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Summary

Plant digital phenotypes, which are observable performances of traits collected through photos and

sensors by computers, are emerging tools to help breeders evaluate plants. The collection of digital

phenotypes has made great progress, but how to apply them to breeding is still unclear. This research

used quantitative genetic methods and statistical learning algorithms to build a workflow for the

relationship between digital and conventional phenotypes. The workflow was applied to blocky pepper

and tomato data.

The bi-trait ss-GBLUP was used to estimate genetic correlations between traits, which quantify the

genetic relationship between two traits by measuring the proportion of shared genetic variance. A few

trait pairs showed high genetic correlations, while most had moderate or low correlations. The bi-trait

ss-GBLUP could include the fruit color as a fixed effect. The likelihood ratio test was used to evaluate

the impact of fruit color on model performance. Fruit color was useful if at least one trait was about

color, otherwise, it was not beneficial. Genetic and Pearson correlations are two correlations of traits.

They differed significantly only if both traits were about color.

Genetic correlations guided predictor selection for statistical learning models including linear regression,

LASSO regression, random forest, and XGBoost. Linear and LASSO regressions were underfitted,

whereas random forest and XGBoost were overfitted. Simpson’s paradox led to misleading results in

linear models for the color trait, which was resolved by adding a key predictor. Overfitting wasn’t due

to insufficient training samples, and tuning more hyperparameters didn’t address the issue. Despite

being overfitted, the random forest model achieved the best overall performance, with only one of the

seven conventional traits being unpredicted.

Keywords: Digital Phenotype; Quantitative Genetics; Statistical Learning

i
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



Contents

Abstract i

Nomenclature iv

1 Introduction 1

1.1 Background and Research Gap of Plant Digital Phenotypes . . . . . . . . . . . . . . . . . 1

1.2 Workflow to Guide the Use of Digital Phenotypes . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structural Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Linear Mixed Effects Model 5

2.1 Fixed and Random Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Linear Mixed Effects Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Motivation of Mixed Effects Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Mixed Effects Models in Breeding 13

3.1 The Breeding Value Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Pedigree Relationship Matrix A & ABLUP . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Genomic Relationship Matrix G & GBLUP . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Single-Step GBLUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Multi-Trait Single-Step GBLUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Genetic Correlation 𝜌𝐺𝑒𝑛
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Bayesian method for MT ssGBLUP 27

4.1 Prior Distributions for Random Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Prior Distributions for Covariance Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Statistical Learning Model 32

5.1 LASSO Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Bagging and Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.1 Tree’s Feature Importance from Mean Decrease in Impurity . . . . . . . . . . . . 36

5.4 Boosting and XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



Contents iii

6 Blocky Pepper Data 40

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Descriptive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Calculation of the Estimated Genetic Correlation �̂�𝐺𝑒𝑛 45

7.1 Use of Multi-Trait Model and Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Fruit Colors as Fixed Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Distributions of the Estimated Genetic Correlation �̂�𝐺𝑒𝑛
. . . . . . . . . . . . . . . . . . . 50

8 Prediction of Conventional Traits 52

8.1 The Role of Variable Selection by �̂�𝐺𝑒𝑛
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.2 Important Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.3 Hyperparameters Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.3.1 Hyperparameters Tuning for LASSO Regression . . . . . . . . . . . . . . . . . . . 57

8.3.2 Hyperparameters Tuning for Random Forest and XGBoost . . . . . . . . . . . . . 58

8.4 Comparison of Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.5 Prediction by Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.6 Low Quality Data from Tomatoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9 Conclusion 69

A Estimated PDF of Digital Trait Values and Statistical Summary of All Traits 76

B Conditional Distributions of A Multivariate Normal Distribution 80

C Other Prior Distributions of Random Effects and Covariance 82

C.1 Priors of random effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.2 Priors of covariance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iii
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



Nomenclature

Abbreviations

Abbreviation Definition

BLUE Best linear unbiased estimator

BLUP Best linear unbiased prediction

ABLUP BLUP based on pedigree relationship matrix

GBLUP BLUP based on genomic relationship matrix

ssGBLUP Single-step GBLUP

MT ssGBLUP Multi-Trait Single-step GBLUP

IW Inverse Wishart

CART Classification and regression tree

Symbols

Symbol Definition

Y Dependent variable

X Fixed effects & Independent variable

Z Random effects

𝛽 Fixed effect coefficient

𝑢 Random effect coefficient

𝜀 Errors in the mixed effects model

𝜇 Intercept of the mixed effects model

𝑁 Number of observations in the mixed effects model

𝑝 Number of fixed effects in the mixed effects model

𝑞 Number of random effects in the mixed effects model

𝑘 Number of traits in the mixed effects model

�̂� BLUE of fixed effects

�̂� BLUP of random effects

ΩST Variance-covariance matrix of random effect coefficients in single-trait model

ΩMT Variance-covariance matrix of random effect coefficients in multi-trait model

iv
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



Contents v

Symbol Definition

ΩST0
Additive genetic relationship matrix

R Variance-covariance matrix of residuals

𝜎2

𝑢 Additive genetic variance

𝜎2

𝜖 Residual variance

A Pedigree relationship matrix

A𝑖 , 𝑗 Pedigree relationship between individuals 𝑖 and 𝑗

M Marker genotype matrix

G Genomic relationship matrix

G𝑖 , 𝑗 Genomic relationship between individuals 𝑖 and 𝑗

H Combined relationship matrix

H𝑖 , 𝑗 Combined relationship between individuals 𝑖 and 𝑗

𝜔 Hyperparameters from prior distribution

𝜎2

𝑧 Variance of random effects in Gaussian priors

𝑚 The degree of freedom of IW distribution

V The scale matrix of IW distribution

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 The number of burn in iteration of Gibbs sampler

T𝑐𝑜𝑛 Conventional trait set

T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 Digital trait set

t𝑐𝑜𝑛 A conventional trait

t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 A digital trait

�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛
Estimated Pearson correlation

�̂�𝐺𝑒𝑛
Estimated genetic correlation

�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
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1
Introduction

For centuries, breeders have spent much of their time collecting measurements of their plants’ features

in order to breed better varieties. A phenotype, or phenotypic value, is the observable performance of a

trait, used to estimate the unknown genotypic value [1]. The phenotype is the most important tool for

describing characteristics and genetic resource management. Different from subjective conventional

phenotypes, objective digital phenotypes are automatically collected through sensors and cameras [2, 3].

With the application of ScaleCam, the machine to collect digital phenotypes, Bayer Crop Science has

a large number of digital phenotypes. The aim of this research is to help breeders use novel digital

phenotypes in their breeding decisions. This chapter will provide an introduction to the research by

first discussing the background and research gap of plant digital phenotypes, followed by the workflow

to guide the use of digital phenotypes and finally, structural outline of the thesis.

1.1. Background and Research Gap of Plant Digital Phenotypes
Plant phenotyping are categorized as qualitative or quantitative. Qualitative data is used to diagnose

traits with significant heritability and remain unaffected by environmental changes. In contrast,

quantitative data is for traits arising from gene interactions and are significantly influenced by genotype-

environment interactions [2, 4].

Traditional plant phenotyping relies on labor-intensive and time-consuming manual measurements.

Manual measurements are subjective and error-prone so data accuracy and reliability cannot be

guaranteed. Besides, because of the workforce, cost, and other limitations, breeders can only measure

limited traits during key stages of plant growth. Therefore, phenotypic changes cannot be fully tracked

1
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1.2. Workflow to Guide the Use of Digital Phenotypes 2

throughout the plant life cycle. Digital phenotyping addresses these issues and is a powerful tool for

measuring plant traits [2, 5].

Modern plant phenotyping uses digital systems and sensor technologies (e.g., sensitive imaging, spectral

imaging, robotics, and advanced calculations) to evaluate complex traits like yield, growth period,

disease resistance, and other quantitative parameters. Digital imaging analysis rapidly measures plant

traits, which is a key technology in plant digital phenotyping. Additionally, digital phenotyping offers

the benefits of a consistent framework, accurate outcomes, and straightforward data storage [1, 2, 4].

The objective of this research is to reduce the gap between plant digital phenotype collection and

application. Plant phenotyping has been carried out by farmers and breeders for ages. In the past decade,

high-throughput phenotyping platforms have become popular for accurately measuring numerous

plant traits in controlled environments, handling thousands of plants per study [4]. Digital phenotyping

has made great progress in collection, but its application in breeding remains unclear. Therefore, this

research investigated the relationship between digital and conventional plant phenotypes and the use of

digital phenotypes in plant breeding. Experts from Bayer Crop Science have proposed a rough workflow

(Figure 1.1) to find the relationship between conventional and digital traits by quantitative genetics and

statistical learning models. This research filled in details of the workflow and applied it to peppers.

Quantitative genetics, also known as statistical or biometrical genetics, uses statistical analysis to detect

genetic models in designed populations. It describes genetic and environmental influences averaged

over a population in a specific context. The core of quantitative genetics is variability, where individual

differences in traits result from unique genetic and environmental factors over time [6]. In the workflow

(Figure 1.1), a quantitative genetical method calculated the genetic correlation between conventional

and digital traits, representing the proportion of variance shared by traits due to genetic reasons [7].

1.2. Workflow to Guide the Use of Digital Phenotypes
Step 1: Distribution Check
The workflow begins with a conventional trait t𝑐𝑜𝑛 . First, it evaluates t𝑐𝑜𝑛 ’s informativeness with the

distribution plot. Breeders focus only on informative traits as they are helpful in breeding decisions. If

trait values across varieties show no difference, the trait cannot evaluate plant quality.

Step 2: �̂�𝐺𝑒𝑛 from Multi-Trait Single-Step GBLUP
In the second step (Figure 1.2), genetic correlations �̂�𝐺𝑒𝑛

s between the t𝑐𝑜𝑛 and all digital traits t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s

are calculated using multi-trait single-step GBLUP. Trait pairs (t𝑐𝑜𝑛 and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙) are sorted into three

buckets based on �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 : high, intermediate, and low genetic correlations. Different methods are

applied to each bucket: replacement, new index, and no action.

The conventional trait t𝑐𝑜𝑛 in the first bucket can be replaced by a t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 with high genetical correlation

2
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1.2. Workflow to Guide the Use of Digital Phenotypes 3

Figure 1.1: A workflow for the relationship between digital and conventional traits

with t𝑐𝑜𝑛 . t𝑐𝑜𝑛s in the second bucket move to Step 3, where statistical models use multiple t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s to

create a new index as its replacement. Trait pairs (t𝑐𝑜𝑛 and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙) in the third bucket are independently

treated in breeding due to low genetic correlations.

Figure 1.2: �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙

assigns (t𝑐𝑜𝑛 , t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 ) pairs to different buckets.

Different methods are applied to each bucket: replacement, new index, and no action.

Step 3: Statistical Learning Prediction
Some t𝑐𝑜𝑛s cannot be replaced directly by any t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 , but they can be predicted using multiple t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s.

Each t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 does not have sufficient information to replace t𝑐𝑜𝑛 , but a new index combining several

t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s might succeed. Statistical models (linear regression, LASSO regression, random forest, and

XGBoost) map multiple t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s to one t𝑐𝑜𝑛 to find a good prediction, the new index. We denote real trait

3
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1.3. Structural Outline of the Thesis 4

values as Y. The evaluation metric is �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
, Pearson correlation between actual Y and predicted Ŷ.

An index of t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s can replace t𝑐𝑜𝑛 if �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
exceeds 0.5; otherwise, t𝑐𝑜𝑛 is unpredictable by t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s.

Application
Each t𝑐𝑜𝑛 receives a label from the workflow: noninformative, replacement, new index, or unpredictable.

This label guides breeders on collecting t𝑐𝑜𝑛 . Only unpredictable conventional traits need collection, as

the digital set can’t handle them. It can reduce the workload of breeders to collect phenotypes.

1.3. Structural Outline of the Thesis
This thesis is structured in two main parts: methodology from Chapter 2 to Chapter 5 and application

from Chapter 6 to Chapter 9. In the first part, we present theories and models linked to the workflow.

Chapter 2 and Chapter 3 first review the linear mixed effects model in general and in breeding,

respectively. Chapter 4 describes the Bayesian method used in the linear mixed effects model, followed

by the statistical learning models to use in Chapter 5.

In the second part, we present application of the workflow to peppers. Data from peppers is described

in Chapter 6. Detailed calculation of �̂�𝐺𝑒𝑛
and prediction of conventional traits are in Chapter 7 and

Chapter 8, respectively. Finally we conclude the thesis in Chapter 9.

4
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2
Linear Mixed Effects Model

The simple linear model is a basic regression model expressed as

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . + 𝛽𝑝𝑥𝑝 . (2.1)

Linear mixed effects models extend simple linear models to include fixed and random effects, useful

for data with hierarchical structure [8]. For instance, since each plant belongs to one field, they share

environmental resources with plants in that field. When studying technology’s impact on plant yield,

the field should be included as a group-level variable, while yield is an individual-level variable nested

within the field. In this chapter, we are going to talk about how to include group-level variables in a

regression model using fixed or random effects.

2.1. Fixed and Random Effects
For the fixed effect, we assume a true regression line in the population with slope 𝛽, for which we are

interested in the estimator �̂�. For random effects, we assume 𝛽s are from the same distribution, and we

would like to estimate the underlying distribution of 𝛽 [8].

Another fundamental difference between fixed and random effects is inference/prediction [9]. A fixed

effect supports the estimation of only the values of features used in the model. In contrast, a random

effect allows us to predict new values about the population from which the sample is drawn. They can

be values of the feature that may not have been present now. This is because each level of a random

effect can be viewed as a random variable derived from an underlying distribution. By estimating

random effects, we can make inferences not just about the specific levels but also about the population

5
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2.1. Fixed and Random Effects 6

level and unobserved levels. This idea, known as exchangeability, suggests that levels within a random

effect are not considered separate and independent; instead, they are seen as representative samples

from a broader set of levels, some of which may remain unobserved [9].

Best Linear Unbiased Estimates (BLUEs) are the estimates of fixed effects. The linear estimator of

𝛽, �̂�, is BLUE if 𝐸(�̂�) = 𝛽 and 𝑉𝑎𝑟(�̂�) is the minimum among all unbiased estimates [8]. Best Linear

Unbiased Predictions (BLUPs) are the predictions of random effects. The linear predictor of 𝑢, �̂�, is

BLUP if 𝐸(�̂� − 𝑢) = 0 and 𝑉𝑎𝑟(�̂� − 𝑢) is the minimum among all unbiased predictions [8]. �̂� is a

predictor because 𝑢 is a random variable and there is no true value of 𝑢. The definitions of BLUE

and BLUP are different because it is assumed 𝛽 is a constant and 𝑢 is a random variable. Therefore,

𝐸(�̂�−𝛽) = 𝐸(�̂�)−𝐸(𝛽) = 𝐸(�̂�)−𝛽 while 𝐸(�̂�−𝑢) = 𝐸(�̂�)−𝐸(𝑢) ≠ 𝐸(�̂�)−𝑢. Similarly, 𝑉𝑎𝑟(�̂�−𝛽) = 𝑉𝑎𝑟(�̂�)
while 𝑉𝑎𝑟(�̂� − 𝑢) ≠ 𝑉𝑎𝑟(�̂�). The calculation of BLUE and BLUP will be covered in Section 2.2.

Consider a hypothetical research study to understand fixed and random effects. The study aims to

examine the impact of cultivars on the yield. In plant breeding a cultivar is a kind of plant that people

have selected for desired traits [10]. A regression model is used where 𝑌 is the yield, 𝑋 is a categorical

variable for the cultivar, and 𝑒 is the error term. We start with fixed effects. If there are three cultivars,

the model can be written as:

𝑌 = 𝛽0 + 𝛽1I{𝑋=𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟1} + 𝛽2I{𝑋=𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟2} + 𝛽3I{𝑋=𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟3} + 𝑒. (2.2)

The fixed effect variables capture the individual characteristics of each cultivar that affect yield. Let

𝛽1 , 𝛽2 and 𝛽3 be 3, 5 and 7 respectively and the distribution of the error term be 𝒩(0, 0.1). We simulated

100 samples for each cultivar, 300 samples in total, to fit this model. Table 2.1 displays the estimates. It

allows for comparing average yields between cultivars but cannot infer about a new cultivar not in the

model.

�̂� SD(�̂�) t P-value 95% CI

𝛽0 3.7422 0.005 822.907 0.000 [3.733,3.751]

𝛽1 -0.7494 0.009 -86.062 0.000 [-0.767,-0.732]

𝛽2 1.2395 0.009 142.343 0.000 [1.222,1.257]

𝛽3 3.2521 0.009 373.468 0.000 [3.235,3.269]

Table 2.1: Output of the fixed model

With 100 cultivars as fixed effects, the model is expressed as

𝑌 = 𝛽0 +
100∑
𝑗=1

𝛽 𝑗I{𝑋=𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑗} + 𝑒. (2.3)

The output table includes estimates of 100 coefficients and one intercept. In addition to fixed effects, the

cultivar can be treated as a random effect if we want to know more about the distribution of 𝛽 𝑗 . In this

case, we assume that all 𝛽 𝑗s are from a distribution and the regression equation can be written as:

6
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2.2. Linear Mixed Effects Model 7

𝑌𝑖 𝑗 = 𝛽0 + 𝛽 𝑗 + 𝑒𝑖 𝑗 , (2.4)

where 𝑖 indexes individual fruits, and 𝑗 ∈ {1,2,. . . ,100} indexes cultivars. In this case, we estimate the

distribution, not the value of 𝛽 𝑗 . Using 𝒩(5, 4), we generated 100 𝛽 𝑗s and 100 𝑌𝑖 𝑗s per 𝛽 𝑗 . Figure 2.1

plots the non-parametrically estimated distribution of 𝛽, which has a variance of 4.22. Therefore, 4.22 is

typical deviation of new cultivar compared with the average cultivar and we can make prediction of a

new cultivar even if it is not used in the model.

Figure 2.1: Non-parametrically estimated distribution of 𝛽

2.2. Linear Mixed Effects Model
A model with only fixed effects is a fixed effects model; with only random effects, it’s a random effects

model; and with both, it’s a mixed effects model. The linear mixed effects model described by Laird and

Ware (1982) [11] as:

Y = X𝛽 + Z𝑢 + 𝜀 (2.5)

where

• Y is a 𝑁 × 1 vector of dependent variables;

• X is a 𝑁 × 𝑝 matrix of fixed effects;

• 𝛽 is a 𝑝 × 1 vector of fixed effect coefficients;

• Z is a 𝑁 × 𝑞 matrix of random effects;

• 𝑢 is a 𝑞 × 1 vector of random effect coefficients;

• 𝜀 is a 𝑁 × 1 vector of errors. It is the part of Y that is not explained by X𝛽 + Z𝑢.

7
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2.2. Linear Mixed Effects Model 8

We now present the linear mixed effects model with the dimensions of variables:

N x 1︷︸︸︷
Y =

N x 1︷           ︸︸           ︷
X︸︷︷︸

N x p

𝛽︸︷︷︸
p x 1

+

N x 1︷           ︸︸           ︷
Z︸︷︷︸

N x q

𝑢︸︷︷︸
q x 1

+
N x 1︷︸︸︷
𝜀 .

The random effect coefficients 𝑢 are defined to have a mean of 0 and therefore any nonzero mean for

a term in the random effects is expressed as part of the fixed effect. This is because random effects

are modeled as deviations from the fixed effect. It is assumed that 𝑢 ∼ 𝒩(0,ΩST), where ΩST is the

variance-covariance matrix of random effect coefficients and “𝑺𝑻” is short for “Single Trait" to distinguish

it from multi-trait model in Section 3.5. Therefore, it is symmetric and positive semi-definite. Suppose

that we had three cultivars, then

ΩST =


𝜎2

𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟1
Cov(𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟1, 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟2) Cov(𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟1, 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟3)

Cov(𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟1, 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟2) 𝜎2

𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟2
Cov(𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟2, 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟3)

Cov(𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟1, 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟3) Cov(𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟2, 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟3) 𝜎2

𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟3

 .
Assumption 2.1. The distribution of random effect coefficients (𝑢) is 𝒩(0,ΩST).

Various constraints allow us to simplify the model, for example, by assuming that the random effects

are independent, which would imply the structure is

ΩST =


𝜎2

𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟1
0 0

0 𝜎2

𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟2
0

0 0 𝜎2

𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟3

 .
Another element in the model is the residual with assumption 𝜀 ∼ 𝒩(0,R), where R is the variance-

covariance matrix of residuals. One common structure is R = I𝜎2

𝜀, where 𝜎2

𝜀 is the residual variance. This

structure assumes a homogeneous residual variance for all observations and residuals are independent

[9]. Besides, it is also assumed the algebraic independence between ΩST and R. The joint distribution of

𝑢 and 𝜀 is as follows:


𝑢

𝜀

 ∼ 𝒩
©«

0

0
ª®¬ , ©«

ΩST 0

0 R
ª®¬
 . (2.6)

Assumption 2.2. The distribution of error terms (𝜀) is 𝒩(0,R).
Assumption 2.3. 𝑢 and 𝜀 are independent.

