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ABSTRACT

Software testing is an important but time-consuming task, making
automatic test case generation an appealing solution. The current
state-of-the-art algorithm for test case generation is DYNAMOSA,
which is an improvement of NSGA-II that applies domain knowl-
edge to make it more suitable for test case generation. Although
these enhancements are applicable to other evolutionary algorithms,
no research has been done on how effective other algorithms can
function as the base. In this paper, we apply the DyNAMOSA mod-
ifications to SPEA-II to create a new algorithm, DYNASPEA-IL.
We conduct an empirical experiment where we evaluate the Dy-
NAMOSA enhancements, and directly compare DYNASPEA-II to
DYNAMOSA. The algorithms are assessed on a benchmark con-
sisting of 36 diverse JavaScript classes w.r.t. branch coverage. Our
results show that adding DYNAMOSA enhancements to SPEA-II
results in higher coverage in 13.9% of classes, with an average in-
crease of 4.92% for classes where a statistically significant difference
was found. DYNASPEA-II performed equally to DYNAMOSA, with
no statistically significant difference being found between the two.

1 INTRODUCTION

Software testing is a crucial part of development to ensure the qual-
ity and reliability of programs. However, manually writings tests
can be time-consuming and prone to errors. Moreover, with the in-
creasing complexity of programs, designing effective test cases has
become more and more difficult. Therefore, the development of au-
tomated test case generation has been an active research topic [10],
and has managed to produce approaches that produce greater cov-
erage than manually-written tests [1]. Furthermore, automatic test
case generation has been successfully applied in industry [2], and
has helped developers reduce time spent on testing and debugging
[16].

This paper focuses on the use of genetic algorithms for automat-
ically generating test cases, specifically in the context of Javascript
programs. The current state-of-the-art tool for automatic test case
generation in JavaScript is Syntest-Javascript!, which implements
the DYNAMOSA algorithm. DYNAMOSA is a many-objective solver
that uses domain knowledge to make it more efficient in generating
test cases [14]. DYNAMOSA is an improved version of MOSA, which
in turn extends NSGA-11I, a widely used multi-objective genetic algo-
rithm that has been successfully applied to many problems. Domain
knowledge needs to be incorporated, as classical multi-objective
evolutionary algorithms, like NSGA-I1, are most effective in solving
problems with up to three objectives [8]. However, in the context
of test case generation as a many-objective problem, every branch
is an individual objective, leading to hundreds, if not thousands of
targets. Although the enhancements introduced by DyNAMOSA
are applicable to various evolutionary algorithms, to the best of our
knowledge, there has been no research conducted to investigate
whether employing a different base algorithm can lead to improved
results.

The goal of this research is to investigate how well the improved
Strength Pareto Evolutionary Algorithm (SPEA-II) performs in
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automatic test case generation [23]. SPEA-II is another algorithm
belonging to the evolutionary family, with potential for promising
results in automatic test case generation, as it has been successfully
applied to solve multi-objective problems before. Furthermore, it
has shown better performance than NSGA-II in some problems
with higher-dimensional objective spaces [23]. Finally, it will be
augmented with the core ingredients of DYNAMOSA to create a
novel algorithm DyNASPEA-II, to see whether this yields improved
results.

The main research questions of the paper are: (1) How well does
the DYNASPEA-II algorithm perform in automatic test case genera-
tion? (2) How effective are the DYNAMOSA enhancements to SPEA-11
for automatic test case generation? To answer these questions, we
performed an empirical study on a dataset of diverse Javascript
classes, sourced from popular JavaScript projects Express, Comman-
der.js, Javascript Algorithms, and Lodash.

Our results show that when comparing DYNASPEA-II to baseline
SPEA-II, DYNASPEA-II achieves higher coverage in 13.9% of classes,
with an average increase of 4.92% for classes where a statistically
significant difference was found. DYNASPEA-II and DYyNAMOSA
have equal performance, with no statistically significant difference
being found between the two algorithms.

This paper adds to the literature with the following contributions:

(1) The conceptual adaptation of the DYNAMOSA features to
the SPEA-II algorithm.
(2) The implementation of SPEA-II and DYNASPEA-II in the
SYNTEST-CORE framework.
(3) An empirical study, and analysis of the chosen algorithms.
(4) A full replication package for the empirical evaluation 2.
The remainder of the paper will be structured in the follow-
ing way. Chapter 2 presents the background, detailing important
concepts needed to understand the paper, such as evolutionary
intelligence and search-based software testing. Chapter 3 details
the approach, discussing how the SPEA-IT algorithm was adapted
to test case generation, and modified into DYNASPEA-II. The study
design setup and analysis of the results are found in chapters 4 and
5 respectively. Chapter 6 addresses the threats to validity, followed
by Chapter 7 which discusses the responsible research. Chapter
8 concludes the paper and addresses future research that can be
performed.

