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Abstract: Locating and quantifying the emission source plays a significant role in the emergency
management of hazardous gas leak accidents. Due to the lack of a desirable atmospheric dispersion
model, current source estimation algorithms cannot meet the requirements of both accuracy and
efficiency. In addition, the original optimization algorithm can hardly estimate the source accurately,
because of the difficulty in balancing the local searching with the global searching. To deal with these
problems, in this paper, a source estimation method is proposed using an artificial neural network
(ANN), particle swarm optimization (PSO), and a simulated annealing algorithm (SA). This novel
method uses numerous pre-determined scenarios to train the ANN, so that the ANN can predict
dispersion accurately and efficiently. Further, the SA is applied in the PSO to improve the global
searching ability. The proposed method is firstly tested by a numerical case study based on process
hazard analysis software (PHAST), with analysis of receptor configuration and measurement noise.
Then, the Indianapolis field case study is applied to verify the effectiveness of the proposed method
in practice. Results demonstrate that the hybrid SAPSO algorithm coupled with the ANN prediction
model has better performances than conventional methods in both numerical and field cases.

Keywords: source estimation; atmospheric dispersion model; artificial neural network; particle
swarm optimization; simulated annealing algorithm

1. Introduction

Hazardous gas emission and leak accidents have posed a potential threat to public health and
social stability. In the emergency management of these accidents, obtaining emission source terms
(i.e., source location and source strength) is of great importance. With source terms known, managers
are able to take measures to prevent the leakage expanding [1,2]. Further, based on these source
terms, the concentration distribution of hazardous gases can be predicted, which contributes to the
emergency response (e.g., making an evacuation plan). However, source terms (especially source
strength) are usually difficult to measure directly during the hazardous gas emission, for the sake of
safety. Therefore, estimating source terms from observations becomes an important way of obtaining
source information.

The atmospheric dispersion model underlies the source estimation. Much research has shown
that the accuracy of the forward dispersion model has a significant impact on the accuracy of source
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estimation [3]. There have been many successful models of predicting the gas dispersion in air [4].
The Gaussian dispersion model [5,6], Lagrangian stochastic (LS) model [7,8], and computational fluid
dynamics (CFD) model [9,10] are three representatives. The Gaussian model has a simple mathematical
expression. Requiring only a few input parameters, this model is computationally efficient, but not
accurate enough in prediction [6]. The LS model uses a stochastic method, and views the gas transport
process as a Markov process with a number of particles, while the CFD model is built on sophisticated
fluid dynamics equations [9]. Compared with Gaussian models, these two kinds of models have
more accurate prediction results, but the higher computational cost limits their applications in the
source estimation of emergency response. Therefore, there is a need for an atmospheric dispersion
model with both high accuracy and efficiency [11]. To deal with this problem, many researchers have
used some pre-determined scenarios to train the artificial neural network (ANN) for atmospheric
dispersion modeling [12–18]. Because of the excellent fitting ability, the ANN has high prediction
accuracy on these scenarios, even if the topography is complex. In addition, the computing of a
trained ANN for prediction is fast. Boznar et al. [14] used a neural network-based method to predict
ambient sulfur dioxide (SO2) concentration in highly polluted industrial areas of complex terrain, and
acquired promising results. Based on the ANN, Wang et al. [15] developed a fast prediction approach,
which could bypass the input parameters and predict the released gas concentration at certain offsite
locations. Ma [16] applied different machine learning algorithms (i.e., Back propagation (BP) network,
Radial Basis Function (RBF) network, and Support Vector Machine (SVM)) coupled with Gaussian
parameters to predict atmospheric dispersion, and compared their performance. This research has
shown the excellent performance of ANN on atmospheric dispersion prediction.

As for the source estimation, current source estimation methods can be divided into two types:
the Bayesian-based method and optimization [3]. Bayesian-based methods introduce probabilistic
consideration to the source estimation. According to the Bayesian theory, an emission source can
be identified by obtaining the probability density function (PDF) of its source terms [19]. Markov
Chain Monte Carlo (MCMC) [20] and Sequential Monte Carlo (SMC) [21] are typical Bayesian-based
methods applied in source estimation. Different from the Bayesian-based method, the optimization
approach for source estimation aims to find the combination of source terms that optimizes a cost or
objective function. The cost function usually represents the differences between the predicted and
observed gas concentrations. A variety of methods have been used to optimize the cost function,
such as gradient-based methods [11], direct search methods (e.g., the pattern search method [22]),
and intelligent optimization methods (e.g., particle swarm optimization (PSO)) [23–25], simulated
annealing algorithm (SA) [26], and genetic algorithm (GA) [27–29]). Thomson [26] adopted a random
search algorithm and a simulated annealing algorithm to locate a known gas source in a desert.
Haupt et al. [30] applied GA coupled with Gaussian dispersion model to determine source terms.
The results showed that this method is able to locate and quantify a source accurately and rapidly in a
numerical experiment. However, there are still some problems with these investigations. First, the
majority of source estimation methods do not perform well on field experiments, though they get
satisfying results in numerical cases [24]. The main cause of this problem is that the atmospheric
dispersion model used in these algorithms is not accurate in the complex field environment.
Considering the computational efficiency, most of source estimation methods use the simple Gaussian
dispersion model that is not accurate enough in the field, consequently causing poor performances
in field cases. Therefore, obtaining a desirable dispersion model with both accuracy and efficiency
is essential to source estimation. In addition, a lot of research is based on original optimization
algorithms that can hardly balance local searching with global searching, such as the original PSO and
GA. In comparison, some research has proven that hybrid optimization algorithms perform better
in the two aspects [30]. In addition, meteorological parameters (e.g., wind field) have an important
impact on source estimation, but they are usually ignored during the estimation process. Therefore,
estimating meteorological parameters helps to improve the accuracy of source estimation as well [27].
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In this paper, a source estimation method based on the ANN dispersion model and hybrid
optimization algorithm of SA and PSO is proposed. Trained by multiple pre-determined scenarios, the
ANN for atmospheric dispersion prediction is accurate enough with low computational cost. In terms
of the optimization method for source estimation, the PSO is combined with SA. PSO is one of the most
useful intelligent optimization methods. It runs efficiently but tends to fall into a local optimum easily.
In comparison, SA has an excellent capacity of global searching. Therefore, the hybrid algorithm tends
to perform well on both local searching and global searching. The proposed source estimation method
is tested in a numerical case, based on a commercial process hazard analysis software (PHAST) and in
the Indianapolis field case.