With Assumptions (2.1, 2.2 and 2.3), the distribution of Y | X,Z can be expressed as: 𝒩(X𝛽,ZΩSTZ′ +R).

8
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2.2. Linear Mixed Effects Model 9

According to Henderson (1959) [12], the BLUE �̂� and BLUP �̂� are solutions to the mixed model equations:


X𝑇R−1X X𝑇R−1Z

Z𝑇R−1X Z𝑇R−1Z +ΩST
−1



�̂�

�̂�

 =


X𝑇R−1Y

Z𝑇R−1Y

 . (2.7)

Proof. Recall that for 𝒚 =
(
𝑦1 , 𝑦2 , . . . , 𝑦𝑖

)𝑇 ∼ 𝒩 (
𝝁,𝚺𝑦

)
, the probability density function (PDF) is

𝑃(𝒚) = (2𝜋)− 𝑖
2

��𝚺𝑦

��− 1

2

exp

[
−1

2

(𝒚 − 𝝁)𝑇𝚺−1

𝑦 (𝒚 − 𝝁)
]
. (2.8)

Combine Equation (2.6) and (2.8). We have

𝑃

(
𝑢

𝜀

)
= (2𝜋)−

𝑛+𝑞
2

������ ΩST 0

0 R

������
−1

exp

−1

2

(
𝑢

𝜀

)𝑇 ©«
ΩST 0

0 R
ª®¬
−1 (

𝑢

𝜀

)
= (2𝜋)−

𝑛+𝑞
2

������ ΩST 0

0 R

������
−1

exp

−1

2

(
𝑢

𝜀

)𝑇 ©«
ΩST

−1 0

0 R−1

ª®¬
(
𝑢

𝜀

) ,
where 𝑞 is the number of elements in the random vector 𝑢 and the dimension of 𝑢. If ΩST and R are

known, maximise 𝑃
(
𝑢
𝜀

)
is equivalent to minimise

𝑄(𝑢, 𝜀) =
(
𝑢

𝜀

)𝑇 ©«
ΩST

−1 0

0 R−1

ª®¬
(
𝑢

𝜀

)
= 𝑢𝑇ΩST

−1𝑢 + 𝜀𝑇R−1𝜀.

Note that 𝜀 = 𝜀(𝛽, 𝑢) = Y − X𝛽 − Z𝑢. Using results from matrix calculus, we have

𝜕𝜀(𝛽, 𝑢)
𝜕𝛽

= −X𝑇
;

𝜕𝜀(𝛽, 𝑢)
𝜕𝑢

= Z𝑇 .

Therefore,

𝜕𝑄(𝑢, 𝜀)
𝜕𝛽

=
𝜕
(
𝑢𝑇ΩST

−1𝑢
)

𝜕𝛽
+ 𝜕𝜀

𝜕𝛽

𝜕
(
𝜀𝑇R−1𝜀

)
𝜕𝜀

= −2X𝑇R−1𝜀.

Similarly, we have

𝜕𝑄(𝑢, 𝜀)
𝜕𝑢

=
𝜕
(
𝑢𝑇ΩST

−1𝑢
)

𝜕𝒖
+ 𝜕𝜀

𝜕𝑢

𝜕
(
𝜀𝑇R−1𝜀

)
𝜕𝜀

= 2ΩST
−1𝑢 − 2Z𝑇R−1𝜀.

Setting
𝜕𝑄
𝜕𝛽 and

𝜕𝑄
𝜕𝑢 to be 0 and replacing 𝜀 with 𝜀 = Y − X𝛽 − Z𝑢, we have

𝜕𝑄

𝜕𝛽
= 0⇔ X𝑇R−1X�̂� + X𝑇R−1Z�̂� = X𝑇𝑹−1Y. (2.9)

𝜕𝑄

𝜕𝑢
= 0⇔ Z𝑇R−1X�̂� +

(
Z𝑇R−1Z +ΩST

−1
)
�̂� = Z𝑇R−1Y. (2.10)

9
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2.2. Linear Mixed Effects Model 10

Organizing Equations (2.9) and (2.10), we have Henderson’s mixed model equations in matrix form:


X𝑇R−1X X𝑇R−1Z

Z𝑇R−1X Z𝑇R−1Z +ΩST
−1



�̂�

�̂�

 =


X𝑇R−1Y

Z𝑇R−1Y

 .

The solution of Henderson’s mixed model equations (MME) can be written as

�̂� = (X′(ZΩSTZ𝑇 + R)−1X)−1X′(ZΩSTZ𝑇 + R)−1Y, (2.11)

�̂� = ΩSTZ′(ZΩSTZ𝑇 + R)−1(Y − X�̂�). (2.12)

We now show Equations (2.11) and (2.12) are solution of Equation (2.7).

Proof. Equation (2.7) is equivalent to

X𝑇R−1X�̂� + X𝑇R−1Z�̂� = X𝑇R−1Y. (2.13)

Z𝑇R−1X�̂� + (Z𝑇R−1Z +ΩST
−1)�̂� = Z𝑇R−1Y. (2.14)

Z𝑇R−1Z is positive definite and invertible because Z has independent columns and R is positive definite.

Then, Equation (2.14) can be transformed into Equation (2.15)

(Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1X�̂� + �̂� = (Z𝑇R−1Z +ΩST

−1)−1Z𝑇R−1Y. (2.15)

Left multiply X𝑇R−1Z in both sides and then we get

X𝑇R−1Z(Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1X�̂� + X𝑇R−1Z�̂� = X𝑇R−1Z(Z𝑇R−1Z +ΩST

−1)−1Z𝑇R−1Y. (2.16)

Combining Equations (2.13) and (2.16), we can eliminate �̂�:

X𝑇(R−1 − R−1Z(Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1)X�̂� = X𝑇(R−1 − R−1Z(Z𝑇R−1Z +ΩST

−1)−1Z𝑇R−1)Y. (2.17)

We define W = R−1 − R−1Z(Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1

and rewrite Equation (2.17) as

X𝑇WX�̂� = X𝑇WY, (2.18)

then

�̂� = (X𝑇WX)−1X𝑇WY. (2.19)

10
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2.2. Linear Mixed Effects Model 11

The only thing left is to prove W = V−1
where V = ZΩSTZ𝑇 + R:

VW = (ZΩSTZ𝑇 + R)(R−1 − R−1Z(Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1)

= I + ZΩSTZ𝑇R−1 − Z(Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1 − ZΩSTZ𝑇R−1Z(Z𝑇R−1Z +ΩST

−1)−1Z𝑇R−1

= I + ZΩSTZ𝑇R−1 − Z((Z𝑇R−1Z +ΩST
−1)−1 +ΩSTZ𝑇R−1Z(Z𝑇R−1Z +ΩST

−1)−1)Z𝑇R−1

= I + ZΩSTZ𝑇R−1 − Z(I +ΩSTZ𝑇R−1Z)(Z𝑇R−1Z +ΩST
−1)−1)Z𝑇R−1

= I + ZΩSTZ𝑇R−1 − ZΩST(ΩST
−1 + Z𝑇R−1Z)((Z𝑇R−1Z +ΩST

−1)−1)Z𝑇R−1

= I + ZΩSTZ𝑇R−1 − ZΩSTZ𝑇R−1

= I.

So we can replace W with V−1 = (ZΩSTZ𝑇 + R)−1
in Equation (2.19) which becomes

�̂� = (X′(ZΩSTZ𝑇 + R)−1X)−1X′(ZΩSTZ𝑇 + R)−1Y.

Now we finished the proof for �̂� and move on to �̂�. By subtracting Z𝑇R−1X�̂� in both sides of Equation

(2.13), we get

(Z𝑇R−1Z +ΩST
−1)�̂� = Z𝑇R−1Y − Z𝑇R−1X�̂�. (2.20)

Then,

�̂� = (Z𝑇R−1Z +ΩST
−1)−1(Z𝑇R−1Y − Z𝑇R−1X�̂�)

= (Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1(Y − X�̂�)

= (Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1VV−1(Y − X�̂�)

= (Z𝑇R−1Z +ΩST
−1)−1Z𝑇R−1(ZΩSTZ𝑇 + R)V−1(Y − X�̂�)

= (Z𝑇R−1Z +ΩST
−1)−1(Z𝑇R−1ZΩSTZ𝑇 + Z𝑇)V−1(Y − X�̂�)

= (Z𝑇R−1Z +ΩST
−1)−1(Z𝑇R−1Z +ΩST

−1)ΩSTZ𝑇V−1(Y − X�̂�)

= ΩSTZ𝑇V−1(Y − X�̂�)

= ΩSTZ𝑇(ZΩSTZ𝑇 + R)−1(Y − X�̂�).

BLUPs have the smallest mean squared error of prediction among all linear unbiased predictors if the

parameters in variance-covariance matrix are known. However, in practice, matrices ΩST and R are

usually unknown. Therefore, specification of different choices of covariance matrices usually comes

prior to estimation of 𝛽 and 𝑢. We will cover it in Chapter 3.
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2.3. Motivation of Mixed Effects Models
Simple linear regression (Equation 2.1) is not the best choice to model nested data due to within-field

correlation, which violates the independence of errors assumption. Recall the example used at the

beginning of Chapter 2, there are two levels of variables because plants (level 1) are nested in fields

(level 2). Plant observations are not independent, as within a given field plants are more similar. Figure

2.2 shows plants as dots within larger circles representing fields.

Figure 2.2: Plants in different fields Figure 2.3: The model with the group variable

The within-field correlation leads to incorrect standard error estimates and, consequently, errors of

statistical inferences. Underestimated standard errors cause an overestimation of test statistics, leading

to inappropriate statistical significance and increased Type I error rate [8].

Ignoring the nested data structure can lead to underestimating standard errors and missing key

relationships at each data level as well. We may miss important variables at the field level that help to

explain difference at plant level because of not including information about the field. Thus, we applied

an incorrect model to understand the outcome variable [9].

Figure 2.3 shows plants from six fields in a scatter plot of predictor versus outcome. Within fields, the

relation is negative, but positive between fields. This is called Simpson’s paradox. Including the group

variable allows us to explore these important effects also avoid Simpson’s paradox [9].

One method for handling nested data is aggregation, which averages plant data within a field to produce

independent field data. While this approach gives consistent effect estimates and standard errors, it

doesn’t utilize all individual-level data. Another method is to run separate linear regressions for each

field. This approach generates multiple models but doesn’t leverage data from other fields, leading to

larger variance in estimates [8, 9].

Mixed effects models can be thought of as a trade off between these two methods. The regression by

group has many estimates and lots of data, but is noisy. The aggregated regression is less noisy, but

may lose important differences by averaging all samples within each plot. Mixed effects models are

somewhere in between caring about getting standard errors corrected for dependence in the data [8, 9].
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3
Mixed Effects Models in Breeding

Mixed effects models are widely used in breeding because every phenotypic observation is determined

by environmental and genetic factors: Phenotype = Environment + Genotype. The environment includes

non-genetic influences on performance. Breeding programs also use observations of related individuals

to infer their genotypic values. Mixed effects models integrate data from environment and related

individuals to improve breeding value estimates. Breeding values are average effects of genes that are

transmitted by a parent to an offspring [13, 14].

3.1. The Breeding Value Estimation
In general, the interest of breeding is on prediction of breeding values which are treated as random

effect coefficients 𝑢 in mixed effects models, and estimation of variance components [15]. The most

straightforward information for estimating breeding values is the phenotype. Additionally, we can also

use phenotypic data from relatives, including the father, mother, siblings, and progeny. If pedigree

information is available, the BLUP method can incorporate data from relatives effectively [15, 16].

The mixed effects model allows efficient estimation of genetic parameters such as breeding values and

variance components [17]. Breeding values are predicted using the following mixed effects model:

Y = X𝛽 + Z𝑢 + 𝜀,

where Y is a vector of phenotypic observations; X is a vector of fixed effects (Environment); Z is a vector

of random effects (Genotype); 𝜀 is a vector of errors. Genetic evaluation by BLUP is heavily dependent

on the genetic variance covariance matrix, both for higher accuracy and for unbiased results.
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3.2. Pedigree Relationship Matrix A & ABLUP 14

We assumed 𝑢 ∼ 𝒩(0,ΩST) in Assumption 2.1 and now assume ΩST = ΩST0
𝝈2
𝒖 , with ΩST0

as the

additive genetic relationship matrix and 𝝈2
𝒖 as the additive genetic variance. ΩST0

is about similarity

between individuals. Off-diagonal elements represent the proportion of genes shared by two individuals.

The diagonal element is the degree of inbreeding of the individual. Additive genetic variance 𝝈2
𝒖 involves

the inheritance of a particular allele from parents and this allele’s independent effect on the specific

phenotype, which will cause the phenotype deviation from the mean phenotype [17].

Assumption 3.1. ΩST = ΩST0
𝝈2
𝒖 , where ΩST0

is the additive genetic relationship matrix in 𝑁 × 𝑁 , similarity

between individuals, and 𝝈2
𝒖 is the additive genetic variance.

We will cover how to specify ΩST0
by pedigree relationship matrix A, genomic relationship matrix G

and combined relationship matrix H in the rest of this chapter. Matrix A is the relationship matrix from

pedigree. Matrix G is the relationship matrix from genomic data. Matrix H combines information from

matrices A and G.

Figure 3.1: The relationships among relationship matrices

3.2. Pedigree Relationship Matrix A & ABLUP
The pedigree relationship matrix A is used in breeding to get information from relatives in pedigree. It

is a measure of the expected relationship among relatives. The assumption is that each parent should

provide a random sample out of every two alleles. One allele would be randomly sampled from the

two to create a new offspring. Matrix A is constrained by pedigree depth, completeness, and recording

accuracy [18, 19].

Steps to calculate A:

• Step 1: Order the list of individuals chronologically so that parents precede offspring.

• Step 2: Calculate A row by row and recursively by

A𝑖 , 𝑗 =
1

2

(𝐴𝑖 , 𝑓 𝑎𝑡ℎ𝑒𝑟(𝑗) + 𝐴𝑖 ,𝑚𝑜𝑡ℎ𝑒𝑟(𝑗)),

14
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3.2. Pedigree Relationship Matrix A & ABLUP 15

A𝑖 ,𝑖 = 1 + 𝐶𝑖𝑛𝑏𝑟𝑒𝑒𝑑𝑖𝑛𝑔𝐴 𝑓 𝑎𝑡ℎ𝑒𝑟(𝑖),𝑚𝑜𝑡ℎ𝑒𝑟(𝑖) , (3.1)

where 𝑓 𝑎𝑡ℎ𝑒𝑟(𝑖) and 𝑚𝑜𝑡ℎ𝑒𝑟(𝑖) are the father and mother of individual 𝑖. 𝐶𝑖𝑛𝑏𝑟𝑒𝑒𝑑𝑖𝑛𝑔 is a positive

constant.

Assumption 3.2. In pedigree there are individuals whose parents are unknown. The unknown parents are

considered unrelated and non-inbred.

Off-diagonal element A𝑖 , 𝑗 is about the expected similarity between individuals 𝑖 and 𝑗. This is the mean

of the similarity between individual 𝑖 and the parents of individual 𝑗. Diagonal element A𝑖 ,𝑖 is the

expected degree of inbreeding or the relationship between one and itself.

In equation (3.1), 1 is the relationship between one and itself without inbreeding. 𝐶𝑖𝑛𝑏𝑟𝑒𝑒𝑑𝑖𝑛𝑔𝐴 𝑓 𝑎𝑡ℎ𝑒𝑟(𝑖),𝑚𝑜𝑡ℎ𝑒𝑟(𝑖)

is inbreeding coefficient. In practice, everyone uses 1/2 for 𝐶𝑖𝑛𝑏𝑟𝑒𝑒𝑑𝑖𝑛𝑔 but it is unclear why this has been

chosen. In genetics, the inbreeding coefficient indicates the chance that a individual inherits the same

allele from both parents due to their genetic relatedness. In other words: it measures the probability of

an individual inheriting the same allele from both parents due to their common ancestry [20].

Figure 3.2: Example of pedigree chart

Individual Father Mother

1 0 0

2 0 0

3 1 2

4 1 0

5 4 3

6 5 2

Table 3.1: The ordered pedigree of Figure 3.2

The first column is the individual’s number. The second and third

columns are the individual’s father and mother, respectively.

Figure 3.2 is an example of pedigree chart for the calculation of matrix A [21]. In step one, individuals

from pedigree are sorted from oldest (top) to youngest (bottom). Table 3.1 displays ordered pedigree of

Figure 3.2. The first column of Table 3.1 is the individual’s number. The second and third columns are

the individual’s father and mother, respectively.

In step two, we calculate the diagonal and off-diagonal elements. For instance, the diagonal element for

individual 6 in Figure 3.2 is 𝑎6,6 = 1+ 0.5(𝑎5,2) = 1+ 0.5× 0.25 = 1.125 because its parents are individuals

5 and 2. The expected relationship between individuals 1 and 6 is given by 𝑎1,6 = 0.5(𝑎1,5 + 𝑎1,2) =
0.5 × (0.5 + 0) = 0.25, as animal 5 is the father and animal 2 is the mother of 6, making the relationship

between 1 and 6 the average of 1’s relationships with 5 and 2. The pedigree relationship matrix for all

individuals in Figure 3.2 is displayed in Table 3.2.
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Plant 1 2 3 4 5 6

1 1 0 0.5 0.5 0.5 0.25

2 0 1 0.5 0 0.25 0.625

3 0.5 0.5 1 0.25 0.625 0.5625

4 0.5 0 0.25 1 0.625 0.3125

5 0.5 0.25 0.625 0.625 1.125 0.6875

6 0.25 0.625 0.5625 0.3125 0.6875 1.125

Table 3.2: The Matrix A of individuals in Figure 3.2

Matrix A is called “relationship matrix” but it is a variance covariance matrix meaning that on

the diagonal elements are variances, and the off-diagonal elements are covariances. To obtain the

relationships one would divide the off-diagonal elements by the square roots of the product of the

corresponding diagonals: diag(A)−1/2Adiag(A)−1/2
. This reduces a variance covariance matrix to a

correlation matrix. Thus, we also call matrix A the numerator relationship matrix [18].

ABLUP is the conventional BLUP method using pedigree relationship matrix A as ΩST0
to estimate

breeding values. Therefore, the distribution of random effect coefficients 𝑢 (Assumption 2.1) can be

rewritten as 𝒩(0,A𝝈2
𝒖). The distribution of Y | X,Z can be expressed as: 𝒩(X𝛽,ZA𝝈2

𝒖Z𝑇 + R). If the

residual vector 𝜀 is assumed to satisfy 𝜀 ∼ 𝒩(0, I𝜎2

𝜀)where 𝜎2

𝜀 is the residual variance, Equation (2.7)

can be expressed as: 
X𝑇R−1X X𝑇R−1Z

Z𝑇R−1X Z𝑇R−1Z +A−1



�̂�

�̂�

 =


X𝑇R−1Y

Z𝑇R−1Y

 .
ABLUP is given by: �̂� = (Z𝑇Z + 𝜆A−1)−1Z𝑇(Y − X�̂�)with 𝜆 = 𝜎2

𝜀/𝜎2

𝑢 .

Assumption 3.3. The distribution of error terms 𝜀 is a special case of Assumption 2.2, where R = I𝜎2

𝜀 :

𝜀 ∼ 𝒩(0, I𝜎2

𝜀).

3.3. Genomic Relationship Matrix G & GBLUP
The matrix A relies on pedigree information to estimate the relationships between relatives. The matrix

G uses DNA information by a large number (10
4
) of SNP markers (single nucleotide polymorphism).

It is not feasible to measure all DNA information which gives us the proportion of chromosome

segments shared between individuals. Genomic relationships in matrix G provide accurate estimate of

relationships. This is because high-density genotyping can identify genes that are identical in state,

which may be inherited from common ancestors not documented in the pedigree [22].

An individual’s breeding value consists of half from the father, half from the mother, and the Mendelian

sampling term. The Mendelian sampling represents individual’s difference from the average of its

parents’ breeding values and is due to the random sample of genes and chromosomes that the progeny

inherited [23]. Therefore, G𝑖 , 𝑗 is a random variable with E[G𝑖 , 𝑗] = A𝑖 , 𝑗 . Relationships in matrix G can
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deviate from the expected relationship given in matrix A because matrix A only includes the breeding

value of father and mother. For example, the relationship between two full siblings in G may range

from 0.4 to 0.6 because of Mendelian sampling instead of 0.5 given in matrix A [23].

To calculate matrix G, we first introduce the marker genotype matrix M. Matrix M indicates the genetic

markers inherited by each individual. A genetic marker is a gene or DNA sequence with a known

location on a chromosome that can be used to identify individuals or species [24]. The dimensions of

matrix M are defined by the number of individuals 𝑁 and the number of markers 𝑁𝑚𝑎𝑟𝑘𝑒𝑟𝑠 [19, 25]. If B

and b are alleles, the elements in matrix M are defined as

M𝑖 , 𝑗 =


0 if the individual is homozygous for the first allele, BB

1 if it is heterozygous, Bb

2 if it is homozygous for the second allele, bb.

