), and the other one fed with wavelet coefficients calculated from signals produced
by Accelerometer 1, 2, and 4 (FSh2-CNN). As seen from the confusion matrices pre-
sented in Figure 4-8 (a) and (b), the overall accuracy achieved by FSh1-CNN was 62.09%,
and the one achieved by FSh2-CNN was 74.16%. FSh2-CNN also outperformed FShi-
CNN in all performance indices as shown in Figure 4-9. FSh1-CNN produced prediction
results with lower accuracy because the transient responses were also affected by dynam-
ical changes of the crossing over time. The indication can be seen from Figure 4-7 (a) to
(c), which shows that the majority of incorrect predictions were contributed by wavelet
coefficients above 1500 Hz. Transient responses from the higher frequency domain are
prone to the changes due to the existence of defects [47]; this will be discussed in Section
4-3-2. In the case of FSh2-CNN, the classifier could achieve a higher accuracy because
it utilized more information gathered by Accelerometer 2 and 4, which were placed fur-
ther from the location of the wheel-crossing impact compared to Accelerometer 1. Since
Accelerometer 2 and 4 produced responses with lower magnitude and frequency com-
pared to Accelerometer 1, they were less affected by changes of responses in the higher
frequency domain.

Types of trains classification using various CNN configurations

In this experiment, different CNN configurations were utilized: fully separated convo-
lutional networks (FS-CNN) and two parallel (semi-shared) convolutional networks
(2S-CNN) where the first convolutional network was used by transient responses from
Accelerometer 1, and the other convolutional network was used by transient responses
from Accelerometer 2 and 4. Details of these architectures are presented in Appendix B.
Confusion matrices of these experiments are shown in Figure 4-8 (b) and (c). Overall,
25-CNN achieved the highest accuracy (93.40%) among other classifiers fed with wavelet
coefficients calculated from transient responses produced by Accelerometer 1, 2, and 4,
followed by FS-CNN (81.78%), and FSh2-CNN (74.16%). From the performance mea-
sures shown in Figure 4-9, TRAXX had the highest score of accuracy and specificity,
which means that this class mostly contributed to the accuracy of predictions. Moreover,
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least numbers of false alarm were triggered by TRAXX compared to the other trains.
VIRM was the type of trains that is most recognizable by the classifiers, as shown by
high numbers of precision in many experiments, followed by ICRM and TRAXX. SGMm
had the lowest values of recall and precision because according to most classifiers this
type of trains is similar to ICRm as shown in confusion matrices presented in Figure 4-8.

Types of trains classification with other states of the art classifiers

Two kinds of inputs were fed into classifiers to perform types of trains classification:
statistical values calculated from transient responses and the wavelet entropy calculated
from wavelet coefficients. Confusion matrices obtained from classifications performed
by linear SVM, quadratic SVM, and K-NN were presented in Figure 4-10. Overall,
quadratic SVM fed with wavelet entropy (Q-SVM W) produced the best accuracy
(59.54%), followed by quadratic SVM fed with statistical values (Q-SVM S) (58.45%),
and K-NN fed with wavelet entropy (K-NN W) (53.47%).

Other benchmarking parameters are shown in Figure 4-11. In most classifiers, TRAXX
contributed the most of true prediction shown by high numbers of recall, followed by
VIRM. TRAXX also contributed to the least number of false alarms as can be seen
from the specificity bar chart. In contrast, VIRM had the lowest values of specificity.
TRAXX also had the highest rate of true prediction compared to other types of train
seen from the recall bar chart.

It is seen from both confusion matrices shown in Figure 4-10 and performance measures
shown in Figure 4-11 that machine learning classifiers such as SVM and K-NN are not
suitable for classifying types of trains from a transient response induced by a wheel-
crossing impact. Transient responses are not linearly separable, compared to other
physical features such as distances between wheels representing the speed of trains and
the length of coaches [44]. In order to prove this argument, distances between wheels
extracted from the case study were fed to the machine learning classifiers. The overall
accuracy of 87.4% could be achieved by Q-SVM, followed by K-NN (83.07%), and L-SVM
(78.69%).

Comparison of the overall accuracy achieved by all classifiers is shown in Figure 4-12,
which shows that all CNN classifiers outperformed both SVM and K-NN, and the highest
accuracy was achieved by 25-CNN. Additionally, performance measures of CNN, SVM,
and K-NN are listed on Table 4-1.

4-3-2 Defects representative features (localization maps)

Extracting defect representative features was started by performing a regression test to
follow an increasing function according to a transient response induced by the wheel-
crossing impact. The purpose is to build the localization map showing the area of wavelet
coefficient matrices that contribute to the input. Based on the study in [13] mentioned in

Arif Nurhidayat Master of Science Thesis



4-3 Results

53

4000

3500

3000
= 500
jind
g 2000
E
g
= 1500
1000
500
0.000 0.002 0.004 0.008 0.008
Time in s
4000
3500
3000
= 500
oy
5 2000
B
g
< 1500
1000
500
0.000 0.002 0.004 0.008 0.008
Time in s
2000
3500
3000
= =00
oy
3 2000
B
g
& 1500
1000
500
0000 0002 0004 0006 0008
Time in s
(e)
4000
3500
3000
= 500
)
g 2000
B
g
= 1500
1000
500
0.000 0.002 0.004 0.008 0.008 0.010
Time in s

(8)

4000

3500

=]
=1
s

2500

=]
=
s

Frequency [Hz]