2 BACKGROUND

This chapter provides the background information necessary to
understand the research context and concepts. In subsection 2.1,
we discuss the concept of evolutionary intelligence, explain the
mechanisms of SPEA-II, and its differences with NSGA-II. The
subsequent subsection focuses on the domain of test case genera-
tion, explaining techniques, such as Search-based Software Testing,
and a notable algorithm within this category, DYNAMOSA.

2.1 Evolutionary Intelligence

Evolutionary algorithms (EAs) are algorithms based on the con-
cepts of natural evolution and ’survival of the fittest’ [22]. EAs

Zhttps://github.com/Chao-Ran-Erwin/CSE3000-Replication-Package
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simulate evolution by iteratively evolving a group of candidate
solutions, known as a population. Every individual solution is given
a fitness value that quantifies how high the quality of the individual
is. The solutions with better fitness values are given a higher like-
lihood of being picked as parents, to simulate the survival of the
fittest principle. Evolution is mimicked by making individuals un-
dergo various variation operations, such as crossover, and mutation
to create new solutions.

Multi-objective evolutionary algorithms (MOEAs) address
the challenge of optimizing multiple conflicting objectives simul-
taneously. Since there are multiple objectives, individuals cannot
be compared based on a single fitness number. Instead, they are as-
sessed based on Pareto dominance. An individual dominates another
if it is better in one or multiple objectives, and equal in all others.
The most valuable solutions are the Pareto optimal solutions, also
known as non-dominated solutions. These solutions are not dom-
inated by any other, with the set of all non-dominated solutions
forming the Pareto front. The goal of multi-objective evolutionary
algorithms is essentially to approximate this Pareto front as well as
possible.

SPEA-II is an elitist multi-objective optimization algorithm, pro-
posed by Zitzler et al [23]. SPEA-II aims to approximate the Pareto
front by iteratively evolving a population and storing the best in-
dividuals in an external archive. It starts by initializing a random
population and an empty external archive (lines 2 and 3 of algorithm
1). While the stopping criterion has not been met, the population
evolves to find better solutions. The fitness of each solution in the
population and archive is calculated (line 5). The fitness formula
of SPEA-II consists of two parts raw fitness (R(i)) and density
information (D(i)). R(i) is calculated by summing the strength of a
solution’s dominators, with a solution’s strength being the number
of individuals it dominates. Therefore, fitness is to be minimized,
with a non-dominated solution having a raw fitness of 0 and a
dominated solution having a high fitness. Density information is
added to the formula in order to increase the diversity of solu-
tions. Density information is necessary, as when there are many
non-dominated solutions, their raw fitness score will be identical,
making the search equivalent to a random search. The density es-
timation technique used in SPEA-II is an adaptation of the k—th
nearest neighbor method. For each individual, the distance to the
k—th nearest neighbor is calculated, denoted as 0{‘. Since fitness is
to be minimized, the inverse of the distance is taken, leading to the
formula for D(i) being:

D(i) = — (1)
o; +2
Two is added to the denominator to avoid dividing by zero and
to ensure that D(i) < 1, so that non-dominated solutions have a
fitness of < 1. This leads to the final fitness formula of an individual

i being:
F(i) = R(i) + D(i) (2)

After the fitness calculation is finished, the algorithm proceeds
with selecting the mating pool, also known as environmental selec-
tion (lines 6 to 12 of algorithm 1). First, all non-dominated solutions
are added to the archive. If the archive is not full, the remaining
solutions are sorted in ascending order of fitness and added to the

archive until it is full. If there are too many solutions, the trun-
cation method is called. Solutions are removed which are most
similar to one another. Similarity is decided via the same k—th
nearest neighbor technique used in the calculation of D(i). Hence,
the individual with the smallest alk is removed until the number
of solutions equals the archive size. After the archive’s population
has been established, it will serve as the mating pool from which
new offspring will be generated (line 13).