Secondly, we introduce matrix P which will be used to center matrix G. Centering measures genetic

variances and covariances as deviations from the average genotype [19]. In genetics, a locus (plural: loci)

is a specific, fixed position on a chromosome where a particular gene or genetic marker is located [26].

Let the estimated minor allele frequency at locus 𝑗 be 𝑝 𝑗 with 𝑗 ∈ {1, 2, . . . 𝑁𝑚𝑎𝑟𝑘𝑒𝑟𝑠}. The minor allele is

the second most common allele occurs also known as the second allele. In this example the minor allele

is 𝑏. P is a 𝑁 × 𝑁𝑚𝑎𝑟𝑘𝑒𝑟𝑠 matrix defined by P = (P𝑖 𝑗)with P𝑖 𝑗 = 2(𝑝 𝑗 − 0.5)where 𝑖 ∈ {1, 2, . . . 𝑁}. Then

the formulation of G is

G =
(M − P)(M − P)𝑇

𝐶𝐺
=

KK𝑇

𝐶𝐺
. (3.2)

In practice, everyone uses 2

∑𝑁𝑙𝑜𝑐𝑢𝑠

𝑖=1
𝑝𝑖(1 − 𝑝𝑖) as 𝐶𝐺 but it is unclear why this has been chosen. The

genomic inbreeding coefficient for individual 𝑖 is G𝑖 ,𝑖−1. The genomic relationships between individuals

𝑖 and 𝑗 are obtained by G𝑖 , 𝑗/
√

G𝑖 ,𝑖G𝑗 , 𝑗 [19, 25].

Genomic BLUP (GBLUP) is a way to utilize genotypes to estimate breeding values. Genomic relationship

matrix G is used instead of pedigree relationship matrix A. By replacing the relationship matrix from

A to G, The distribution of 𝑢 changes to 𝒩(0,G𝝈2
𝒖) from 𝒩(0,A𝝈2

𝒖) and the distribution of Y | X,Z is

𝒩(X𝛽,ZG𝝈2
𝒖Z𝑇 + R). The MME Equation (2.7) can be expressed as:


X𝑇R−1X X𝑇R−1Z

Z𝑇R−1X Z𝑇R−1Z +G−1



�̂�

�̂�

 =


X𝑇R−1Y

Z𝑇R−1Y

 .
GBLUP is given by: �̂� = (Z𝑇Z + 𝜆G−1)−1Z𝑇(Y − X�̂�)with 𝜆 = 𝜎2

𝜀/𝜎2

𝑢 .

Assumption 3.4. The distribution of random effect coefficients 𝑢 is 𝒩(0,G𝝈2
𝒖) in GBLUP.
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3.4. Single-Step GBLUP 18

3.4. Single-Step GBLUP
GBLUP faces a challenge: phenotypes are available on thousands or millions of individuals, yet there

are genotypes on a select subset of those because genotyping is quite expensive on a population basis for

all individuals. Single-Step GBLUP (ssGBLUP) addresses it by using all phenotypes with a combined

relationship matrix H [27]. Matrix H combines information from matrices A and G, serving as an

estimator of relationships using both pedigree and genomic information. Calculation of matrix G is

important in ssGBLUP. Matrices A and G can be divided into four parts:

A =


A11 A12

A21 A22

 ,G =


G11 G12

G21 G22

 ,
where subscripts 1 and 2 represent ungenotyped and genotyped individuals. While G is partially

observed with only G22 observed. The simplest way to combine matrix A and matrix G is to replace A22

with matrix G:


A11 A12

A21 G22

 . (3.3)

It is simple to use but can be improved because there may be connections between genotyped and

non-genotyped individuals through pedigree.

Figure 3.3: The relationships of non-genotyped individuals may also change because of G22.

Matrix G22 may modify relationships in the ancestors and descendants of genotyped individuals, as

demonstrated by the pedigree in Figure 3.3. Assume two full-siblings, 1 and 2, are genotyped with

genomic relationship 0.4 and individuals 5 and 6 are non-genotyped. By using Matrix (3.3), we get the

estimated relationship between 5 and 6 is 0.125. 1 and 2 are full siblings so they share 50% gene. 5

and 6 get 50% of the genes from 1 and 2 respectively. So 5 and 6 share 0.52
gene form 1 and 2. Since

they are only related through 1 and 2 so 5 and 6 share 0.53 = 0.125 of the genes. Actually, we can get a

better estimate by 0.4 × 0.5 × 0.5 = 0.1 because we know the genetic relationship between 1 and 2 is 0.4.

Therefore, adding information from matrix G22 to matrix A alters the relationships among genotyped
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individuals, and may also affect non-genotyped ones [27].

Assumption 3.5. In the following of this section, it is assumed that 𝜎2

𝑢 = 1.

We are going to show how to improve Matrix (3.3) to estimate the relationships which means we need

to compute Cov(𝑢 | G22 ,A). The following method was developed by Legarra et al. [27].

Theorem 1. We assume 𝑢 | A ∼ 𝒩(0,A) and 𝑢2 | G ∼ 𝒩(0,G22). Then

𝐶𝑜𝑣(𝑢 | G22 ,A) := H = A +

A12A−1

22 (G −A22)A22
−1A21 A12A22

−1(G −A22)
(G −A22)A−1

22 A21 G −A22

 .

Proof. According to the conditional distribution of multivariate normal distribution in Appendix B,

the distribution of breeding values of ungenotyped individuals, conditioned on breeding values of

genotyped individuals, is:

𝑓 (𝑢1 | 𝑢2) = 𝒩(A12A22
−1𝑢2 ,A11 −A11A22

−1A21),

or:

𝑢1 = E(𝑢1 | 𝑢2) + 𝜖 = A12A22
−1𝑢2 + 𝜖,

𝜖 ∼ 𝒩(0,A11 −A11A22
−1A21).

It can be expressed as a regression equation:

𝑢1 = A12A22
−1𝑢2 + 𝜖.

Recall that Var(𝑢2) = G. So that

Var(𝑢1) = A12A22
−1GA22

−1A21 +A11 −A12A22
−1A21

= A11 +A12A−1
22 (G −A22)A22

−1A21 ,

and

Cov(𝑢1 , 𝑢2) = A12A22
−1G,
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Now we can write matrix H as:

H =


H11 H12

H21 H22

 =


Var(𝑢1) Cov(𝑢2 , 𝑢1)

Cov(𝑢1 , 𝑢2) Var(𝑢2)


=


A11 +A12A22

−1(G −A22)A22
−1A21 A12A22

−1G

GA22
−1A21 G


= A +


A12A−1

22 (G −A22)A22
−1A21 A12A22

−1(G −A22)
(G −A22)A−1

22 A21 G −A22

 .

Matrix H is a variation of the pedigree relationships matrix A to include genomic relationships in

G. Notice how G comes into the H11, H12, and H21 parts in Theorem 1. This implies that genomic

relationships would change the connections among non-genotyped individuals, as well as between

genotyped and non-genotyped individuals [28]. Two unrelated individuals in A will appear as related

in H if their descendants are related in G. Accordingly, two descendants of individuals that are related

in G will be related in H, even if they are not related in matrix A.

There are other different ways to understand the matrix H: in this matrix, genomic information is

conveyed through the pedigree of all individuals. It is a projection of G onto the remaining individuals.

Additionally, it is also a Bayesian update of matrix A based on new information from genotypes [27, 28].

Besides, genotyped individuals without phenotypic data should be excluded in matrix A. While they

cannot be excluded from matrix H. This is because, unless both parents are genotyped, these individuals

can still influence the pedigree relationships of other individuals, particularly their parents. We can use

the information to get the better estimation of the relationships between individuals.

The pedigree chart in Figure 3.4 is an example to show it. Consider two half-siblings 4 and 5 born to one

father and two unrelated, non-genotyped mothers 2 and 3. If individuals 4 and 5 are nearly identical,

matrix H will capture this information, resulting in the non-genotyped mothers 2 and 3 being treated as

related or even identical within matrix H [28].

Figure 3.4: Genotyped offsprings influence relationship between non-genotyped parents.
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In Theorem 1, we assumed that 𝑢 | A ∼ 𝒩(0, A). Existing researches for joint analysis of genotyped and

ungenotyped individuals also have this assumption [29, 30]. Strictly speaking, this is not coherent in

our framework because 𝑓 (𝑢 | A,K2) is a mixture of multivariate normal densities [15]. The matrix K

was defined in Equation (3.2). The part of the matrix K used to compute G11 and G22 are defined as K1

and K2 but K1 is not observed in practice. Conditional distribution 𝑓 (𝑢 | · · · ) can be normal distribution

or mixture of normal distributions. It depends on the set of variables we are conditioning on as shows

in the following theorem.

Theorem 2. Assume 𝑢 | G ∼ 𝒩(0, G) and E(G) = A. Then 𝑓 (𝑢 | K1 ,K2) is a multivariate normal distribution

and 𝑓 (𝑢 | A,K2) a mixture of multivariate normal distributions.

Proof. When all individuals are genotyped, the marginal distribution of breeding values 𝑢 is

𝑓 (𝑢 | K) = 𝒩(0,G) = 1

𝐶𝐺
𝒩(0,


K1K1

𝑇 K1K2
𝑇

K2K1
𝑇 K2K2

𝑇

),
which is a multivariate normal distribution. When some individuals are not genotyped, we need to

derive the joint density of genetic values given A and K2:

𝑓 (𝑢 | A,K2) =
∫

𝑓 (𝑢1 , 𝑢2 ,K1 | K2 ,A)𝑑K1

=

∫
𝑓 (𝑢1 , 𝑢2 , | K1 ,K2) 𝑓 (K1 | K2 ,A)𝑑K1

=

∫
𝒩(0,G) 𝑓 (K1 | K2 ,A)𝑑K1 ,

which is a mixture of multivariate normal distributions.

Figure 3.5: 𝑢 | A ∼ 𝒩(0,A) is not coherent with assumptions in Theorem 2.

21
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



3.5. Multi-Trait Single-Step GBLUP 22

This is summarized in Figure 3.5. 𝑢 | A ∼ 𝒩(0,A) is not coherent with assumptions in Theorem 2. But

𝑢 | A may follow a distribution “close” to 𝒩(0,A), which justifies the use of H as an approximation of

𝐶𝑜𝑣(𝑢 | G22 ,A). It is because we can not conclude 𝑢 ∼ 𝒩(0,A) from 𝑢 | G ∼ 𝒩(0,G) and E(G) = A.

We are going to give a numeric example where A and G are scalars. Let A = 0.5 and G is in Bernoulli

distribution: G ∼ 𝐵𝑒𝑟𝑛(1/2) so E(G) = A. The true distribution of 𝑢 is a mixture of normal distributions,

1

2
𝒩(0, 1) + 1

2
𝒩(0, 3), while 𝒩(0,A) = 𝒩(0, 2). Figure 3.6 presents the difference between the two

distributions. Therefore, 𝒩(0,A) is not the real distribution of 𝑢 but an approximation of it.

Figure 3.6: PDFs of the mixture distribution and normal distribution

3.5. Multi-Trait Single-Step GBLUP
We have worked on single-trait models so far. For multiple traits, genetic evaluation can be done either

individually using single-trait models or simultaneously with multi-trait models [31]. Recall 𝑁 is the

number of individuals with 𝑝 fixed effects and 𝑞 random effects. We begin with an example using 𝑝 = 2,

𝑞 = 0, and 𝑁 = 3. We choose 𝑞 = 0 for simplicity as the fixed effects model extends easily to the mixed

effects model. Y𝑖 ∈ R is the phenotype data of 𝑖𝑡ℎ individual. X𝑖𝑙 is the 𝑖𝑡ℎ individual’s 𝑙𝑡ℎ fixed effect

value. 𝛽𝑙 is the coefficient of 𝑙𝑡ℎ fixed effects. A single-trait model is expressed as following when 𝑘 = 1:

Y1 = X11𝛽1 + X12𝛽2 + 𝜀1Y2 = X21𝛽1 + X22𝛽2 + 𝜀2Y3 = X31𝛽1 + X32𝛽2 + 𝜀3.

The single-trait model in matrix form is:


Y1

Y2

Y3

 =


X11 X12

X21 X22

X31 X32



𝛽1

𝛽2

 +

𝜀1

𝜀2

𝜀3

 .
Continuing the example with 𝑘 = 2 traits, it is a multi-trait model, also known as a bi-trait model. Y𝑖 𝑗 is
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phenotype data for 𝑖𝑡ℎ individual’s 𝑗𝑡ℎ trait. X𝑖𝑙 represents the value of 𝑖𝑡ℎ individual’s 𝑙𝑡ℎ fixed effect,

and 𝛽 𝑗𝑙 is the coefficient of 𝑙𝑡ℎ fixed effects on 𝑗𝑡ℎ trait. The multi-trait model is



Y11 = X11𝛽11 + X12𝛽12 + 𝜀11

Y21 = X21𝛽11 + X22𝛽12 + 𝜀21

Y31 = X31𝛽11 + X32𝛽12 + 𝜀31

Y12 = X11𝛽21 + X12𝛽22 + 𝜀12

Y22 = X21𝛽21 + X22𝛽22 + 𝜀22

Y32 = X31𝛽21 + X32𝛽22 + 𝜀32

.

Joint trait analysis can use two forms of the multi-trait model: stacked and non-stacked, which differ in

matrix arrangement. The stacked form is:



Y11

Y21

Y31

Y12

Y22

Y32


=



X11 X12 0 0 0 0 0 0 0 0 0 0

0 0 X21 X22 0 0 0 0 0 0 0 0

0 0 0 0 X31 X32 0 0 0 0 0 0

0 0 0 0 0 0 X11 X12 0 0 0 0

0 0 0 0 0 0 0 0 X21 X22 0 0

0 0 0 0 0 0 0 0 0 0 X31 X32





𝛽11

𝛽12

𝛽11

𝛽12

𝛽11

𝛽12

𝛽21

𝛽22

𝛽21

𝛽22

𝛽21

𝛽22



+



𝜀11

𝜀21

𝜀31

𝜀12

𝜀22

𝜀32


.

The non stacked form is:


Y11 Y12

Y21 Y22

Y31 Y32

 =


X11 X12

X21 X22

X31 X32



𝛽11 𝛽21

𝛽12 𝛽22

 +

𝜀11 𝜀12

𝜀21 𝜀22

𝜀31 𝜀32

 .
Following examples, we define the general multi-trait model with 𝑘 traits from the single-trait model.

The single-trait model for each trait is:

N × 1︷︸︸︷
Y𝑗 =

N × 1︷            ︸︸            ︷
X︸︷︷︸

N × p

𝛽 𝑗︸︷︷︸
p × 1

+

N × 1︷           ︸︸           ︷
Z︸︷︷︸

N × q

𝑢𝑗︸︷︷︸
q × 1

+
N × 1︷︸︸︷
𝜀𝑗 . (3.4)
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Assumption 3.6. To simplify the presentation of multi-trait model, we assume each individual has either no

observations or observations on all traits.

The stacked multi-trait model is defined as

Nk × 1︷︸︸︷
Y =

Nk × 1︷                      ︸︸                      ︷
X︸︷︷︸

Nk × Nkp

𝛽︸︷︷︸
Nkp × 1

+

Nk × 1︷                      ︸︸                      ︷
Z︸︷︷︸

Nk × Nkq

𝑢︸︷︷︸
Nkq × 1

+
Nk × 1︷︸︸︷

𝜀 (3.5)

with

X̃ =



X11 · · · X1𝑝 0 · · · 0 · · · 0 · · · 0

0 · · · 0 X21 · · · X2𝑝 · · · 0 · · · 0

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · X𝑁1 · · · X𝑁𝑝


,X =



X̃ 0 · · · 0

0 X̃ · · · 0

...
...

. . .
...

0 0 · · · X̃


,

Z̃ =



Z11 · · · Z1𝑞 0 · · · 0 · · · 0 · · · 0

0 · · · 0 Z21 · · · Z2𝑞 · · · 0 · · · 0

...
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 · · · Z𝑁1 · · · Z𝑁𝑞


,Z =



Z̃ 0 · · · 0

0 Z̃ · · · 0

...
...

. . .
...

0 0 · · · Z̃


,

Y =



Y11

...

Y𝑁1

Y12

...

Y𝑁2

...

Y1𝑘

...

Y𝑁𝑘



, �̃�𝑖 =


𝛽𝑖1
...

𝛽𝑖𝑝


, 𝛽 =



�̃�1

...

�̃�1

�̃�2

...

�̃�2

...

�̃�𝑘
...

�̃�𝑘



, �̃�𝑖 =


𝑢𝑖1
...

𝑢𝑖𝑝


, 𝑢 =



�̃�1

...

�̃�1

�̃�2

...

�̃�2

...

�̃�𝑘

...

�̃�𝑘



, 𝜀 =



𝜀11

...

𝜀𝑁1

𝜀12

...

𝜀𝑁2

...

𝜀1𝑘

...

𝜀𝑁𝑘



.

The non stacked multi-trait model is defined as

N × k︷︸︸︷
Y =

N × k︷            ︸︸            ︷
X︸︷︷︸

N × p

𝛽︸︷︷︸
p × k

+

N × k︷           ︸︸           ︷
Z︸︷︷︸

N × q

𝑢︸︷︷︸
q × k

+
N × k︷︸︸︷

𝜀 (3.6)
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with

Y =


Y11 Y12 · · · Y1𝑘

...
...

. . .
...

Y𝑁1 Y𝑁2 · · · Y𝑁𝑘


, 𝜀 =


𝜀11 𝜀12 · · · 𝜀1𝑘

...
...

. . .
...

𝜀𝑁1 𝜀𝑁2 · · · 𝜀𝑁𝑘


,X =


X11 X12 · · · X1𝑝

...
...

. . .
...

X𝑁1 X𝑁2 · · · X𝑁𝑝


,

𝛽 =


𝛽11 𝛽21 · · · 𝛽𝑘1

...
...

. . .
...

𝛽1𝑝 𝛽2𝑝 · · · 𝛽𝑘𝑝


, 𝑢 =


𝑢11 𝑢21 · · · 𝑢𝑘1

...
...

. . .
...

𝑢1𝑞 𝑢2𝑞 · · · 𝑢𝑘𝑞


.

Denote the Kronecker product by ⊗. If 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 a 𝑝 × 𝑞 matrix, their Kronecker

product 𝐴 ⊗ 𝐵 forms a 𝑝𝑚 × 𝑞𝑛 block matrix:

𝐴 ⊗ 𝐵 =


𝑎11𝐵 · · · 𝑎1𝑛𝐵

...
. . .

...

𝑎𝑚1𝐵 · · · 𝑎𝑚𝑛𝐵


.

Assumption 3.7. In stacked multi-trait model 𝑢 ∼ 𝒩 (0,ΩMT ⊗ H), where

ΩMT =



𝜎2

𝑢1

𝜎𝑢12
· · · 𝜎𝑢

1𝑘

𝜎𝑢12
𝜎2

𝑢2

· · · 𝜎𝑢
2𝑘

...
...

. . .
...

𝜎𝑢
1𝑘

𝜎𝑢
2𝑘
· · · 𝜎2

𝑢𝑘


is the matrix of genetic covariance across traits and H is the combined relationship matrix [32, 33].

Assumption 3.8. In stacked multi-trait model 𝜀 ∼ 𝒩 (0,R) and R = R0 ⊗ IN, where

R0 =



𝜎2

𝑒1

𝜎𝑒12
· · · 𝜎𝑒

1𝑘

𝜎𝑒12
𝜎2

𝑒2

. . . 𝜎𝑒
2𝑘

...
...

. . .
...

𝜎𝑒
1𝑘

𝜎𝑒
2𝑘
· · · 𝜎2

𝑒𝑘


is the matrix of residual covariance across traits and IN is the 𝑁 × 𝑁 identity matrix [32, 33].

Replacing ΩST
−1

by ΩMT
−1 ⊗ H−1

in Equation (2.7) leads to the MME of multi-trait ssGBLUP:


X𝑇R−1X X𝑇R−1Z

Z𝑇R−1X Z𝑇R−1Z +ΩMT
−1 ⊗ H−1



�̂�

�̂�

 =


X𝑇R−1Y

Z𝑇R−1Y

 .
25
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3.6. Genetic Correlation 𝜌𝐺𝑒𝑛

Genetic correlation quantifies the genetic relationship between two traits by measuring the proportion

of shared genetic variance, which in turn influences their phenotypic correlation. However, if the

environmental correlation is strong enough in the opposite direction, the genetic correlation can have

different direction with the phenotypic correlation [7]. Genetic correlation plays a key role in quantitative

genetics and breeding for indirect selection, particularly when measuring traits directly is costly. If trait

𝑎 is easily observed and genetically correlated to trait 𝑏, improving trait 𝑎 can impact trait 𝑏 [34].