1500

1000

500

0.000 0.004 0.006
Time in 5

(b)

4000

3500

51
2
s

2500

2000

Frequency [Hz]

1500

1000

500

0.000 0.004 0.006
Time in s

(d)

4000

3500

=]
=1
s

2500

2000

Frequency [Hz]

1500

1000

500

0.000 0004 0006
Time in 5

(f)

4000

3500

2500

2000

1500

1000

500

Frequency [Hz]
=3
2
g

0.000 0.004 0.006 0.010
Time in s

(h)

Figure 4-7: Areas of wavelet coefficients covered by the reddish shapes are the areas that
have the most contribution to the results of predictions: (a) a VIRM was detected as an
SGMm; (b) an ICRm was detected as a TRAXX; (c) an SGMm was detected as an ICRm;
(d) the correct prediction of an ICRm; (e) the correct prediction of an ICRm; (f) a correct
prediction of an SGMm; (g) the correct prediction of a TRAX; (h) the correct prediction of
a VIRM. As seen from (a) to (c), the most incorrect predictions came from features in the

high frequency domain.
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Figure 4-8: Results of classifying types of trains using 4 CNN configurations: (a) fully
shared convolutional networks with transient responses from Accelerometer 1; (b) fully
shared convolutional networks with transient responses from Accelerometer 1, 2, and 4; (c)
fully separated convolutional networks with transient responses from Accelerometer 1, 2,
and 4; (d) two separated convolutional networks. The first convolutional networks used by

transient responses from Accelerometer 1, and the second convolutional network shared by
transient responses from Accelerometer 2 and 4.
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Figure 4-9: Performance measures of CNN classifiers:

specificity.
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Figure 4-10: Results of classifications with other state of the art methods: (a) linear SVM
fed with statistical values (L-SVM S), (b) linear SVM fed with wavelet time entropy (L-SVM
W), (c) quadratic SVM fed with statistical values (Q-SVM S), (d) quadratic SVM fed with

wavelet time entropy (Q-SVM W), (e) K-NN fed with statistical values, and (f) K-NN fed
with wavelet time entropy.

Arif Nurhidayat Master of Science Thesis



4-3 Results

57

Recall
%

45

Precision

100

95 I |[TIK-NN s

9

8

Specificity
%

8

75

70 w 3
[ JESVIVES
B Q-svMm s ]
65 [CIk-NNS
B -svm w
60 I Q-svM W 1
T K-NN W

55

50

ICRm

SGMm TRAXX VIRM

(a)

ICRm

SGMm TRAXX VIRM

(b)

[ [ESVVES
B Q-svm s

L -svm W
o |- [EEEQ-svM W
CTK-NN W

5

0

ICRm

SGMm TRAXX VIRM

(c)

Figure 4-11: Performance measures for the baseline classifiers: (a) recall, (b) precision,

and (c) specificity.
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Table 4-1: Performance indices of all classifiers.

. Type of | Precision | Recall | Specificity | Accuracy
Classifier | | ins | (%) %) | (%) (%)
ICRm 51.62 43.32 | 86.47
SGMm | 42.24 50.41 77.02
L-SVM'S TRAXX | 74.17 54.77 | 93.64 50.48
VIRM 43.46 53.41 76.84
ICRm 53.62 54.50 | 84.29
SGMm | 53.52 55.86 | 83.83
Q-SVM 5 TRAXX | 80.20 66.21 | 94.55 9845
VIRM 51.34 57.22 | 81.93
ICRm 47.31 50.41 81.29
SGMm | 45.40 44.41 | 82.20
K-NN'S TRAXX | 75.47 54.50 | 94.10 93.20
VIRM 51.43 63.49 | 80.02
ICRm 50.00 43.82 | 86.47
SGMm | 45.19 47.41 80.35
L-SVM W TRAXX | 79.55 58.31 94.88 9316
VIRM 46.83 62.40 | 75.79
ICRm 54.86 47.68 | 86.92
SGMm | 49.87 52.59 | 82.38
Q-SVM W TRAXX | 77.27 69.48 | 93.19 59.54
VIRM 58.10 68.39 | 83.56
ICRm 43.77 46.87 | 79.93
SGMm | 44.60 42.78 | 82.29
K-NN'W TRAXX | 80.00 57.77 | 95.19 5347
VIRM 53.28 66.49 | 80.56
ICRm 66.30 66.36 77.20
SGMm | 49.37 48.68 | 83.68
FSh1-CNN TRAXX | 61.36 67.14 | 96.75 62.09
VIRM 67.38 66.50 | 87.54
ICRm 78.18 79.34 | 85.14
SGMm | 63.42 62.89 | 88.04
FSh2-CNN TRAXX | 71.65 78.00 97.62 74.16
VIRM 78.64 75.75 | 92.05
ICRm 83.39 87.20 | 88.23
SGMm | 76.09 67.85 | 93.06
FS-CNN TRAXX | 78.29 91.71 | 98.06 81.78
VIRM 84.90 83.55 | 94.23
ICRm 96.06 93.84 | 97.24
SGMm | 91.11 90.65 | 97.26
25-CNN TRAXX | 92.93 95.00 | 99.44 93.4
VIRM 91.61 94.71 96.73
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Figure 4-12: Overall accuracy of CNN and other states of the art classifiers.

Section 2-2, the number of passing axles can be used to predict when the cracks initiate
on the surface of crossing nose. Since the number of passing axles per month is available
in the dataset, an increasing function, where the input is wavelet coefficients and the
output is the total number of axles that have passed the crossing, was created from the
data for the regression test.