The rest of this paper is organized as follows. Section 2 introduces the ANN-based prediction
model and the hybrid SAPSO algorithm. Section 3 describes the numerical case study based on
PHAST. Section 4 introduces the application of the proposed method in the Indianapolis field case.
The discussion and conclusions are given in the Sections 5 and 6, respectively.

2. Models and Methods

2.1. Structure of ANN

A desirable atmospheric dispersion prediction model with high accuracy and computational
efficiency underlies the source estimation. Unfortunately, accurate atmospheric dispersion models,
such as CFD and LS models, are time-consuming, while computationally efficient models, like the
Gaussian model, are not accurate enough. To address this problem, ANN is applied to predict the
concentration of interest points. As a machine learning algorithm, ANN is able to predict unknown
complex relationships between its inputs and outputs with high accuracy. As for the computational
efficiency, a trained ANN computes predictions rapidly. To predict the concentration of an interest point,
the ANN needs some parameters in the hazardous gas dispersion as inputs. In gas dispersion, common
original monitoring parameters are listed in Table 1. Selecting all the parameters is impractical, because
numerous input parameters may increase the difficulty of training and slow down the convergence of
the ANN. Therefore, only the main factors affecting the gas dispersion are selected as inputs of the
ANN. In this paper, the selected parameters are Dx, Dy, Q, V, Dir, Hs, Z, and dispersion coefficients
a, b, c, and d. The four dispersion coefficients are significant parameters to determine the standard
deviations in Gaussian models, shown in Equation (1):{

σy = a · Db
x

σz = c · Dd
x

(1)

where σy and σz represent the standard deviations of Gaussian distributions in crosswind and vertical
directions, respectively. Dx is the downwind distance. The dispersion coefficients of a, b, c and d are
derived from the atmospheric stability class [31] by Vogt’s scheme [32]. These selected parameters are
essential factors for the atmospheric dispersion and are easy to measure. Moreover, they are inputs of
many atmospheric dispersion models, like the Gaussian dispersion model. Therefore, these parameters
are selected as the inputs of the ANN for dispersion prediction. In addition, it is worth mentioning
that some researchers have taken integrated parameters like the Gaussian parameter as all inputs [16],
in order to get more accurate predictions. This selection of inputs may help the ANN to perform well
on synthetic datasets (especially those generated by Gaussian models). However, it is difficult for
this kind of ANN to accurately reproduce the field data like the Indianapolis dataset [33], because
Gaussian models are inaccurate under the condition of complex terrain. In contrast, most inputs of
our ANN are original monitoring parameters, although the four dispersion coefficients in our ANN
are parameters related to Gaussian models. Therefore, our ANN with inputs of original parameters is
expected to have a good generalization in the field case. The structure of our prediction ANN, with
inputs of original monitoring parameters, is shown in Figure 1. To achieve higher prediction accuracy,
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two hidden layers are applied. The neuron numbers of hidden layers can be adjusted according to the
performance of the ANN. With appropriate neuron numbers of hidden layers, the ANN can perform
well on both accuracy and the convergence speed. As for the output layer, there is only one neuron
outputting the concentration of the interest point. The ANN is trained by the MATLAB neural network
toolbox here, and the algorithm and detailed process of ANN training are introduced in the Section 3.2.

Table 1. Common original monitoring parameters in atmospheric dispersion.

Parameter Symbol Unit

Downwind distance Dx m
Crosswind distance Dy m

Source strength Q g·s−1

Source stack height Hs m
Wind speed V m·s−1

Wind direction Dir deg
Atmospheric stability STA /

Temperature T ◦C
Target height Z m
Mixing height Zm m
Cloud height Zc m
Cloud cover Pc %
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2.2. Solution Algorithm

Optimization is widely used in source estimation. For example, PSO is an intelligent optimization
method, which drives numerous particles by specific rules in order to find the optimal solution with
high computational efficiency. However, the original PSO algorithm tends to fall into the local optimum
easily, especially when the search space is complex (e.g., multi-peak function). In contrast, SA has
a strong global searching capacity, but runs slowly. Therefore, a hybrid optimization algorithm of
PSO and SA is applied in this paper, to overcome the problems brought by the original optimization
algorithms. In addition, wind field parameters (i.e., wind direction and wind speed) are estimated by
the hybrid algorithm as well, because they have an impact on the accuracy of source estimation.