Algorithm 1: SPEA-II
Input
U = {uy,...,um} the set of coverage targets of a program
Population size N
Archive size N
Output:A test suite T
1 begin
2 Py < RANDOM-POPULATION(N)
3 170 — @
4 while not (search_budget_consumed) do

5 | F; « CALCULATE-FITNESS(P; U P;)
¢ | P; — ADD-NONDOMINATED(F;)

7 if W < N then

8 | P/ « P; UBEST-DOMINATED(F;)
9 end

10 if m > N then

1 | P/ « TRUNCATION(P;)

12 end

13 | P; « GENERATE-OFFSPRING(P;)

14 t—t+1

15 end

16 T « }Tt

17 return T;

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is
a non-dominated sorting based evolutionary algorithm for multi-
objective optimization [6]. It is very similar to SPEA-II with a
few key differences. Instead of using the concept of strength, it
chooses the best test cases via the FAST-NONDOMINATED-SORT
algorithm. This algorithm finds the current test cases forming the
Pareto front, and adds them to the next generation. This is repeated
until the population size is reached. Furthermore, NSGA-II uses
crowding-distance in order to maintain a more diverse solution
set, while SPEA-II uses the k-th nearest neighbor technique. Once
the population size has been reached, it is evolved via the same
operators as SPEA-II.

2.2 Test Case Generation

Tests have always been necessary, yet laborious to write, therefore
many techniques have been proposed over the years to automate
this process. Examples being, symbolic execution [5], feedback-
directed random generation [12], and search-based software testing
(SBST) [10], with the latter being the category SPEA-II falls in.
Search-based Software Testing (SBST) is the practice of using
ameta-heuristic optimization search technique, for instance Genetic



Algorithms, to generate test cases [11]. The search is guided by a
fitness function, which can calculate the distance to the objectives,
and thereby assess solutions. The goal of SBST is to evolve test
cases in order to reduce the distance to and eventually cover all
objectives.

In the context of test generation as a many-objective optimization
problem, objectives are the individual distances to all test targets
under test [13]. The definition of distance depends on the selected
coverage type. For example, the distance for branch coverage con-
sists of approach level [20] and branch distance [7]. Approach level
is a heuristic that measures the number of control dependencies
between the execution trace and target branch, with a lower ap-
proach level indicating a more direct path to the objective. Branch
distance finds the conditional expression where the execution di-
verges from the target and calculates the distance to fulfilling the
expression. Examples of meta-heuristic search algorithms are Many
Independent Objective (MIO) [3], Whole Suite with Archive (WSA)
[17], and DyNaAMOSA [14]), with studies showing that DyYNAMOSA
is more effective than its peers for Java [15] and Python [9] classes.

Dynamic Many-Objective Sorting Algorithm (DYynaMOSA)
is an extension of NSGA-II that incorporates domain knowledge
to make the algorithm more suitable towards automatic test case
generation. DYNAMOSA is an improved version of Many-Objective
Sorting Algorithm (MOSA), which added preference sorting, and
archiving to NSGA-II. DYNAMOSA improved on MOSA by adding
dynamic target selection.

MOSA uses preference sorting in order to favor extreme so-
lutions that are closest to one or more objectives, over trade-off
solutions that are non-dominated due to being good in multiple
objectives. For instance, the vector [0, 2], would be favored over
[1,1] as it is closest to covering an objective. These solutions get
prioritized, because in the context of test generation, the only so-
lutions that are relevant, are ones that actually cover one or more
targets. The preference criterion is necessary, as NSGA-I1I has scala-
bility issues with solving problems with more than three objectives
[8]. This is due to the number of non-dominated solutions growing
exponentially with the number of targets. Hence, sorting based on
the property of Pareto dominance becomes ineffective, making the
search process akin to a random search. SPEA-IT shares this same
flaw, and will therefore also need preference sorting in order to
efficiently generate test cases. MOSA maintains an archive which
stores the best solution for each objective, which also serves as the
final test suite that is returned. By maintaining this archive, the
search can be focused on the remaining uncovered targets, this
however is a flaw of MOSA.

The problem with optimizing for all uncovered objectives, is
that it includes unreachable ones. DYNAMOSA addresses this by
adding dynamic target selection, meaning that the objectives to be
covered are constantly changing. Branches are often dependent on
each other, for example nested if statements, the dependent branch
can only be covered once the first branch is covered. Therefore,
with dynamic target selection, the dependent branch will only be
optimized for once it can be reached.

3 APPROACH

This chapter will discuss how the SPEA-IT algorithm was adapted
from a numerical context into the test case generation domain, and
how it was modified into the DYNASPEA-II algorithm.