Regression test based on the number of passing axles using different length of tran-
sient responses

Wavelet coefficients with two different lengths were utilized for the regression test so that
the length of signals used in further processing could be decided. Comparing both results,
the input utilizing full transient responses (¢ = 10 ms) have the better performance in
tracking the normalized number of passing axles compared to the input using only the
peaks (¢t = 0.625 ms) as shown in Figure 4-13. High deviation in the signal with only
the peak could be caused by deteriorated contact surfaces of the train wheels or due to
the effect of faster trains as explained in [64]. With full transient responses, information
such as the time constant is preserved in wavelet coefficients. In the further processing,
wavelet coefficients from full transient responses are utilized.

Localization map generation using transient responses with the best performing
period and various area of interests

Localization maps with three different areas of interests as shown in Figure 3-12 were
constructed using transient responses with the length of 10 ms to show their evolution.
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Figure 4-13: Results of regression test to fit the number of passing axles (normalized) based
on the wavelet coefficients. Signals with full responses produced better results compared to
signals with only the peaks.

As shown in Figure 4-14, random locations from the time domain are highlighted by the
localization maps. As there is no constant highlight in a particular area of the wavelet
coefficients in the time domain, there was no apparent indication of features regarding
the defects that could be seen from the time domain. In Figure 4-15, similar to what
is shown in Figure 4-14, there is no apparent indication of features that indicate the
defects in the time domain. However, it could be seen that the region at high-frequency
responses started to contribute mostly from June 2015 onward. This indication is shown
by the constant highlight of the wavelet coefficients in the area above 1.5 kHz. The most
obvious indication of the defects can be seen from Figure 4-16. Using the configuration
shown in Figure 3-11 (c), the responses between 2.5 — 3 kHz were constantly highlighted
from June 2015 onward. Since small surface defects induce high-frequency responses,
and similar region of the wavelet coefficients in Figure 4-15 were also highlighted from
June 2015 onward, we can suspect that this frequency band indicates the defects.

In order to confirm the results, similar indications should be seen directly from the
wavelet coefficients as well. As parts of areas highlighted by the localization maps in the
particular frequency domain (all areas in the time domain were highlighted), maximum
values of the wavelet coefficients within 2.5 — 3 kHz, including all region at the time
domain (0 — 10 ms), were obtained and averaged per measurement. As shown in Figure
4-17, the wavelet coefficient between 2.5 — 3 kHz also indicated a positive trend. This
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Figure 4-14: Evolution of the transient responses according to the localization maps fo-
cusing on the time domain (1 x 8). The time domain area cannot show the indication of
defects as there is no constant highlight in a particular area of the wavelet coefficients when
defects existed.
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Figure 4-15: Evolution of the transient responses according to the localization maps fo-
cusing on both time and frequency domain (3 x 4). The area on the time domain was not

constantly highlighted. However, the area above 1.5 kHz was constantly highlighted since
June 2015. There is an indication of defects located in the higher frequency domain.
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Figure 4-16: Evolution of the transient responses according to the localization maps fo-

cusing on the frequency domain (6 x 1). It is clear that the region around 2.5-3 kHz was
constantly highlighted from May 2015, which can be the features that indicate the defects
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Figure 4-17: Average of the maximum wavelet coefficient (2.5 — 3kH z) per measurement.

means that we could use wavelet coefficients in the range of 2.5 — 3 kHz as the defect
representative features.

4-3-3 Degradation level of the crossing

The degradation level of the crossing is estimated using a CNN regressor. In order to
find the best performing architecture and configuration suitable for this task, several
CNN architectures are tested. Then, the best performing architecture is picked and
tested again with different configurations such as different depth of convolutional layer
and number of convolutional features. The output of all architecture is also compared
to find out which architecture provided the best estimation.

Regression test with and without compensating features

The first experiment was to find out whether the input representative features could give
a positive effect to the CNN regressor or not. In order to perform this task, the trendline
obtained from the previous step shown in Figure 4-17 was utilized to construct baseline
values representing the actual degradation level of the crossing based on the number of
passing axles. As shown in Figure 4-18 (a), the degradation level of regression had a
smaller deviation compared to the degradation level obtained from the wavelet coeffi-
cients. Moreover, a CNN regressor utilizing input representative features outperformed
the one without input representative features even if they are unnoticeable, as shown in
Figure 4-18 (b). The comparison of Mean Squared Error (MSE) between the ConvNet
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implementing the input representative features and the ConvNet without the input rep-
resentative features were 0.026 and 0.044 respectively. Even the gap between two MSE
is small, the ConvNet implementing the input representative features performs better
than the ConvINet without the input representative features.

Regression test with different CNN architectures

Four CNN architectures such as full convolutional networks (ConvNet), convolutional
networks with average-pooling inception networks (Inception Conv + Avg), convolu-
tional networks with max-pooling inception networks (Inception Conv 4+ Max), and
convolutional networks with average and max-pooling inception networks (Inception
Conv + Avg+ Max) as shown in Figure 3-14 to 3-17, were utilized to estimate the
degradation level of the crossing. Details of these architectures are presented in Table
B-4 and Table B-5 of Appendix B, and the benchmarking parameters are presented in
Figure 4-19 to 4-20. In the case of MSE values, ConvNet outperformed Inception net-
works. ConvNet also contains simpler mathematical operations compared to all Incep-
tion networks containing at least one max or average-pooling layer, which is expensive,
making ConvNet as the fastest architecture to perform prediction. However, ConvNet
took a longer time to train because it contains more convolutional filters performing
sliding windows operation compared to all Inception networks, which share the number
of filters with the average/max-pooling layer.