The hybrid algorithm is operated as follows. First, positions of N particles are randomly
initialed in the search space, as well as the particle velocities. Each particle’s position is described
as a 5-dimensional vector (Q, x, y, V, Dir) that represents a candidate solution of release rate,
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the two-dimensional coordinates of source, wind speed and wind direction. The fitness of each
particle for the source estimation is evaluated by an objective function, described in Equation (2).

f itness(p) ∝ exp
{
− 1

2σ2
e
‖ f (p)− Co‖2

}
(2)

where f (p) =
{

Cp1, Cp2, ..., Cpn
}

and CO = {CO1, CO2, ..., COn}. p is the particle describing a candidate
solution. f (p) is a vector representing the prediction concentrations of the ANN dispersion model
at n receptor points with input p. CO is a vector representing the observed concentrations at n
receptors. Each observation is described as the sum of model value Cmi and the measurement error ei:
COi = Cmi + ei (i = 1, 2, ..., n) . n is the number of receptors whose observations are larger than zero.
The zero-measurements are all removed. σ2

e is a constant. A larger fitness means smaller prediction
error and namely, a more accurate solution. Then the best position of each particle so far (pbi) and
the best position of all particles (gb) as well as their fitness (pb f iti and gb f it) are initialized: the initial
value of the ith particle is set as pbi, and the best pbi is set as gb. After that, the velocities and positions
of all particles are updated according to Equation (3). v(t)i = w·v(t−1)

i + c1r1(pbi − p(t−1)
i ) + c2r2(gb− p(t−1)

i )

p(t)i = p(t−1)
i + v(t)i

. (3)

where v(t)i represents the velocity of the ith particle in iteration t. pbi is the best position of the ith
particle, while gb is the best position of all particles so far. w is the inertia parameter describing the
weight of v(t−1)

i in the v(t)i . c1 and c2 are parameters adjusting the velocities towards the pbi and gb.
r1 and r2 are two random numbers. This equation means that each particle’s movement is determined
by combining its current velocity and position, its best position in history pbi, and the global best
position gb. After the update of particle’s position and velocity, the fitness of these new particles
is calculated by Equation (2). Subsequently, the pbi and gb are updated by simulated annealing.
In typical PSO, if a new pbi or gb with better fitness appears in current iteration, the former pbi and gb
are updated to the new values. However, this rule may result in an early-maturing result. Hence, the
simulated annealing is applied in the update, making it possible to accept a “worse” solution in order
to jump out of the local optimum. According to the simulated annealing algorithm, if either pbi or gb
in the current iteration is better than the former, they are updated like the typical PSO. However, if not,
there is still a probability for them accepting the new “worse” values. The acceptance probability is
calculated by Equation (4): {

prob = exp(−( f it− new f it)/T)

T := α · T
(4)

where the new f it and f it are the value of pb f it or gb f it in the current and last iterations, respectively.
T represents the temperature in the simulated annealing algorithm, and decays by rate α. Obviously,
a smaller difference between two values of fitness and higher temperature means a larger acceptance
probability. In the early stage of the algorithm operation, the large value of T guarantees a good global
searching ability. Then, with the decay of T, the acceptance probability reduces gradually, promoting
the convergence of the algorithm. Therefore, the hybrid algorithm tends to perform well on both global
searching and local searching. This algorithm is operated iteratively until it converges, and the final gb
is recognized as the estimation result of the source terms and wind field parameters. The procedure of
this hybrid algorithm is shown in Algorithm 1.
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Algorithm 1. Hybrid algorithm of PSO and SA

1. Initialize N particles with random positions and velocities in 5-demensional search space.
2. Initialize the pbi and gb as well as their fitness pb f iti and gb f it by Equation (2).
3. Loop
4. Update the velocities and positions of particles according to Equation (3).
5. For each particle, evaluate its fitness by Equation (2).
6. Compare each particle’s new fitness with its pb f iti. If the new value of fitness is better than pb f iti,

set pb f iti equal to the new value, and pbi equal to the new position. If new fitness is worse than pb f iti,
accept the new position as pbi with the acceptance probability calculated by Equation (4).

7. Compare pb f iti with gb f it. If pb f iti is better than gb f it, set gb f it equal to pb f iti, and gb equal to pbi.
If pb f iti is worse, accept pbi as gb with the acceptance probability calculated by Equation (4).

8. If a terminal condition is met (a sufficiently good fitness or a maximum number of iterations), exit loop.
9. End loop

3. Numerical Case Study

In this section, the source estimation method of a hybrid SAPSO algorithm with an ANN
prediction model is tested on the synthetic data generated by a commercial software PHAST.
To illustrate the improvement brought by the proposed method, the SAPSO algorithm’s performance
is compared with two other algorithms (i.e., PSO coupled with ANN and PSO coupled with Gaussian
model). The performances of these methods are evaluated by the skill score. Further, the influence
of receptor configuration and measurement noise is analyzed. The procedure of this numerical
experiment is shown as follows:

1. Define a number of leak scenarios in PHAST, and extract training data and test data from
these scenarios.

2. Train the ANN and adjust the neuron numbers of two hidden layers according to the performance.
Test the performance of the trained ANN on the test data.

3. Define scenarios and generate receptor data for the source estimation.
4. Apply the proposed hybrid algorithm with an ANN to the source estimation and compare its

performance with another two algorithms mentioned above.
5. Analyze the influence of receptor configuration and measurement noise on estimation result.

3.1. Synthetic Scenario

The numerical experiment is conducted in the synthetic scenarios generated by process hazard
analysis software (PHAST). PHAST is a comprehensive process hazard analysis system of design
and operation in the process industries [34]. In PHAST, a leak scenario can be defined by the leakage
material type, source strength, release elevation, weather conditions (i.e., wind speed, wind direction,
and atmospheric stability class), etc. In a leak scenario, the concentration data can be easily generated
by the unified dispersion model (UDM) of PHAST. The UDM is for two-phase jet, heavy, and passive
dispersion, including droplet rainout and pool spreading or evaporation [35]. It can model a wide
range of scenarios, including the leak scenario in this paper. In this numerical experiment, the leakage
material is chlorine (Cl2) and the leakage elevation is 45 m. Figure 2 shows a typical leakage scenario
in the numerical experiment. It can be seen that there is an emission source located at (0 m, 0 m) with
some receptors placed uniformly. The wind direction in this scenario is 135◦. Based on the scenario in
PHAST, the measured concentration data at receptors can be easily generated.
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Figure 2. A typical leakage scenario (receptor interval: 100 m, wind direction: 135◦, source location:
(0 m, 0 m), source height: 45 m).