3.1 SPEA-II Adaptation to Test Case generation

The baseline version of SPEA-II had to be changed in order to
make it suitable for test case generation. In this paper, we approach
automatic test case generation as a many-objective optimization
problem, following the concept proposed by Panichella et al. [4]. We
consider the distance to each test target as an individual objective
to be optimized. Thus, a candidate solution is a singular test case,
whose fitness is defined as a vector of k values, with each value
representing the distance to an objective. We use these distances
to perform the fitness calculation of SPEA-II, that was defined in
chapter 2. For the baseline version of SPEA-II, solutions are being
compared on every objective to determine their raw fitness and
diversity.

3.2 DyYNaAMOSA Features Adaptation

The three DYNAMOSA features, test archiving, preference criterion,
and dynamic target selection were added to SPEA-II to create
DYNASPEA-II, which can be seen in algorithm 2. The changes from
the baseline version have been highlighted in orange, red, and blue
respectively.

Archiving has been added, via an additional external archive.
This archive stores the solutions which are closest to one or multi-
ple objectives and returns it as the final test suite. Meaning, that the
new algorithm contains two external archives. In order to avoid con-
fusion, the original SPEA-IT archive will be referred to as the SPEA-
archive, while the new archive will be called the MOSA-archive.
The two archives serve distinct purposes. The former stores the
best solutions across generations, to serve as the mating pool for
the next generation, while the latter is not directly involved in
the evolutionary process but is maintained to guide the search
towards uncovered targets. The MOSA-archive functions via the
UPDATE — ARCHIVE method. UPDATE — ARCHIVE takes a pop-
ulation and updates the archive to store the best cases for every
objective, picking the shortest test solution in case of a draw. It
starts off by evaluating the initial population (line 6 of algorithm 2)
and is called again every time new solutions are created (line 20).

Preference criterion is incorporated by modifying the environ-
mental selection method. The new environmental selection starts
by finding all solutions closest to one or more objectives and storing
themin frontZero (line 8 of algorithm 2). Moreover, all test cases in
frontZero are assigned rank 0 to increase their likelihood of being
picked as parents. If the length of frontZero is less than the size of
the SPEA-archive, normal SPEA-II environmental selection is per-
formed with the remainingPopulation and remainingSize (lines 11
to 18 in algorithm 2). The remainigPopulation variable is declared
as the union of the population and the SPEA-archive, minus all
solutions in frontZero (line 9), and remainingSize as the differ-
ence between the archive size and length of frontZero (line 10).
The final mating pool is the union between frontZero and the re-
sults of the baseline SPEA-II environmental selection, from which
offspring are generated (line 19)



Dynamic target selection is the final addition to our algorithm,
meaning that the search process now only optimizes for objectives
that are reachable. This is done via the control dependency graph
(CDG), which determines which targets are independent of oth-
ers. The subset of independent targets get initialized as U (line
6 of algorithm 2) and is updated once new test cases are gener-
ated via the UPDATE — TARGETS method (line 21). The methods
affected by this feature are CALCULATE — FRONT — ZERO, and
CALCULATE — FITNESS. It is important to note that dynamic tar-
get selection, does not directly generate better tests, as the same
individuals will be selected with or without this feature in the af-
fected methods. The search will, however, complete faster as there
are fewer objectives to evaluate. Given the limited time resources,
this can potentially indirectly lead to higher coverage, as more time
can be spent on evolving the population.

Algorithm 2: DYNASPEA-II

Input

U ={u1,...,um} the set of coverage targets of a program
Population size N

Archive size N

G = (N, E, s): control dependency graph of the program
¢ : E — U: partial map between edges and targets
Output:A test suite T

begin

Ux « targets in U with no control dependencies

Py < RANDOM-POPULATION(N)

4}7()(—@

[

N

©w

=Y

Us « UPDATE-TARGETS(U, G, ¢)

while not (search_budget_consumed) do

s | Z < CALCULATE-FRONT-ZERO(P; U Py, Ux)
o | R ((PLUP)\2)

10 S—N-|Z|

1 F; « CALCULATE-FITNESS(R, Ux)

12 | P; « ADD-NONDOMINATED(F;)

13 if m < S then

N

14 \ P; «— P, UBEST-DOMINATED(F;)
15 end

16 if W > S then

17 | P < TRUNCATION(P;)

18 end

19 | P; «— GENERATE-OFFSPRING(P; U Z)

20

21 Us «— UPDATE-TARGETS(U+, G, ¢)
22 te—t+1

23 end
24 T

5 return T;

N

4 STUDY DESIGN

This chapter details how we designed and carried out the experi-
ment to determine how well SPEA-II and DYNASPEA-II perform
in automatic test case generation.