Comparing the performance of three Inceptions, Inception Conv + Max produced the
least MSE values, followed with Inception Conv + Avg, and Inception Conv + Avg
+ Max. In the case of learning time, Inception Conv + Avg + Max took the longest
time to be trained because it had the highest number of trainable parameters, followed
by Inception Conv + Avg, and Inception Conv + Max. Even Inception Conv + Avg
and Inception Conv + Max had the same number of trainable parameters, Inception
Conv + Avg took a longer time to be trained because average-pooling is more expensive
operation than max-pooling.

Regression test with different numbers of convolutional depths and filters

In order to obtain the best configuration, various depths of convolutional layers were
utilized to run the regression tests. The depths of convolutional layers were defined
as follows: ConvNet consisted of 5 convolutional networks, ConvNet D4 consisted of 4
convolutional networks, and ConvNet D3 consisted of 3 convolutional networks.

Details of these configurations can be seen in Table B-2 of Appendix B. As seen from the
results shown in Figure 4-19 to 4-20, ConvNet outperformed ConvNet D4 and ConvNet
D3 in terms of the MSE values. This result matches with other experiments showing that
the number of convolutional layers has a great affection to the accuracy of the prediction
[59]. ConvNet also learned 175.9 s faster compared to ConvNet D3 because it has fewer
trainable parameters. ConvNet D4 was slightly faster 35.6 s than ConvNet since it also
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Figure 4-18: Degradation level of the crossing: (a) comparison of the degradation level
obtained from wavelet coefficients and the one estimated by the CNN algorithm; (b) com-
parison of the estimated degradation level obtained with and without input representative

features.
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Table 4-2: Benchmarking parameters of all CNN architectures

Learning | Prediction | Number of
Architectures time time trainable MSE

(s) (s) parameters
Inception Conv + Avg 2708.33 87.93 15696093 0.0327
Inception Conv + Max 2390.04 80.22 15696093 0.0305
Inception Conv + Avg + Max | 4151.17 | 80.05 110198807 | 0.0349
ConvNet 3596.73 79.22 2781187 0.0203
ConvNet D4 3561.12 78.44 2707171 0.0246
ConvNet D3 3737.03 76.45 4034207 0.0253
ConvNet F4 3473.89 73.46 1241129 0.0406
ConvNet F8 3648.4 81.32 4934269 0.0379

has fewer trainable parameters. Regarding the prediction time, ConvNet was the slowest
architecture with the difference of 1 s with ConvNet D4, and 2 s with ConvNet D3. The
sliding windows mechanism used by convolutional layers to produce filter maps is slower
than vector multiplications performed in a fully connected multi-layer perceptron. Since
ConvNet had the deepest depth of convolutional layers, it processed the inputs slower
than ConvNet D4 and ConvNet D3.

Various numbers of filters were also experimented to find the most suitable algorithm as
follows: ConvNet consisted of 6 filters in the first convolutional network, and multiplied
by 2 in each next convolutional network (same architecture as before); ConvNet F4
consisted of 4 filters in the first convolutional network, and multiplied by 2 in each
next convolutional network; ConvNet F8 consisted of 8 filters in the first convolutional
network, and multiplied by 2 in each next convolutional network.

Details of these configurations can be seen in Table B-3 of Appendix B. The fastest
architecture for both learning and predicting was ConvNet F4 as it had the fewest
number of filters. However, ConvNet F4 also had the worst MSE. Results of this
experiment match with another experiment showing that as the number of convolutional
filters increases, the accuracy also increases (i.e. MSE decreases) [59]. However, this
relationship also depends on the number of outputs because an excessive number of
convolutional filters could cause the number of trainable parameters explode. Since in
this experiment CNN algorithms were used for regression tests producing a single output,
the number of parameters should be kept fitted. In this case, ConvNet had the most
suitable number of convolutional filters so that it produced the lowest MSE compared
to the architecture with the smallest number of convolutional filters (ConvNet F4) and
the one with the highest number of filters (ConvNet F8).

Using CNN architectures from ConvNet and all Inception networks, results of health
estimations are presented in Figure 4-21. Surface defects were visually spotted in August
2015, after around 700000 axles had passed the crossing (red box). Using ConvNet and all
Inception networks, the symptoms were detected could have been seen between May and
June 2015 (the estimated degradation level was about 2.7) after about 450000 passing
axles (yellow box), giving about two months extra to the maintenance engineers to plan
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Figure 4-19: Benchmarking parameters for all CNN architectures: (a) number of trainable
parameters, (b) MSE
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Figure 4-20: Benchmarking parameters for all CNN architectures: (a) learning time, (b)
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Figure 4-21: Results of estimated degradation level of the crossing produced by all CNN
architectures. The degradation level of 2.7 was considered as the threshold to determine
defects in the crossing, which was chosen because there was no estimation below this value
after about 450000 passing axles.

maintenance activities. The degradation level of 2.7 was chosen because there was no
estimation below this threshold after about 450000 passing axles.