In a quantitative genetic model, traits 𝑎 and 𝑏 are defined as the sum of genetic value 𝑔 and residual

value 𝑒, which simply means the difference between the trait value and the genetic value: Y𝑎 = 𝑔𝑎 + 𝜀𝑎

and Y𝑏 = 𝑔𝑏 + 𝜀𝑏 . The genetic correlation is:

𝜌𝐺𝑒𝑛
𝑎,𝑏

=
𝜎𝑔𝑎 ,𝑔𝑏

𝜎𝑔𝑎𝜎𝑔𝑏

,

where 𝜎𝑔𝑎 ,𝑔𝑏 is the genetic covariance between two traits and 𝜎𝑔𝑎 , 𝜎𝑔𝑏 are standard deviations of two traits

in the population. 𝜌𝐺𝑒𝑛
𝑎,𝑏

ranges from –1 to 1, where 0 means genetic effects on one trait are independent

of the other, and 1 indicates identical genetic influences on both traits [35].

Genetic correlation can be estimated in various ways, including the multi-trait model [34]. For two traits,

the estimated genetic value’s variance-covariance matrix Ω̂𝑀𝑇 is a 2x2 symmetric matrix. The estimated

genetic correlation is derived by converting the genetic covariance matrix into a correlation matrix:

�̂�𝐺𝑒𝑛
𝑎,𝑏

=
Ω̂𝑀𝑇1,2√

Ω̂𝑀𝑇1,1Ω̂𝑀𝑇2,2

.
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4
Bayesian method for MT ssGBLUP

GBLUP makes the Assumption 3.4 that the effects of the random effects are normally distributed.

However we may want to make different assumptions about the distribution of random effects to include

domain knowledge from stakeholders. Bayesian methods give us freedom to incorporate such prior

assumptions into our analysis.

4.1. Prior Distributions for Random Effects
For now, we ignore fixed effects and focus on random effects: Y𝑖 = 𝜇 +∑𝑞

𝑗=1
Z𝑖 𝑗𝑢𝑗 + 𝜀𝑖 ,where Z𝑖 𝑗 is

the genotype of the 𝑖𝑡ℎ individual at the 𝑗𝑡ℎ marker and 𝑢𝑗 is the corresponding marker effect. Recall

that 𝑁 is the number of individuals and 𝑞 is the number of random effects. Let 𝜔 be the vector of

hyperparameters. 𝜇 is commonly assigned a flat prior so 𝑓 (𝜇) ∝ 1. We begin with the framework of

standard Bayesian linear models in quantitative genetics. From

𝑓 (𝜇, 𝑢, 𝜎2

𝜀 ,Y, 𝜔) = 𝑓 (𝜇, 𝑢, 𝜎2

𝜀 | Y, 𝜔) 𝑓 (Y, 𝜔)

= 𝑓 (𝜇,Z, 𝜎2

𝜀 ,Y | 𝜔) 𝑓 (𝜔)

= 𝑓 (Y | 𝜇, 𝑢, 𝜎2

𝜀 , 𝜔) 𝑓 (𝜇, 𝑢, 𝜎2

𝜀 | 𝜔) 𝑓 (𝜔),
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we get

𝑓 (𝜇, 𝑢, 𝜎2

𝜀 , | Y, 𝜔) = 𝑓 (Y | 𝜇, 𝑢, 𝜎2

𝜀 , 𝜔) 𝑓 (𝜇, 𝑢, 𝜎2

𝜀 | 𝜔) 𝑓 (𝜔) 𝑓 −1(Y, 𝜔)

∝ 𝑓 (Y | 𝜇, 𝑢, 𝜎2

𝜀) 𝑓 (𝜇, 𝑢, 𝜎2

𝜀 | 𝜔)

= 𝑓 (Y | 𝜇, 𝑢, 𝜎2

𝜀) 𝑓 (𝑢 | 𝜇, 𝜎2

𝜀 , 𝜔) 𝑓 (𝜇, 𝜎2

𝜀 | 𝜔)

= 𝑓 (Y | 𝜇, 𝑢, 𝜎2

𝜀) 𝑓 (𝑢 | 𝜇, 𝜎2

𝜀 , 𝜔) 𝑓 (𝜇) 𝑓 (𝜎2

𝜀)

∝
𝑁∏
𝑖=1

𝒩(Y𝑖 | 𝜇 +
𝑞∑
𝑗=1

Z𝑖 𝑗𝑢𝑗 , 𝜎
2

𝜀)
𝑞∏
𝑗=1

𝑓 (𝑢𝑗 | 𝜔)𝑝(𝜎2

𝜀).

We provide the meanings of three important parts mentioned above:

• 𝑓 (𝜇, 𝑢, 𝜎2

𝜀 | Y, 𝜔) is the posterior density of unknowns { 𝜇, 𝑢, 𝜎2

𝜀 } given phenotype and hyperpa-

rameters.

• 𝑓 (Y | 𝜇, 𝑢, 𝜎2

𝜀) =
∏𝑁

𝑖=1
𝒩(Y𝑖 | 𝜇+

∑𝑞

𝑗=1
Z𝑖 𝑗𝑢𝑗 , 𝜎2

𝜀) is the conditional density of phenotypic data given

the unknowns.

• 𝑓 (𝜇, 𝑢, 𝜎2

𝜀 | 𝜔) ∝
∏𝑞

𝑗=1
𝑓 (𝑢𝑗 | 𝜔) 𝑓 (𝜎2

𝜀) is the joint prior density of model unknowns.

The prior distribution of random effects 𝑝(𝑢𝑗 | 𝜔) influences variable selection and shrinkage by

determining its extent and type. Key features include mass near zero and tail thickness. Common

informative priors, ordered by increasing mass peak at zero and tail weight, are Gaussian, heavy tail,

Spike-Slab, and Point of Mass & Slab [15]. The uninformative prior is presented in this section, while

informative priors are detailed in Appendix C.

Uninformative priors: A uninformative prior provides vague information about the variable, used

when prior knowledge is lacking. It distributes probability widely, making it weakly informative, such

as a normal prior with large variance [36].

4.2. Prior Distributions for Covariance Parameters
The error terms 𝜀 are assumed to be independent and identically distributed, each row following a

multivariate normal distribution with zero mean and covariance matrix R (Assumption 3.8). Commonly

used covariances structures are inverse Wishart, spherical and diagonal [37]. We cover the inverse

Wishart distribution in this section. Details of spherical and diagonal priors are in Appendix C.

Inverse Wishart Distribution: For inverse Wishart distribution, we follow the work given by Zhang [38].

The inverse Wishart distribution is a popular unstructured prior because it is conjugate to normal data

and ensures positive definite covariance matrix. The density function of an inverse Wishart distribution

𝐼𝑊(V, 𝑚) with the scale matrix V and the degrees of freedom 𝑚 for a 𝑝 × 𝑝 variance-covariance matrix

𝚺 is

𝑝(𝚺) = 𝐼𝑊(V, 𝑚) =
|V|𝑚/2|𝚺|−(𝑚+𝑝+1)/2

exp

[
− tr

(
V𝚺−1

)
/2

]
2
𝑚𝑝/2Γ(𝑚/2)

. (4.1)
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4.2. Prior Distributions for Covariance Parameters 29

The inverse Wishart distribution is a generalization of the inverse gamma distribution to multiple

dimensions. If V = 2𝛼, 𝑚 = 2𝛽 and 𝑝 = 1, Equation (4.1) changes to the inverse gamma distribution:

𝑓 (𝚺; 𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼)𝚺
−𝛼−1𝑒𝑥𝑝(−𝛽/𝚺),

where 𝛼 is the shape parameter and 𝛽 is the scale parameter. The mean of inverse Wishart distribution is

𝐸(𝚺) = V
𝑚 − 𝑝 − 1

and the variance of each element of 𝚺 =
(
𝜎𝑖 𝑗

)
is

Var

(
𝜎𝑖 𝑗

)
=
(𝑚 − 𝑝 + 1)𝑣2

𝑖 𝑗
+ (𝑚 − 𝑝 − 1)𝑣𝑖𝑖𝑣 𝑗 𝑗

(𝑚 − 𝑝)(𝑚 − 𝑝 − 1)2(𝑚 − 𝑝 − 3) .

Especially,

Var (𝜎𝑖𝑖) =
2𝑣2

𝑖𝑖

(𝑚 − 𝑝 − 1)2(𝑚 − 𝑝 − 3) .

Theorem 3. The inverse Wishart distribution is conjugate to normal distribution.

Proof. Let X := (x1 , . . . , x𝑡) denote a vector of 𝑡 variables following the multivariate normal distribution:

X | Σ ∼ 𝒩(𝝁,Σ),

where the mean vector 𝝁 = 0 and the variance-covariance matrix 𝚺. The density function is

𝑓 (X | 𝚺) = (2𝜋)−𝑡/2|𝚺|−1/2
exp

(
−1

2

X𝑇𝚺−1X
)
.

The likelihood function for 𝚺 is

𝐿(𝚺 | X) = 𝑝(X | 𝚺) ∝ |𝚺|−𝑡/2 exp

(
−1

2

𝑡∑
𝑖=1

x𝑇𝑖 𝚺
−1x𝑖

)
= |𝚺|−𝑡/2 exp

[
−1

2

tr

(
𝑡∑

𝑖=1

x𝑖x𝑇𝑖 𝚺
−1

)]
= |𝚺|−𝑡/2 exp

[
− 𝑡

2

tr

(
S𝚺−1

) ]
,

where S =
∑𝑡

𝑖=1
x𝑖x𝑇𝑖 /𝑡 is the biased sample covariance matrix. When the prior distribution is inverse
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Wishart 𝐼𝑊 (V0 , 𝑚0), the posterior distribution of 𝚺 is

𝑝(𝚺 | X) ∝ 𝑝(X | 𝚺)𝑝(𝚺)

∝ |𝚺|−𝑡/2 exp

[
− 𝑡

2

tr

(
S𝚺−1

) ]
|𝚺|−(𝑚0+𝑝+1)/2

exp

[
− tr

(
V0𝚺−1

)
/2

]
= |𝚺|−(𝑡+𝑚0+𝑝+1)/2

exp

{
−1

2

tr

[
(𝑡S +V0)𝚺−1

]}
.

Therefore, the posterior distribution for𝚺 is also an inverse Wishart distribution: Σ | X ∼ 𝐼𝑊 (𝑡S +V0 , 𝑡 + 𝑚0) .

The posterior mean of 𝚺 is

𝐸(𝚺 | X) = 𝑡S +V0

𝑡 + 𝑚0 − 𝑝 − 1

=
𝑡

𝑡 + 𝑚0 − 𝑝 − 1

S +
(
1 − 𝑡

𝑡 + 𝑚0 − 𝑝 − 1

)
V0

𝑚0 − 𝑝 − 1

.

A weighted average of the sample covariance matrix S and the prior mean V0/
(
𝑚0 − 𝑝 − 1

)
is the

posterior mean. The posterior mean will approach to the sample mean given fixed 𝑚0 and 𝑝 as the

sample size 𝑡 increases [38].

4.3. Gibbs Sampler
In practice, it is always difficult to integrate out other parameters to calculate the posterior distribution.

There are a number of ways to overcome this problem:

• A conjugate prior provides a closed-form posterior expression. It results in a recognized posterior

distribution when combine with a particular distribution for the data [39]. For instance, the inverse

Wishart distribution is conjugate to the normal distribution.

• Numerical integration: Simpson’s rule can be used if we calculate the height of the posterior

distribution at every point [40].

• Variational Bayes: We can approximate the functions used to calculate the posterior with simpler

functions and show that the resulting approximate posterior is close to true posterior [41].

• Simulation: If we can draw samples from the posterior distribution, samples can be used to

approximate the distribution, for example, Markov Chain Monte Carlo (MCMC) [39].

We introduce MCMC as a method to sample from complex distributions. In a Markov chain, each

state depends only on the current state. To obtain samples from the complex distribution, the chain’s

stationary distribution must match the target distribution. The Monte Carlo method is used when direct

sampling from the distribution is not possible.
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Consider a 𝐷 dimensional posterior with parameters 𝜃 = (𝜃1 , 𝜃2 , . . . , 𝜃𝐷). Denote the 𝑖𝑡ℎ sample by

𝜃𝑖 = (𝜃𝑖
1
, 𝜃2

1
. . . , 𝜃𝑖

𝐷
). The chain starts from initial point 𝜃0

. The sampling process goes according to

transition probability of Markov chain 𝑇(𝜃𝑖 | 𝜃𝑖−1)which is the probability that the sample state 𝜃𝑖−1

switches to 𝜃𝑖
. Samples in the burn-in phase are discarded until they reach the stationary distribution,

where the sample distribution approximates the target distribution. After the burn-in phase, Markov

chain samples match the target distribution [42, 43].

Gibbs sampler is particularly well-adapted to sampling the posterior distribution, since posterior

distributions are typically specified as a collection of conditional distributions. The basic idea of Gibbs

sampler is to iterately sample from the conditional distribution 𝑓 (𝜃𝑗 | 𝑋, 𝜃−𝑗)where 𝜃−𝑗 is 𝜃 without

the 𝑗𝑡ℎ parameter. A new sampler from the joint posterior density is obtained by sampling from fully

conditional density. Therefore, it is convenient when the fully conditional densities have closed form

and are able to sample from. Besides, Gibbs sampler is a special case of acceptance-rejection method. In

Gibbs sampler the new sample is always accepted with probability one. So it more efficient than regular

acceptance-rejection method for example Metropolis-Hastings [44, 45].

Gibbs sampler has several advantages: there is no need to tune targeted distribution. New samples are

always accepted which make it more efficient than acceptance-rejection method. However Gibbs sampler

may be very slow if parameters are correlated because samples can only change in one dimension at

each step [46].

Algorithm 1 Gibbs sampler

1: Input: 𝜃(0), initial values

2: Input: 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , the number of iterations

3: Input: 𝑁𝑏𝑢𝑟𝑛𝑖𝑛 , the number of iterations in burn-in period

4: for 𝑖 = 1 to 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5: for 𝑗 = 1 to 𝐷 do
6: Sample the components of 𝜃(𝑖+1)

in order, starting from the first component.

7: Update 𝜃(𝑖+1)
𝑗

according to the distribution specified by

𝑓 (𝜃(𝑖+1)
𝑗
|𝜃(𝑖+1)

1
, . . . , 𝜃(𝑖+1)

𝑗−1
, 𝜃(𝑖)

𝑗+1
, . . . , 𝜃(𝑖)

𝐷
).

8: end for
9: end for

10: List = [ ]

11: for 𝑖 = 𝑁𝑏𝑢𝑟𝑛𝑖𝑛 + 1 to 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
12: List = List.append (𝜃(𝑖)).
13: end for
14: Return: List
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5
Statistical Learning Model

This chapter will cover three models: LASSO regression, random forest, and XGBoost, used for

predicting conventional traits from digital traits. LASSO regression utilizes 𝐿1
regularization for variable

selection, while Random Forest and XGBoost are tree-based methods.

5.1. LASSO Regression
The least absolute shrinkage and selection operator (LASSO) was introduced in 1996 [47]. It assumes

that the coefficients of the linear model are sparse which means only few of them are non-zero. Consider

a regression problem with 𝑝 independent variables and a single response 𝑌 = 𝑋𝛽. The ordinary least

squares estimator is

�̂�𝑂𝐿𝑆 = arg min

𝛽
(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽).

The LASSO estimator is defined by

�̂�𝐿𝐴𝑆𝑆𝑂 = arg min

𝛽

[
(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆

𝑝∑
𝑗=1

|𝛽 𝑗|
]
,

where 𝜆 is the regularization parameter. Lasso achieves variable selection by forcing the sum of the

absolute value of the regression coefficients to be less than a fixed value, which forces certain coefficients

to zero. Compared with ordinary least squares, the objective function of LASSO has an penalty term

𝜆
∑𝑝

𝑗=1
|𝛽 𝑗|. 𝜆 is a hyperparameter that balances the tradeoff between bias and variance in the estimated

coefficients �̂�𝐿𝐴𝑆𝑆𝑂 . As 𝜆 increases, the bias increases, and the variance decreases, leading to a simpler

model with fewer parameters. �̂�𝐿𝐴𝑆𝑆𝑂 is the same as �̂�𝑂𝐿𝑆
if 𝜆 = 0 [48, 49].
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5.2. Decision Tree
We start with fundamental decision trees before introducing random forest and XGBoost. Decision

trees can be applied to both regression and classification problems so they are also called classification

and regression tree (CART) [49]. We will only focus on regression problems in this chapter.

We present the mechanism of regression trees with an example of predicting a baseball player’s Salary

using Year (years played in major leagues) and Hits (hits made in the previous year), utilizing the data

available in the R dataset Hitters [48]. Figure 5.1a displays a regression tree. It splits data into three

groups using a series of rules: the first is Year< 4.5, then players with 𝑌𝑒𝑎𝑟 ≥ 4.5 are split by the second

rule, Hits < 117.5.

Figure 5.1b illustrates the tree by showing the tree’s three-region partition: 𝑅1 = {𝑋 | Year < 4.5},
𝑅2 = {𝑋 | Year ≥ 4.5,Hits < 117.5}, 𝑅3 = {𝑋 | Year ≥ 4.5,Hits ≥ 117.5}. The tree predicts new players’

Salary by the mean Salary of players in the same region.

(a) Regression tree (b) Partition of the regression tree

Figure 5.1: Prediction of Salary by Year and Hits [48]

The dataset contains 𝑝 inputs and a response across 𝑁 observations: (𝑥𝑖 , 𝑦𝑖) where 𝑖 = 1, 2, . . . , 𝑁 with

𝑥𝑖 = (𝑥1

𝑖
, 𝑥2

𝑖
, . . . , 𝑥

𝑝

𝑖
). A decision tree splits the predictor space into 𝑀 ∈ Z+ non-overlapped regions. We

model the response by

𝑓 (𝑥) =
𝑀∑

𝑚=1

𝑎𝑣𝑒(𝑦𝑖 | 𝑥𝑖 ∈ 𝑅𝑚)I(𝑥 ∈ 𝑅𝑚), (5.1)

where 𝑎𝑣𝑒(𝑦𝑖 | 𝑥𝑖 ∈ 𝑅𝑚) is the average 𝑦 of the points with in the region 𝑅𝑚 . The goal is to find regions

{𝑅1 . . . 𝑅𝑀} to minimize the loss function:

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑓 (𝑥𝑖))2. (5.2)
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The regions can be in any shape but we choose to use the high-dimensional rectangles for simplicity. It

is a waste of computing resources to enumerate all the possible tree structures. A top-down, greedy

algorithm is used to find the best splitting point. It is top-down because it starts from the top of the

tree and then splits the predictor space successively. It is greedy because at each split, the best split

is decided at that particular step without looking forwards. The top-down and greedy algorithm can

build a tree in a relatively short time at the cost of missing the best tree structure [50].

To split a predictor space we need a predictor and a cutpoint (𝑋𝑗 , 𝑠) which leads to the largest reduction

of Equation (5.2). Assume that 𝑅1(𝑗 , 𝑠) and 𝑅2(𝑗 , 𝑠) are the instance sets after splitting 𝑅0, where

𝑅1(𝑗 , 𝑠) = {𝑋 | 𝑋𝑗 < 𝑠}, 𝑅2(𝑗 , 𝑠) = {𝑋 | 𝑋𝑗 ≥ 𝑠} and 𝑅0 = 𝑅1(𝑗 , 𝑠) ∪ 𝑅2(𝑗 , 𝑠). 𝑗 and 𝑠 are given by the

following equation:

min

𝑗 ,𝑠
[

∑
𝑥𝑖∈𝑅1(𝑗 ,𝑠)

(𝑦𝑖 − 𝑎𝑣𝑒(𝑦𝑖 | 𝑥𝑖 ∈ 𝑅1(𝑗 , 𝑠)))2 +
∑

𝑥𝑖∈𝑅2(𝑗 ,𝑠)
(𝑦𝑖 − 𝑎𝑣𝑒(𝑦𝑖 | 𝑥𝑖 ∈ 𝑅2(𝑗 , 𝑠)))2]. (5.3)

After splitting the root into two regions, we split one of the regions next to minimize (5.2). This results

in three regions, and we search for the best splits within them. The process continues until a predefined

stopping criterion, such as maximum tree depth or minimum leaf samples, is met. Once regions {𝑅1 ,

. . . , 𝑅𝐽} are established, predictions are made using the mean of 𝑦s in the corresponding region [50].

It is important to determine the final tree size in decision tree modeling. A large tree risks overfitting,

while a small tree may miss important patterns. Post-pruning is to grow the tree as big as possible then

remove nodes that do not provide enough information. This process aims to decrease the size of the

tree while keeping predictive accuracy [48, 50].

5.3. Bagging and Random Forest
Bagging aggregates multiple independent base models to improve stability and accuracy of machine

learning algorithms. It reduces variance and avoids overfitting by averaging multiple predictions for

the final result [51]. It can be used with any type of base models, we will focus on bagging of CARTs.