4.1 Research Questions

In order to gauge the performance of DYNASPEA-II, and the Dy-
NAMOSA enhancements, the experiment will answer the following
questions:

® RQi:How does DYNASPEA-II perform compared to DYNAMOSA
on branch coverage?

e RQy: How effective are the additions of DYNAMOSA features
to SPEA-II?

4.2 Configurations

In order to answer the research questions, the following pairs of
algorithms will be compared.

(1) DYNASPEA-II vs. DyYNAMOSA.
(2) DYNASPEA-II vs. SPEA-II.

(3) MOSASPEA-II vs. SPEA-II

(4) DYNASPEA-II vs. MOSASPEA-II

The first comparison will answer the first research question, by
comparing the novel DYNASPEA-II against the state-of-the-art Dy-
NAMOSA. The second research question will be answered by pairs
two through four. By comparing all SPEA-II variants, we can see
how impactful each individual enhancement is, and the total effect.
SPEA-II is the baseline version of the algorithm that was adapted
to case generation (depicted in algorithm 1), and searches while
considering every objective. DYNASPEA-II is the algorithm shown
in algorithm 2’s pseudocode, it is SPEA-II with all DyNAMOSA
enhancements, including preference sorting, an additional archive,
and dynamic target selection. MOSASPEA-II is the same algorithm
as DYNASPEA-II, but rather than only considering the objectives
that are uncovered and independent of others, it considers all un-
covered targets. This variant will also be tested to see the impact
of dynamic target selection.

4.3 Prototype

To answer the research questions, SPEA-II, MOSASPEA-II and
DYNASPEA-II have been implemented in the SYNTEST-CoRE? frame-
work, which also already contains the implementation for Dy-
NAMOSA. The algorithms will be evaluated via the
SYNTEST-JAVASSCRIPT-BENCHMARK? repository.

Shttps://github.com/syntest-framework/syntest-core
“https://github.com/syntest-framework/syntest-javascript-benchmark
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4.4 Benchmark

The dataset of SYNTEST-JAVASSCRIPT-BENCHMARK consists of classes
from five different JavaScript projects, namely Express®, Comman-
der.st, Moment.js7, ]avaScriptAlgorithmsg, and Lodash’. This bench-
mark has been used in literature before for unit-level test case gen-
eration [18], and has been visually inspected to ensure it is diverse
and of high quality. The projects were chosen based on their popu-
larity, measured in GitHub stars. From these projects, classes with
a Cyclomatic Complexity > 2 were selected. For our experiment,
we removed some files that were causing problems when running
the experiment. Specifically, the entire Moment project, applica-
tion.js from Express and dijkstra.js from JavaScript-Algorithms were
omitted, leaving 36 remaining classes.

4.5 Parameter Settings

For this experiment, we have chosen to employ the default parame-
ters used in similar experiments [14] [18], resulting in the following
selection:

e Population size: 50 individuals

o SPEA-Archive size: 50 individuals

o Crossover: single-point crossover with crossover probability
of 0.75

e Mutation: uniform mutation with mutation probability of
1/n, with n being equal to the number of statements in the
test case.

o Selection: tournament selection with size set to 10

e Search timeout: 60 seconds

The population- and archive size are less than the default value of
SPEA-II in numeric experiments [23], because search time is of
paramount importance in our experiment. Since we are comparing
test cases rather than numbers, it takes longer to evaluate a popu-
lation. The larger the population, the more time it takes to evaluate
one generation, leading to less evolution. Therefore, we have chosen
to opt for a smaller population- and archive size. These hyperpa-
rameters were used for all algorithms, with DYNAMOSA lacking
the SPEA-archive parameter as it is not part of that algorithm.

4.6 Experimental Protocol

To answer our research questions, this experiment ran every algo-
rithm on every class and compared the results. There were six algo-
rithms (SPEA-II, MOSASPEA-II, DYNASPEA-II, NSGA-II, MOSA,
DyYNAMOSA) and 36 classes for a total of 216 instances. One run
has a search budget of 60 seconds, with another ~30 seconds for
pre- and post-processing. This results in one run of the experiment
taking (216 instances X 90 s)/(60s X 60s) ~ 5.4 hours of consecutive
computation time. Additionally, to counter the inherent random-
ness in automatic test case generation, the experiment was run ten
times. Leading to a final sum of (5.4 h X 10 runs) ~ 54 hours. The
algorithms that were run but not mentioned in section 4.2 Config-
urations, are used as baselines to assess whether the algorithms
have been correctly implemented (e.g.,NSGA-II should perform

Shttps://expressjs.com/
®https://tj.github.io/commander.js/
"https://momentjs.com/
8https://github.com/trekhleb/javascript-algorithms
“https://lodash.com/

worse than DYNAMOSA). The experiment was performed on a sys-
tem with 2 AMD EPYC 7H12 (64 core, 3293.082 MHz, 256 threads)
processors with 512 GB of RAM, running 100 cores in parallel.