Regarding all architectures, ConvNet is the most suitable CNN architecture for esti-
mating the degradation level of crossing, followed by Inception Conv + Max, Inception
Conv + Avg + Max, and Inception Conv + Avg. ConvNet produced the least number
of MSE. ConvNet did not produce many estimations above the baseline values (black
circles) when the number of passing axles was below 450000 compared to Inception Conv
+ Avg and Inception Conv + Max. An estimation that is too optimistic can trigger a
false alarm. Both ConvNet and Inception Conv + Max did not produce any estimation
below the baseline values as many as Inception Conv + Avg and Inception Conv + Avg+
Max, when the number of passing axles was above 450000. Many estimations above the
baseline values may trigger many false alarms. In contrast, many estimations below the
baseline values may cause many miss detections. Therefore, choosing CNN architecture
having the least MSE is crucial. The conclusion is that ConvNet is the most suitable
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CNN architecture for estimating the degradation level of crossing.

4-4 Summary

This chapter discussed the evaluation of the methodology for monitoring the health con-
dition of railway crossings: the dataset from the case study of a crossing, the evaluation,
and results.

In order to evaluate the proposed methodology, the dataset from the case study of a
crossing located in Amsterdam was utilized. The dataset contains the responses of wheel-
crossing impacts recorded by several accelerometers, which are installed on the crossing,
with the sampling frequency of 102.4 kHz. The acceleration data is also labeled with
several types of trains, four of them are used in this thesis: TRAXX, ICRm, SGMm,
and VIRM. Moreover, additional data such as the number of passing axles per month is
also available along with the dataset.

Three main experiments were performed in order to evaluate the proposed methodology:
types of trains classification, localization maps, and regression tests for estimating the
health condition of the crossing. In types of trains classification, various CNN config-
urations were used: fully-shared CNN with only one accelerometer input (FSh1-CNN),
fully-shared CNN with three accelerometer input (FSh2-CNN), fully-separated CNN
with three accelerometer input (FS-CNN), and semi-separated CNN with 2 convolu-
tional networks (one network was dedicated for one accelerometer, and another network
was shared for two accelerometers) (2S-CNN). Additionally, three machine learning clas-
sifiers were also utilized for comparison: linear SVM (L-SVM), quadratic SVM (Q-SVM),
and K-NN. Two different features are used for the machine learning classifiers: statis-
tical values derived directly from the transient responses and the wavelet time entropy.
Overall, all CNN classifiers outperformed the machine learning classifiers. The best
performing CNN classifier was 2S-CNN with 93.4% of accuracy. Among the machine
learning classifiers, Q-SVM, when it is fed with the wavelet time entropy, is the best
classifier with 59.54% accuracy.

In the localization maps, three areas of interest are defined to find out the areas of wavelet
coefficients that can be used as features that indicate defects. The first areas of interest
focus on the time domain, the second areas of interest focus on both the time domain
and the frequency domain, and the third areas of interest focus on the frequency domain.
In order to generate the localization maps, information regarding the total number of
passing axles per month was used as the trend for the regression tests. From all chosen
areas of interests, it can be concluded that the features that indicate defects could not
be detected from the time domain. The features that indicate defects were detected in
the frequency domain between 2.5-3 kHz. When this range of frequency is inspected
directly from the wavelet coefficients, a degradation model with many deviations could
be built.
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In estimating the degradation level of the crossing, three different CNN architectures
were utilized: the fully connected convolutional networks (ConvNet), the inception net-
works with average-pooling networks (Inception Conv + Avg), inception networks with
max-pooling networks (Inception Conv + Max), inception networks with average-pooling
and max-pooling networks (Inception Conv + Avg + Max). Moreover, the number of
filters and convolutional depths are also set to different values in order to find the best
estimator. Overall, The ConvNet is the best architecture for estimating the degradation
level of the crossing as it produced the least MSE compared all inception networks. With
ConvNet, the defects can be detected about two months before the defects were spotted
during the visual inspection.
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Chapter 5

Conclusions and Recommendations

5-1 Conclusions

In this thesis, a methodology to estimate the health conditions of crossings using the
Convolutional Neural Networks (CNN) via their degradation levels was proposed. Dif-
ferent experiments were performed, and several conclusions could be drawn a follows:

1. Information regarding defects in crossings could be obtained from transient re-
sponses induced by the passing trains. However, the transient responses also
contain information related to the train characteristics that could affect the es-
timation. This condition was demonstrated by the capability of a fully shared con-
volutional network to classify the types of trains based on the responses recorded
by the accelerometer that is located close to the wheel-crossing impact. The lo-
calization maps produced by the class activation mapping showed that the higher
frequency responses, where defects could also be investigated, contributed to the
classifications. Additional accelerometers, which are located in different positions
of the crossing (further from the wheel-crossing impact) helped to increase types
of trains classifications as they give more information that is less affected by dy-
namical changes due to defects.

2. In the case of classifying the types of trains, the CNN classifier configured with
two parallel convolutional networks where one network was used by the accelerom-
eter located closest to the wheel crossing impact, and another network was shared
by two other accelerometers located further from the wheel-crossing impact (2S-
CNN), achieved the highest accuracy (93.4%). The worst accuracy (62.09%) was
achieved by the CNN classifier configured with a full convolutional network fed
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with signals only from the accelerometer located closest to the wheel-crossing im-
pact (FSh1-CNN). However, compared to Support Vector Machine (SVM) and K-
Nearest Neighbors (K-NN), FSh1-CNN still outperformed both SVM and K-NN
classifiers. The best accuracy of SVM and K-NN classifiers was achieved by the
quadratic SVM fed with wavelet entropy (59.54%). SVM and K-NN classifiers are
not suitable to perform classification tasks based on linearly inseparable inputs
such as wavelet coefficients.

