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With low-level vehicle automation already available, there is a necessity to estimate its effects on traffic flow, especially if these could
be negative. A long gradual transitionwill occur frommanual driving to automated driving, inwhichmany yet unknown traffic flow
dynamics will be present.These effects have the potential to increasingly aid or cripple current road networks. In this contribution,
we investigate these effects using an empirically calibrated and validated simulation experiment, backed up with findings from
literature. We found that low-level automated vehicles in mixed traffic will initially have a small negative effect on traffic flow and
road capacities. The experiment further showed that any improvement in traffic flow will only be seen at penetration rates above
70%. Also, the capacity drop appeared to be slightly higher with the presence of low-level automated vehicles. The experiment
further investigated the effect of bottleneck severity and truck shares on traffic flow. Improvements to current traffic models are
recommended and should include a greater detail and understanding of driver-vehicle interaction, both in conventional and in
mixed traffic flow. Further research into behavioural shifts in driving is also recommended due to limited data and knowledge of
these dynamics.

1. Introduction

Road vehicles have gradually become technologically more
advanced throughout the past decades with a focus on
advancing vehicle safety and comfort. Although vehicle
automation has been on the horizon for just as long [1], it is
only since the turn of the century that it has started to find its
way into production vehicles. Current low-level automated
vehicles have technologies such as (adaptive) cruise control
and lane-keeping assistance. These advancements form the
start of the era of vehicle automation from vehicles that are
human-controlled to vehicles that are (partially) automati-
cally controlled [2, 3]. With this, safety and comfort remain
a focus for vehicle manufacturers; however, improved traffic
throughput is also now seen as an achievable goal through
(partial) vehicle automation [4, 5].

Different definitions for the levels of vehicle automation
exist. Arguably, the most used definition is that of the Society
of Automotive Engineers (SAE) [7], which defines five levels,
with the also commonly used definition by Gasser and
Westhoff [8], which defines four levels of automation. These
levels are (1) driver assistance, (2) partial automation, (3)

high automation, and (4) full automation. The SAE scale has
an additional level, “conditional automation,” which sits in
between partial and high automation. Driver assistance and
partial automation are considered low levels of automation
in which the driver is still required to monitor the system
and to perform certain tasks [7, 9]. In this paper, the use of
the term “vehicle automation” refers ambiguously to any level
of automated technology, while the main focus of the contri-
bution is on the lower levels of automation.

There is no lack of predictions stating that automated
vehicles will solve many of the current problems experienced
on roads today, such as congestion, traffic accidents, and lost
time [10, 11]. Many of these claims are based outside of the
scientific community. However, many similar claims are also
made within the community, often based on assumptions
and forecasts that lack sufficient validation and realism [12].
This cannot always be faulted, as there is still so little known
about the actual real-life consequences of automated vehicles
in many situations [2, 3, 13].

There is a lot of evidence that suggests that automated
systems will be able to improve traffic flow in the future with
sufficient penetration [14–17] and cooperation [18]. These
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advancements would allow for higher operational capacity
and may even allow for a reduction in physical infrastructure
[19]. However, in the coming years, there will be a slow
transition towards (partial) vehicle automation that may not
be as positive for traffic flow and operational road capacity.
This has also been identified by some, with it also being stated
that the wider effects of driver assistance and partial vehicle
automation systems are not yet sufficiently understood [20].
Some mechanisms that cause much of this uncertainty are
portrayed to the unknown effects in practice. These are the
trade-off between safety and efficiency [12, 21], interaction
between automated and nonautomated vehicles [2, 22], traffic
flow stability [23, 24], and a large number of human factor
issues [12, 25, 26], such as user acceptance and meaningful
human control.

While many in science and industry focus on the utopic
future of vehicle automation, there will be many years to
decades in which there is a real possibility that vehicle
automation may have a negative effect on traffic flow [24,
27]. This forms a very real and demanding challenge for
road authorities in terms of traffic management and control
strategies and in terms of strategic and tactical planning
of investment decisions [28]. A significant decrease in road
capacity for a vast number of years cannot go unanswered
without mitigating action at a cost of millions of dollars or
euros of damage to the local economy in delays. On the other
hand, expensive expansion and construction of infrastructure
also cannot be deemed acceptable if a significant increase in
capacity due to vehicle automation could become reality.This
forms a difficult balance in strategic decision-making to deal
with the effects of vehicle automation, while at the same time
somuch remains uncertain in relation towhat exactly the real
effects will be and when and how long they are expected to
prevail.

To aid this discussion, this contribution lays out the
main foreseen effects of vehicle automation of traffic flow
based on a state-of-the-art review of literature and gradually
growing understanding of many of the aspects that are
expected to influence traffic flow. Further quantification of a
number of the effects is estimated in simulation experiments
that apply empirically derived characteristics and behaviour
of specific types of low-level vehicle automation systems.
Application of empirically derived data allows amore realistic
estimate, compared to widely applied assumptions. For other
effects that cannot yet be realistically modelled due to a
lack of behavioural and technological ground truths, further
estimations are made of their potential effects based on
current advances and best guess estimates.

In the next section, the current state of the art on the
effects of traffic flow in mixed traffic is given, especially
focusing on vehicle dynamics, traffic flow phenomena, and
some additional behavioural aspects. In Section 3, the results
of an experimental case are given, in which the effects of low-
level automated vehicles on traffic flow are estimated for the
transition period towards vehicle automation. A discussion
of all of the findings from literature and the case is given in
Section 4, followed by the main conclusions in Section 5.

2. Effects of Automated Vehicles on Traffic
Flow in Mixed Traffic

While the theoretical opportunities of vehicle automation
to revolutionise traffic flow are undeniable, they are not
expected to be achievable for a number of decades. In the
meantime, traffic has already started to undergo a slow transi-
tion fromhuman-controlled vehicles to (partially) automated
vehicles.Therefore, this section begins with an analysis of the
possible time frame in which certain levels of automation
may be expected. This is followed by a concise review of
literature on the potential effects from changing vehicle-
driver dynamics and the effects on traffic phenomena. The
wider effects of driving behaviour are not explicitly consid-
ered in this research, as the quantitative effects on traffic
throughput have not been clearly shown yet from research.
There are also potential behavioural effects for drivers of
conventional vehicles reacting to automated vehicles, which
are again insufficiently researched at this time.