The random forest is a bagging and tree-based model devised in 2000 with many advantages compared

with single CART: less variance, less overfitting, and better overall performance [51]. Figure 5.2 shows

the flowchart of the random forest algorithm. Multiple CARTs grow from different bootstrap samples.

Each of them makes predictions independently then predictions are aggregated as final output.
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Figure 5.2: Flowchart of the random forest

Define the correlation between two trees 𝑓𝑖 and 𝑓𝑗 as 𝜌 =
Cov( 𝑓𝑖 (𝑥), 𝑓𝑗 (𝑥))

𝜎 𝑓𝑖 (𝑥)𝜎 𝑓𝑗 (𝑥)
. The variance of 𝑓 (𝑥) is

Var( 𝑓 (𝑥)) = Var

©« 1

𝑁𝑡𝑟𝑒𝑒𝑠

𝑁𝑡𝑟𝑒𝑒𝑠∑
𝑗=1

𝑓𝑗(𝑥)ª®¬
=

1

𝑁𝑡𝑟𝑒𝑒𝑠
2

𝑁𝑡𝑟𝑒𝑒𝑠∑
𝑖=1

𝑁𝑡𝑟𝑒𝑒𝑠∑
𝑗=1

Cov

(
𝑓𝑖(𝑥), 𝑓𝑗(𝑥)

)
=

1

𝑁𝑡𝑟𝑒𝑒𝑠
2

𝑁𝑡𝑟𝑒𝑒𝑠∑
𝑖=1

©«
𝑁𝑡𝑟𝑒𝑒𝑠∑
𝑗≠𝑖

Cov

(
𝑓𝑖(𝑥), 𝑓𝑗(𝑥)

)
+ Var

(
𝑓𝑖(𝑥)

)ª®¬
=

1

𝑁𝑡𝑟𝑒𝑒𝑠
2

𝑁𝑡𝑟𝑒𝑒𝑠∑
𝑖=1

(
(𝑁𝑡𝑟𝑒𝑒𝑠 − 1)𝜎2𝜌 + 𝜎2

)
=

𝑁𝑡𝑟𝑒𝑒𝑠(𝑁𝑡𝑟𝑒𝑒𝑠 − 1)𝜌𝜎2 + 𝑁𝑡𝑟𝑒𝑒𝑠𝜎2

𝑁𝑡𝑟𝑒𝑒𝑠
2

= (𝜌 + 1 − 𝜌

𝑁𝑡𝑟𝑒𝑒𝑠
)𝜎2. (5.4)

Equation (5.4) shows that Var( 𝑓 (𝑥)) decreases as 𝜌 decreases. The random forest uses two methods to

reduce the correlation between trees by adding randomness to the training set: bootstrap and feature

selection. The samples in training sets are different between trees because of bootstrap. Besides, each

bootstrap sample only include a subset of features in training data.

After growing all trees, the model can make predictions on new observations. When there is one new
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observation, the output of random forest regression is the average prediction from all trees [50, 52]. The

pseudo code of the random forest is displayed in Algorithm 2. The notations used in Algorithm 2 and 3

are as following:

• 𝒟 := (X,Y) = (𝑥𝑖 , 𝑦𝑖)where 𝑖 ∈ {1, 2, . . . 𝑁𝑡𝑟𝑎𝑖𝑛} is training data;

• 𝒟𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 := (X𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 ,Y𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝) is the bootstrap data used to grow a particular CART;

• 𝑁𝑡𝑟𝑒𝑒𝑠 is the number of CARTs;

• 𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the number of features in X𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 .

Algorithm 2 Random Forest

1: Input: 𝒟, 𝑁𝑡𝑟𝑒𝑒𝑠 , 𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , the stopping criterion and a new observation 𝑥
2: for 𝑗 = 1 to 𝑁𝑡𝑟𝑒𝑒𝑠 do
3: Generate a bootstrap sample𝒟𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 with 𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 features.

4: Start with a single instance set containing all data points from𝒟𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 .

5: while the stopping criterion is not satisfied do
6: For each feature, calculate the gain from splitting at each potential point by Equation (5.3).

7: Choose the feature and split point that give the maximum gain.

8: Split the instance set into two subsets.

9: end while
10: Compute the predicted value at 𝑥 from the 𝑗𝑡ℎ tree 𝑓 𝑗(𝑥) by Equation (5.1).

11: end for
12: Compute the predicted value at 𝑥 from the random forest by 𝑓 (𝑥) = 1

𝑁𝑡𝑟𝑒𝑒𝑠

∑𝑁𝑡𝑟𝑒𝑒𝑠

𝑗=1
𝑓 𝑗(𝑥).

13: Return: 𝑓 (𝑥)

5.3.1. Tree’s Feature Importance from Mean Decrease in Impurity
Split a regression tree 𝑇 at instance set 𝑡. A proposed split 𝑠 for variable 𝑋𝑗 divides 𝑡 into left and right

subsets 𝑡𝐿 and 𝑡𝑅 based on 𝑋𝑗 ≤ 𝑠 or 𝑋𝑗 > 𝑠. The sample variance within each instance set determines

its impurity. The impurity of 𝑡 is defined as

Δ̂(𝑡) = 1

𝑁

∑
𝑋𝑖∈𝑡

(
𝑌𝑖 − �̄�𝑡

)
2

where �̄�𝑡 is the sample mean for 𝑡 and 𝑁 is the sample size of 𝑡. The within sample variance for subsets

are

Δ̂ (𝑡𝐿) =
1

𝑁𝐿

∑
𝑖∈𝑡𝐿

(
𝑌𝑖 − �̄�𝑡𝐿

)
2

and Δ̂ (𝑡𝑅) =
1

𝑁𝑅

∑
𝑖∈𝑡𝑅

(
𝑌𝑖 − �̄�𝑡𝑅

)
2

,

where �̄�𝑡𝐿 is the sample mean for 𝑡𝐿 and 𝑁𝐿 is the sample size of 𝑡𝐿 (similar definitions apply to 𝑡𝑅 ). The

decrease in impurity because of the split 𝑠 for 𝑋𝑗 is

Δ̂(𝑠, 𝑡) = Δ̂(𝑡) −
[
�̂� (𝑡𝐿) Δ̂ (𝑡𝐿) + �̂� (𝑡𝑅) Δ̂ (𝑡𝑅)

]
,

where �̂� (𝑡𝐿) = 𝑁𝐿/𝑁 and �̂� (𝑡𝑅) = 𝑁𝑅/𝑁 are the proportions of observations in 𝑡𝐿 and 𝑡𝑅, respectively.

For each feature, sum the impurity reductions at all nodes where it was split across all forest trees.
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Normalize each feature’s importance score by dividing it by the total importance score. It gives a

percentage that represents the importance of each feature relative to the others [53].

5.4. Boosting and XGBoost
Similar to tree bagging, tree boosting also uses a series of decision trees: 𝑓 1 , 𝑓 2 , . . . 𝑓 𝑁𝑡𝑟𝑒𝑒𝑠

. Recall that

in bagging, each tree grows on a bootstrap sample and independent of the other trees. In boosting,

each tree is grown to correct the prediction error from previously trees so the trees are sequential and

dependent [48]. Figure 5.3 displays the flowchart of boosting. The output of a boosting with 𝑁𝑡𝑟𝑒𝑒𝑠

CARTs is the sum of predicted values from all CARTs: 𝑓 (𝑥) = ∑𝑁𝑡𝑟𝑒𝑒𝑠

𝑗=1
𝑓 𝑗(𝑥).

Figure 5.3: Flowchart of decision tree boosting

Figure 5.4 is an example to show how a XGBoost makes prediction [54]. The dependent variable is the

attitude towards video games, and the independent variables are age, gender, and whether or not to use

a computer daily. The first tree uses age and gender as independent variables, and the second tree uses

whether or not to use a computer every day. The prediction is the sum of the predictions of the each tree.

The boy gets 2 and 0.9 from the first and second tree respectively so predicted value of the boy is 2.9.

Figure 5.4: Example of decision tree boosting [54]

Algorithm 3 Boosting

1: Input: 𝒟, 𝑁𝑡𝑟𝑒𝑒𝑠 , the stopping criterion and a new observation 𝑥
2: Set 𝑓 (𝑥) = 0 and 𝜀𝑖 = 𝑦𝑖 where 𝑖 ∈ {1, 2, . . . , 𝑁𝑡𝑟𝑎𝑖𝑛}.
3: for 𝑗 = 1 to 𝑁𝑡𝑟𝑒𝑒𝑠 do
4: Grow a tree 𝑓 𝑗 on the training data (X, 𝜀) and compute the predicted value from the 𝑗𝑡ℎ tree 𝑓 𝑗(𝑥)

like lines 5-10 in Algorithm 2.

5: Update 𝑓 (𝑥) by 𝑓 (𝑥) ← 𝑓 (𝑥) + 𝑓 𝑗(𝑥).
6: Update 𝜀𝑖 by 𝜀𝑖 ← 𝜀𝑖 − 𝑓 𝑗(𝑥𝑖) for all 𝑖.
7: end for
8: Return: 𝑓 (𝑥)
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XGBoost, proposed in 2006 as eXtreme Gradient Boosting [54], follows the Algorithm 3 at basic level

and improves accuracy and speed through specific methods. A series of methods are used to avoid

overfitting: regularization, shrinkage and feature subsampling. Regularization in XGBoost penalizes

the number of leaves 𝑇 and the leaf score vector 𝑤 through two main types: 𝐿1
and 𝐿2

. 𝐿1
regularization

reduces feature coefficients to zero for variable selection, while 𝐿2
regularization shrinks coefficients to

handle multicollinearity [49].

We denote loss function as 𝑙 which measures the difference between the predicted value 𝑦𝑖 and the real

value 𝑦𝑖 . The objective function of XGBoost is

𝑁𝑡𝑟𝑎𝑖𝑛∑
𝑖=1

𝑙
(
�̂�𝑖 , 𝑦𝑖

)
+

𝑁𝑡𝑟𝑒𝑒𝑠∑
𝑗=1

Ω
(
𝑓𝑗
)
, where Ω( 𝑓 ) = 𝛾𝑇 + 1

2

𝜆∥𝑤∥𝑙 and 𝑙 ∈ {1, 2}. (5.5)

Equation (5.5) consists of two parts: the difference between predicted and real values in training data

and penalty for model complexity. The model will only focusing on achieving minimum loss functions

on training set if regularization is not used.

Shrinkage adjusts new tree weights by a factor 𝜆 each step, updating line 5 in Algorithm 3 to: Update

𝑓 (𝑥) by 𝑓 (𝑥) ← 𝑓 (𝑥) + 𝜆 𝑓 𝑗(𝑥). This reduces each tree’s impact, making boosting more conservative.

Feature subsampling, used in XGBoost and also in random forests, generates different training sets for

different trees.

Compared with the bagging, one of the disadvantages of the boosting is the speed. This is because base

models need to be built one by one in boosting while they can be built at the same time in bagging [49].

To speed up the training process, the XGBoost implements an approximate algorithm which aims to

speed up the tree-building process. It finds the best splitting point by only checking quantiles of the

feature. Figure 5.5 is an example where we have 40 data points. The model will compare 39 different

splitting points if it check them one by one,. However the model only compares 9 different points if

it only pays attention to the feature values at 10%, 20%, . . . , 90% quantiles. The one with largest loss

reduction is the optimal splitting point for this feature. The approximate algorithm is in 7-12 lines of

Algorithm 4.

Figure 5.5: Approximate Algorithm
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Algorithm 4 Boosting plus Approximate Algorithm

1: Input: 𝒟, 𝑁𝑡𝑟𝑒𝑒𝑠 ,𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ,the stopping criterion and a new observation 𝑥
2: Set 𝑓 (𝑥) = 0 and 𝜀𝑖 = 𝑦𝑖 where 𝑖 ∈ {1, 2, . . . , 𝑁𝑡𝑟𝑎𝑖𝑛}.
3: for 𝑗 = 1 to 𝑁𝑡𝑟𝑒𝑒𝑠 do
4: Generate a bootstrap sample𝒟𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 with 𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 features.

5: Start with a single instance set containing all data points from𝒟𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 .

6: while the stopping criterion is not satisfied do
7: for 𝑗 = 1 to 𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 do
8: for 𝑠 = values of 𝑗𝑡ℎ features at 10%, 20%, . . . , 90% quantiles do
9: Calculate split value of (j, s) by∑

𝑥𝑖∈𝑅1(𝑗 ,𝑠)
(𝜀𝑖 − 𝑎𝑣𝑒(𝜀𝑖 | 𝑥𝑖 ∈ 𝑅1(𝑗 , 𝑠)))2 +

∑
𝑥𝑖∈𝑅2(𝑗 ,𝑠)

(𝜀𝑖 − 𝑎𝑣𝑒(𝜀𝑖 | 𝑥𝑖 ∈ 𝑅2(𝑗 , 𝑠)))2.

10: end for
11: end for
12: Choose the feature and split point that give the minimum split value.

13: Split the instance set into two subsets.

14: end while
15: Compute the predicted value from the 𝑗𝑡ℎ tree 𝑓 𝑗(𝑥) by Equation (5.1).

16: Update 𝑓 (𝑥) by 𝑓 (𝑥) ← 𝑓 (𝑥) + 𝜆 𝑓 𝑗(𝑥).
17: Update 𝜀𝑖 by 𝜀𝑖 ← 𝜀𝑖 − 𝜆 𝑓 𝑗(𝑥𝑖) for all 𝑖.
18: end for
19: Return: 𝑓 (𝑥)
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6
Blocky Pepper Data

This research studied 315 blocky pepper cultivars across 348 plots, all planted in the same field and

season, with some cultivars appearing in more than one plot. Blocky peppers were red, orange, or yellow.

Each plot’s data included plot name, cultivar, trait names, and values. Traits were either conventional

(subjective ratings) or digital (continuously recorded by ScaleCam). Table 6.1 lists 21 digital traits

involving color, size, and shape, identified by "D" in their names. Table 6.2 includes seven conventional

traits covering the same characteristics plus other quality features, indicated by "C." All cultivars were

assessed for both types of traits.

6.1. Background
We grew blocky peppers in a field.

• The field was divided into 𝑁𝑝𝑙𝑜𝑡 plots with plot index 𝑖 and 𝑖 ∈ {1, 2, . . . , 𝑁𝑝𝑙𝑜𝑡}.

• Each plot was harvested 𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡 times with harvest index ℎ where ℎ ∈ {1, 2, . . . , 𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡}.

• In plot 𝑖, we had several plants. blocky peppers were collected in the plot and measured.

• The number of fruits in the plot 𝑖𝑡ℎ and harvest ℎ𝑡ℎ are indicated by 𝑁 𝑓 𝑟𝑢𝑖𝑡(𝑖 , ℎ). The index of

fruits is 𝑝, 𝑝 ∈ {1, 2, . . . , 𝑁 𝑓 𝑟𝑢𝑖𝑡(𝑖 , ℎ)}.

• Each fruit was measured for 𝑁𝑡𝑟𝑎𝑖𝑡 traits. The index of traits is 𝑡, 𝑡 ∈ {1, 2, . . . , 𝑁𝑡𝑟𝑎𝑖𝑡}.

• There were 𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟 cultivars in this field. Fruits in a plot were from the same cultivar. A cultivar

appeared in 𝑁𝑝𝑙𝑜𝑡(𝑐) plots where 𝑐 was the index of cultivar 𝑐 ∈ {1, 2, . . . , 𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟}.

• Cultivar: {1, 2, . . . , 𝑁𝑝𝑙𝑜𝑡} → {1, 2, . . . , 𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟}.
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Trait Group Description Trait Names

Color

Color bands of RGB color model

from RGB camera
1

ColorD1

ColorD2

ColorD3

ColorD4

ColorD5

Size

Traits about

ellipsoid, triangle, shape index, rectangular, etc

SizeD1

SizeD2

SizeD3

SizeD4

SizeD5

SizeD6

SizeD7

SizeD8

Shape

Traits about

area, perimeter, height, width, etc

ShapeD1

ShapeD2

ShapeD3

ShapeD4

ShapeD5

ShapeD6

ShapeD7

ShapeD8

Table 6.1: Digital trait list

Trait Group Description Trait Names Range

Color Exterior Color Rating ColorC

{𝑘 ∈ N : 1 ≤ 𝑘 ≤ 9}
Shape

Shape Rating ShapeC1

Shape Uniformity Rating ShapeC2

Size

Size Rating SizeC1

Size Uniformity Rating SizeC2

Other Quality

Firmness Rating OtherC1

Cracking Rating OtherC2

Table 6.2: Conventional trait list

1
The RGB color model is an additive color model in which the red, green and blue primary colors of light are added together

in various ways to reproduce a broad array of colors. The name of the model comes from the initials of the three additive primary

colors, red, green, and blue [55].
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6.2. Aggregation
Raw Data

D 𝑟𝑎𝑤

𝑋𝑖 ,ℎ,𝑝,𝑡

(𝑋plot, harvest, fruit, trait)

Fruit Aggregation

D 𝑓 𝑟𝑢𝑖𝑡

𝑋𝑖 ,ℎ,𝑡 ,𝑎𝑣𝑒 , 𝑋𝑖 ,ℎ,𝑡 ,𝑠𝑑

Harvest Aggregation

D ℎ𝑎𝑟𝑣𝑒𝑠𝑡

𝑋𝑖 ,𝑡 ,𝑎𝑣𝑒 , 𝑋𝑖 ,𝑡 ,𝑠𝑑

Cultivar Aggregation

D 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟

𝑋𝑐,𝑡 ,𝑎𝑣𝑒 , 𝑋𝑐,𝑡 ,𝑠𝑑

The original data D 𝑟𝑎𝑤
contained trait values for each fruit 𝑋𝑖 ,ℎ,𝑝,𝑡 . 𝑋𝑖 ,ℎ,𝑝,𝑡 indicated the trait value of the

𝑡𝑡ℎ trait of the 𝑝𝑡ℎ fruit from the ℎ𝑡ℎ harvest of the 𝑖𝑡ℎ plot was X. D 𝑓 𝑟𝑢𝑖𝑡
was calculated by aggregating

the trait values of different fruits in the same plot and the same harvest in D 𝑓 𝑟𝑢𝑖𝑡
.

𝑋𝑖 ,ℎ,𝑡 ,𝑎𝑣𝑒 =
1

𝑁 𝑓 𝑟𝑢𝑖𝑡(𝑖 , ℎ)

𝑁 𝑓 𝑟𝑢𝑖𝑡 (𝑖 ,ℎ)∑
𝑝=1

𝑋𝑖 ,ℎ,𝑝,𝑡 ,

𝑋𝑖 ,ℎ,𝑡 ,𝑠𝑑 = 𝑆𝐷({𝑋𝑖 ,ℎ,𝑝,𝑡})where 𝑝 ∈ {1, 2, . . . , 𝑁 𝑓 𝑟𝑢𝑖𝑡(𝑖 , ℎ)}.

D ℎ𝑎𝑟𝑣𝑒𝑠𝑡
was calculated by aggregating trait values of different harvests from the same plot in D 𝑓 𝑟𝑢𝑖𝑡

:

𝑋𝑖 ,𝑡 ,𝑎𝑣𝑒 =
1

𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡(𝑖)

𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡 (𝑖)∑
ℎ=1

𝑋𝑖 ,ℎ,𝑡 ,𝑎𝑣𝑒 ,

𝑋𝑖 ,𝑡 ,𝑠𝑑 =
1

𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡(𝑖)

𝑁ℎ𝑎𝑟𝑣𝑒𝑠𝑡 (𝑖)∑
ℎ=1

𝑋𝑖 ,ℎ,𝑡 ,𝑠𝑑 .

D 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟
was calculated by aggregating the trait values of plots with the same cultivar in D ℎ𝑎𝑟𝑣𝑒𝑠𝑡

:

𝑋𝑐,𝑡 ,𝑎𝑣𝑒 =
1

𝑁𝑝𝑙𝑜𝑡(𝑐)

𝑁𝑝𝑙𝑜𝑡 (𝑐)∑
𝑖=1

𝑋𝑖 ,ℎ,𝑡 ,𝑎𝑣𝑒 ,

𝑋𝑐,𝑡 ,𝑠𝑑 =
1

𝑁𝑝𝑙𝑜𝑡(𝑐)

𝑁𝑝𝑙𝑜𝑡 (𝑐)∑
𝑖=1

𝑋𝑖 ,ℎ,𝑡 ,𝑠𝑑 .

Only D 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟
will be used in following analysis and modeling.

6.3. Descriptive Analysis
Figure 6.1 displays the estimated probability density functions of conventional traits using Gaussian

kernel density. The OtherC2 trait, with values mostly around one, was abandoned in further analysis.

This step was ’Distribution Check’ in the workflow (Figure 1.1). The estimated probability density
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Figure 6.1: Estimated probability density functions of conventional trait values

functions of digital traits and a statistical summary table are available in Appendix A.