3. The localization maps obtained by using the weighted sum of the last feature maps
could be used to locate areas of wavelets coefficients indicating the defects, where
the indication of defects was visible from the frequency highlighted by the local-
ization maps (2.5 — 3 kHz). Moreover, regression tests to obtain the localization
maps were better when performed with a full length of transient responses com-
pared to only using the peak signals. This conclusion was demonstrated by the
deviation of the result from the regression test with full transient responses was
smaller compared to the one from the regression test using only peak signals.

4. Determining the health condition of the crossing can be done by estimating the
degradation level of the crossing. The best CNN architecture for this task was
a fully connected convolutional network (ConvNet). Compared to all inception
networks, this configuration had the lowest values of Mean Squared Error (MSE)
compared to all architectures utilizing inception networks. It means that ConvNet
had less risk of triggering false alarms or causing miss detection of failures compared
to all Inceptions.

5. It could be concluded from this thesis that the proposed method that uses CNN
algorithms could identify symptoms of crossing defects based on the acceleration
data before they are visible. In the case study of a crossing used for evaluating
the proposed methodology, the symptoms could be identified about two months
before the defects were visible.

5-2 Recommendations

Future work will focus on the validation of the methodology and revision of the model.
The following activities are recommended as the follow up of this thesis:

Methodology validation

e Build a prototype that could automatically perform measurements to gather more
data. The current made use of transient responses generated by about 5000 wheels
where only about 500 of them were used for validation (more than 4000 of them
were necessary for building the model). For a better validation result, a higher
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number of data is needed. Additionally, more sensors such as high-definition cam-
eras can also be incorporated as the prototype. Thus, the evolution of defects can
be confirmed visually.

e Use the same methodology to estimate the health condition of other crossings. This
way, the result of this thesis could be validated, whether similar defects found on
other crossings could be identified from the same frequency modes or not.

e The methodology proposed in this thesis was designed to be applicable for a wide
range of applications, same steps of the methodology can be used to perform similar
tasks such as detecting the incoming defects from axle-box accelerations, strain
gauges, or even camera. The result can be utilized to improve this methodology
so that it is applicable for wider applications.

Model revision

e This thesis utilized CNN algortihms for feature extraction and degradation level
estimation. As new CNN architectures outperforming the existing architectures
keep being invented, it is necessary to update the model with the new architectures
in order to increase the performance of the methodology.
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Appendix A

Support Vector Machine (SVM) and
K-Nearest Neighbors (K-NN)

A-1 Support Vector Machine (SVM)

SVM is used in [55] to classify the faults condition of a steam turbine generator. To
understand how SVM works, Let S = {(zx,yx),k = 1,2,...,n} is a linearly separable
training data, where xy is the input feature space, and y; € {-1,41} is the class label.
SVM seeks a hyperplane yy(r) = wix + by to divide the data into two classes. The
parameter w; is the normal vector to the hyperplane, and by is the distance from the
origin to the hyperplane. The hyperplane has constraints that w’z; + b > 1 when
y(zr) = 1, and wxy, +b < -1 when y(xp) = -1, where w is the unit normal vector of
the best hyperplane and b is the constant of the best hyperplane. The resulting best
hyperplane is illustrated in Figure A-1 (highlighted by a green box).

A-2 K-Nearest Neighbors (K-NN)

K-NN is widely used for nonparametric pattern classification with very little knowledge
about the distribution of the data. In [56], it was used for determining health conditions
of an induction motor. The K-nearest Neighbor works by comparing given test data
with the training data and classify the class of the test data based on the nearest Eu-
clidian distance between the test and training data. The Euclidian distance is defined as
\/Z?:l (mli - mgi)Q, where mi = (m11, mio, ...,mln) and mo = (m21,m22, ...,mgn). The
k nearest neighbors are used to determine the class of the test data for a better result.
The class which has more members in the nearest neighbors becomes the class of the
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test data. Figure A-2 illustrates how the membership of a data is decided based on its
5-nearest neighbors.

ClassA ®

o
Hwlx+b=-1

Figure A-1: The hyperplane of SVM was constructed by seeking a hyperplane that can
divide two classes with the most possible biggest distance (margin).

[ ® o
° .‘\513 d Class B
d4 \\\ /’/ ___________ ‘
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Figure A-2: lllustration of a K-NN classifier deciding the membership of a data using its
5-nearest neighbors. The class of the new member is decided based on a class with the
biggest number of members.
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Appendix B

Details of Convolutional Neural
Networks (CNN) Architectures

Table B-1 contains detail architectures of CNN classifiers used to predict the types of
trains. Table B-2, Table B-3, Table B-4, and Table B-5 contain detail architectures of
CNN regressors utilized to estimate the degradation level of the crossing.

Table B-1: Details of CNN classifiers used for the types of trains classification.