To generate enough training and test data for ANN, these scenario parameters are varied and
combined to produce different scenarios, listed in Table 2. There are more than 1000 scenarios generated
for ANN’s training and testing, covering the most common scenarios. Similar to the typical scenario
in Figure 2, the source in these scenarios is located at (0 m, 0 m) with a height of 45 m. The source
height in the synthetic data generation is fixed, and is not estimated by the source estimation algorithm.
This setting of a fixed source height is based on the field case of the Shanghai chemical industry park
that we focus on. In this chemical industry park, most emission sources have an elevation of 40–50 m.
Therefore, we used the fixed source height of 45 m to simplify the calculation of ANN prediction
and source estimation. The source location in the synthetic data generation is also fixed, because
under the identical meteorological conditions and flat terrain condition, the source can generate the
same concentration distribution (plume) at its downwind direction, regardless of the source location.
Receptors are placed uniformly on the 1000 × 1000 m2 area with an interval of 50 m, and this receptor
configuration is expressed as 21 × 21. All receptors are considered to be placed at ground. Based on
the scenario parameters, corresponding leak scenarios are defined in PHAST. In all leak scenarios,
sources release Cl2 continuously from 0 to 1000 s, and we only focus on the concentration data of the
stable plume within the 1000 × 1000 m2 area. PHAST takes little terrain influence into consideration,
so the terrain condition of this area is ideal and flat. Then, the receptor data of different scenarios, with
no noise, is generated by the UDM in PHAST. The synthetic data of a scenario includes:

• A set of downwind and crosswind distance of the target points from the release point:
(x1, x2, ..., xn) and (y1, y2, ..., yn), where n is the number of receptors;

• The gas concentration at targets points (i.e., receptor data): (c1, c2, ..., cn);
• The wind direction (Dir), speed (V), and atmospheric stability class (STA);
• The source location (Sx, Sy) and strength (Q).

The parameters mentioned in Section 2.1 are derived from the scenario parameters and used
as inputs of ANN, while the receptor data with no noise is the output of ANN (target). In addition,
because the observed concentrations of many receptors are zero (e.g., receptors not in the downwind
direction), these meaningless zero measurements could make ANN performance artificially excellent.
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To evaluate the prediction result fairly and reasonably, 70% of these zero samples are removed before
the training process of ANN. The remaining data has 60,327 samples.

Table 2. Ranges of scenario parameters for the construction of ANN.

Parameter Symbol Range Step

Source strength Q (g·s−1) 1–30 5
Average wind speed V (m·s−1) 1–6 2

Average wind direction Dir (deg) 100–200 10
Atmospheric stability STA A–F /

As for the source estimation, two test scenarios were defined, shown in the Table 3. It is worth
mentioning that the two scenarios in this table were defined to test the algorithm performance with
different source locations and some parameters close to the extreme range values (e.g., 180◦ wind
direction and 2 m·s−1 wind speed). For each scenario, four receptor number configurations (6 × 6,
11 × 11, 21 × 21, and 51 × 51) were used. The receptor intervals of these configurations are 200 m,
100 m, 50 m, 20 m, respectively.

Table 3. Two scenarios for the test of source estimation.

Scenarios Source Strength
(g·s−1)

Source Location
(m)

Wind Speed
(m·s−1)

Wind Direction
(deg)

Atmospheric
Stability Class

1 25 (0, 0) 4 135 C
2 15 (300, −300) 2 180 C

3.2. Configurations of the Artificial Neural Network and Optimization Algorithms

According to the network structure in Section 2.1, the corresponding ANN was constructed
and trained. The data generated by PHAST (60,327 samples) was firstly mixed, and then randomly
divided into the training set (50%, 30,163 samples), validation set (25%, 15,082 samples), and test set
(25%, 15,082 samples). As for the network type, the BP network was suitable for a function-fitting
problem like the dispersion prediction in this paper. This type of network has been used in dispersion
prediction by many researchers [14,15]. Therefore, the BP network as applied here. The activation
function of the neuron in the BP network is a tanh function. Compared with a sigmoid function, the
tanh function tends to have a better performance with convergence speed and solution accuracy [36].
To get more accurate prediction results, the neuron numbers of two hidden layers were determined
by calculating the normalized mean squared error (NMSE), shown in the Figure 3. By plotting the
NMSE of different combinations of neuron numbers, we finally found that the ANN could obtain the
lowest NMSE (0.0011) when the two hidden layers had 30 and 4 neurons, respectively. Afterwards, the
training process was conducted by the MATLAB neural network toolbox. The training algorithm of
the ANN is Levenberg–Marquardt, whose maximum number of epochs is 400 (if early stopping is not
triggered). If accuracy on validation set showed no improvement after more than 6 epochs, the early
stopping would be triggered.

In terms of the configuration of optimization algorithm, the PSO parameters c1, c2 were both set
to 2.0, and the inertia parameter w was set to 0.7. This selection of values is a common setting of the
parameters c1, c2 and w. This selection can give c1 × r1 or c2 × r2 a mean of 1.0, because the random
values r1 and r2 follow the uniform distribution of [0, 1]. Therefore, the particle has an appropriate
velocity and tends to get the target easily, which contributes to the convergence of the algorithm [23].
Similarly, the w of 0.7 also accelerates the convergence of the algorithm. The search range of each
estimated parameter is displayed in Table 4. One hundred particles were randomly placed in the
five-dimensional search space in both PSO and SAPSO, and the particle velocity in each dimension
was randomly initialed and restricted within 10% of the search range in the corresponding dimension.
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With respect to the parameters of simulated annealing, the initial value of temperature T was 2000,
while the decay rate α was 0.7. The values of T and α were adjusted by the algorithm performance
on source estimation. Current values were selected from the intervals of [100, 10,000] and [0.5, 0.9],
to balance the local searching with global searching. All source estimation algorithms mentioned were
operated 50 times.
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Table 4. Search ranges of five parameters in particle swarm optimization (PSO).