Next, we examine Figure 6.2, a hierarchically-clustered heatmap of Pearson correlations among traits,

preceded by an overview of the clustering method. Euclidean distance is used to calculate the distance

between two points. Let 𝑝 have coordinates (𝑝1 , 𝑝2) and 𝑞 have coordinates (𝑞1 , 𝑞2). The Euclidean

distance between 𝑝 and 𝑞 is

𝑑(𝑝, 𝑞) =
√
(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2.

The hierarchical clustering method uses the nearest point algorithm to calculate the distance 𝑑(𝑠, 𝑡)
between clusters 𝑠 and 𝑡: 𝑑(𝑠, 𝑡) = min𝑖 , 𝑗(𝑑𝑖𝑠𝑡(𝑢[𝑖], 𝑣[𝑗])) for each point 𝑖 in cluster 𝑢 and each point 𝑗 in

cluster 𝑣. The cluster process starts with a group of points and each point is one cluster. When two

clusters 𝑠 and 𝑡 are combined into a single cluster 𝑢, 𝑠 and 𝑡 are eliminated and 𝑢 is introduced into the

group. The algorithm stops when only a single cluster remains and this cluster becomes the root.

In the dendrogram, conventional traits except ShapeC1 were broadly clustered, indicating larger

Euclidean distances between conventional and digital traits than within conventional traits. Notably,

conventional shape trait ShapeC1 clustered with digital shape traits. Digital traits from the same groups

(Color, Shape, Size) tended to cluster together.

The heatmap of Pearson correlations showed positive correlations among the standard deviations for

digital color, size, and shape, indicating uniformity. Unexpectedly, size (SizeD7, SizeD3, SizeD8) and

shape (ShapeD2, ShapeD4, ShapeD1) were also correlated, revealing a new finding. The heatmap and

dendrogram always agreed with each other: closely grouped traits were more correlated.
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Figure 6.2: Hierarchically-clustered heatmap of Pearson correlations among traits
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7
Calculation of the Estimated Genetic

Correlation �̂�𝐺𝑒𝑛

7.1. Use of Multi-Trait Model and Gibbs Sampler
We used the multi-trait model to estimate genetic correlations �̂�𝐺𝑒𝑛

via the BGLR package function

multitrait() [37]. Flat prior and inverse Wishart prior were selected for random effects and covariance

structure because stakeholders did not have enough prior knowledge. The genetic covariance matrix�ΩMT was derived from the posterior mean using Gibbs sampler.

Conventional and digital trait sets are represented as T𝑐𝑜𝑛 and T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 . A conventional and a digital trait

are represented as t𝑐𝑜𝑛 ∈ T𝑐𝑜𝑛 and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 ∈ T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 . The bi-trait model in Equation (7.1), a special case

of the multi-trait model, was used to estimate the genetic correlation between t𝑐𝑜𝑛 and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 , denoted

as �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 .



Y1,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 Y1,t𝑐𝑜𝑛

Y2,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 Y2,t𝑐𝑜𝑛
...

...

Y𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 Y𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟 ,t𝑐𝑜𝑛


= I𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟

×



𝑢1,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑢1,t𝑐𝑜𝑛

𝑢2,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑢2,t𝑐𝑜𝑛
...

...

𝑢𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑢𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟 ,t𝑐𝑜𝑛


+



𝜀1,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝜀1,t𝑐𝑜𝑛

𝜀2,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝜀2,t𝑐𝑜𝑛
...

...

𝜀𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝜀𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟 ,t𝑐𝑜𝑛


.

(7.1)

We compared estimated genetic correlations calculated by the multi-trait model �̂�𝐺𝑒𝑛
𝑚𝑢𝑙𝑡𝑖−𝑡𝑟𝑎𝑖𝑡 and the

bi-trait model �̂�𝐺𝑒𝑛
𝑏𝑖−𝑡𝑟𝑎𝑖𝑡 in Figures 7.1 and 7.2. �̂�𝐺𝑒𝑛

𝑚𝑢𝑙𝑡𝑖−𝑡𝑟𝑎𝑖𝑡 and �̂�𝐺𝑒𝑛
𝑏𝑖−𝑡𝑟𝑎𝑖𝑡 showed minor differences in the

heatmap and PDF, indicating similar results for �̂�𝐺𝑒𝑛
. The multi-trait model took 145.709 s and the
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7.1. Use of Multi-Trait Model and Gibbs Sampler 46

bi-trait model took 2260.547 s. We chose the bi-trait model for two reasons. The dataset with 315

cultivars is relatively small so the bi-trait model could compute all �̂�𝐺𝑒𝑛
𝑏𝑖−𝑡𝑟𝑎𝑖𝑡s in a reasonable time. Besides,

we would choose from models with and without fixed effects for each trait pair in Section 7.2. The

bi-trait model provided enough flexibility.

Figure 7.1: The estimated PDF of (�̂�𝐺𝑒𝑛
𝑚𝑢𝑙𝑡𝑖−𝑡𝑟𝑎𝑖𝑡 − �̂�𝐺𝑒𝑛

𝑏𝑖−𝑡𝑟𝑎𝑖𝑡 ) by Gaussian kernel density

Figure 7.2: The heatmap of (�̂�𝐺𝑒𝑛
𝑚𝑢𝑙𝑡𝑖−𝑡𝑟𝑎𝑖𝑡 − �̂�𝐺𝑒𝑛

𝑏𝑖−𝑡𝑟𝑎𝑖𝑡 )

The multitrait() function applies the Gibbs sampler to estimate posterior distributions, where the burn-in

iterations hyperparameter 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 is crucial for reliability. We presented plots of �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 with

varying 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 from 501 to 1500 in Figure 7.3 using a bi-trait model without fixed effects. �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙

varied significantly at low 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 . As 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 increased, �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 oscillated around a constant.

Figure 7.3 showed that beyond 1000 iterations, the oscillation amplitude of �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 stabilized. Similar

plots for all (t𝑐𝑜𝑛 , t𝑑𝑖𝑔𝑖𝑡𝑎𝑙) pairs suggest using the first 1000 iterations as burn-in for all. The mean genetic
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7.2. Fruit Colors as Fixed Effects 47

correlation from iterations 1001
𝑠𝑡

to 1100
𝑡ℎ

was �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 .

Figure 7.3: Sensitivity analysis of 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

7.2. Fruit Colors as Fixed Effects
Fruit color is an important feature of blocky peppers. It may have an impact on the calculation of �̂�𝐺𝑒𝑛

because cultivars of the same color are more likely to have a stronger genetic relationship. The blocky

pepper has three colors: red, yellow, and orange. So, the color variables red, yellow and orange are

candidates for the fixed effect in the bi-trait model. Table 7.1 shows the numbers of cultivars in each

color. More than half of the cultivars are red and orange is the rarest color.

Color Orange Yellow Red Total

Number of Cultivars 50 84 181 315

Table 7.1: Size of the sub-sample of cultivars for each color

We compared two bi-trait models: a full model with fixed effects Y = 𝜇 + X𝛽 + Z𝑢 and a nested model

without fixed effects Y = 𝜇 + Z𝑢, visualizing the absolute values of �̂�𝐺𝑒𝑛
s in Figure 7.4. The results

indicated that �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 could differ between models; for example, absolute �̂�𝐺𝑒𝑛

ColorC,ColorD1
was less than

0.5 with the full model but exceeded 0.5 with the nested model.

The likelihood ratio test determines if adding fixed effects improves the model compared to the nested

model [9]. It is expressed as

ℋ0 : The nested model out performances the full model.

againstℋ1 : The full model out performances the nested model.
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Figure 7.4: Heatmaps of Abs(�̂�𝐺𝑒𝑛)𝑠 by bi-trait models

Up: Full model (with fixed effects); Down: Nest model (without fixed effects)

The likelihood-ratio test is based on the difference between log-likelihoods:

−2[loglikelihood(nested model) - loglikelihood(full model)].

Figure 7.5 visualized the P-values and selected models. It suggest that the full model may performed

better than the nested model when at least one of t𝑐𝑜𝑛 and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 was a color trait. If no color traits were

involved, the nested model always outperformed. Recall the second reason to choose the bi-trait model

mentioned in Section 7.1. We can only use either Y = 𝜇 + X𝛽 + Z𝑢 or Y = 𝜇 + Z𝑢 for all trait pairs if we

chose the multi-trait model with all pairs.

Figure 7.5: Heatmaps of model selection

Up: P-values of likelihood ratio test; Down: Selected models with threshold P-value = 0.05.
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Figure 7.6 presented the heatmap of �̂�𝐺𝑒𝑛
s from the model chosen by the likelihood ratio test. They would

be used in variable selection next. Alongside estimated genetic correlation �̂�𝐺𝑒𝑛
, estimated Pearson

correlation �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛
is another common correlation coefficient. Figure 7.7 compared the coefficients by

visualizing (�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛 − �̂�𝐺𝑒𝑛
). A significant difference between �̂�𝐺𝑒𝑛

and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛
appeared when t𝑐𝑜𝑛

and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 were both color traits.

Figure 7.6: Heatmap of Abs(�̂�𝐺𝑒𝑛
)s from the model selected by likelihood ratio test

Figure 7.7: Heatmap of (�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛 -�̂�𝐺𝑒𝑛
)s
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7.3. Distributions of the Estimated Genetic Correlation �̂�𝐺𝑒𝑛

After abandoning the conventional noninformative trait OtherC2, 42 digital and six conventional traits

remain, which lead to (42 × 6 =) 252 �̂�𝐺𝑒𝑛
s. Figure 7.8 displayed the histogram of absolute �̂�𝐺𝑒𝑛

s,

with more than half (t𝑐𝑜𝑛 , t𝑑𝑖𝑔𝑖𝑡𝑎𝑙) of the pairs showing no correlation, 88 pairs having intermediate

correlations, and six pairs being highly correlated.

Figure 7.8: Histogram of absolute �̂�𝐺𝑒𝑛
s

0.2 and 0.8 are the boundary values for �̂�𝐺𝑒𝑛
groups (low/intermediate/high).

Figure 7.9: Histograms of absolute �̂�𝐺𝑒𝑛
s by conventional trait

0.2 and 0.8 are the boundary values for �̂�𝐺𝑒𝑛
groups (low/intermediate/high).

We displayed distributions of abs(�̂�𝐺𝑒𝑛
)s of each conventional trait in Figure 7.9 and Table 7.2. Two

conventional traits, ShapeC1 and SizeC1, could be replaced by correlated digital traits, listed in Table

7.3. Trait ShapeC1 can be replaced by digital shape traits ShapeD1, ShapeD2, ShapeD4, and digital size

traits SizeD1, SizeD4, SizeD5. This is supported by the heatmap in Figure 6.2, showing within-group
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correlations (color, shape, size) are stronger than between-group. Breeders will select digital traits to

replace ShapeC1 and SizeC1 based on cost and interpretability.

t𝑐𝑜𝑛
The number of t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s

with low �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙

The number of t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s
with intermediate �̂�𝐺𝑒𝑛

t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙

The number of t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s
with high �̂�𝐺𝑒𝑛

t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙
ColorC 35 7 0

OtherC 37 5 0

ShapeC1 22 17 3

ShapeC2 18 24 0

SizeC1 24 15 3

SizeC2 22 20 0

Table 7.2: Repartition of the digital traits per correlation group (low/intermediate/high) for each conventional trait.

Conventional Trait t𝑐𝑜𝑛 Digital Trait t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙

ShapeC1

ShapeD1 0.873 0.777

ShapeD2 0.883 0.782

ShapeD4 0.857 0.784

SizeC1

SizeD1 -0.825 -0.686

SizeD4 -0.820 -0.743

SizeD5 -0.806 -0.688

Table 7.3: The pairs with high �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙

and their estimated correlations
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8
Prediction of Conventional Traits

We move to the ’Statistical Learning Prediction’ phase of the workflow (Figure 1.1). Initially, there were

seven conventional traits; OtherC2 was discarded, while ShapeC1 and SizeC1 were replaced with digital

traits. The goal in this chapter is to predict traits ColorC, ShapeC2, SizeC2, and OtherC1 using linear

regression, LASSO regression, random forest, and XGBoost. All conventional and digital trait values

were centered in this chapter.

8.1. The Role of Variable Selection by �̂�𝐺𝑒𝑛

To investigate the role of variable selection by �̂�𝐺𝑒𝑛
on conventional trait prediction, we tested two

predictor sets: T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 and T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 . The first set contained all digital traits T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 , while the second set

T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 included digital traits meeting the criterion �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 ≥ 0.2, leading to T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 ⊂ T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 .

The conventional trait value is Ycultivar,t𝑐𝑜𝑛 , and the predicted value is ŶModel,Predictor Set
cultivar,t𝑐𝑜𝑛 given Model ∈

{Linear regression, LASSO regression, Random forest, XGBoost}, and Predictor Set ∈ {T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 ,T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 }.

We used mean square error (MSE) and Pearson correlation between real and predicted values �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ

to evaluate model performance. MSE is given by

1

𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟

𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟∑
𝑖=1

(Y𝑖 ,t𝑐𝑜𝑛 − ŶModel,Predictor Set
𝑖 ,t𝑐𝑜𝑛 )2 ,
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and Pearson correlation between real and predicted values is defined by the

∑𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑠

𝑖=1
(Y𝑖 ,t𝑐𝑜𝑛 − Ȳt𝑐𝑜𝑛 )(Ŷ

Model,Predictor Set
𝑖 ,t𝑐𝑜𝑛 − ¯̂YModel,Predictor Set

t𝑐𝑜𝑛 )√∑𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑠

𝑖=1
(Y𝑖 ,t𝑐𝑜𝑛 − Ȳt𝑐𝑜𝑛 )2

∑𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑠

𝑖=1
(ŶModel,Predictor Set

𝑖 ,t𝑐𝑜𝑛 − ¯̂YModel,Predictor Set
t𝑐𝑜𝑛 )2.

5-fold cross-validation splits the dataset into five equal subsets. In each iteration, one subset serves as

the validation set, and the rest are for training. This process repeats five times, with each subset used

once for validation. The final metric is the average of all iterations. [56].

Figure 8.1: The performance of predictive models on t𝑐𝑜𝑛 and T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛

To compare model performance on T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 and T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 , we illustrated the MSE and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
across

predictor sets in Figure 8.1, with error bars indicating the standard deviation of MSE. We included mean
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regression as a baseline model, using the average of conventional trait values in training set to predict

the same trait in test set.

Figure 8.1 showed that MSE differences and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
were associated with t𝑐𝑜𝑛 . The model underper-

formed on T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 predicting ColorC, SizeC2, and OtherC1, while ShapeC2 predictions were more

accurate on T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 than on T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 .

Model performance differences were MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 ) - MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙) and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 )−�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙).

We used the Gaussian kernel density estimator to estimate the probability densities of these differences

in Figure 8.2.

Figure 8.2: The estimated distributions of MSE difference and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛
Y,Ŷ

difference

Left: MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 ) - MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 ); Right: �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛
Y,Ŷ

(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 ) − �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛
Y,Ŷ

(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙)

The means of the differences were very close to zero, so we used the two-sample t-test to determine if

the differences were significant. We did the hypothesis test:

ℋ0 : E[MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 )] = E[MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙)].

againstℋ1 : E[MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 )] ≠ E[MSE(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙)].

We were also interested in the hypothesis test:

ℋ0 : E[�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 )] = E[�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙)].

againstℋ1 : E[�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 )] ≠ E[�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
(T𝑑𝑖𝑔𝑖𝑡𝑎𝑙)].

The P-values, 0.57 and 0.69, indicated insignificant changes in MSE and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
. Thus, T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 was

chosen as the predictor set, simplifying the model without performance loss.
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8.2. Important Features
Figure 8.3 presents the feature importance of each conventional traits by random forest. Each conventional

trait had one or two key predictors: ColorD4_SD and ColorD3 for ColorC, ShapeD4_SD for ShapeC2,

SizeD4 for SizeC2, ShapeD4_SD and ShapeD8_SD for OtherC1. These traits and predictors belonged to

the same group (Color, Shape, Size) and showed high Pearson correlations in the heatmap (Figure 6.2).

LASSO regression, like random forests, is able to selects important features using a penalty term 𝐿1.

Setting 𝜆 to one, the important predictors for ColorC were ColorD3 and ColorD4_SD, for ShapeC2 and

SizeC2 were ColorD5 and SizeD4, respectively, with none for OtherC1. Overall, this aligned with the

random forest results.

(a) ColorC (b) ShapeC2

(c) SizeC2 (d) OtherC1

Figure 8.3: Feature importance from decrease in impurity

(a) ColorC (b) ShapeC2

Figure 8.4: Scatter plots of each t𝑐𝑜𝑛 and its two most important t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s (One)

55
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



8.3. Hyperparameters Tuning 56

Figures 8.4 and 8.5 displayed scatter plots between each conventional trait and its two most important

predictors. It showed clustering in ColorC vs. ColorD3 and ShapeC2 vs. ColorD5: cultivars in the same

color would cluster together on color traits.

(a) SizeC2 (b) OtherC1

Figure 8.5: Scatter plots of each t𝑐𝑜𝑛 and its two most important t𝑑𝑖𝑔𝑖𝑡𝑎𝑙s (Two)

8.3. Hyperparameters Tuning
We tuned hyperparameters for LASSO regression, random forest, and XGBoost in this section. Scatter

plots of linear regression showed centralized values of real and predicted conventional traits in Figure

8.6. Two fuzzy clusters in subplot ColorC indicated poor group distinction of linear regression in ColorC.

In OtherC1, predictions were near the mean. Large training set errors indicated underfitting across all

traits.

Figure 8.6: Scatter plots of real and predicted values by linear regression
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8.3.1. Hyperparameters Tuning for LASSO Regression
The regularization parameter 𝜆 is the only hyperparameter in LASSO regression. To find the optimal 𝜆,

we conducted a sensitivity analysis of 𝜆. 𝜆 values were fifty logarithmically spaced numbers between

10
−2

and 10
2
, plus zero. MSE changes with 𝜆 were shown in the first subplots of Figures 8.7 to 8.10. An

increase in 𝜆 did not reduce MSE. MSE curves for ColorC, ShapeC2, and SizeC2 formed an ’S’ shape;

MSE surged with increasing 𝜆 before stabilizing. For OtherC2, MSE stayed around 0.24 regardless of 𝜆.

Linear regression is a LASSO variant with 𝜆 = 0. Increasing 𝜆 did not enhance performance, aligning

with Figure 8.1.

Figure 8.7: LASSO regression plots for ColorC

Figure 8.8: LASSO regression plots for ShapeC2

Figure 8.9: LASSO regression plots for SizeC2
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Figure 8.10: LASSO regression plots for OtherC1

For model fitting, we used two plots: MSE vs. training size and predicted vs. actual values scatter

plot. A cross-validation generator spited the dataset into five training and test subsets. Using varying

training sizes, we predicted conventional traits and calculated average MSE for each size [57]. The

plots revealed that with sufficient training data, the MSE of training and test sets converged, indicating

LASSO regression was not overfitted.

The scatter plot in Figure 8.7 showed that LASSO regression failed to distinguish clusters in ColorC. In

Figure 8.10, LASSO predicted using the mean of training data, leading to an MSE identical to mean

regression in Figure 8.1, explaining its weaker performance compared to linear regression on OtherC1.

LASSO performed similarly on ShapeC2 and SizeC2, consistent with Figure 8.1, indicating underfitting.

8.3.2. Hyperparameters Tuning for Random Forest and XGBoost
We focused on two key random forest hyperparameters: the number of trees 𝑁𝑡𝑟𝑒𝑒𝑠 and the minimum

samples per leaf 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . Increasing 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and decreasing 𝑁𝑡𝑟𝑒𝑒𝑠 can reduce model complexity,

potentially lowering training performance but improving test performance. 𝑁𝑡𝑟𝑒𝑒𝑠 was an integer from

10 to 200, and 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 was an integer from 1 to 5. We selected the model with the lowest MSE

across five cross-validations, then conducted a sensitivity analysis by varying 𝑁𝑡𝑟𝑒𝑒𝑠 or 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 while

keeping other hyperparameters constant. Results were displayed in Figure 8.11 to Figure 8.14.

Figure 8.11: Sensitivity analysis of the random forest with two hyperparameters for ColorC
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Figure 8.12: Sensitivity analysis of the random forest with two hyperparameters for ShapeC2

Figure 8.13: Sensitivity analysis of the random forest with two hyperparameters for SizeC2

Figure 8.14: Sensitivity analysis of the random forest with two hyperparameters for OtherC1

Plots of all traits had a similar pattern: as 𝑁𝑡𝑟𝑒𝑒𝑠 increased, MSE for both test and training sets decreased

initially, then stabilized. Training set MSE increased with 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , yet test set errors hardly decreased.

Unexpectedly, the test set error for OtherC1 rose with 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . The large MSE difference between

training and test sets suggest potential overfitting of the model.

The sensitivity analysis of training size revealed that as training size grew, errors in both training and

test sets initially decreased and then stabilized. MSE for both sets would converge to the same value if

the model is well-fitted. However, the MSE converged to different values, indicating the random forest

was overfitted.