FSh1-CNN FSh2-CNN FS-CNN 2S-CNN

Input Input Input Input Input Input Input
(Accelerometer 1) | (Accelerometer 1, 2, 4) | (Accelerometer 1) | (Accelerometer 2) | (Accelerometer 3) | (Accelerometer 1) | (Accelerometer 2, 4)
zero_padding zero_padding zero_padding zero_padding zero_padding zero_padding zero_padding
8 conv (2,2) 24 conv (2,2) 8 conv (2,2) 8 conv (2,2) 8 conv (2,2) 8 conv (2,2) 16 conv (2,2)
8 conv (2,2) 24 conv (2,2) 8 conv (2,2) 8 conv (2,2) 8 conv (2,2) 8 conv (2,2) 16 conv (2,2)
8 max_ pool 24 max_ pool 8 max_ pool 8 max_ pool 8 max_ pool 8 max_ pool 16 max_ pool
(2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4)
zero__padding zero__padding zero__padding zero__padding zero__padding zero__padding zero__padding
16 conv (2,2) 48 conv (2,2) 16 conv (2,2) 16 conv (2,2) 16 conv (2,2) 16 conv (2,2) 32 conv (2,2)
16 conv (2,2) 48 conv (2,2) 16 conv (2,2) 16 conv (2,2) 16 conv (2,2) 16 conv (2,2) 32 conv (2,2)
16 max_ pool 48 max_ pool 16 max_ pool 16 max__pool 16 max__pool 16 max_ pool 32 max_ pool
(2.4) (2.4) (2.4) 2.4) (2.0 (2.0 (2.4)
zero_ padding zero_ padding zero_ padding zero_ padding zero_ padding zero_ padding zero_ padding
32 conv (2,2) 96 conv (2,2) 32 conv (2,2) 32 conv (2,2) 32 conv (2,2) 32 conv (2,2) 64 conv (2,2)
32 conv (2,2) 96 conv (2,2) 32 conv (2,2) 32 conv (2,2) 32 conv (2,2) 32 conv (2,2) 64 conv (2,2)
32 max_ pool 96 max_ pool 32 max_ pool 32 max_ pool 32 max_ pool 32 max_ pool 64 max_ pool
(2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4)
64 conv (2,2) 192 conv (2,2) 64 conv (2,2) 64 conv (2,2) 64 conv (2,2) 64 conv (2,2) 128 conv (2,2)
64 conv (2,2) 192 conv (2,2) 64 conv (2,2) 64 conv (2,2) 64 conv (2,2) 64 conv (2,2) 128 conv (2,2)
64 max_ pool 192 max_ pool 64 max_ pool 64 max_ pool 64 max_ pool 64 max_ pool 128 max_ pool
(2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2)
flatten (1152) flatten (3456) flatten (1152) flatten (1152) flatten (1152) flatten (1152) flatten (2304)

‘ concatenate (3456) concatenate (3456)
fc (1152) fc (3456) fe (3456) fe (3456)
fc (1024) fc (2048) fc (2048) fc (2048)

fe (2048) fe (2048) fe (2048)

fc (1000) fc (1000) fe (1000)
fc (4) fc (4) fc (4) fc (4)
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Details of CNN Architectures

Table B-2: Details of CNN architectures (ConvNet) with

various depths of convolutional

layers.

ConvNet ConvNet D4 ConvNet D3
input_ 2 input_1 input_ 2 input_1 input_ 2 input_1
(defect (input (defect (input (defect (input
representative | representative | representative | representative | representative | representative
features) features) features) features) features) features)
zero_padding | fc (4) zero_padding | fc (4) zero_padding | fc (4)
6 conv (2,2) fc (4) 6 conv (2,2) fc (4) 6 conv (2,2) fc (4)

6 conv (2,2)

6 conv (2,2)

6 conv (2,2)

6 conv
(2, 4),
stride(2,4)

6 conv (2, 4),
stride(2,4)

6 conv (2, 4),
stride(2,4)

zero_ padding

zero_ padding

zero_ padding

12 conv (2,2)

12 conv (2,2)

12 conv (2,2)

12 conv (2,2)

12 conv (2,2)

12 conv (2,2)

12 conv
(1, 4),
stride(1,4)

12 conv (1, 4),
stride(1,4)

12 conv (1, 4),
stride(1,4)

zero_ padding

zero_ padding

zero_ padding

24 conv (2,2)

24 conv (2,2)

24 conv (2,2)

24 conv (2,2)

24 conv (2,2)

24 conv (2,2)

24 conv
(1, 4),
stride(1,4)

24 conv (1, 4),
stride(1,4)

24 conv (1, 4),
stride(1,4)

zero__padding

zero__padding

48 conv (2,2)

48 conv (2,2)

48 conv (2,2)

48 conv (2,2)

48 conv
(1, 4),
stride (1,4)

48 conv (1, 4),
stride (1,4)

zero__padding

96 conv (2,2)

96 conv (2,2)

96 conv
(L, 2),
stride (1, 2)

flatten (1154)

flatten (1154)

fatten (2304)

concatenate (1156)

concatenate (1156)

concatenate (2308)

fc (1156) fc (1156) fc (2308)
fc (1156) fc (1156) fc (2308)
fe (1) fe (1) fe (1)
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Table B-3: Details of CNN architectures (ConvNet) with different number of convolutional

stride(2,4)

stride(2,4)

stride(2,4)

filters.
ConvNet ConvNet F4 ConvNet F8

input_ 2 input_ 1 input_ 2 input_ 1 input_ 2 input_ 1
(defect (input (defect (input (defect (input
representative | representative | representative | representative | representative representative
features) features) features) features) features) features)
zero_padding | fc (4) zero_padding | fc (4) zero_padding | fc (4)
6 conv (2,2) fc (4) 4 conv (2,2) fc (4) 8 conv (2,2) fc (4)
6 conv (2,2) 4 conv (2,2) 8 conv (2,2)
?2(;(:8‘/ 4 conv (2, 4), 8 conv (2, 4),

zero_ padding

zero_ padding

zero__padding

12 conv (2,2)