Parameter Symbol Minimum Maximum

Source strength Q (g·s−1) 0 30
Source x coordinate x (m) −500 500
Source y coordinate y (m) −500 500

Wind speed V (m·s−1) 0 6
Wind direction Dir (deg) 90 180

3.3. Skill Score

In this numerical case study, the skill score was constructed to evaluate the performances of
different source estimation methods. The skill score combines individual component equations, each of
which can quantify the accuracy of each parameter estimated by the algorithm. Similar to the Long [29],
the component equations are:

Sq =
|Qact −Qest|

Qact
(5)

Sx = max(
( xact − xest)

(xact − xmin)
,
( xest − xact)

( xmax − xact)
) (6)

Sx = max(
( xact − xest)

(xact − xmin)
,
( xest − xact)

( xmax − xact)
) (7)

Sv =
|Vact −Vest|

Vact
(8)

Sdir = min(|Diract − Direst|, 360− |Diract − Direst|)/90 (9)
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where the “act” and “est” designations refer to the actual values and estimated values, respectively.
The “min” and “max” designations represent the minimum and maximum values in search space
shown in Table 4. The skill scores of Sq and Sv represent the relative errors of source strength and
wind speed, respectively. The Sx and Sy describe the location error with the search range. If xest or yest

reaches the maximum or minimum of the search range, the corresponding skill score is 1.0. The design
of Sdir is to deal with some special values (e.g., |Diract − Direst| > 180◦). Further, these skill scores are
set to 1.0 if they exceed 1.0. Therefore, their ranges are limited to [0, 1.0]. Based on these equations,
the total skill score for the estimation of five parameters can be described as:

SkillScore = (w1Sq + w2Sx + w3Sy + w4Sv + w5Sdir)/5 (10)

where wi, i = 1, 2, 3, 4, 5 are the weights of the five skill scores mentioned above. These weights can be
adjusted according to the estimation result for the desired total skill score. Here, they are 2.0, 5.0, 5.0,
2.0, and 1.0, respectively. These weights are set to reflect the importance of the five parameters and
differences of algorithm performances in various scenarios. Among the five parameters, the source
location is usually the most important, so the w2 and w3 are both set to large values (5.0). In addition,
according to the estimation results, the wind speed V and source strength Q are relatively difficult
to estimate. Therefore, w1 and w4 are set to be 2.0, to increase these two skill scores and to reflect the
differences of algorithm performances clearly. It is obvious that the most desirable skill score is zero.

3.4. Results and Analysis

The ANN prediction concentrations on training data and test data are shown in Figure 4. As shown
in Figure 4, the prediction concentrations of ANN on the training and test set were both quite close
to the pre-determined concentrations, with the fitting line close to “y = x”. To further evaluate the
ANN performance on the test data, the indicators of the correlation coefficient (R2), normalized mean
squared error (NMSE), and fractional bias (FB) were used [37]. The R2 of results on test data was
high (0.9986), and the NMSE and FB were both quite close to zero (−0.0016 and 0.0011, respectively).
These indicators all illustrate the excellent performance of ANN on the test data. In addition, the
results on the test set also demonstrate that, when trained by training data covering most scenarios,
the ANN has a good generalization. Therefore, the ANN is a good way of modeling and predicting
the hazardous gas dispersion in the numerical experiment.
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Applying ANN in the hybrid SAPSO and PSO algorithms, we can get the average estimation
results of 50 runs on the two test scenarios, shown in Tables 5 and 6. In addition, the individual skill
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scores of five estimated parameters in Scenario 1 are shown in Figure 5. In these tables, the result with
total skill score lower than 0.05 is considered to be accurate. Table 5 shows that the two algorithms were
both able to estimate each parameter accurately with 21 × 21 receptors or more, shown by small total
skill scores (less than 0.05) and the individual skill scores (all less than 0.05) in Figure 5. With fewer
receptors (11 × 11), the SAPSO and ANN still maintained high accuracy (0.0220 total skill score),
while the estimation accuracy of PSO and ANN decreased (0.0679 total skill score). The difference
is mainly from the wind speed; the wind speed estimated by PSO and ANN was 3.6059 (with error
−0.3941), which is approximately 10% lower than the actual value. In contrast, the result of SAPSO
and ANN was 3.8678, with only a 3.3% error (−0.1322). Further, when the receptor number decreases
to 6 × 6, the performances of the two algorithms were both unsatisfactory, indicated by the total skill
scores (both larger than 0.05) in Table 5. The similar results can be also seen from the skill scores in
Figure 5. Compared with PSO and ANN, the hybrid algorithm of SAPSO and ANN performed better
on estimation with all receptor configurations, especially on the source strength (Q) and wind speed
(V), seen from the Figure 5a,d. This comparison implies that the simulated annealing algorithm used
in the PSO helps to jump out of the local optimum, and improves the results consequently. In addition,
it should be noted that the improvement of the hybrid SAPSO and ANN is more significant when
the receptor configuration is 11 × 11 or 21 × 21 than with the other two receptor configurations.
Similar conclusions can be drawn from Table 6—that two algorithms get accurate estimation results
with more than 11 × 11 receptors, and that the hybrid algorithm has a better performance than PSO
algorithm. In addition, Table 6 also shows the excellent performances of two algorithms in a different
scenario with some extreme parameters (e.g., 180◦ wind direction and 2 m/s wind speed). Moreover,
the accurate estimation of the source location in Table 6 illustrates that the proposed algorithm is
feasible and accurate with different source location (300, −300), even if the training data of the ANN is
generated from the fixed location source (0, 0).