2.1. Advancement of Automated Driving. Giving an accurate
estimate of the uptake of automated technology is extremely
difficult and is heavily dependent on many factors, such as
technological development, regulatory incentives or barriers,
and economic development [29, 30]. Furthermore, once a
technology is available, it will still take a considerable time
before it demands a considerable share of vehicles due to
generic market adaption and phasing out of the current
vehicle fleet which usually takes approximately 15 years [28].
Many recent attempts have beenmade to estimate the deploy-
ment horizon of automated vehicles. A timeline is given in
Figure 1 showing an estimation of the deployment of various
levels of vehicle automation in sufficiently large numbers
(>1% penetration of vehicle population). This timeline is an
estimate based on a wide range of various estimations from
academia, industry, and government [27–35]. The figure is
by no means meant to be definitive but is meant to give
an indication of the duration of the transition phase and
what percentages of different automated technologies may
be present simultaneously, which is relevant for simulating
different types of vehicles.

Based on the cited literature, the vehicle fleet share of
automated vehicles will start to significantly increase from
2020 onwards but may still be less than 25% of all vehicles in
2030. This is not a conservative estimate and shows that the
transitional phase from conventional vehicles to automated
vehicles is going to be long, lasting many decades [28],
which makes it incredibly important to carefully consider.
The deployment and share of vehicle cooperationwill initially
lag behind the penetration rate of automated vehicles but
will start to increase from 2025 onwards; however, it will
still lag behind due to early automated vehicles remaining
uncooperative (note many will be “connected”) [13, 19, 34].
For this reason, initial estimates of the effects of vehicle
automation should be strongly reluctant to depend too
heavily on the presence of any significant share of cooperative
vehicle technology. It is conceivable that many, if not most,
of the automated vehicles will be connected vehicles from
an early stage [15, 18], which means that they will be able
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Figure 1: Estimated automated vehicle share on roads.

to communicate information, even if that does not mean
cooperation. Some difficulties are foreseen for connectivity,
due to challenges in protocols, willingness to share data
between vehicles from different manufacturers, reliability,
and user acceptance [13, 18, 36, 37].Nevertheless, connectivity
will make it easier to gradually switch to vehicle cooperation.
In this intermediate phase, there will be a varying share of dif-
ferent levels of automated vehicles and conventional vehicles
[13]. Traffic will be characterised by human drivers reacting,
as they always have, to other conventional vehicles but also
needing to consider vehicles that are no longer controlled
by a human being. At the same time, vehicles with some
level of automation will be present and will also be diverse
in capability and technological advancement. These vehicles
will need to consider not only conventional vehicles but also
actions of other automated vehicles. Vehicle connectivity and
cooperation have been rightly hailed as the main requisite to
achieve many of the traffic flow and safety gains [5, 18]. How-
ever, cooperative capability and the level of cooperative pen-
etration will initially be too low to be effective and therefore
cannot be relied on [17, 18, 38].

In the following subsection, aspects of this transitional
phase are discussed, aided by the current state of the art on
these subjects. The main focus in the discussion relates to
automation systems and levels of automation which already
exist or are currently close to deployment and for which
tangible information is available about their effects in mixed
conventional-automated traffic and are expected to be present
in this phase of deployment. To that extent, the main focus is
on driver assistance systems (SAE level 1) and partial automa-
tion (SAE level 2), while not disregarding higher levels of
automation.

2.2. Traffic Flow Effects

2.2.1. Headway. Much research has been performed on the
theoretical benefits of vehicle automation on traffic flow, with
the majority of the work carried out using microsimulation
[12, 14, 16, 39]. With respect to systems that control car-
following behaviour, such as Adaptive Cruise Control (ACC),
these approaches may be valid, assuming that the accompa-
nying assumptions are also valid.That, however, is not always
the case [12]. The maximum flow of a road, the capacity,

is inversely related to the minimum average time headway
between vehicles on the road: 𝑞cap = 1/𝐸[𝑡hw]. In general,
a highway is likely to have a capacity between 1800 and 2400
vehicles per hour per lane if only conventional vehicles are
present, which translates to operational time headways of
on average between 1.5 and 2.0 seconds. In practice, time
headways are typically much shorter. This is because the
average time headway that governs capacity is a result of amix
of platooning traffic with larger gaps between platoons. Note
that when discussing car-following, especially in relation to
modelling, one often refers to a desired time gap, which is the
time that a driver would like to follow a predecessor at, not
including the length of a vehicle.The time headway considers
the time difference including the length of the leading
vehicle. There is a need to be careful to make a distinction
between time headway and time gap and between desired
time headway and average time headway (or time gaps), as
discussed here.

When considering the longitudinal effect of vehicle
automation on operational time headways and time gaps,
there are two main things to consider: the actual operational
time gap of automated vehicles and their influence on
surrounding traffic. The latter is considered later in this sub-
section in the paragraph on “vehicle dynamics.” Experiments
carried out in studies on ACC systems have applied varied
desired time gaps [40]. Numerous recent studies used time
gap settings in a range between 1.0 and 3.0 seconds for the
desired time gap of the ACC vehicles, with a main focus
on desired time gaps of 1.2–1.8 seconds [14, 16, 17, 20, 26,
30, 39, 41–43]. Although these are simulation studies, the
authors have derived the values from practice. Desired time
gaps of human drivers are thought to generally be in the
range of 0.5–1.5 seconds [44, 45]. Note again that these are
not operational headways that determine capacity but the
desired gaps of drivers. This means that the use of ACC in
traffic, from a headway point of view, will lead to higher
average time headways and therefore to lower capacities. The
results of traffic flow effects based on simulations give varying
outcomes. Both Calvert et al. [2] and Hoogendoorn et al. [12]
suggest that the quality of simulations and their validity are
paramount to results being valid. It is questioned to what
extent all simulations are sufficiently valid due to a lack of
ground truths or use of restrictivemodels, such asmodels that
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insufficiently consider driver behaviour. A previous study
[14, 15] found that a time gap of 1.4 seconds is the critical
point between deterioration and improvement of traffic flow
although only above a penetration rate of 60%. Others have
found vastly varying results from −5% to +10% on capacity
[3], however often applying models that may advantage a
more positive outcome due to the mentioned restrictions on
realistic driving behaviour. For this reason, a greater amount
of empirical evidence is required [2]. It should also be noted
that improving technology and string-stability issues also
may play a role [24, 46, 47].