8 conv (2,2)

16 conv (2,2)

12 conv (2,2)

8 conv (2,2)

16 conv (2,2)

12 conv
(17 4)7
stride(1,4)

8 conv (1, 4)
stride(1,4)

16 conv (1, 4),
stride(1,4)

zero_ padding

zero_ padding

zero_padding

24 conv (2,2)

16 conv (2,2)

32 conv (2,2)

24 conv (2,2)

16 conv (2,2)

32 conv (2,2)

24 conv
(1,4),
stride(1,4)

16 conv (1, 4),
stride(1,4)

32 conv (1, 4),
stride(1,4)

zero__padding

zero__padding

zero__padding

48 conv (2,2)

32 conv (2,2)

64 conv (2,2)

48 conv (2,2)

32 conv (2,2)

64 conv (2,2)

48 conv
(1, 49),
stride (1,4)

32 conv (1, 4),
stride (1,4)

64 conv (1, 4),
stride (1,4)

zero_ padding

zero__padding

zero__padding

96 conv (2,2)

64 conv (2,2)

128 conv (2,2)

96 conv (2,2)

64 conv (2,2)

128 conv (2,2)

96 conv
(1,2),
stride (1, 2)

64 conv (1, 2)
stride (1, 2)

128 conv (1, 2),
stride (1, 2)

flatten (1152)

flatten (768)

flatten (1536)

concatenate (1156)

concatenate (772)

concatenate (1540)

fc (1156) fc (772) fc (1540)
fc (1156) fe (772) fc (1540)
fe (1) fe (1) fe (1)
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Details of CNN Architectures

Table B-4: Details of CNN architectures with one inception module (average-pool layers

or max-pool layers).

Inception Conv + Avg

Inception Conv + Max

input_ 1 input_ 1
input_ 2 (input input_ 2 (input
(defects representative features) representative (defects representative features) representative
features) features)
zero_padding | 2 avg pool (2,4) fc (4) zero_padding | 2 max_pool (2,4) fc (4)
4 conv (2,2) fc (4) 4 conv (2,2) fc (4)
4 conv (2,2) 4 conv (2,2)
4 conv (2,4) 4 conv (2,4)

6 concatenate (6,256)

6 concatenate (6,256)

zero_padding | 6 avg_pool (1,4)

zero_padding | 6 max_pool (1,4)

12 conv (2,2)

12 conv (2,2)

12 conv (2,2)

12 conv (2,2)

12 conv (1,4)

12 conv (1,4)

18 concatenate (6,64)

18 concatenate (6,64)

zero__padding

18 avg_pool (1,4)

zero__padding

18 max_ pool (1,4)

36 conv (2,2)

36 conv (2,2)

36 conv (2,2)

36 conv (2,2)

36 conv (1,4)

36 conv (1,4)

54 concatenate (6,16)

54 concatenate (6,16)

zero__padding

54 avg_pool (1,4)

zero__padding

54 max_pool (1,4)

108 conv (2,2)

108 conv (2,2)

108 conv (2,2)

108 conv (2,2)

108 conv (1,4)

108 conv (1,4)

162 concatenate (6,4)

162 concatenate (6,4)

zero_ padding

162 avg_pool (1,4)

zero_padding

162 max_pool (1,4)

324 conv (2,2)

324 conv (2,2)

324 conv (2,2)

324 conv (2,2)

324 conv (1,4)

324 conv (1,4)

486 concatenate (6,1)

486 concatenate (6,1)

flatten (2916)

flatten (2916)

concatenate (2920)

concatenate (2920)

fe (2920) fo (2920)
fc (2048) fc (2048)
fe (1) fo (1)
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Table B-5: Details of CNN architectures with two inception module (average-pool layers

and max-pool layers).

Inception Conv + Avg + Max

input_ 1
input_ 2 (defects representative features) (imput .
representative
features)
zero_padding | 2 avg pool (2,4) 2 max_pool (2,4) fc (4)
2 conv (2,2) fc (4)

2 conv (2,2)

2 conv (2,4)

6 concatenate (6,256)

zero__padding

6 avg_pool (1,4)

6 max_ pool (1,4)

12 conv (2,2)

12 conv (2,2)

12 conv (1,4)

24 concatenate (6,64)

zero__padding

24 avg_pool (1,4)

24 max_pool (1,4)

48 conv (2,

2.2)
48 conv (2,2)
48 conv (1,4)

96 concatenate (6,16)

zero__padding

96 avg_pool (1,4)

96 max_pool (1,4)

192 conv (2,2)

192 conv (2,2)

192 conv (1,4)

384 concatenate (6

A4)

zero__padding

384 avg pool (1,4)

384 max_pool (1,4)

768 conv (2,2)

768 conv (2,2)

768 conv (1,4)

1536 concatenate (6,1)

flatten (9216)

concatenate (9220)

fo (9220)

fc (2048)

fe (1)
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Glossary

List of Acronyms

ABA Axle Box Acceleration
CNN Convolutional Neural Networks
CWT Continuous Wavelet Transform

EEMCS  Electrical Engineering, Mathematics and Computer Science

FFT Fast Fourier Transform

FRF Frequency Response Function
K-NN K-Nearest Neighbors

MSE Mean Squared Error

S&C Switches and Crossings
SVM Support Vector Machine
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