The results in Table 5 also show the differences in estimation accuracy of different parameters.
As seen from the Figure 5, with low skill scores (lower than 0.3%) for all receptor configurations, the
wind direction (Dir) and source location (x,y) are estimated accurately by both algorithms. In contrast,
the skill scores of source strength (Q) and wind speed (V) are larger, as well as the difference of
results between the two algorithms. This comparison may reflect that the atmospheric dispersion
is more sensitive to the wind direction (Dir) and source location (x, y). Therefore, these parameters
are estimated more easily. As for the computational efficiency, the computing time values of the two
algorithms demonstrate their acceptable efficiency. To further evaluate the performances of the two
algorithms, their mean objective function values (gb f it in each iteration, Equation (2)) of 50 runs
during the experiment of Scenario 1 are shown in Figure 6. It can be seen from this figure that during
the calculation process, the objective function values of the two algorithms both rise at first, and later
stabilize. Compared with the PSO algorithm, the hybrid algorithm has lower values of objective
function in the early stage of the calculation. However, the hybrid algorithm gets a higher objective
function in the later period, and its final value is closer to the perfect value (1.0). The possible reason
for this result is the simulated annealing used in PSO. The possible acceptance of worse pb f iti and
gb f it results in the lower objective function of the hybrid algorithm in the early stage. Meanwhile, the
simulated annealing improves the global searching ability, so the final objective function value of the
hybrid algorithm is better than the PSO algorithm.
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Table 5. Average estimation results of simulated annealing and particle swarm optimization algorithm (SAPSO) coupled with ANN and PSO coupled with ANN in
Scenario 1. The results of the two algorithms are described by error.

Method Receptor
Configuration Source Strength (g·s−1) Source Location (m) Wind Speed (m·s−1) Wind Direction (deg) Total Skill Score Computing Time (s)

Actual values / 25 (0, 0) 4 135 0 /
PSO & ANN 6 × 6 1.7980 (−1.4035, 1.4196) 0.5084 −0.0523 0.0855 82.14

SAPSO & ANN 6 × 6 1.4883 (−1.0564, 0.5712) 0.4313 0.0502 0.0704 84.01
PSO & ANN 11 × 11 −1.4410 (1.1102, −1.1424) −0.3941 0.2029 0.0679 83.53

SAPSO & ANN 11 × 11 −0.2331 (1.1648, −1.2247) −0.1322 0.0632 0.0220 84.02
PSO & ANN 21 × 21 −0.2406 (1.1871, −1.1937) −0.2347 0.0031 0.0321 83.17

SAPSO & ANN 21 × 21 0.0430 (0.5835, −0.7272) 0.0385 −0.0219 0.0073 84.77
PSO & ANN 51 × 51 −0.2406 (0.3576, −0.4107) −0.0668 0.0387 0.0118 85.66

SAPSO & ANN 51 × 51 −0.1365 (0.3473, −0.3454) −0.0426 −0.0279 0.0079 88.64

Table 6. Average estimation results of SAPSO coupled with ANN and PSO coupled with ANN in Scenario 2. The results of two algorithms are described by error.

Method Receptor
Configuration Source Strength (g·s−1) Source Location (m) Wind Speed (m·s−1) Wind Direction (deg) Total Skill Score Computing Time (s)

Actual values / 15 (300, −300) 2 180 0 /
PSO & ANN 6 × 6 2.4246 (−0.6221, 3.1990) 0.4384 0.0061 0.1306 81.76

SAPSO & ANN 6 × 6 2.0661 (0.6618, 1.9660) 0.3646 −0.1068 0.1070 83.13
PSO & ANN 11 × 11 0.7587 (−1.3977, 0.6910) −0.1721 0.0518 0.0494 82.57

SAPSO & ANN 11 × 11 0.4615 (−0.4273, 0.8910) −0.1230 0.0565 0.0333 83.89
PSO & ANN 21 × 21 0.2697 (−0.3100, 0.4310) 0.1100 −0.0204 0.0302 83.56

SAPSO & ANN 21 × 21 0.1917 (−0.0492, 0.3830) 0.0140 0.0177 0.0085 85.04
PSO & ANN 51 × 51 0.2630 (0.2070, 0.2600) 0.0289 0.0321 0.0089 85.13

SAPSO & ANN 51 × 51 0.1506 (0.0222, 0.2330) 0.0267 0.0027 0.0063 88.33
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In order to make further comparison of the two algorithms, the average skill scores with standard
deviations in Scenario 1 are shown in Figure 7. Obviously, the skill scores of the two algorithms
decreased when the receptor number increased, indicating that the estimation becomes easier with
more receptors. For most of receptor configurations, the solutions of PSO and ANN were improved by
the hybrid algorithm, which is consistent with Table 5. However, the hybrid algorithm has a larger
standard deviation. This may be because the acceptance of worse fitness in simulated annealing
increases the uncertainty of estimation solutions. As for the source estimation algorithm of the PSO
and Gaussian model, it was operated 50 times with 51 × 51 receptors. The average estimation results
of this algorithm in Scenario 1 were 37.5825 g·s−1, 53.5409 m, 74.6308 m, 2.5390 m·s−1, and 145.3857◦,
with 0.51 s computing time. Although the PSO and Gaussian model method has faster computing
than aforementioned two algorithms, its estimation results are far from satisfactory, due to the poor
accuracy of the simple Gaussian model. Therefore, the proposed method of a hybrid SAPSO and ANN
model is able to effectively improve the estimation accuracy of conventional optimization methods
(i.e., PSO and ANN or the PSO and Gaussian model) in the numerical case.
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3.5. The Influence of Noisy Observation