2.2.2. Lane-Changing. Although traffic flow capacity is
defined by the longitudinal time headways and time gaps,
these are also greatly influenced by lateral movement of
vehicles, mainly involving lane-change manoeuvres. When
a vehicle changes lane, it requires a sufficient gap in the
destination lane and will leave a gap in the origin lane, which
requires and results in larger average time headways in the
two lanes. Therefore, more lane changes will lead to lower
capacities purely based on average time headways. Further-
more, lane changes often lead to other vehicles accelerating
or decelerating and therefore increase traffic heterogeneity,
which is well known to reduce operational capacity. This is
relevant as it has been found that the use of ACC systems
generally leads to fewer lane-changing manoeuvres [6, 48,
49]. There is, however, a possible negative side to this: when
lane changes are made, they tend to be performed earlier
than a human might make them [50]. Furthermore, Lane
Change Assistance (LCA) technology or partially automated
vehicles with LCAmay generally require a large available gap
before changing lanes. While this is alright in free flowing
conditions, in busy traffic this may mean that a desired lane-
change manoeuvre cannot be carried out or a driver may
retake control to manually perform the manoeuvre [43]. It
is unclear to what extent these differences in lane-change
behaviour will impact traffic flow, as research is lacking in this
area at the current time.

2.2.3. Vehicle Dynamics and Interaction. Traffic flow is an
interactive and dynamic process in which vehicle interactions
play an important role in determining its efficiency. The
longitudinal and lateral movements of vehicles are inherently
related to vehicle interaction; however, there are more subtle
effects of interaction on a vehicular level which play a role.
These relate to various stochastic effects and to the level of
homogeneity in traffic flow. Disturbances and heterogeneity
are known to reduce traffic flow capacity, as larger time head-
ways can appear between vehicles [51, 52]. Human behaviour
is inherently stochastic and is wrought with variation on
many levels. This is also the case for the driving task;
drivers are unable to perfectly maintain a constant speed and
following distance, for example, which influences the way
vehicles interact. When this stochasticity is applied to traffic
flow, it results in heterogeneity in traffic and can be observed
in variables such as varying desired speeds between vehicles,
at different times, variable gaps, and lateral variations. For
many of these dynamic processes, a vehicle with automation
technology can perform the same task in a much more

stable fashion. For example, when a desired speed is set, the
vehicle will hardly deviate from this speed, which has been
broadly found from field operation tests [48, 50, 53]. The
same is also the case for acceleration and deceleration of a
vehicle, which are generally performed much smoother and
contribute to a more stable traffic flow [54]. Furthermore, the
reaction time with vehicle automation is vastly smaller than
for conventional vehicles, which means that disturbances
are promptly reacted to, presuming that the time headway
is sufficient for traffic to remain string-stable [55, 56]. At
this point, it must be stated that, to achieve the majority of
homogeneity gains, a significant penetration of vehicles must
be present on the road with longitudinal driving assistance
or partial automation [17, 20]. Due to the requirement of
having significant penetration levels, it is not realistic to
presume that any major stabilising effect will take place
during the transitional period in the coming decade before
cooperation is widely available between vehicles. Finally, in
relation to vehicle interaction, the time required of vehicles
with automated technology to react to other vehicles is much
shorter due to substantially shorter reaction times.

2.2.4. Congestion and Propagation. While local capacity and
flow conditions are probably the most important aspects to
consider for traffic efficiency, other traffic phenomena are also
important to consider on a macroscopic scale. Propagation
of kinematic waves in traffic is highly relevant for the way
local disturbances affect traffic flow along an entire corridor
or network. In particular, congestion propagation is of special
relevance in this respect. String stability of traffic using a
controlled system, such as with ACC, is important and is
relevant when considering propagation of kinematic waves
in traffic. Most research on string stability is focused on
the aggravation or attenuation of disturbances in controlled
automated traffic [55]. Experiments have shown that ACC
has a limited contribution to the stability of traffic flow
[42, 47, 57] if controllers are set at a string-stable value, often
well above 1.0 seconds. For high penetration rates of ACC,
say 60–100%, there is evidence that traffic flow will not be
stable and will aggravate disturbances [55] and can create
and send congestion waves throughout a network. However,
as stated previously, such high levels of low-level automated
systems are not expected any time soon and when higher
penetration rates do appear, the level of automation and,
more importantly, vehicle cooperation will be much higher.
Both of these developments, especially that of cooperation,
have been demonstrated and are widely expected to improve
traffic flow stability [47]. In the meantime, there is very little
solid evidence on the actual effects ofmacroscopic traffic flow
phenomena for low penetration rates without cooperation
and inmixed traffic. Some have generalised the overall effects
to be limited and state that low penetration rates will have
little effect [14, 58]. The truth is really that there are too
many variables and uncertainties to consider on a traffic
microscopic and vehicular level, let alone on a behaviour
level, to be able to make accurate statements on the actual
traffic kinematic effects at this moment. Trafficmodelling has
also yet to completely catch up with the advancements [2],
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Table 1: Traffic flow effects.

Aspect Potential effect Literature

Headway Negative (highly dependent on time-headway settings,
driver-use, and stability) [3, 14, 15]

Lane-changing
(i) Fewer
(ii) Different dynamics

Unclear
Small positive
Small negative possibility

[6, 43, 48–50]

Vehicle dynamic stochastics
(i) Greater homogeneity
(ii) Shorter reaction time in emergency situations

Small positive
Small positive (restricted by low penetration)
Unknown positive (no evidence)

[48, 50, 53–56]

Congestion and propagation Negligible [14, 42, 47, 55, 57]

and even with accurate models still too little is known of the
applicable parameters.

2.2.5. Summary of Effects. Overall, there are many dynamic
processes that will be affected by vehicle automation in
traffic flow, of which varying estimates and evidence exist.
The initial car-following effects are generally expected to
be negative for traffic flow in the transitional phase before
expansive cooperation is available due to higher desired time
gaps. The effects of lane-changing remain understudied and
its total effect may be minimal when considering all aspects
involved. The greatest advantage in the transitional phase in
traffic flowmay be expected to come from a greater degree of
homogeneity in traffic. However, these effects may require a
higher penetration rate than will be readily expected during
2020–2030. Initially, the effect on other traffic phenomena
appears to be limited based on literature, mainly due to the
relatively large penetration rates required to have a substantial
effect. An overview of the main vehicle related effects is given
in Table 1.