Figure 8.15 presented scatter plots of predicted vs. actual values. As shown in ColorC, the random forest

effectively distinguished ColorC due to the presence of a single group, outperforming linear and LASSO

regressions on ColorC.
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Figure 8.15: Scatter plots of real and predicted values by random forest

To address random forest overfitting, we included two more hyperparameters: max CART depth

𝑁𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and feature proportion for splits

𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
. To prevent overfitting, decreasing 𝑁𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ

reduces CART complexity, and minimizing

𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
decreases correlations between CARTs. 𝑁𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ

was an integer between three and ten,

𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
was between 0.1 and 0.7. We found the best model with

the lowest MSE using five cross-validations across hyperparameters 𝑁𝑡𝑟𝑒𝑒𝑠 , 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑁𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and

𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
, then conducted sensitivity analysis on 𝑁𝑡𝑟𝑒𝑒𝑠 , 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and training size.

Figure 8.16: Sensitivity analysis of the random forest with four hyperparameters for ColorC
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Figure 8.17: Sensitivity analysis of the random forest with four hyperparameters for ShapeC2

Figure 8.18: Sensitivity analysis of the random forest with four hyperparameters for SizeC2

Figure 8.19: Sensitivity analysis of the random forest with four hyperparameters for OtherC1

Adding hyperparameters minimally affected the test set MSE, while greatly impacting the training set

MSE. MSE decreased for the ColorC training set but increased for the other three conventional trait

training sets. Adding hyperparameters did not prevent overfitting; the model with four hyperparameters

remained overfitted. As training set size grew, the MSE for training and test sets failed to converge.

After tuning random forest hyperparameters, we tuned XGBoost on two sets: 𝑁𝑡𝑟𝑒𝑒𝑠 , 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 and

𝑁𝑡𝑟𝑒𝑒𝑠 , 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , 𝑁𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ ,

𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
. We encountered the same problem as the random forest. The

best XGBoost from 𝑁𝑡𝑟𝑒𝑒𝑠 , 𝑁𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 was overfitted. Adjusting 𝑁𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ and

𝑁𝑠𝑢𝑏 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

𝑁 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
did not solve

the problem. Besides, XGBoost outperformed on the training set but had larger test errors than random

forest, indicating more severe overfitting.
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Figure 8.20: Sensitivity analysis and prediction results of the XGBoost for ColorC

Figure 8.21: Sensitivity analysis and prediction results of the XGBoost for ShapeC2

Figure 8.22: Sensitivity analysis and prediction results of the XGBoost for SizeC2

Figure 8.23: Sensitivity analysis and prediction results of the XGBoost for OtherC1

Figure 8.24 displayed scatter plots of real and predicted values from XGBoost. Training set points

lied closer to the diagonal than test set points, indicating greater test errors. Comparing with random

forest scatter plots in Figure 8.15, XGBoost was more overfitted. Although the tree-based models were

overfitted, they still outperformed the underfitted linear and LASSO regressions models on test sets,

showing lower MSE and higher �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
values in Figure 8.1.
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Figure 8.24: Scatter plots of real and predicted values by XGBoost

8.4. Comparison of Model Performance
The predictive models were evaluated after tuning, with performance displayed in Figure 8.25 and

standard deviations from 5 cross-validation. A key threshold for breeders is �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
greater than 0.5.

All models successfully predicted ColorC because their �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
s exceeded 0.5 significantly. Linear

regression and random forest models could predict ShapeC2 with �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
s between 0.5 and 0.6. Random

forests could also predict SizeC2 with �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
s over 0.5 slightly. No models could predict OtherC1.

Figure 8.25 showed the MSE of mean regression as a baseline, using the training set’s mean values for

predictions. For ColorC, linear and LASSO regression cut MSE by about 50%, while tree-based models

reduced it by one-third. In ShapeC2 and SizeC2, all models had slightly lower MSE than mean regression,

but in OtherC2, their MSE were almost equal to it.

Additionally, it was observed that MSE and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
did not always get the same rankings of model

performance. They agreed on the predictable traits: ColorC, ShapeC2, and SizeC2 that the random forest

always had the best performance. But they differed in OtherC1 because OtherC1 was unpredictable.

Since we tried a large amount of models this may be because there was not enough information in the

predictors to predict OtherC1.

Linear regression and random forest have similar MSE to mean regression on ShapeC2 and SizeC2, but

�̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
shows they can predict the traits, indicating �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
= 0.5 is not a suitable threshold. Model

performance on ColorC suggests �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
= 0.7 as a better threshold. The model’s MSE is significantly

lower than mean regression’s when �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
> 0.7. However, since we did not have time to further study

63
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



8.4. Comparison of Model Performance 64

the new threshold with breeders, this study still used �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
= 0.5 as the threshold. Figure 8.26 showed

that hyperparameter tuning minimally affected performance, reducing test set MSE by less than 0.1.

Figure 8.25: Comparison of model performance after tuning

Figure 8.26: Comparison of MSE on test set before and after tuning
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Model Linear Regression LASSO regression Random Forest XGBoost

Fitting Problem Underfitting Severe underfitting Slight overfitting Severe overfitting

Comment

1. Unable to distinguish clusters

in color traits

2. Large errors on training sets

1. Overfitting was not due to

insufficient training samples.

2. Tuning more hyperparameters did not

avoid overfitting.

Table 8.1: Summary of model performance

8.5. Prediction by Color
So far we have put all cultivars together to train the model and make predictions. Figure 8.4 indicated

that cultivars of the same color clustered together on color traits. Thus, we categorized the cultivars into

groups according to color to evaluate model performance across various color groups.

We started with the relationship between ColorC and ColorD3 due to color clustering of cultivars on

ColorD3 and the correlation between ColorC and ColorD3 in Figure 8.4. The ColorD3 value was divided

into intervals 10-30, 30-52, and 52-70 for red, orange, and yellow.

Fruit Color �̂�1 P-value 95% CI

All -0.027 0 [-0.030, -0.023]

Red 0.178 0 [0.152, 0.204]

Orange 0.017 0.111 [-0.004, 0.038]

Yellow 0.018 0.206 [-0.010, 0.047]

Table 8.2: The �̂�1 and its significance level for different colors.

Fitting linear regression model ColorC = 𝛽0 + 𝛽1ColorD3 on different color groups, we derived four �̂�1s

and significance levels in Table 8.2. The overall regression indicated a significant negative correlation

between ColorC and ColorD3: a unit increase in ColorD3 leaded to a 0.027 unit decrease in ColorC.

Pairwise regression showed ColorC and ColorD3 significantly related only in red cultivars, with ColorC

increasing by 0.178 units per unit rose in ColorD3. For yellow and orange cultivars, the correlations

was weakly positive. Figure 8.27 illustrated the regression lines. The overall regression demonstrated

Simpson’s paradox as discussed in Section 2.3, highlighting cultivar color as a key predictor of traits.

Figure 8.27: Overall and pairwise linear regressions of ColorC = 𝛽0 + 𝛽1ColorD3
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The dataset was split into three color subsets for model training and evaluation. Figure 8.28 displayed

the models’ MSE on each set and the error bar was the standard deviation of MSE. The performance on

the entire dataset served as a baseline. For ColorC, mean, linear, and LASSO regressions performed better

on color subsets than the full dataset, showing they failed to capture cultivar color from T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,𝐶𝑜𝑙𝑜𝑟𝐶 .

Fruit color helped these weak linear models. The random forest and XGBoost outperformed the baseline

on orange and yellow subsets but underperformed on the red subset. Predicting ColorC for orange

cultivars was easiest, while red cultivars need further investigation.

Figure 8.28: Performance of models on different color subsets

Predictive models performed differently on the other three traits. The linear regression of ShapeC2

performed worse on color subsets than the baseline. However, LASSO regression performed better in

subsets. For SizeC2, LASSO regression, random forest, and XGBoost performed slightly better in subsets.
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Similarly, random forest also performed better than baseline in predicting OtherC1 on subsets. In other

cases, the baseline outperformed the worst subset but underperformed the best subset, indicating that

fruit color could help the linear models (mean, linear, and LASSO regressions) to predict the color trait.

8.6. Low Quality Data from Tomatoes
The tomato also has both conventional and digital traits. Tomato’s yield traits included conventional

trait C and digital trait D, differing only in measurement methods. Each cultivar was measured once for

C and twice for D, with two D measurements labeled as D1 and D2. C and
1

2
(D1+D2) were expected to

have a high �̂�𝐺𝑒𝑛
due to representing the same phenotype measured differently. If �̂�𝐺𝑒𝑛

t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 ≥ 0.8, t𝑐𝑜𝑛
could be replaced with t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 , so �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

C, 1

2
(D1+D2)

should surpass 0.8.

The bi-trait model calculated �̂�𝐺𝑒𝑛
s, with prior distributions and burn-in iterations as in Section 7.1.

Table 8.3 shows �̂�𝐺𝑒𝑛
C, D and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

C, D with their 95% credible intervals.

t𝑐𝑜𝑛 t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 and 95% CI �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 and 95% CI

C
D1 0.77 (0.709, 0.846) 0.41 (0.354, 0.471)

D2 0.65 (0.527, 0.772) 0.29 (0.153, 0.412)

1

2
(D1+D2) 0.72 (0.627, 0.805) 0.20 (0.136, 0.257)

Table 8.3: �̂�𝐺𝑒𝑛
s and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛s between conventional yield trait and digital yield traits

�̂�𝐺𝑒𝑛
s from Table 8.3 were all below 0.8, and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

C, 1

2
(D1+D2)

was surprisingly 0.2. This was suspicious as C

and
1

2
(D1+D2) should be sampled from the same distribution. We used the Kolmogorov-Smirnov test

to verify it.

We introduce the two-sample Kolmogorov-Smirnov test briefly. Given independent samples𝑋1 , 𝑋2 , . . . , 𝑋𝑛

from F and 𝑌1 , 𝑌2 , . . . , 𝑌𝑚 from G, the empirical cumulative distribution functions (ECDFs) are:

�̂�𝑛(𝑥) =
1

𝑛

𝑛∑
𝑖=1

𝐼(𝑋𝑖 ≤ 𝑥) and 𝐺𝑚(𝑥) =
1

𝑚

𝑚∑
𝑗=1

𝐼(𝑌𝑗 ≤ 𝑥).

where 𝐼 is the indicator function that is equal to 1 if the condition is true and 0 otherwise. The test

statistic is defined as: sup𝑥 |�̂�𝑛(𝑥)−𝐺𝑚(𝑥)|. It denotes the supremum of the absolute differences between

the two ECDFs [58].

ℋ0 : Two samples are from the same distribution, 𝐹 = 𝐺.

againstℋ1 : Two samples are not from the same distributions, 𝐹 ≠ 𝐺.

In our case, two independent samples were conventional trait values C11 ,C12 , . . .C1𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑠
and the

average digital trait values
1

2
(D11 +D21), 1

2
(D12 +D22), . . . , 1

2
(D1𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑠

+D2𝑁𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑠
). The P-value was

1.13 × 10
−43

, so we rejected the null hypothesis and concluded that two samples were not from the same
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distribution.

We were concerned about data reliability and reported the anomaly to the breeder, who agreed that

�̂�𝐺𝑒𝑛
s and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

s were suspicious. Through stakeholder consultation and the analysis of ScaleCam

pictures, it was discovered that an operational mistake resulted in immature tomatoes appearing in the

pictures, which lead to inaccurate values of D1 and D2. Conventional trait C values were accurate as

they didn’t rely on ScaleCam pictures.
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Conclusion

This chapter will conclude the research by summarizing the key findings regarding the relationship

between conventional and digital traits, along with their value and contributions to the application of

digital phenotypes in plant breeding. In addition, it will address the limitations of the research and

suggest opportunities for future researches.

This research completed the workflow for the relationship between digital and conventional plant traits

and applied it to blocky peppers. We found some conventional traits could be replaced by single digital

traits due to strong genetic correlations (�̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 > 0.8). For other conventional traits, some of them

can be predicted using multiple digital traits through statistical learning models. It focused on four

conventional traits and suggest that ColorC, ShapeC2, and SizeC2 can be replaced or predicted by digital

traits, reducing the need for future data collection. Only OtherC1 still need to be collected in the future.

This research used the bi-trait model for �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 , which is a mixed effects model. Blocky peppers

were classified into three different colors: red, yellow, and orange. Therefore, red, yellow, and orange

were candidate variables for the fixed effect. We used the likelihood ratio test to compare the full model

(Y = 𝜇 + X𝛽 + Z𝑢) and the nested model (Y = 𝜇 + Z𝑢). The full model might be preferred when at least

one of the traits was about color, while the nested model always outperformed if t𝑐𝑜𝑛 and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 are

both non-color traits. �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 , two different correlations between t𝑐𝑜𝑛 and t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 , were

very different when both traits were about color.

Statistical learning models predicted conventional traits using digital traits. For each conventional trait

t𝑐𝑜𝑛 , there were two predictor sets: T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 and T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 . T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 contained all digital traits, while set

T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 included digital traits meeting �̂�𝐺𝑒𝑛
t𝑐𝑜𝑛 ,t𝑑𝑖𝑔𝑖𝑡𝑎𝑙 > 0.2. Models using T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 achieved similar
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accuracy to those using T𝑑𝑖𝑔𝑖𝑡𝑎𝑙 in MSE and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
. As T𝑑𝑖𝑔𝑖𝑡𝑎𝑙,t𝑐𝑜𝑛 had fewer predictors, it was preferred

for prediction.

The research compared the performance of different models in predicting conventional traits. Linear

and LASSO regression models were underfitted, especially in distinguishing between color traits,

and experienced Simpson’s paradox. On the other hand, random forest and XGBoost models tended

to overfit, with XGBoost showing a more pronounced tendency. Even with efforts to tune more

hyperparameters and increase the size of the training data, the overfitting problem remained unresolved.

Despite overfitting, random forest and XGBoost performed better in test sets than underfitting models.

Overall, the random forest model had the best performance due to its lower bias compared to linear and

LASSO regressions and smaller variance than XGBoost.

This research revealed the possibility to revise the model performance threshold. By comparing MSE

and �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
of the statistical learning models with mean regression, it seems reasonable to raise the

threshold from �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
= 0.5 to �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
= 0.7. This decision needs more analysis and consultation with

breeders. Due to time constraints, we did not investigate this topic. Thus, �̂�𝑃𝑒𝑎𝑟𝑠𝑜𝑛

Y,Ŷ
= 0.5 remains the

threshold in this research.

This research also predicted traits for color subsets separately. This method helped simple linear models

(linear regression and LASSO regression) in predicting color traits but was ineffective for other traits or

complex models. Among color subsets, traits of the orange subset are the easiest to predict, whereas

more investigation is needed for the red ones.

There are two potential limitations to this research. The first one is model fitting issues. Linear regression

and LASSO regression were underfitted while random forest and XGBoost were overfitted. Although

the random forest was overfitted, its performance on the test set reached the desired level, so we did

not further explore the fitting issues. This indicates potential risks in other situations. Secondly, the

research failed to handle a key trait, OtherC1 of blocky peppers. Models were unable to predict OtherC1

even in the training set. Current digital traits are insufficient to predict OtherC1; more digital traits are

needed for OtherC1.

It suggests that future research should explore predictive models of varying complexity, since tree-based

models tended to overfit and linear models were underfitted on ColorC, ShapeC2, and SizeC2. Potential

models are piecewise linear regression and polynomial regression, which lie between linear models

and tree-based models in complexity. Besides, the reasonable model performance threshold is still a

question to be answered.

Overall, this research explored the connection between digital and conventional phenotypes for plant

breeding. Breeders have relied on conventional phenotypes for centuries, and the digital trait is a

new tool for them. The digital phenotypes would help breeders to select superior varieties with

understanding the relationship between two types of phenotypes.

70
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



Bibliography

[1] H. Li and J. Wang, “Biometrical approaches for analysis of phenotypic data of complex traits,”

Phenomics in Crop Plants: Trends, Options and Limitations, pp. 249–272, 2015.

[2] J. Kumar, A. Pratap, S. Kumar, et al., Phenomics in crop plants: Trends, options and limitations. Springer,

2015.

[3] R. Pieruschka and U. Schurr, “Plant phenotyping: Past, present, and future,” Plant Phenomics,

vol. 2019, 2019. doi: 10.34133/2019/7507131.

[4] E. Yol, C. Toker, and B. Uzun, “Traits for phenotyping,” Phenomics in crop plants: trends, options and

limitations, pp. 11–26, 2015.

[5] Q. Xiao, X. Bai, C. Zhang, and Y. He, “Advanced high-throughput plant phenotyping techniques

for genome-wide association studies: A review,” Journal of advanced research, vol. 35, pp. 215–230,

2022.

[6] R. S. Reshma and D. Das, “Molecular markers and its application in animal breeding,” in Advances

in Animal Genomics, Elsevier, 2021, pp. 123–140.

[7] L. E. Kruuk, J. Slate, J. M. Pemberton, S. Brotherstone, F. Guinness, and T. Clutton-Brock, “Antler

size in red deer: Heritability and selection but no evolution,” Evolution, vol. 56, no. 8, pp. 1683–1695,

2002.

[8] W. H. Finch, J. E. Bolin, and K. Kelley, Multilevel modeling using R. Chapman and Hall/CRC, 2019.

[9] A. van der Vaart, M. Jonker, and F. Bĳma, An introduction to mathematical statistics. Amsterdam

University Press, 2017.

[10] S. J. Kays, Cultivated vegetables of the world: a multilingual onomasticon. Springer, 2011.

[11] N. M. Laird and J. H. Ware, “Random-effects models for longitudinal data,” Biometrics, pp. 963–974,

1982.

[12] C. R. Henderson, O. Kempthorne, S. R. Searle, and C. Von Krosigk, “The estimation of environ-

mental and genetic trends from records subject to culling,” Biometrics, vol. 15, no. 2, pp. 192–218,

1959.

[13] C. Gondro, J. Van der Werf, and B. Hayes, Genome-wide association studies and genomic prediction.

Springer, 2013, vol. 1019.

[14] G. J. M. Rosa, 2019. [Online]. Available: https://si.biostat.washington.edu/sites/default/

files/modules/Seattle-SISG-19-MM-Lecture04.pdf.

71
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.

https://doi.org/10.34133/2019/7507131
https://si.biostat.washington.edu/sites/default/files/modules/Seattle-SISG-19-MM-Lecture04.pdf
https://si.biostat.washington.edu/sites/default/files/modules/Seattle-SISG-19-MM-Lecture04.pdf


Bibliography 72

[15] G. de Los Campos, J. M. Hickey, R. Pong-Wong, H. D. Daetwyler, and M. P. Calus, “Whole-genome

regression and prediction methods applied to plant and animal breeding,” Genetics, vol. 193, no. 2,

pp. 327–345, 2013.

[16] J. van der Werf, 2. principles of estimation of breeding values, https://jvanderw.une.edu.au/

Chapter02_GENE422_EBV.pdf, Accessed: 2024-9-23.

[17] D Byers, “Components of phenotypic variance,” Nature education, vol. 1, no. 1, p. 161, 2008.

[18] A. Putz, 2018. [Online]. Available: https://rpubs.com/amputz/Amatrix.

[19] D. Lourenco, A. Legarra, and I. Aguilar, 2019. [Online]. Available: https://nce.ads.uga.edu/

wiki/lib/exe/fetch.php?media=ssgblup_day4_se.pdf.

[20] K. Oldenbroek and L. van der Waaĳ, “Textbook animal breeding: Animal breeding and genetics

for bsc students,” 2014.

[21] R. Mrode, Linear models for the prediction of animal breeding values. Cabi, 2014.

[22] S. Forni, I. Aguilar, and I. Misztal, “Different genomic relationship matrices for single-step analysis

using phenotypic, pedigree and genomic information,” Genetics Selection Evolution, vol. 43, pp. 1–7,

2011.

[23] J Chen, Use of mendelian sampling terms in genomic models, 2009.

[24] J. D. Platten, J. N. Cobb, and R. E. Zantua, “Criteria for evaluating molecular markers: Compre-

hensive quality metrics to improve marker-assisted selection,” PloS one, vol. 14, no. 1, e0210529,

2019.

[25] P. M. VanRaden, “Efficient methods to compute genomic predictions,” Journal of dairy science,

vol. 91, no. 11, pp. 4414–4423, 2008.

[26] M. Gadji et al., “Nuclear remodeling as a mechanism for genomic instability in cancer,” Advances

in cancer research, vol. 112, pp. 77–126, 2011.

[27] A. Legarra, I. Aguilar, and I. Misztal, “A relationship matrix including full pedigree and genomic

information,” Journal of Dairy Science, vol. 92, no. 9, pp. 4656–4663, 2009, issn: 0022-0302. doi:

https://doi.org/10.3168/jds.2009-2061. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0022030209707933.