In the aforementioned experiment, the receptor data is generated with no measurement noise.
However, measurement noise is inevitable in practice, and has a significant impact on the source
estimation. Hence, the hybrid algorithm is performed with receptor data perturbed by Gaussian
white additive noise here, in order to observe the influence of measurement noise. The noises have
six different signal-to-noise ratios (SNRs): 0.1, 1.0, 5.0, 10, 100 and infinity (no noise). The SNR here
is defined by dividing the actual concentration (signal) by measurement noise, which is somewhat
different from the definition of SNR in electronics. An SNR above 1.0 indicates less noise than signal,
while an SNR below 1.0 indicates more noise than signal. Furthermore, each of these runs is performed
repeatedly with each of four receptor configurations (6 × 6, 11 × 11, 21 × 21, and 51 × 51) to evaluate
the sensitivity of estimation results to receptor configuration and noise. The wind direction in these
runs is 135◦.

Figure 8 shows the contour plot of median total skill scores across 20 runs as a function of receptor
configurations and SNRs in Scenario 1. The median skill score is considered here instead of the mean,
because the median is less sensitive to outliers. An estimation result with a skill score lower than 0.05
is considered acceptable. The influence of receptor configuration and SNR on the skill score can be
illustrated clearly by this figure. Obviously, the SNR influences the result greatly with each of receptor
configurations. In most cases, with an SNR larger than 10, the source terms and wind field parameters
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can be estimated accurately. However, the performance of the hybrid algorithm deteriorates sharply
with an SNR lower than 5.0, indicated by the dense contours between SNR = 5.0 and SNR = 1.0. If the
SNR is lower than 1.0, the hybrid algorithm is unable to compute the solution to any reasonable degree
of accuracy (with a skill score larger than 0.4). With this much noise, the actual plume can no longer be
detected precisely from the receptor data, so the hybrid algorithm is of no use. Furthermore, runs with
more receptors are less sensitive to noise than runs with fewer receptors. As for the impact of receptor
number, the skill score is appreciably affected by receptor configuration only if the SNR is relatively
high (5.0–100), as seen from the contours of 0.2, 0.1, 0.05, 0.02 and 0.01.
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4. Indianapolis Field Study

4.1. Introduction of the Indianapolis Tracer Experiment

In order to verify the effectiveness of proposed method in the field, the proposed method of
SAPSO coupled with ANN was tested on the Indianapolis tracer dataset [33]. This tracer experiment
was conducted in Indianapolis, Indiana, U.S., from 16 September to 11 October 1985. In this experiment,
the SF6 tracer was released from an 83.8 m stack (with diameter 4.72 m) at the Perry K power plant
in Indianapolis. The geographic coordinates of this stack are UTM-N 4401.59 km (39.8◦ E latitude)
and UTM-E 571.40 km (86.2◦ E longitude). The 83.8 m stack at the Perry K plant was located in a
typical urban area, with many buildings within one or two kilometers of the stack [38]. Therefore,
the terrain condition of this experiment was quite complex. As for the experimental data, 170 h of
tracer concentration data is available, as well as the meteorological data representing all atmospheric
stability classes and most wind direction and speed ranges. The tracer concentrations were observed
by a network of about 160 ground-level monitors in semi-circular arcs, at distances ranging from 0.25
to 12.0 km from the stack. Therefore, the range of the monitoring distance was about 12 km. The unit
of the tracer data is ppt (one millionth of ppm). The meteorological data was collected by various
sensors [38]. Data were taken in 8 or 9 h blocks each day. There are a total of 19 such blocks in the
Indianapolis dataset, representing the data of different days.
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4.2. Configurations of the Artificial Neural Network and the Solution Algorithm

To evaluate the ANN’s performance reasonably, the zero measurements were removed, like
in the numerical experiment. The tracer and meteorological data from 18 September to 11 October
was used for training and validation (70% and 30% respectively, 4859 samples in total) while the
data of 17 September were used for testing (311 samples). It is worth mentioning that there were
different monitoring values for wind speed and direction at the same time in the Indianapolis dataset.
They were measured by four meteorological stations. Therefore, the ANN here had 21 inputs (i.e.,
four different wind speeds V, directions Dir, downwind distances Dx, crosswind distances Dy, four
dispersion coefficients a, b, c, and d, and source strength Q). The neuron numbers of two layers were 60
and 7, respectively, due to the increased number of inputs (compared with the numerical experiment).
Other configurations of the ANN are the same as the numerical experiment. Only the source terms were
estimated in this experiment, because it was difficult to estimate several wind speeds and directions
with this dataset, and the wind field is considered known here. The data from 11 a.m. on 17 September
was used as test data for source estimation. Each algorithm used 30 particles and was performed
50 times, because the number of estimated parameters was only three. The selection of c1, c2, w, T
and α was the same as the numerical experiment.