The results will be statistically analyzed to see if one algorithm is
statistically superior to another. This will be done by first applying
the non-parametric Wilcoxon test with a p-value of 0.05 [21], to
determine if there is a statistically significant difference. To measure
the effect size, the Vargha-Daleney A1, statistic [19] is used.

5 RESULTS

This chapter discusses and analyses the results, in order to answer
the research questions stated in Chapter 4. In the following sections,
when comparing the code coverage of two algorithms, we refer to
the difference in percentage points.

5.1 RQ1: How does DYNASPEA-II perform
compared to DyNAMOSA on branch
coverage?

In Table 1, we report the outcomes of our experiment by show-
ing the median branch coverage and Inter-Quartile-Range (IQR)
for every class and every algorithm. The largest values per row
have been highlighted in gray, with no cells being highlighted if
all values are equal. Note that nine files are missing from the ta-
ble, all from JavaScript-Algorithms, namely articulationPoints.js,
bellmanFord.js, bf TravellingSalesman.js, detectDirectedCycle.js, de-
tectUndirectedCycle.js, eulerianPath.js, floydWarshall js, hamiltoni-
anCycle.js, and stronglyConnectedComponents.js. No algorithm man-
aged to cover any branches, because they required graphs as an
input parameter, which are very difficult to generate. The classes
have, therefore, been omitted from the table, but are still taken into
account when calculating statistics across all classes.

Table 1 shows that DYNASPEA-II has a median branch cover-
age of 40.5%, and DYNAMOSA achieves a coverage of 39.9%. The
file with the largest difference, in favor of DYNASPEA-I, is depth-
FirstSearch.js with a 16.7% increase on the median. On the other
hand, breadthFirstSearch.js shows the largest gap on the side of
DyNaAMOSA, with a 6.3% difference.

An inspection of Table 1 gives the idea that DYNASPEA-II and
DYNAMOSA are generally equals. The median branch coverage
across the entire benchmark only differs ~ 0.006 and for most
classes the scores are almost identical. This intuition is proven by
Table 2, which displays the result of the non parametric Wilcoxon
test and Vargha-Daleney A, statistic. The #Win column indicates
the number of times when the left algorithm shows a statistically
significant improvement compared to the right algorithm. The No
diff. column represents the number of instances where there is no
statistically significant difference to suggest a distinction between
the two algorithms. Lastly, the "#Lose" column shows the number
of instances where the left algorithm has statistically worse results
than the right algorithm. Additionally, the "#Win" and "#Lose"
columns also include the Ap; effect size, which is categorized as
Small, Medium, Large, or Negligible. With the boundaries for these
categories being

e A12 < 0.56: Negligible effect size
® 0.56 < A12 < 0.64: Small effect size
e 0.64 < A12 < 0.71: Medium effect size
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e A12 > 0.71: Large effect size

Table 2 shows that for all 36 classes, there is no statistically sig-
nificant difference between DYNASPEA-II and DYNAMOSA in the
number of branches covered, meaning that the algorithms have
equal performance.

5.2 RQ2 How effective are the additions of
DyNAMOSA features to SPEA-II?

The results for all variants of SPEA-II are shown in Table 1, with
SPEA-II having a median branch coverage of 39.4%, and MOSASPEA-
II and DYNASPEA-II having an equal coverage of 40.5%. Comparing
SPEA-II to DYNASPEA-II, the latter has a higher median coverage
in five files, ranging from 2.2% to 16.7% with an average increase of
4.92%. The smallest increase manifests in utils.js, with the largest
occurring in depthFirstSearch.js. The only decrease in performance
takes place in breadthFirstSearch.js, going from 18.8% to 12.5%. From
Table 2 we observe that DYNASPEA-II is significantly better than
SPEA-II in five classes, those being the ones where DYNASPEA-II
has higher median branch coverage. This results in a significant
increase in branch coverage in 13.9% of classes. For the other 31
classes, there is no statistically significant difference. These im-
provements can be attributed to the DyNAMOSA features that were
added to SPEA-II to optimize it for the domain of test case genera-
tion, as the other variables remained the same.