[28] A. Legarra, O. F. Christensen, I. Aguilar, and I. Misztal, “Single step, a general approach for

genomic selection,” Livestock Science, vol. 166, pp. 54–65, 2014.

[29] O. F. Christensen and M. S. Lund, “Genomic prediction when some animals are not genotyped,”

Genetics Selection Evolution, vol. 42, pp. 1–8, 2010.

[30] I Aguilar, I Misztal, D. Johnson, A. Legarra, S Tsuruta, and T. Lawlor, “Hot topic: A unified

approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of

holstein final score,” Journal of dairy science, vol. 93, no. 2, pp. 743–752, 2010.

72
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.

https://jvanderw.une.edu.au/Chapter02_GENE422_EBV.pdf
https://jvanderw.une.edu.au/Chapter02_GENE422_EBV.pdf
https://rpubs.com/amputz/Amatrix
https://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=ssgblup_day4_se.pdf
https://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=ssgblup_day4_se.pdf
https://doi.org/https://doi.org/10.3168/jds.2009-2061
https://www.sciencedirect.com/science/article/pii/S0022030209707933
https://www.sciencedirect.com/science/article/pii/S0022030209707933


Bibliography 73

[31] H. B. Zaabza, M. Taskinen, E. A. Mäntysaari, T. Pitkänen, G. P. Aamand, and I. Strandén, “Breeding

value reliabilities for multiple-trait single-step genomic best linear unbiased predictor,” Journal of

Dairy Science, vol. 105, no. 6, pp. 5221–5237, 2022.

[32] H. Önder et al., “Multi-trait single-step genomic prediction for milk yield and milk components

for polish holstein population,” Animals, vol. 13, no. 19, p. 3070, 2023.

[33] H. Ben Zaabza, M. Taskinen, E. A. Mäntysaari, T. Pitkänen, G. P. Aamand, and I. Strandén,

“Breeding value reliabilities for multiple-trait single-step genomic best linear unbiased predictor,”

Journal of Dairy Science, vol. 105, no. 6, pp. 5221–5237, 2022, issn: 0022-0302. doi: https://doi.org/

10.3168/jds.2021-21016. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0022030222002119.

[34] M. Weigt and H. Szurmant, “Genetic covariance,” in Brenner’s Encyclopedia of Genetics (Second

Edition), S. Maloy and K. Hughes, Eds., Second Edition, San Diego: Academic Press, 2013,

pp. 242–245, isbn: 978-0-08-096156-9. doi: https://doi.org/10.1016/B978-0-12-374984-

0.00613-6. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

B9780123749840006136.

[35] M. Lynch, B. Walsh, et al., Genetics and analysis of quantitative traits. Sinauer Sunderland, MA, 1998,

vol. 1.

[36] A. Zellner, An introduction to bavesian inference in econometrics. new york: John wilev & sons, 1971.

[37] P. Pérez-Rodríguez and G. de Los Campos, “Multitrait bayesian shrinkage and variable selection

models with the bglr-r package,” Genetics, vol. 222, no. 1, iyac112, 2022.

[38] Z. Zhang, “A note on wishart and inverse wishart priors for covariance matrix,” Journal of Behavioral

Data Science, vol. 1, no. 2, pp. 119–126, 2021.

[39] K. P. Murphy, “Conjugate bayesian analysis of the gaussian distribution,” def, vol. 1, no. 2𝜎2, p. 16,

2007.

[40] S. Hug, M. Schwarzfischer, J. Hasenauer, C. Marr, and F. J. Theis, “An adaptive scheduling scheme

for calculating bayes factors with thermodynamic integration using simpson’s rule,” Statistics and

Computing, vol. 26, pp. 663–677, 2016.

[41] C. W. Fox and S. J. Roberts, “A tutorial on variational bayesian inference,” Artificial intelligence

review, vol. 38, pp. 85–95, 2012.

[42] A. E. Raftery and S. M. Lewis, “Implementing mcmc,” Markov chain Monte Carlo in practice,

pp. 115–130, 1996.

[43] C. Andrieu and J. Thoms, “A tutorial on adaptive mcmc,” Statistics and computing, vol. 18, pp. 343–

373, 2008.

[44] D. Sorensen and D. Gianola, Likelihood, Bayesian, and MCMC methods in quantitative genetics.

Springer Science & Business Media, 2007.

73
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.

https://doi.org/https://doi.org/10.3168/jds.2021-21016
https://doi.org/https://doi.org/10.3168/jds.2021-21016
https://www.sciencedirect.com/science/article/pii/S0022030222002119
https://www.sciencedirect.com/science/article/pii/S0022030222002119
https://doi.org/https://doi.org/10.1016/B978-0-12-374984-0.00613-6
https://doi.org/https://doi.org/10.1016/B978-0-12-374984-0.00613-6
https://www.sciencedirect.com/science/article/pii/B9780123749840006136
https://www.sciencedirect.com/science/article/pii/B9780123749840006136


Bibliography 74

[45] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian restoration

of images,” IEEE Transactions on pattern analysis and machine intelligence, no. 6, pp. 721–741, 1984.

[46] G. Casella and E. I. George, “Explaining the gibbs sampler,” The American Statistician, vol. 46, no. 3,

pp. 167–174, 1992.

[47] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical

Society Series B: Statistical Methodology, vol. 58, no. 1, pp. 267–288, 1996.

[48] J. Gareth, W. Daniela, H. Trevor, and T. Robert, An introduction to statistical learning: with applications

in R. Spinger, 2013.

[49] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning: data

mining, inference, and prediction. Springer, 2009, vol. 2.

[50] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,” Ensemble machine learning: Methods

and applications, pp. 157–175, 2012.

[51] L. Breiman, “Some infinity theory for predictor ensembles,” Citeseer, Tech. Rep., 2000.

[52] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference on document

analysis and recognition, IEEE, vol. 1, 1995, pp. 278–282.

[53] H. Ishwaran, “The effect of splitting on random forests,” Machine learning, vol. 99, pp. 75–118, 2015.

[54] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.

[55] A. K. R. Choudhury, Principles of colour and appearance measurement: Visual measurement of colour,

colour comparison and management. Woodhead Publishing, 2014.

[56] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, pp. 197–227, 2016.

[57] L. E. Yelle, “The learning curve: Historical review and comprehensive survey,” Decision sciences,

vol. 10, no. 2, pp. 302–328, 1979.

[58] V. W. Berger and Y. Zhou, “Kolmogorov–smirnov test: Overview,” Wiley statsref: Statistics reference

online, 2014.

[59] D. F. Andrews and C. L. Mallows, “Scale mixtures of normal distributions,” Journal of the Royal

Statistical Society: Series B (Methodological), vol. 36, no. 1, pp. 99–102, 1974.

[60] E. I. George and R. E. McCulloch, “Variable selection via gibbs sampling,” Journal of the American

Statistical Association, vol. 88, no. 423, pp. 881–889, 1993.

[61] F. Zou, H. Huang, S. Lee, and I. Hoeschele, “Nonparametric bayesian variable selection with

applications to multiple quantitative trait loci mapping with epistasis and gene–environment

interaction,” Genetics, vol. 186, no. 1, pp. 385–394, 2010.

[62] T. H. Meuwissen, B. J. Hayes, and M. Goddard, “Prediction of total genetic value using genome-

wide dense marker maps,” genetics, vol. 157, no. 4, pp. 1819–1829, 2001.

74
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



Bibliography 75

[63] D. Habier, R. L. Fernando, K. Kizilkaya, and D. J. Garrick, “Extension of the bayesian alphabet for

genomic selection,” BMC bioinformatics, vol. 12, pp. 1–12, 2011.

[64] M. John and A. Mieldzioc, “The comparison of the estimators of banded toeplitz covariance

structure under the high-dimensional multivariate model,” Communications in Statistics-Simulation

and Computation, vol. 49, no. 3, pp. 734–752, 2020.

[65] M. Janiszewska, “Structures of the covariance matrix: An overview,” Biometrical Letters, vol. 59,

no. 2, pp. 141–157, 2022.

75
Bayer, De Ruiter® and Seminis® are registered trademarks of Bayer Group. ©2023 Bayer Group. All rights reserved.



A
Estimated PDF of Digital Trait Values

and Statistical Summary of All Traits

Figure A.1: Estimated distributions of digital color traits
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Figure A.2: Estimated distributions of digital size traits
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Figure A.3: Estimated distributions of digital shape traits
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Trait Mean Standard Deviation Min 25% 50% 75% Max

ColorC 3.39 0.73 1.86 2.83 3.29 3.88 5.29

ShapeC1 3.74 0.49 2.75 3.40 3.70 4.05 5.25

ShapeC2 4.46 0.47 2.80 4.14 4.44 4.75 5.71

SizeC1 2.92 0.57 1.71 2.50 2.86 3.25 n 4.89

SizeC2 4.80 0.53 3.20 4.45 4.86 5.17 6.25

OtherC1 3.06 0.49 1.00 3.00 3.00 3.33 5.00

OtherC2 1.11 0.40 1.00 1.00 1.00 1.00 4.60

ColorD1 32.78 16.14 -3.70 13.38 38.51 45.62 55.08

ColorD2 57.41 7.70 41.70 51.11 54.79 65.19 73.70

ColorD3 34.00 18.57 13.09 18.38 22.12 56.60 70.87

ColorD4 176.34 85.84 42.89 85.15 190.35 260.51 325.13

ColorD5 50.12 12.52 35.06 39.77 42.67 65.52 72.31

SizeD1 9.14 0.50 7.47 8.85 9.16 9.48 10.27

SizeD2 1.08 0.12 0.78 1.00 1.07 1.15 1.67

SizeD3 9.17 0.60 7.32 8.78 9.16 9.56 11.39

SizeD4 74.41 6.47 52.80 70.43 74.92 78.82 94.91

SizeD5 37.16 1.81 30.84 36.13 37.36 38.32 43.07

SizeD6 8.81 0.53 7.12 8.46 8.82 9.18 10.08

SizeD7 9.89 0.58 8.00 9.51 9.90 10.26 11.86

SizeD8 11.59 0.74 9.24 11.08 11.57 12.04 14.35

ShapeD1 1.06 0.10 0.87 0.99 1.05 1.12 1.42

ShapeD2 1.34 0.12 1.11 1.25 1.33 1.41 1.76

ShapeD3 0.82 0.02 0.77 0.81 0.82 0.84 0.91

ShapeD4 1.10 0.08 0.94 1.04 1.08 1.13 1.39

ShapeD5 1.18 0.05 1.02 1.15 1.19 1.22 1.35

ShapeD6 0.88 0.01 0.85 0.87 0.88 0.89 0.90

ShapeD7 0.97 0.04 0.88 0.95 0.97 0.99 1.06

ShapeD8 0.79 0.01 0.75 0.78 0.79 0.80 0.82

ColorD1_SD 3.29 1.43 0.69 2.24 3.02 4.12 8.78

ColorD2_SD 2.84 1.02 0.64 2.16 2.69 3.35 7.06

ColorD3_SD 2.46 0.90 0.82 1.85 2.31 2.92 6.37

ColorD4_SD 30.84 25.42 0.67 3.67 32.89 52.08 91.09

ColorD5_SD 1.94 0.70 0.43 1.46 1.79 2.27 5.29

SizeD1_SD 0.65 0.21 0.23 0.52 0.61 0.75 1.60

SizeD2_SD 0.25 0.06 0.12 0.21 0.24 0.28 0.44

SizeD3_SD 0.90 0.24 0.39 0.73 0.86 1.03 1.64

SizeD4_SD 7.92 2.61 2.80 6.08 7.38 9.35 16.41

SizeD5_SD 2.95 0.99 1.30 2.27 2.73 3.48 8.81

SizeD6_SD 0.68 0.21 0.26 0.55 0.64 0.78 1.59

SizeD7_SD 0.76 0.23 0.33 0.60 0.70 0.89 1.68

SizeD8_SD 1.11 0.31 0.41 0.88 1.07 1.30 2.17

ShapeD1_SD 0.12 0.04 0.05 0.10 0.12 0.15 0.31

ShapeD2_SD 0.16 0.05 0.07 0.12 0.15 0.18 0.38

ShapeD3_SD 0.05 0.01 0.02 0.04 0.05 0.06 0.11

ShapeD4_SD 0.10 0.03 0.04 0.08 0.10 0.11 0.24

ShapeD5_SD 0.10 0.03 0.04 0.08 0.09 0.11 0.26

ShapeD6_SD 0.02 0.01 0.01 0.02 0.02 0.03 0.06

ShapeD7_SD 0.06 0.02 0.02 0.05 0.06 0.07 0.14

ShapeD8_SD 0.03 0.01 0.01 0.03 0.03 0.04 0.07

Table A.1: Statistical summary of trait values
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B
Conditional Distributions of A

Multivariate Normal Distribution

In this section, we follow the work given by Sorensen and Gianola [44, page 42]. It is assumed

𝑋 ∼ 𝒩(𝜇,Σ) is a multivariate normal vector. Consider partitioning 𝑋, 𝜇 and Σ into

𝑋 =


𝑋1

𝑋2

 , 𝜇 =


𝜇1

𝜇2

 ,Σ =


Σ11 Σ12

Σ21 Σ22

 .
Then, the conditional distribution of the first partition given the second is

𝑝(𝑋1 | 𝑋2 = 𝑥2) = 𝒩(𝜇1 + Σ12Σ
−1

22
(𝑥2 − 𝜇2),Σ11 − Σ12Σ

−1

22
Σ21).

Proof. Define 𝑍 = 𝑋1 + 𝐴𝑋2 where 𝐴 = −Σ12Σ
−1

22
. Firstly, we can show 𝑍 and 𝑋2 are uncorrelated:

Cov(𝑍, 𝑋2) = Cov(𝑋1 , 𝑋2) + Cov(𝐴𝑋2 , 𝑋2)

= Σ12 + 𝐴Var(𝑋2)

= Σ12 − Σ12Σ
−1

22
Σ22

= 0.

𝑍 and 𝑋2 have jointly normal distribution and are uncorrelated. Therefore 𝑍 and 𝑋2 are independent.
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The conditional expectation of (𝑋1 | 𝑋2 = 𝑥2) is

E(𝑋1 | 𝑋2 = 𝑥2) = E(𝑧 − 𝐴𝑋2 | 𝑋2 = 𝑥2)

= E(𝑧 | 𝑋2 = 𝑥2) − E(𝐴𝑋2 | 𝑋2 = 𝑥2)

= E(𝑧) − 𝐴𝑥2

= 𝜇1 + 𝐴𝜇2 − 𝐴𝑥2

= 𝜇1 + 𝐴(𝜇2 − 𝑥2)

= 𝜇1 + Σ12Σ
−1

22
(𝑥2 − 𝜇2).

The conditional covariance matrix is

Var(𝑋1 | 𝑋2 = 𝑥2) = Var(𝑍 − 𝐴𝑋2 | 𝑋2 = 𝑥2)

= Var(𝑍 | 𝑋2 = 𝑥2) + Var(𝐴𝑋2 | 𝑋2 = 𝑥2) − 𝐴Cov(𝑍,−𝑋2 | 𝑋2 = 𝑥2) − Cov(𝑍,−𝑋2 | 𝑋2 = 𝑥2)𝐴𝑇

= Var(𝑍 | 𝑋2 = 𝑥2)

= Var(𝑍)

= Var(𝑍1 + 𝐴𝑋2)

= Var(𝑋1) + 𝐴Var(𝑋2)𝐴𝑇 + 𝐴Cov𝑋1 , 𝑋2 + Cov(𝑋2 , 𝑋1)𝐴𝑇

= Σ11 + Σ12Σ
−1

22
Σ22Σ

−1

22
Σ21 − 2Σ12Σ

−1

22
Σ21

= Σ11 + Σ12Σ
−1

22
Σ21 − 2Σ12Σ

−1

22
Σ21

= Σ11 − Σ12Σ
−1

22
Σ21.

We used the property of covariance matrices:

Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌) + Cov(𝑋,𝑌) + Cov(𝑌, 𝑋).
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C
Other Prior Distributions of Random

Effects and Covariance

C.1. Priors of random effects
Gaussian priors (or Normal priors): The Gaussian distribution has two parameters: mean and variance

(𝜎2

𝑧). Mean is set to zero because any nonzero mean for a term in the random effects is expressed as

part of the fixed effect. Therefore, 𝜔 = 𝜎2

𝑧 . With Gaussian priors, �̂� is the BLUP of 𝑢 [15]. The posterior

distribution of random effects, 𝑝(𝑢 | Y, 𝜇, 𝜎2

𝜀 , 𝜎
2

𝑧) ∝
∏𝑁

𝑖=1
𝒩(Y𝑖 | 𝜇 +

∑𝑞

𝑗=1
Z𝑖 𝑗𝑢𝑗 , 𝜎2

𝜀)
∏𝑞

𝑗=1
𝑝(𝑢𝑗 | 0, 𝜎2

𝑧) is
multivariate normal, with posterior mean given by �̂� = [Z𝑇Z + 𝜎2

𝑧𝜎
2

𝜀I]−1Z𝑇(Y − 𝜇) which is the BLUP of

random effect coefficients [15].

Heavy-tailed priors: Scaled t and double exponential are two commonly used thick-tailed priors.

Compared with Gaussian, these distributions have higher mass at zero and thicker tails. Therefore they

include strong shrinkage toward zero of estimates with small effects and less shrinkage of estimates

with sizable effects. For computational convenience, the thick-tail densities are commonly represented

as infinite mixtures of scale normal densities of the form 𝑝(𝑢𝑗 | 𝜔) =
∫
𝒩(𝑢𝑗 | 0, 𝜎2

𝑧 𝑗
)𝑝(𝜎2

𝑧 𝑗
| 𝜔)𝜕𝜎2

𝑧 𝑗
,

where 𝑝(𝜎2

𝑧 𝑗
| 𝜔) is prior distribution assigned to random effects variance parameters [59]. The posterior

marginal prior of 𝑢𝑗 is scaled 𝑡 distribution if 𝑝(𝜎2

𝑧 𝑗
| 𝜔) is a scaled inverse chi-square distribution. It is

double exponential distribution if 𝑝(𝜎2

𝑧 𝑗
| 𝜔) is an exponential distribution. Double-exponential density

has only one parameter: rate. While scaled 𝑡 distribution is indexed by two parameters: scale and

degree of freedom which gives the scaled 𝑡 more flexibility to control tails thickness. By using priors

that are finite mixtures, an even higher degree of flexibility of the shape of the prior can be obtained [15].
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C.1. Priors of random effects 83

Figure C.1: Gaussian and heavy-tailed distributions

Figure C.2: Spike–slab and Point of Mass & Slab Distributions

Spike–slab priors: Spike–slab priors are mixtures of two densities: one with small variance (the spike)

and one with large variance (the slab) [60]. The spike and the slab are both zero-mean densities. A

general form of this prior is 𝜋×𝑁
(
0, 𝜎2

1

)
+(1 − 𝜋)×𝑁

(
0, 𝜎2

2

)
where 𝜋 ∈ [0, 1] and 𝜎2

1
and 𝜎2

2
are variance

parameters. Spike–slab priors are Gaussian priors when 𝜋 = 0 or 1. Apart from mixing two Gaussian

distributions, Spike–slab priors can be obtained by mixing other densities such as scaled t or double

exponential [61].

Point of mass at zero and slab priors: Spike–slab priors are a point of mass at zero and a slab priors

when 𝜎2

1
or 𝜎2

2
→ 0, in this case, the small-variance component of the mixture collapses to a point of

mass at zero. Point of mass at zero and slab priors are used to induce a combination of variable selection

and shrinkage. These priors are used in model BayesB where the slab is a scaled-t density and model

BayesC where the slab is a normal density [62, 63]. More information about BayesB and BayesC models

is introduced by Habier et al. [63].
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C.2. Priors of covariance parameters 84

C.2. Priors of covariance parameters
Spherical structure: The covariance matrix Ω is in spherical structure if it is proportional to the identity

matrix. Spherical structure can be expressed as

Ω =

©«

𝛼 0 · · · 0

0 𝛼 · · · 0

...
...

. . .
...

0 0 · · · 𝛼

ª®®®®®®®¬
,

where 𝛼 is a constant. A spherical covariance matrix implies that all components of the observation

vector not only share the same variance but are also independent of each other. It is the smallest linear

structure with one dimension of the space structure. Therefore, it simplifies the estimation problem to

just one unknown parameter (𝛼). The spherical covariance structure is frequently used as the target

matrix within shrinkage methods for the simple structure [64, 65].

Diagonal structure: The covariance matrix Ω with diagonal structure is defined as:

Ω =

©«

𝛼1 0 · · · 0

0 𝛼2 · · · 0

...
...

. . .
...

0 0 · · · 𝛼𝑚

ª®®®®®®®¬
.

The diagonal structure provides more flexibility than the spherical structure. The components of

the observation vector can have heterogenous variances and are independent. The dimension of the

structure space is equal to 𝑚. Similar to spherical structure, diagonal structure of the covariance matrix

is also used to as the target matrix in the shrinkage method [65].
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