3. Experimental Case

From the initial analysis, it is clear that there is a potential
that there may be negative effects on traffic flow in reality
during the transitional phase to vehicle automation.However,
there are many uncertainties to this depending on different
variables. There are three main areas that can be improved
compared to previous (simulation) experiments: the validity
of the applied parameter settings, the realism of the applied
models, and the inclusion of extensive behavioural aspects
of driving. In this experimental case, we will improve on
the first two areas, validity and modelling practices, to
attempt to answer the hypothesis that “low-level automated
systems may have a negative impact on traffic flow.” At the
moment, insufficient quantitative evidence and modelling
methodologies exist to be able to reasonably include the
third aspect of accurate and complete driver behaviour in
reaction to automated vehicles. Note that driving behaviour
will of course be included, just not specifically in relation
to the secondary effects described in the previous section.
Improvements in validity will be gained through use of data
derived from empirical experiments of ACC systems, carried
out by Gorter [6]. These experiments give up to date and
cross-manufacturer information about the operational use of

ACC in practice. Although the data does not give information
on the reaction of other drivers, it does give information
on how the ACC driver and vehicle behave. Improvements
in modelling are included through the use of improved car-
following models including stochastic driver behaviour and
state-of-the-art lane-changing models.

3.1. Applied Model

3.1.1. Integrated SimulationModel. The traffic simulations are
carried out using the Lane-changeModelwithRelaxation and
Synchronization (LMRS) [59], which can be integrated with
any car-following model. The LMRS incorporates relaxation
[60, 61], where small headways are accepted during lane
changes, and synchronization as a form of lane-change
preparation. Consequently, lane changes can occurwith small
initial deceleration and relaxing headways to normal values.
This results in realistic traffic flow characteristics regarding
perturbations from lane changes. The integration is formed
by the use of the car-following model by the LMRS for
gap acceptance and to adjust speed and position for a lane
change, which influences car-following parameters. In our
case, we use the IDM+ [62] as longitudinal model. IDM+
is an adaptation of the Intelligent Driver Model (IDM) [63].
The IDM has previously been found to be a valid basis for
modelling of automated vehicles and extensions have even
been implemented in real automated vehicle tests [16, 64,
65]. The car-following acceleration is determined using (1),
where parameter 𝑎 is the maximum acceleration, 𝑏 is the
maximum comfortable deceleration, V0 is the desired speed,𝑇 is the desired time gap, and 𝑠0 is the stopping distance.
Furthermore, we have speed V, speed difference ΔV, and
headway with the leader 𝑠. Finally, for parameter 𝛿, we use a
standard value of 4, which reduces themaximumacceleration
as speed increases.

V = 𝑎 ⋅min(1 − ( V
V0
)𝛿 , 1 − ( 𝑠𝑠∗ )

2) ,

𝑠∗ = 𝑠0 + V ⋅ 𝑇 + V ⋅ ΔV
2√𝑎 ⋅ 𝑏 .

(1)

The LMRS includes lane-change incentives regarding the
route, own speed, and keeping to the right lane. Each
incentive is included in a normalized lane-change desire
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ranging from −1 to 1. Different incentives are combined into
a single desire to change lane as shown in (2), where 𝑑 is lane-
change desire from one lane to another, 𝑑𝑟 is the desire from
the route incentive, 𝑑𝑠 is the desire from the speed incentive,
and 𝑑𝑏 is the desire for keeping to the right lane. The latter
two, which are voluntary incentives, are included in a factor𝜃V, which decreases as the absolute mandatory incentive 𝑑𝑟
increases.

𝑑 = 𝑑𝑟 + 𝜃V ⋅ (𝑑𝑠 + 𝑑𝑏) . (2)

Depending on the lane-change desire, a few behaviours are
assumed to occur. These are divided into four regions of
desire as seen in (3). For 𝑑 < 𝑑free, no lane change is per-
formed. For 𝑑free < 𝑑 < 𝑑sync, lane changes are only initiated
if they happen to be possible. For 𝑑sync < 𝑑 < 𝑑coop, the
subject driver will adjust speed and position relative to the
target lane to increase the chance of being able to change lane.
Finally, for 𝑑coop < 𝑑, the potential follower in the target lane
will start to cooperate by adjusting speed and position to the
subject vehicle.

0 < 𝑑free < 𝑑sync < 𝑑coop < 1. (3)

The level of lane-change desire also affects the accepted decel-
eration regarding gap acceptance, specifically the threshold
given by 𝑑 ⋅ 𝑏 (where 𝑏 is the same parameter as in
IDM+). Also, the acceptable headway is linearly reduced
for increasing lane-change desire, ranging between 𝑇max and𝑇min. Should a lane change be initiated, the desired dependent
headway is used from regular car-following and relaxed
towards the regular value of 𝑇max exponentially, using a
relaxation time 𝜏. The LMRS-IDM+ model in this research
is coded in JAVA. For more details on the LMRS and how it
is integrated with IDM+, the reader is referred to Schakel et
al. [59].

3.1.2. Model Setup. Themodel is configured using values that
have been derived from practice and are therefore feasible
real-life values for the variables. Three types of vehicles are
defined: regular manual vehicles, low-level automated ACC
vehicles (referred to as ACC vehicles from now on), and
manual trucks. The regular manual vehicles make use of the
standard settings of the IDM+ and LMRS models, as far as
these are compatible with the experiment and consistent with
the validation data. A similar approach is also used for the
manual trucks, whose total modal share is limited in any
case. The ACC vehicles are configured differently compared
to themanual vehicles, mainly with regard to the longitudinal
settings, with a few adjustments also in their lateral lane-
change desire. The main variables that differ for the ACC
vehicles compared to the manual vehicles are the desired
time headway, the desired free flow speed, and the desired
lane-change speed difference (i.e., the difference in speed that
is required to increase the lane-change desire of a vehicle).
Otherminor differences are also present but have very limited
effect on the model outcome. The minor variable settings
are given in Table 2 and the derivation of the desired time
headway and desired speeds is explained now in more detail.

Table 2: Other relevant vehicles settings used in the model.

Variable Manual
vehicles

ACC
vehicle Manual truck

Maximum speed [km/hr] 200 140
85 (Gaussian

distribution with 2.5
standard deviation)

Maximum deceleration
[m/s2] 6.0 6.0 6.0

Maximum acceleration
[m/s2] 1.25 2.0 0.4

Lane-change speed
insensitivity [km/h] 69.6 85 69.6

Minimum lane-change
headway [s] 0.4 0.8 0.56

In this research, theACC settings are derived from empir-
ical data, for which we use the work of [6]. In this, empirical
time gaps and speeds of vehicle using ACC are measured
(see Figure 2). It should be noted that these values are not
desired time headways but rather the resulting gaps from
the unknown applied settings. A discrete distribution of the
desired time headway for the ACC and the manual vehicles
is calibrated using the data from Gorter [6] as the resulting
distribution. To do this, the distribution from Figure 2(a)
is first applied in the model and compared with the output
distribution in the model for ACC and manual vehicles.
Next, the input distribution is incrementally adjusted until
the resulting output is similar to Figures 2(a) and 2(b). The
resulting discrete distribution for the input is given in Figures
3(a) and 3(b) and is also applied in the experiment.