To isolate the effects of the preference criterion in combination
with the MOSA-archive, and dynamic target selection, Table 2 also
compares MOSASPEA-II with SPEA-II and DYNASPEA-II. From
Table 2 we can discern that there is no significant difference be-
tween MOSASPEA-II and DYNASPEA-II for any class, indicating
that dynamic target selection does not aid in improving branch
coverage. However, when comparing the results from MOSASPEA-
II vs. SPEA-II to DYNASPEA-II vs. SPEA-II we see that there is a
difference of two classes, those being help.js and depthFirstSearch.js.
Hence, dynamic target selection has assisted in a significant manner.

6 THREATS TO VALIDITY

This chapter discusses potential concerns to the validity of the
research, and what measures were taken in order to address these
threats.

Construct validity refers to how well the measure of a con-
struct, computes the intended concept. In our case, how well branch
coverage (construct), computes algorithm performance (concept).
Branch coverage is a widely used metric in the literature [14], and
gives a reasonable estimation of an algorithm’s effectiveness in test
case generation.

Internal validity refers to the extent that our findings are a
result of manipulated variables, rather than confounding factors.
The first potential threat is randomness. The stochastic nature of
evolutionary algorithms can lead to findings that do not accurately
reflect reality. In order to combat this, we repeated the experiment
10 times and took the average to get more precise results. Another
potential threat is in our choice of hyperparameters. We used default
values used in literature in similar experiments [18]. Furthermore,
previous research has shown that while adjusting these parameters

can affect the performance of the search algorithm, the default
values yield reasonable outcomes [4].

External validity refers to whether the findings of our study are
generalizable and can be applied to other contexts. Our benchmark
consists of 36 classes from four different projects. These classes
are diverse in multiple factors, such as size, purpose, and syntax.
However, generalizability can be improved by increasing the size
of the benchmark.

Conclusion validity refers to the degree that the conclusions
we reach are reasonable. We ran all algorithms on the same system,
to create a controlled environment. Furthermore, every algorithm
was run 10 times on different seeds to ensure that there was no one
seed where a particular algorithm had an advantage. In terms of
analysis, we used the non-parametric Wilcoxon test and Vargha-
Daleney A, statistic to measure statistical significance and effect
size respectively. All our conclusions are based on these tests show-
ing statistically significant results.

7 RESPONSIBLE RESEARCH

This chapter outlines the ethical considerations of the project and
the reproducibility of the experiment.

7.1 Research Integrity

The goal of this research is to investigate how well SPEA-IT per-
forms with the enhancements of DYNAMOSA, not to replace Dy-
NAMOSA. If it had better performance, this would have been a
nice bonus, but it was not the primary objective. The main goal
was to fill the gap in the literature. Therefore, there is no incentive
to falsify the results, or bias the dataset to get more favorable re-
sults. Additionally, the dataset was sampled from multiple different
sources in order to make it as diverse and unbiased as possible.

7.2 Reproducibility

Automatic test case generation is inherently a stochastic process, so
it is improbable that the exact same results will be acquired when
reproducing the experiment. To combat this, however, multiple
runs were performed, and the average result was taken. Therefore,
the results should be comparable when reproducing the experiment
on similar equipment. It is important to note that the specifications
of the machine where the experiment is run on, can greatly vary
the results. Hence, the optimal way to reproduce the empirical
evaluation is to achieve an environment that is as similar as possible.
A replication package has been provided to help others recreate
the experiment.

8 CONCLUSION AND FUTURE WORK

In this paper, we explored the potential of SPEA-II for automatic
test case generation. This was done by adapting the algorithm to
make it suitable for test case generation, and thereafter enhancing
it with features from the state-of-the-art algorithm DyNaMOSA.
We conducted an empirical experiment, testing multiple algorithms
on a diverse benchmark consisting of 36 JavaScript classes, sam-
pled from 4 popular JavaScript projects. Our results show that the
DYNAMOSA modifications to SPEA-II significantly improve the
branch coverage in 13.9% of classes, with an average increase of