4.3. Results and Analysis

Figure 9 demonstrates the comparison between the Indianapolis measurements and the ANN
prediction results. Obviously, most examples are distributed around the perfect fitting line: y = x.
To reasonably evaluate the performance of the ANN, all zero measurements were removed when
plotting the figure. To further evaluate the performance of the ANN prediction model, the R2

coefficient, factor of two (FAC2), FB, and NMSE were applied here. The R2 of the all predicted
results and the measurements was 0.5655, illustrating that the predicted concentrations were close
to the measurements. The FAC2 of the prediction results without zero measurements was 0.5305,
indicating that the ANN prediction model has an acceptable performance, according to the criteria
FAC2 > 0.5 [39]. The FAC2 over and under prediction lines (i.e., y = 2x and y = x/2, respectively) are
also shown in the figure. Furthermore, the FB of the result was 0.2005 and the NMSE was 0.6054,
which are close to zero and prove the acceptable performance. To compare the ANN output reliably,
the receptor distribution in the domain at 11:00 a.m. on 17 September is shown in the Figure 10. In this
figure, the values of the receptor data is roughly described by the size of the black filled circle in the
figure; the larger circle represents the higher observed concentration. This figure combines the receptor
distribution and the observed data, giving a direct visualization of the dispersion scenario.
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As for the source estimation, the average estimation results listed in Table 7 illustrate that the two
algorithms are both able to obtain acceptable results. The source location errors of the two algorithms
were 94.27 m and 93.35 m, and the relative errors to the monitoring area length (12 km) were 0.786%
and 0.778%, respectively. The results illustrate that the proposed source estimation methods are feasible
in practice. However, the similar performances of the two algorithms indicates that the improvement
of the hybrid algorithm is less significant than in the numerical experiment. This may result from the
accuracy of the ANN prediction model. The ANN in this field case study is not as accurate as that in the
numerical experiment. Therefore, the estimation accuracy is mainly affected by the accuracy of ANN
instead of the source estimation algorithm. In addition, it can be seen from this table that the source
strength, which is difficult to estimate in a numerical experiment, is accurately estimated by the two
algorithms. The difference results from the narrow range of source strength in the Indianapolis dataset.

Table 7. Average results of different methods on the test data.

Method Source Strength (g·s−1) Source Location (m)

Actual value 4.6600 (0, 0)
PSO & ANN1 4.6844 (57.6866, 74.5629)

SAPSO & ANN1 4.6805 (57.2595, 73.7221)

5. Discussion

In the numerical experiment, the hybrid SAPSO algorithm and ANN indeed improves the
estimation accuracy of the PSO and ANN. It is worthwhile to note that the improvement brought
by the hybrid SAPSO is more significant with 11 × 11 and 21 × 21 receptors than with the other
two receptor configurations in both test scenarios. With 51 × 51 receptors, the performances of both
algorithms are satisfying, with total skill scores lower than 0.015, and the difference of their skill scores
is small. These results indicate that using a large number of receptors may help to make up for the
accuracy of the source estimation algorithm. In addition, the large total skill scores (larger than 0.05) of
both algorithms with 6 × 6 receptors imply that having enough receptors is indispensable for source
estimation. The lack of receptors may lead to inaccurate source estimation, even if the algorithm is
excellent. These findings provide some guidance for the configuration of receptors and the selection
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of a source estimation algorithm in emergency management. Besides, although the hybrid algorithm
improves the PSO, it brings greater standard deviation, because of the possible acceptance of worse
fitness in simulated annealing, as indicated by Figure 7. In order to reduce the uncertainty of estimation
results, the parameters of temperature T and decay rate α should be further optimized to balance the
global searching with local searching. Different decay modes, such as T(t) = c/ log(1 + t), can be
applied [40]. Operating the algorithm many times may help as well. In addition, the estimation results
of Scenario 2 illustrate that the proposed algorithm is feasible and accurate in a different scenario and
with a different source location (300, −300) and some extreme parameters, even if the ANN used in
the algorithm is trained by the synthetic data generated from a fixed-location source (0, 0).

As for the field case study, the improvement brought by simulated annealing in the Indianapolis
case study is less significant than in the numerical experiment. The possible reason may be the accuracy
of ANN prediction model. Because of the complexity of the Indianapolis field dataset, the ANN cannot
predict the gas dispersion as accurately as the ANN in the numerical experiment. Therefore, affected
by the ANN prediction model, the estimation accuracy is not improved significantly by the hybrid
algorithm. To deal with this problem, more accurate ANNs like the deep neural network will be
applied to the dispersion prediction in the future work.

However, the method proposed in this paper also has some problems. The main problem is
the PHAST software used in the numerical case study. Since it takes few terrain conditions into
consideration, the UDM in PHAST is still not accurate enough to describe the actual dispersion,
making the synthetic data easy to predict. Besides, the wind field in a scenario of PHAST is stable and
identical in the 1000 × 1000 m2 area, while the actual wind field is unevenly distributed. The actual
uneven wind field can make a significant difference to hazardous gas dispersion in air. Therefore,
although the proposed ANN and source estimation method has an excellent performance with PHAST
data, it may be not feasible in the field. To deal with the problem, more accurate commercial software
should be applied, such as the AERMOD [41] and CALPUFF [42], to produce more realistic dispersion
data. Based on these sophisticated models, the constructed ANN and source estimation method can be
more convincing.

6. Conclusions

This paper proposed a novel method for estimating hazardous source terms and wind field
parameters using ANN, PSO, and SA. The ANN is applied in order to model and predict the
atmospheric dispersion of hazardous gas accurately and efficiently, while the hybrid algorithm
of SAPSO is used to improve the global searching of the original PSO. A numerical case study is
implemented based on PHAST, to test the performance of the proposed method, and the Indianapolis
field study proves that this method is feasible in practice. Results illustrate that the ANN, with both
accuracy and efficiency, provides a more desirable forward dispersion model for the source estimation
algorithm than the Gaussian model. In addition, the hybrid algorithm of SAPSO improves the
estimation accuracy of the original PSO algorithm, especially in the numerical case study. In conclusion,
the proposed method is able to estimate the hazardous source and wind field with both accuracy
and efficiency. Therefore, this method will provide strong support to the emergency management
of hazardous leak accidents in the future. Future work includes the application of the sophisticated
software on the dispersion data generation, application of the deep neural network on the gas
dispersion modeling, and the field experiment of the proposed method (e.g., in the Shanghai chemical
industry park).
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