From Figure 3, it is clear that there are present values
that may not be selectable in most ACC systems. This might
raise questions on the validity of the input. However, the
difference between the desired time headway settings and the
actual time gaps may account for much of this. Furthermore,
there is always some discrepancy between model input and
real settings in models due to errors that all models make
compared to real driving behaviour. Also, a driver’s use of
ACC and their ability to manually adjust settings and driving
behaviour, such as giving extra acceleration, are expected to
also be present in the real data, while not being explicitly
present in the model. The fact remains that the resulting
output of the model using these input values is calibrated
and validated against real empirical data and therefore does
hold validity to make predictions using these settings. In
the following experiment, a further analysis is performed in
which the ACC vehicles are given a different distribution for
the desired time gap based on an arbitrary range of settings,
often seen in other experiments and fitting with the design
settings of real ACC systems, which vary from 1.0 to 2.0
seconds [24, 46, 66, 67]. This distribution is given by

𝑃 (𝑠 = {1.1; 1.3; 1.5; 1.7; 1.9}) = 0.2. (4)

Of course, this adjusted distribution is hypothetical and is
furthermore not validated using data but does give what we
consider to be the upper bounds based on wider literature.
The desired free flow speeds for the vehicles are also derived
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Figure 2: Vehicle time gaps found adapted from Gorter [6].
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Figure 3: Vehicle time gaps calibrated in the model.

from the same work by Gorter [6]. From Gorter’s analy-
sis, it became apparent that manual vehicles are generally
driven with a distributed speed with a mean just above the
speed limit. This also corresponds to the validated standard
settings used in the LMRS, and therefore a Gaussian speed
distribution for the manual vehicles is derived with a mean
of 104 km/hr and a standard deviation of 10 km/hr for a
100 km/hr speed limit. For the ACC vehicles, three distinct
peaks were found for their speed settings: one very distinct
peak at approximately 104 km/hr and two lesser ones at 98
and 100 km/hr, respectively. Following these findings, the
desired speed settings for the ACC vehicles are set at [98; 100;
104] km/hr with a probability of [0.1; 0.3; 0.6]. Themaximum
speeds of passenger cars, both manual and ACC, are vehicle
default settings and have no real relevance for the simulation
as the desired speed settings are dominant.

3.2. Case Description

3.2.1. Road Setup and Traffic Demand. For the experiment,
use is made of a simple corridor consisting of a uniform 19-
kilometre motorway corridor with three lanes and a nominal
speed limit of 100 km/h. After kilometre 16.5, there is an
onramp present which acts as a bottleneck, with variable
severity depending on the inflow from the bottleneck (see
Figure 4). The final 7 kilometres of the corridor are used for
qualitative analysis, while the first 12 kilometres are mainly

present to complywith goodmodelling practice by not letting
any congestion spill out of the corridor and affect the results
of the experiment either by preventing traffic entering the
corridor or by biasing the derived travel times.The corridor is
shown in Figures 4(a)–4(c), along with the detector location
in Figure 4(a), and a demonstration bymeans of the exploded
view and detailed view of traffic flow is given in Figures 4(b)
and 4(c).

Traffic demand is identical for all scenarios and seeds
in the experiment. The experiment is carried out for a 120-
minute period with an additional 30-minute run-off period,
in which no traffic is added, to ensure that the corridor is
clear at the end of the simulation. Traffic is released onto the
road corridor at an initial rate of 3300 veh/hr and is slowly
increased to 6270 veh/hr between 10 and 60 minutes to allow
capacity to gradually be reached on the road.This level of flow
is maintained for 10 minutes and is linearly decreased again
at simulation time of 70 minutes towards 0 veh/hr at time of
120minutes to allow congestion to dissipate.The simulation is
continued for further 30minutes to ensure that the corridor is
empty when finished to allow a fair comparison of all metrics.
During the simulation, the inflow rate on the onramp is kept
as a percentage of the inflow onto the main corridor. The
exact percentage of inflow on the onramp is dependent on
the scenario. Therefore, when traffic demand increases on
the main corridor, it also increases at the same rate on the
onramp.
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(a) (b)

(c)

Figure 4: (a) Road corridor for model experiment with detector locations. (b) Exploded view of traffic flow; (c) detailed view of traffic at the
bottleneck.

3.2.2. Scenarios. The experiment is set up to test the vehicle
dynamic aspects of automated vehicles driving in mixed
traffic and therefore considers scenarios in which longitu-
dinal driving, lane-changing, and homogeneity are present
to derive their effects on traffic flow. The variables for the
experiment scenarios are grouped as follows:

(1) Share of ACC-LKA vehicles using calibrated gap
times

(2) Inflow rate from the onramp
(3) Percentage of trucks on road
(4) Share of ACC-LKA vehicles using higher selected gap

times

The scenarios that are considered are given in Table 3 and
include values thatmay be expected in the years up to 2030 for
ACC share and for an arbitrary onramp flow and truck share.
Furthermore, some scenarios make use of higher unlikely
levels of ACC vehicles to give an impression of the extremities
on traffic flow and for comparison with other literatures.
For each scenario, 90 seeded runs are performed to ensure
validity and significance of the results.

3.2.3. Performance Indicators. Three performance indicators
are used to evaluate the effect on traffic flow from the different
scenarios. These are the following:

(1) The breakdown capacity flow, which is defined here
as the highest observed aggregated flow during a 5-
minute simulation period prior to or during traffic
breakdown. Traffic breakdown is presumed when the
mean traffic speed during the 5-minute period is
lower than 70 km/hr

(2) The discharge capacity flow, which is defined as the
highest observed aggregated flow during a 5-minute
simulation period out of the congested bottleneck.
Again, congestion is presumed when the mean traffic
speed during the 5-minute period is lower than
70 km/hr

(3) Travel time along the entire length of the corridor.This
is measured per individual vehicle and grouped by

Table 3: Overview of simulated scenarios.