Benchmark File Name SPEAII MOSASPEAII DynaSPEAII DynaMOSA
Median IQR Median IQR Median IQR Median IQR
help.js 0.470 0.015 | 0.492 0.015 | 0.500 0.000 | 0.500 0.000
Commander.js option.js 0.500 0.000 | 0.500 0.000 | 0.500 0.000 | 0.500 0.000
suggestSimilar.js 0.719 0.023 | 0.719 0.000 | 0.719 0.000 | 0.719 0.000
query.js 0.667 0.000 | 0.667 0.000 | 0.667 0.000 | 0.667 0.000
request.js 0.326 0.000 | 0.326 0.000 | 0.326 0.000 | 0.326 0.000
Express response.js 0.163 0.014 | 0.196 0.015 | 0.190 0.011 | 0.196 0.014
utils.js 0.413 0.022 | 0.435 0.016 | 0.435 0.022 | 0.424 0.022
view.js 0.375 0.000 | 0.375 0.000 | 0.375 0.000 | 0.375 0.000
breadthFirstSearch.js  0.188 0.125 | 0.125 0.125 | 0.125 0.094 | 0.188 0.125
depthFirstSearch.js 0.000 0.000 | 0.167 0.167 | 0.167 0.167 | 0.000 0.167
kruskal.js 0.200 0.000 | 0.200 0.000 | 0.200 0.000 | 0.200 0.000
prim.js 0.167 0.000 | 0.167 0.000 | 0.167 0.000 | 0.167 0.000
JavaScript-Algorithms Knapsack.js 0.575 0.000 | 0.575 0.000 | 0.575 0.000 | 0.575 0.000
KnapsackItem.js 0.500 0.000 | 0.500 0.000 | 0.500 0.000 | 0.500 0.000
Matrix.js 0.079 0.000 | 0.079 0.000 | 0.079 0.000 | 0.079 0.000
CountingSort.js 0.571 0.000 | 0.571 0.000 | 0.571 0.054 | 0.571 0.000
RedBlackTree.js 0.294 0.000 | 0.294 0.000 | 0.294 0.000 | 0.294 0.000
equalArrays.js 0.833 0.000 | 0.833 0.000 | 0.833 0.000 | 0.833 0.000
hasPath.js 1.000 0.000 | 1.000 0.000 | 1.000 0.000 | 1.000 0.000
random.js 1.000 0.054 | 1.000 0.000 | 1.000 0.000 | 1.000 0.000
result.js 0.800 0.000 | 0.800 0.000 | 0.800 0.000 | 0.800 0.000
Lodash slice.js 0.950 0.038 | 1.000 0.000 | 1.000 0.000 | 1.000 0.000
split.js 0.875 0.000 | 0.875 0.000 | 0.875 0.000 | 0.875 0.000
toNumber.js 0.650 0.000 | 0.650 0.000 | 0.650 0.000 | 0.650 0.000
transform.js 0.875 0.083 | 0.833 0.167 | 0.875 0.146 | 0.917 0.146
truncate.js 0.559 0.000 | 0.559 0.000 | 0.559 0.000 | 0.559 0.000
unzip.js 1.000 0.000 | 1.000 0.000 | 1.000 0.000 | 1.000 0.000
Median across all classes 0.394 ‘ 0.405 0.405 ‘ 0.399

Table 1: Median branch coverage and Inter-Quartile-Range per algorithm, with the cells of the largest values highlighted in

gray.

Comparison #Win #No diff #Lose

Negl. Small Medium Large Negl. Negl. Small Medium Large
DYNASPEA-II vs. DYNAMOSA - - - - 36 - - - -
DyYNASPEA-II vs. SPEA-II - - - 5 31 - - - -
MOSASPEA-II vs SPEA-II - - - 3 33 - - - -
DyYNASPEA-II vs MOSASPEA-II - - - - 36 - - - -

Table 2: Results of statistical analysis w.r.t. branch coverage

4.92%, and that the DYNASPEA-II algorithm showed equal perfor-
mance to DYNAMOSA.

While this study has provided valuable insights into the perfor-
mance of SPEA-II in generating tests for JavaScript classes, there
are several avenues to explore for future work to expand upon these
findings. Firstly, broadening the scope of the benchmark by includ-
ing more files from different sources. A more expansive benchmark
leads to increased reliability, and generalizability of the results.

Secondly, investigating the impact of different hyperparameters
on the performance of the algorithm. Due to time constraints, we
chose the default parameters, but conducting hyperparameter ex-
periments can potentially yield improved results. Lastly, expanding
the investigation to different programming languages, specifically
static ones. In our research, we only looked at the performance
of SPEA-II for JavaScript. Testing our novel algorithm in a static
language, for instance Java, can produce valuable insights on how



generalizable the performance of SPEA-II is across different types
of programming languages.

Overall, this research contributes to the field of automatic test
case generation and opens up new possibilities for future research
to explore and refine the SPEA-II algorithm for generating tests in
various contexts.
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