Scenario group Applied scenario settings

(1) Share of ACC

Static settings for each scenario: onramp:
18%/trucks: 6%
ACC gap time settings: calibrated
distribution (see Figure 3)
ACC reference scenarios: 2% (2015), 12%
(2025), 28% (2030)
ACC scenarios: 5%, 10%, 15%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, 100%

(2) Onramp

Static settings for each scenario: trucks: 6%
ACC gap time settings: calibrated
distribution (see Figure 3)
ACC scenarios: 2%, 12%, 28%, 50%, 70%,
85%, 100%
For all combinations of onramp: 14%, 18%,
22%

(3) Truck

Static settings for each scenario: onramp:
18%
ACC gap time settings: calibrated
distribution (see Figure 3)
ACC scenarios: 2%, 12%, 28%, 50%, 70%,
85%, 100%
For all combination of trucks: 2%, 6%, 10%

(4) ACC with higher
gaps

Static settings for each scenario: onramp:
18%/trucks: 6%
ACC gap time settings: higher nominal
distribution (see (4))
ACC reference scenarios: 2% (2015), 12%
(2025), 28% (2030)
ACC scenarios: 5%, 10%, 15%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, 100%

time of departure.Therefore this is the actual realised
travel time that is collected.

The breakdown capacity allows us to determine the maxi-
mum potential flow under the scenario conditions, while the
discharge capacity allows comparison with the breakdown
to determine possible effects on the capacity drop for the
different scenarios. The travel time allows us to evaluate the
effects on efficiency throughout all traffic states, from freely
flowing traffic through capacity conditions to congested
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traffic.This also captures the efficiency of traffic to transverse
resulting congestion shockwaves produced by the bottleneck.

Further qualitative analysis of congestion patterns and
onset from speed and flow contour plots allows us to analyse
specific traffic flow phenomena and characteristics that may
not be as evident from the quantitative analysis.

3.3. Results. In total, 72 scenarios are considered. For all
scenario groups, 90 runs per scenario are performed, totaling
6480 in all. After presenting the results, each set of scenarios
are discussed for each of the applied performance indicators,
and finally an overall comparison is made between scenarios.
Visualisation of the three applied metrics for all scenarios is
performed with the use of boxplot regression, in which each
boxplot is the accumulation of all seeded runs per scenario.
The boundaries for the boxplots are the 25th and 75th
percentiles, with thewhiskers set at amaximumof 150%of the
boxplot range. The results are shown in Figures 5(a)–5(l).

To compare the results of the scenario groups with each
other for the influence of ACC share, bottleneck severity
(measured by onramp%), truck share, and ACC gap time,
the trends of the means from each scenario are compared
in a single figure per performance indicator. This is shown
for travel times in Figure 6(a), for the breakdown capacity
in Figure 6(b), for the discharge flow in Figure 6(c), and for
the capacity drop in Figure 6(d). In each of these figures, a
horizontal line indicates the mean value from the base refer-
ence scenario of 2%ACC, 18%onrampflow, and 6% trucks, as
presumed for the year 2015.

The results are now discussed per scenario group starting
with the percentage share of ACC. All results that are
discussed are statistically significant at a 99% confidence
interval of the sample mean for the 90 runs per scenario. A
greater share of ACC vehicles has a limited negative effect on
the travel times. The effect on capacity is a small decrease in
capacity for a share of 10–80% of ACC vehicles of less than
2% (see Figure 6(b)). Only for a share of above 90% of ACC
vehicles do we see an improvement in traffic flow and road
capacity.

The influence of a higher and lower onramp flow gave
an unsurprising reduction and increase in capacity and
travel times, respectively, as the bottleneck became more
severe. The only real outcome of interest for the onramp
flow percentage is that, for a low onramp flow, there is no
significant deterioration of traffic flow, as seen from higher
onramp flows. Further analysis of the results showed that a
greater onramp flow forcedmanual vehicles to performmore
lane changes, while for a lower onramp flow fewer additional
lane changes weremade, which had a positive effect on traffic.

The trend for different traffic shares of trucks also fol-
lowed an expected trend without any surprises. The results
show that a higher truck share leads to lower capacity and
longer travel times, while lower truck shares have the opposite
effect. There are no further discrepancies in the data to
suggest any specific correlation with the ACC vehicle share.

Finally, when the ACC vehicles are set at a higher gap
time, there are significantly different outcomes. The travel
time trend follows a similar line to the calibrated gap
times, only with a high negative deviation and without any

eventual improvement at 100%ACC share.The capacity trend
does show a significantly different trend compared to the
calibrated gap times; the capacity continues to decrease with
increasing ACC share, even for the higher ACC shares. It
would seem that the positive effect of more stable traffic with
fewer lane changes does not outweigh the larger difference in
gap times compared to themanual vehicles. However, the fact
that the travel times do improve for the higher ACC shares
can be explained when the capacity drop trend is considered.
The capacity drop for ACC vehicles with larger time gaps
hardly changes for increasing levels of ACC share. For all
other scenarios, we see that the capacity drop significantly
increases for higher ACC shares in just about equal measure.
This increase is not down to a lower discharge flow but
rather a higher breakdown capacity with the discharge flow
remaining constant. A higher breakdown capacity must be
seen as positive; however, a higher capacity drop is bad
for travel time reliability. Therefore, the results need to be
considered carefully from a policy perspective.

The main findings from the experiments show that,
under realistic levels of ACC share, there may be a limited
negative effect on both road capacity and traffic flow. For the
empirically calibrated gap times, there was a small decrease
in capacity of just 1-2%, while for the larger ACC gap times a
decrease of 2–7% was found in capacity. A higher mean gap
for ACC vehicles at lower penetration rates is the probable
cause, while the advantages of smoother traffic flow only
start to occur at higher penetration rates. The experiments
further show that there are no substantial effects due to
bottleneck severity (in this case, onramp flow) or truck share
in relation to the ACC share.The experiment further showed
that the negative influence on the discharge flow ismarginally
greater than on the capacity flow, which in turn results in
slightly higher capacity drop values for greater ACC shares.
However, the higher capacity drops were only significant for
unrealistically high shares of ACC vehicles, certainly higher
than the 28% ACC share estimated in Section 2 for the year
2030. These findings are summarised in Table 4.

3.4. Sensitivity Analysis. To give some indication of the influ-
ence of the assumptions made for the static variables in the
experiment, an additional sensitivity analysis is performed.
This allows us to convey the extent that these variables have
on the results and acts as a further face validation of the
results.The sensitivity analysis is performed for the following
variables: maximum speed, acceleration/deceleration, lane-
change speed insensitivity, and lane-change relaxation. The
main variables viewed in the experiment do not require any
further analysis, as their effect is clear from the experiment
results. The analysis is carried out for the 2030-reference
scenario (28% ACC; 18% onramp flow; 6% trucks) as a com-
parison between the ACC settings used in the experiment
and the manual vehicles settings. For the analysis, the values
for automated vehicles are varied for 30 seeded runs, with
the mean and the 25th and 75th percentiles being shown in
Figure 7.

The maximum speed settings of the low-level automated
vehicles, given in Figure 7(a), show that the maximum speed
has a small positively correlated effect on capacity and the
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Figure 5: Results of all scenarios for the four scenario groups (vertical) and three performance indicators (horizontal). “+” represents outliers.

opposite for the travel time. This can be expected, especially
during the parts of the experiment, when traffic is fluent,
as traffic can move at higher speeds. The default value in
the experiment for AVs is 140 km/hr and 200 km/hr for
other vehicles.The lane-change desire of vehicles (Figure 7(b))
affects vehicles willingness to voluntarily change lane, with
a higher “vGain” value indicating a lower desire. The trend

from the analysis shows that variation of the variable has a
limited effect on traffic. The effect shown in the figure can
possibly be described as negatively correlated to the travel
time; however, the results are not significant. The capacity
and travel time are shown to be completely insensitive to
the maximum acceleration settings of vehicles (Figure 7(c)).
The reason behind this is that very few vehicles require, or
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Figure 6

can achieve, acceleration above 1.0m/s2 for the considered
scenario. Finally, the lane-change relaxation variable is con-
sidered, which indicates the gap value that a vehicle can
accept in its destination lane for a lane change.Manual vehicle
uses 0.4 seconds, with AVs using 0.8 seconds. The results in
Figure 7(d) show that there is fair sensitivity to this variable,

with lower capacity values for less relaxation (in this case,
higher𝑇min setting) and the opposite trend for the travel time.
The effects of the settings of the variables on the experiment
and their sensitivity do not through up any surprises. The
sensitivities show trends that can be expected and their effects
are all plausible.
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Table 4: Overall findings from the experiment.

Aspect Found effect of low-level vehicle automation (ACC with
reduced lane-changing) Main possible cause

Gap time

Small negative
Capacity decrease ranging from 1-2% to 2–7%
(highly dependent on time-headway settings applied in
the future)

Higher mean gap for ACC vehicles, especially
relevant for low penetration rates

Very small negative
Increase of capacity drop, <2% Lower discharge flow at high penetration rate

due to less aggressive acceleration
Interaction with trucks No substantial effect
Bottleneck severity No substantial effect

4. Discussion: Dealing with the Traffic Flow
Effects of Low-Level Automation

4.1. Overview of Effects on Traffic. The findings from the
experiment and from the review of literature lead us to a
number of conclusions with regard to the traffic flow effects
of automated vehicles in the initial transitional period. The
transition from the current fleet of manual vehicles to the
future fleet of vehicles in the coming decades ranging from
2015 to 2035 is expected to be gradual, leading to a combined
share of low-level automated vehicles (SAE levels 1 and 2)
between 25 and 30%.These vehicles can influence traffic flow
through their different behaviour and through the extent of
their share of all vehicles. The experiments showed that the
relatively low share, of less than 30% low-level automated
vehicles, has a limited effect compared to higher arbitrary
penetration levels. Nevertheless, some effects are found and
are summarised:

(i) Small negative impact on capacity and flow due to
higher gap times

(ii) Marginal increase of capacity drop
(iii) Negligible effect on secondary traffic flowphenomena

These findings should be considered by road authorities,
as even small decreases in traffic flow on heavily used
roads can have a substantial effect on traffic performance.
However, on the other hand, the extent to which negative
effects are expected are probably sufficiently limited to not
require significant expansion of infrastructure to alleviate the
effects.Therefore, we can revisit the hypothesis that “low-level
automated systems may have a negative impact on traffic flow”
by stating that there is a negative effect; however, the overall
effect is limited.

The years following the initial transitional period, prob-
ably 2030–2050, are going to be characterised by a strong
uptake of vehicle cooperation.Obviously, before 2030, vehicle
cooperation may already be present on roads, however at a
penetration rate that is too low to make a substantial differ-
ence to traffic flow. The positive effects of cooperation have
already been well stated, such as increased flow stability and
efficiency, and are not explicitly the subject of this paper; how-
ever, they do act as a boundary in which the following phase
of automation transition in traffic will occur.

There are also other effects on traffic flow as a conse-
quence of low-level automation which are not considered

in this research but may also be relevant. Examples are the
following:

(i) Effect on user awareness and alertness
(ii) Effect on safety due to quicker reactions times
(iii) Effect on safety due to performing secondary tasks
(iv) User acceptance, particularly in critical situations

such as merging

The effects of driver interaction with the system are an
intriguing area of research that has yet to lead to conclusive
generic effects for traffic flow. Also, safety is indirectly of
importance to traffic flow. An estimated 25% of delays in
Netherlands were attributed to incidents on motorways, with
similar values found in countries like UK [68]. Improved
safety allowing the reduction of these delays can only act to
improve traffic performance as a whole.

4.2. Discussion:Modelling and Simulating AutomatedVehicles.
Simulation of low-level automated vehicles with current sim-
ulation models is relatively achievable in many cases through
use of current model settings. In fact, one could argue
that prevailing traffic simulation models essentially model
automated vehicles instead of their human counterparts.This
is particularly true for car-following, since in the longitudinal
direction drivers are largely constrained by forward system
dynamics. The ideal driver model (as well as IDM+ used
in this paper) describes an elegant control law that can
reproducemost of the longitudinal phenomenawe observe in
(macroscopic) data, such as the capacity drop, flow instability,
and wide moving jams.

The term ideal implies drivers not hampered by typical
human behavioural or physiological traits and limitations
such as errors in perception, reaction time, risk assessment,
and aggressiveness. The same holds for many other car-
following models, ranging from safe-distance models [69,
70], optimal velocity models [71], or other approaches in
the more general group of stimulus-response models [72,
73]. Most “ideal” models can, of course, straightforwardly
be augmented to include reaction times, and there are
approaches that include more sophisticated mechanisms. So-
called psycho-spacing (or action point) models [74] incorpo-
rate drivers’ inertia to observe and respond to small changes
in stimuli, whereas multianticipatory models [75, 76] include
terms for anticipation of drivers to traffic conditions further



Journal of Advanced Transportation 13

120 140 160 180 200
Max. speed AV (km/hr)

4000

4500

5000

5500

6000

6500

7000

Ca
pa

ci
ty

 (v
eh

/h
r)

1100

1200

1300

1400

1500

1600

1700

1800

1900

Tr
av

el
 ti

m
e (

se
c)

Sensitivity of max. speed variable

Capacity mean
Capacity 25/75%

Travel time mean
Travel time 25/75%

(a) Sensitivity of max. speed

Tr
av

el
 ti

m
e (

se
c)

62 69.6 77 85 92.5
vGain setting AV (m/s)

4000

4500

5000

5500

6000

6500

7000

Ca
pa

ci
ty

 (v
eh

/h
r)

1100

1200

1300

1400

1500

1600

1700

1800

1900
Sensitivity of lane-change desire variable

Capacity mean
Capacity 25/75%

Travel time mean
Travel time 25/75%

(b) Insensitivity of lane-change speed

1 1.25 1.5 1.75 2
4000

4500

5000

5500

6000

6500

7000

Ca
pa

ci
ty

 (v
eh

/h
r)

1100

1200

1300

1400

1500

1600

1700

1800

1900
Tr

av
el 

tim
e (

se
c)

Sensitivity of max. acceleration variable

Capacity mean
Capacity 25/75%

Travel time mean
Travel time 25/75%

Max. accel. AV (m/Ｍ2)

(c) Sensitivity of max. acceleration

0.1 0.4 0.7 1 1.3
4000

4500

5000

5500

6000

6500

7000
Ca

pa
ci

ty
 (v

eh
/h

r)

1100

1200

1300

1400

1500

1600

1700

1800

1900

Tr
av

el 
tim

e (
se

c)

Sensitivity of lane-change relaxation variable

Capacity mean
Capacity 25/75%

Travel time mean
Travel time 25/75%

setting AV (km/hr)TＧＣＨ

(d) Sensitivity of lane-change relaxation

Figure 7

downstream. Other attempts describe more sophisticated
human-factor mechanisms. For example, Hamdar and coau-
thors [77] propose a car-following model based on prospect
theory inwhich drivers increase travel time to prevent the risk
of rear-end collisions, and several authors have experimented
with Fullers’ Task-Capacity-Interface model [78–80]. Incor-
porating human factors in car-following models remains a
very lively research field.

In terms of lateral movement, the discrepancies between
what models predict and how human drivers really behave
may be even larger. The applied LMRS model in the exper-
iment in this research has a wide range of lane-change and
lane-choice parameters and settings that allow for plausible
lateral movements at least in terms of the phenomena they
reproduce (lane distributions and speed synchronization).
But results that seem plausible may not necessarily reflect
actual underlying behaviour. Recent empirical research [81]

reveals that drivers may follow strategies different from those
incorporated in LMRS or any other lane-changing model
for that matter. While the LMRS improves on traditional
lane-change models by including more strategic lane-change
behaviour, there is still some way to go before this behaviour
is completely understood and implemented in models. The
difficulty clearly lies in the availability of empirical data to
validate the lateral movements and choices and to include
behavioural changes in that behaviour due to low-level
automation in models.

The conclusion must be that simulating longitudinal
driving behaviour of automated vehicles may be straight-
forward; modelling the response of human drivers to these
automated vehicles certainly is not. For lateral behaviour,
the picture is blurrier, because we lack sufficient empirical
evidence to model real human behaviour.The paradox is that
most traffic simulation models mimic “ideal” (collision-free)
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human behaviour. Now that vehicle automation becomes a
reality, there is a stronger need than ever to incorporate more
sophisticated human factors in the underlyingmodels for car-
following and lane-changing behaviour.

This alsomeans that conclusions drawn from simulations,
including the ones in this paper,must be viewed in the light of
the (many) assumptions made. This is especially the case for
the influence of lateral movement, both in decision-making
and in action. Nevertheless, the macroscopic behaviour and
calibration of the vehicle behaviour which primarily focused
on longitudinal behaviour in this paper still stand and
constitute a clear advancement in estimation of the effects of
automated driving.

5. Conclusions

The gradual introduction of automation technology in vehi-
cles will influence traffic flow in the future; however, there
are too many uncertainties to be able to clearly state to what
extent. We have summarised many of the common effects
that may be expected in the transitional period from manual
driving to low-level automated driving and added to the
knowledge base with additional findings. This transitional
period will be elongated and will probably last well into
the 2030s before any significant penetration rate of higher
automated vehicles or cooperative vehicles will be present on
roads.

The summary, aidedwith the help of an additional experi-
ment case, gives us reason to believe that low-level automated
vehicles in mixed traffic will have a small negative effect
on traffic flow and road capacities. The main reason behind
the reduction is higher gap times maintained by automated
vehicles, while the influence of decreased lane changes does
not show significant effects and can only be claimed in theory.
The experiment further showed that any improvement in
traffic flow will only be seen at penetration rates above 70%,
which is far higher thanwill be the case in reality.The capacity
drop also appears to be slightly higher with the presence of
automated vehicles; however, large negative effects only occur
at the higher unrealistic penetration rates. The experiment
also investigated the effect of bottleneck severity and the
influence of slower truck shares on traffic flow. Neither of
these variables was significantly influenced by the presence
of the low-level automated vehicles.

The main focus of the experiment was not on macro-
scopic traffic flow effects, such as on networks or during an
elongated period; however, from literature, it can be argued
that there may be a reduction of accidents, which could result
in fewer delays. Furthermore, there is also much deliberation
on the behavioural effects on drivers and their ability to
be able to drive appropriately when faced with a different
workload and mental tasks. This is the case for both the
drivers of automated vehicles and manual vehicles drivers
encountering automated vehicles. For these effects, too little
is known to be able to properly quantify the traffic flow effects
and this requires many additional researches.

Furthermore, we argue that current knowledge and
model development still lack with regard to appropriately
capturing much of real driving behaviour, especially in a

lateral sense. The applied LMRS-IDM+ model combination
offers an improvement in model development but still lacks
full implementation of real driver behaviour due to a lack of
empirical ground truths and theoretical constructs. A greater
effort is required to acquire these behavioural aspects, as
well as the previously mentioned cognitive aspects, if traffic
simulation models are to be sufficiently enhanced to allow a
full comprehensive evaluation of future traffic systems, which
involve yet nondeployed vehicle types.
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